WorldWideScience

Sample records for pyrin domain-containing protein

  1. A Novel Mutation in the Pyrin Domain of the NOD-like Receptor Family Pyrin Domain Containing Protein 3 in Muckle-Wells Syndrome

    Science.gov (United States)

    Hu, Jian; Zhu, Yun; Zhang, Jian-Zhong; Zhang, Rong-Guang; Li, Hou-Min

    2017-01-01

    Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease. CAPS is associated with gain-of-function missense mutations in NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), the gene encoding NLRP3. Moreover, most mutations leading to MWS occurred in exon 3 of NLRP3 gene. Here, we reported a novel mutation occurred in exon 1 of NLRP3 gene in an MWS patient and attempted to explore the pathogenic mechanism. Methods: Genetic sequence analysis of NLRP3 was performed in an MWS patient who presented with periodic fever, arthralgia, and multiform skin lesions. NLRP3 was also analyzed in this patient's parents and 50 healthy individuals. Clinical examinations including X-ray examination, skin biopsy, bone marrow aspiration smear, and blood test of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum levels of IL-1β, immunoglobulin E (IgE), antineutrophil cytoplasmic antibodies, antinuclear antibodies, and extractable nuclear antigen were also analyzed. The protein structure of mutant NLRP3 inflammasome was calculated by SWISS-MODEL software. Proteins of wild type and mutant components of NLRP3 inflammasome were expressed and purified, and the interaction abilities between these proteins were tested by surface plasmon resonance (SPR) assay. Results: X-ray examination showed no abnormality in the patient's knees. Laboratory tests indicated an elevation of CRP (233.24 mg/L) and ESR (67 mm/h) when the patient had fever. Serum IL-1β increased to 24.37 pg/ml, and serum IgE was higher than 2500.00 IU/ml. Other blood tests were

  2. Co-regulation of NF-kappaB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013.

    Directory of Open Access Journals (Sweden)

    Masmudur M Rahman

    2009-10-01

    Full Text Available NF-kappaB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV, a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1beta and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO, in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-kappaB. The induction of these NF-kappaB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IkappaBalpha, which was followed by nuclear translocation of NF-kappaB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-kappaB-mediated reporter gene expression and nuclear translocation of NF-kappaB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-kappaB1, suggesting a direct physical and functional linkage between NF-kappaB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-kappaB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1beta. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-kappaB-mediated pro

  3. Co-regulation of NF-kappaB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013.

    Science.gov (United States)

    Rahman, Masmudur M; Mohamed, Mohamed R; Kim, Manbok; Smallwood, Sherin; McFadden, Grant

    2009-10-01

    NF-kappaB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1beta and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-kappaB. The induction of these NF-kappaB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IkappaBalpha, which was followed by nuclear translocation of NF-kappaB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-kappaB-mediated reporter gene expression and nuclear translocation of NF-kappaB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-kappaB1, suggesting a direct physical and functional linkage between NF-kappaB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-kappaB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1beta. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-kappaB-mediated pro-inflammatory responses.

  4. Increased Expression of the NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome in Dermatomyositis and Polymyositis is a Potential Contributor to Their Pathogenesis

    Institute of Scientific and Technical Information of China (English)

    Xi Yin; Gen-Cheng Han; Xing-Wei Jiang; Qiang Shi; Chuan-Qiang Pu

    2016-01-01

    Background:Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood.The NOD-like receptor family,pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations.Responding to a wide range of exogenous and endogenous microbial or sterile stimuli,NLRP3 inflammasomes can cleave pro-caspase-1 into active caspase-1,which processes the pro-inflammatory cytokines pro-interleukin (IL)-1 β and pro-IL-18 into active and secreted IL-1 β and IL-18.The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases.However,it remains unclear whether it is involved in the pathogenesis of DM/PM,which we aim to address in our research.Methods:In this study,22 DM/PM patients and 24 controls were recruited.The protein and RNA expression of IL-1β,IL-18,NLRP3,and caspase-1 in serum and muscle samples were tested and compared between the two groups.Results:The serum IL-1β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (ELISA,DM vs.control,25.02 ± 8.29 ng/ml vs.16.49 ± 3.30 ng/ml,P < 0.001; PM vs.control,26.49 ± 7.79 ng/ml vs.16.49 ± 3.30 ng/ml,P < 0.001).Moreover,the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-1 β,IL-18,and NLRP3 in the muscle (for IL-1β,DM vs.control,P =0.0012,PM vs.control,P =0.0021; for IL-18,DM vs.control,P =0.0045,PM vs.control,P =0.0031; for NLRP3,DM vs.control,P =0.0017,PM vs.control,P =0.0006).Moreover,the protein expression of NLRP3 and caspase-1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls.Conclusions:Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM

  5. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P

    2003-01-01

    The ubiquitin-proteasome pathway for intracellular proteolysis is involved in a series of cellular and molecular functions, including the degradation of bulk proteins, cell cycle control, DNA repair, antigen presentation, vesicle transport and the regulation of signal transudation pathways and tr....... The proteins display remarkable differences in their domain organisation, indicating that these potential ubiquitin binding proteins are involved in various cell activities....

  6. NLR family pyrin domain containing 3 (NLRP3) inflammasome gene polymorphism rs7512998 (C>T) predicts aging-related increase of blood pressure, the TAMRISK study.

    Science.gov (United States)

    Kunnas, Tarja; Määttä, Kirsi; Nikkari, Seppo T

    2015-01-01

    The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome by cellular stress leads to activation of the inflammasome, and NLRP3 gene polymorphisms have been associated with autoinflammatory diseases. Inflammasomes have also been implicated in the initiation or progression of metabolic disorders such as atherosclerosis, type 2 diabetes and obesity. The association of NLRP3 genetic variant rs7512998 with blood pressure and hypertension was studied in a 50-year-old Finnish cohort with a subpopulation who had available data on blood pressure measurements also at the age of 45 years. NLRP3 gene polymorphism rs7512998 C-allele was associated with higher systolic (p = 0.006) and diastolic (p = 0.011) blood pressure compared to the TT-genotype carriers in 50-year-old subjects. In addition, by analysis of variance for repeated measures between ages of 45- and 50 years there was a significant time by genotype interaction; blood pressure increased more in subjects with the C-allele both in systolic (p = 0.035) and diastolic (p = 0.012) values. However, no association with diagnosed hypertension was found. We report for the first time that NLRP3 gene polymorphism rs7512998 was associated with systolic and diastolic blood pressure in 50-year-old subjects. In addition, an effect of this variation upon blood pressure was seen in these same subjects in a 5-year follow-up from a 45-year-old cohort to 50 years of age.

  7. Influence of the mutation on the stability of pyrin protein and development of familial Mediterranean fever

    Directory of Open Access Journals (Sweden)

    Arakelov G G

    2015-04-01

    Full Text Available Present study was carried out for the molecular modeling of the pyrin protein. Tertiary structure of pyrin protein was developed by de novo modeling and treading methods. Subsequent evaluation of the developed model was also carried out and found it stereochemical correct. Furthermore, influence of the mutation on the stability of the pyrin tertiary structure and development of Familial Mediterranean Fever was also studied in the present study. Total 66 mutations were localized at B30.2 domain of pyrin protein and this domain is responsible for manifestation of Familial Mediterranean Fever. It was also reported that among 66 localized mutations 24 mutations affects the stability of pyrin structure while 25 mutations have neutral effect on the stability and rest 17 mutations have stabilizing effect on the tertiary structure of pyrin.

  8. Phylogenetic Analysis of RhoGAP Domain-Containing Proteins

    Institute of Scientific and Technical Information of China (English)

    Marcelo M.Brand(a)o; Karina L.Silva-Brand(a)o; Fernando F.Costa; Sara T.O.Saad

    2006-01-01

    Proteins containing an Rho GTPase-activating protein (RhoGAP) domain work as molecular switches involved in the regulation of diverse cellular functions. The ability of these GTPases to regulate a wide number of cellular processes comes from their interactions with multiple effectors and inhibitors, including the RhoGAP family, which stimulates their intrinsic GTPase activity. Here, a phylogenetic approach was applied to study the evolutionary relationship among 59 RhoGAP domain-containing proteins. The sequences were aligned by their RhoGAP domains and the phylogenetic hypotheses were generated using Maximum Parsimony and Bayesian analyses. The character tracing of two traits, GTPase activity and presence of other domains, indicated a significant phylogenetic signal for both of them.

  9. Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-κB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation.

    Science.gov (United States)

    Ren, Jun; Meng, Shanshan; Yan, Bingdi; Yu, Jinyan; Liu, Jing

    2016-04-01

    Protectin D1 (PD1) is a bioactive product generated from docosahexaenoic acid, which may exert anti-inflammatory effects in various inflammatory diseases. However, the underlying molecular mechanism of its anti‑inflammatory activity on concanavalin A (Con A)-induced hepatitis remains unknown. The aim of the present study was to investigate the protective effects of PD1 against Con A‑induced liver injury and the underlying mechanisms via intravenous injection of PD1 prior to Con A administration. C57BL/6 mice were randomly divided into four experimental groups as follows: Control group, Con A group (30 mg/kg), 20 µg/kg PD1 + Con A (30 mg/kg) group and 10 µg/kg PD1 + Con A (30 mg/kg) group. PD1 pretreatment was demonstrated to significantly inhibit elevated plasma aminotransferase levels, high mobility group box 1 and liver necrosis, which were observed in Con A‑induced hepatitis. Furthermore, compared with the Con A group, PD1 pretreatment prevented the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α, interferon‑γ and interleukin‑2, ‑1β and ‑6. In addition, pretreatment with PD1 markedly downregulated cluster of differentiation (CD)4+, CD8+ and natural killer T (NKT) cell infiltration in the liver. PD1 pretreatment was observed to suppress the messenger RNA and protein expression levels of NLR family, pyrin domain containing 3 and Toll‑like receptor (TLR) 4 in liver tissue samples. Further data indicated that PD1 pretreatment inhibited the activation of the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) signaling pathway and chemokine (C‑X3‑C motif) ligand 1 (CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) axis by preventing phosphorylation of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α and NF‑κB in Con A‑induced liver injury. Therefore, these results suggest that PD1 administration protects mice against Con A‑induced liver injury via

  10. The Nucleotide-Binding Oligomerization Domain-Like Receptor Family Pyrin Domain-Containing 3 Inflammasome Regulates Bronchial Epithelial Cell Injury and Proapoptosis after Exposure to Biomass Fuel Smoke.

    Science.gov (United States)

    Li, Chen; Zhihong, Huang; Wenlong, Li; Xiaoyan, Liu; Qing, Chen; Wenzhi, Luo; Siming, Xie; Shengming, Liu

    2016-12-01

    The number of individuals in the population exposed to biomass fuel smoke (BS) is far greater than the number of cigarette smokers. About 20% of cigarette smokers develop chronic obstructive pulmonary disease (COPD) due to smoke-induced irreversible damage and sustained inflammation of the airway epithelium. However, the role of BS in COPD pathogenesis remains to be elucidated. In this study, we investigated the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 and caspase-1 in the bronchial epithelium from patients with COPD, and further determined the specific role of the NLRP3 inflammasome in bronchial epithelium injury using two in vitro models (BS and cigarette smoke [CS]) in the human bronchial epithelial (HBE) cell line (16HBE). After exposure to BS and CS, the release of damage-associated molecular patterns, the transcriptional and translational up-regulation of NLRP3, and the activation of caspase-1 were observed in cells at different time points. Because IL-1β secretion was dependent on the NLRP3 inflammasome, we assessed CXCL-8 production in response to smoke. Using a transwell migration assay in which 16HBE cells and human alveolar macrophages were cocultured, we showed that smoke-induced NLRP3 activation in 16HBE cells increased the migration of human alveolar macrophages. When the NLRP3 expression was silenced, the average migration distance of 16HBE was increased in scratch assay, because the activation of NLRP3 induced apoptosis by the p53-Bax mitochondrial pathway in the smoke-induced response. These results demonstrate the importance of the NLRP3 inflammasome in mediating BS- and CS-induced HBE cell damage and proapoptosis.

  11. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  12. Bioinformatic identification of genes encoding C1q-domain containing proteins in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.

  13. α/β-hydrolase domain containing protein 15 (ABHD15--an adipogenic protein protecting from apoptosis.

    Directory of Open Access Journals (Sweden)

    Evelyn Walenta

    Full Text Available Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15 is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ, the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.

  14. The complex regulation of HIC (Human I-mfa domain containing protein) expression.

    Science.gov (United States)

    Reiss-Sklan, Ella; Levitzki, Alexander; Naveh-Many, Tally

    2009-07-07

    Human I-mfa domain containing protein (HIC) differentially regulates transcription from viral promoters. HIC affects the Wnt pathway, the JNK/SAPK pathway and the activity of positive transcription elongation factor-b (P-TEFb). Studies exploring HIC function in mammalian cells used ectopically expressed HIC due to undetected endogenous HIC protein. HIC mRNA contains exceptionally long 5' and 3' untranslated regions (UTRs) compared to the average length of mRNA UTRs. Here we show that HIC protein is subject to strict repression at multiple levels. The HIC mRNA UTRs reduce the expression of HIC or of a reporter protein: The HIC 3'-UTR decreases both HIC and reporter mRNA levels, whereas upstream open reading frames located in the 5'-UTR repress the translation of HIC or of the reporter protein. In addition, ectopically expressed HIC protein is degraded by the proteasome, with a half-life of approximately 1 h, suggesting that upon activation, HIC expression in cells may be transient. The strict regulation of HIC expression at the levels of mRNA stability, translation efficiency and protein stability suggests that expression of the HIC protein and its involvement in the various pathways is required only under specific cellular conditions.

  15. The complex regulation of HIC (Human I-mfa domain containing protein expression.

    Directory of Open Access Journals (Sweden)

    Ella Reiss-Sklan

    Full Text Available Human I-mfa domain containing protein (HIC differentially regulates transcription from viral promoters. HIC affects the Wnt pathway, the JNK/SAPK pathway and the activity of positive transcription elongation factor-b (P-TEFb. Studies exploring HIC function in mammalian cells used ectopically expressed HIC due to undetected endogenous HIC protein. HIC mRNA contains exceptionally long 5' and 3' untranslated regions (UTRs compared to the average length of mRNA UTRs. Here we show that HIC protein is subject to strict repression at multiple levels. The HIC mRNA UTRs reduce the expression of HIC or of a reporter protein: The HIC 3'-UTR decreases both HIC and reporter mRNA levels, whereas upstream open reading frames located in the 5'-UTR repress the translation of HIC or of the reporter protein. In addition, ectopically expressed HIC protein is degraded by the proteasome, with a half-life of approximately 1 h, suggesting that upon activation, HIC expression in cells may be transient. The strict regulation of HIC expression at the levels of mRNA stability, translation efficiency and protein stability suggests that expression of the HIC protein and its involvement in the various pathways is required only under specific cellular conditions.

  16. Functional analysis of schistosomes EF-hand domain-containing tegument proteins

    Institute of Scientific and Technical Information of China (English)

    YU FuDong; KANG Bin; LI YuanYuan; LI YiXue

    2007-01-01

    Schistosomes cause schistosomiasis disease which severely threatens human health. Little is known about the functions of EF-hand domain containing schistosomes tegument proteins other than as antigens. More possible functions of these tegument proteins were investigated with in silico analyses including protein-protein functional interaction, site-specific variation and glycosylation modification. The analysis results suggested that schistosomes could actively modulate host immune responses for its own favor through functional interactions with host proteins with immunomodulatory function, and passively regulate host immune responses through sequence variation under positive selection and glycosylating the recognition sites of host immune attack. In addition, the analysis of the C-terminal domain of these tegument proteins indicated that they could assist schistosomes in escaping host immune attacks through inhibiting chemotaxis and non-complement fixing antibody (IgG4) responses. In summary, our results suggested that these tegument antigen proteins could assist schistosomes in escaping and modulating host immune responses for self-protection during the process of host-para- site interaction.

  17. Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins.

    Science.gov (United States)

    Rivera, Corban G; Bader, Joel S; Popel, Aleksander S

    2011-08-01

    Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel [Proc. Natl. Acad. Sci. USA 105(37):13775-13780, 2008] used a bioinformatics approach to identify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain of the proteins they were derived from. The families included type IV collagen fibrils, CXC chemokine ligands, and type I thrombospondin domain-containing proteins. The relationships between these families have received relatively little attention. To investigate these relationships, we approached the problem by placing the families of proteins in the context of the human interactome including >120,000 physical interactions among proteins, genes, and transcripts. We built on a graph theoretic approach to identify proteins that may represent conduits of crosstalk between protein families. We validated these findings by statistical analysis and analysis of a time series gene expression data set taken during angiogenesis. We identified six proteins at the center of the angiogenesis-associated network including three syndecans, MMP9, CD44, and versican. These findings shed light on the complex signaling networks that govern angiogenesis phenomena.

  18. Popeye domain-containing proteins and stress-mediated modulation of cardiac pacemaking.

    Science.gov (United States)

    Simrick, Subreena; Schindler, Roland F; Poon, Kar-Lai; Brand, Thomas

    2013-10-01

    An intricate network of ion channels and pumps are involved in generating a diastolic pacemaker potential, which is transmitted to the working myocardium with the help of the cardiac conduction system. The principles of cardiac pacemaking are reasonably well understood, however, the mechanism by which the heart increases its beating frequency in response to adrenergic stimulation has not been fully worked out. The Popeye domain-containing (Popdc) genes encode plasma membrane-localized proteins that are able to bind cAMP with high affinity; mice with null mutations in Popdc1 or 2 have a stress-induced pacemaker dysfunction. The phenotype in both mutants develops in an age-dependent manner and thus may model pacemaker dysfunction in man, as well as provide novel mechanistic insights into the process of pacemaker adaptation to stress.

  19. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    Directory of Open Access Journals (Sweden)

    Defne Surujon

    Full Text Available The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species or believed to lack (mammals HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms.

  20. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    Science.gov (United States)

    Surujon, Defne; Ratner, David I

    2016-01-01

    The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt) domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species) or believed to lack (mammals) HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms.

  1. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Nicola Vitulo

    2007-01-01

    Full Text Available The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confi rming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals fi ve distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.

  2. A novel PAN/apple domain-containing protein from Toxoplasma gondii: characterization and receptor identification.

    Directory of Open Access Journals (Sweden)

    Haiyan Gong

    Full Text Available Toxoplasma gondii is an intracellular parasite that invades nucleated cells, causing toxoplasmosis in humans and animals worldwide. The extremely wide range of hosts susceptible to T. gondii is thought to be the result of interactions between T. gondii ligands and receptors on its target cells. In this study, a host cell-binding protein from T. gondii was characterized, and one of its receptors was identified. P104 (GenBank Access. No. CAJ20677 is 991 amino acids in length, containing a putative 26 amino acid signal peptide and 10 PAN/apple domains, and shows low homology to other identified PAN/apple domain-containing molecules. A 104-kDa host cell-binding protein was detected in the T. gondii lysate. Immunofluorescence assays detected P104 at the apical end of extracellular T. gondii. An Fc-fusion protein of the P104 N-terminus, which contains two PAN/apple domains, showed strong affinity for the mammalian and insect cells evaluated. This binding was not related to protein-protein or protein-lipid interactions, but to a protein-glycosaminoglycan (GAG interaction. Chondroitin sulfate (CS, a kind of GAG, was shown to be involved in adhesion of the Fc-P104 N-terminus fusion protein to host cells. These results suggest that P104, expressed at the apical end of the extracellular parasite, may function as a ligand in the attachment of T. gondii to CS or other receptors on the host cell, facilitating invasion by the parasite.

  3. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice.

    Science.gov (United States)

    Froese, Alexander; Breher, Stephanie S; Waldeyer, Christoph; Schindler, Roland F R; Nikolaev, Viacheslav O; Rinné, Susanne; Wischmeyer, Erhard; Schlueter, Jan; Becher, Jan; Simrick, Subreena; Vauti, Franz; Kuhtz, Juliane; Meister, Patrick; Kreissl, Sonja; Torlopp, Angela; Liebig, Sonja K; Laakmann, Sandra; Müller, Thomas D; Neumann, Joachim; Stieber, Juliane; Ludwig, Andreas; Maier, Sebastian K; Decher, Niels; Arnold, Hans-Henning; Kirchhof, Paulus; Fabritz, Larissa; Brand, Thomas

    2012-03-01

    Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention.

  4. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53.

    Science.gov (United States)

    Piao, Shudong; Pei, Han Zhong; Huang, Bin; Baek, Suk-Hwan

    2017-05-01

    Ubiquitination and deubiquitination pathways play important roles in the regulation of p53 stability and activity. p53 is ubiquitinated and destabilized by E3 ubiquitin ligases and is deubiquitinated and stabilized by deubiquitinases (DUBs). We screened ovarian tumor (OTU) subfamily proteins to identify novel DUBs that stabilized p53. OTU domain-containing protein 1 (OTUD1) is a DUB belonging to the OTU family; however, its substrates and its role in cells are unknown. Here, we used an overexpression and knockdown system to show that OTUD1 is a novel regulator of p53 stability. OTUD1 overexpression increased p53 stability, whereas OTUD1 knockdown decreased p53 stability. Moreover, we observed that OTUD1 directly interacted with p53. Our results showed that OTUD1 deubiquitinated p53 and that functional OTUD1 was required for p53 stabilization. The deubiquitination activity of OTUD1 was necessary for p53 stabilization, as confirmed using an inactive OTUD1 mutant (C320S OTUD1 mutant). We also found that wild-type OTUD1 upregulated p21 and Mdm2 expression but inactive OTUD1 mutant did not. Furthermore, OTUD1 significantly suppressed colony formation. Next, we confirmed that OTUD1 overexpression increased the cleavage of caspase-3 and PARP and subsequently increased apoptosis. Together, these results suggest that OTUD1 is a novel regulator of p53 stability and activity.

  5. Paragonimus westermani: identification and characterization of the fasciclin I domain-containing protein.

    Science.gov (United States)

    Song, Su-Min; Shin, Jong-Won; de Guzman, Jefferson V; Kim, Jin; Yu, Hak-Sun; Jha, Bijay Kumar; Kong, Hyun-Hee; Hong, Yeonchul; Chung, Dong-Il

    2010-06-01

    Paragonimus westermani is a trematode parasite that causes inflammatory lung disease as well as systemic infections in carnivorous mammals. The interaction of the parasite with host cells and paired worms is initiated by adhesion and plays an important role in parasite proliferation and differentiation. In this study, we isolated a cDNA encoding a P. westermani fasciclin I domain-containing protein (Pwfas-I). The fasiclin-I domain is suggested to be involved in cell adhesion, migration, and differentiation. Immunohistochemical analysis of P. westermani adult worms with polyclonal anti-Pwfas-I serum revealed immunoreactivity in the egg shells and the cells lining the sub-tegumental layer of adult worm throughout the contact regions of the cyst wall and paired worms. Using cell adhesion and spreading assays, we showed that Pwfas-I supports cell adhesion and spreading. Furthermore, we determined that the alphanubeta5 integrin was a functional receptor for the Pwfas-I. Taken together, these results suggest that Pwfas-I may be functional for the modulation of cell adhesion via binding with alphanubeta5 integrin in the extracellular matrix of Paragonimus.

  6. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.

  7. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins.

    Science.gov (United States)

    Schweiger, Regina; Soll, Jürgen; Jung, Kirsten; Heermann, Ralf; Schwenkert, Serena

    2013-10-18

    The three tetratricopeptide repeat domain-containing docking proteins Toc64, OM64, and AtTPR7 reside in the chloroplast, mitochondrion, and endoplasmic reticulum of Arabidopsis thaliana, respectively. They are suggested to act during post-translational protein import by association with chaperone-bound preprotein complexes. Here, we performed a detailed biochemical, biophysical, and computational analysis of the interaction between Toc64, OM64, and AtTPR7 and the five cytosolic chaperones HSP70.1, HSP90.1, HSP90.2, HSP90.3, and HSP90.4. We used surface plasmon resonance spectroscopy in combination with Interaction Map® analysis to distinguish between chaperone oligomerization and docking protein-chaperone interactions and to calculate binding affinities for all tested interactions. Complementary to this, we applied pulldown assays as well as microscale thermophoresis as surface immobilization independent techniques. The data revealed that OM64 prefers HSP70 over HSP90, whereas Toc64 binds all chaperones with comparable affinities. We could further show that AtTPR7 is able to bind HSP90 in addition to HSP70. Moreover, differences between the HSP90 isoforms were detected and revealed a weaker binding for HSP90.1 to AtTPR7 and OM64, showing that slight differences in the amino acid composition or structure of the chaperones influence binding to the tetratricopeptide repeat domain. The combinatory approach of several methods provided a powerful toolkit to determine binding affinities of similar interaction partners in a highly quantitative manner.

  8. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme.

    Science.gov (United States)

    Choo, Jocelyn M; Cheung, Jackie K; Wisniewski, Jessica A; Steer, David L; Bulach, Dieter M; Hiscox, Thomas J; Chakravorty, Anjana; Smith, A Ian; Gell, David A; Rood, Julian I; Awad, Milena M

    2016-01-01

    The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringens heme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.

  9. TIR-domain-containing protein repertoire of nine anthozoan species reveals coral-specific expansions and uncharacterized proteins.

    Science.gov (United States)

    Poole, Angela Z; Weis, Virginia M

    2014-10-01

    The intracellular toll/interleukin-1 receptor (TIR) domain plays an important role in vertebrate immunity, but the evolution and function of invertebrate TIR-domain-containing proteins is not fully understood. This study characterized and compared the TIR-domain-containing protein repertoire of nine cnidarians in class Anthozoa. A diverse set of proteins, including MyD88 (myeloid differentiation primary response protein 88), toll-like receptor (TLR)-like, interleukin-1 receptor (IL-1R)-like, and TIR-only proteins are present in the species surveyed. Increased numbers of TIR-only proteins were observed in corals compared to anemones, especially in the Acroporid and Pocilloporid coral families. This expansion could be linked to diversity of the microbial community on or in hosts and managing both positive and negative associations. Phylogenetic analysis indicates there are two groups of proteins with IL-1R-like domain architecture in anthozoans that potentially evolved independently of the vertebrate family. Bacterial-like TIR_2 domain proteins are also present, including one sequence with novel domain architecture. Overall this work promotes a better understanding of the anthozoan immune repertoire, which is important in the context learning about ancestral immune pathways and host-microbe interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins

    Directory of Open Access Journals (Sweden)

    Žárský Viktor

    2008-04-01

    Full Text Available Abstract Background Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. Results The Rho GTPase-binding domain (GBD/FH3 reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm formins that define a specific branch (Class III of the formin family. Conclusion We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms.

  11. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway.

    Science.gov (United States)

    Shoham, Nitza G; Centola, Michael; Mansfield, Elizabeth; Hull, Keith M; Wood, Geryl; Wise, Carol A; Kastner, Daniel L

    2003-11-11

    Pyrin, the familial Mediterranean fever protein, is found in association with the cytoskeleton in myeloid/monocytic cells and modulates IL-1beta processing, NF-kappaB activation, and apoptosis. These effects are mediated in part through cognate interactions with the adaptor protein ASC, which shares an N-terminal motif with pyrin. We sought additional upstream regulators of inflammation by using pyrin as the bait in yeast two-hybrid assays. We now show that proline serine threonine phosphatase-interacting protein [PSTPIP1, or CD2-binding protein 1 (CD2BP1)], a tyrosine-phosphorylated protein involved in cytoskeletal organization, also interacts with pyrin. Recently, PSTPIP1/CD2BP1 mutations were shown to cause the syndrome of pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA), a dominantly inherited autoinflammatory disorder mediated predominantly by granulocytes. Endogenous PSTPIP1/CD2BP1 and pyrin are coexpressed in monocytes and granulocytes and can be coimmunoprecipitated from THP-1 cells. The B box segment of pyrin was necessary and the B box/coiled-coil segment sufficient for this interaction, whereas the SH3 and coiled-coil domains of PSTPIP1/CD2BP1 were both necessary, but neither was sufficient, for pyrin binding. The Y344F PSTPIP1/CD2BP1 mutation, which blocks tyrosine phosphorylation, was associated with a marked reduction in pyrin binding in pervanadate-treated cells. PAPA-associated A230T and E250Q PSTPIP1/CD2BP1 mutations markedly increased pyrin binding as assayed by immunoprecipitation and, relative to WT, these mutants were hyperphosphorylated when coexpressed with c-Abl kinase. Consistent with the hypothesis that these mutations exert a dominant-negative effect on the previously reported activity of pyrin, we found increased IL-1beta production by peripheral blood leukocytes from a clinically active PAPA patient with the A230T PSTPIP1/CD2BP1 mutation and in cell lines transfected with both PAPA-associated mutants.

  12. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengliang [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China); Zhang, Qiongdi [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Hang, Tianrong [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China); Tao, Yue [Shanghai Children’s Medical Center, 1678 Dongfang Road, Pudong, Shanghai 200120, People’s Republic of (China); Ma, Xukai [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Wu, Minhao; Zhang, Xuan, E-mail: xuanzbin@ustc.edu.cn; Zang, Jianye, E-mail: xuanzbin@ustc.edu.cn [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China)

    2015-08-28

    The structure of the complex of NO66 and Rpl8 was solved in the native state and NO66 recognizes the consensus motif NHXH . Tetramerization is required for efficient substrate binding and catalysis by NO66. The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66{sup 176–C} complexed with Rpl8{sup 204–224} in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.

  13. Insights into jumonji c-domain containing protein 6 (JMJD6): a multifactorial role in FMDV replication in cells

    Science.gov (United States)

    The Jumonji C-domain containing protein 6 (JMJD6) has had a convoluted history. It was first identified as the phosphatidylserine receptor (PSR) on the cell surface responsible for recognizing phosphatidylserine on the surface of apoptotic cells resulting in their engulfment by phagocytic cells. Sub...

  14. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.

  15. The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni.

    Science.gov (United States)

    Johnson, Jeremiah G; Gaddy, Jennifer A; DiRita, Victor J

    2016-11-15

    Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis. A previous mutant screen demonstrated that the heme uptake system (Chu) is required for full colonization of the chicken gastrointestinal tract. Subsequent work identified a PAS domain-containing regulator, termed HeuR, as being required for chicken colonization. Here we confirm that both the heme uptake system and HeuR are required for full chicken gastrointestinal tract colonization, with the heuR mutant being particularly affected during competition with wild-type C. jejuni Transcriptomic analysis identified the chu genes-and those encoding other iron uptake systems-as regulatory targets of HeuR. Purified HeuR bound the chuZA promoter region in electrophoretic mobility shift assays. Consistent with a role for HeuR in chu expression, heuR mutants were unable to efficiently use heme as a source of iron under iron-limiting conditions, and mutants exhibited decreased levels of cell-associated iron by mass spectrometry. Finally, we demonstrate that an heuR mutant of C. jejuni is resistant to hydrogen peroxide and that this resistance correlates to elevated levels of catalase activity. These results indicate that HeuR directly and positively regulates iron acquisition from heme and negatively impacts catalase activity by an as yet unidentified mechanism in C. jejuni IMPORTANCE: Annually, Campylobacter jejuni causes millions of gastrointestinal infections in the United States, due primarily to its ability to reside within the gastrointestinal tracts of poultry, where it can be released during processing and contaminate meat. In the developing world, humans are often infected by consuming contaminated water or by direct contact with livestock. Following consumption of contaminated food or water, humans develop disease that is characterized by mild to severe diarrhea. There is a need to understand both colonization of chickens, to make food safer, and colonization of humans, to better

  16. LOV Domain-Containing F-Box Proteins:Light-Dependent Protein Degradation Modules in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Shogo Ito; Young Hun Song; Takato Imaizumi

    2012-01-01

    Plants constantly survey the surrounding environment using several sets of photoreceptors.They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses,growth,and developmental patterns.In addition to the classical photoreceptors,such as phytochromes,cryptochromes,and phototropins,ZEITLUPE (ZTL),FLAVIN-BINDING,KELCH REPEAT,F-BOX 1 (FKF1),and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering.The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains:a blue-light-absorbing LOV (Light,Oxygen,or Voltage) domain along with domains involved in protein degradation.Here,we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins.We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.

  17. A single whey acidic protein domain containing protein (SWD) inhibits bacteria invasion and dissemination in shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Jiang, Hai-Shan; Sun, Chen; Wang, Tong; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-08-01

    The single whey acidic protein (WAP) domain containing proteins (SWDs) in crustacean belong to type III crustins and have antiprotease activities and/or antimicrobial activities. Their functions in vivo in crustacean immunity need to be clarify. In this study, a new single WAP domain containing protein (SWD) was obtained from Marsupenaeus japonicus, designated as MjSWD. The full-length cDNA of MjSWD was 522 bp.The open reading frame of MjSWD encoded a protein of 79 amino acids, with a 24 amino acid signal peptide and a WAP domain. Tissue distribution analysis revealed that MjSWD transcripts were generally expressed in all the tested tissues, including hemocytes, heart, hepatopancreas, gill, stomach and intestine. The time course expression of MjSWD was analyzed by quantitative real time PCR, and the results exhibited that MjSWD was upregulated after bacteria (Vibrio anguillarum, Staphylococcus aureus) and white spot syndrome virus (WSSV) challenge in gills and stomach of the shrimp. The purified recombinant protein of MjSWD could bind to several Gram-negative and Gram-positive bacteria though binding to microbial polysaccharides (peptidoglycan). MjSWD could inhibit the activity of Subtilisin A and Proteinase K and bacteria-secreted proteases. The results of natural infection with MjSWD incubated bacteria showed that the inhibition of MjSWD against bacterial secreted proteases was contributed to inhibiting bacteria invasion and dissemination in the shrimp. The MjSWD is, thus, involved in the shrimp antibacterial innate immunity.

  18. The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock.

    Science.gov (United States)

    Lu, Sheen X; Knowles, Stephen M; Webb, Candace J; Celaya, R Brandon; Cha, Chuah; Siu, Jonathan P; Tobin, Elaine M

    2011-02-01

    Histone methylation plays an essential role in regulating chromatin structure and gene expression. Jumonji C (JmjC) domain-containing proteins are generally known as histone demethylases. Circadian clocks regulate a large number of biological processes, and recent studies suggest that chromatin remodeling has evolved as an important mechanism for regulating both plant and mammalian circadian systems. Here, we analyzed a subgroup of JmjC domain-containing proteins and identified Arabidopsis (Arabidopsis thaliana) JMJ30 as a novel clock component involved in controlling the circadian period. Analysis of loss- and gain-of-function mutants of JMJ30 indicates that this evening-expressed gene is a genetic regulator of period length in the Arabidopsis circadian clock. Furthermore, two key components of the central oscillator of plants, transcription factors CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL, bind directly to the JMJ30 promoter to repress its expression, suggesting that JMJ30 regulates the pace of the circadian clock in close association with the central oscillator. JMJ30 represents, to our knowledge, the first JmjC domain-containing protein involved in circadian function, and we envision that this provides a possible molecular connection between chromatin remodeling and the circadian clock.

  19. Identification and characterization of a gene encoding a UBX domain-containing protein in the migratory locust, Locusta migratoria manilensis.

    Science.gov (United States)

    He, Zheng-Bo; Xie, Yu; Si, Feng-Ling; Chen, Bin

    2013-08-01

    Ubiquitin regulatory X (UBX) domain-containing proteins are believed to function as cofactors for p97/CDC48, an adenosine triphosphatase shown to be involved in multiple cellular processes. In the present study, a full-length complementary DNA (cDNA) of UBX domain-containing gene, termed LmUBX1, was cloned from Locusta migratoria manilensis and characterized, using random amplification of cDNA ends polymerase chain reaction (RACE PCR), sequence analysis and quantitative real-time PCR. LmUBX1, 1 600 bp in length, is predicted to encode a 446-amino acid protein with a predicted molecular weight of 51.18 kDa that contains a central PUB domain and a carboxy-terminal UBX domain. Homology analysis revealed that LmUBX1 has higher similarity to the known UBX domain-containing proteins from insects than from other species. Moreover, based on sequence characteristics and phylogenetic relationships, it is suggested that LmUBX1 can be classified into the UBXD1 subfamily. Expression analysis founded that LmUBX1 exhibited significant expression variations at different developmental stages and in different tissues, suggesting that the expression of LmUBX1 was highly regulated. Interestingly, its messenger RNA transcript was more abundant in ovary and testis than in other tissues examined, suggesting that it may have more important roles in the reproductive system. In addition, LmUBX1 was differentially expressed in gregarious and solitary locusts and was significantly up-regulated in third and fifth instars of gregarious locusts, implying that LmUBX1 was also likely involved in the phase polyphenisms in L. migratoria manilensis. To our knowledge, this is the first report of cloning of a full-length cDNA of UBX domain-containing gene from L. migratoria manilensis.

  20. Comparative Analysis of JmjC Domain-containing Proteins Reveals the Potential Histone Demethylases in Arabidopsis and Rice

    Institute of Scientific and Technical Information of China (English)

    Falong Lu; Guanglin Li; Xia Cui; Chunyan Liu; Xiu-Jie Wang; Xiaofeng Cao

    2008-01-01

    Histone methylation homeostasis is achieved by controlling the balance between methylation and demethylation to maintain chromatin function and developmental regulation. In animals, a conserved Jumonji C (JmjC) domain was found In a large group of histone demethylases. However, it is still unclear whether plants also contain the JmjC domaincontaining active histone demethylases. Here we performed genome-wide screen and phylogenetic analysis of JmjC domaincontaining proteins in the dicot plant, Arabidopsis, and monocot plant rice, and found 21 and 20 JmjC domain-containing, respectively. We also examined the expression of JmjC domain-containing proteins and compared them to human JmjC counterparts for potential enzymatic activity. The spatial expression patterns of the Arabidopsis JmjC domaincontaining genes revealed that they are all actively transcribed genes. These active plant JmjC domain-containing genes could possibly function in epigenetic regulation to antagonize the activity of the large number of putative SET domaincontaining histone methyltransferase activity to dynamically regulate histone methylation homeostasis.

  1. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation

    OpenAIRE

    Sun, Luyang; SHI, LEI; Li, Wenqian; Yu, Wenhua; LIANG, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We ...

  2. Functional analysis of Tudor-domain-containing proteins in the zebrafish germline

    NARCIS (Netherlands)

    Huang, H.Y.

    2012-01-01

    The Argonaute protein family consists of two distinct sub-clades: AGO and PIWI proteins. AGO proteins can form RNA induced silencing complex (RISC) and are responsible for RNAi and miRNA pathways. PIWI proteins are mostly expressed in the germline and together with specific small RNA groups, named

  3. Identification of novel human WW domain-containing proteins by cloning of ligand targets.

    Science.gov (United States)

    Pirozzi, G; McConnell, S J; Uveges, A J; Carter, J M; Sparks, A B; Kay, B K; Fowlkes, D M

    1997-06-06

    A recently described protein module consisting of 35-40 semiconserved residues, termed the WW domain, has been identified in a number of diverse proteins including dystrophin and Yes-associated protein (YAP). Two putative ligands of YAP, termed WBP-1 and WBP-2, have been found previously to contain several short peptide regions consisting of PPPPY residues (PY motif) that mediate binding to the WW domain of YAP. Although the function(s) of the WW domain remain to be elucidated, these observations strongly support a role for the WW domain in protein-protein interactions. Here we report the isolation of three novel human cDNAs encoding a total of nine WW domains, using a newly developed approach termed COLT (cloning of ligand targets), in which the rapid cloning of modular protein domains is accomplished by screening cDNA expression libraries with specific peptide ligands. Two of the new genes identified appear to be members of a family of proteins, including Rsp5 and Nedd-4, which have ubiquitin-protein ligase activity. In addition, we demonstrate that peptides corresponding to PY and PY-like motifs present in several known signaling or regulatory proteins, including RasGAP, AP-2, p53BP-2 (p53-binding protein-2), interleukin-6 receptor-alpha, chloride channel CLCN5, and epithelial sodium channel ENaC, can selectively bind to certain of these novel WW domains.

  4. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins.

    Science.gov (United States)

    Wood, J D; Yuan, J; Margolis, R L; Colomer, V; Duan, K; Kushi, J; Kaminsky, Z; Kleiderlein, J J; Sharp, A H; Ross, C A

    1998-06-01

    Atrophin-1 contains a polyglutamine repeat, expansion of which is responsible for dentatorubral and pallidoluysian atrophy (DRPLA). The normal function of atrophin-1 is unknown. We have identified five atrophin-1 interacting proteins (AIPs) which bind to atrophin-1 in the vicinity of the polyglutamine tract using the yeast two-hybrid system. Four of the interactions were confirmed using in vitro binding assays. All five interactors contained multiple WW domains. Two are novel. The AIPs can be divided into two distinct classes. AIP1 and AIP3/WWP3 are MAGUK-like multidomain proteins containing a number of protein-protein interaction modules, namely a guanylate kinase-like region, two WW domains, and multiple PDZ domains. AIP2/WWP2, AIP4, and AIP5/WWP1 are highly homologous, each having four WW domains and a HECT domain characteristic of ubiquitin ligases. These interactors are similar to recently isolated huntingtin-interacting proteins, suggesting possible commonality of function between two proteins responsible for very similar diseases.

  5. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis.

    Science.gov (United States)

    Secco, David; Wang, Chuang; Arpat, Bulak A; Wang, Zhiye; Poirier, Yves; Tyerman, Stephen D; Wu, Ping; Shou, Huixia; Whelan, James

    2012-03-01

    Plant growth and development are strongly influenced by the availability of nutrients in the soil solution. Among them, phosphorus (P) is one of the most essential and most limiting macro-elements for plants. In the environment, plants are often confronted with P starvation as a result of extremely low concentrations of soluble inorganic phosphate (Pi) in the soil. To cope with these conditions, plants have developed a wide spectrum of mechanisms aimed at increasing P use efficiency. At the molecular level, recent studies have shown that several proteins carrying the SPX domain are essential for maintaining Pi homeostasis in plants. The SPX domain is found in numerous eukaryotic proteins, including several proteins from the yeast PHO regulon, involved in maintaining Pi homeostasis. In plants, proteins harboring the SPX domain are classified into four families based on the presence of additional domains in their structure, namely the SPX, SPX-EXS, SPX-MFS and SPX-RING families. In this review, we highlight the recent findings regarding the key roles of the proteins containing the SPX domain in phosphate signaling, as well as providing further research directions in order to improve our knowledge on P nutrition in plants, thus enabling the generation of plants with better P use efficiency.

  6. A hormone-responsive C1-domain-containing protein At5g17960 mediates stress response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ravindran Vijay Bhaskar

    Full Text Available Phytohormones play a critical role in mediating plant stress response. They employ a variety of proteins for coordinating such processes. In Arabidopsis thaliana, some members of a Cys-rich protein family known as C1-clan proteins were involved in stress response, but the actual function of the protein family is largely unknown. We studied At5g17960, a C1-clan protein member that possesses three unique C1 signature domains viz. C1_2, C1_3 and ZZ/PHD type. Additionally, we identified 72 other proteins in A. thaliana that contain all three unique signature domains. Subsequently, the 73 proteins were phylogenetically classified into IX subgroups. Promoter motif analysis of the 73 genes identified the presence of hormone-responsive and stress-responsive putative cis-regulatory elements. Furthermore, we observed that transcript levels of At5g17960 were induced in response to different hormones and stress treatments. At1g35610 and At3g13760, two other members of subgroup IV, also showed upregulation upon GA3, biotic and abiotic stress treatments. Moreover, seedlings of independent transgenic A. thaliana lines ectopically expressing or suppressing At5g17960 also showed differential regulation of several abiotic stress-responsive marker genes. Thus, our data suggest that C1-domain-containing proteins have a role to play in plant hormone-mediated stress responses, thereby assigning a putative function for the C1-clan protein family.

  7. Identification and Expression Profiling of the BTB Domain-Containing Protein Gene Family in the Silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Daojun Cheng

    2014-01-01

    Full Text Available The BTB domain is a conserved protein-protein interaction motif. In this study, we identified 56 BTB domain-containing protein genes in the silkworm, in addition to 46 in the honey bee, 55 in the red flour beetle, and 53 in the monarch butterfly. Silkworm BTB protein genes were classified into nine subfamilies according to their domain architecture, and most of them could be mapped on the different chromosomes. Phylogenetic analysis suggests that silkworm BTB protein genes may have undergone a duplication event in three subfamilies: BTB-BACK-Kelch, BTB-BACK-PHR, and BTB-FLYWCH. Comparative analysis demonstrated that the orthologs of each of 13 BTB protein genes present a rigorous orthologous relationship in the silkworm and other surveyed insects, indicating conserved functions of these genes during insect evolution. Furthermore, several silkworm BTB protein genes exhibited sex-specific expression in larval tissues or at different stages during metamorphosis. These findings not only contribute to a better understanding of the evolution of insect BTB protein gene families but also provide a basis for further investigation of the functions of BTB protein genes in the silkworm.

  8. Pyrin Inflammasome Activation and RhoA Signaling in the Autoinflammatory Diseases FMF and HIDS

    OpenAIRE

    Park, Yong Hwan; Wood, Geryl; Kastner, Daniel L.; Chae, Jae Jin

    2016-01-01

    Mutations of pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases, familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutated or in response to bacterial modification of the GTPase RhoA. Here we show that RhoA activates the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin binds 14-3-3 proteins, which block the pyrin inflammasome. T...

  9. Over-Expression of Rice CBS Domain Containing Protein, OsCBSX3, Confers Rice Resistance to Magnaporthe oryzae Inoculation.

    Science.gov (United States)

    Mou, Shaoliang; Shi, Lanping; Lin, Wei; Liu, Yanyan; Shen, Lei; Guan, Deyi; He, Shuilin

    2015-07-13

    Cystathionine β-synthase (CBS) domain containing proteins (CDCPs) constitute a big family in plants and some members in this family have been implicated in a variety of biological processes, but the precise functions and the underlying mechanism of the majority of this family in plant immunity remain to be elucidated. In the present study, a CBS domain containing protein gene, OsCBSX3, is functionally characterized in rice resistance against Magnaporthe oryzae (M. oryzae). By quantitative real-time PCR, transcripts of OsCBSX3 are up-regulated significantly by inoculation of M. oryzae and the exogenously applied salicylic acid (SA) and methyl jasmonate (MeJA). OsCBSX3 is exclusively localized to the plasma membrane by transient expression of OsCBSX3 fused to green fluorescent protein (GFP) through approach of Agrobacterium infiltration in Nicotiana benthamiana leaves. The plants of homozygous T3 transgenic rice lines of over-expressing OsCBSX3 exhibit significant enhanced resistance to M. oryzae inoculation, manifested by decreased disease symptoms, and inhibition of pathogen growth detected in DNA. Consistently, the over-expression of OsCBSX3 enhances the transcript levels of immunity associated marker genes including PR1a, PR1b, PR5, AOS2, PAL, NH1, and OsWRKY13 in plants inoculated with M. oryzae. These results suggest that OsCBSX3 acts as a positive regulator in resistance of rice to M. oryzae regulated by SA and JA-mediated signaling pathways synergistically.

  10. Over-Expression of Rice CBS Domain Containing Protein, OsCBSX3, Confers Rice Resistance to Magnaporthe oryzae Inoculation

    Directory of Open Access Journals (Sweden)

    Shaoling Mou

    2015-07-01

    Full Text Available Cystathionine β-synthase (CBS domain containing proteins (CDCPs constitute a big family in plants and some members in this family have been implicated in a variety of biological processes, but the precise functions and the underlying mechanism of the majority of this family in plant immunity remain to be elucidated. In the present study, a CBS domain containing protein gene, OsCBSX3, is functionally characterized in rice resistance against Magnaporthe oryzae (M. oryzae. By quantitative real-time PCR, transcripts of OsCBSX3 are up-regulated significantly by inoculation of M. oryzae and the exogenously applied salicylic acid (SA and methyl jasmonate (MeJA. OsCBSX3 is exclusively localized to the plasma membrane by transient expression of OsCBSX3 fused to green fluorescent protein (GFP through approach of Agrobacterium infiltration in Nicotiana benthamiana leaves. The plants of homozygous T3 transgenic rice lines of over-expressing OsCBSX3 exhibit significant enhanced resistance to M. oryzae inoculation, manifested by decreased disease symptoms, and inhibition of pathogen growth detected in DNA. Consistently, the over-expression of OsCBSX3 enhances the transcript levels of immunity associated marker genes including PR1a, PR1b, PR5, AOS2, PAL, NH1, and OsWRKY13 in plants inoculated with M. oryzae. These results suggest that OsCBSX3 acts as a positive regulator in resistance of rice to M. oryzae regulated by SA and JA-mediated signaling pathways synergistically.

  11. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8.

    Science.gov (United States)

    Jin, Caining; Ding, Peiguo; Wang, Ying; Ma, Dalong

    2005-11-21

    It is known that chemokine-like factor superfamily 8 (CKLFSF8), a member of the CKLF superfamily, has four putative transmembrane regions and a MARVEL domain. Its structure is similar to TM4SF11 (plasmolipin) and widely distributed in normal tissue. However, its function is not yet known. We show here that CKLFSF8 is associated with the epidermal growth factor receptor (EGFR) and that ectopic expression of CKLFSF8 in several cell lines suppresses EGF-induced cell proliferation, whereas knockdown of CKLFSF8 by siRNA promotes cell proliferation. In cells overexpressing CKLFSF8, the initial activation of EGFR was not affected, but subsequent desensitization of EGF-induced signaling occurred rapidly. This attenuation was correlated with an increased rate of receptor endocytosis. In contrast, knockdown of CKLFSF8 by siCKLFSF8 delayed EGFR endocytosis. These results identify CKLFSF8 as a novel regulator of EGF-induced signaling and indicate that the association of EGFR with four transmembrane proteins is critical for EGFR desensitization.

  12. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53

    Science.gov (United States)

    Chao, Tengfei; Zhou, Xiang; Cao, Bo; Liao, Peng; Liu, Hongbing; Chen, Yun; Park, Hee-Won; Zeng, Shelya X.; Lu, Hua

    2016-01-01

    The tumour suppressor p53 transactivates the expression of its target genes to exert its functions. Here, we identify a pleckstrin homology domain-containing protein (PHLDB3)-encoding gene as a p53 target. PHLDB3 overexpression increases proliferation and restrains apoptosis of wild-type p53-harboring cancer cells by reducing p53 protein levels. PHLDB3 binds to MDM2 (mouse double minute 2 homolog) and facilitates MDM2-mediated ubiquitination and degradation of p53. Knockdown of PHLDB3 more efficiently inhibits the growth of mouse xenograft tumours derived from human colon cancer HCT116 cells that contain wild type p53 compared with p53-deficient HCT116 cells, and also sensitizes tumour cells to doxorubicin and 5-Fluorouracil. Analysis of cancer genomic databases reveals that PHLDB3 is amplified and/or highly expressed in numerous human cancers. Altogether, these results demonstrate that PHLDB3 promotes tumour growth by inactivating p53 in a negative feedback fashion and suggest PHLDB3 as a potential therapeutic target in various human cancers. PMID:28008906

  13. Pleckstrin homology domain containing 6 protein (PLEKHA6) polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients.

    Science.gov (United States)

    Spellmann, Ilja; Rujescu, Dan; Musil, Richard; Meyerwas, Sebastian; Giegling, Ina; Genius, Just; Zill, Peter; Dehning, Sandra; Cerovecki, Anja; Seemüller, Florian; Schennach, Rebecca; Hartmann, Annette M; Schäfer, Martin; Müller, Norbert; Möller, Hans-Jürgen; Riedel, Michael

    2014-06-03

    Pleckstrin homology domain (PH domain) comprises approximately 120 amino acids and is integrated in a wide range of proteins involved in intracellular signaling or as constituents of the cytoskeleton. This domain can bind phosphatidylinositol (3,4,5)-triphosphate and phosphatidylinositol (4,5)-biphosphate and proteins such as the βγ-subunits of heterotrimeric G proteins and protein kinase C. Associations with psychiatric diseases have not been investigated yet. To identify genes involved in response to antipsychotics, mice were treated with haloperidol (1mg/kg, n = 11) or saline (n = 12) for one week. By analyzing microarray data, we observed an increase of pleckstrin homology domain containing 6 (PLEKHA6) gene expression. Furthermore, we genotyped 263 schizophrenic patients, who were treated monotherapeutically with different antipsychotics within randomized-controlled trials. Psychopathology was measured weekly using the PANSS for a minimum of four and a maximum of twelve weeks. Correlations between PANSS subscale scores at baseline and PANSS improvement scores after four weeks of treatment and genotypes were calculated by using a linear model for all investigated SNPs. We found associations between four PLEKHA6 polymorphisms (rs17333933 (T/G), rs3126209 (C/T), rs4951338 (A/G) and rs100900571 (T/C)) and different PANSS subscales at baseline. Furthermore two different polymorphisms (rs7513240 (T/C), rs4951353 (A/G)) were found to be associated with therapy response in terms of a significant correlation with different PANSS improvement subscores after four weeks of antipsychotic treatment. Our observation of an association between genetic polymorphisms of a protein of the PH domain and psychopathology data in schizophrenic patients might be indicative for an involvement of PLEKHA6 in the pathophysiology of schizophrenia and the therapy response towards antipsychotics.

  14. Absence of pneumococcal PcsB is associated with overexpression of LysM domain-containing proteins.

    Science.gov (United States)

    Giefing-Kröll, Carmen; Jelencsics, Kira E; Reipert, Siegfried; Nagy, Eszter

    2011-07-01

    The streptococcal protein required for cell separation B (PcsB) is predicted to play an important role in peptidoglycan metabolism, based on sequence motifs and altered phenotypes of gene deletion mutant cells exhibiting defects in cell separation. However, no enzymic activity has been demonstrated for PcsB so far. By generating gene deletion mutant strains in four different genetic backgrounds we could demonstrate that pcsB is not essential for cell survival in Streptococcus pneumoniae, but is essential for proper cell division. Deletion mutant cells displayed cluster formation due to aberrant cell division, reduced growth and antibiotic sensitivity that were fully reverted by transformation with a plasmid carrying pcsB. Immunofluorescence staining revealed that PcsB was localized to the cell poles, similarly to PBP3 and LytB, enzymes with demonstrated peptidoglycan-degrading activity required for daughter cell separation. Similarly to other studies with PcsB homologues, we could not detect peptidoglycan-lytic activity with recombinant or native pneumococcal PcsB in vitro. In addition to defects in septum placement and separation, the absence of PcsB induced an increased release of several proteins, such as enolase, MalX and the SP0107 LysM domain protein. Interestingly, genes encoding both LysM domain-containing proteins that are present in the pneumococcal genome (SP0107 and SP2063) and predicted to be involved in cell wall metabolism were found to be highly overexpressed (14-33-fold increase) in ΔpcsB cells in two different genetic backgrounds. Otherwise, we detected very few changes in the global gene expression profile of cells lacking PcsB. Thus our data suggest that LysM domain proteins partially compensate for the lack of PcsB function and allow the survival and slow growth of the pneumococcus.

  15. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice

    Science.gov (United States)

    Cheng, Shaohong; Aghajanian, Patrick; Pourteymoor, Sheila; Alarcon, Catrina; Mohan, Subburaman

    2016-01-01

    Endochondral ossification plays an important role in the formation of the primary ossification centers (POCs) and secondary ossification centers (SOCs) of mammalian long bones. However, the molecular mechanisms that regulate POC and SOC formation are different. We recently demonstrated that Prolyl Hydroxylase Domain-containing Protein 2 (Phd2) is a key mediator of vitamin C effects on bone. We investigated the role of Phd2 on endochondral ossification of the epiphyses by conditionally deleting the Phd2 gene in osteoblasts and chondrocytes. We found that the deletion of Phd2 in osteoblasts did not cause changes in bone parameters in the proximal tibial epiphyses in 5 week old mice. In contrast, deletion of Phd2 in chondrocytes resulted in increased bone mass and bone formation rate (normalized to tissue volume) in long bone epiphyses, indicating that Phd2 expressed in chondrocytes, but not osteoblasts, negatively regulates secondary ossification of epiphyses. Phd2 deletion in chondrocytes elevated mRNA expression of hypoxia-inducible factor (HIF) signaling molecules including Hif-1α, Hif-2α, Vegfa, Vegfb, and Epo, as well as markers for chondrocyte hypertrophy and mineralization such as Col10, osterix, alkaline phosphatase, and bone sialoprotein. These data suggest that Phd2 expressed in chondrocytes inhibits endochondral ossification at the epiphysis by suppressing HIF signaling pathways. PMID:27775044

  16. OsSGL, a Novel DUF1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis.

    Science.gov (United States)

    Cui, Yanchun; Wang, Manling; Zhou, Huina; Li, Mingjuan; Huang, Lifang; Yin, Xuming; Zhao, Guoqiang; Lin, Fucheng; Xia, Xinjie; Xu, Guoyun

    2016-01-01

    Drought is a major environmental factor that limits plant growth and crop productivity. Genetic engineering is an effective approach to improve drought tolerance in various crops, including rice (Oryza sativa). Functional characterization of relevant genes is a prerequisite when identifying candidates for such improvements. We investigated OsSGL (Oryza sativa Stress tolerance and Grain Length), a novel DUF1645 domain-containing protein from rice. OsSGL was up-regulated by multiple stresses and localized to the nucleus. Transgenic plants over-expressing or hetero-expressing OsSGL conferred significantly improved drought tolerance in transgenic rice and Arabidopsis thaliana, respectively. The overexpressing plants accumulated higher levels of proline and soluble sugars but lower malondialdehyde (MDA) contents under osmotic stress. Our RNA-sequencing data demonstrated that several stress-responsive genes were significantly altered in transgenic rice plants. We unexpectedly observed that those overexpressing rice plants also had extensive root systems, perhaps due to the altered transcript levels of auxin- and cytokinin-associated genes. These results suggest that the mechanism by which OsSGL confers enhanced drought tolerance is due to the modulated expression of stress-responsive genes, higher accumulations of osmolytes, and enlarged root systems.

  17. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.

    Science.gov (United States)

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-06-23

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G(1) phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.

  18. FAH domain containing protein 1 (FAHD-1 is required for mitochondrial function and locomotion activity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andrea Taferner

    Full Text Available The fumarylacetoacetate hydrolase (FAH protein superfamily of metabolic enzymes comprises a diverse set of enzymatic functions, including ß-diketone hydrolases, decarboxylases, and isomerases. Of note, the FAH superfamily includes many prokaryotic members with very distinct functions that lack homologs in eukaryotes. A prokaryotic member of the FAH superfamily, referred to as Cg1458, was shown to encode a soluble oxaloacetate decarboxylase (ODx. Based on sequence homologies to Cg1458, we recently identified human FAH domain containing protein-1 (FAHD1 as the first eukaryotic oxaloacetate decarboxylase. The physiological functions of ODx in eukaryotes remain unclear. Here we have probed the function of fahd-1, the nematode homolog of FAHD1, in the context of an intact organism. We found that mutation of fahd-1 resulted in reduced brood size, a deregulation of the egg laying process and a severe locomotion deficit, characterized by a reduced frequency of body bends, reduced exploratory movements and reduced performance in an endurance exercise test. Notably, mitochondrial function was altered in the fahd-1(tm5005 mutant strain, as shown by a reduction of mitochondrial membrane potential and a reduced oxygen consumption of fahd-1(tm5005 animals. Mitochondrial dysfunction was accompanied by lifespan extension in worms grown at elevated temperature; however, unlike in mutant worms with a defect in the electron transport chain, the mitochondrial unfolded protein response was not upregulated in worms upon inactivation of fahd-1. Together these data establish a role of fahd-1 to maintain mitochondrial function and consequently physical activity in nematodes.

  19. Expression profile and differential regulation of the Human I-mfa domain-Containing protein (HIC) gene in immune cells.

    Science.gov (United States)

    Gu, Lili; Dean, Jonathan; Oliveira, André L A; Sheehy, Noreen; Hall, William W; Gautier, Virginie W

    2009-04-27

    The Human I-mfa domain-Containing protein, HIC, is a 246 amino acid protein that functions as a transcriptional regulator. Although the precise function of HIC remains to be clarified, the association of the HIC gene locus with myeloid neoplasms, its interactions with lymphotropic viruses such as EBV, HIV-1 and HTLV-1 and its expression in immune tissues suggest that HIC might have a modulatory role in immune cells. To further characterise the HIC functional relationship with the immune system, we sought to analyse the HIC gene expression profile in immune cells and to determine if immunomodulatory cytokines, such as interleukin (IL)-2, could regulate the expression of HIC mRNA. Relative quantitative real-time RT-PCR revealed that HIC mRNA is highly expressed in PBMCs and in various hematopoietic cell lines. The immunomodulatory cytokine IL-2 up-regulated HIC gene expression in PBMCs, CEM, MT-2 and U937 but markedly reduced HIC gene expression in Raji. Addition of cycloheximide indicated that the IL-2 effects were independent of de novo protein synthesis and that the HIC gene is a direct target of IL-2. Two cell lines (Jurkat and BJAB) displayed a distinct loss in HIC gene expression. However, when these cell lines were subjected to a combination of DNA methyltransferase and histone-deacetylase inhibitors, (5-aza-2-deoxycytidine and trichostatin A, respectively), HIC expression was de-repressed, indicating possible epigenetic control of HIC expression. Overall, our study describes that the immune expression of HIC is cell-specific, dynamic, and identifies the HIC gene as an IL-2 responsive gene. Furthermore, our de-repression studies support the hypothesis that HIC might represent a candidate tumor suppressor gene. Overall, this report provides new insights for a putative role of HIC in the modulation of immune and inflammatory responses and/or hematological malignancies.

  20. Popeye domain containing 1 (Popdc1/Bves is a caveolae-associated protein involved in ischemia tolerance.

    Directory of Open Access Journals (Sweden)

    Yifat Alcalay

    Full Text Available Popeye domain containing1 (Popdc1, also named Bves, is an evolutionary conserved membrane protein. Despite its high expression level in the heart little is known about its membrane localization and cardiac functions. The study examined the hypothesis that Popdc1 might be associated with the caveolae and play a role in myocardial ischemia tolerance. To address these issues, we analyzed hearts and cardiomyocytes of wild type and Popdc1-null mice. Immunoconfocal microscopy revealed co-localization of Popdc1 with caveolin3 in the sarcolemma, intercalated discs and T-tubules and with costameric vinculin. Popdc1 was co-immunoprecipitated with caveolin3 from cardiomyocytes and from transfected COS7 cells and was co-sedimented with caveolin3 in equilibrium density gradients. Caveolae disruption by methyl-β-cyclodextrin or by ischemia/reperfusion (I/R abolished the cellular co-localization of Popdc1 with caveolin3 and modified their density co-sedimentation. The caveolin3-rich fractions of Popdc1-null hearts redistributed to fractions of lower buoyant density. Electron microscopy showed a statistically significant 70% reduction in caveolae number and a 12% increase in the average diameter of the remaining caveolae in the mutant hearts. In accordance with these changes, Popdc1-null cardiomyocytes displayed impaired [Ca(+2]i transients, increased vulnerability to oxidative stress and no pharmacologic preconditioning. In addition, induction of I/R injury to Langendorff-perfused hearts indicated a significantly lower functional recovery in the mutant compared with wild type hearts while their infarct size was larger. No improvement in functional recovery was observed in Popdc1-null hearts following ischemic preconditioning. The results indicate that Popdc1 is a caveolae-associated protein important for the preservation of caveolae structural and functional integrity and for heart protection.

  1. Popeye domain containing 1 (Popdc1/Bves) is a caveolae-associated protein involved in ischemia tolerance.

    Science.gov (United States)

    Alcalay, Yifat; Hochhauser, Edith; Kliminski, Vitaly; Dick, Julia; Zahalka, Muayad A; Parnes, Doris; Schlesinger, Hadassa; Abassi, Zaid; Shainberg, Asher; Schindler, Roland F R; Brand, Thomas; Kessler-Icekson, Gania

    2013-01-01

    Popeye domain containing1 (Popdc1), also named Bves, is an evolutionary conserved membrane protein. Despite its high expression level in the heart little is known about its membrane localization and cardiac functions. The study examined the hypothesis that Popdc1 might be associated with the caveolae and play a role in myocardial ischemia tolerance. To address these issues, we analyzed hearts and cardiomyocytes of wild type and Popdc1-null mice. Immunoconfocal microscopy revealed co-localization of Popdc1 with caveolin3 in the sarcolemma, intercalated discs and T-tubules and with costameric vinculin. Popdc1 was co-immunoprecipitated with caveolin3 from cardiomyocytes and from transfected COS7 cells and was co-sedimented with caveolin3 in equilibrium density gradients. Caveolae disruption by methyl-β-cyclodextrin or by ischemia/reperfusion (I/R) abolished the cellular co-localization of Popdc1 with caveolin3 and modified their density co-sedimentation. The caveolin3-rich fractions of Popdc1-null hearts redistributed to fractions of lower buoyant density. Electron microscopy showed a statistically significant 70% reduction in caveolae number and a 12% increase in the average diameter of the remaining caveolae in the mutant hearts. In accordance with these changes, Popdc1-null cardiomyocytes displayed impaired [Ca(+2)]i transients, increased vulnerability to oxidative stress and no pharmacologic preconditioning. In addition, induction of I/R injury to Langendorff-perfused hearts indicated a significantly lower functional recovery in the mutant compared with wild type hearts while their infarct size was larger. No improvement in functional recovery was observed in Popdc1-null hearts following ischemic preconditioning. The results indicate that Popdc1 is a caveolae-associated protein important for the preservation of caveolae structural and functional integrity and for heart protection.

  2. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia.

    Science.gov (United States)

    Ito, Toshihiro; Itakura, Junya; Takahashi, Sakuma; Sato, Miwa; Mino, Megumi; Fushimi, Soichiro; Yamada, Masao; Morishima, Tuneo; Kunkel, Steven L; Matsukawa, Akihiro

    2016-07-01

    Influenza A virus causes acute respiratory infections that induce annual epidemics and occasional pandemics. Although a number of studies indicated that the virus-induced intracellular signaling events are important in combating influenza virus infection, the mechanism how specific molecule plays a critical role among various intracellular signaling events remains unknown. Raf/MEK/extracellular signal-regulated kinase cascade is one of the key signaling pathways during influenza virus infection, and the Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein has recently been identified as a negative regulator of Raf-dependent extracellular signal-regulated kinase activation. Here, we examined the role of Raf/MEK/extracellular signal-regulated kinase cascade through sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein in influenza A viral infection because the expression of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein was significantly enhanced in human influenza viral-induced pneumonia autopsy samples. Prospective animal trial. Research laboratory. Wild-type and sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice inoculated with influenza A. Wild-type or sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice were infected by intranasal inoculation of influenza A (A/PR/8). An equal volume of phosphate-buffered saline was inoculated intranasally into mock-infected mice. Influenza A infection of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice led to higher mortality with greater viral load, excessive inflammation, and enhanced cytokine production than wild-type mice. Administration of MEK inhibitor, U0126, improved mortality and reduced both viral load and

  3. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  4. ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1 in ERG rearrangement-positive prostate cancer.

    Directory of Open Access Journals (Sweden)

    Lukasz A Kacprzyk

    Full Text Available BACKGROUND: Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell's gene expression profile. Tudor domain-containing protein 1 gene (TDRD1 was reported to be differentially expressed between TMPRSS2:ERG-negative and TMPRSS2:ERG-positive prostate cancer. The aim of our study was to provide a mechanistic explanation for the transcriptional activation of TDRD1 in ERG rearrangement-positive prostate tumors. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression measurements by real-time quantitative PCR revealed a remarkable co-expression of TDRD1 and ERG (r(2 = 0.77 but not ETV1 (r(2<0.01 in human prostate cancer in vivo. DNA methylation analysis by MeDIP-Seq and bisulfite sequencing showed that TDRD1 expression is inversely correlated with DNA methylation at the TDRD1 promoter in vitro and in vivo (ρ = -0.57. Accordingly, demethylation of the TDRD1 promoter in TMPRSS2:ERG-negative prostate cancer cells by DNA methyltransferase inhibitors resulted in TDRD1 induction. By manipulation of ERG dosage through gene silencing and forced expression we show that ERG governs loss of DNA methylation at the TDRD1 promoter-associated CpG island, leading to TDRD1 overexpression. CONCLUSIONS/SIGNIFICANCE: We demonstrate that ERG is capable of disrupting a tissue-specific DNA methylation pattern at the TDRD1 promoter. As a result, TDRD1 becomes transcriptionally activated in TMPRSS2:ERG-positive prostate cancer. Given the prevalence of ERG fusions, TDRD1 overexpression is a common alteration in human prostate cancer which may be exploited for diagnostic or therapeutic procedures.

  5. Merkel cell carcinoma expresses K homology domain-containing protein overexpressed in cancer similar to other high-grade neuroendocrine carcinomas.

    Science.gov (United States)

    Pryor, Jennifer G; Simon, Rochelle A; Bourne, Patricia A; Spaulding, Betsy O; Scott, Glynis A; Xu, Haodong

    2009-02-01

    Merkel cell carcinoma is an uncommon and aggressive primary cutaneous neuroendocrine carcinoma with a high rate of recurrence and metastasis. Optimal management is controversial; consequently, it is imperative to identify the signaling pathways involved in the pathogenesis of Merkel cell carcinoma so that effective therapeutic targeting agents can be developed. We previously reported that K homology domain-containing protein overexpressed in cancer is expressed in high-grade neuroendocrine carcinomas of the lung and extrapulmonary small cell carcinomas. The K homology domain-containing protein overexpressed in cancer (KOC), also known as L523S and IMP-3, is an insulin-like growth factor II messenger RNA-binding protein that promotes tumor cell proliferation by enhancing insulin-like growth factor II protein expression. Expression of KOC in Merkel cell carcinoma has not been investigated. We studied 20 Merkel cell carcinomas by immunohistochemistry using a monoclonal antibody against L523S/KOC. Of 20 Merkel cell carcinomas, 18 (90%) overexpressed KOC, with 11 (55%) overexpressing KOC in greater than 90% of tumor cells, 3 (15%) overexpressing KOC in 50% to 90% of tumor cells, 3 (15%) overexpressing KOC in 10% to 50% of tumor cells, and 1 (5%) overexpressing KOC in less than 10% of tumor cells. The immunostaining intensity was variable, with moderate to strong staining in 14 cases and weak staining in the remaining 4. Extent of expression of K homology domain-containing protein overexpressed in cancer predicted metastasis (P = .04) and was weakly correlated with increased tumor size (P = .08). In conclusion, Merkel cell carcinoma expresses K homology domain-containing protein overexpressed in cancer with an expression pattern similar to high-grade neuroendocrine carcinomas of the lung and extrapulmonary small cell carcinomas. We propose K homology domain-containing protein overexpressed in cancer as a potential target molecule for the treatment of high

  6. Blue-light dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: Additive involvement of three BLUF domain-containing proteins

    NARCIS (Netherlands)

    Bitrian, M.; Gonzalez, R.H.; Paris, G.; Hellingwerf, K.J.; Nudel, C.B.

    2013-01-01

    Twitching motility in Acinetobacter baylyi ADP1 is inhibited by moderate intensities of blue light in a temperature-dependent manner (maximally at 20 degrees C. We analyzed the involvement of four predicted blue-light-sensing-using flavin (BLUF) domain-containing proteins encoded in the genome of th

  7. Pyrin Modulates the Intracellular Distribution of PSTPIP1.

    Directory of Open Access Journals (Sweden)

    Andrea L Waite

    Full Text Available PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne, an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF, a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome.

  8. Pyrin Modulates the Intracellular Distribution of PSTPIP1.

    Science.gov (United States)

    Waite, Andrea L; Schaner, Philip; Richards, Neil; Balci-Peynircioglu, Banu; Masters, Seth L; Brydges, Susannah D; Fox, Michelle; Hong, Arthur; Yilmaz, Engin; Kastner, Daniel L; Reinherz, Ellis L; Gumucio, Deborah L

    2009-07-07

    PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome.

  9. The Dishevelled, EGL-10 and pleckstrin (DEP domain-containing protein DEPDC7 binds to CARMA2 and CARMA3 proteins, and regulates NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Egildo Luca D'Andrea

    Full Text Available The molecular complexes containing BCL10, MALT1 and CARMA proteins (CBM complex have been recently identified as a key component in the signal transduction pathways that regulate activation of Nuclear Factor kappaB (NF-κB transcription factor. Herein we identified the DEP domain-containing protein DEPDC7 as cellular binding partners of CARMA2 and CARMA3 proteins. DEPDC7 displays a cytosolic distribution and its expression induces NF-κB activation. Conversely, shRNA-mediated abrogation of DEPDC7 results in impaired NF-κB activation following G protein-coupled receptors stimulation, or stimuli that require CARMA2 and CARMA3, but not CARMA1. Thus, this study identifies DEPDC7 as a CARMA interacting molecule, and provides evidence that DEPDC7 may be required to specifically convey on the CBM complex signals coming from activated G protein-coupled receptors.

  10. The Dishevelled, EGL-10 and pleckstrin (DEP) domain-containing protein DEPDC7 binds to CARMA2 and CARMA3 proteins, and regulates NF-κB activation.

    Science.gov (United States)

    D'Andrea, Egildo Luca; Ferravante, Angela; Scudiero, Ivan; Zotti, Tiziana; Reale, Carla; Pizzulo, Maddalena; De La Motte, Luigi Regenburgh; De Maio, Chiara; Mazzone, Pellegrino; Telesio, Gianluca; Vito, Pasquale; Stilo, Romania

    2014-01-01

    The molecular complexes containing BCL10, MALT1 and CARMA proteins (CBM complex) have been recently identified as a key component in the signal transduction pathways that regulate activation of Nuclear Factor kappaB (NF-κB) transcription factor. Herein we identified the DEP domain-containing protein DEPDC7 as cellular binding partners of CARMA2 and CARMA3 proteins. DEPDC7 displays a cytosolic distribution and its expression induces NF-κB activation. Conversely, shRNA-mediated abrogation of DEPDC7 results in impaired NF-κB activation following G protein-coupled receptors stimulation, or stimuli that require CARMA2 and CARMA3, but not CARMA1. Thus, this study identifies DEPDC7 as a CARMA interacting molecule, and provides evidence that DEPDC7 may be required to specifically convey on the CBM complex signals coming from activated G protein-coupled receptors.

  11. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family.

    Science.gov (United States)

    Deryusheva, Evgeniia I; Machulin, Andrey V; Selivanova, Olga M; Galzitskaya, Oxana V

    2017-04-01

    Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients.

    Science.gov (United States)

    Kakimoto, Yu; Ito, Shinji; Abiru, Hitoshi; Kotani, Hirokazu; Ozeki, Munetaka; Tamaki, Keiji; Tsuruyama, Tatsuaki

    2013-12-16

    Few proteomic studies have examined human cardiac tissue following acute lethal infarction. Here, we applied a novel proteomic approach to formalin-fixed, paraffin-embedded human tissue and aimed to reveal the molecular changes in the very early phase of acute myocardial infarction. Heart tissue samples were collected from 5 patients who died within 7 hours of myocardial infarction and from 5 age- and sex-matched control cases. Infarcted and control myocardia were histopathologically diagnosed and captured using laser microdissection. Proteins were extracted using an originally established method and analyzed using liquid chromatography-tandem mass spectrometry. The label-free quantification demonstrated that the levels of 21 proteins differed significantly between patients and controls. In addition to known biomarkers, the sarcoplasmic protein sorbin and SH3 domain-containing protein 2 (SORBS2) was greatly reduced in infarcted myocardia. Immunohistochemical analysis of cardiac tissues confirmed the decrease, and Western blot analysis showed a significant increase in serum sorbin and SH3 domain-containing protein 2 in acute myocardial infarction patients (n=10) compared with control cases (n=11). Our advanced comprehensive analysis using patient tissues and serums indicated that sarcoplasmic sorbin and SH3 domain-containing protein 2 is released from damaged cardiac tissue into the bloodstream upon lethal acute myocardial infarction. The proteomic strategy presented here is based on precise microscopic findings and is quite useful for candidate biomarker discovery using human tissue samples stored in depositories.

  13. Molecular Basis of Interactions Between SH3 Domain-Containing Proteins and the Proline-Rich Region of the Ubiquitin Ligase Itch.

    Science.gov (United States)

    Desrochers, Guillaume; Cappadocia, Laurent; Lussier-Price, Mathieu; Ton, Anh-Tien; Ayoubi, Riham; Serohijos, Adrian; Omichinski, James G; Angers, Annie

    2017-02-24

    The ligase Itch plays major roles in signalling pathways by inducing ubiquitylation-dependent degradation of several substrates. Substrate recognition and binding is critical for the regulation of this reaction. Like closely related ligases, Itch can interact with proteins containing a PPxY motif via its WW domains. In addition to these WW domains, Itch possesses a proline-rich region (PRR) that has been shown to interact with several Src Homology 3 (SH3) domain-containing proteins. We have previously established that despite the apparent surface uniformity and conserved fold of SH3 domains, they display different binding mechanisms and affinities for their interaction with the PRR of Itch. Here, we attempt to determine the molecular bases underlying the wide range of binding properties of the Itch PRR. Using pull-down assays combined with mass spectrometry analysis, we show that the Itch PRR preferentially forms complexes with Endophilins, Amphyphisins and Pacsins, but can also target a variety of other SH3 domain-containing proteins. In addition, we map the binding sites of these proteins using a combination of PRR sub-sequences and mutants. We find that different SH3 domains target distinct proline-rich sequences overlapping significantly. We also structurally analyze these protein complexes using crystallography and molecular modelling. These structures depict the position of Itch PRR engaged in a 1:2 protein complex with β-PIX and a 1:1 complex with the other SH3 domain-containing proteins. Taken together, these results reveal the binding preferences of the Itch PRR towards its most common SH3 domain-containing partners, and demonstrate that the PRR region is sufficient for binding.

  14. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Lassak, Kerstin; Khadouma, Sunia; Ettema, Thijs J G; Yang, Nuan; Driessen, Arnold J M; Klingl, Andreas; Albers, Sonja-Verena

    2012-10-01

    The ability of microorganisms to sense and respond to sudden changes in their environment is often based on regulatory systems comprising reversible protein phosphorylation. The archaellum (former: archaeal flagellum) is used for motility in Archaea and therefore functionally analogous to the bacterial flagellum. In contrast with archaellum-mediated movement in certain members of the Euryarchaeota, this process, including its regulation, remains poorly studied in crenarchaeal organisms like Sulfolobus species. Recently, it was shown in Sulfolobus acidocaldarius that tryptone limiting conditions led to the induction of archaella expression and assembly. Here we have identified two proteins, the FHA domain-containing protein ArnA and the vWA domain-containing protein ArnB that are involved in regulating archaella expression in S. acidocaldarius. Both proteins are phosphorylated by protein kinases in vitro and interact strongly in vivo. Phenotypic analyses revealed that these two proteins are repressors of archaella expression. These results represent the first step in understanding the networks that underlie regulation of cellular motility in Crenarchaeota and emphasize the importance of protein phosphorylation in the regulation of cellular processes in the Archaea.

  15. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  16. The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors

    Science.gov (United States)

    Mathioudakis, Nikolas; Palencia, Andres; Kadlec, Jan; Round, Adam; Tripsianes, Konstantinos; Sattler, Michael; Pillai, Ramesh S.; Cusack, Stephen

    2012-01-01

    Piwi-interacting RNAs (piRNAs) are small noncoding RNAs expressed in the germline of animals. They associate with Argonaute proteins of the Piwi subfamily, forming ribonucleoprotein complexes that are involved in maintaining genome integrity. The N-terminal region of some Piwi proteins contains symmetrically dimethylated arginines. This modification is thought to enable recruitment of Tudor domain-containing proteins (TDRDs), which might serve as platforms mediating interactions between various proteins in the piRNA pathway. We measured the binding affinity of the four individual extended Tudor domains (TDs) of murine TDRD1 protein for three different methylarginine-containing peptides from murine Piwi protein MILI. The results show a preference of TD2 and TD3 for consecutive MILI peptides, whereas TD4 and TD1 have, respectively, lower and very weak affinity for any peptide. The affinity of TD1 for methylarginine peptides can be restored by a single-point mutation back to the consensus aromatic cage sequence. These observations were confirmed by pull-down experiments with endogenous Piwi and Piwi-associated proteins. The crystal structure of TD3 bound to a methylated MILI peptide shows an unexpected orientation of the bound peptide, with additional contacts of nonmethylated residues being made outside of the aromatic cage, consistent with solution NMR titration experiments. Finally, the molecular envelope of the four tandem Tudor domains of TDRD1, derived from small angle scattering data, reveals a flexible, elongated shape for the protein. Overall, the results show that TDRD1 can accommodate different peptides from different proteins, and can therefore act as a scaffold protein for complex assembly in the piRNA pathway. PMID:22996915

  17. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins

    Directory of Open Access Journals (Sweden)

    Edler Stefanie

    2008-06-01

    Full Text Available Abstract Background The jumonji C (JmjC domain containing gene 6 (Jmjd6, previously known as phosphatidylserine receptor has misleadingly been annotated to encode a transmembrane receptor for the engulfment of apoptotic cells. Given the importance of JmjC domain containing proteins in controlling a wide range of diverse biological functions, we undertook a comparative genomic analysis to gain further insights in Jmjd6 gene organisation, evolution, and protein function. Results We describe here a semiautomated computational pipeline to identify and annotate JmjC domain containing proteins. Using a sequence segment N-terminal of the Jmjd6 JmjC domain as query for a reciprocal BLAST search, we identified homologous sequences in 62 species across all major phyla. Retrieved Jmjd6 sequences were used to phylogenetically analyse corresponding loci and their genomic neighbourhood. This analysis let to the identification and characterisation of a bi-directional transcriptional unit compromising the Jmjd6 and 1110005A03Rik genes and to the recognition of a new, before overseen Jmjd6 exon in mammals. Using expression studies, two novel Jmjd6 splice variants were identified and validated in vivo. Analysis of the Jmjd6 neighbouring gene 1110005A03Rik revealed an incident deletion of this gene in two out of three earlier reported Jmjd6 knockout mice, which might affect previously described conflicting phenotypes. To determine potentially important residues for Jmjd6 function a structural model of the Jmjd6 protein was calculated based on sequence conservation. This approach identified a conserved double-stranded β-helix (DSBH fold and a HxDxnH facial triad as structural motifs. Moreover, our systematic annotation in nine species identified 313 DSBH fold-containing proteins that split into 25 highly conserved subgroups. Conclusion We give further evidence that Jmjd6 most likely has a function as a nonheme-Fe(II-2-oxoglutarate-dependent dioxygenase as

  18. A KH Domain-Containing Putative RNA-Binding Protein Is Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qingmei Guan; Changlong Wen; Haitao Zeng; Jianhua Zhu

    2013-01-01

    Heat stress is a severe environmental factor that significantly reduces plant growth and delays development.Heat stress factors (HSFs) are a class of transcription factors that are synthesized rapidly in response to elevations in temperature and are responsible for the transcription of many heat stress-responsive genes including those encoding heat shock proteins (HSPs).There are 21 HSFs in Arabidopsis,and recent studies have established that the HSFA1 family members are master regulators for the remaining HSFs.However,very little is known about upstream molecular factors that control the expression of HSFA1 genes and other HSF genes under heat stress.Through a forward genetic analysis,we identified RCF3,a K homology (KH) domain-containing nuclear-localized putative RNA-binding protein.RCF3 is a negative regulator of most HSFs,including HSFAla,HSFAlb,and HSFAld.In contrast,RCF3 positively controls the expression of HSFAle,HSFA3,HSFA9,HSFB3,and DREB2C.Consistently with the overall increased accumulation of heat-responsive genes,the rcf3 mutant plants are more tolerant than the wild-type to heat stress.Together,our results suggest that a KH domain-containing putative RNA-binding protein RCF3 is an important upstream regulator for heat stress-responsive gene expression and thermotolerance in Arabidopsis.

  19. A CHASE domain containing protein kinase OsCRL4, represents a new AtCRE1-like gene family in rice

    Institute of Scientific and Technical Information of China (English)

    韩秋敏; 姜华武; 齐晓朋; 于洁; 吴平

    2004-01-01

    AtCRE1 is known to be a cytokinin receptor in Arabidopsis. The AtCRE1 protein contains CHASE domain at the N-terminal part, followed by a transmitter (histidine kinase) domain and two receiver domains. The N-terminal CHASE domain of AtCRE1 contains putative recognition sites for cytokinin. Five CHASE domains containing proteins were found in rice, OsCRL1a, OsCRL1b, OsCRL2, OsCRL3, and OsCRL4. OsCRL1a, OsCRL1b, OsCRL2 and OsCRL3 contain the four domains existing in CRE1, whereas OsCRL4 only contains the CHASE domain and a putative Ser/Thr protein kinase domain. The authors cloned the encoding gene OsCRL4 and found that it represents a new member of the cytokinin receptor protein in rice.

  20. A CHASE domain containing protein kinase OsCRL4, represents a new AtCRE1-like gene family in rice

    Institute of Scientific and Technical Information of China (English)

    韩秋敏; 姜华武; 齐晓朋; 丁洁; 吴平

    2004-01-01

    AtCRE1 is known to be a cytokinin receptor inArabidopsis. The AtCRE1 protein contains CHASE domain at the N-terminal part, followed by a transmitter (histidine kinase) domain and two receiver domains. The N-terminal CHASE domain of AtCRE1 contains putative recognition sites for cytokinin. Five CHASE domains containing proteins were found in rice, OsCRLla, OsCRLlb, OsCRL2, OsCRL3, and OsCRL4. OsCRL1a, OsCRL1b, OsCRL2 and OsCRL3 contain the four domains existing in CRE1, whereas OsCRL4 only contains the CHASE domain and a putative Ser/Thr protein kinase domain The authors cloned the encoding gene OsCRL4 and found that it represents a new member of the cytokinin receptor protein in rice.

  1. Myxoma virus lacking the pyrin-like protein M013 is sensed in human myeloid cells by both NLRP3 and multiple Toll-like receptors, which independently activate the inflammasome and NF-κB innate response pathways.

    Science.gov (United States)

    Rahman, Masmudur M; McFadden, Grant

    2011-12-01

    The myxoma virus (MYXV)-encoded pyrin domain-containing protein M013 coregulates inflammatory responses mediated by both the inflammasome and the NF-κB pathways. Infection of human THP-1 monocytic cells with a MYXV construct deleted for the M013 gene (vMyxM013-KO), but not the parental MYXV, activates both the inflammasome and NF-κB pathways and induces a spectrum of proinflammatory cytokines and chemokines, like interleukin-1β (IL-1β), tumor necrosis factor (TNF), IL-6, and monocyte chemoattractant protein 1. Here, we report that vMyxM013-KO virus-mediated activation of inflammasomes and secretion of IL-1β are dependent on the adaptor protein ASC, caspase-1, and NLRP3 receptor. However, vMyxM013-KO virus-mediated activation of NF-κB signaling, which induces TNF secretion, was independent of ASC, caspase-1, and either the NLRP3 or AIM2 inflammasome receptors. We also report that early synthesis of pro-IL-1β in response to vMyxM013-KO infection is dependent upon the components of the inflammasome complex. Activation of the NLRP3 inflammasome and secretion of IL-1β was also dependent on the release of cathepsin B and production of reactive oxygen species (ROS). By using small interfering RNA screening, we further demonstrated that, among the RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs), only TLR2, TLR6, TLR7, and TLR9 contribute to the NF-κB-dependent secretion of TNF and the inflammasome-dependent secretion of IL-1β in response to vMyxM013-KO virus infection. Additionally, we demonstrate that early triggering of the mitogen-activated protein kinase pathway by vMyxM013-KO virus infection of THP-1 cells plays a critical common upstream role in the coordinate induction of both NF-κB and inflammasome pathways. We conclude that an additional cellular sensor(s)/receptor(s) in addition to the known RLRs/TLRs plays a role in the M013 knockout virus-induced activation of NF-κB pathway signaling, but the activation of inflammasomes entirely depends

  2. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L. Heynh and Oryza sativa L. reveals their developmental and stress regulation

    Directory of Open Access Journals (Sweden)

    Sopory Sudhir K

    2009-04-01

    Full Text Available Abstract Background In Arabidopsis thaliana (L. Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs in plants, we have chosen to work on proteins having a cystathionine β-synthase (CBS domain. CBS domain as such has no defined function(s but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Results Our analysis has identified 34 CBS domain containing proteins (CDCPs in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s, which may indicate towards their probable functions. In order to investigate the role(s of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data. We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. Conclusion We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through

  3. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation.

    Science.gov (United States)

    Kushwaha, Hemant R; Singh, Anil K; Sopory, Sudhir K; Singla-Pareek, Sneh L; Pareek, Ashwani

    2009-04-28

    In Arabidopsis thaliana (L.) Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs) in plants, we have chosen to work on proteins having a cystathionine beta-synthase (CBS) domain. CBS domain as such has no defined function(s) but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Our analysis has identified 34 CBS domain containing proteins (CDCPs) in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s), which may indicate towards their probable functions. In order to investigate the role(s) of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data). We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through functional genomics.

  4. Eps15 homology domain containing protein of Plasmodium falciparum (PfEHD) associates with endocytosis and vesicular trafficking towards neutral lipid storage site.

    Science.gov (United States)

    Thakur, Vandana; Asad, Mohd; Jain, Shaifali; Hossain, Mohammad E; Gupta, Akanksha; Kaur, Inderjeet; Rathore, Sumit; Ali, Shakir; Khan, Nida J; Mohmmed, Asif

    2015-11-01

    The human malaria parasite, Plasmodium falciparum, takes up numerous host cytosolic components and exogenous nutrients through endocytosis during the intra-erythrocytic stages. Eps15 homology domain-containing proteins (EHDs) are conserved NTPases, which are implicated in membrane remodeling and regulation of specific endocytic transport steps in eukaryotic cells. In the present study, we have characterized the dynamin-like C-terminal Eps15 homology domain containing protein of P. falciparum (PfEHD). Using a GFP-targeting approach, we studied localization and trafficking of PfEHD in the parasite. The PfEHD-GFP fusion protein was found to be a membrane bound protein that associates with vesicular network in the parasite. Time-lapse microscopy studies showed that these vesicles originate at parasite plasma membrane, migrate through the parasite cytosol and culminate into a large multi-vesicular like structure near the food-vacuole. Co-staining of food vacuole membrane showed that the multi-vesicular structure is juxtaposed but outside the food vacuole. Labeling of parasites with neutral lipid specific dye, Nile Red, showed that this large structure is neutral lipid storage site in the parasites. Proteomic analysis identified endocytosis modulators as PfEHD associated proteins in the parasites. Treatment of parasites with endocytosis inhibitors obstructed the development of PfEHD-labeled vesicles and blocked their targeting to the lipid storage site. Overall, our data suggests that the PfEHD is involved in endocytosis and plays a role in the generation of endocytic vesicles at the parasite plasma membrane, that are subsequently targeted to the neutral lipid generation/storage site localized near the food vacuole.

  5. Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeonpea (Cajanus cajan L.

    Directory of Open Access Journals (Sweden)

    Pallavi eSinha

    2016-01-01

    Full Text Available Pigeonpea is a resilient crop, which is relatively more drought tolerant than many other legume crops. To understand the molecular mechanisms of this unique feature of pigeonpea, 51 genes were selected using the Hidden Markov Models those codes for proteins having close similarity to universal stress protein domain. Validation of these genes was conducted on three pigeonpea genotypes (ICPL 151, ICPL 8755 and ICPL 227 having different levels of drought tolerance. Gene expression analysis using qRT-PCR revealed 6, 8 and 18 genes to be ≥2 fold differentially expressed in ICPL 151, ICPL 8755 and ICPL 227, respectively. A total of 10 differentially expressed genes showed ≥2 fold up-regulation in the more drought tolerant genotype. Of these, four genes each encoded proteins for plant U-box and universal stress protein A- (uspA like, while one gene encoded for cation/H(+ antiporter protein and one uncharacterized protein. Genes C.cajan_29830 and C.cajan_33874 belonging to uspA, were found significantly expressed in all the three genotypes with ≥2 fold expression variations. Expression profiling of these two genes on the four other legume crops revealed their specific role in pigeonpea. Therefore, these genes seem to be promising candidates for conferring drought tolerance specifically to pigeonpea.

  6. [The plate in the zone of oocyte and germinal epithelium contact in scyphomedusa Aurelia aurita binds antibodies to ZP-domain-containing protein mesoglein].

    Science.gov (United States)

    Adonin, L S; Podgornaia, O I; Matveev, I V; Shaposhnikova, T G

    2009-01-01

    Cnidaria are lower multicellular animals with the body consisting of two epithelial layers. An extracellular substance--mesoglea--is situated between epidermal and gastrodermal layers of these animals. Mesoglein is one of the major mesogleal proteins of adult medusa of Scyphozoan jellyfish Aurelia aurita. Search for the known domains in mesoglein amino acid sequence reveals prominent zona pellucida (ZP) domain (which was found at first in the mammal oocyte zona pellucida proteins), so the protein belongs to ZP family of extracellular matrix proteins and it is an early metazoan member of ZP-domain-containing protein family. However, nothing is known about oogenesis related ZP-domain proteins in the lower multicellular animals. Oogenesis in Scyphozoa is described poorly. In this work morphological features of the zone in contact area between the oocyte and the germinal epithelium were investigated in semi-fine sections: To make it more convenient we identified seven stages according to the oocyte size and the structure found in this area was named the plate. It was shown that the components of the plate bound specifically the antibodies against mesoglein. So it seems the plate material contains ZP-domain proteins. Electrophoresis and immunoblot results give evidence that the proteins immunologically related to mesoglein have a higher molecular mass. It might be due to either the posttranslational modifications of the precursors or that they represent other proteins of ZP-domain family in Cnidaria.

  7. Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants.

    Science.gov (United States)

    Fliegmann, Judith; Uhlenbroich, Sandra; Shinya, Tomonori; Martinez, Yves; Lefebvre, Benoit; Shibuya, Naoto; Bono, Jean-Jacques

    2011-07-01

    The chitin elicitor-binding protein (CEBiP) from rice was the first plant lysin motif (LysM) protein for which the biological and biochemical function had been established. It belongs to a plant-specific family of extracellular LysM proteins (LYMs) for which we analyzed the phylogeny. LYMs are present in vascular plants only, where an early gene duplication event might have resulted in two types which were retained in present day genomes. LYMs consist of a signal peptide, three consecutive LysMs, separated by cysteine pairs, and a C-terminal region without any known signature, whose length allows the distinction between the two types, and which may be followed by a glycosylphosphatidylinositol (GPI) anchor motif. We analyzed a representative of each type, MtLYM1 and MtLYM2, from Medicago truncatula at the biochemical level and with respect to their expression patterns and observed some similarities but also marked differences. MtLYM1 and MtLYM2 proved to be very different with regard to abundance and apparent molecular mass on SDS-PAGE. Both undergo several post-translational modifications, including N-glycosylation and the addition of a GPI anchor, which would position the proteins at the outer face of the plasma membrane. Only MtLYM2, but not MtLYM1, showed specific binding to biotinylated N-acetylchitooctaose in a manner similar to CEBiP, which belongs to the same type. We postulate that LYM2-type proteins likely function in the perception of chitin-related molecules, whereas possible functions of LYM1-type proteins remain to be elucidated. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. RIP and FADD: two "death domain"-containing proteins can induce apoptosis by convergent, but dissociable, pathways.

    OpenAIRE

    Grimm, S; Stanger, B Z; Leder, P

    1996-01-01

    With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overex...

  9. Hepatic patatin-like phospholipase domain-containing protein 3 sequence, single nucleotide polymorphism presence, protein confirmation, and responsiveness to energy balance in dairy cows.

    Science.gov (United States)

    McCann, Christine C; Viner, Molly E; Donkin, Shawn S; White, H M

    2014-01-01

    Patatin-like phospholipase domain-containing protein 3 (PNPLA3), commonly known as adiponutrin, is part of a novel subfamily of triglyceride lipase enzymes with potential effects on triglyceride metabolism in adipose and hepatic tissues. The predicted bovine PNPLA3 sequence has been identified, but expression of the gene had not been examined. The objectives of this study were to confirm the predicted bovine PNPLA3 gene sequence, determine expression of the bovine PNPLA3 gene in response to whole-animal energy balance, identify single nucleotide polymorphisms present in dairy cows, and verify the presence of the protein in the liver. Using liver biopsy samples collected from cows at +28d relative to calving (DRTC), RNA was isolated and used to generate a cDNA template for amplification of the entire predicted coding sequence of PNPLA3 via PCR. To determine if energy balance alters the expression of PNPLA3, RNA was isolated and mRNA expression quantified in liver samples from mid-lactation cows after a 5-d ad libitum period (n=5) and after a subsequent 5-d 50% feed restriction period (n=5), and in samples collected from cows at -14, +1, +14, and +28 DRTC (n=16). The presence of PNPLA3 protein was detected by Western blot in liver protein samples collected at +28 DRTC. Expression of hepatic PNPLA3 was decreased after a period of feed restriction (8.14 vs. 1.08±2.17 arbitrary units, ad libitum vs. fasted). Expression of PNPLA3 mRNA was decreased at +1 and +14 DRTC compared with -14 DRTC (23.35, 7.28, 10.17, and 14.5±4.9 arbitrary units, -14, +1, +14, and +28 DRTC, respectively). The presence of PNPLA3 protein was detected as a 55-kDa band in hepatic protein isolations from liver tissue collected at +28 DRTC. These data confirm the presence and sequence of the bovine hepatic PNPLA3 gene and single nucleotide polymorphisms. Furthermore, these data indicate responsiveness of bovine hepatic PNPLA3 to energy balance. Copyright © 2014 American Dairy Science Association

  10. Anchoring skeletal muscle development and disease: The role of ankyrin repeat domain containing proteins in muscle physiology

    NARCIS (Netherlands)

    J-M. Tee (Jin-Ming); M.P. Peppelenbosch (Maikel)

    2010-01-01

    textabstractThe ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary dema

  11. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator.

    Science.gov (United States)

    Yagi, R; Chen, L F; Shigesada, K; Murakami, Y; Ito, Y

    1999-05-04

    A protein module called the WW domain recognizes and binds to a short oligopeptide called the PY motif, PPxY, to mediate protein-protein interactions. The PY motif is present in the transcription activation domains of a wide range of transcription factors including c-Jun, AP-2, NF-E2, C/EBPalpha and PEBP2/CBF, suggesting that it plays an important role in transcriptional activation. We show here that mutation of the PY motif in the subregion of the activation domain of the DNA-binding subunit of PEBP2, PEBP2alpha, abolishes its transactivation function. Using yeast two-hybrid screening, we demonstrate that Yes-associated protein (YAP) binds to the PY motif of PEBP2alpha through its WW domain. The C-terminal region of YAP fused to the DNA-binding domain of GAL4 showed transactivation as strong as that of GAL4-VP16. Exogenously expressed YAP conferred transcription-stimulating activity on the PY motif fused to the GAL4 DNA-binding domain as well as to native PEBP2alpha. The osteocalcin promoter was stimulated by exogenous PEBP2alphaA and a dominant negative form of YAP strongly inhibited this activity, suggesting YAP involvement in this promoter activity in vivo. These results indicate that the PY motif is a novel transcription activation domain that functions by recruiting YAP as a strong transcription activator to target genes.

  12. Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of Escherichia coli.

    Science.gov (United States)

    Hengge, Regine; Galperin, Michael Y; Ghigo, Jean-Marc; Gomelsky, Mark; Green, Jeffrey; Hughes, Kelly T; Jenal, Urs; Landini, Paolo

    2016-01-01

    In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 "degenerate" enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies.

  13. Zona pellucida domain-containing protein β-tectorin is crucial for zebrafish proper inner ear development.

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Yang

    Full Text Available BACKGROUND: The zona pellucida (ZP domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear. METHODOLOGY/PRINCIPAL FINDINGS: We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised. CONCLUSIONS/SIGNIFICANCE: Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function.

  14. Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins

    Directory of Open Access Journals (Sweden)

    Katherine S. Bridge

    2017-07-01

    Full Text Available As core components of the microRNA-induced silencing complex (miRISC, Argonaute (AGO proteins interact with TNRC6 proteins, recruiting other effectors of translational repression/mRNA destabilization. Here, we show that LIMD1 coordinates the assembly of an AGO-TNRC6 containing miRISC complex by binding both proteins simultaneously at distinct interfaces. Phosphorylation of AGO2 at Ser 387 by Akt3 induces LIMD1 binding, which in turn enables AGO2 to interact with TNRC6A and downstream effector DDX6. Conservation of this serine in AGO1 and 4 indicates this mechanism may be a fundamental requirement for AGO function and miRISC assembly. Upon CRISPR-Cas9-mediated knockout of LIMD1, AGO2 miRNA-silencing function is lost and miRNA silencing becomes dependent on a complex formed by AGO3 and the LIMD1 family member WTIP. The switch to AGO3 utilization occurs due to the presence of a glutamic acid residue (E390 on the interaction interface, which allows AGO3 to bind to LIMD1, AJUBA, and WTIP irrespective of Akt signaling.

  15. Conditional Knockout of Src Homology 2 Domain-containing Protein Tyrosine Phosphatase-2 in Myeloid Cells Attenuates Renal Fibrosis after Unilateral Ureter Obstruction

    Institute of Scientific and Technical Information of China (English)

    Jing-Fei Teng; Kai Wang; Yao Li; Fa-Jun Qu; Qing Yuan; Xin-Gang Cui; Quan-Xing Wang

    2015-01-01

    Background:Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is a kind of intracellular protein tyrosine phosphatase.Studies have revealed its roles in various disease,however,whether SHP-2 involves in renal fibrosis remains unclear.The aim of this study was to explore the roles of myeloid cells SHP-2 in renal interstitial fibrosis.Methods:Myeloid cells SHP-2 gene was conditionally knocked-out (CKO) in mice using loxP-Cre system,and renal interstitial fibrosis was induced by unilateral ureter obstruction (UUO).The total collagen deposition in the renal interstitium was assessed using picrosirius red stain.F4/80 immunostaing was used to evaluate macrophage infiltration in renal tubular interstitium.Quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay were used to analyze the production of cytokines in the kidney.Transferase-mediated dUTP nick-end labeling stain was used to assess the apoptotic renal tubular epithelial cells.Results:Src homology 2 domain-containing protein tyrosine phosphatase-2 gene CKO in myeloid cells significantly reduced collagen deposition in the renal interstitium after UUO.Macrophage infiltration was evidently decreased in renal tubular interstitium of SHP-2 CKO mice.Meanwhile,the production of pro-inflammatory cytokines was significantly suppressed in SHP-2 CKO mice.However,no significant difference was observed in the number of apoptotic renal tubular epithelial cells between wild-type and SHP-2 CKO mice.Conclusions:Our observations suggested that SHP-2 in myeloid cells plays a pivotal role in the pathogenesis of renal fibrosis,and that silencing of SHP-2 gene in myeloid cells may protect renal from inflammatory damage and prevent renal fibrosis after renal injury.

  16. WW 结构域及相关蛋白在肿瘤发生中的作用%Function of WW domain-containing proteins in Tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    孟刚; 代方银; 陈聪; 童晓玲; 鲁成

    2013-01-01

    WW结构域由35~40个氨基酸残基组成,存在两个高度保守的色氨酸残基,能特异地与富含脯氨酸的蛋白基序结合。WW结构域存在于多种蛋白中,广泛参与细胞内各种生化过程和信号通路。WW结构域及其参与构成的蛋白与包括癌症在内的多种人类疾病存在密切联系,成为疾病诊断、治疗和药物开发的新靶标。本论文中,我们综述了WW结构域及其参与构成的蛋白在肿瘤和癌症发生中的重要作用和研究进展。%WW domain is a compact domain generally composed of 35~40 amino acid residues ,con-taining two highly conserved tryptophan residues ,and interacts specifically with proline-rich motif .WW domains are found in many different proteins w hich are involved in a variety of biological processes and signaling pathway .WW domain-containing proteins and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway ,making them targets for new diag-nostics and therapeutics .In this review ,we discuss the WW domain and the indispensable role of WW domain-containing proteins in tumorogenesis .

  17. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity.

    Directory of Open Access Journals (Sweden)

    Chuanyan Yang

    Full Text Available BACKGROUND: The cold shock domain (CSD containing proteins (CSDPs are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. METHODOLOGY: The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP by expressed sequence tag (EST analysis and rapid amplification of cDNA ends (RACE approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P<0.05. The recombinant CfCSP protein (rCfCSP could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17°C for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII-CfCSP grew vigorously, indicating that CfCSP shared a similar function with E. coli CSPs for the cold adaptation. CONCLUSIONS: These results suggest that CfCSP is a novel eukaryotic cold-regulated nucleic acid-binding protein and may function as an RNA chaperone in vivo during the cold adaptation process.

  18. The effect of the disulfideisomerase domain containing protein in the defense against polyhexamethylene biguanide of highly tolerant Acanthamoeba at the trophozoite stage

    Directory of Open Access Journals (Sweden)

    Fu-Chin Huang

    2016-12-01

    Full Text Available Acanthamoeba castellanii is a free-living protozoan pathogen capable of causing a blinding keratitis and fatal granulomatous encephalitis. Current treatment generally involves an hourly application of polyhexamethylene biguanide (PHMB over a period of several days but this is not entirely effective against all strains/isolates. The tolerance mechanisms of PHMB in Acanthamoeba cells remain unclear. In this study, we found that the mRNA expression level of disulfideisomerase domain containing protein (PDI increased rapidly in surviving cells of the highly PHMB-tolerant Acanthamoeba castellanii strain, NCKH_D, during PHMB treatment, but not in the ATCC standard strain. After PDI-specific silencing, NCKH_D was found to be more vulnerable to PHMB treatment. The results described above show that PDI is an important gene for PHMB tolerance ability in a highly PHMB-tolerant strain of Acanthamoeba and provide a new insight for more efficient medicine development for Acanthamoeba keratitis.

  19. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation

    DEFF Research Database (Denmark)

    Becker-Heck, Anita; Zohn, Irene E; Okabe, Noriko

    2011-01-01

    -right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40...... is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms...... and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD....

  20. The Popeye domain containing protein family – A novel class of cAMP effectors with important functions in multiple tissues

    Science.gov (United States)

    Schindler, Roland F.R.; Brand, Thomas

    2016-01-01

    Popeye domain containing (Popdc) proteins are a unique family, which combine several different properties and functions in a surprisingly complex fashion. They are expressed in multiple tissues and cell types, present in several subcellular compartments, interact with different classes of proteins, and are associated with a variety of physiological and pathophysiological processes. Moreover, Popdc proteins bind the second messenger cAMP with high affinity and it is thought that they act as a novel class of cAMP effector proteins. Here, we will review the most important findings about the Popdc family, which accumulated since its discovery about 15 years ago. We will be focussing on Popdc protein interaction and function in striated muscle tissue. However, as a full picture only emerges if all aspects are taken into account, we will also describe what is currently known about the role of Popdc proteins in epithelial cells and in various types of cancer, and discuss these findings with regard to their relevance for cardiac and skeletal muscle. PMID:26772438

  1. The Popeye domain containing protein family--A novel class of cAMP effectors with important functions in multiple tissues.

    Science.gov (United States)

    Schindler, Roland F R; Brand, Thomas

    2016-01-01

    Popeye domain containing (Popdc) proteins are a unique family, which combine several different properties and functions in a surprisingly complex fashion. They are expressed in multiple tissues and cell types, present in several subcellular compartments, interact with different classes of proteins, and are associated with a variety of physiological and pathophysiological processes. Moreover, Popdc proteins bind the second messenger cAMP with high affinity and it is thought that they act as a novel class of cAMP effector proteins. Here, we will review the most important findings about the Popdc family, which accumulated since its discovery about 15 years ago. We will be focussing on Popdc protein interaction and function in striated muscle tissue. However, as a full picture only emerges if all aspects are taken into account, we will also describe what is currently known about the role of Popdc proteins in epithelial cells and in various types of cancer, and discuss these findings with regard to their relevance for cardiac and skeletal muscle.

  2. Membrane Attack Complex/Perforin domain-containing proteins in a dual-species transcriptome of caenogastropoda Littorina littorea and its trematode parasite Himasthla elongata.

    Science.gov (United States)

    Gorbushin, Alexander M

    2016-07-01

    The MACPF domain-containing proteins potentially able to build a transmembrane pore structure are found in the transcriptome of a common periwinkle kidney loaded with trematode rediae. Two homologs of mammalian Macrophage expressed gene 1 (Mpeg1), LlMpeg1-1 and LIMpeg1-2, share similar domain structure with the only difference such as LIMpeg1-2 transcript lacks of a C-terminal transmembrane helix. Expression of membrane-anchored protein LlMpeg1-1 is similar in kidneys of naturally infected with trematode Himasthla elongata and uninfected snails. The expression of the second soluble LIMpeg1-2 protein is 4-fold upregulated under infection. The third MACPF protein found in Littorina littorea kidney is homologous with Perivitellin - 2 67 kDa subunit named LlPV2-67 and the expression of the transcript is 3-fold upregulated in the kidney of infected snails. The last two molecules are candidate effectors that may participate in the immune response of common periwinkles to trematode infestation. A single parasite-expressed MACPF-like protein was recorded from the transcriptome of Himasthla elongata.

  3. Characterization of big bang, a novel gene encoding for PDZ domain-containing proteins that are dynamically expressed throughout Drosophila development.

    Science.gov (United States)

    Kim, Sabrina Y; Renihan, Maia K; Boulianne, Gabrielle L

    2006-06-01

    PDZ (PSD-95, Discs-large, ZO-1) domain proteins often function as scaffolding proteins and have been shown to play important roles in diverse cellular processes such as the establishment and maintenance of cell polarity, and signal transduction. Here, we report the identification and cloning of a novel Drosophila melanogaster gene that is predicted to produce several different PDZ domain-containing proteins through alternative promoter usage and alternative splicing. This gene, that we have named big bang (bbg), was first identified as C96-GAL4, a GAL4 enhancer trap line that was generated in our lab. To further characterize bbg, its expression pattern was examined in ovaries, embryos, and late third instar larvae using UAS reporter gene constructs, in situ hybridization, or immunocytochemistry. In addition, the expression of alternatively spliced transcripts was examined in more detail using in situ hybridization. We find that during embryogenesis bbg is predominantly expressed in the developing gut, but it is also expressed in external sensory organs found in the epidermis. In the late third instar larva, bbg is expressed along the presumptive wing margin in the wing disc, broadly in the eye disc, and in other imaginal discs as well as in the brain. The expression patterns observed are dynamic and specific during development, suggesting that like other genes that encode for several different PDZ domain protein isoforms, bbg likely plays important roles in multiple developmental processes.

  4. Ubiquitin regulates caspase recruitment domain-mediated signaling by nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2.

    Science.gov (United States)

    Ver Heul, Aaron M; Fowler, C Andrew; Ramaswamy, S; Piper, Robert C

    2013-03-08

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2.

  5. Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues.

    Science.gov (United States)

    Liao, Zhijun; Wang, Xinrui; Zeng, Yeting; Zou, Quan

    2016-12-21

    The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.

  6. Direct interaction of the human I-mfa domain-containing protein, HIC, with HIV-1 Tat results in cytoplasmic sequestration and control of Tat activity.

    Science.gov (United States)

    Gautier, Virginie W; Sheehy, Noreen; Duffy, Margaret; Hashimoto, Kenichi; Hall, William W

    2005-11-08

    The primary function of the HIV-1 regulatory protein Tat, activation of transcription from the viral LTR, is highly regulated by complex interactions between Tat and a number of host cell proteins. Tat nuclear import, a process mediated by importin beta, is a prerequisite for its activity. Here, we report and characterize the interaction of the human inhibitor of MyoD family domain-containing protein (I-mfa), HIC, with Tat at a biochemical and a functional level. This interaction was shown to occur in vivo and in vitro and to involve the nuclear localization signal and the transactivation responsive element-binding domains of Tat and the I-mfa domain of HIC. Coexpression of HIC and Tat resulted in the down-regulation of transactivation of the HIV-1 LTR, and colocalization studies revealed the cytoplasmic sequestration of Tat by HIC. Functionally this sequestration appears to be the underlying mechanism of LTR transcriptional repression by HIC and represents a unique mechanism for the control of Tat activity and regulation of HIV-1 replication.

  7. Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues

    Science.gov (United States)

    Liao, Zhijun; Wang, Xinrui; Zeng, Yeting; Zou, Quan

    2016-12-01

    The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.

  8. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T is important for swarming and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Bettina Janesch

    Full Text Available Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcus pluton, the causative agent of European foulbrood (EFB.Paenibacillus alvei CCM 2051(T is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA.This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051(T.

  9. Molecular cloning of a novel human I-mfa domain-containing protein that differently regulates human T-cell leukemia virus type I and HIV-1 expression.

    Science.gov (United States)

    Thébault, S; Gachon, F; Lemasson, I; Devaux, C; Mesnard, J M

    2000-02-18

    Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.

  10. A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells.

    Science.gov (United States)

    Schmidt, Rebecca L; Filak, Holly C; Lemon, Jack D; Potter, Terry A; Lenz, Laurel L

    2011-11-01

    Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.

  11. A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells.

    Directory of Open Access Journals (Sweden)

    Rebecca L Schmidt

    2011-11-01

    Full Text Available Listeria monocytogenes (Lm infection induces rapid and robust activation of host natural killer (NK cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs. Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN, but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS. These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.

  12. Advances in tumor-associated gene thioredoxin domain containing protein 5%肿瘤相关基因TXNDC5的研究进展

    Institute of Scientific and Technical Information of China (English)

    李春梅; 张林; 李楠

    2014-01-01

    Thioredoxin domain containing protein 5 (TXNDC5) is located on chromosome 6p24 and encodes a protein-disulfide isomerase containing 3 thioredoxin motifs which can compensate for a loss of PDI function in yeast. It has been shown that the expression level of TXNDC5 gene is higher in carcinoma tissues than in normal tissues. Following is a review of the advances in tumor-associated TXNDC5.%TXNDC5基因定位于染色体6p24.3上并且具有编码蛋白二硫键异构酶的功能。其所编码的蛋白含有3个硫氧还蛋白结构域并且可以补偿二硫键异构酶在酵母中功能的损失。研究发现TXNDC5基因在一些癌组织中的表达水平明显高于正常组织。本文主要就TXNDC5在肿瘤领域的最新研究进展进行综述。

  13. Major facilitator superfamily domain-containing protein 2a (MFSD2A has roles in body growth, motor function, and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Justin H Berger

    Full Text Available The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα, where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adaptation to fasting, we identified Major facilitator superfamily domain-containing protein 2a (Mfsd2a as a fasting-induced gene regulated by both PPARα and glucagon signaling in the liver. MFSD2A is a cell-surface protein homologous to bacterial sodium-melibiose transporters. Hepatic expression and turnover of MFSD2A is acutely regulated by fasting/refeeding, but expression in the brain is constitutive. Relative to wildtype mice, gene-targeted Mfsd2a knockout mice are smaller, leaner, and have decreased serum, liver and brown adipose triglycerides. Mfsd2a knockout mice have normal liver lipid metabolism but increased whole body energy expenditure, likely due to increased β-oxidation in brown adipose tissue and significantly increased voluntary movement, but surprisingly exhibited a form of ataxia. Together, these results indicate that MFSD2A is a nutritionally regulated gene that plays myriad roles in body growth and development, motor function, and lipid metabolism. Moreover, these data suggest that the ligand(s that are transported by MFSD2A play important roles in these physiological processes and await future identification.

  14. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria*

    Science.gov (United States)

    Curran, Jerry; Musa, Hassan; Kline, Crystal F.; Makara, Michael A.; Little, Sean C.; Higgins, John D.; Hund, Thomas J.; Band, Hamid; Mohler, Peter J.

    2015-01-01

    Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction. PMID:25825486

  15. Involvement of a LysM and putative peptidoglycan-binding domain-containing protein in the antibacterial immune response of kuruma shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Shi, Xiu-Zhen; Feng, Xiao-Wu; Sun, Jie-Jie; Yang, Ming-Chong; Lan, Jiang-Feng; Zhao, Xiao-Fan; Wang, Jin-Xing

    2016-07-01

    Lysin motif (LysM) is a peptidoglycan and chitin-binding motif with multiple functions in bacteria, plants, and animals. In this study, a novel LysM and putative peptidoglycan-binding domain-containing protein was cloned from kuruma shrimp (Marsupenaeus japonicus) and named as MjLPBP. The cDNA of MjLPBP contained 1010 nucleotides with an open reading frame of 834 nucleotides encoding a protein of 277 amino acid residues. The deduced protein contained a Lysin motif and a transmembrane region, with a calculated molecular mass of 31.54 kDa and isoelectric point of 8.61. MjLPBP was ubiquitously distributed in different tissues of shrimp at the mRNA level. Time course expression assay showed that MjLPBP was upregulated in hemocytes of shrimp challenged with Vibrio anguillarum or Staphylococcus aureus. MjLPBP was also upregulated in hepatopancreas after white spot syndrome virus and bacteria challenge. The recombinant protein of MjLPBP could bind to some Gram-positive and Gram-negative bacteria and yeast. Further study found that rMjLPBP bound to bacterial cell wall components, including peptidoglycans, lipoteichoic acid, lipopolysaccharide, and chitin. The induction of several antimicrobial peptide genes and phagocytosis-related gene, such as anti-lipopolysaccharide factors and myosin, was depressed after knockdown of MjLPBP. MjLPBP could facilitate V. anguillarum clearance in vivo. All the results indicated that MjLPBP might play an important role in the innate immunity of shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genetic analysis of the leucine-rich repeat and lg domain containing Nogo receptor-interacting protein 1 gene in essential tremor.

    Science.gov (United States)

    Liang, Hui; Song, Zhi; Deng, Xiong; Xu, Hongbo; Zhu, Anding; Zheng, Wen; Zhao, Yongxiang; Deng, Hao

    2013-10-01

    Variants in the leucine-rich repeat and lg domain containing nogo receptor-interacting protein 1 gene (LINGO1) have been identified to be associated with the increased risk of essential tremor (ET), especially among Caucasians. To explore whether the LINGO1 gene plays a role in ET susceptibility, we performed a systematic genetic analysis of the coding region in the LINGO1 gene. Four nucleotide variants have been genotyped, including three known variants (rs2271398, rs2271397, and rs3743481), and a novel G → C transition (ss491228439). Extended analysis showed no significant difference in genotypic and allelic distributions between 151 patients and 301 control subjects for these four variants (all P > 0.05). However, further sex-stratified analysis revealed that the C allele of rs2271397 and ss491228439 contributed the risk of ET in female (P = 0.017, OR = 2.139, 95 % CI 1.135 ~ 4.030 for rs2271397 and P = 0.038, OR = 1.812, 95 % CI 1.027 ~ 3.194 for ss491228439). Haplotype analysis indicated that A465-C474-C714 haplotype was significantly associated with increased risk of ET in female (P = 0.041, OR = 1.800, 95 % CI 1.020 ~ 3.178). Our results indicate that the LINGO1 variants are associated with ET in Chinese Han female patients.

  17. The coiled-coil domain containing protein Ccdc136b antagonizes maternal Wnt/β-catenin activity during zebrafish dorsoventral axial patterning.

    Science.gov (United States)

    Wei, Shi; Shang, Hanqiao; Cao, Yu; Wang, Qiang

    2016-07-20

    The coiled-coil domain containing protein CCDC136 is a putative tumor suppressor and significantly down-regulated in gastric and colorectal cancer tissues. However, little is known about its biological functions during vertebrate embryo development. Zebrafish has two CCDC136 orthologs, ccdc136a and ccdc136b, but only ccdc136b is highly expressed during early embryonic development. In this study, we demonstrate that ccdc136b is required for dorsal-ventral axial patterning in zebrafish embryos. ccdc136b morphants display strongly dorsalized phenotypes. Loss- and gain-of-function experiments in zebrafish embryos and mammalian cells show that Ccdc136b is a crucial negative regulator of the Wnt/β-catenin signaling pathway, and plays a critical role in the establishment of the dorsal-ventral axis. We further find that Ccdc136b interacts with APC, promotes the binding affinity of APC with β-catenin and then facilitates the turnover of β-catenin. These results provide the first evidence that CCDC136 regulates zebrafish dorsal-ventral patterning by antagonizing Wnt/β-catenin signal transduction and suggest a potential mechanism underlying its suppressive activity in carcinogenesis.

  18. Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and Axl.

    Science.gov (United States)

    Mark, M R; Chen, J; Hammonds, R G; Sadick, M; Godowsk, P J

    1996-04-19

    Rse, Ax1, and c-Mer comprise a family of cell adhesion molecule-related tyrosine kinase receptors. Human Gas6 was recently shown to act as a ligand for both human Rse (Godowski et al., 1995) and human Ax1 (Varnum et al., 1995). Gas6 contains an NH2-terminal Gla domain followed by four epidermal growth factor-like repeats and tandem globular (G) domains. The G domains are related to those found in sex hormone-binding globulin and to those utilized by laminin and agrin for binding to the dystroglycan complex. A series of Gas6 variants were tested for their ability to bind to Rse and Ax1. The Gla domain and epidermal growth factor-like repeats were not required for receptor binding, as deletion variants of Gas6 which lacked these domains bound to the extracellular domains of both Rse and Axl. A deletion variant of Gas6 containing just the G domain region was shown to activate Rse phosphorylation. These results provide evidence that G domains can act as signaling molecules by activating transmembrane receptor tyrosine kinases. Furthermore, they provide a structural link between the activation of cell adhesion related receptors and the control of cell growth and differentiation by the G domain-containing superfamily of proteins.

  19. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of innoculation

    Science.gov (United States)

    In a companion study, we reported that the cellular Jumonji-C Domain containing Protein 6 (JMJD6) protein is involved in an alternate integrin- and HS-independent pathway of FMDV infection in CHO cells. Here, we investigated the JMJD6 localization in animal tissues from cattle infected with either ...

  20. CIBZ, a novel BTB domain-containing protein, is involved in mouse spinal cord injury via mitochondrial pathway independent of p53 gene.

    Directory of Open Access Journals (Sweden)

    Yafei Cai

    Full Text Available Spinal cord injury (SCI induces both primary uncontrollable mechanical injury and secondary controllable degeneration, which further results in the activation of cell death cascades that mediate delayed tissue damage. To alleviate its impairments and seek for an effective remedy, mRNA differential display was used to investigate gene mRNA expression profiling in mice following SCI. A specific Zinc finger and BTB domain-containing protein, CIBZ, was discovered to implicate in the SCI process for the first time. Further researches indicated that CIBZ was extensively distributed in various tissues, and the expression level was highest in muscle, followed by spinal cord, large intestine, kidney, spleen, thymus, lung, cerebrum, stomach, ovary and heart, respectively. After injury, the CIBZ expression decreased dramatically and reached the lowest level at 8 h, but it gradually increased to the maximal level at 7 d. Caspase-3 and C-terminal-binding protein (CtBP, two CIBZ-related proteins, showed similar tendency. Interestingly, p53 expression remained constant in all groups. Via flow cytometry (FCM analysis, it was found that the cell death rate in SCI group markedly increased and reached the highest value 1 d after surgery and the mitochondrial transmembrane potential (ΔΨm at 1 d was the lowest in all groups. Taken together, it is suggested that: (i in the presence of CtBP, CIBZ gene is involved in secondary injury process and trigger the activation of apoptotic caspase-3 and bax genes independent of p53; (ii abrupt down-regulation of CtBP at 8 h is a sign of mitochondria dysfunction and the onset of cell death; (iii it could be used as an inhibitor or target drug of caspase-3 gene to improve spinal cord function.

  1. The human I-mfa domain-containing protein, HIC, interacts with cyclin T1 and modulates P-TEFb-dependent transcription.

    Science.gov (United States)

    Young, Tara M; Wang, Qi; Pe'ery, Tsafi; Mathews, Michael B

    2003-09-01

    Positive transcription elongation factor b (P-TEFb) hyperphosphorylates the carboxy-terminal domain of RNA polymerase II, permitting productive transcriptional elongation. The cyclin T1 subunit of P-TEFb engages cellular transcription factors as well as the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. To identify potential P-TEFb regulators, we conducted a yeast two-hybrid screen with cyclin T1 as bait. Among the proteins isolated was the human I-mfa domain-containing protein (HIC). HIC has been reported to modulate expression from both cellular and viral promoters via its C-terminal cysteine-rich domain, which is similar to the inhibitor of MyoD family a (I-mfa) protein. We show that HIC binds cyclin T1 in yeast and mammalian cells and that it interacts with intact P-TEFb in mammalian cell extracts. The interaction involves the I-mfa domain of HIC and the regulatory histidine-rich region of cyclin T1. HIC also binds Tat via its I-mfa domain, although the sequence requirements are different. HIC colocalizes with cyclin T1 in nuclear speckle regions and with Tat in the nucleolus. Expression of the HIC cDNA modulates Tat transactivation of the HIV-1 long terminal repeat (LTR) in a cell type-specific fashion. It is mildly inhibitory in CEM cells but stimulates gene expression in HeLa, COS, and NIH 3T3 cells. The isolated I-mfa domain acts as a dominant negative inhibitor. Activation of the HIV-1 LTR by HIC in NIH 3T3 cells occurs at the RNA level and is mediated by direct interactions with P-TEFb.

  2. Serum amyloid A induces interleukin-1β secretion from keratinocytes via the NACHT, LRR and PYD domains-containing protein 3 inflammasome.

    Science.gov (United States)

    Yu, N; Liu, S; Yi, X; Zhang, S; Ding, Y

    2015-02-01

    Interleukin (IL)-1β is now emerging as a critical cytokine in the pathogenesis of T helper type 17 (Th17)-mediated skin diseases, including psoriasis. Psoriatic keratinocytes are a major source of IL-1β; however, the mechanisms triggering IL-1β processing remain unknown. Recently, an acute-phase protein serum amyloid A (SAA) has been identified as a danger signal that triggers inflammasome activation and IL-1β secretion. In this study, we detected increased SAA mRNA and protein expression in psoriatic epidermis. In cultured keratinocytes, SAA up-regulated the expression of pro-IL-1β and secretion of mature IL-1β. On the transcriptional level, blocking Toll-like receptor-2 (TLR-2), TLR-4 or nuclear factor kappa B (NF-κB) attenuated SAA-induced expression of IL-1β mRNA. SAA up-regulated caspase-1 and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) expression in keratinocytes. Inhibiting caspase-1 activity and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome on the post-transcriptional level. The mechanism of SAA-triggered NLRP3 activation and subsequent IL-1β secretion was found to involve the generation of reactive oxygen species. Finally, the expression of SAA by keratinocytes was up-regulated by IL-17A. Taken together, our results indicate that keratinocyte-derived SAA triggers a key inflammatory mediator, IL-1β, via NLRP3 inflammasome activation, providing new potential targets for the treatment of this chronic skin disease. © 2014 British Society for Immunology.

  3. Can signal peptide-CUB-EGF domain-containing protein (SCUBE) levels be a marker of angiogenesis in patients with psoriasis?

    Science.gov (United States)

    Capkin, Arzu Aydın; Demir, Selim; Mentese, Ahmet; Bulut, Çağlar; Ayar, Ahmet

    2017-04-01

    Angiogenesis is an important process being involved in the pathogenesis of psoriasis and promises new potential parameter for diagnosis and screening of treatment. This study investigated the levels of signal peptide-CUB-EGF (epidermal growth factor-like protein) family domain-containing protein (SCUBE) 1 and 3. Potential value as a novel marker of angiogenesis in patients with psoriasis is also evaluated by assessing possible relation of SCUBE-1 and 3 with disease activity in conjunction with vascular endothelial growth factor (VEGF) levels, as an established marker of angiogenesis. Forty-eight patients with psoriasis (aged >18 years) and 48 age- and gender-matched healthy controls were included. Detailed information was obtained through history and physical examination. Psoriasis area and severity index (PASI) scores were calculated. Blood SCUBE 1 and 3, and VEGF levels were measured by enzyme-linked immunosorbent assay. The mean PASI score of the patients was 6.7 ± 4.1. Patients' serum SCUBE 1 and 3 and VEGF levels were significantly higher than those of the controls (P = 0.001). The sensitivity and specificity were calculated as 83 and 62% for the 0.67 ng/ml cut-off level of SCUBE 1, and 63 and 71% for the 2.57 ng/ml cut-off level of SCUBE 3, respectively. A cut-off VEGF level of 310 ng/mL predicted the presence of psoriasis with a sensitivity of 50% and specificity of 77%. The results of this pioneering study indicate that SCUBE protein family appears to have a probable role in the pathogenesis and angiogenesis development in psoriasis and SCUBE 1 and 3 may be novel markers of angiogenesis in psoriasis.

  4. Epidermal growth factor-like domain-containing protein 7 (EGFL7 enhances EGF receptor-AKT signaling, epithelial-mesenchymal transition, and metastasis of gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Bai-Hua Luo

    Full Text Available Epidermal growth factor-like domain-containing protein 7 (EGFL7 is upregulated in human epithelial tumors and so is a potential biomarker for malignancy. Indeed, previous studies have shown that high EGFL7 expression promotes infiltration and metastasis of gastric carcinoma. The epithelial-mesenchymal transition (EMT initiates the metastatic cascade and endows cancer cells with invasive and migratory capacity; however, it is not known if EGFL7 promotes metastasis by triggering EMT. We found that EGFL7 was overexpressed in multiple human gastric cancer (GC cell lines and that overexpression promoted cell invasion and migration as revealed by scratch wound and transwell migration assays. Conversely, shRNA-mediated EGFL7 knockdown reduced invasion and migration. Furthermore, EGFL7-overexpressing cells grew into larger tumors and were more likely to metastasize to the liver compared to underexpressing CG cells following subcutaneous injection in mice. EGFL7 overexpression protected GC cell lines against anoikis, providing a plausible mechanism for this enhanced metastatic capacity. In excised human gastric tumors, expression of EGFL7 was positively correlated with expression levels of the mesenchymal marker vimentin and the EMT-associated transcription repressor Snail, and negatively correlated with expression of the epithelial cell marker E-cadherin. In GC cell lines, EGFL7 knockdown reversed morphological signs of EMT and decreased both vimentin and Snail expression. In addition, EGFL7 overexpression promoted EGF receptor (EGFR and protein kinase B (AKT phospho-activation, effects markedly suppressed by the EGFR tyrosine kinase inhibitor AG1478. Moreover, AG1478 also reduced the elevated invasive and migratory capacity of GC cell lines overexpressing EGFL7. Collectively, these results strongly suggest that EGFL7 promotes metastasis by activating EMT through an EGFR-AKT-Snail signaling pathway. Disruption of EGFL7-EGFR-AKT-Snail signaling may a

  5. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS.

    Science.gov (United States)

    Jiang, Shuai; Li, Hui; Zhang, Daoxiang; Zhang, Huan; Wang, Lingling; Sun, Jinsheng; Song, Linsheng

    2015-08-01

    C1q proteins serve as pattern recognition receptors and involve in the pathogen recognition and complement pathway activation. In the present study, a novel C1q domain containing protein from Crassostrea gigas (designated CgC1qDC-1) was isolated by liposaccharide-Sepharose 6B affinity chromatography. The coding sequence of CgC1qDC-1 gene was determined by performing a homologous search of eight tryptic peptides identified by MALDI-TOF/TOF-MS against the genome of C. gigas. The coding sequence of CgC1qDC-1 was of 387 bp encoding a polypeptide of 128 amino acids containing a typical globular C1q domain. The globular C1q domain possessed eight β strands with a jelly-roll topology structure, which was similar to the structure of human gC1q domain. The mRNA transcripts of CgC1qDC-1 were dominantly expressed in mantle and hemocytes, while low expressed in hepatopancreas, gonad, gill and muscle. The expression level of CgC1qDC-1 increased drastically at 6 h after Vibrio splendidus stimulation, and then gradually fell to the normal level at about 24 h. ELISA assay quantified that CgC1qDC-1 bound to LPS with high binding affinity (Kd = 0.09 × 10(-6) M). Moreover, CgC1qDC-1 significantly enhanced the phagocytosis of oyster hemocytes towards Gram-negative bacteria Escherichia coli and V. splendidus. These results collectively indicated that CgC1qDC-1 could serve as pattern recognition receptor and opsonin in the innate immune response against invading Gram-negative bacteria.

  6. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation.

    Science.gov (United States)

    Van Gorp, Hanne; Saavedra, Pedro H V; de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Vande Walle, Lieselotte; Matusiak, Magdalena; Prencipe, Giusi; Insalaco, Antonella; Van Hauwermeiren, Filip; Demon, Dieter; Bogaert, Delfien J; Dullaers, Melissa; De Baere, Elfride; Hochepied, Tino; Dehoorne, Joke; Vermaelen, Karim Y; Haerynck, Filomeen; De Benedetti, Fabrizio; Lamkanfi, Mohamed

    2016-12-13

    Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease worldwide. It is caused by mutations in the inflammasome adaptor Pyrin, but how FMF mutations alter signaling in FMF patients is unknown. Herein, we establish Clostridium difficile and its enterotoxin A (TcdA) as Pyrin-activating agents and show that wild-type and FMF Pyrin are differentially controlled by microtubules. Diverse microtubule assembly inhibitors prevented Pyrin-mediated caspase-1 activation and secretion of IL-1β and IL-18 from mouse macrophages and human peripheral blood mononuclear cells (PBMCs). Remarkably, Pyrin inflammasome activation persisted upon microtubule disassembly in PBMCs of FMF patients but not in cells of patients afflicted with other autoinflammatory diseases. We further demonstrate that microtubules control Pyrin activation downstream of Pyrin dephosphorylation and that FMF mutations enable microtubule-independent assembly of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) micrometer-sized perinuclear structures (specks). The discovery that Pyrin mutations remove the obligatory requirement for microtubules in inflammasome activation provides a conceptual framework for understanding FMF and enables immunological screening of FMF mutations.

  7. WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function.

    Science.gov (United States)

    Aqeilan, Rami I; Donati, Valentina; Palamarchuk, Alexey; Trapasso, Francesco; Kaou, Mohamed; Pekarsky, Yuri; Sudol, Marius; Croce, Carlo M

    2005-08-01

    The WW domain-containing oxidoreductase, WWOX, is a tumor suppressor that is deleted or altered in several cancer types. We recently showed that WWOX interacts with p73 and AP-2gamma and suppresses their transcriptional activity. Yes-associated protein (YAP), also containing WW domains, was shown to associate with p73 and enhance its transcriptional activity. In addition, YAP interacts with ErbB-4 receptor tyrosine kinase and acts as transcriptional coactivator of the COOH-terminal fragment (CTF) of ErbB-4. Stimulation of ErbB-4-expressing cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) results in the proteolytic cleavage of its cytoplasmic domain and translocation of this domain to the nucleus. Here we report that WWOX physically associates with the full-length ErbB-4 via its first WW domain. Coexpression of WWOX and ErbB-4 in HeLa cells followed by treatment with TPA results in the retention of ErbB-4 in the cytoplasm. Moreover, in MCF-7 breast carcinoma cells, expressing high levels of endogenous WWOX, endogenous ErbB-4 is also retained in the cytoplasm. In addition, our results show that interaction of WWOX and ErbB-4 suppresses transcriptional coactivation of CTF by YAP in a dose-dependent manner. A mutant form of WWOX lacking interaction with ErbB-4 has no effect on this coactivation of ErbB-4. Furthermore, WWOX is able to inhibit coactivation of p73 by YAP. In summary, our data indicate that WWOX antagonizes the function of YAP by competing for interaction with ErbB-4 and other targets and thus affect its transcriptional activity.

  8. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals.

    Science.gov (United States)

    Jerber, Julie; Baas, Dominique; Soulavie, Fabien; Chhin, Brigitte; Cortier, Elisabeth; Vesque, Christine; Thomas, Joëlle; Durand, Bénédicte

    2014-02-01

    Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.

  9. A C1q domain containing protein from scallop Chlamys farreri serving as pattern recognition receptor with heat-aggregated IgG binding activity.

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    Full Text Available BACKGROUND: The C1q domain containing (C1qDC proteins refer to a family of all proteins that contain the globular C1q (gC1q domain, and participate in a series of immune responses depending on their gC1q domains to bind a variety of self and non-self binding ligands. METHODOLOGY: In the present study, the mRNA expression patterns, localization, and activities of a C1qDC protein from scallop Chlamys farreri (CfC1qDC were investigated to understand its possible functions in innate immunity. The relative expression levels of CfC1qDC mRNA in hemocytes were all significantly up-regulated after four typical PAMPs (LPS, PGN, β-glucan and polyI:C stimulation. During the embryonic development of scallop, the mRNA transcripts of CfC1qDC were detected in all the stages, and the expression level was up-regulated from D-hinged larva and reached the highest at eye-spot larva. The endogenous CfC1qDC was dominantly located in the hepatopancreas, gill, kidney and gonad of adult scallop through immunofluorescence. The recombinant protein of CfC1qDC (rCfC1qDC could not only bind various PAMPs, such as LPS, PGN, β-glucan as well as polyI:C, but also enhance the phagocytic activity of scallop hemocytes towards Escherichia coli. Meanwhile, rCfC1qDC could interact with human heat-aggregated IgG, and this interaction could be inhibited by LPS. CONCLUSIONS: All these results indicated that CfC1qDC in C. farreri not only served as a PRR involved in the PAMPs recognition, but also an opsonin participating in the clearance of invaders in innate immunity. Moreover, the ability of CfC1qDC to interact with immunoglobulins provided a clue to understand the evolution of classical pathway in complement system.

  10. KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas.

    Science.gov (United States)

    Yantiss, Rhonda K; Woda, Bruce A; Fanger, Gary R; Kalos, M; Whalen, Giles F; Tada, Hiroomi; Andersen, Dana K; Rock, Kenneth L; Dresser, Karen

    2005-02-01

    KOC (K homology domain containing protein overexpressed in cancer) is a novel oncofetal RNA-binding protein highly expressed in pancreatic carcinomas. Recently, Corixa Corporation developed a monoclonal antibody specific for KOC that can be used with standard immunohistochemical techniques. The purposes of this study were 1) to assess KOC mRNA expression in pancreatic carcinoma, 2) to determine the pattern of KOC immunoexpression among benign, borderline, and malignant pancreatic epithelial lesions, and 3) to evaluate the utility of the KOC antibody in distinguishing between these entities. mRNA was isolated from fresh pancreatic tissues (19 carcinomas, 2 normal pancreas, 1 chronic pancreatitis) and amplified using standard RT-PCR techniques. Fifteen of 19 (79%) carcinomas overexpressed KOC mRNA relative to non-neoplastic tissue samples and expression increased progressively with tumor stage: the mean copy number of KOC mRNA transcripts was 1.5, 11.1, 31, and 28 for stage I, II, III, and IV carcinomas, respectively, compared with 0.9 and 1 for normal pancreatic tissue and chronic pancreatitis, respectively. Immunostains using the KOC antibody were performed on 50 surgical resection specimens (38 invasive adenocarcinomas, 3 intraductal papillary-mucinous neoplasms, 2 mucinous cystic neoplasms, 7 chronic pancreatitis). KOC staining was present in 37 of 38 (97%) carcinomas: the staining reaction was moderate or strong in 36 of 38 (94%) and present in >50% of the tumor cells in 35 of 38 (92%) cases. Severe dysplasia of the ductal epithelium, present in 19 foci of intraductal papillary mucinous carcinoma, mucinous cystadenocarcinoma, and grade 3 pancreatic intraepithelial neoplasia (PanIN3) showed strong or moderate staining in 15 (79%) cases, whereas foci of mild and moderate dysplasia (intraductal papillary-mucinous neoplasms and mucinous cystic neoplasms with adenoma and/or moderate dysplasia, PanIN1, and PanIN2) were uniformly negative for this marker in 25 and 22

  11. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS.

    Science.gov (United States)

    Park, Yong Hwan; Wood, Geryl; Kastner, Daniel L; Chae, Jae Jin

    2016-08-01

    Mutations in the genes encoding pyrin and mevalonate kinase (MVK) cause distinct interleukin-1β (IL-1β)-mediated autoinflammatory diseases: familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D syndrome (HIDS). Pyrin forms an inflammasome when mutant or in response to bacterial modification of the GTPase RhoA. We found that RhoA activated the serine-threonine kinases PKN1 and PKN2 that bind and phosphorylate pyrin. Phosphorylated pyrin bound to 14-3-3 proteins, regulatory proteins that in turn blocked the pyrin inflammasome. The binding of 14-3-3 and PKN proteins to FMF-associated mutant pyrin was substantially decreased, and the constitutive IL-1β release from peripheral blood mononuclear cells of patients with FMF or HIDS was attenuated by activation of PKN1 and PKN2. Defects in prenylation, seen in HIDS, led to RhoA inactivation and consequent pyrin inflammasome activation. These data suggest a previously unsuspected fundamental molecular connection between two seemingly distinct autoinflammatory disorders.

  12. Clinical features and functional significance of the P369S/R408Q variant in pyrin, the familial Mediterranean fever protein

    Science.gov (United States)

    Ryan, JG; Masters, SL; Booty, MG; Habal, N; Alexander, JD; Barham, BK; Remmers, EF; Barron, KS; Kastner, DL; Aksentijevich, I

    2013-01-01

    Objectives Familial Mediterranean fever (FMF) is caused by mutations in MEFV, which encodes pyrin. The nature of substitutions P369S and R408Q in exon 3 remains unclear. Exon 3 encoding pyrin’s B-box domain is necessary for interactions with PSTPIP1. We aimed to characterize the phenotype of patients with these substitutions and to determine their functional significance. Methods A database of genetic tests undertaken in our institution was interrogated. Symptoms and signs were classified according to Tel-Hashomer criteria. Co-immunoprecipation techniques were employed to determine the variants’ effects on pyrin/PSTPIP1 interactions. Results We identified 40 symptomatic and 4 asymptomatic family members with these substitutions. P369S and R408Q were found in cis, and co-segregated in all patients sequenced. Clinical details were available on 22 patients. Five patients had symptoms and signs fulfilling a clinical diagnosis of FMF. Fourteen received colchicine. In patients not reaching the criteria, trials of anti-TNF agents resulted in partial or no benefit; resolution of symptoms was noted in those receiving anakinra. The carrier frequency was higher in the patient cohort than in controls but was not statistically significant. Co-immunoprecipitation studies demonstrated that these pyrin variants did not affect binding to PSTPIP1. Conclusions P369S/R408Q substitutions are associated with a highly variable phenotype, and are infrequently associated with typical FMF symptoms, however a trial of colchicine is warranted in all. Functional and modeling studies suggest that these substitutions do not significantly affect pyrin’s interaction with PSTPIP1. This study highlights the need for caution in interpreting genetic tests in patients with atypical symptoms. PMID:19934105

  13. Update on Pyrin Functions and Mechanisms of Familial Mediterranean Fever

    Science.gov (United States)

    Manukyan, Gayane; Aminov, Rustam

    2016-01-01

    Mutations in the MEFV gene, which encodes the protein named pyrin (also called marenostrin or TRIM20), are associated with the autoinflammatory disease familial Mediterranean fever (FMF). Recent genetic and immunologic studies uncovered novel functions of pyrin and raised several new questions in relation to FMF pathogenesis. The disease is clinically heterogeneous reflecting the complexity and multiplicity of pyrin functions. The main functions uncovered so far include its involvement in innate immune response such as the inflammasome assemblage and, as a part of the inflammasome, sensing intracellular danger signals, activation of mediators of inflammation, and resolution of inflammation by the autophagy of regulators of innate immunity. Based on these functions, the FMF-associated versions of pyrin confer a heightened sensitivity to a variety of intracellular danger signals and postpone the resolution of innate immune responses. It remains to be demonstrated, however, what kind of selective advantage the heterozygous carriage conferred in the past to be positively selected and maintained in populations from the Mediterranean basin. PMID:27066000

  14. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants

    Directory of Open Access Journals (Sweden)

    Salojärvi Jarkko

    2010-03-01

    Full Text Available Abstract Background The SROs (SIMILAR TO RCD-ONE are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose polymerase (PARP domain and a C-terminal RST (RCD-SRO-TAF4 domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. Results SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918 but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11. We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose polymerase (PS51059 domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. Conclusions The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

  15. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants.

    Science.gov (United States)

    Jaspers, Pinja; Overmyer, Kirk; Wrzaczek, Michael; Vainonen, Julia P; Blomster, Tiina; Salojärvi, Jarkko; Reddy, Ramesha A; Kangasjärvi, Jaakko

    2010-03-12

    The SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

  16. A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-kappaB signaling.

    Science.gov (United States)

    Wu, Jianchun; Lei, Guohua; Mei, Mei; Tang, Yi; Li, Honglin

    2010-05-14

    C53/LZAP (also named as Cdk5rap3) is a putative tumor suppressor that plays important roles in multiple cell signaling pathways, including DNA damage response and NF-kappaB signaling. Yet how its function is regulated remains largely unclear. Here we report the isolation and characterization of two novel C53/LZAP-interacting proteins, RCAD (Regulator of C53/LZAP and DDRGK1) and DDRGK1 (DDRGK domain-containing protein 1). Our co-immunoprecipitation assays confirmed their interactions, while gel filtration assay indicated that C53/LZAP and RCAD may form a large protein complex. Intriguingly, we found that RCAD knockdown led to dramatic reduction of C53/LZAP and DDRGK1 proteins. We also found that C53/LZAP and DDRGK1 became more susceptible to the proteasome-mediated degradation in RCAD knockdown cells, whereas their ubiquitination was significantly attenuated by RCAD overexpression. In addition, we found that RCAD, like C53/LZAP, also plays an important role in regulation of NF-kappaB signaling and cell invasion. Taken together, our findings strongly suggest that RCAD is a novel regulator of C53/LZAP tumor suppressor and NF-kappaB signaling.

  17. A Novel C53/LZAP-interacting Protein Regulates Stability of C53/LZAP and DDRGK Domain-containing Protein 1 (DDRGK1) and Modulates NF-κB Signaling*

    Science.gov (United States)

    Wu, Jianchun; Lei, Guohua; Mei, Mei; Tang, Yi; Li, Honglin

    2010-01-01

    C53/LZAP (also named as Cdk5rap3) is a putative tumor suppressor that plays important roles in multiple cell signaling pathways, including DNA damage response and NF-κB signaling. Yet how its function is regulated remains largely unclear. Here we report the isolation and characterization of two novel C53/LZAP-interacting proteins, RCAD (Regulator of C53/LZAP and DDRGK1) and DDRGK1 (DDRGK domain-containing protein 1). Our co-immunoprecipitation assays confirmed their interactions, while gel filtration assay indicated that C53/LZAP and RCAD may form a large protein complex. Intriguingly, we found that RCAD knockdown led to dramatic reduction of C53/LZAP and DDRGK1 proteins. We also found that C53/LZAP and DDRGK1 became more susceptible to the proteasome-mediated degradation in RCAD knockdown cells, whereas their ubiquitination was significantly attenuated by RCAD overexpression. In addition, we found that RCAD, like C53/LZAP, also plays an important role in regulation of NF-κB signaling and cell invasion. Taken together, our findings strongly suggest that RCAD is a novel regulator of C53/LZAP tumor suppressor and NF-κB signaling. PMID:20228063

  18. The Popeye domain-containing gene family.

    Science.gov (United States)

    Brand, Thomas

    2005-01-01

    The Popeye domain-containing gene family has been isolated on the basis of a subtractive screen aiming at the identification of novel genes with a heart-restricted gene expression pattern. The gene family codes for membrane proteins containing three transmembrane domains. The carboxy-terminal part of the protein is localized to the cytoplasm and contains a protein domain with high sequence conservation named the Popeye domain. This domain is involved in protein homo dimerization. The gene family is expressed in heart and skeletal muscle cells as well as smooth muscle cells. In addition, Popdc genes are expressed in other cell types such as neuronal cells in restricted areas of the brain, spinal cord, and dorsal root ganglia, and in various epithelial cells. Recently, it has been proposed that Popdc proteins may function as a novel family of adhesion proteins. That the expression pattern has been conserved during evolution and is very similar in all vertebrate classes and also in basal chordates suggests that Popdc proteins play an important role in cardiac and skeletal muscle.

  19. Retinal pigment epithelium protein of 65 kDA gene-linked retinal degeneration is not modulated by chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C/ chondroitin sulfate proteoglycan 5.

    Science.gov (United States)

    Cottet, Sandra; Jüttner, René; Voirol, Nathalie; Chambon, Pierre; Rathjen, Fritz G; Schorderet, Daniel F; Escher, Pascal

    2013-01-01

    To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.

  20. Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress.

    Science.gov (United States)

    Hao, Qingnan; Shang, Weijuan; Zhang, Chanjuan; Chen, Haifeng; Chen, Limiao; Yuan, Songli; Chen, Shuilian; Zhang, Xiaojuan; Zhou, Xinan

    2016-04-26

    Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE) is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS) domain-containing proteins (CDCPs) may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain-containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield.

  1. The C-type lectin-like domain containing proteins Clec-39 and Clec-49 are crucial for Caenorhabditis elegans immunity against Serratia marcescens infection.

    Science.gov (United States)

    Miltsch, S M; Seeberger, P H; Lepenies, B

    2014-07-01

    Caenorhabditis elegans exhibits protective immunity against a variety of fungal and bacterial pathogens. Since C. elegans lacks an adaptive immune system, pathogen recognition is mediated entirely by innate immunity. To date, little is known about the involvement of pattern recognition receptors (PRRs) in pathogen sensing as part of the C. elegans immunity. C-type lectin-like domain (CTLD) containing proteins represent a superfamily of PRRs. A large number of genes encoding for CTLD proteins are present in the C. elegans genome, however the role of CTLD proteins in bacterial recognition and antibacterial immunity has not yet been determined. In this study, we investigated the function of selected C. elegans CTLD proteins during infection with the Gram-negative bacterium Serratia marcescens. Wild-type and CTLD gene-deficient C. elegans strains were compared in their susceptibility to S. marcescens infection. Interestingly, survival and egg laying were significantly reduced in strains deficient for clec-39 and clec-49 indicating a role for both CTLD proteins in C. elegans immune defense against bacteria as evidenced by using S. marcescens infection. Binding studies with recombinantly expressed Clec-39-Fc and Clec-49-Fc fusion proteins revealed that both CTLD proteins recognized live bacteria in a Ca(2+)-independent manner. This study provides insight into the role of CTLD proteins in C. elegans immunity and demonstrates their function during bacterial infection.

  2. NsdB, a TPR-like-domain-containing protein negatively affecting production of antibiotics in Streptomyces coelicolor A3 (2).

    Science.gov (United States)

    Zhang, Li; Li, Wen-Cheng; Zhao, Chun-Hua; Chater, Keith F; Tao, Mei-Feng

    2007-10-01

    Tetratricopeptide repeat (TPR) domains usually mediate protein-protein interactions. NsdA, one of the 70 proteins containing TPR-like domains in Streptomyces coelicolor A3 (2), was previously found to negatively control sporulation and antibiotic production. Here we show that elimination of SCO7252, which encodes another of these proteins, also caused overproduction of two antibiotics, actinorhodin and CDA, but did not affect morphological differentiation. Disruption of SCO1593, encoding another of the family, had no obvious phenotypic effects. In surface-grown cultures, expression of SCO7252, which was named nsdB, was initiated at about 30 h, like that of nsdA. Analysis in silico of the 70 predicted TPR-like-containing proteins of S. coelicolor showed that 32 of them contained only TPR-like domains, and 25 of the remainder contained additional DNA-binding domains, implying that they might control gene expression directly.

  3. Association of Piebaldism, multiple café-au-lait macules, and intertriginous freckling: clinical evidence of a common pathway between KIT and sprouty-related, ena/vasodilator-stimulated phosphoprotein homology-1 domain containing protein 1 (SPRED1).

    Science.gov (United States)

    Chiu, Yvonne E; Dugan, Stefanie; Basel, Donald; Siegel, Dawn H

    2013-01-01

    Piebaldism is a rare genodermatosis caused by KIT mutations. We report the case of a 5-year-old boy who had the white forelock and leukoderma of piebaldism, but the presence of many café-au-lait macules and axillary and inguinal freckling complicated the diagnosis. Patients with similar cutaneous findings have been previously reported, and their disorder has been attributed to an overlap of piebaldism and neurofibromatosis type 1. Legius syndrome is a recently described syndrome caused by Sprouty-related, Ena/vasodilator-stimulated phosphoprotein homology-1 domain containing protein 1 (SPRED1) mutations that also has multiple café-au-lait macules and intertriginous freckling. Based on our current understanding of KIT and SPRED1 protein interactions, we propose that café-au-lait macules and freckling may be seen in some patients with piebaldism and does not necessarily represent coexistence of neurofibromatosis type 1.

  4. WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer.

    Science.gov (United States)

    Li, Y; Zhou, Z; Alimandi, M; Chen, C

    2009-08-20

    ErbB4, a member of the epidermal growth factor receptor family, plays a role in normal breast and breast cancer development by regulating mammary epithelial cell proliferation, survival and differentiation. In this study, we show that WWP1, a C2-WW-HECT type E3 ubiquitin ligase, binds, ubiquitinates and destructs ErbB4-CYT1, but much less efficiently for CYT2, isoforms (both JMa and JMb). The protein-protein interaction occurs primarily between the first and third WW domains of WWP1 and the second PY motif of ErbB4. Knockdown of WWP1 by two different small interfering RNAs increases the endogenous ErbB4 protein levels in both MCF7 and T47D breast cancer cell lines. In addition, overexpression of the wild type, but not the catalytic inactive WWP1, dramatically decreases the endogenous ErbB4 protein levels in MCF7. Importantly, we found that WWP1 negatively regulates the heregulin-beta1-stimulated ErbB4 activity as measured by the serum response element report assay and the BRCA1 mRNA expression. After a systematic screening of all WWP1 family members by small interfering RNA, we found that AIP4/Itch and HECW1/NEDL1 also negatively regulate the ErbB4 protein expression in T47D. Interestingly, the protein expression levels of both WWP1 and ErbB4 are higher in estrogen receptor-alpha-positive than in estrogen receptor-alpha-negative breast cancer cell lines. These data suggest that WWP1 and its family members suppress the ErbB4 expression and function in breast cancer.

  5. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    Reimann, Julia; Lassak, Kerstin; Khadouma, Sunia; Ettema, Thijs J. G.; Yang, Nuan; Driessen, Arnold J. M.; Klingl, Andreas; Albers, Sonja-Verena

    2012-01-01

    The ability of microorganisms to sense and respond to sudden changes in their environment is often based on regulatory systems comprising reversible protein phosphorylation. The archaellum (former: archaeal flagellum) is used for motility in Archaea and therefore functionally analogous to the bacter

  6. Characterization of chicken octamer-binding proteins demonstrates that POU domain-containing homeobox transcription factors have been highly conserved during vertebrate evolution

    Energy Technology Data Exchange (ETDEWEB)

    Petryniak, B.; Postema, C.E.; McCormack, W.T.; Thompson, C.B. (Univ. of Michigan Medical Center, Ann Arbor (USA)); Staudt, L.M. (National Cancer Institute, Bethesda, MD (USA))

    1990-02-01

    The DNA sequence motif ATTTGCAT (octamer) or its inverse complement has been identified as an evolutionarily conserved element in the promoter region of immunoglobulin genes. Two major DNA-binding proteins that bind in a sequence-specific manner to the octamer DNA sequence have been identified in mammalian species--a ubiquitously expressed protein (Oct-1) and a lymphoid-specific protein (Oct-2). During characterization of the promoter region of the chicken immunoglobulin light chain gene, the authors identified two homologous octamer-binding proteins in chicken B cells. when the cloning of the human gene for Oct-2 revealed it to be a member of a distinct family of homeobox genes, they sought to determine if the human Oct-2 cDNA could be used to identify homologous chicken homeobox genes. Using a human Oct-2 homeobox-specific DNA probe, they were able to identify 6-10 homeobox-containing genes in the chicken genome, demonstrating that the Oct-2-related subfamily of homeobox genes exists in avian species. DNA sequence analysis revealed it to be the chicken homologue of the human Oct-1 gene. Together, the data show that the POU-containing subfamily of homeobox genes have been highly conserved during vertebrate evolution, apparently as a result of selection for their DNA-binding and transcriptional regulatory properties.

  7. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.

    Science.gov (United States)

    Zhang, Min; Wang, Cuiping; Lin, Qingfang; Liu, Aihua; Wang, Ting; Feng, Xuanjun; Liu, Jie; Han, Huiling; Ma, Yan; Bonea, Diana; Zhao, Rongmin; Hua, Xuejun

    2015-08-01

    Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.

  8. Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.

    Science.gov (United States)

    Yamaguchi, Kenichi; Prieto, Susana; Beligni, María Verónica; Haynes, Paul A; McDonald, W Hayes; Yates, John R; Mayfield, Stephen P

    2002-11-01

    To understand how chloroplast mRNAs are translated into functional proteins, a detailed understanding of all of the components of chloroplast translation is needed. To this end, we performed a proteomic analysis of the plastid ribosomal proteins in the small subunit of the chloroplast ribosome from the green alga Chlamydomonas reinhardtii. Twenty proteins were identified, including orthologs of Escherichia coli S1, S2, S3, S4, S5, S6, S7, S9, S10, S12, S13, S14, S15, S16, S17, S18, S19, S20, and S21 and a homolog of spinach plastid-specific ribosomal protein-3 (PSRP-3). In addition, a novel S1 domain-containing protein, PSRP-7, was identified. Among the identified proteins, S2 (57 kD), S3 (76 kD), and S5 (84 kD) are prominently larger than their E. coli or spinach counterparts, containing N-terminal extensions (S2 and S5) or insertion sequence (S3). Structural predictions based on the crystal structure of the bacterial 30S subunit suggest that the additional domains of S2, S3, and S5 are located adjacent to each other on the solvent side near the binding site of the S1 protein. These additional domains may interact with the S1 protein and PSRP-7 to function in aspects of mRNA recognition and translation initiation that are unique to the Chlamydomonas chloroplast.

  9. The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Tsung Nancy

    2006-05-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans has been used extensively to identify the genetic requirements for proper nervous system development and function. Key to this process is the direction of vesicles to the growing axons and dendrites, which is required for growth-cone extension and synapse formation in the developing neurons. The contribution and mechanism of membrane traffic in neuronal development are not fully understood, however. Results We show that the C. elegans gene unc-69 is required for axon outgrowth, guidance, fasciculation and normal presynaptic organization. We identify UNC-69 as an evolutionarily conserved 108-amino-acid protein with a short coiled-coil domain. UNC-69 interacts physically with UNC-76, mutations in which produce similar defects to loss of unc-69 function. In addition, a weak reduction-of-function allele, unc-69(ju69, preferentially causes mislocalization of the synaptic vesicle marker synaptobrevin. UNC-69 and UNC-76 colocalize as puncta in neuronal processes and cooperate to regulate axon extension and synapse formation. The chicken UNC-69 homolog is highly expressed in the developing central nervous system, and its inactivation by RNA interference leads to axon guidance defects. Conclusion We have identified a novel protein complex, composed of UNC-69 and UNC-76, which promotes axonal growth and normal presynaptic organization in C. elegans. As both proteins are conserved through evolution, we suggest that the mammalian homologs of UNC-69 and UNC-76 (SCOCO and FEZ, respectively may function similarly.

  10. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Eibl, Clarissa; Hessenberger, Manuel; Wenger, Julia; Brandstetter, Hans, E-mail: hans.brandstetter@sbg.ac.at [University of Salzburg, Billrothstrasse 11, 5020 Salzburg (Austria)

    2014-07-01

    Pyrin domains (PYDs) recruit downstream effector molecules in NLR signalling. A specific charge-relay system suggests a the formation of a signalling complex involving a PYD dimer. The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.

  11. The Ubiquitin Regulatory X (UBX) Domain-containing Protein TUG Regulates the p97 ATPase and Resides at the Endoplasmic Reticulum-Golgi Intermediate Compartment*

    Science.gov (United States)

    Orme, Charisse M.; Bogan, Jonathan S.

    2012-01-01

    p97/VCP is a hexameric ATPase that is coupled to diverse cellular processes, such as membrane fusion and proteolysis. How p97 activity is regulated is not fully understood. Here we studied the potential role of TUG, a widely expressed protein containing a UBX domain, to control mammalian p97. In HEK293 cells, the vast majority of TUG was bound to p97. Surprisingly, the TUG UBX domain was neither necessary nor sufficient for this interaction. Rather, an extended sequence, comprising three regions of TUG, bound to the p97 N-terminal domain. The TUG C terminus resembled the Arabidopsis protein PUX1. Similar to the previously described action of PUX1 on AtCDC48, TUG caused the conversion of p97 hexamers into monomers. Hexamer disassembly was stoichiometric rather than catalytic and was not greatly affected by the p97 ATP-binding state or by TUG N-terminal regions in vitro. In HeLa cells, TUG localized to the endoplasmic reticulum-to-Golgi intermediate compartment and endoplasmic reticulum exit sites. Although siRNA-mediated TUG depletion had no marked effect on total ubiquitylated proteins or p97 localization, TUG overexpression caused an accumulation of ubiquitylated substrates and targeted both TUG and p97 to the nucleus. A physiologic role of TUG was revealed by siRNA-mediated depletion, which showed that TUG is required for efficient reassembly of the Golgi complex after brefeldin A removal. Together, these data support a model in which TUG controls p97 oligomeric status at a particular location in the early secretory pathway and in which this process regulates membrane trafficking in various cell types. PMID:22207755

  12. Nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 inflammasomes and the ;relationship between it and periodontal diseases%核苷酸结合寡聚化结构域样受体热蛋白结构域亚家族成员3炎症小体的活化调节与牙周疾病的关系

    Institute of Scientific and Technical Information of China (English)

    吴冷; 王骏; 赵蕾; 吴亚菲

    2015-01-01

     The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing(NLRP)3 inflammasome is an intracellular multi-protein complex that is assembled after its central component, NLRP3, and senses pathogens and host danger signals. The NLRP3 inflammasome induces maturation and secretion of inflammatory cytokines interleukin(IL)-1β by activating cysteinyl aspartale specific protease-1, thereby participating in immunoinflammatory responses. Periodontal diseases are caused by local immunoinflammatory responses against periodontal pathogens, with IL-1βbeing one of the critical factors. Furthermore, the processing and secretion of IL-1βis closely related to the NLRP3 inflammasome. Periodontal pathogens can regulate expression and activation of NLRP3 inflammasome. Therefore, NLRP3 inflammasome is significant to the development and treatment of periodontal diseases. This article focuses on the biological function and activation mechanism of the NLRP3 inflammasome and the relevant research progress on periodontal diseases.%核苷酸结合寡聚化结构域样受体热蛋白结构域亚家族成员(NLRP)3炎症小体是一种位于细胞质内的多蛋白质复合体,由其核心成分感知病原体和宿主危险信号后组装而成,通过激活半胱氨酸天冬酰胺特异蛋白酶-1致促炎因子白细胞介素(IL)-1β成熟与分泌参与免疫炎症反应。牙周病是由宿主和微生物因素相互作用导致的局部炎症反应,而IL-1β又是牙周炎发病的关键因素之一。IL-1β的成熟和分泌与NLRP3炎症小体密切相关,且牙周致病菌可调节该炎症小体的表达及活化,因此NLRP3炎症小体对牙周疾病的发生发展和治疗具有重要意义。本文就NLRP3炎症小体的生物学功能、

  13. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: Role of Jumonji C-domain containing protein 6 in RHA demethylation

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Paul; Conderino, Joseph S.; Rieder, Elizabeth, E-mail: elizabeth.rieder@ars.usda.gov

    2014-03-15

    Previously, RNA helicase A (RHA) re-localization from the nucleus to the cytoplasm in foot-and-mouth disease virus (FMDV) infected cells was shown to coincide with loss of RHA methylated arginine residues at its C-terminus. The potential interaction between RHA and Jumonji C-domain (JmjC) protein 6 (JMJD6) arginine demethylase in infected cells was investigated. Treatment with N-oxalylglycine (NOG) inhibitor of JmjC demethylases prevented FMDV-induced RHA demethylation and re-localization, and also decreased viral protein synthesis and virus titers. Physical interaction between JMJD6 and RHA was demonstrated via reciprocal co-immunoprecipitation, where RHA preferentially bound JMJD6 monomers. Nuclear efflux of demethylated RHA (DM-RHA) coincided with nuclear influx of JMJD6, which was not observed using another picornavirus. A modified biochemical assay demonstrated JMJD6 induced dose-dependent demethylation of RHA and two RHA-derived isoforms, which could be inhibited by NOG. We propose a role for JMJD6 in RHA demethylation stimulated by FMDV, that appears to facilitate virus replication. - Highlights: • We examined the role of JMJD6 in FMDV-induced RHA demethylation process. • Using an arginine demethylation assay showed that JMJD6 is involved in RHA demethylation. • A demethylases inhibitor reduced cytoplasmic accumulation of RHA and FMDV titers.

  14. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    Science.gov (United States)

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  15. Identification of Toxoplasma TgPH1, a pleckstrin homology domain-containing protein that binds to the phosphoinositide PI(3,5)P2.

    Science.gov (United States)

    Daher, Wassim; Morlon-Guyot, Juliette; Alayi, Tchilabalo Dilezitoko; Tomavo, Stan; Wengelnik, Kai; Lebrun, Maryse

    2016-05-01

    The phosphoinositide phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) plays crucial roles in the maintenance of lysosome/vacuole morphology, membrane trafficking and regulation of endolysosome-localized membrane channel activity. In Toxoplasma gondii, we previously reported that PI(3,5)P2 is essential for parasite survival by controlling homeostasis of the apicoplast, a particular organelle of algal origin. Here, by using a phosphoinositide pull-down assay, we identified TgPH1 in Toxoplasma a protein conserved in many apicomplexan parasites. TgPH1 binds specifically to PI(3,5)P2, shows punctate intracellular localization, but plays no vital role for tachyzoite growth in vitro. TgPH1 is a protein predominantly formed by a pleckstrin homology (PH) domain. So far, PH domains have been described to bind preferentially to bis- or trisphosphate phosphoinositides containing two adjacent phosphates (i.e. PI(3,4)P2, PI(4,5)P2, PI(3,4,5)P3). Therefore, our study reveals an unusual feature of TgPH1 which binds preferentially to PI(3,5)P2.

  16. The Role of the Pleckstrin Homology Domain-containing Protein CKIP-1 in Activation of p21-activated Kinase 1 (PAK1).

    Science.gov (United States)

    Kim, Yong-Bae; Shin, Yong Jae; Roy, Adhiraj; Kim, Jeong-Ho

    2015-08-21

    Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at Ser-223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1, and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α and PAK1 in a PI3K-dependent manner. Consistently, PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion.

  17. PFP1, a gene encoding an Epc-N domain-containing protein, is essential for pathogenicity of the barley pathogen Rhynchosporium commune.

    Science.gov (United States)

    Siersleben, Sylvia; Penselin, Daniel; Wenzel, Claudia; Albert, Sylvie; Knogge, Wolfgang

    2014-08-01

    Scald caused by Rhynchosporium commune is an important foliar disease of barley. Insertion mutagenesis of R. commune generated a nonpathogenic fungal mutant which carries the inserted plasmid in the upstream region of a gene named PFP1. The characteristic feature of the gene product is an Epc-N domain. This motif is also found in homologous proteins shown to be components of histone acetyltransferase (HAT) complexes of fungi and animals. Therefore, PFP1 is suggested to be the subunit of a HAT complex in R. commune with an essential role in the epigenetic control of fungal pathogenicity. Targeted PFP1 disruption also yielded nonpathogenic mutants which showed wild-type-like growth ex planta, except for the occurrence of hyphal swellings. Complementation of the deletion mutants with the wild-type gene reestablished pathogenicity and suppressed the hyphal swellings. However, despite wild-type-level PFP1 expression, the complementation mutants did not reach wild-type-level virulence. This indicates that the function of the protein complex and, thus, fungal virulence are influenced by a position-affected long-range control of PFP1 expression. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Cooperative Control of Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling by an Unusual Array of Redundant Repressive Elements.

    Science.gov (United States)

    Jattani, Rakhi P; Tritapoe, Julia M; Pomerantz, Joel L

    2016-04-15

    Several classes of signaling proteins contain autoinhibitory domains that prevent unwarranted signaling and coordinate the induction of activity in response to external cues. CARD11, a scaffold protein critical for antigen receptor signaling to NF-κB, undergoes autoregulation by a poorly understood inhibitory domain (ID), which keeps CARD11 inactive in the absence of receptor triggering through inhibitory intramolecular interactions. This autoinhibitory strategy makes CARD11 highly susceptible to gain-of-function mutations that are frequently observed in diffuse large B cell lymphoma (DLBCL) and that disrupt ID-mediated autoinhibition, leading to constitutive NF-κB activity, which can promote lymphoma proliferation. Although DLBCL-associated CARD11 mutations in the caspase recruitment domain (CARD), LATCH domain, and coiled coil have been shown to disrupt intramolecular ID binding, surprisingly, no gain-of-function mutations in the ID itself have been reported and validated. In this study, we solve this paradox and report that the CARD11 ID contains an unusual array of four repressive elements that function cooperatively with redundancy to prevent spontaneous NF-κB activation. Our quantitative analysis suggests that potent oncogenic CARD11 mutations must perturb autoinhibition by at least three repressive elements. Our results explain the lack of ID mutations in DLBCL and reveal an unusual autoinhibitory domain structure and strategy for preventing unwarranted scaffold signaling to NF-κB.

  19. Regulation of abiotic stress signalling by Arabidopsis C-terminal domain phosphatase-like 1 requires interaction with a k-homology domain-containing protein.

    Directory of Open Access Journals (Sweden)

    In Sil Jeong

    Full Text Available Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD PHOSPHATASE-LIKE 1 (CPL1 regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds RNA binding motifs (dsRBMs at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3 as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation.

  20. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein.

    Science.gov (United States)

    Finsterbusch, Friederike; Ravindranathan, Ramya; Dereli, Ihsan; Stanzione, Marcello; Tränkner, Daniel; Tóth, Attila

    2016-10-01

    Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during

  1. OsARID3, an AT-rich Interaction Domain-containing protein, is required for shoot meristem development in rice.

    Science.gov (United States)

    Xu, Yan; Zong, Wei; Hou, Xin; Yao, Jialing; Liu, Hongbo; Li, Xianghua; Zhao, Yunde; Xiong, Lizhong

    2015-09-01

    The shoot apical meristem (SAM) produces all of the plant's aerial organs. The SAM is established either during embryogenesis or experimentally in in vitro tissue culture. Although several factors including the Class I KNOTTED1-LIKE HOMEOBOX (KNOXI) proteins, auxin, and cytokinin are known to play essential roles in SAM development, the underlying mechanisms of SAM formation and maintenance are still largely not understood. Herein we demonstrate that OsARID3, a member of the rice (Oryza sativa) AT-rich Interaction Domain (ARID) family, is required for SAM development. Disruption of OsARID3 leads to a defective SAM, early seedling lethality, and impaired capacity of in vitro shoot regeneration. We show that the expression levels of several KNOXI genes and the biosynthetic genes for auxin and cytokinin are significantly altered in the Osarid3 mutant calli. Moreover, we determine that auxin concentrations are increased, whereas cytokinin levels are decreased, in Osarid3 calli. Furthermore, chromatin immunoprecipitation results demonstrate that OsARID3 binds directly to the KNOXI gene OSH71, the auxin biosynthetic genes OsYUC1 and OsYUC6, and the cytokinin biosynthetic genes OsIPT2 and OsIPT7. We also show through electrophoretic mobility shift assays that OsARID3 specifically binds to the AT-rich DNA sequences of the identified target genes. We conclude that OsARID3 is an AT-rich specific DNA-binding protein and that it plays a major role in SAM development in rice. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  2. The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity

    Science.gov (United States)

    Teyssier, Catherine; Déméné, Hélène; Carvalho, João E.; Bird, Louise E.; Lebedev, Andrey; Fattori, Juliana; Schubert, Michael; Dumas, Christian; Bourguet, William; le Maire, Albane

    2016-01-01

    Mixed Lineage Leukemia 5 (MLL5) plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. Chromatin binding is ensured by its plant homeodomain (PHD) through a direct interaction with the N-terminus of histone H3 (H3). In addition, MLL5 contains a Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain, a protein module that usually displays histone lysine methyltransferase activity. We report here the crystal structure of the unliganded SET domain of human MLL5 at 2.1 Å resolution. Although it shows most of the canonical features of other SET domains, both the lack of key residues and the presence in the SET-I subdomain of an unusually large loop preclude the interaction of MLL5 SET with its cofactor and substrate. Accordingly, we show that MLL5 is devoid of any in vitro methyltransferase activity on full-length histones and histone H3 peptides. Hence, the three dimensional structure of MLL5 SET domain unveils the structural basis for its lack of methyltransferase activity and suggests a new regulatory mechanism. PMID:27812132

  3. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein.

    Directory of Open Access Journals (Sweden)

    Ricardo B Valladares

    2015-07-01

    Full Text Available Host and commensals crosstalk, mediated by reactive oxygen species (ROS, has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold. Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB and FMN were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions.

  4. Oxidored-nitro domain containing protein 1 (NOR1) expression suppresses slug/vimentin but not snail in nasopharyngeal carcinoma: Inhibition of EMT in vitro and in vivo in mice.

    Science.gov (United States)

    Wang, Wei; Li, Xiaoling; Zhang, Wenling; Li, Wenjuan; Yi, Mei; Yang, Jianbo; Zeng, Zhaoyang; Colvin Wanshura, Leah E; McCarthy, James B; Fan, Songqing; Zheng, Pan; Chen, Shengnan; Xiang, Bo; Li, Guiyuan

    2014-06-28

    Oxidored-nitro domain containing protein 1 (NOR1) is a putative tumor suppressor gene. In this study, NOR1 expression was detected in NPC tissues and non-cancerous nasopharyngeal epithelium. The data showed that NOR1 protein was decreased in NPC tissues. Lost expression NOR1 protein was associated with poor overall and event-free survival of NPC patients. Overexpression of NOR1 in NPC cells resulted in a significant morphological change and decreased expression of epithelial-to-mesenchymal transition (EMT) mediators (e.g., slug and vimentin), but induced cytokeratin 13 expression. A nude mouse metastasis assay revealed that overexpression of NOR1 decreased NPC tumor cells metastasis capacity in vivo. Knockdown of NOR1 expression in HeLa cells was sufficient to abrogate epithelial traits and to enhance cell migration and invasion. Concomitant inhibition of slug or vimentin alleviated induction of EMT, migration or invasion by NOR1 siRNA in HeLa cells in vitro. In conclusion, the data from the current study suggest, for the first time, that NOR1 plays an important role in NPC in ex vivo, in vitro, and in vivo. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Human T-Cell Leukemia Virus Type I-Mediated Repression of PDZ-LIM Domain-Containing Protein 2 Involves DNA Methylation But Independent of the Viral Oncoprotein Tax

    Directory of Open Access Journals (Sweden)

    Pengrong Yan

    2009-10-01

    Full Text Available Human T-cell leukemia virus type I (HTLV-I is the etiological agent of adult T-cell leukemia (ATL. Our recent studies have shown that one important mechanism of HTLV-I-Mediated tumorigenesis is through PDZ-LIM domain-containing protein 2 (PDLIM2 repression, although the involved mechanism remains unknown. Here, we further report that HTLV-I-Mediated PDLIM2 repression was a pathophysiological event and the PDLIM2 repression involved DNA methylation. Whereas DNA methyltransferases 1 and 3b but not 3a were upregulated in HTLV-I-transformed T cells, the hypomethylating agent 5-aza-2′-deoxycytidine (5-aza-dC restored PDLIM2 expression and induced death of these malignant cells. Notably, the PDLIM2 repression was independent of the viral regulatory protein Tax because neither short-term induction nor long-term stable expression of Tax could downregulate PDLIM2 expression. These studies provide important insights into PDLIM2 regulation, HTLV-I leukemogenicity, long latency, and cancer health disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, these studies also suggest potential therapeutic strategies for ATL.

  6. Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress

    Directory of Open Access Journals (Sweden)

    Qingnan Hao

    2016-04-01

    Full Text Available Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS domain-containing proteins (CDCPs may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain–containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield.

  7. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.

    Science.gov (United States)

    Stewart, Emerson V; Lloyd, S Julie-Ann; Burg, John S; Nwosu, Christine C; Lintner, Robert E; Daza, Riza; Russ, Carsten; Ponchner, Karen; Nusbaum, Chad; Espenshade, Peter J

    2012-01-01

    Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.

  8. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  9. PDZ domain-containing 1 (PDZK1) protein regulates phospholipase C-β3 (PLC-β3)-specific activation of somatostatin by forming a ternary complex with PLC-β3 and somatostatin receptors.

    Science.gov (United States)

    Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-06-15

    Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca(2+) mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST.

  10. PDZ Domain-containing 1 (PDZK1) Protein Regulates Phospholipase C-β3 (PLC-β3)-specific Activation of Somatostatin by Forming a Ternary Complex with PLC-β3 and Somatostatin Receptors*

    Science.gov (United States)

    Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-01-01

    Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca2+ mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST. PMID:22528496

  11. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation.

    Science.gov (United States)

    Lawrence, Paul; Pacheco, Juan; Stenfeldt, Carolina; Arzt, Jonathan; Rai, Devendra K; Rieder, Elizabeth

    2016-05-01

    A companion study reported Jumonji-C domain containing protein 6 (JMJD6) is involved in an integrin- and HS-independent pathway of FMDV infection in CHO cells. JMJD6 localization was investigated in animal tissues from cattle infected with either wild type A24-FMDV (A24-WT) or mutant FMDV (JMJD6-FMDV) carrying E95K/S96L and RGD to KGE mutations in VP1. Additionally, pathogenesis of mutant JMJD6-FMDV was investigated in cattle through aerosol and intraepithelial lingual (IEL) inoculation. Interestingly, JMJD6-FMDV pathogenesis was equivalent to A24-WT administered by IEL route. In contrast, JMJD6-FMDV aerosol-infected cattle did not manifest signs of FMD and animals showed no detectable viremia. Immunofluorescent microscopy of post-mortem tissue revealed JMJD6-FMDV exclusively co-localized with JMJD6(+) cells while A24-WT was occasionally found in JMJD6(+) cells. In vitro, chemical uptake inhibitors demonstrated JMJD6-FMDV entered cells via clathrin-coated pit endocytosis. In vivo, JMJD6-FMDV exhibited preference for JMJD6(+) cells, but availability of this alternative receptor likely depends on route of inoculation.

  12. An A20/AN1-zinc-finger domain containing protein gene in tea is differentially expressed during winter dormancy and in response to abiotic stress and plant growth regulators

    Directory of Open Access Journals (Sweden)

    Asosii Paul

    2015-03-01

    Full Text Available The present manuscript describes cloning and expression characterization of A20/AN1-zinc-finger domain containing protein (CsZfp gene in an evergreen tree tea [Camellia sinensis (L. O. Kuntze] in response to winter dormancy (WD, abiotic stresses (polyethylene glycol, hydrogen peroxide, and sodium chloride and plant growth regulators [abscisic acid (ABA, and gibberellic acid (GA3]. CsZfp encoded a putative protein of 173 amino acids with a calculated molecular weight of 18.44 kDa, an isoelectric point (pI of 6.50 and grand average of hydropathicity (GRAVY value of −0.334. The gene did not have an intron, and belonged to a multi-gene family. During the period of active growth (PAG, CsZfp showed maximum expression in root and fruit as compared to leaf, floral bud and stem. Interaction studies between temperature and plant growth regulators on the expression of CsZfp showed that ABA upregulated CsZfp expression at growth temperature (GT; 25 °C but had no effect at low temperature (LT; 4 °C. In response to GA3, upregulation was observed at LT but not at GT. Further, the expression was not modulated by LT either in the tissue harvested during PAG or during WD. It was interesting to record that the expression of CsZfp was upregulated by hydrogen peroxide and sodium chloride, whereas it was non-responsive to polyethylene glycol. The possible role of CsZfp in playing key but differential roles in tea to various abiotic stresses is discussed.

  13. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus.

    Science.gov (United States)

    Komuro, Akihiko; Nagai, Makoto; Navin, Nicholas E; Sudol, Marius

    2003-08-29

    The ErbB-4 receptor protein-tyrosine kinase is proteolytically processed by membrane proteases in response to the ligand or 12-O-tetradecanoylphorbol-13-acetate stimulation resulting in the cytoplasmic fragment translocating to the cell nucleus. The WW domain-containing co-transcriptional activator Yes-associated protein (YAP) associates physically with the full-length ErbB-4 receptor and functionally with the ErbB-4 cytoplasmic fragment in the nucleus. The YAP.ErbB4 complex is mediated by the first WW domain of YAP and the most carboxyl-terminal PPXY motif of ErbB-4. In human tissues, we documented the expression of YAP1 with a single WW domain and YAP2 with two WW domains. It is known that the COOH-terminal fragment of ErbB4 does not have transcriptional activity by itself; however, we show here that in the presence of YAP its transcriptional activity is revealed. There is a difference in the extent of transactivation activity among YAP isoforms: YAP2 is the stronger activator compared with YAP1. This transactivation is abolished by mutations that abrogate the YAP.ErbB4 complex formation. The unphosphorylatable mutation that increases the nuclear localization of YAP increases transcription activity. The COOH-terminal fragment of ErbB-4 and full-length YAP2 overexpressed in cells partially co-localize to the nucleus. Our data indicate that YAP is a potential signaling partner of the full-length ErbB4 receptor at the membrane and of the COOH-terminal fragment of ErbB-4 that translocates to the nucleus to regulate transcription.

  14. DNA-Encoded Flagellin Activates Toll-Like Receptor 5 (TLR5, Nod-like Receptor Family CARD Domain-Containing Protein 4 (NRLC4, and Acts as an Epidermal, Systemic, and Mucosal-Adjuvant

    Directory of Open Access Journals (Sweden)

    Steven E. Applequist

    2013-09-01

    Full Text Available Eliciting effective immune responses using non-living/replicating DNA vaccines is a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded flagellin (FliC promotes humoral as well as cellular immunity to co-delivered antigens. Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly produces flagellin capable of activating two innate immune receptors known to detect flagellin; Toll-like Receptor 5 (TLR5 and Nod-like Receptor family CARD domain-containing protein 4 (NRLC4. To test the ability of pFliC(-gly to act as an adjuvant we immunized mice with plasmid encoding secreted FliC (pFliC(-gly and plasmid encoding a model antigen (ovalbumin by three different immunization routes representative of dermal, systemic, and mucosal tissues. By all three routes we observed increases in antigen-specific antibodies in serum as well as MHC Class I-dependent cellular immune responses when pFliC(-gly adjuvant was added. Additionally, we were able to induce mucosal antibody responses and Class II-dependent cellular immune responses after mucosal vaccination with pFliC(-gly. Humoral immune responses elicited by heterologus prime-boost immunization with a plasmid encoding HIV-1 from gp160 followed by protein boosting could be enhanced by use of pFliC(-gly. We also observed enhancement of cross-clade reactive IgA as well as a broadening of B cell epitope reactivity. These observations indicate that plasmid-encoded secreted flagellin can activate multiple innate immune responses and function as an adjuvant to non-living/replicating DNA immunizations. Moreover, the capacity to elicit mucosal immune responses, in addition to dermal and systemic properties, demonstrates the potential of flagellin to be used with vaccines designed to be delivered by various routes.

  15. Autoimmune regulator (AIRE) contributes to Dectin-1-induced TNF-α production and complexes with caspase recruitment domain-containing protein 9 (CARD9), spleen tyrosine kinase (Syk), and Dectin-1.

    Science.gov (United States)

    Pedroza, Luis A; Kumar, Vipul; Sanborn, Keri B; Mace, Emily M; Niinikoski, Harri; Nadeau, Kari; Vasconcelos, Dewton de Moraes; Perez, Elena; Jyonouchi, Soma; Jyonouchi, Harumi; Banerjee, Pinaki P; Ruuskanen, Olli; Condino-Neto, Antonio; Orange, Jordan S

    2012-02-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of β-glucan through the Dectin-1 pathway, which is required for defense against Candida species. Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. PBMCs from patients with APECED syndrome had reduced TNF-α responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-α release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. Characterization of fibronectin type III domain-containing protein 5 (FNDC5) gene in chickens: Cloning, tissue expression, and regulation of its expression in the muscle by fasting and cold exposure.

    Science.gov (United States)

    Li, Xin; Fang, Wenqian; Hu, Yuanyuan; Wang, Yajun; Li, Juan

    2015-10-10

    Irisin, a novel myokine encoded by fibronectin type III domain-containing protein 5 gene (FNDC5), is reported to stimulate brown fat-like development of white fat tissue and thermogenesis in mammals recently. However, information about the structure, tissue expression, and roles of FNDC5/irisin remains unknown in non-mammalian vertebrates including birds. In this study, we first cloned the FNDC5 (cFNDC5) cDNA from chickens. cFNDC5 is predicted to encode a 220-amino acid precursor containing the putative 'irisin peptide' of 112 amino acids, which shows high amino acid sequence identity with irisin of humans (97%), mice (97%), anole lizards (93%) and zebrafish (~80%). Using quantitative real-time PCR, we further examined cFNDC5 mRNA expression in chicken tissues. The results showed that in adult chickens, cFNDC5 is abundantly expressed in the muscle, heart, pituitary, ovary and various brain regions, and moderately expressed in adipose tissue, kidneys, lung, testes and small intestine. Moreover, cFNDC5 is also abundantly expressed in the muscle, brain, hypothalamus and pituitary of developing embryos and post-hatching chicks. Interestingly, we noted that cFNDC5 expression in the muscle of 3-week-old chicks could be induced by fasting and cold exposure, while its expression decreases during differentiation of pre-adipocytes cultured in vitro. Collectively, our data suggest that FNDC5/irisin is more than a 'myokine' and may be related to the development/functions of many tissues (e.g. muscle, brain, fat), as well as metabolic status of chickens. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1.

    Directory of Open Access Journals (Sweden)

    Takayuki Yokoo

    Full Text Available Floral transition from the vegetative to the reproductive growth phase is a major change in the plant life cycle and a key factor in reproductive success. In rice (Oryza sativa L., a facultative short-day plant, numerous flowering time and flower formation genes that control floral transition have been identified and their physiological effects and biochemical functions have been clarified. In the present study, we used a Se14-deficient mutant line (HS112 and other flowering mutant lines to investigate the photoperiodic response, chromosomal location and function in the photoperiod sensitivity of the Se14 gene. We also studied the interactive effects of this locus with other crucial flowering time genes. We found that Se14 is independent of the known photoperiod-sensitive genes, such as Hd1 and Ghd7, and is identical to Os03g0151300, which encodes a Jumonji C (JmjC domain-containing protein. Expression analysis revealed that the expressions of RFT1, a floral initiator known as a "florigen-like gene", and Ehd1 were up-regulated in HS112, whereas this up-regulation was not observed in the original variety of 'Gimbozu'. ChIP assays of the methylation states of histone H3 at lysine 4 (H3K4 revealed that the trimethylated H3K4 in the promoter region of the RFT1 chromatin was significantly increased in HS112. We conclude that Se14 is a novel photoperiod-sensitivity gene that has a suppressive effect on floral transition (flowering time under long day-length conditions through the modification of chromatin structure by H3K4me3 demethylation in the promoter region of RFT1.

  18. Role of polymorphisms of toll-like receptor (TLR 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP and FCGR2A genes in malaria susceptibility and severity in Burundian children

    Directory of Open Access Journals (Sweden)

    Esposito Susanna

    2012-06-01

    Full Text Available Abstract Background Malaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality from infectious diseases, predominantly in tropical and sub-tropical countries. As genetic variations in the toll-like receptors (TLRs-signalling pathway have been associated with either susceptibility or resistance to several infectious and inflammatory diseases, the supposition is that single nucleotide polymorphisms (SNPs of TLR2, TLR4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP and FCGR2A could modulate malaria susceptibility and severity. Methods This study was planned to make a further contribution to solving the problem of the real role of the most common polymorphisms of TLR4, TLR9, TIRAP and FCGR2A genes in modulating the risk of malaria and disease severity in children from Burundi, Central Africa. All the paediatric patients aged six months to 10 years admitted to the hospital of Kiremba, Burundi, between February 2011 and September 2011, for fever and suspicion of acute malaria were screened for malaria parasitaemia by light microscopy of thick and thin blood smears. In children with malaria and in uninfected controls enrolled during the study period in the same hospital, blood samples were obtained on filter paper and TLR4 Asp299Gly rs4986790, TLR9 G1174A rs352139, T-1486 C rs187084 TLR9 T-1237 C rs5743836, TIRAP Ser180Leu rs8177374 and the FCGR2A His131Arg rs1801274 polymorphisms were studied using an ABI PRISM 7900 HT Fast Real-time instrument. Results A total of 602 patients and 337 controls were enrolled. Among the malaria cases, 553 (91.9 % were considered as suffering from uncomplicated and 49 (8.1 % from severe malaria. TLR9 T1237C rs5743836CC was associated with an increased risk of developing malaria (p = 0.03, although it was found with the same frequency in uncomplicated and severe malaria cases. No other differences were found in all alleles studied and in

  19. Pyrin gene and mutants thereof, which cause familial Mediterranean fever

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, Daniel L [Bethesda, MD; Aksentijevichh, Ivona [Bethesda, MD; Centola, Michael [Tacoma Park, MD; Deng, Zuoming [Gaithersburg, MD; Sood, Ramen [Rockville, MD; Collins, Francis S [Rockville, MD; Blake, Trevor [Laytonsville, MD; Liu, P Paul [Ellicott City, MD; Fischel-Ghodsian, Nathan [Los Angeles, CA; Gumucio, Deborah L [Ann Arbor, MI; Richards, Robert I [North Adelaide, AU; Ricke, Darrell O [San Diego, CA; Doggett, Norman A [Santa Cruz, NM; Pras, Mordechai [Tel-Hashomer, IL

    2003-09-30

    The invention provides the nucleic acid sequence encoding the protein associated with familial Mediterranean fever (FMF). The cDNA sequence is designated as MEFV. The invention is also directed towards fragments of the DNA sequence, as well as the corresponding sequence for the RNA transcript and fragments thereof. Another aspect of the invention provides the amino acid sequence for a protein (pyrin) associated with FMF. The invention is directed towards both the full length amino acid sequence, fusion proteins containing the amino acid sequence and fragments thereof. The invention is also directed towards mutants of the nucleic acid and amino acid sequences associated with FMF. In particular, the invention discloses three missense mutations, clustered in within about 40 to 50 amino acids, in the highly conserved rfp (B30.2) domain at the C-terminal of the protein. These mutants include M6801, M694V, K695R, and V726A. Additionally, the invention includes methods for diagnosing a patient at risk for having FMF and kits therefor.

  20. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice

    DEFF Research Database (Denmark)

    Costinean, Stefan; Sandhu, Sukhinder K; Pedersen, Irene M

    2009-01-01

    We showed that Emicro-MiR-155 transgenic mice develop acute lymphoblastic leukemia/high-grade lymphoma. Most of these leukemias start at approximately 9 months irrespective of the mouse strain. They are preceded by a polyclonal pre-B-cell proliferation, have variable clinical presentation......, are transplantable, and develop oligo/monoclonal expansion. In this study, we show that in these transgenic mice the B-cell precursors have the highest MiR-155 transgene expression and are at the origin of the leukemias. We determine that Src homology 2 domain-containing inositol-5-phosphatase (SHIP) and CCAAT...... a chain of events that leads to the accumulation of large pre-B cells and acute lymphoblastic leukemia/high-grade lymphoma....

  1. The Popeye Domain Containing Genes and cAMP Signaling

    Directory of Open Access Journals (Sweden)

    Thomas Brand

    2014-05-01

    Full Text Available 3'-5'-cyclic adenosine monophosphate (cAMP is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs. Initially, it was thought that protein kinase A (PKA exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC and hyperpolarizing cyclic nucleotide-gated (HCN channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.

  2. A Novel C53/LZAP-interacting Protein Regulates Stability of C53/LZAP and DDRGK Domain-containing Protein 1 (DDRGK1) and Modulates NF-κB Signaling*

    OpenAIRE

    Wu, Jianchun; Lei, Guohua; Mei, Mei; Tang, Yi; Li, Honglin

    2010-01-01

    C53/LZAP (also named as Cdk5rap3) is a putative tumor suppressor that plays important roles in multiple cell signaling pathways, including DNA damage response and NF-κB signaling. Yet how its function is regulated remains largely unclear. Here we report the isolation and characterization of two novel C53/LZAP-interacting proteins, RCAD (Regulator of C53/LZAP and ...

  3. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome.

    Science.gov (United States)

    Chung, Lawton K; Park, Yong Hwan; Zheng, Yueting; Brodsky, Igor E; Hearing, Patrick; Kastner, Daniel L; Chae, Jae Jin; Bliska, James B

    2016-09-14

    Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis. These effectors, termed Yersinia outer proteins (Yops), modulate multiple host signaling responses. Studies in Y. pestis and Y. pseudotuberculosis have shown that YopM suppresses infection-induced inflammasome activation; however, the underlying molecular mechanism is largely unknown. Here we show that YopM specifically restricts the pyrin inflammasome, which is triggered by the RhoA-inactivating enzymatic activities of YopE and YopT, in Y. pseudotuberculosis-infected macrophages. The attenuation of a yopM mutant is fully reversed in pyrin knockout mice, demonstrating that YopM inhibits pyrin to promote virulence. Mechanistically, YopM recruits and activates the host kinases PRK1 and PRK2 to negatively regulate pyrin by phosphorylation. These results show how a virulence factor can hijack host kinases to inhibit effector-triggered pyrin inflammasome activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. C2-domain containing calcium sensors in neuroendocrine secretion.

    Science.gov (United States)

    Pinheiro, Paulo S; Houy, Sébastien; Sørensen, Jakob B

    2016-12-01

    The molecular mechanisms for calcium-triggered membrane fusion have long been sought for, and detailed models now exist that account for at least some of the functions of the many proteins involved in the process. Key players in the fusion reaction are a group of proteins that, upon binding to calcium, trigger the merger of cargo-filled vesicles with the plasma membrane. Low-affinity, fast-kinetics calcium sensors of the synaptotagmin family - especially synaptotagmin-1 and synaptotagmin-2 - are the main calcium sensors for fast exocytosis triggering in many cell types. Their functions extend beyond fusion triggering itself, having been implicated in the calcium-dependent vesicle recruitment during activity, docking of vesicles to the plasma membrane and priming, and even in post-fusion steps, such as fusion pore expansion and endocytosis. Furthermore, synaptotagmin diversity imparts distinct properties to the release process itself. Other calcium-sensing proteins such as Munc13s and protein kinase C play important, but more indirect roles in calcium-triggered exocytosis. Because of their higher affinity, but intrinsic slower kinetics, they operate on longer temporal and spatial scales to organize assembly of the release machinery. Finally, the high-affinity synaptotagmin-7 and Doc2 (Double C2-domain) proteins are able to trigger membrane fusion in vitro, but cellular measurements in different systems show that they may participate in either fusion or vesicle priming. Here, we summarize the properties and possible interplay of (some of) the major C2-domain containing calcium sensors in calcium-triggered exocytosis. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".

  5. The Popeye Domain Containing Genes and their Function in Striated Muscle

    OpenAIRE

    Roland F. R. Schindler; Chiara Scotton; Vanessa French; Alessandra Ferlini; Thomas Brand

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-prote...

  6. Genetic Analysis of MEFV Gene Pyrin Domain in Patients With Behçet's Disease

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Objectives. Behçet's disease (BD is a systemic vasculitis with recurrent oral and genital ulcers and uveitis. MEFV gene, which is the main factor in familial Mediterranean fever (FMF, is also reported to be a susceptibility gene for BD. The pyrin domain of MEFV gene is a member of death-domain superfamily and has been proposed to regulate inflammatory signaling in myeloid cells. This study was designed to determine if mutations in pyrin domain of MEFV gene are involved in BD. Methods. We analyzed the pyrin domain of MEFV gene in 54 Turkish patients with BD by PCR-analysis and direct sequencing. Results. Neither deletion or insertion mutations nor point mutations in pyrin domain were found in any patient. Conclusion. Although pyrin gene mutations have been reported in patients with BD, pyrin domain is not mutated. However, alterations in other regions of MEFV gene and interaction between pyrin domains are needed to be further investigated.

  7. Identification and characterization of the novel LysM domain-containing surface protein Sep from Lactobacillus fermentum BR11 and its use as a peptide fusion partner in Lactobacillus and Lactococcus.

    Science.gov (United States)

    Turner, Mark S; Hafner, Louise M; Walsh, Terry; Giffard, Philip M

    2004-06-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.

  8. Identification and Characterization of the Novel LysM Domain-Containing Surface Protein Sep from Lactobacillus fermentum BR11 and Its Use as a Peptide Fusion Partner in Lactobacillus and Lactococcus

    Science.gov (United States)

    Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.

    2004-01-01

    Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172

  9. Neuroepithelial transforming gene 1 (Net1) binds to caspase activation and recruitment domain (CARD)- and membrane-associated guanylate kinase-like domain-containing (CARMA) proteins and regulates nuclear factor κB activation.

    Science.gov (United States)

    Vessichelli, Mariangela; Ferravante, Angela; Zotti, Tiziana; Reale, Carla; Scudiero, Ivan; Picariello, Gianluca; Vito, Pasquale; Stilo, Romania

    2012-04-20

    The molecular complexes containing CARMA proteins have been recently identified as a key components in the signal transduction pathways that regulate activation of nuclear factor κB (NF-κB) transcription factor. Here, we used immunoprecipitation coupled with mass spectrometry to identify cellular binding partners of CARMA proteins. Our data indicate that the Rho guanine nucleotide exchange factor Net1 binds to CARMA1 and CARMA3 in resting and activated cells. Net1 expression induces NF-κB activation and cooperates with BCL10 and CARMA proteins in inducing NF-κB activity. Conversely, shRNA-mediated abrogation of Net1 results in impaired NF-κB activation following stimuli that require correct CARMA-BCL10-MALT1 complex formation and functioning. Microarray expression data are consistent with a positive role for Net1 on NF-κB activation. Thus, this study identifies Net1 as a CARMA-interacting molecule and brings important information on the molecular mechanisms that control NF-κB transcriptional activity.

  10. Neuroepithelial Transforming Gene 1 (Net1) Binds to Caspase Activation and Recruitment Domain (CARD)- and Membrane-associated Guanylate Kinase-like Domain-containing (CARMA) Proteins and Regulates Nuclear Factor κB Activation*

    Science.gov (United States)

    Vessichelli, Mariangela; Ferravante, Angela; Zotti, Tiziana; Reale, Carla; Scudiero, Ivan; Picariello, Gianluca; Vito, Pasquale; Stilo, Romania

    2012-01-01

    The molecular complexes containing CARMA proteins have been recently identified as a key components in the signal transduction pathways that regulate activation of nuclear factor κB (NF-κB) transcription factor. Here, we used immunoprecipitation coupled with mass spectrometry to identify cellular binding partners of CARMA proteins. Our data indicate that the Rho guanine nucleotide exchange factor Net1 binds to CARMA1 and CARMA3 in resting and activated cells. Net1 expression induces NF-κB activation and cooperates with BCL10 and CARMA proteins in inducing NF-κB activity. Conversely, shRNA-mediated abrogation of Net1 results in impaired NF-κB activation following stimuli that require correct CARMA-BCL10-MALT1 complex formation and functioning. Microarray expression data are consistent with a positive role for Net1 on NF-κB activation. Thus, this study identifies Net1 as a CARMA-interacting molecule and brings important information on the molecular mechanisms that control NF-κB transcriptional activity. PMID:22343628

  11. 调控黑色素瘤转移的新信号蛋白: Syntenin%Syntenin: a novel PDZ domain-containing scaffolding protein associated with human melanoma metastasis

    Institute of Scientific and Technical Information of China (English)

    Jian-bo Yang; James B. McCarthy

    2007-01-01

    Syntenin蛋白在多种肿瘤中表达增强,最近被认为是一个新的黑色素瘤转移调节因子.作为一类支架信号蛋白,Syntenin通过它的两个PDZ 功能基团可与许多细胞膜受体胞内末端或细胞内的信号分子结合,调控多种重要的细胞生理过程和信号传导途径,包括细胞膜受体的聚集,细胞内蛋白质的转运,细胞骨架的重建,转录因子的激活,以增强肿瘤细胞的生长、黏附以及肿瘤的血管生成、侵袭和转移能力.本文简要综述了syntenin的结构和功能,相关的信号途径,及其在黑色素瘤研究领域的最新进展.%Syntenin is overexpressed in multiple human cancers and is newly recognized as a novel regulator in melanoma metastasis. It functions as a scaffolding protein, via its two PDZ domains interacting with multiple transmembrane and cytoplasmic partners to regulate many of the major signaling pathways involved in various cellular processes, such as cell surface receptor clustering, protein trafficking, cytoskeleton remodeling, and activation of transcription factor, and results in the increased abilities for tumor cell growth, adhesion, angiogenesis, invasion and metastasis. The present article attempts to review the structure and functions of syntenin by summarizing our current knowledge on the interacting partners and diverse signaling pathways related to syntenin, and highlight the importance of syntenin as a new potential therapeutic target for the aggressive human melanoma.

  12. The NLRP3 and Pyrin Inflammasomes: Implications in the Pathophysiology of Autoinflammatory Diseases

    Science.gov (United States)

    de Torre-Minguela, Carlos; Mesa del Castillo, Pablo; Pelegrín, Pablo

    2017-01-01

    Inflammasomes are multiprotein complexes that critically control different aspects of innate and adaptive immunity. Among them we could highlight the release of pro-inflammatory cytokines that induce and maintain the inflammatory response. Usually, inflammasomes result from oligomerization of a nucleotide-binding domain-like receptor (NLR) after sensing different pathogenic or endogenous sterile dangerous signals; however, other proteins such as absent in melanoma 2, retinoic acid-inducible gene I, or pyrin could also form inflammasome platforms. Inflammasome oligomerization leads to caspase-1 activation and the processing and release of the pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. Mutations in different inflammasomes are causative for multiple periodic hereditary syndromes or autoinflammatory diseases, characterized by acute systemic inflammatory flares not associated with infections, tumors, or autoimmunity. This review focuses on germline mutations that have been described in cryopyrin-associated periodic syndrome (CAPS) for NLRP3 or in familial Mediterranean fever (FMF) and pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) for MEFV. Besides the implication of inflammasomes in autoinflammatory syndromes, these molecular platforms are involved in the pathophysiology of different illnesses, including chronic inflammatory diseases, degenerative processes, fibrosis, or metabolic diseases. Therefore, drug development targeting inflammasome activation is a promising field in expansion. PMID:28191008

  13. Increased Expression of the NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome in Dermatomyositis and Polymyositis is a Potential Contributor to Their Pathogenesis

    Directory of Open Access Journals (Sweden)

    Xi Yin

    2016-01-01

    Conclusions: Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM/PM. High NLRP3 expression led to elevated levels of IL-1β and IL-18 and could be one of the factors promoting disease progress.

  14. A Toll/IL-1R/resistance domain-containing thioredoxin regulates phagocytosis in Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Mancilla-Herrera Ismael

    2012-10-01

    Full Text Available Abstract Background Entamoeba histolytica is a protozoan parasite that infects humans and causes amebiasis affecting developing countries. Phagocytosis of epithelial cells, erythrocytes, leucocytes, and commensal microbiota bacteria is a major pathogenic mechanism used by this parasite. A Toll/IL-1R/Resistance (TIR domain-containing protein is required in phagocytosis in the social ameba Dictyostelium discoideum, an ameba closely related to Entamoeba histolytica in phylogeny. In insects and vertebrates, TIR domain-containing proteins regulate phagocytic and cell activation. Therefore, we investigated whether E. histolytica expresses TIR domain-containing molecules that may be involved in the phagocytosis of erythrocytes and bacteria. Methods Using in silico analysis we explored in Entamoeba histolytica databases for TIR domain containing sequences. After silencing TIR domain containing sequences in trophozoites by siRNA we evaluated phagocytosis of erythrocytes and bacteria. Results We identified an E. histolytica thioredoxin containing a TIR-like domain. The secondary and tertiary structure of this sequence exhibited structural similarity to TIR domain family. Thioredoxin transcripts silenced in E. histolytica trophozoites decreased erythrocytes and E. coli phagocytosis. Conclusion TIR domain-containing thioredoxin of E. histolytica could be an important element in erythrocytes and bacteria phagocytosis.

  15. CBS domain-containing proteins are Rhizopus oryzae ferrioxamine receptors

    Science.gov (United States)

    Background: Iron-overload patients treated with deferoxamine are uniquely susceptible to mucormycosis, because Rhizopus spp. can obtain iron from ferrioxamine (deferoxamine + Fe**3+). Previously we have identified two closely related, ferrioxamine-inducible R. oryzae genes (FOB1 and FOB2) in which ...

  16. Research progress of action mechanism of CUE domain-containing protein 2 on the initiation and progression of leukemia and solid tumors%CUE结构域包含蛋白2在白血病及实体肿瘤发生、发展中作用机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘洋; 齐昆明

    2015-01-01

    CUE结构域包含蛋白2(CUEDC2)是新近发现的含CUE结构域的泛素结合蛋白,在细胞周期调控、肿瘤形成、炎症及应激反应中均起着重要作用.研究表明,CUEDC2可介导蛋白质泛素化降解,与白血病及实体肿瘤的发生、发展和耐药密切相关.CUEDC2可促进纺锤体检查点(SAC)失活,导致有丝分裂过程中染色体不稳定,进而参与白血病和实体肿瘤发病进程.然而,CUEDC2在白血病及实体肿瘤发生、发展中,是具有抑制作用还是促进作用,尚存在争议.笔者拟就近年来CUEDC2在白血病与实体肿瘤发生、发展中作用机制的研究进展进行综述.%CUE domain-containing protein 2 (CUEDC2),a newly discovered CUE domain containing protein,plays an important role in the regulation of cell cycle,oncogenesis,inflammatory and stress response.Researches demonstrate that CUEDC2 has a closely relationship with the progression and drug resistance of leukemia through mediating the protein degradation.CUEDC2 involves in the development of leukemia and solid tumors via leading to the spindle assemble checkpoint (SAC) inactivation and chromosomal instability.However,it is still controversial whether CUEDC2 acts as a oncogene or a cancer inhibitor in the initiation and progression of the leukemia and the solid tumors.In this review,we will summarize the multi-functions of CUEDC2 in the initiation and progression of the leukemia and solid tumors.

  17. Localization and distribution of fibrinogen C domain containing 1 (FIBCD1) in human tissues

    DEFF Research Database (Denmark)

    von Huth, Sebastian; Møller, Jesper Bonnet; Schlosser, Anders

    in an immunohistochemistry-based analysis and demonstrate that FIBCD1 protein is highly expressed at the apical surfaces of the epithelium throughout the gastrointestinal tract, in the uterus, testis, bladder, gallbladder and the salivary glands. To a lesser extent, FIBCD1 is expressed in the pancreas, the spleen......Introduction: We have previously identified and characterized fibrinogen C domain-containing 1 (FIBCD1) as a homotetrameric type II transmembrane protein. FIBCD1 is a member of the fibrinogen- related protein (FReP) family, and is thought to play a crucial role in the innate immune system...

  18. Patatin-like phospholipase domain-containing protein 3 gene I148M polymorphism and its role in liver diseases%Patatin样磷酯酶结构域蛋白3基因I148M多态性及其在肝脏疾病中的作用

    Institute of Scientific and Technical Information of China (English)

    于红; 王国安; 程钰婷; 辛永宁

    2015-01-01

    Recent studies indicate that patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene I148M polymorphism expresses in the liver and takes a key role in lipid metabolism. It affects tissue metabolism and liver enzymes, thus influences liver steatosis, inflammation and fibrosis. In addition, it affects the functions of liver non-parenchymal cell and promotes liver fibrosis directly. The research progress on these aspects are reviewed in this paper.%Patatin样磷酯酶结构域蛋白3(PNPLA3)基因 I148M多态性在肝脏中表达,并参与主要的脂质代谢过程,它主要通过影响组织代谢和肝脏酶学,进而促进肝脏脂肪变、炎症和纤维化. PNPLA3基因I148M多态性对肝非实质细胞也有影响,可以直接促进肝纤维化. 此文对此研究进展作一综述.

  19. C2-domain containing calcium sensors in neuroendocrine secretion

    DEFF Research Database (Denmark)

    Pinheiro, Paulo S; Houy, Sébastien; Sørensen, Jakob B

    2016-01-01

    to calcium, trigger the merger of cargo-filled vesicles with the plasma membrane. Low-affinity, fast-kinetics calcium sensors of the synaptotagmin family - especially synaptotagmin-1 and synaptotagmin-2 - are the main calcium sensors for fast exocytosis triggering in many cell types. Their functions extend...... the properties and possible interplay of (some of) the major C2-domain containing calcium sensors in calcium-triggered exocytosis. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases"....

  20. Expression of chemokine like factor-like myelin and lymphocyte and related proteins for vesicle trafficking and membrane link transmembrane domain-containing protein 2 in rats with varicocele%人类趋化素样因子超家族2在精索静脉曲张大鼠模型中的表达

    Institute of Scientific and Technical Information of China (English)

    张晓威; 顿耀军; 唐旭; 殷华奇; 胡志平; 赵永平; 徐涛; 李清

    2016-01-01

    目的:通过建立精索静脉曲张大鼠模型,探讨人类趋化素样因子超家族2(chemokine like factor-like myelin and lymphocyte and related proteins for vesicle trafficking and membrane link transmembrane domain-containing protein 2, CMTM2)对精索静脉曲张大鼠生精过程的影响。方法:选取雄性 SD 大鼠40只(体重220~330 g,6~7周龄),将大鼠随机分为精索静脉曲张持续4、12周后处死取样组,和相应的接受假手术处理的对照组,每组均为10只大鼠。通过手术进行左肾静脉缩窄建立左侧精索静脉曲张的大鼠模型。将实验组和对照组大鼠于4周或12周后处死,取出左侧睾丸,游离附睾中精子,观察并计算精子密度与活力,测量生精小管外径、内径及上皮直径改变,并进行免疫组织化学分析以判断 CMTM2蛋白的表达状况。结果:与对照组相比,精索静脉曲张4周组中大鼠的精子密度[(63.9±7.1)×106/mL vs.(74.3±5.0)×106/mL]和活力[(58.7%±7.9%)vs.(66.1%±4.3%)]轻度下降(t =1.432,1.563;P =0.076,0.059),精索静脉曲张12周组中大鼠的精子密度[(40.5±7.2)×106/mL vs.(71.1±4.5)×106/mL]和活力[(35.2%±8.5%)vs.(63.4%±4.1%)]显著下降(t =3.754,3.933;P =0.004,0.002)。此外,CMTM2蛋白的表达水平在精索静脉曲张组也出现明显下降,对照组 CMTM2水平为精索静脉曲张12周组的(2.3±0.4)倍(t =1.978;P =0.039)。4周时,精索静脉曲张组生精小管外径出现轻度降低[(271.1±8.4)μm vs.(280.0±8.1)μm,t =1.361,P =0.132],而12周组则出现明显降低[(198.2±10.2)μm vs.(255.8±12.7)μm,t =2.125,P =0.003],此外,精索静脉曲张12周组的生精小管上皮直径出现明显下降[(54.1±1.5)μm vs

  1. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog

    Science.gov (United States)

    Zhang, Qing; Zmasek, Christian M.; Cai, Xiaohui; Godzik, Adam

    2011-01-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein–protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves. PMID:21110998

  2. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    Directory of Open Access Journals (Sweden)

    Roland F. R. Schindler

    2016-06-01

    Full Text Available The Popeye domain containing (POPDC genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1, sarcolemma-associated proteins serving functions in mechanical stability (dystrophin, compartmentalization (caveolin 3, scaffolding (ZO-1, trafficking (NDRG4, VAMP2/3 and repair (dysferlin or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT. Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.

  3. [Research advances in CKLF-like MARVEL transmembrane domain containing member 5].

    Science.gov (United States)

    Yuan, Ye-qing; Xiao, Yun-bei; Liu, Zhen-hua; Zhang, Xiao-wei; Xu, Tao; Wang, Xiao-feng

    2012-12-01

    CKLF-like MARVEL transmembrane domain containing member(CMTM)is a novel generic family firstly reported by Peking University Center for Human Disease Genomics. CMTM5 belongs to this family and has exhibited tumor-inhibiting activities. It can encode proteins approaching to the transmembrane 4 superfamily(TM4SF). CMTM5 is broadly expressed in normal adult and fetal human tissues, but is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM5 may inhibit the proliferation, migration, and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear, CMTM5 may be involved in various signaling pathways governing the occurrence and development of tumors. CMTM5 may be a new target in the gene therapies for tumors, while further studies on CMTM5 and its anti-tumor mechanisms are warranted.

  4. A LysM Domain-Containing Gene OsEMSA1 Involved in Embryo sac Development in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Qian Zhu

    2017-09-01

    Full Text Available The embryo sac plays a vital role in sexual reproduction of angiosperms. LysM domain containing proteins with multiple lysin motifs are widespread proteins and are involved in plant defense responses against fungal chitins and bacterial peptidoglycans. Various studies have reported the role of LysM domain-containing proteins in plant defense mechanisms but their involvement in sexual reproduction remains largely unknown. Here, we report the involvement of a LysM domain-containing gene, EMBRYO SAC 1 (OsEMSA1, in the sexual reproduction of rice. The gene encoded a LysM domain-containing protein that was necessary for embryo sac development and function. The gene was expressed in root, stem, leaf tissues, panicle and ovaries and had some putative role in hormone regulation. Suppression of OsEMSA1 expression resulted in a defective embryo sac with poor differentiation of gametophytic cells, which consequently failed to attract pollen tubes and so reduced the panicle seed-setting rate. Our data offers new insight into the functions of LysM domain-containing proteins in rice.

  5. Genome-Wide Analysis of BURP Domain-Containing Genes in Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    Yuanhua Shao; Guo Wei; Ling Wang; Qing Dong; Yang Zhao; Beijiu Chen; Yan Xiang

    2011-01-01

    BURP domain-containing proteins have a conserved structure and are found extensively in plants.The functions of the proteins in this family are diverse,but remain unknown in Populus trichocarpa.In the present study,a complete genome of P.trichocarpa was analyzed bioinformatically.A total of 18 BURP family genes,named PtBURPs,were identified and characterized according to their physical positions on the P.trichocarpa chromosomes.A phylogenetic tree was generated from alignments of PtBURP protein sequences,while phylogenetic relationships were also examined between PtBURPs and BURP family genes in other plants,including rice,soybean,maize and sorghum.BURP genes in P.trichocarpa were classified into five classes,namely PG1β-Iike,BNM2-like,USP-like,RD22-like and BURP V.The multiple expectation maximization for motif elicitation (MEME) and multiple protein sequence alignments of PtBURPs were also performed.Results from the transcript level analyses of 10 PtBURP genes under different stress conditions revealed the expression patterns in poplar and led to a discussion on genome duplication and evolution,expression profiles and function of PtBURP genes.

  6. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.

    Science.gov (United States)

    Sinha, Avni; Eniyan, Kandasamy; Sinha, Swati; Lynn, Andrew Michael; Bajpai, Urmi

    2015-07-01

    Mycobacterium tuberculosis (Mtb) is the causal agent of tuberculosis, the second largest infectious disease. With the rise of multi-drug resistant strains of M. tuberculosis, serious challenge lies ahead of us in treating the disease. The availability of complete genome sequence of Mtb has improved the scope for identifying new proteins that would not only further our understanding of biology of the organism but could also serve to discover new drug targets. In this study, Rv2345, a hypothetical membrane protein of M. tuberculosis H37Rv, which is reported to be a putative ortholog of ZipA cell division protein has been assigned function through functional annotation using bioinformatics tools followed by experimental validation. Sequence analysis showed Rv2345 to have a TPM domain at its N-terminal region and predicted it to have phosphatase activity. The TPM domain containing region of Rv2345 was cloned and expressed using pET28a vector in Escherichia coli and purified by Nickel affinity chromatography. The purified TPM domain was tested in vitro and our results confirmed it to have phosphatase activity. The enzyme activity was first checked and optimized with pNPP as substrate, followed by using ATP, which was also found to be used as substrate by the purified protein. Hence sequence analysis followed by in vitro studies characterizes TPM domain of Rv2345 to contain phosphatase activity.

  7. The Popeye domain containing genes: essential elements in heart rate control.

    Science.gov (United States)

    Schindler, Roland F; Poon, Kar Lai; Simrick, Subreena; Brand, Thomas

    2012-12-01

    The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease.

  8. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog.

    Science.gov (United States)

    Zhang, Qing; Zmasek, Christian M; Cai, Xiaohui; Godzik, Adam

    2011-04-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein-protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Role of Phosphotyrosine Interaction Domain Containing 1 in Porcine Intramuscular Preadipocyte Proliferation and Differentiation.

    Science.gov (United States)

    Chen, Xiaoling; Luo, Yanliu; Huang, Zhiqing; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2016-10-01

    Phosphotyrosine interaction domain containing 1 (PID1), a recently identified gene involved in obesity-associated insulin resistance, plays an important role in fat deposition. However, its effect on porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, the plasmid pcDNA3.1(+)-pPID1 was transfected into porcine intramuscular preadipocytes with Lipofectamine 3000 reagent to over-express porcine PID1 (pPID1). Over-expression of pPID1 significantly promoted porcine intramuscular preadipocyte proliferation. Expression of pPID1 mRNA was significantly increased upon porcine intramuscular preadipocyte differentiation. Indirect fluorescent immunocytochemistry demonstrated that pPID1 protein was localized predominantly in the nucleus of porcine intramuscular preadipocyte. The mRNA levels of peroxisome proliferators-activated receptor γ, CCAAT/enhancer binding protein α and lipoprotein lipase were significantly increased by pPID1 over-expression. Over-expression of pPID1 also led to an increase in lipid accumulation which was detected by Oil Red O staining, and significantly increased the intramuscular triacylglycerol content. These results indicate that pPID1 may play a role in enhancing porcine intramuscular preadipocyte proliferation and differentiation.

  10. Effects of abhydrolase domain containing 5 gene (ABHD5) expression and variations on chicken fat metabolism.

    Science.gov (United States)

    Ouyang, Hongjia; Liu, Qing; Xu, Jiguo; Zeng, Fang; Pang, Xiaolin; Jebessa, Endashaw; Liang, Shaodong; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    Abhydrolase domain containing 5 gene (ABHD5), also known as comparative gene identification 58 (CGI-58), is a member of the α/β-hydrolase family as a protein cofactor of ATGL stimulating its triacylglycerol hydrolase activity. In this study, we aim to characterize the expression and variations of ABHD5 and to study their functions in chicken fat metabolism. We compared the ABHD5 expression level in various tissues and under different nutrition conditions, identified the variations of ABHD5, and associated them with production traits in an F2 resource population of chickens. Overexpression analysis with two different genotypes and siRNA interfering analysis of ABHD5 were performed in chicken preadipocytes. Chicken ABDH5 was expressed widely and most predominantly in adipose tissue. Five SNPs of the ABHD5 gene were identified and genotyped in the F2 resource population. The c.490C > T SNP was associated with subcutaneous fat thickness (P  C SNP was also associated with chicken body weight (P chicken preadipocytes, overexpression of wild type ABDH5 did not affect the mRNA level of ATGL (adipose triglyceride lipase) but markedly decreased (P chickens with a high fat diet. These results suggest that expression and variations of ABHD5 may affect fat metabolism through regulating the activity of ATGL in chickens.

  11. WW domain-containing oxidoreductase in neuronal injury and neurological diseases.

    Science.gov (United States)

    Chang, Hsin-Tzu; Liu, Chan-Chuan; Chen, Shur-Tzu; Yap, Ye Vone; Chang, Nan-Shang; Sze, Chun-I

    2014-12-15

    The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-β, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration.

  12. Protein (Cyanobacteria): 440680301 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :88 ... TPR domain-containing protein Anabaena cylindrica PCC 7122 MLAQAIASANQIPDANSKASALRAIAEAIGKLKQPEKAAPLLAQAIASANQIPDANSKASALRAIAEA...YGKLNQPEKAAPLLAQAIASANQIPDSNFKAYALSAIAEAYGKLNQPEKAAPLLAQAIASANQIPDANSKASALSAIAEAIGK

  13. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides

    Science.gov (United States)

    Jämsen, Joonas; Tuominen, Heidi; Salminen, Anu; Belogurov, Georgiy A.; Magretova, Natalia N.; Baykov, Alexander A.; Lahti, Reijo

    2007-01-01

    CBS (cystathionine β-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100–10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PPi-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively. PMID:17714078

  14. A PAS Domain-Containing Regulator Controls Flagella-Flagella Interactions in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Mark eReuter

    2015-07-01

    Full Text Available The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confermotility, which is essential for virulence. The flagella of C. jejuni are posttranslationallymodified, but how this process is controlled is not well understood. Inthis work, we have identified a novel PAS-domain containing regulatory system, whichmodulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene,encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in thegeneration of a tightly associated 'cell-train' morphotype, where up to four cells wereconnected by their flagella. The morphotype was fully motile, resistant to vortexing,accompanied by increased autoagglutination, and was not observed in aflagellated cells.The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein,which comprises of a single endoribonuclease L-PSP domain. Comparative genomicsshowed that cj1387c (yheO orthologs in bacterial genomes are commonly linked to anadjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing anothercj1388-like gene (cj0327. Inactivation of the cj1388 and cj0327 genes resulted indecreased autoagglutination in Tween-20-supplemented media. The Δcj1388 andΔcj0327 mutants were also attenuated in a Galleria larvae-based infection model.Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388dimerisation in non-reducing conditions, and resulted in decreased autoagglutination inthe presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate posttranslationalmodification of the flagella through yet unidentified mechanisms, andpropose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, andthe Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively.

  15. Popeye domain-containing 1 is down-regulated in failing human hearts.

    Science.gov (United States)

    Gingold-Belfer, Rachel; Bergman, Michael; Alcalay, Yifat; Schlesinger, Hadassa; Aravot, Dan; Berman, Marius; Salman, Hertzel; Brand, Thomas; Kessler-Icekson, Gania

    2011-01-01

    Congestive heart failure, a complex disease of heterogeneous etiology, involves alterations in the expression of multiple genes. The Popeye domain-containing (POPDC) family of three novel muscle-restricted genes (POPDC1-3) is evolutionarily conserved and developmentally regulated. In mice, POPDC1 has been shown to play an important role in skeletal and cardiac muscles subjected to injury or stress. However, it has never been explored in human hearts. In biopsies from non-failing and failing human hearts, we examined the cellular distribution of POPDC1 as well as the expression patterns of POPDC1-3 mRNAs. POPDC1 was visualized by immunohistochemistry and estimated by Western immunoblotting. The mRNA levels of POPDC1-3 and ß myosin heavy chain (MYHC7) were assessed using reverse transcription/quantitative polymerase chain reaction. POPDC1 was predominantly localized in the sarcolemma with an enhanced expression in the intercalated discs. In failing hearts, many cardiomyocytes appeared deformed and POPDC1 labeling was deranged. The three POPDC mRNAs were expressed in the four heart chambers with higher transcript levels in the ventricles compared to the atria. Heart failure concurred with reduced levels of POPDC1 mRNA and protein in the left ventricle. Correlation analyses of mRNA levels among the failing heart specimens indicated the coordinated regulation of POPDC1 with POPDC3 and of POPDC2 with MYHC7. It can be concluded that POPDC gene expression is modified in end-stage heart failure in humans in a manner suggesting regulatory and/or functional differences between the three family members and that POPDC1 is particularly susceptible to this condition.

  16. Thrombospondin Type-1 Domain-Containing 7A in Idiopathic Membranous Nephropathy

    Science.gov (United States)

    Meyer-Schwesinger, Catherine; Seitz-Polski, Barbara; Ma, Hong; Zahner, Gunther; Dolla, Guillaume; Hoxha, Elion; Helmchen, Udo; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Merchant, Michael; Klein, Jon; Salant, David J.; Stahl, Rolf A.K.; Lambeau, Gérard

    2014-01-01

    BACKGROUND Idiopathic membranous nephropathy is an autoimmune disease. In approximately 70% of patients, it is associated with autoantibodies against the phospholipase A2 receptor 1 (PLA2R1). Antigenic targets in the remaining patients are unknown. METHODS Using Western blotting, we screened serum samples from patients with idiopathic membranous nephropathy, patients with other glomerular diseases, and healthy controls for antibodies against human native glomerular proteins. We partially purified a putative new antigen, identified this protein by means of mass spectrometry of digested peptides, and validated the results by analysis of recombinant protein expression, immunoprecipitation, and immunohistochemical analysis. RESULTS Serum samples from 6 of 44 patients in a European cohort and 9 of 110 patients in a Boston cohort with anti-PLA2R1–negative idiopathic membranous nephropathy recognized a glomerular protein that was 250 kD in size. None of the serum samples from the 74 patients with idiopathic membranous nephropathy who were sero-positive for anti-PLA2R1 antibodies, from the 76 patients with other glomerular diseases, and from the 44 healthy controls reacted against this antigen. Although this newly identified antigen is clearly different from PLA2R1, it shares some biochemical features, such as N-glycosylation, membranous location, and reactivity with serum only under nonreducing conditions. Mass spectrometry identified this antigen as thrombospondin type-1 domain-containing 7A (THSD7A). All reactive serum samples recognized recombinant THSD7A and immunoprecipitated THSD7A from glomerular lysates. Moreover, immunohistochemical analyses of biopsy samples from patients revealed localization of THSD7A to podocytes, and IgG eluted from one of these samples was specific for THSD7A. CONCLUSIONS In our cohort, 15 of 154 patients with idiopathic membranous nephropathy had circulating autoantibodies to THSD7A but not to PLA2R1, a finding that suggests a distinct

  17. Membranous Nephropathy with an Enhanced Granular Expression of Thrombospondin Type-1 Domain-containing 7A in a Pregnant Woman.

    Science.gov (United States)

    Iwakura, Takamasa; Fujigaki, Yoshihide; Katahashi, Naoko; Sato, Taichi; Ishigaki, Sayaka; Tsuji, Naoko; Naito, Yoshitaka; Isobe, Shinsuke; Ono, Masashi; Sakao, Yukitoshi; Tsuji, Takayuki; Ohashi, Naro; Kato, Akihiko; Miyajima, Hiroaki; Yasuda, Hideo

    2016-01-01

    A 30-year-old woman with proteinuria first noted at 26 weeks of gestation was admitted to undergo further evaluation. A renal biopsy revealed membranous nephropathy (MN). There was no evidence of any secondary MN. Prednisolone was initiated 6 months after delivery. Four months later, her urine protein became negative. Enhanced granular staining for thrombospondin type-1 domain-containing 7A (THSD7A) in the glomeruli was retrospectively detected in a biopsy specimen. A literature review revealed that 60% of cases of THSD7A-related MN occurred in women of childbearing age. Therefore, THSD7A-related MN should be considered in female patients presenting with idiopathic MN in childbearing age.

  18. Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5

    Science.gov (United States)

    Mart, Ryan; Bond, Cherie E.

    2014-01-01

    Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5), the precursor for Irisin. Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR) and lean Zucker rat (LZR) with 9 weeks of aerobic training on a motorized treadmill. Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise. Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by obesity and

  19. Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5

    Directory of Open Access Journals (Sweden)

    Jonathan M. Peterson

    2014-09-01

    Full Text Available Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5, the precursor for Irisin.Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR and lean Zucker rat (LZR with 9 weeks of aerobic training on a motorized treadmill.Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise.Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by

  20. Mutational analysis of the PRYSPRY domain of pyrin and implications for familial mediterranean fever (FMF).

    Science.gov (United States)

    Goulielmos, G N; Fragouli, E; Aksentijevich, I; Sidiropoulos, P; Boumpas, D T; Eliopoulos, E

    2006-07-14

    Familial Mediterranean fever (FMF) is an autosomal, recessively inherited disease, characterized by recurrent fever and serositis that affects mainly patients of the Mediterranean basin. The gene responsible for FMF, named MEFV, was cloned and several missense mutations were found to be responsible for the disease. Based on a recent molecular analysis of MEFV gene mutations in 43 patients from Crete aiming to correlate specific genotypes and clinical manifestations of FMF, we were prompted to construct a three-dimensional model (3-D model) of the PRYSPRY domain of pyrin. The majority of the known MEFV mutations located on this domain have been classified, according to disease severity, and localized on this 3-D model. The functional consequences of these mutations and their implications on disease severity are discussed. Moreover, we report a putative novel missense mutation, S702C, which we identified in exon 10 of the MEFV gene and localized on the constructed 3-D model.

  1. Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins

    OpenAIRE

    Rivera, Corban G; Bader, Joel S.; Popel, Aleksander S

    2011-01-01

    Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel (PNAS, 2008) used a bioinformatics approach to idenify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain...

  2. Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation.

    Science.gov (United States)

    Wang, Chieh-Huei; Su, Pei-Tsu; Du, Xiao-Yan; Kuo, Meng-Wei; Lin, Chia-Yi; Yang, Chung-Chi; Chan, Hau-Shien; Chang, Shing-Jyh; Kuo, Calvin; Seo, Kyunga; Leung, Lawrence L; Chuang, Yung-Jen

    2010-03-01

    Angiogenesis is a highly organized process controlled by a series of molecular events. While much effort has been devoted to identifying angiogenic factors and their reciprocal receptors, far less information is available on the molecular mechanisms underlying directed endothelial cell migration. To search for novel proteins that participate in this process, we used the serial analysis of gene expression (SAGE) transcript profiling approach to identify genes that are selectively expressed in endothelial cells (ECs). Two EC SAGE libraries were constructed from human umbilical vein and artery ECs to enable data-mining against other non-ECs. A novel endothelial protein, Thrombospondin Type I Domain Containing 7A (THSD7A), with preferential expression in placenta vasculature and in human umbilical vein endothelial cells (HUVECs) was identified and targeted for further characterization. Overexpression of a THSD7A carboxyl-terminal fragment in HUVECs inhibited cell migration and disrupted tube formation, while suppression of THSD7A expression enhanced HUVEC migration and tube formation. Immunohistological analysis revealed that THSD7A was expressed at the leading edge of migrating HUVECs, and it co-localized with alpha(V)beta(3) integrin and paxillin. This distribution was dispersed from focal adhesions after disruption of the actin cytoskeleton, suggesting the involvement of THSD7A in cytoskeletal organization. Our results show that THSD7A is a novel placenta endothelial protein that mediates EC migration and tube formation, and they highlight its potential as a new target for anti-angiogenic therapy.

  3. Molecular cloning and tissue distribution of the phosphotyrosine interaction domain containing 1 (PID1) gene in Tianfu goat.

    Science.gov (United States)

    Xu, Honggang; Xu, Gangyi; Wang, Daihua; Zheng, Chengli; Wan, Lu

    2013-02-15

    Phosphotyrosine interaction domain containing 1 (PID1) is an important mediator in the development of obesity-related insulin resistance in humans and animals. For a better understanding of the structure and function of the PID1 gene and to study its effect in caprine, the cDNA of the PID1 gene from the abdominal muscle of Tianfu goat was cloned and sequenced. The structure of PID1 was analyzed using bioinformatics tools. The results showed that the full sequence of the caprine PID1 cDNA was 896 bp long and contained a 654 bp long coding region that encoded a 217 amino acid sequence. Fifteen phosphorylation sites were predicted in the translated PID1 protein. The protein had a phosphotyrosine-binding domain between Arg(53) and Ile(199). A phylogenic tree based on the PID1 proteins from other species revealed that the caprine protein was closely related to cattle PID1. Fluorescence quantitative PCR analyses revealed that PID1 was expressed in the heart, liver, spleen, lung, kidney, leg muscle, abdominal muscle and longissimus dorsi muscle of goats. In particular, high expression levels of PID1 were detected in liver and abdominal muscle, and low expression levels were seen in lung. Furthermore, the PID1 mRNA expression levels in the longissimus dorsi muscles increased gradually with the age of the goats (PPID1 protein in six of the tissues in which PID1 was shown to be expressed; the two exceptions were liver and spleen. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Cancer Research Advance in CKLF-like MARVEL Transmembrane Domain Containing Member Family (Review).

    Science.gov (United States)

    Lu, Jia; Wu, Qian-Qian; Zhou, Ya-Bo; Zhang, Kai-Hua; Pang, Bing-Xin; Li, Liang; Sun, Nan; Wang, Heng-Shu; Zhang, Song; Li, Wen-Jian; Zheng, Wei; Liu, Wei

    2016-01-01

    CKLF-like MARVEL transmembrane domain-containing family (CMTM) is a novel family of genes first reported at international level by Peking University Human Disease Gene Research Center. The gene products are between chemokines and the transmembrane-4 superfamily. Loaceted in several human chromosomes, CMTMs, which are unregulated in kinds of tumors, are potential tumor suppressor genes consisting of CKLF and CMTM1 to CMTM8. CMTMs play important roles in immune, male reproductive and hematopoietic systems. Also, it has been approved that CMTM family has strong connection with diseases of autoimmunity, haematopoietic system and haematopoietic system. The in-depth study in recent years found the close relation between CMTMs and umorigenesis, tumor development and metastasis. CMTM family has a significant clinical value in diagnosis and treatment to the diseases linking to tumor and immune system.

  5. Research Advances in CKLFSF-like MARVEL Transmembrane Domain Containing Member 3.

    Science.gov (United States)

    2016-06-10

    CKLF-like MARVEL transmembrane domain containing member/chemokine-like factor super family member (CKLFSF/CMTM) is a novel tumor suppressor gene. CMTM3 is broadly expressed in normal human tissues and evolutionary conserved,especially in testis,spleen,and some cells of peripheral blood mononuclear cells. However,its expression is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM3 may inhibit the proliferation,migration,and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear,CKLFSF3/CMTM3 is closely connected with immune system and associated with sex during tumorigenesis. The study advances of CKLFSF3/CMTM3 are elaborated in this review as CMTM3 may be a new target in the gene therapies for tumors,especially genitourinary tumors,while further studies on CMTM3 and its anti-tumor mechanisms are warranted.

  6. Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hypermethylation in gastric cancer.

    Science.gov (United States)

    Kim, Mirang; Jang, Hay-Ran; Haam, Keeok; Kang, Tae-Wook; Kim, Jeong-Hwan; Kim, Seon-Young; Noh, Seung-Moo; Song, Kyu-Sang; Cho, June-Sik; Jeong, Hyun-Yong; Kim, Jin Cheon; Yoo, Hyang-Sook; Kim, Yong Sung

    2010-09-01

    The Popeye domain-containing (POPDC) genes BVES, POPDC2 and POPDC3 encode proteins that regulate cell-cell adhesion and cell migration during development. Herein, we report the frequent downregulation of BVES and POPDC3 by promoter hypermethylation in gastric cancer. POPDC expression in 11 gastric cancer cell lines and 96 paired gastric tumor and normal adjacent tissues was analyzed with quantitative reverse transcription-polymerase chain reaction. The methylation status of BVES and POPDC3 was analyzed with methylated DNA immunoprecipitation sequencing, bisulfite sequencing and pyrosequencing. Expression of BVES and POPDC3 was downregulated in 73% of the gastric cancer cell lines and in 69% (BVES) and 87% (POPDC3) of the gastric cancer tissues. The BVES and POPDC3 promoter regions were hypermethylated in the gastric cancer cell lines in which they were silenced. Combined treatment with a DNA methylation inhibitor and a histone deacetylase inhibitor strongly induced BVES and POPDC3 expression. BVES and POPDC3 were hypermethylated in 69% (BVES) and 64% (POPDC3) of the gastric cancer tissues. We knocked down POPDC3 expression with short hairpin RNAs and examined the consequences on cell migration and invasion. Knockdown of POPDC3 in SNU-216 cells caused increased cell migration and invasion. Thus, epigenetic inactivation of BVES and POPDC3 occurs frequently in gastric tumors and may promote gastric cancer cell migration and invasion.

  7. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development.

    Science.gov (United States)

    Kirchmaier, Bettina C; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y; Brand, Thomas

    2012-03-15

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)(s878)) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system.

  8. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

    Science.gov (United States)

    Bhoj, Elizabeth J.; Li, Dong; Harr, Margaret; Edvardson, Shimon; Elpeleg, Orly; Chisholm, Elizabeth; Juusola, Jane; Douglas, Ganka; Guillen Sacoto, Maria J.; Siquier-Pernet, Karine; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Narravula, Alekhya; Walke, Maria; Horner, Michele B.; Day-Salvatore, Debra-Lynn; Jayakar, Parul; Vergano, Samantha A. Schrier; Tarnopolsky, Mark A.; Hegde, Madhuri; Colleaux, Laurence; Crino, Peter; Hakonarson, Hakon

    2016-01-01

    Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition. PMID:27040691

  9. The TIR Domain Containing Locus of Enterococcus faecalis Is Predominant among Urinary Tract Infection Isolates and Downregulates Host Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Thomas Daniel Kraemer

    2014-01-01

    Full Text Available Based on Toll/interleukin-1 receptor (TIR domain structure homology, we detected a previously uncharacterized gene encoding for a TIR domain containing protein (Tcp in the genome of Enterococcus faecalis. We assigned this gene the name tcpF (as in Tcp of E. faecalis. Screening of E. faecalis samples revealed that tcpF is more common in isolates from urinary tract infections (UTIs than in human faecal flora. tcpF alleles showed moderate single nucleotide polymorphism (SNP among UTI isolates. Infection of mouse RAW264.7 macrophages with a tcpF knock-out mutant led to elevated cytokine response compared to the isogenic wild type E. faecalis strain. In silico analysis predicted significant tertiary structure homology to the TIR domain of human TLR1 (TLR1-TIR. When transiently expressed in cultured eukaryotic cells, TcpF caused suppression of TLR2-dependent NF-κB activation suggesting for TcpF a role as a factor in E. faecalis that benefits colonization by modulating the host’s immune responses.

  10. The inflammasome pyrin contributes to pertussis toxin-induced IL-1β synthesis, neutrophil intravascular crawling and autoimmune encephalomyelitis.

    Science.gov (United States)

    Dumas, Aline; Amiable, Nathalie; de Rivero Vaccari, Juan Pablo; Chae, Jae Jin; Keane, Robert W; Lacroix, Steve; Vallières, Luc

    2014-05-01

    Microbial agents can aggravate inflammatory diseases, such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). An example is pertussis toxin (PTX), a bacterial virulence factor commonly used as an adjuvant to promote EAE, but whose mechanism of action is unclear. We have reported that PTX triggers an IL-6-mediated signaling cascade that increases the number of leukocytes that patrol the vasculature by crawling on its luminal surface. In the present study, we examined this response in mice lacking either TLR4 or inflammasome components and using enzymatically active and inactive forms of PTX. Our results indicate that PTX, through its ADP-ribosyltransferase activity, induces two series of events upstream of IL-6: 1) the activation of TLR4 signaling in myeloid cells, leading to pro-IL-1β synthesis; and 2) the formation of a pyrin-dependent inflammasome that cleaves pro-IL-1β into its active form. In turn, IL-1β stimulates nearby stromal cells to secrete IL-6, which is known to induce vascular changes required for leukocyte adhesion. Without pyrin, PTX does not induce neutrophil adhesion to cerebral capillaries and is less effective at inducing EAE in transgenic mice with encephalitogenic T lymphocytes. This study identifies the first microbial molecule that activates pyrin, a mechanism by which infections may influence MS and a potential therapeutic target for immune disorders.

  11. Molecular Evolution of VEF-Domain-Containing PcG Genes in Plants

    Institute of Scientific and Technical Information of China (English)

    Ling-Jing Chen; Zhao-Yan Diao; Chelsea Specht; Z.Renee Sung

    2009-01-01

    Arabidopsis VERNALIZATION2 (VRN2),EMBRYONIC FLOWER2 (EMF2),and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering,vegetative development,and seed development,respectively.Together with Arabidopsis VEF-L36,they share a VEF domain that is conserved in plants and animals.To investigate the evolution of VEF-domain-containing genes (VEF genes),we analyzed sequences related to VEF genes across land plants.To date,24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified.The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2.EMF2-like sequences are not only widespread among angiosperms,but are also found in genomic sequences of gymnosperms,lycophyte,and moss.No FIS2- or VEF-L36-like sequences were recovered from plants other than Arabidopsis,including from rice and poplar for which whole genomes have been sequenced.Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa.VRN2 homologs are recovered as a clade nested within the larger EMF2 clade.FIS2 and VEF-L36 are recovered in the VRN2 clade.VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid Ⅰ and eurosid Ⅱ lineages.We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes.Phyiogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EMF2/VRN2 divergence in accordance with species relationship.Existence of EMF2-like sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages.A proposed sequence of events,based on domain organization and occurrence of

  12. PorcineLEM domain-containing 3:Molecular cloning, functional characterization, and polymorphism associated with ear size

    Institute of Scientific and Technical Information of China (English)

    LIANG Jing; SHI Hui-bi; ZHANG Qin; WANGLi-xian; LI Na; ZHANG Long-chao; WANGLi-gang; LIU Xin; ZHAO Ke-bin; YAN Hua; PU Lei; ZHANG Yue-bo

    2016-01-01

    Ear size exhibits remarkable diversity in pig breeds.LEM domain-containing 3 (LEMD3) on chromosome 5 is considered as an important candidate for porcine ear size. This is the ifrst study on cloning and characterization ofLEMD3 cDNA. The complete cDNA contains 4843 bp, including a 2736-bp open reading frame (ORF), a 37-bp 5´-untranslated region (UTR) and a 2070-bp 3´-UTR. The completeLEMD3 gene is 126241-bp and contains 13 exons and 12 introns. The ORF encodes a deduced LEMD3 protein of 911 amino acids, which shares 82–94% nucleic acid and 51–96% amino acid identity with other species. A phylogenetic tree constructed based on the amino acid sequences revealed that the porcine LEMD3 protein was closely related with cattle LEMD3. Resequencing of the ORF and promoter ofLEMD3 from Minzhu pig and Large White revealed three single nucleotide polymorphisms (SNPs): L964C>A in the complete coding region, L4625A>G in the 3´ UTR, and L-394T>C in the promoter region. Genome-wide association study (GWAS) revealed that al of SNPs were shown signiifcant association with ear size in Large White×Minzhu pig intercross population. With conditional GWAS, –log10(P-value) decreased by more than 80% when each of three SNPs was included as a ifxed effect. These results suggested direct involvement ofLEMD3 or close linkage to the causative mutation for ear size. The ifndings of this study might form the basis for understanding the genetic mechanism of ear size variation in pigs and provide potential molecular markers for screening ear size diversity in pig breeds.

  13. TIR Domain-Containing Adapter-Inducing Beta Interferon (TRIF) Mediates Immunological Memory against Bacterial Pathogens.

    Science.gov (United States)

    Kanagavelu, Saravana; Flores, Claudia; Termini, J M; Romero, Laura; Riveron, Reldy; Ruiz, Jose; Arditi, Moshe; Schesser, Kurt; Fukata, Masayuki

    2015-11-01

    Induction of adaptive immunity leads to the establishment of immunological memory; however, how innate immunity regulates memory T cell function remains obscure. Here we show a previously undefined mechanism in which innate and adaptive immunity are linked by TIR domain-containing adapter-inducing beta interferon (TRIF) during establishment and reactivation of memory T cells against Gram-negative enteropathogens. Absence of TRIF in macrophages (Mϕs) but not dendritic cells led to a predominant generation of CD4(+) central memory T cells that express IL-17 during enteric bacterial infection in mice. TRIF-dependent type I interferon (IFN) signaling in T cells was essential to Th1 lineage differentiation and reactivation of memory T cells. TRIF activated memory T cells to facilitate local neutrophil influx and enhance bacterial elimination. These results highlight the importance of TRIF as a mediator of the innate and adaptive immune interactions in achieving the protective properties of memory immunity against Gram-negative bacteria and suggest TRIF as a potential therapeutic target.

  14. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria.

    Science.gov (United States)

    Anashkin, Viktor A; Salminen, Anu; Tuominen, Heidi K; Orlov, Victor N; Lahti, Reijo; Baykov, Alexander A

    2015-11-13

    Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P(1),P(n)-diadenosine 5'-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ~10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Popeye domain containing gene 2 (Popdc2) is a myocyte-specific differentiation marker during chick heart development.

    Science.gov (United States)

    Breher, Stephanie S; Mavridou, Eleftheria; Brenneis, Christian; Froese, Alexander; Arnold, Hans-Henning; Brand, Thomas

    2004-03-01

    The Popeye domain containing (popdc) genes constitute a novel gene family encoding proteins of the plasma membrane in muscle cells, with three N-terminal transmembrane domains and a cytoplasmic carboxy terminus. In vertebrates, three members of the Popdc gene family have been described. However, in the chick system only two cDNAs, Popdc1 and Popdc3, have been cloned previously. By screening a chick expressed sequence tag database, we report here the identification of five alternatively spliced chick Popdc2 cDNAs with different carboxy termini. Northern blot analysis revealed expression of Popdc2 predominantly in the myocardium and weaker expression in skeletal muscle. By whole-mount in situ hybridization, chick Popdc2 was first detected at Hamburger and Hamilton (HH) stage 7 within the anterior part of the heart fields. In the tubular heart, atrial and ventricular precursor cells stained positively for Popdc2. Weaker expression was observed in myocardium of the outflow tract and sinus venosus. By HH stage 18, the outer curvature myocardium was strongly stained, whereas expression in myocardium of the inner curvature was negligible. Popdc2 expression was absent from the endocardium and propepicardial organ. At HH stage 36, Popdc2 expression was confined to the compact layer myocardium. In addition to the heart, Popdc2 expression was also observed in the myotome and in the muscle-forming fields of the limbs. Our results indicate that Popdc2 is highly expressed in the developing heart and may serve as a novel marker of myocardial differentiation in the chick embryo.

  16. Goats, germs, and fever: Are the pyrin mutations responsible for familial Mediterranean fever protective against Brucellosis?

    Science.gov (United States)

    Ross, John J

    2007-01-01

    Mutations in the MEFV gene are highly prevalent in the Middle East and Mediterranean basin, with carrier rates of up to 1:3 in some populations. More than 50 mutations in the MEFV gene have been described. The high prevalence, multiple mutations, and geographic localization to the Middle East suggest a positive selection advantage for the abnormal gene operating in this area over the last several thousand years. To date, no satisfactory explanation of this phenomenon has been made. Rather, many harmful effects of these mutations have been described. MEFV gene mutations cause familial Mediterranean fever in homozygotes, a disease associated with recurrent febrile inflammatory episodes, and death from renal failure and amyloidosis. Heterozygotes with MEFV mutations are predisposed to premature coronary disease, and rheumatologic conditions such as Behçet's disease. MEFV mutations do not appear to protect against tuberculosis. Brucellosis is still highly endemic in the Middle East because of the traditional reliance for meat and dairy production on goats and sheep, the major vectors for this zoonosis. Brucellosis causes a prolonged febrile illness lasting for months and even years, and it may have exacted a major toll among Bronze Age peasant populations in the Middle East. The gene product for MEFV, pyrin, normally inhibits interleukin-1beta production. Mutations in MEFV result in a pro-inflammatory state, with a Th1 polarization and high levels of interferon-gamma. This may actually be protective against intracellular pathogens such as brucellosis. The possible heterozygote advantage of MEFV mutations against brucellosis may therefore be a balanced polymorphism, analogous to the protective effect against malaria that maintains high levels of sickle cell trait in sub-Saharan Africa.

  17. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy.

    Science.gov (United States)

    Tomas, Nicola M; Hoxha, Elion; Reinicke, Anna T; Fester, Lars; Helmchen, Udo; Gerth, Jens; Bachmann, Friederike; Budde, Klemens; Koch-Nolte, Friedrich; Zahner, Gunther; Rune, Gabriele; Lambeau, Gerard; Meyer-Schwesinger, Catherine; Stahl, Rolf A K

    2016-07-01

    Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults, and one-third of patients develop end-stage renal disease (ESRD). Circulating autoantibodies against the podocyte surface antigens phospholipase A2 receptor 1 (PLA2R1) and the recently identified thrombospondin type 1 domain-containing 7A (THSD7A) are assumed to cause the disease in the majority of patients. The pathogenicity of these antibodies, however, has not been directly proven. Here, we have reported the analysis and characterization of a male patient with THSD7A-associated MN who progressed to ESRD and subsequently underwent renal transplantation. MN rapidly recurred after transplantation. Enhanced staining for THSD7A was observed in the kidney allograft, and detectable anti-THSD7A antibodies were present in the serum before and after transplantation, suggesting that these antibodies induced a recurrence of MN in the renal transplant. In contrast to PLA2R1, THSD7A was expressed on both human and murine podocytes, enabling the evaluation of whether anti-THSD7A antibodies cause MN in mice. We demonstrated that human anti-THSD7A antibodies specifically bind to murine THSD7A on podocyte foot processes, induce proteinuria, and initiate a histopathological pattern that is typical of MN. Furthermore, anti-THSD7A antibodies induced marked cytoskeletal rearrangement in primary murine glomerular epithelial cells as well as in human embryonic kidney 293 cells. Our findings support a causative role of anti-THSD7A antibodies in the development of MN.

  18. Differential Expression of miR-4520a Associated With Pyrin Mutations in Familial Mediterranean Fever (FMF).

    Science.gov (United States)

    Latsoudis, Helen; Mashreghi, Mir-Farzin; Grün, Joachim R; Chang, Hyun-Dong; Stuhlmüller, Bruno; Repa, Argyro; Gergiannaki, Irini; Kabouraki, Eleni; Vlachos, George S; Häupl, Thomas; Radbruch, Andreas; Sidiropoulos, Prodromos; Doukoumetzidis, Kimon; Kardassis, Dimitris; Niewold, Timothy B; Boumpas, Dimitrios T; Goulielmos, George N

    2017-06-01

    Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by recurrent, acute, and self-limiting attacks of fever. Mutations in MEFV gene encoding pyrin account for FMF, but the high number of heterozygote patients with typical symptoms of the disease has driven a number of alternative aetiopathogenic hypotheses. The MEFV gene was knocked down in human myelomonocytic cells that express endogenous pyrin to identify deregulated microRNAs (miRNAs). Microarray analyses revealed 29 significantly differentially expressed miRNAs implicated in pathways associated with cellular integrity and survival. Implementation of in silico gene network prediction algorithms and bioinformatics analyses showed that miR-4520a is predicted to target genes implicated in autophagy through regulation of RHEB/mTOR signaling. Differential expression levels of RHEB were confirmed by luciferase reporter gene assays providing further evidence that is directly targeted by miR-4520a. Although the relative expression levels of miR-4520a were variable among FMF patients, the statistical expression of miR-4520a was different between FMF mutation carriers and controls (P = 0.0061), indicating an association between miR-4520a expression and MEFV mutations. Comparison between FMF patients bearing the M694V mutation, associated with severe disease, and healthy controls showed a significant increase in miR-4520a expression levels (P = 0.00545). These data suggest that RHEB, the main activator of mTOR signaling, is a valid target of miR-4520a with the relative expression levels of the latter being significantly deregulated in FMF patients and highly dependent on the presence of pyrin mutations, especially of the M694V type. These results suggest a role of deregulated autophagy in the pathogenesis of FMF. J. Cell. Physiol. 232: 1326-1336, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules Nlrp3 Cias1, Mmig1, Nalp3, Pypaf1 NACHT, LRR and PYD d...n-associated-inducible protein 1, PYRIN-containing APAF1-like protein 1 10090 Mus musculus 216799 Q8R4B8 Q8R4B8 20007575 ...

  20. Patatin-like phospholipase domain containing-3 gene I148M polymorphism, steatosis, and liver damage in hereditary hemochromatosis

    Institute of Scientific and Technical Information of China (English)

    Luca Valenti; Paolo Maggioni; Alberto Piperno; Raffaela Rametta; Sara Pelucchi; Raffaella Mariani; Paola Dongiovanni; Anna Ludovica Fracanzani; Silvia Fargion

    2012-01-01

    AIM:To investigate whether the patatin-/ike phospho/ipase domain containing-3 gene (PNPLA3) I148M polymorphism is associated with steatosis,fibrosis stage,and cirrhosis in hereditary hemochromatosis (HH).METHODS:We studied 174 consecutive unrelated homozygous for the C282Y HFE mutation of HH (C282Y+/+ HH) patients from Northern Italy,for whom the presence of cirrhosis could be determined based on histological or clinical criteria,without excessive alcohol intake (< 30/20 g/d in males or females) or hepatitis B virus and hepatitis C virus viral hepatitis.Steatosis was evaluated in 123 patients by histology (n =100) or ultrasound (n =23).The PNPLA3 rs738409 single nucleotide polymorphism,encoding for the p.148M protein variant,was genotyped by a Taqman assay (assay on demand,Applied Biosystems).The association of the PNPLA3 I148M protein variant (p.I148M) with steatosis,fibrosis stage,and cirrhosis was evaluated by logistic regression analysis.RESULTS:PNPLA3 genotype was not associated with metabolic parameters,including body mass index (BMI),the presence of diabetes,and lipid levels,but the presence of the p.148M variant at risk was independently associated with steatosis [odds ratio (OR) 1.84 per p.148M allele,95% confidence interval (CI):1.05-3.31;P =0.037],independently of BMI and alanine aminotransaminase (ALT) levels.The p.148M variant was also associated with higher aspartate aminotransferase (P =0.0014) and ALT levels (P =0.017) at diagnosis,independently of BMI and the severity of iron overload.In patients with liver biopsy,the 148M variant was independently associated with the severity (stage) of fibrosis (estimated coefficient 0.56 ± 0.27,P =0.041).In the overall series of patients,the p.148M variant was associated with cirrhosis in lean (P =0.049),but not in overweight patients (P =not significant).At logistic regression analysis,cirrhosis was associated with BMI ≥ 25 (OR 1.82,95% CI:1.02-3.55),ferritin > 1000 ng/mL at diagnosis (OR 19.3,95

  1. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  2. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection.

    Science.gov (United States)

    Ridker, Paul M

    2016-01-08

    Plasma levels of the inflammatory biomarker high-sensitivity C-reactive protein (hsCRP) predict vascular risk with an effect estimate as large as that of total or high-density lipoprotein cholesterol. Further, randomized trial data addressing hsCRP have been central to understanding the anti-inflammatory effects of statin therapy and have consistently demonstrated on-treatment hsCRP levels to be as powerful a predictor of residual cardiovascular risk as on-treatment levels of low-density lipoprotein cholesterol. Yet, although hsCRP is clinically useful as a biomarker for risk prediction, most mechanistic studies suggest that CRP itself is unlikely to be a target for intervention. Moving upstream in the inflammatory cascade from CRP to interleukin (IL)-6 to IL-1 provides novel therapeutic opportunities for atheroprotection that focus on the central IL-6 signaling system and ultimately on inhibition of the IL-1β-producing NOD-like receptor family pyrin domain containing 3 inflammasome. Cholesterol crystals, neutrophil extracellular traps, atheroprone flow, and local tissue hypoxia activate the NOD-like receptor family pyrin domain containing 3 inflammasome. As such, a unifying concept of hsCRP as a downstream surrogate biomarker for upstream IL-1β activity has emerged. From a therapeutic perspective, small ischemia studies show reductions in acute-phase hsCRP production with the IL-1 receptor antagonist anakinra and the IL-6 receptor blocker tocilizumab. A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with little change in atherogenic lipids. Canakinumab in now being tested as a method to prevent recurrent cardiovascular events in a randomized trial of 10 065 post-myocardial infarction patients with elevated hsCRP that is fully enrolled and due to complete in 2017. Clinical trials using alternative anti

  3. Research progress of coiled-coil domain-containing in carcinoma%CCDC与恶性肿瘤的研究进展

    Institute of Scientific and Technical Information of China (English)

    许建辉; 殷德涛

    2014-01-01

    卷曲螺旋结构域(CCDC)蛋白具有许多重要生物学功能,并能调控恶性肿瘤细胞的侵袭和转移等多种生物学行为.目前已证实,CCDC蛋白在鼻咽癌、胃癌、前列腺癌、胰腺癌、乳腺癌、结直肠癌中的异常表达,且与肿瘤细胞迁移、侵袭和转移表型的获得有着直接的联系.CCDC蛋白的表达异常及其相关通路的抑制能明显影响肿瘤侵袭和转移,这为新型医药应用于肿瘤靶向治疗提供了理论依据.%Coiled-Coil domain-containing has many important biological functions and can control the invasion and metastasis of malignant tumor cells and other biological behavior.The abnormal expression of the coiled-coil domaincontaining protein in nasopharyngeal carcinoma,gastric cancer,prostate cancer,pancreatic cancer,breast cancer,colorectal cancer,has a direct link with the phenotype of tumor cell migration,invasion and metastasis.Abnormal protein expression and inhibition of coiled-coil domain-containing related pathways can significantly affect the tumor invasion and metastasis,for the new targeted cancer medicine used in the treatment provides a theoretical basis.

  4. Bves, a member of the Popeye domain-containing gene family.

    Science.gov (United States)

    Osler, Megan E; Smith, Travis K; Bader, David M

    2006-03-01

    Bves was discovered through subtractive screens designed to identify heart-enriched transcripts. Bves is a transmembrane protein that possesses a highly conserved structure among species of the animal kingdom. Various approaches have been used to elucidate the expression pattern of Bves mRNA and protein as well as its function in developing and mature organisms. Emerging evidence indicates that this protein is present in muscle and epithelia of developing embryos and the adult. In vitro functional studies predict a role in cell-cell interaction and/or adhesion. In vivo analysis of protein function is very limited at present, but recent work in Xenopus supports the importance of Bves in epithelial integrity. Presented in this review is a compilation of published findings concerning Bves gene and protein characteristics, expression patterns in embryos and cells, and functional significance as determined thus far. Presently, the literature supports a hypothesis that Bves is essential to the junctional architecture of muscle and epithelial cell types. Although there remain aspects of Bves structure, expression, and function that are not completely resolved, now is an appropriate time to summarize current knowledge about this protein, the remaining questions, and what its potential role in development might be. This review will serve as a departure point for others who become interested in the study of this highly conserved protein.

  5. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Kagiwada, Satoshi [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Shimazu, Sayuri [Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Takegawa, Kaoru [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Noguchi, Tetsuko [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  6. Protein (Viridiplantae): 356542037 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :2056 3847:2056 PREDICTED: LOW QUALITY PROTEIN: NAC domain-containing protein 1-like Glycine max MEGVSREAQMS...RATECGYWKATGKERNVKSGSNVIGTKRTLVFHLGRAPKGERTEWIMHEYCINEKSQDSLVICRLKKNTEFRLGDSSNRASSSQRHPVNSHESGCAISEGGIDQRDAC

  7. Crustin, a WAP domain containing antimicrobial peptide from freshwater prawn Macrobrachium rosenbergii: immune characterization.

    Science.gov (United States)

    Arockiaraj, Jesu; Gnanam, Annie J; Muthukrishnan, Dhanaraj; Gudimella, Ranganath; Milton, James; Singh, Arun; Muthupandian, Saravanan; Kasi, Marimuthu; Bhassu, Subha

    2013-01-01

    Crustin (MrCrs) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrCrs protein contains a signal peptide region at N-terminus between 1 and 22 and a long whey acidic protein domain (WAP domain) at C-terminus between 57 and 110 along with a WAP-type 'four-disulfide core' motif. Phylogenetic results show that MrCrs is clustered together with other crustacean crustin groups. MrCrs showed high sequence similarity (77%) with crustin from Pacific white shrimp Litopenaeus vannamei and Japanese spiny lobster Panulirus japonicas. I-TASSER uses the best structure templates to predict the possible structures of MrCrs along with PDB IDs such as 2RELA and 1FLEI. The gene expressions of MrCrs in both healthy M. rosenbergii and those infected with virus including infectious hypodermal and hematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) and bacteria Aeromonas hydrophila (Gram-negative) and Enterococcus faecium (Gram-positive) were examined using quantitative real time PCR. To understand its biological activity, the recombinant MrCrs gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCrs protein agglutinated with the bacteria considered for analysis at a concentration of 25 μg/ml, except Lactococcus lactis. The bactericidal results showed that the recombinant MrCrs protein destroyed all the bacteria after incubation, even less than 6 h. These results suggest that MrCrs is a potential antimicrobial peptide, which is involved in the defense system of M. rosenbergii against viral and bacterial infections.

  8. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Christina M Dittrich

    Full Text Available The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage - possibly by promoting the reorganization of damaged chromatin.

  9. A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin.

    Science.gov (United States)

    Reiling, Jan H; Clish, Clary B; Carette, Jan E; Varadarajan, Malini; Brummelkamp, Thijn R; Sabatini, David M

    2011-07-19

    Tunicamycin (TM) inhibits eukaryotic asparagine-linked glycosylation, protein palmitoylation, ganglioside production, proteoglycan synthesis, 3-hydroxy-3-methylglutaryl coenzyme-A reductase activity, and cell wall biosynthesis in bacteria. Treatment of cells with TM elicits endoplasmic reticulum stress and activates the unfolded protein response. Although widely used in laboratory settings for many years, it is unknown how TM enters cells. Here, we identify in an unbiased genetic screen a transporter of the major facilitator superfamily, major facilitator domain containing 2A (MFSD2A), as a critical mediator of TM toxicity. Cells without MFSD2A are TM-resistant, whereas MFSD2A-overexpressing cells are hypersensitive. Hypersensitivity is associated with increased cellular TM uptake concomitant with an enhanced endoplasmic reticulum stress response. Furthermore, MFSD2A mutant analysis reveals an important function of the C terminus for correct intracellular localization and protein stability, and it identifies transmembrane helical amino acid residues essential for mediating TM sensitivity. Overall, our data uncover a critical role for MFSD2A by acting as a putative TM transporter at the plasma membrane.

  10. Localization and distribution of fibrinogen C domain containing 1 (FIBCD1) in human tissues

    DEFF Research Database (Denmark)

    von Huth, Sebastian; Møller, Jesper Bonnet; Schlosser, Anders

    have previously shown that FIBCD1 is present at mucosal surfaces in the lung and large intestine. Aim: The present study investigates the distribution and localization of FIBCD1 in various healthy human tissues. Results: We used a monoclonal antibody directed towards the FIBCD1 ectodomain...... in an immunohistochemistry-based analysis and demonstrate that FIBCD1 protein is highly expressed at the apical surfaces of the epithelium throughout the gastrointestinal tract, in the uterus, testis, bladder, gallbladder and the salivary glands. To a lesser extent, FIBCD1 is expressed in the pancreas, the spleen...... and the tonsils. Moreover, using quantitative real-time PCR we demonstrate that FIBCD1 mRNA is highly expressed in the gastrointestinal tract, the lung, the adrenal gland and the testis, which is in coherence with our immunohistochemical findings. Conclusion: FIBCD1 is present at the apical epithelial surfaces...

  11. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function.

    Science.gov (United States)

    Zhang, Yi; Stehling-Sun, Sandra; Lezon-Geyda, Kimberly; Juneja, Subhash C; Coillard, Lucie; Chatterjee, Gouri; Wuertzer, Charles A; Camargo, Fernando; Perkins, Archibald S

    2011-10-06

    The Mds1 and Evi1 complex locus (Mecom) gives rise to several alternative transcripts implicated in leukemogenesis. However, the contribution that Mecom-derived gene products make to normal hematopoiesis remains largely unexplored. To investigate the role of the upstream transcription start site of Mecom in adult hematopoiesis, we created a mouse model with a lacZ knock-in at this site, termed ME(m1), which eliminates Mds1-Evi1 (ME), the longer, PR-domain-containing isoform produced by the gene (also known as PRDM3). β-galactosidase-marking studies revealed that, within hematopoietic cells, ME is exclusively expressed in the stem cell compartment. ME deficiency leads to a reduction in the number of HSCs and a complete loss of long-term repopulation capacity, whereas the stem cell compartment is shifted from quiescence to active cycling. Genetic exploration of the relative roles of endogenous ME and EVI1 isoforms revealed that ME preferentially rescues long-term HSC defects. RNA-seq analysis in Lin(-)Sca-1(+)c-Kit(+) cells (LSKs) of ME(m1) documents near complete silencing of Cdkn1c, encoding negative cell-cycle regulator p57-Kip2. Reintroduction of ME into ME(m1) LSKs leads to normalization of both p57-Kip2 expression and growth control. Our results clearly demonstrate a critical role of PR-domain-containing ME in linking p57-kip2 regulation to long-term HSC function.

  12. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice

    Science.gov (United States)

    Lanfray, Damien; Caron, Alexandre; Roy, Marie-Claude; Laplante, Mathieu; Morin, Fabrice; Leprince, Jérôme; Tonon, Marie-Christine; Richard, Denis

    2016-01-01

    Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway. DOI: http://dx.doi.org/10.7554/eLife.11742.001 PMID:26880548

  13. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods

    Directory of Open Access Journals (Sweden)

    Smith James M

    2008-11-01

    contain four RD genes and orthology can be assigned to these genes based on similarity to the D. melanogaster protein sequences. Examination of the genomic organisation of these genes provides evidence for a functional RD gene cluster. RD genes from non-insect arthropods are also clustered, however the lack of orthology between these and insect RD genes suggests this cluster is likely to have resulted from a duplication event independent from that which created the insect RD gene cluster. Analysis of embryonic RD gene expression in two endopterygotan insects, A. mellifera and D. melanogaster, did not show evidence for coordinated gene expression, therefore while the functional significance of this gene cluster remains unknown its maintenance during insect evolution implies some functional significance to the cluster.

  14. Association of the formiminotransferase N-terminal sub-domain containing gene and thrombospondin, type 1, domain-containing 7A gene with the prevalence of vertebral fracture in 2427 consecutive autopsy cases.

    Science.gov (United States)

    Zhou, Heying; Mori, Seijiro; Kou, Ikuyo; Fuku, Noriyuki; Naka Mieno, Makiko; Honma, Naoko; Arai, Tomio; Sawabe, Motoji; Tanaka, Masashi; Ikegawa, Shiro; Ito, Hideki

    2013-02-01

    We previously reported 2 osteoporosis-susceptibility genes--formiminotransferase N-terminal sub-domain containing gene (FONG) and thrombospondin, type 1, domain-containing 7A (THSD7A)--in which we identified two common single-nucleotide polymorphisms, rs7605378 (FONG) and rs12673692 (THSD7A). The former was associated with a predisposition to osteoporosis and the latter with bone mineral density. To further elucidate the importance of these polymorphisms in the pathogenesis of osteoporosis, we examined their association with the incidence of vertebral fracture. DNA extracted from the renal cortex of 2427 consecutive Japanese autopsies (1331 men, mean age: 79 years; 1096 women, mean age: 82 years) were examined in this study. The presence or absence of vertebral fracture during each subject's lifetime was determined by a thorough examination of the clinical records, as well as autopsy reports. After adjustments for sex and age at autopsy, logistic regression analysis revealed that homozygotes for the risk alleles of rs7605378 (A-allele) or rs12673629 (A-allele) possess an increased risk of vertebral fracture. The subjects simultaneously homozygous for both the risk alleles of rs7605378 (AA genotype) and rs12673629 (AA genotype) showed significantly higher risk of vertebral fracture (odds ratio 2.401, 95% confidence interval 1.305-4.416, P = 0.0048) than those who had at least one non-risk allele of either rs7605378 (AC/CC genotypes) or rs12673629 (AG/GG genotypes). The results suggest that Japanese subjects homozygous for the risk alleles of rs7605378 and rs12673629 have a higher risk of vertebral fracture.

  15. Nucleotide-binding oligomerization domain-containing protein 2 prompts potent inflammatory stimuli during Neospora caninum infection

    Science.gov (United States)

    Davoli-Ferreira, Marcela; Fonseca, Denise M.; Mota, Caroline M.; Dias, Murilo S.; Lima-Junior, Djalma S.; da Silva, Murilo V.; Quirino, Gustavo F. S.; Zamboni, Dario S.; Silva, João S.; Mineo, Tiago W. P.

    2016-01-01

    Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Innate immune responses are crucial for host resistance against the infection, however the molecules involved in parasite recognition are still poorly understood. Nod2 is a cytosolic receptor that recognizes several pathogens and its role during N. caninum infection has not yet been described. In that sense, we evaluated the role of Nod2 in host response against this parasite. We found that infection of macrophages induced increased expression of Nod2, which colocalized with the parasites’ vacuoles. Nod2-deficient macrophages showed an impaired induction of pro-inflammatory cytokines, increased production of modulatory molecules, and failure to restrict parasite replication. In vivo, Nod2-knockout mice showed a reduction of MAPK phosphorylation and proinflammatory cytokines, followed by decreased inflammation in target organs and increment in parasite burden. Surprisingly, these mice were partially resistant to lethal doses of tachyzoites. In addition, these phenomena were not observed in Rip2−/− mice. In conclusion, our study indicates that Nod2-dependent responses account for N. caninum elimination. On the other hand, the inflammatory milieu induced by this innate receptor provoked pathogenesis and death in severe experimental neosporosis. PMID:27377650

  16. Role of Jumonji c-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) can utilize as many as three distinct groups of receptor molecules to attach and enter a susceptible host cell. Four integrin heterodimers (alphavBeta1, alphavBeta3, alphavBeta6, and alphavBeta8) can function as the primary receptor for FMDV field strains. FMDV ...

  17. Studies on BAR-domain-containing Proteins%BAR结构域蛋白质的功能

    Institute of Scientific and Technical Information of China (English)

    张伟; 王建光

    2004-01-01

    近期对果蝇双载蛋白(amphiphysin)BAR结构域晶体结构的报道,使得BAR结构域研究成为热点.虽然在序列水平上保守性较低,但双载蛋白的BAR结构域与Arfaptin 2的GTP酶结合结构域在结构上极为相似.通过对两种蛋白质的BAR结构域同源序列进行检索分析,发现了大量含BAR结构域相关蛋白质.研究发现,BAR结构域蛋白质多数都参与细胞内物质转运及胞吞作用;BAR结构域不仅可以通过其二聚化基元感知和诱导膜的弯曲,而且某些蛋白质的BAR结构域还具有与小GTP酶结合的功能.

  18. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana

    Science.gov (United States)

    In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, p...

  19. Reduced Ets Domain-containing Protein Elk1 Promotes Pulmonary Fibrosis via Increased Integrin αvβ6 Expression*

    OpenAIRE

    Tatler, Amanda L; Habgood, Anthony; Porte, Joanne; John, Alison E.; Stavrou, Anastasios; Hodge, Emily; Kerama-Likoko, Cheryl; Violette, Shelia M.; Weinreb, Paul H.; Knox, Alan J; Laurent, Geoffrey; Parfrey, Helen; Wolters, Paul John; Wallace, William; Alberti, Siegfried

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with high mortality. Active TGFβ1 is considered central to the pathogenesis of IPF. A major mechanism of TGFβ1 activation in the lung involves the epithelially restricted αvβ6 integrin. Expression of the αvβ6 integrin is dramatically increased in IPF. How αvβ6 integrin expression is regulated in the pulmonary epithelium is unknown. Here we identify a region in the β6 subunit gene (ITGB6) promoter acting to markedly rep...

  20. Amino substituted nitrogen heterocycle ureas as kinase insert domain containing receptor (KDR inhibitors: Performance of structure–activity relationship approaches

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-06-01

    Full Text Available A quantitative structure–activity relationship (QSAR study was performed on a set of amino-substituted nitrogen heterocyclic urea derivatives. Two novel approaches were applied: (1 the simplified molecular input-line entry systems (SMILES based optimal descriptors approach; and (2 the fragment-based simplex representation of molecular structure (SiRMS approach. Comparison with the classic scheme of building up the model and balance of correlation (BC for optimal descriptors approach shows that the BC scheme provides more robust predictions than the classic scheme for the considered pIC50 of the heterocyclic urea derivatives. Comparison of the SMILES-based optimal descriptors and SiRMS approaches has confirmed good performance of both techniques in prediction of kinase insert domain containing receptor (KDR inhibitory activity, expressed as a logarithm of inhibitory concentration (pIC50 of studied compounds.

  1. Chemokine-like factor-like MARVEL transmembrane domain-containing 3 expression is associated with a favorable prognosis in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Han, Tianci; Shu, Tianci; Dong, Siyuan; Li, Peiwen; Li, Weinan; Liu, Dali; Qi, Ruiqun; Zhang, Shuguang; Zhang, Lin

    2017-05-01

    Decreased expression of human chemokine-like factor-like MARVEL transmembrane domain-containing 3 (CMTM3) has been identified in a number of human tumors and tumor cell lines, including gastric and testicular cancer, and PC3, CAL27 and Tca-83 cell lines. However, the association between CMTM3 expression and the clinicopathological features and prognosis of esophageal squamous cell carcinoma (ESCC) patients remains unclear. The aim of the present study was to investigate the correlation between CMTM3 expression and clinicopathological parameters and prognosis in ESCC. CMTM3 mRNA and protein expression was analyzed in ESCC and paired non-tumor tissues by quantitative real-time polymerase chain reaction, western blotting and immunohistochemical analysis. The Kaplan-Meier method was used to plot survival curves and the Cox proportional hazards regression model was also used for univariate and multivariate survival analysis. The results revealed that CMTM3 mRNA and protein expression levels were lower in 82.5% (30/40) and 75% (30/40) of ESCC tissues, respectively, when compared with matched non-tumor tissues. Statistical analysis demonstrated that CMTM3 expression was significantly correlated with lymph node metastasis (P=0.002) and clinical stage (P<0.001) in ESCC tissues. Furthermore, the survival time of ESCC patients exhibiting low CMTM3 expression was significantly shorter than that of ESCC patients exhibiting high CMTM3 expression (P=0.01). In addition, Kaplan-Meier survival analysis revealed that the overall survival time of patients exhibiting low CMTM3 expression was significantly decreased compared with patients exhibiting high CMTM3 expression (P=0.010). Cox multivariate analysis indicated that CMTM3 protein expression was an independent prognostic predictor for ESCC after resection. This study indicated that CMTM3 expression is significantly decreased in ESCC tissues and CMTM3 protein expression in resected tumors may present an effective prognostic

  2. Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: A replication study and meta-analysis in Japanese population.

    Science.gov (United States)

    Higashino, Toshihide; Matsuo, Hirotaka; Sakiyama, Masayuki; Nakayama, Akiyoshi; Nakamura, Takahiro; Takada, Tappei; Ogata, Hiraku; Kawamura, Yusuke; Kawaguchi, Makoto; Naito, Mariko; Kawai, Sayo; Takada, Yuzo; Ooyama, Hiroshi; Suzuki, Hiroshi; Shinomiya, Nariyoshi

    2016-12-01

    PDZ domain containing 1 (PDZK1) is a scaffold protein that organizes a transportsome and regulates several transporters' functions including urate and drug transporters. Therefore, PDZK1 in renal proximal tubules may affect serum uric acid levels through PDZK1-binding renal urate transporters. Two previous studies in Japanese male population reported that a PDZK1 single nucleotide polymorphism (SNP), rs12129861, was not associated with gout. In the present study, we performed a further association analysis between gout and rs12129861 in a different large-scale Japanese male population and a meta-analysis with previous Japanese population studies. We genotyped rs12129861 in 1210 gout cases and 1224 controls of a Japanese male population by TaqMan assay. As a result, we showed that rs12129861 was significantly associated with gout susceptibility (P = 0.016, odds ratio [OR] = 0.80, 95% confidence interval [CI] 0.67-0.96). The result of the meta-analysis among Japanese populations also showed a significant association (P = 0.013, OR = 0.85, 95%CI 0.75-0.97). Our findings show the significant association between gout susceptibility and common variant of PDZK1 which reportedly regulates the functions of urate transporters in the urate transportsome.

  3. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di, E-mail: DiWu@mail.nankai.edu.cn; Wu, Shian

    2013-04-19

    Highlights: •Ser-17 is key for the stability of Drosophila Sav. •Ala mutation of Ser-17 promotes the proteasomal degradation of Sav. •Ser-17 residue is not the main target of Hpo-induced Sav stabilization. •Hpo-dependent and -independent mechanisms regulate Sav stability. •This mechanism is conserved in the homologue of Sav, human WW45. -- Abstract: The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stability of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.

  4. Protein (Cyanobacteria): 434389642 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 502 1173020:502 ... PEP-CTERM putative exosortase interaction domain-containing protein Chamaesiphon minutus PCC 6605 MNVADSAQSATVQFTDL...ASFQANTTGLTNIDFEGIAPAGGSVLTSFNNPTGLSLITDVRGNGTYTVNVVDSAAPPPENVAYQYPYAWGSGAVLGFGSIQR

  5. Protein (Viridiplantae): 357123379 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :497 PREDICTED: BTB/POZ and MATH domain-containing protein 2-like Brachypodium distachyon MEKDCKSITNVARWVKLLKIDGYCAAKTMGNEDC...PSPEKSVSCIFNRSWISRCLEMCSPFVNEDCSLPVCLKSTGELAASGYLRNDSFTVQCTITVLKEDVPAARIPVKEVSVSSPSLQHHLAELLHNKTGTDVTFLVSGKS

  6. Cu,Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis.

    Science.gov (United States)

    He, Chao; Larson-Casey, Jennifer L; Gu, Linlin; Ryan, Alan J; Murthy, Shubha; Carter, A Brent

    2016-07-01

    M2 macrophages are implicated in the development of pulmonary fibrosis as they generate profibrotic signals. The polarization process, at least in part, is regulated by epigenetic modulation. Because Cu,Zn-superoxide dismutase-induced H2O2 can polarize macrophages to a profibrotic M2 phenotype, we hypothesized that modulation of the redox state of the cell is involved in the epigenetic modulation of the macrophage phenotype. In this study, we show that signal transducer and activator of transcription 6 (STAT6) regulates Jumonji domain containing (Jmjd) 3, a histone H3 lysine 27 demethylase, and mutation of a redox-sensitive cysteine in STAT6 attenuates jmjd3 expression. Moreover, Jmjd3 deficiency abrogates profibrotic M2 gene expression. Treatment with leflunomide, which reduces mitochondrial reactive oxygen species production and tyrosine phosphorylation, inhibits jmjd3 expression and M2 polarization, as well as development of a fibrotic phenotype. Taken together, these observations provide evidence that the redox regulation of Jmjd3 is a unique regulatory mechanism for Cu,Zn-superoxide dismutase-mediated profibrotic M2 polarization. Furthermore, leflunomide, which reduces reactive oxygen species production and tyrosine phosphorylation, may prove to be therapeutic in the treatment of asbestos-induced pulmonary fibrosis.

  7. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis.

    Science.gov (United States)

    Tedeschi, Francesca; Rizzo, Paride; Rutten, Twan; Altschmied, Lothar; Bäumlein, Helmut

    2017-03-01

    The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Monayem, A. K. M. [Univ. of New Mexico, Albuquerque, NM (United States); Mazumder, H. [Univ. of New Mexico, Albuquerque, NM (United States); Heinrich, Juan C. [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.

  9. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A.

    Science.gov (United States)

    Luo, Rongcan; Wang, Yongqing; Xu, Peng; Cao, Guangming; Zhao, Yangyu; Shao, Xuan; Li, Yu-xia; Chang, Cheng; Peng, Chun; Wang, Yan-ling

    2016-01-22

    Preeclampsia, a relatively common pregnancy disorder, is a major contributor to maternal mortality and morbidity worldwide. An elevation in microRNA-210 (miR-210) expression in the placenta has been reported to be associated with preeclampsia. Our bioinformatic analysis showed that thrombospondin type I domain containing 7A (THSD7A) is a predicted target for miR-210. The aim of this study was to determine whether miR-210 is involved in preeclampsia through its targeting of THSD7A in human placental trophoblasts. In preeclamptic placental tissues, THSD7A levels were significantly downregulated, and were inversely correlated with the levels of miR-210. THSD7A was validated as a direct target of miR-210 using quantitative real time PCR (qRT-PCR), Western blotting, and dual luciferase assays in HTR8/SVneo cells. Transwell insert invasion assays showed that THSD7A mediated the invasion-inhibitory effect of miR-210 in HTR8/SVneo cells. Interestingly, hypoxia markedly increased miR-210 expression while suppressing THSD7A expression in a time-dependent manner in HTR8/SVneo cells. This study provides novel data on the function of THSD7A in human placental cells, and extends our knowledge of how miR-210 is involved in the development of the preeclampsia.

  10. Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD 2 in Host Defense during Pneumococcal Pneumonia.

    Directory of Open Access Journals (Sweden)

    Tijmen J Hommes

    Full Text Available Streptococcus (S. pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/- and wild-type (Wt alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39, an isogenic capsule locus deletion mutant (D39Δcps or serotype 3 S. pneumoniae (6303 via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.

  11. G-patch domain containing 2, a gene highly expressed in testes, inhibits nuclear factor-κB and cell proliferation.

    Science.gov (United States)

    Hu, Fen; Gou, Lixia; Liu, Qing; Zhang, Wendian; Luo, Mengmeng; Zhang, Xiujun

    2015-02-01

    G-patch domain containing 2 (GPATC2), a human gene that is highly expressed in the testes, was implicated as a novel cancer/testis antigen. The present study investigated GPATC2 expression in a number of human cell lines and rat tissues, and its potential biological function in 293T cells. Semi‑quantitative reverse transcription-polymerase chain reaction analysis showed that GPATC2 was widely expressed in 15 human cell lines (representing different lineages) and in 11 different rat tissues, and that the GPATC2 mRNA relative expression level was significantly higher in the testis than it was in other tissues. 293T cells were transiently transfected with GPATC2-p enhanced green fluorescent protein (EGFP)‑N1 or GPATC2-pEGFP-C3 and the nuclei were stained with 4',6'‑diamidino‑2‑phenylindole. The results showed that GPATC2 is predominantly expressed in the nucleus of 293T cells. Overexpression of GPATC2 may inhibit transcription of the NF-κB reporter gene. The role of GPATC2 in proliferation was analyzed with cell counting kit-8, colony-forming efficiency and flow cytometry assays. The results indicated that over‑expression of GPATC2 in 293T cells significantly inhibited cell proliferation by decreasing the number of cells in S phase. By contrast, GPATC2 knockdown by RNA interference exhibited the opposite effect, suggesting that GPATC2 may be involved in inhibiting G1-S phase transition in 293T cells. In conclusion, these results provide novel insight into the breadth of expression of GPATC2 and its role in cell proliferation.

  12. CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens.

    Science.gov (United States)

    von Schwartzenberg, Klaus; Lindner, Ann-Cathrin; Gruhn, Njuscha; Šimura, Jan; Novák, Ondřej; Strnad, Miroslav; Gonneau, Martine; Nogué, Fabien; Heyl, Alexander

    2016-02-01

    While the molecular basis for cytokinin action is quite well understood in flowering plants, little is known about the cytokinin signal transduction in early diverging land plants. The genome of the bryophyte Physcomitrella patens (Hedw.) B.S. encodes three classical cytokinin receptors, the CHASE domain-containing histidine kinases, CHK1, CHK2, and CHK3. In a complementation assay with protoplasts of receptor-deficient Arabidopsis thaliana as well as in cytokinin binding assays, we found evidence that CHK1 and CHK2 receptors can function in cytokinin perception. Using gene targeting, we generated a collection of CHK knockout mutants comprising single (Δchk1, Δchk2, Δchk3), double (Δchk1,2, Δchk1,3, Δchk2,3), and triple (Δchk1,2,3) mutants. Mutants were characterized for their cytokinin response and differentiation capacities. While the wild type did not grow on high doses of cytokinin (1 µM benzyladenine), the Δchk1,2,3 mutant exhibited normal protonema growth. Bud induction assays showed that all three cytokinin receptors contribute to the triggering of budding, albeit to different extents. Furthermore, while the triple mutant showed no response in this bioassay, the remaining mutants displayed budding responses in a diverse manner to different types and concentrations of cytokinins. Determination of cytokinin levels in mutants showed no drastic changes for any of the cytokinins; thus, in contrast to Arabidopsis, revealing only small impacts of cytokinin signaling on homeostasis. In summary, our study provides a first insight into the molecular action of cytokinin in an early diverging land plant and demonstrates that CHK receptors play an essential role in bud induction and gametophore development.

  13. Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

    Directory of Open Access Journals (Sweden)

    Si Won Kim

    2017-08-01

    Full Text Available Objective Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2 gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7 cells during muscle differentiation. Results Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.

  14. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zijian; Huang, Shanzhou [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Wang, Huanyu [Department of Thyroid and Breast Surgery, Nanshan District People’s Hospital, Shenzhen, 518000 (China); Wu, Jian [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Chen, Dong [Department of Biliopancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Peng, Baogang [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Zhou, Qi, E-mail: hnzhouqi@163.com [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China)

    2016-06-10

    Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT and Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.

  15. Copper Metabolism Domain-Containing 1 Represses Genes That Promote Inflammation and Protects Mice From Colitis and Colitis-Associated Cancer

    NARCIS (Netherlands)

    Li, Haiying; Chan, Lillienne; Bartuzi, Paulina; Melton, Shelby D.; Weber, Axel; Ben-Shlomo, Shani; Varol, Chen; Raetz, Megan; Mao, Xicheng; Starokadomskyy, Petro; van Sommeren, Suzanne; Mokadem, Mohamad; Schneider, Heike; Weisberg, Reid; Westra, Harm-Jan; Esko, Tonu; Metspalu, Andres; Magadi Gopalaiah, Vinod Kumar; Faubion, William A.; Yarovinsky, Felix; Hofker, Marten; Wijmenga, Cisca; Kracht, Michael; Franke, Lude; Aguirre, Vincent; Weersma, Rinse K.; Gluck, Nathan; van de Sluis, Bart; Burstein, Ezra

    2014-01-01

    BACKGROUND & AIMS: Activation of the transcription factor nuclear factor-kappa B (NF-kappa B) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-kapp

  16. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    Science.gov (United States)

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  17. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases

    DEFF Research Database (Denmark)

    Pandey, A.; Blagoev, B.; Kratchmarova, I.;

    2002-01-01

    We have used a proteomic approach using mass spectrometry to identify signaling molecules involved in receptor tyrosine kinase signaling pathways. Using affinity purification by anti-phosphotyrosine antibodies to enrich for tyrosine phosphorylated proteins, we have identified a novel signaling mo...

  18. Nuclear Magnetic Resonance Structure Shows that the Severe Acute Respiratory Syndrome Coronavirus-Unique Domain Contains a Macrodomain Fold▿

    Science.gov (United States)

    Chatterjee, Amarnath; Johnson, Margaret A.; Serrano, Pedro; Pedrini, Bill; Joseph, Jeremiah S.; Neuman, Benjamin W.; Saikatendu, Kumar; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for “middle of the SARS-unique domain”) in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1"-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection. PMID:19052085

  19. Addressing the Inflammatory Response to Clinically Relevant Polymers by Manipulating the Host Response Using ITIM Domain-Containing Receptors

    Directory of Open Access Journals (Sweden)

    Joshua B. Slee

    2014-09-01

    Full Text Available Tissue contacting surfaces of medical devices initiate a host inflammatory response, characterized by adsorption of blood proteins and inflammatory cells triggering the release of cytokines, reactive oxygen species (ROS and reactive nitrogen species (RNS, in an attempt to clear or isolate the foreign object from the body. This normal host response contributes to device-associated pathophysiology and addressing device biocompatibility remains an unmet need. Although widespread attempts have been made to render the device surfaces unreactive, the establishment of a completely bioinert coating has been untenable and demonstrates the need to develop strategies based upon the molecular mechanisms that define the interaction between host cells and synthetic surfaces. In this review, we discuss a family of transmembrane receptors, known as immunoreceptor tyrosine-based inhibitory motif (ITIM-containing receptors, which show promise as potential targets to address aberrant biocompatibility. These receptors repress the immune response and ensure that the intensity of an immune response is appropriate for the stimuli. Particular emphasis will be placed on the known ITIM-containing receptor, Signal Regulatory Protein Alpha (SIRPα, and its cognate ligand CD47. In addition, this review will discuss the potential of other ITIM-containing proteins as targets for addressing the aberrant biocompatibility of polymeric biomaterials.

  20. Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97.

    Science.gov (United States)

    Chang, Yoonjee; Ryu, Sangryeol

    2017-01-01

    Endolysin from Staphylococcus aureus phage SA97 (LysSA97) was cloned and investigated. LysSA97 specifically lyse the staphylococcal strains and effectively disrupted staphylococcal biofilms. Bioinformatic analysis of LysSA97 revealed a novel putative cell wall binding domain (CBD) as well as two enzymatically active domains (EADs) containing cysteine, histidine-dependent amidohydrolases/peptidases (CHAP, PF05257) and N-acetylmuramoyl-L-alanine amidase (Amidase-3, PF01520) domains. Comparison of 98 endolysin genes of S. aureus phages deposited in GenBank showed that they can be classified into six groups based on their domain composition. Interestingly, approximately 80.61 % of the staphylococcal endolysins have a src-homology 3 (SH3, PF08460) domain as CBD, but the remaining 19.39 %, including LysSA97, has a putative C-terminal CBD with no homology to the known CBD. The fusion protein containing green fluorescent protein and the putative CBD of LysSA97 showed a specific binding spectrum against staphylococcal cells comparable to SH3 domain (PF08460), suggesting that the C-terminal domain of LysSA97 is a novel CBD of staphylococcal endolysins.

  1. Sterol Regulatory Element-Binding Protein-1c Regulates Inflammasome Activation in Gingival Fibroblasts Infected with High-Glucose-Treated Porphyromonas gingivalis

    Science.gov (United States)

    Kuo, Hsing-Chun; Chang, Li-Ching; Chen, Te-Chuan; Lee, Ko-Chao; Lee, Kam-Fai; Chen, Cheng-Nan; Yu, Hong-Ren

    2016-01-01

    Background: Porphyromonas gingivalis is a major bacterial species implicated in the progression of periodontal disease, which is recognized as a common complication of diabetes. The interleukin (IL)-1β, processed by the NLR family pyrin domain containing 3 (NLRP3) inflammasome, has been identified as a target for pathogenic infection of the inflammatory response. However, the effect of P. gingivalis in a high-glucose situation in the modulation of inflammasome activation in human gingival fibroblasts (HGFs) is not well-understood. Methods: P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the regulation of HGF NLRP3 expression by the infection of high-glucose-treated P. gingivalis (HGPg). Results: HGF infection with HGPg increases the expression of IL-1β and NLRP3. We further demonstrated that the upregulation of sterol regulatory element-binding protein (SREBP)-1c by activation of the Akt and p70S6K pathways is critical for HGPg-induced NLRP3 expression. We showed that the inhibition of Janus kinase 2 (JAK2) blocks the Akt- and p70S6K-mediated SREBP-1c, NLRP3, and IL-1β expression. The effect of HGPg on HGF signaling and NLRP3 expression is mediated by β1 integrin. In addition, gingival tissues from diabetic patients with periodontal disease exhibited higher NLRP3 and SREBP-1c expression. Conclusions: Our findings identify the molecular pathways underlying HGPg-dependent NLRP3 inflammasome expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs. PMID:28083517

  2. Copper metabolism domain-containing 1 represses the mediators involved in the terminal effector pathways of human labour and delivery.

    Science.gov (United States)

    Lappas, Martha

    2016-04-01

    Does Copper Metabolism MURR1 Domain 1 (COMMD1) play a role in regulating the mediators involved in the terminal processes of human labour and delivery? COMMD1 plays a critical role in the termination of nuclear factor-κB (NF-κB) activity and the control of pro-inflammatory and pro-labour mediators. Inflammation and infection are the biggest aetiological factors associated with preterm birth. NF-κB drives the transcription of pro-inflammatory mediators involved in the terminal effector pathways of human labour and delivery. In non-gestational tissues, COMMD1 is a negative regulator of NF-κB-induced inflammation. The mRNA and/or protein level of COMMD1 was assessed in myometrium (n = 8 per group) and fetal membranes (n = 8 per group) obtained from term non-labouring and labouring women at term, and fetal membranes (n = 8 per group) at preterm with and without histological chorioamnionitis. Primary human myometrial cells were used to determine the effect of pro-inflammatory mediators on COMMD1 level, and the effect of COMMD1 small interfering RNA (siRNA) on pro-labour mediators. Statistical significance was ascribed to a P labour in myometrium; in fetal membranes with histologically confirmed chorioamnionitis and in myometrial cells treated with pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, the bacterial product fibroblast-stimulating lipopeptide and the viral double stranded RNA analogue polyinosinic polycytidilic acid. Loss-of-function studies revealed an increase in inflammation- and infection-induced TNF-α, IL-1α, IL-1β, IL-6, IL-8 and/or monocyte chemoattractant protein-1 mRNA abundance and/or release; and cyclo-oxygenase-2 mRNA level, release of prostaglandin (PG) F2α and mRNA level of the PGF2α receptor FP. In addition, siRNA knockdown of COMMD1 was associated with significantly increased NF-κB activation as evidenced by increased IL-1β-induced IκB-α protein degradation and NF-κB DNA binding activity. The

  3. Distinct regions of Galpha13 participate in its regulatory interactions with RGS homology domain-containing RhoGEFs.

    Science.gov (United States)

    Kreutz, Barry; Hajicek, Nicole; Yau, Douglas M; Nakamura, Susumu; Kozasa, Tohru

    2007-08-01

    Galpha12 and Galpha13 transduce signals from G protein-coupled receptors to RhoA through RhoGEFs containing an RGS homology (RH) domain, such as p115 RhoGEF or leukemia-associated RhoGEF (LARG). The RH domain of p115 RhoGEF or LARG binds with high affinity to active forms of Galpha12 and Galpha13 and confers specific GTPase-activating protein (GAP) activity, with faster GAP responses detected in Galpha13 than in Galpha12. At the same time, Galpha13, but not Galpha12, directly stimulates the RhoGEF activity of p115 RhoGEF or nonphosphorylated LARG in reconstitution assays. In order to better understand the molecular mechanism by which Galpha13 regulates RhoGEF activity through interaction with RH-RhoGEFs, we sought to identify the region(s) of Galpha13 involved in either the GAP response or RhoGEF activation. For this purpose, we generated chimeras between Galpha12 and Galpha13 subunits and characterized their biochemical activities. In both cell-based and reconstitution assays of RhoA activation, we found that replacing the carboxyl-terminal region of Galpha12 (residues 267-379) with that of Galpha13 (residues 264-377) conferred gain-of-function to the resulting chimeric subunit, Galpha12C13. The inverse chimera, Galpha13C12, exhibited basal RhoA activation which was similar to Galpha12. In contrast to GEF assays, GAP assays showed that Galpha12C13 or Galpha13C12 chimeras responded to the GAP activity of p115 RhoGEF or LARG in a manner similar to Galpha12 or Galpha13, respectively. We conclude from these results that the carboxyl-terminal region of Galpha13 (residues 264-377) is essential for its RhoGEF stimulating activity, whereas the amino-terminal alpha helical and switch regions of Galpha12 and Galpha13 are responsible for their differential GAP responses to the RH domain.

  4. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    Science.gov (United States)

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules.

  5. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex

    Directory of Open Access Journals (Sweden)

    Gottlieb Paul D

    2006-06-01

    Full Text Available Abstract Background Disrupting the balance of histone lysine methylation alters the expression of genes involved in tumorigenesis including proto-oncogenes and cell cycle regulators. Methylation of lysine residues is commonly catalyzed by a family of proteins that contain the SET domain. Here, we report the identification and characterization of the SET domain-containing protein, Smyd2. Results Smyd2 mRNA is most highly expressed in heart and brain tissue, as demonstrated by northern analysis and in situ hybridization. Over-expressed Smyd2 localizes to the cytoplasm and the nucleus in 293T cells. Although accumulating evidence suggests that methylation of histone 3, lysine 36 (H3K36 is associated with actively transcribed genes, we show that the SET domain of Smyd2 mediates H3K36 dimethylation and that Smyd2 represses transcription from an SV40-luciferase reporter. Smyd2 associates specifically with the Sin3A histone deacetylase complex, which was recently linked to H3K36 methylation within the coding regions of active genes in yeast. Finally, we report that exogenous expression of Smyd2 suppresses cell proliferation. Conclusion We propose that Sin3A-mediated deacetylation within the coding regions of active genes is directly linked to the histone methyltransferase activity of Smyd2. Moreover, Smyd2 appears to restrain cell proliferation, likely through direct modulation of chromatin structure.

  6. The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization.

    Science.gov (United States)

    Ollis, Anne A; Kumar, Aruna; Postle, Kathleen

    2012-06-01

    The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters. In Escherichia coli, the periplasmic domain of ExbD appears to transition from proton motive force-independent to proton motive force-dependent interactions with TonB, catalyzing the conformational changes of TonB. A 10-residue deletion scanning analysis showed that while all regions except the extreme amino terminus of ExbD were indispensable for function, distinct roles for the amino- and carboxy-terminal regions of the ExbD periplasmic domain were evident. Like residue D25 in the ExbD transmembrane domain, periplasmic residues 42 to 61 facilitated the conformational response of ExbD to proton motive force. This region appears to be important for transmitting signals between the ExbD transmembrane domain and carboxy terminus. The carboxy terminus, encompassing periplasmic residues 62 to 141, was required for initial assembly with the periplasmic domain of TonB, a stage of interaction required for ExbD to transmit its conformational response to proton motive force to TonB. Residues 92 to 121 were important for all three interactions previously observed for formaldehyde-cross-linked ExbD: ExbD homodimers, TonB-ExbD heterodimers, and ExbD-ExbB heterodimers. The distinct requirement of this ExbD region for interaction with ExbB raised the possibility of direct interaction with the few residues of ExbB known to occupy the periplasm.

  7. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process.

    NARCIS (Netherlands)

    Giamarellos, E.J.; Mouktaroudi, M.; Bodar, E.J.; Ven, J. van de; Kullberg, B.J.; Netea, M.G.; Meer, J.W.M. van der

    2009-01-01

    OBJECTIVE: Recent studies suggest that crystals of monosodium urate (MSU), deposited in joints of patients with acute gouty arthritis, activate the NACHT domain, leucine-rich repeat and pyrin domain-containing protein (NALP)3 inflammasome. In the present study we have investigated whether production

  8. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout

    NARCIS (Netherlands)

    McKinney, Cushla; Stamp, Lisa K.; Dalbeth, Nicola; Topless, Ruth K.; Day, Richard O.; Kannangara, Diluk R. W.; Williams, Kenneth M.; Janssen, Matthijs; Jansen, Timothy L.; Joosten, Leo A.; Radstake, Timothy R.; Riches, Philip L.; Tausche, Anne-Kathrin; Liote, Frederic; So, Alexander; Merriman, Tony R.

    2015-01-01

    Introduction: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3

  9. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout

    NARCIS (Netherlands)

    McKinney, C.; Stamp, L.K.; Dalbeth, N.; Topless, R.K.; Day, R.O.; Kannangara, D.R.; Williams, K.M.; Janssen, M; Jansen, T.L.Th.A.; Joosten, L.A.B.; Radstake, T.R.; Riches, P.L.; Tausche, A.K.; Liote, F.; So, A.; Merriman, T.R.

    2015-01-01

    INTRODUCTION: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3

  10. Protein: MPA6 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available in 30 kDa adipocyte complement-related protein, Adipocyte complement-related 30 kDa protein, Adipocyte, C1q ...and collagen domain-containing protein, Adipose most abundant gene transcript 1 protein, Gelatin-binding protein 9606 Homo sapiens Q15848 9370 9370 Q15848 18054335, 19646806 ...

  11. Nucleotide-binding oligomerization domain containing 1 (NOD1 haplotypes and single nucleotide polymorphisms modify susceptibility to inflammatory bowel diseases in a New Zealand caucasian population: a case-control study

    Directory of Open Access Journals (Sweden)

    Barclay Murray L

    2009-03-01

    Full Text Available Abstract Background The nucleotide-binding oligomerization domain containing 1 (NOD1 gene encodes a pattern recognition receptor that senses pathogens, leading to downstream responses characteristic of innate immunity. We investigated the role of NOD1 single nucleotide polymorphisms (SNPs on IBD risk in a New Zealand Caucasian population, and studied Nod1 expression in response to bacterial invasion in the Caco2 cell line. Findings DNA samples from 388 Crohn's disease (CD, 405 ulcerative colitis (UC, 27 indeterminate colitis patients and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in NOD1, using the MassARRAY® iPLEX Gold assay. Transcriptional activation of the protein produced by NOD1 (Nod1 was studied after infection of Caco2 cells with Escherichia coli LF82. Carrying the rs2075818 G allele decreased the risk of CD (OR = 0.66, 95% CI = 0.50–0.88, p Conclusion The NOD1 gene is important in signalling invasion of colonic cells by pathogenic bacteria, indicative of its' key role in innate immunity. Carrying specific SNPs in this gene significantly modifies the risk of CD and/or UC in a New Zealand Caucasian population.

  12. Computational studies on receptor-ligand interactions between novel buffalo (Bubalus bubalis) nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants and muramyl dipeptide (MDP).

    Science.gov (United States)

    Brahma, Biswajit; Patra, Mahesh Chandra; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Maharana, Jitendra; Vats, Ashutosh; Ahlawat, Sonika; Datta, Tirtha Kumar; De, Sachinandan

    2016-04-01

    Nucleotide binding and oligomerization domain 2 (NOD2), a member of intracellular NOD-like receptors (NLRs) family, recognizes the bacterial peptidoglycan, muramyl dipeptide (MDP) and initiates host immune response. The precise ligand recognition mechanism of NOD2 has remained elusive, although studies have suggested leucine rich repeat (LRR) region of NOD2 as the possible binding site of MDP. In this study, we identified multiple transcripts of NOD2 gene in buffalo (buNOD2) and at least five LRR variants (buNOD2-LRRW (wild type), buNOD2-LRRV1-V4) were found to be expressed in buffalo peripheral blood mononuclear cells. The newly identified buNOD2 transcripts were shorter in lengths as a result of exon-skipping and frame-shift mutations. Among the variants, buNOD2-LRRW, V1, and V3 were expressed more frequently in the animals studied. A comparative receptor-ligand interaction study through modeling of variants, docking, and molecular dynamics simulation revealed that the binding affinity of buNOD2-LRRW towards MDP was greater than that of the shorter variants. The absence of a LRR segment in the buNOD2 variants had probably affected their affinity toward MDP. Notwithstanding a high homology among the variants, the amino acid residues that interact with MDP were located on different LRR motifs. The binding free energy calculation revealed that the amino acids Arg850(LRR4) and Glu932(LRR7) of buNOD2-LRRW, Lys810(LRR3) of buNOD2-LRRV1, and Lys830(LRR3) of buNOD2-LRRV3 largely contributed towards MDP recognition. The knowledge of MDP recognition and binding modes on buNOD2 variants could be useful to understand the regulation of NOD-mediated immune response as well as to develop next generation anti-inflammatory compounds.

  13. Inhibition of Fas-associated death domain-containing protein (FADD protects against myocardial ischemia/reperfusion injury in a heart failure mouse model.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available AIM: As technological interventions treating acute myocardial infarction (MI improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS: Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS: FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion, attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION: Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

  14. The NACHT, LRR and PYD Domains-Containing Protein 3 (NLRP3) Inflammasome Mediates Inflammation and Voiding Dysfunction in a Lipopolysaccharide-Induced Rat Model of Cystitis.

    Science.gov (United States)

    Hughes, Francis M; Kennis, James G; Youssef, Melissa N; Lowe, Danielle W; Shaner, Brooke E; Purves, J Todd

    2016-02-01

    NOD-like receptors (NLRs) sense sterile and non-sterile signals and form inflammasomes which trigger an inflammatory response through the activation of caspase-1 and release of IL-1β. Recently we have shown the presence of several NLRs in the bladder urothelia and demonstrated the importance of NLRP3 in bladder outlet obstruction and cyclophosphamide-induced cystitis, both models of sterile inflammation. In this study we explore a role for NLRP3 in mediating the response to LPS, a key antigen of uropathogenic bacteria. In order to bypass the protective glycosaminoglycan layer lining the urothelium, LPS was directly injected into the bladder wall of Sprague-Dawley rats. Glyburide (a NLRP3 inhibitor) or vehicle was administered orally prior to and after injection. Rats were analyzed 24 h later. Inflammasome activity (caspase-1 activity, IL-1β release) and inflammation (Evan's Blue extravasation, bladder weight) were assessed, as was physiological bladder function (urodynamics). Injection of LPS stimulated inflammasome activation (caspase-1 activity) and the release of IL-1β into the urine which was prevented by glyburide. Likewise, LPS increased inflammation, (bladder weight and the extravasation of Evan's blue dye), and this was reversed by glyburide. Functionally, animals injected with saline alone demonstrated decreased voiding volume as measured by urodynamics. In the presence of LPS, additional urinary dysfunction was evident with decreased voiding pressures and threshold pressures. The decrease in voiding pressure was blocked by glyburide but the decrease in threshold pressure was not, suggesting that LPS has significant effects mediated by inflammasome-dependent and -independent mechanisms. Overall, the results demonstrate the potential importance of inflammasomes in bacterial cystitis as well as the ability of the bladder wall injection technique to isolate the in vivo effects of specific inflammasome ligands to the physiological changes associated with cystitis.

  15. Intramolecular Interactions and Regulation of Cofactor Binding by the Four Repressive Elements in the Caspase Recruitment Domain-containing Protein 11 (CARD11) Inhibitory Domain.

    Science.gov (United States)

    Jattani, Rakhi P; Tritapoe, Julia M; Pomerantz, Joel L

    2016-04-15

    The CARD11 signaling scaffold transmits signaling between antigen receptors on B and T lymphocytes and the transcription factor NF-κB during the adaptive immune response. CARD11 activity is controlled by an inhibitory domain (ID), which participates in intramolecular interactions and prevents cofactor binding prior to receptor triggering. Oncogenic CARD11 mutations associated with the activated B cell-like subtype of diffuse large B cell lymphoma somehow perturb ID-mediated autoinhibition to confer CARD11 with the dysregulated spontaneous signaling to NF-κB that is required for the proliferation and survival of the lymphoma. Here, we investigate how the four repressive elements (REs) we have discovered in the CARD11 ID function to inhibit CARD11 activity with cooperativity and redundancy. We find that each RE contributes to the maintenance of the closed inactive state of CARD11 that predominates in the absence of receptor engagement. Each RE also contributes to the prevention of Bcl10 binding in the basal unstimulated state. RE1, RE2, and RE3 participate in intramolecular interactions with other CARD11 domains and share domain targets for binding. Remarkably, diffuse large B cell lymphoma-associated gain-of-function mutations in the caspase recruitment domain, LATCH, or coiled coil can perturb intramolecular interactions mediated by multiple REs, suggesting how single amino acid oncogenic CARD11 mutations can perturb or bypass the action of redundant inhibitory REs to achieve the level of hyperactive CARD11 signaling required to support lymphoma growth.

  16. Prevalence of Enhanced Granular Expression of Thrombospondin Type-1 Domain-Containing 7A in the Glomeruli of Japanese Patients with Idiopathic Membranous Nephropathy.

    Science.gov (United States)

    Iwakura, Takamasa; Ohashi, Naro; Kato, Akihiko; Baba, Satoshi; Yasuda, Hideo

    2015-01-01

    Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults. Autoantibodies against M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A), which mainly belong to the IgG4 subclass, were reported as associated antibodies for the development of MN. Although PLA2R is a major target antigen for idiopathic MN, the prevalence of MN patients seropositive for PLA2R in Japan is lower than that in other countries. In this study, we conducted immunohistochemical analysis of the presence of THSD7A and PLA2R in renal specimens of MN patients to estimate the prevalence of THSD7A/PLA2R-related idiopathic MN in Japan. Enhanced granular expression of THSD7A and PLA2R was detected in 9.1% and 52.7%, respectively, of the patients with idiopathic MN. Although none of patients with secondary MN displayed enhanced granular expression of THSD7A, 5.4% of them had enhanced granular expression of PLA2R. In conclusion, the prevalence of enhanced granular expression of THSD7A in the glomeruli of Japanese patients with idiopathic MN was higher than the prevalence of MN patients seropositive for THSD7A in USA and Europe.

  17. Prevalence of Enhanced Granular Expression of Thrombospondin Type-1 Domain-Containing 7A in the Glomeruli of Japanese Patients with Idiopathic Membranous Nephropathy.

    Directory of Open Access Journals (Sweden)

    Takamasa Iwakura

    Full Text Available Membranous nephropathy (MN is a leading cause of nephrotic syndrome in adults. Autoantibodies against M-type phospholipase A2 receptor (PLA2R and thrombospondin type-1 domain-containing 7A (THSD7A, which mainly belong to the IgG4 subclass, were reported as associated antibodies for the development of MN. Although PLA2R is a major target antigen for idiopathic MN, the prevalence of MN patients seropositive for PLA2R in Japan is lower than that in other countries. In this study, we conducted immunohistochemical analysis of the presence of THSD7A and PLA2R in renal specimens of MN patients to estimate the prevalence of THSD7A/PLA2R-related idiopathic MN in Japan. Enhanced granular expression of THSD7A and PLA2R was detected in 9.1% and 52.7%, respectively, of the patients with idiopathic MN. Although none of patients with secondary MN displayed enhanced granular expression of THSD7A, 5.4% of them had enhanced granular expression of PLA2R. In conclusion, the prevalence of enhanced granular expression of THSD7A in the glomeruli of Japanese patients with idiopathic MN was higher than the prevalence of MN patients seropositive for THSD7A in USA and Europe.

  18. CKLF-Like MARVEL Transmembrane Domain-Containing Member 3 (CMTM3) Inhibits the Proliferation and Tumorigenisis in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Li, Wujun; Zhang, Shaobo

    2017-01-26

    The CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family, was found in several human tumors and plays an important role in the development and progression of tumors. However, the role of CMTM3 in hepatocellular carcinoma (HCC) remains largely unknown. Thus, in the present study, we explored its expression pattern in human HCC cell lines, as well as its functions in HCC cells. Our results demonstrated that the expression of CMTM3 is lowly expressed in HCC cell lines. In vitro, we found that overexpression of CMTM3 obviously inhibited the proliferation, invasion, and EMT process in HCC cells. Furthermore, overexpression of CMTM3 significantly downregulated the expression levels of phosphorylation of JAK2 and STAT3 in HepG2 cells. In vivo, overexpression of CMTM3 attenuated the tumor growth in Balb/c nude mice. In conclusion, we demonstrated that CMTM3 could play an important role in HCC metastasis by EMT induction via, at least partially, suppressing the JAK2/STAT3 signaling pathway. Therefore, CMTM3 may serve as a potential molecular target in the prevention and/or treatment of HCC invasion and metastasis.

  19. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorgani-Firuzjaee, Sattar [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Adeli, Khosrow [Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  20. Calcineurin A versus NS5A-TP2/HD domain containing 2: a case study of site-directed low-frequency random mutagenesis for dissecting target specificity of peptide aptamers.

    Science.gov (United States)

    Dibenedetto, Silvia; Cluet, David; Stebe, Pierre-Nicolas; Baumle, Véronique; Léault, Jérémie; Terreux, Raphaël; Bickle, Marc; Chassey, Benoit D E; Mikaelian, Ivan; Colas, Pierre; Spichty, Martin; Zoli, Michele; Rudkin, Brian B

    2013-07-01

    We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as "bait," allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A

  1. Association of genetic variations of genes encoding thrombospondin, type 1, domain-containing 4 and 7A with low bone mineral density in Japanese women with osteoporosis.

    Science.gov (United States)

    Mori, Seijiro; Kou, Ikuyo; Sato, Hidenori; Emi, Mitsuru; Ito, Hideki; Hosoi, Takayuki; Ikegawa, Shiro

    2008-01-01

    Twins and family studies have shown that genetic factors are important determinants of bone mass. Important aspects of bone mineral density (BMD) regulation are endocrine systems, notably hormonal regulation of adrenal corticoids, as indicated by clinical knowledge of glucocorticoid-induced osteoporosis. Glucocorticoid is known to negatively regulate bone mass in vivo, and glucocorticoid increases thrombospondin messenger ribonucleic acid (mRNA) levels. We studied single nucleotide polymorphisms (SNPs) in genes encoding thrombospondin, type 1, domain-containing 4 and 7A (THSD4 and THSD7A) for possible association with lumbar and femoral BMD among 337 Japanese women with osteoporosis who participated in the BioBank Japan project. Genetic variations of THSD4 and THSD7A loci displayed significant association with lumbar and femoral BMD. Most significant correlation was observed for THSD7A SNP rs12673692 with lumbar BMD (P = 0.00017). Homozygous carriers of the major (G) allele had the highest BMD [0.886 +/- 0.011 g/cm2, mean +/- standard deviation (SD)], whereas heterozygous carriers were intermediate (0.872 +/- 0.013 g/cm2) and homozygous A-allele carriers had the lowest (0.753 +/- 0.023 g/cm2). THSD4 SNP rs10851839 also displayed strong association with lumbar BMD (P = 0.0092). In addition, both THSD7A and THSD4 displayed significant association with femoral BMD in a recessive model (P = 0.036 and P = 0.0046, respectively). Results suggest that variations of THSD7A and THSD4 loci may be important determinants of osteoporosis in Japanese women.

  2. PDZ-domain containing-2 (PDZD2) drives the maturity of human fetal pancreatic progenitor-derived islet-like cell clusters with functional responsiveness against membrane depolarization.

    Science.gov (United States)

    Leung, Kwan Keung; Suen, Po Man; Lau, Tse Kin; Ko, Wing Hung; Yao, Kwok Ming; Leung, Po Sing

    2009-09-01

    We recently reported the isolation and characterization of a population of pancreatic progenitor cells (PPCs) from early trimester human fetal pancreata. The PPCs, being the forerunners of adult pancreatic cell lineages, were amenable to growth and differentiation into insulin-secreting islet-like cell clusters (ICCs) upon stimulation by adequate morphogens. Of note, a novel morphogenic factor, PDZ-domain containing-2 (PDZD2) and its secreted form (sPDZD2) were ubiquitously expressed in the PPCs. Our goals for this study were to evaluate the potential role of sPDZD2 in stimulating PPC differentiation and to establish the optimal concentration for such stimulation. We found that 10(-9)M sPDZD2 promoted PPC differentiation, as evidenced by the upregulation of the pancreatic endocrine markers (PDX-1, NGN3, NEURO-D, ISL-1, NKX 2.2, NKX 6.1) and INSULIN mRNA. Inhibited endogenous production of sPDZD2 suppressed expression of these factors. Secreted PDZD2 treatment significantly elevated the C-peptide content of the ICCs and increased the basal rate of insulin secretion. However, they remained unresponsive to glucose stimulation, reflected by a minimal increase in GLUT-2 and GLUCOKINASE mRNA expression. Interestingly, sPDZD2 treatment induced increased expression of the L-type voltage-gated calcium channel (Ca(v)1.2) in the ICCs, triggering calcium ion influx under KCl stimulation and conferring an ability to secrete insulin in response to KCl. Pancreatic progenitor cells from 10- and 13-week fetal pancreata showed peak expression of endogenous sPDZD2, implying that sPDZD2 has a specific role in islet development during the first trimester. In conclusion, our data suggest that sPDZD2 promotes functional maturation of human fetal PPC-derived ICCs, thus enhancing its transplanting potentials.

  3. The Lipid Transfer Protein StarD7: Structure, Function, and Regulation

    OpenAIRE

    Susana Genti-Raimondi; Panzetta-Dutari, Graciela M.; Sofía Angeletti; Viviana Rena; Jésica Flores-Martin

    2013-01-01

    The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. The 15 well-characterized mammalian START domain-containing proteins are grouped into six subfamilies. The START domain containing 7 mRNA encodes StarD7, a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily, which was first i...

  4. The Lipid Transfer Protein StarD7: Structure, Function, and Regulation

    OpenAIRE

    Susana Genti-Raimondi; Panzetta-Dutari, Graciela M.; Sofía Angeletti; Viviana Rena; Jésica Flores-Martin

    2013-01-01

    The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. The 15 well-characterized mammalian START domain-containing proteins are grouped into six subfamilies. The START domain containing 7 mRNA encodes StarD7, a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily, which was first i...

  5. Photoreceptor proteins from purple bacteria

    NARCIS (Netherlands)

    Hendriks, J.; van der Horst, M.A.; Chua, T.K.; Ávila Pérez, M.; van Wilderen, L.J.; Alexandre, M.T.A.; Groot, M.-L.; Kennis, J.T.M.; Hellingwerf, K.J.; Hunter, C.N.; Daldal, F.; Thurnauer, M.C.; Beatty, J.T.

    2009-01-01

    Purple bacteria contain representatives of four of the six main families of photoreceptor proteins: phytochromes, BLUF domain containing proteins, xanthopsins (i.e., photoactive yellow proteins), and phototropins (containing one or more light, oxygen, or voltage (LOV) domains). Most of them have a

  6. Magic Numbers in Protein Structures

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Bohr, Henrik

    1996-01-01

    A homology measure for protein fold classes has been constructed by locally projecting consecutive secondary structures onto a lattice. Taking into account hydrophobic forces we have found a mechanism for formation of domains containing magic numbers of secondary structures and multipla of these ......A homology measure for protein fold classes has been constructed by locally projecting consecutive secondary structures onto a lattice. Taking into account hydrophobic forces we have found a mechanism for formation of domains containing magic numbers of secondary structures and multipla...

  7. Structure and Membrane Binding Properties of the Endosomal Tetratricopeptide Repeat (TPR) Domain-containing Sorting Nexins SNX20 and SNX21.

    Science.gov (United States)

    Clairfeuille, Thomas; Norwood, Suzanne J; Qi, Xiaying; Teasdale, Rohan D; Collins, Brett M

    2015-06-01

    Sorting nexins (SNX) orchestrate membrane trafficking and signaling events required for the proper distribution of proteins within the endosomal network. Their phox homology (PX) domain acts as a phosphoinositide (PI) recognition module that targets them to specific endocytic membrane domains. The modularity of SNX proteins confers a wide variety of functions from signaling to membrane deformation and cargo binding, and many SNXs are crucial modulators of endosome dynamics and are involved in a myriad of physiological and pathological processes such as neurodegenerative diseases, cancer, and inflammation. Here, we have studied the poorly characterized SNX20 and its paralogue SNX21, which contain an N-terminal PX domain and a C-terminal PX-associated B (PXB) domain of unknown function. The two proteins share similar PI-binding properties and are recruited to early endosomal compartments by their PX domain. The crystal structure of the SNX21 PXB domain reveals a tetratricopeptide repeat (TPR)-fold, a module that typically binds short peptide motifs, with three TPR α-helical repeats. However, the C-terminal capping helix adopts a highly unusual and potentially self-inhibitory topology. SAXS solution structures of SNX20 and SNX21 show that these proteins adopt a compact globular architecture, and membrane interaction analyses indicate the presence of overlapping PI-binding sites that may regulate their intracellular localization. This study provides the first structural analysis of this poorly characterized subfamily of SNX proteins, highlighting a likely role as endosome-associated scaffolds.

  8. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Asosii ePaul

    2016-03-01

    Full Text Available The α-crystallin domain (ACD is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement and DNA demethylation. An exhaustive in-silico analysis using Hidden Markof Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to 4 groups, sub-divided further into18 classes. One of these groups belongs to the small heat shock protein (sHSP class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity and oxidative stress and phytohormones (abscisic acid and salicylic acid suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta.

  9. Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultaet fuer Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Stierl, M.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Kateriya, Suneel [Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)

    2011-08-25

    Graphical abstract: The photoactivated adenylyl cyclase (nPAC) from Naegleria gruberi was expressed heterologously in Escherichia coli and its photo-cycling dynamics was studied by optical absorption and fluorescence spectroscopy. Highlights: {yields} Photo-activated adenylyl cyclase (nPAC) from Naegleria gruberi NEG-M was expressed. {yields} Photodynamics of BLUF domain in BLUF sensor - cyclase actuator protein was studied. {yields} Photo-excitation caused BLUF photo-cycling and permanent protein re-conformation. {yields} Re-conformed protein enabled photo-induced flavin reduction by proton transfer. {yields} Fluorescence of flavin in dark- and light-adapted state of nPAC was characterized. - Abstract: The amoeboflagellate Naegleria gruberi NEG-M comprises a BLUF (blue light sensor using flavin) regulated adenylate cyclase (nPAC). The nPAC gene was expressed heterologously in Escherichia coli and the photo-dynamics of the nPAC protein was studied by optical absorption and fluorescence spectroscopy. Blue-light exposure of nPAC caused a typical BLUF-type photo-cycle behavior (spectral absorption red-shift, fluorescence quenching, absorption and fluorescence recovery in the dark). Additionally, time-delayed reversible photo-induced one-electron reduction of fully oxidized flavin (Fl{sub ox}) to semi-reduced flavin (FlH{sup {center_dot}}) occurred. Furthermore, photo-excitation of FlH{sup {center_dot}} caused irreversible electron transfer to fully reduced anionic flavin (FlH{sup -}). A photo-induced electron transfer from Tyr or Trp to flavin (Tyr{sup {center_dot}+}-Fl{sup {center_dot}-} or Trp{sup {center_dot}+}-Fl{sup {center_dot}-} radical ion-pair formation) is thought to cause H-bond restructuring responsible for BLUF-type photo-cycling and permanent protein re-conformation enabling photo-induced flavin reduction by proton transfer. Some photo-degradation of Fl{sub ox} to lumichrome was observed. A model of the photo-dynamics of nPAC is developed.

  10. Potassium channel tetramerisation domain containing 15 regulates preadipocyte differentiation%KCTD15基因调控3T3-L1脂肪前体细胞分化的研究

    Institute of Scientific and Technical Information of China (English)

    徐景; 赵旭; 杨莹; 徐梓辉

    2013-01-01

    Objective To study the effect of potassium channel tetramerisation domain containing 15 (KCTD15) gene on preadipocyte differentiation.Methods The expression of KCTD15 gene during 3T3-L1 preadipocyte differentiation was detected by semi-quantitative reverse transcriptase PCR.After transferring KCTD15 siRNA into the preadipocytes,the cell morphology was observed during preadipocyte differentiation by oil red O staining,and the level of triglyceride was examined by assay kit.The expression of adipogenesis genes,peroxisome proliferator-activated receptor (PPAR) γ,CCAAT/enhancer-binding protein (C/EBP) α,C/EBPβ and C/EBPδ was detected by semi-quantitative reverse transcriptase PCR.Results The expression of KCTD15 gene was decreased during 3T3-L1 cell differentiation.KCTD15 gene knockdown inhibited the differentiation and lipid accumulation of 3T3-L1 cells,and there was no significant change in the expression of PPARγ,C/EBPα,C/EBPβ and C/EBPδ.Conclusion KCTD15 gene deficiency leads to the inhibition of 3T3-L1 preadipocyte differentiation at early stage.%目的 探讨含钾通道四聚化结构域15(KCTD15)基因在3T3-L1脂肪前体细胞分化过程中的作用.方法 ①采用半定量逆转录PCR检测在3T3-L1脂肪前体细胞分化过程中KCTD15 mRNA表达变化.②在3T3-L1脂肪前体细胞增殖早期通过RNA干扰技术靶向敲低KCTD15基因的表达,在靶向敲低KCTD15基因后的转染KCTD15 siRNA 48 h后通过半定量逆转录PCR验证KCTD15基因的敲低效果.用油红O染色法观察KCTD15敲低后3T3-L1细胞第0天和第10天的细胞形态学改变.③采用半定量逆转录PCR检测KCTD15基因敲低后PPARγ、C/EBPα、C/EBPβ、C/EBPδ成脂基因的变化.结果 在3T3-L1脂肪前体细胞分化过程中,KCTD15 mRNA表达水平逐渐降低(P<0.05);KCTD15敲低能显著抑制3T3-L1脂肪前体细胞分化;KCTD15敲低后PPARγ、C/EBPα、C/EBPβ、C/EBPδ成脂基因无明显变化.结论 在分化早期阶段敲低KCTD15

  11. Identification, molecular cloning and expression analysis of a HORMA domain containing Autophagy-related gene 13 (ATG13 from the coleopteran beetle, Tenebrio molitor

    Directory of Open Access Journals (Sweden)

    Jung Hee eLee

    2015-06-01

    Full Text Available Autophagy is a process that is necessary during starvation as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg proteins that manifest in the nucleation, elongation, and curving of autophagosome membrane. We isolated a homolog of an ATG13 gene from the transcriptome database of the larva of the mealworm beetle, Tenebrio molitor (designated as TmATG13. The sequence analysis showed that TmATG13 cDNA comprises of 1,176 bp open reading frame that encodes a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region, rich in regulatory phosphorylation sites. The N-terminal Atg13 domain show a HORMA (Hop1, Rev7, and Mad2 fold containing conserved amino acid residues across the Atg13 orthologs in insects. qRT-PCR revealed that TmATG13 was expressed ubiquitously in all the developmental stages of insect. TmATG13 mRNA expression was high in fat body and gut of the larval and adult stages of the insect. During ovary development and maturation, the TmATG13 transcripts showed high expression until six days of development, followed by a significant decline. The prospective functions mediated by TmAtg13 during autophagy will be clarified by further studies in the near future.

  12. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation.

    Science.gov (United States)

    Daub, M; Jöckel, J; Quack, T; Weber, C K; Schmitz, F; Rapp, U R; Wittinghofer, A; Block, C

    1998-11-01

    Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.

  13. Transmembrane and ubiquitin-like domain containing 1 (Tmub1 regulates locomotor activity and wakefulness in mice and interacts with CAMLG.

    Directory of Open Access Journals (Sweden)

    Wandong Zhang

    Full Text Available Tmub1 (C7orf21/HOPS encodes a protein containing a ubiquitin-like domain. Tmub1 is highly expressed in the nervous system. To study its physiological function, we generated mice with Tmub1 deleted by homologous recombination. The knockout mice were grossly normal and viable. In a comprehensive behavioral testing battery, the only knockout phenotype displayed was a strong increase in home cage locomotor activity during the dark phase (subjective day of the light:dark (L:D cycle. There were no changes in activity during the light period. There were no changes in locomotor activity observed in other assays, e.g. novel open-field. The increase in dark phase locomotor activity persisted during a seven day D:D (complete darkness challenge, and remained largely confined to the normally dark period. Telemetric recording in freely moving subjects for one 24 hr L:D cycle, revealed the same increase in locomotor activity in the dark phase. In addition, EEG analysis showed that the knockout mice exhibited increased waking and decreased NREM & REM times during the dark phase, but the EEG was otherwise normal. Using lacZ as a reporter we found Tmub1 expression prominent in a few brain structures including the thalamus, a region known to drive wakefulness and arousal via its projections to the cortex. We identified calcium modulating cyclophilin ligand CAMLG/CAML as a binding partner by a yeast two-hybrid screen of a brain library. The interaction of Tmub1 and CAMLG was confirmed by co-immunoprecipitation assays in HEK cells. The two proteins were also found to be co-localized to the cytoplasm when expressed in HEK cells. Both Tmub1 and CAMLG have been recently described in the regulation of membrane trafficking of specific receptors. Taken together our results implicate Tmub1 in the regulation of locomotor activity and wakefulness and suggest that Tmub1 binds to and functions together with CAMLG.

  14. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor.

    Science.gov (United States)

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships.

  15. Apolipoprotein E LDL receptor-binding domain-containing high-density lipoprotein: a nanovehicle to transport curcumin, an antioxidant and anti-amyloid bioflavonoid.

    Science.gov (United States)

    Khumsupan, Panupon; Ramirez, Ricardo; Khumsupan, Darin; Narayanaswami, Vasanthy

    2011-01-01

    Curcumin is an antioxidant and anti-inflammatory bioflavonoid that has been recently identified as an anti-amyloid agent as well. To make it more available in its potent form as a potential amyloid disaggregation agent, we employed high-density lipoproteins (HDL), which are lipid-protein complexes that transport plasma cholesterol, to transport curcumin. The objective of this study was to employ reconstituted HDL containing human apoE3 N-terminal (NT) domain, as a vehicle to transport curcumin. The NT domain serves as a ligand to mediate binding and uptake of lipoprotein complexes via the low-density lipoprotein receptor (LDLr) family of proteins located at the cell surface. Reconstituted HDL was prepared with phospholipids and recombinant apoE3-NT domain in the absence or presence of curcumin. Non-denaturing polyacrylamide gel electrophoresis indicated that the molecular mass and Stokes' diameter of HDL bearing curcumin were ~670kDa and ~17nm, respectively, while electron microscopy revealed the presence of discoidal particles. Fluorescence emission spectra of HDL bearing (the intrinsically fluorescent) curcumin indicated that the wavelength of maximal fluorescence emission (λ(max)) of curcumin was ~495nm, which is highly blue-shifted compared to λ(max) of curcumin in solvents of varying polarity (λ(max) ranging from 515-575nm) or in aqueous buffers. In addition, an enormous enhancement in fluorescence emission intensity was noted in curcumin-containing HDL compared to curcumin in aqueous buffers. Curcumin fluorescence emission was quenched to a significant extent by lipid-based quenchers but not by aqueous quenchers. These observations indicate that curcumin has partitioned efficiently into the hydrophobic milieu of the phospholipid bilayer of HDL. Functional assays indicated that the LDLr-binding ability of curcumin-containing HDL with apoE3-NT is similar to that of HDL without curcumin. Taken together, we report that apoE-containing HDL has a tremendous

  16. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.

    Science.gov (United States)

    Nie, Xiaoqun; Yang, Bin; Zhang, Lei; Gu, Yang; Yang, Sheng; Jiang, Weihong; Yang, Chen

    2016-04-01

    The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domain (PRD)-containing enhancer binding proteins (EBPs) are an important class of σ(54) -interacting transcriptional activators. Although PRD-containing EBPs are present in many Firmicutes, most of their regulatory functions remain unclear. In this study, the transcriptional regulons of about 50 PRD-containing EBPs in diverse Firmicutes species are reconstructed by using a comparative genomic approach, which contain the genes associated with utilization of β-glucosides, fructose/levan, mannose/glucose, pentitols, and glucosamine/fructosamine. We then present experimental evidence that the cel operon involved in cellobiose utilization is directly regulated by CelR and σ(54) (SigL) in Clostridium acetobutylicum. The predicted three CelR-binding sites and σ(54) promoter elements upstream of the cel operon are verified by in vitro binding assays. We show that CelR has an ATPase activity, which is strongly stimulated by the presence of DNA containing the CelR-binding sites. Moreover, mutations in any one of the three CelR-binding sites significantly decreased the cel promoter activity probably due to the need for all three DNA sites for maximal ATPase activity of CelR. It is suggested that CelR is regulated by PTS-mediated phosphorylation at His-551 and His-829, which exerts a positive effect and an inhibitory effect, respectively, on the CelR activity. © 2015 John Wiley & Sons Ltd.

  17. Anti-hepatitis B virus effect of matrine-type alkaloid and involvement of p38 mitogen-activated protein kinase and tumor necrosis factor receptor-associated factor 6.

    Science.gov (United States)

    Chen, Jia-Xin; Shen, Hong-Hui; Niu, Ming; Guo, Yu-Ming; Liu, Xiao-Qiong; Han, Yan-Zhong; Zhang, Ya-Ming; Zhao, Yan-Ling; Bai, Bing-Ke; Zhou, Wen-Jun; Xiao, Xiao-He

    2016-04-01

    The matrine-type alkaloid, oxymatrine inhibits hepatitis B virus (HBV) replication but very little is known about these effects in other matrine-type alkaloids, including sophoridine and sophocarpine. Therefore, we compared the in vitro anti-HBV effects of matrine, oxymatrine, sophocarpine, and sophoridine by treating an HBV-transfected cell line (HepG2.2.15) with 0.4-1.6mM of the compounds for 24 or 72h. The levels of the HBV surface antigen (HBsAg) and e antigen (HBeAg) in the culture medium, as well as the intracellular and extracellular HBV DNA levels, were determined. Metabolomic analysis and detection of the mRNA level of p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor receptor-associated factor (TRAF) 6, extracellular signal-regulated kinase (ERK) 1, NOD-like receptor family pyrin domain containing 10 (NLRP10), and caspase-1 were conducted in sophoridine-treated HepG2.2.15 cells. HepG2.2.15 cell exposure to 0.4-1.6mM sophocarpine or sophoridine for 24h reduced the HBsAg level of the medium more effectively than exposure to matrine and oxymatrine did, and reduced the HBeAg levels more effectively than these compounds did at 1.6mM. Sophoridine (0.4-1.6mM) reduced the cell medium HBV DNA levels more than the same concentrations of matrine, oxymatrine, or sophocarpine did. After 72h, 0.4 and 0.8mM sophoridine reduced HBsAg and intracellular HBV DNA levels more potently than matrine, oxymatrine, or sophocarpine did. Furthermore, sophoridine (0.8mM) potently reduced the cell medium HBeAg levels while the metabolomic analyses revealed that HepG2.2.15 cells exposed to 0.8mM sophoridine for 72h exhibited reduced cycloleucine and phytosphingosine levels. In addition, the mRNA expression analyses revealed that HepG2.2.15 cells exposed to 0.8mM sophoridine showed reduced levels of p38 MAPK, TRAF6, ERK1, NLRP10, and caspase-1. Sophoridine produced more potent anti-HBV effects than matrine, oxymatrine, and sophocarpine did. These effects may be related

  18. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA suggests that the channel-forming domain contains beta-strands.

    Directory of Open Access Journals (Sweden)

    Roland Benz

    Full Text Available Escherichia coli α-hemolysin (HlyA is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71-110, 158-167, 180-203, and 264-286. These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71-110 and HlyAΔ264-286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158-167 and HlyAΔ180-203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71-110 and HlyAΔ264-286 had a smaller size (diameter about 1.4 to 1.8 nm than wildtype HlyA channels (diameter about 2.0 to 2.6 nm, suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71-110, and HlyAΔ264-286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.

  19. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li

    2015-01-01

    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  20. A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy.

    Science.gov (United States)

    Dahiya, Preeti; Findlay, Kim; Roberts, Keith; McCann, Maureen C

    2006-05-01

    The vascular cylinder of the mature stem of Zinnia elegans cv Envy contains two anatomically distinct sets of vascular bundles, stem bundles and leaf-trace bundles. We isolated a full-length cDNA of ZeFLA11, a fasciclin-domain-containing gene, from a zinnia cDNA library derived from in vitro cultures of mesophyll cells induced to form tracheary elements. Using RNA in situ hybridization, we show that ZeFLA11 is expressed in the differentiating xylem vessels with reticulate type wall thickenings and adjacent parenchyma cells of zinnia stem bundles, but not in the leaf-trace bundles that deposit spiral thickenings. Our results suggest a function for this cell-surface GPI-anchored glycoprotein in secondary wall deposition during differentiation of metaxylem tissue with reticulate vessels.

  1. The Relationship between NALP3 and Autoinflammatory Syndromes

    Directory of Open Access Journals (Sweden)

    Lorna Campbell

    2016-05-01

    Full Text Available The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3 inflammasome, which is required for synthesis of interleukin-1β, has been implicated in the pathogenesis of several autoinflammatory syndromes. This review of the literature summarizes the interconnectedness of NALP3 inflammasome with some of these disorders. Familial Mediterranean fever results from a mutation in the Mediterranean fever (MEFV gene, which encodes the pyrin protein. Previous study results suggest that pyrin suppresses caspase-1 activation, perhaps by competing for the adaptor protein, termed, pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ACS which therefore interferes with NALP3 inflammasome activation. The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3 inflammasome is constitutively activated in cryopyrin-associated periodic syndromes due to gain-of-function mutations resulting from point mutations within the neuronal apoptosis inhibitor protein/class 2 transcription factor/heterokaryon incompatibility/telomerase-associated protein-1 (NACHT domain of the NALP3 protein. Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA syndrome is caused by mutations in the genes encoding proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1. These PSTPIP1 mutants are thought to bind to pyrin causing an increase in the pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ASC pyroptosome assembly leading to procaspase-1 recruitment and therefore its activation. Hyperimmunoglublinemia D syndrome is caused by mevalonate kinase (MVK deficiency, which may be affected by protein accumulation that leads to NALP3 inflammasome activation. Tumor necrosis factor receptor–associated periodic syndrome is associated with mutations in the tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A gene which decreases the level of soluble tumor

  2. The Relationship between NALP3 and Autoinflammatory Syndromes

    Science.gov (United States)

    Campbell, Lorna; Raheem, Irfan; Malemud, Charles J.; Askari, Ali D.

    2016-01-01

    The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome, which is required for synthesis of interleukin-1β, has been implicated in the pathogenesis of several autoinflammatory syndromes. This review of the literature summarizes the interconnectedness of NALP3 inflammasome with some of these disorders. Familial Mediterranean fever results from a mutation in the Mediterranean fever (MEFV) gene, which encodes the pyrin protein. Previous study results suggest that pyrin suppresses caspase-1 activation, perhaps by competing for the adaptor protein, termed, pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ACS) which therefore interferes with NALP3 inflammasome activation. The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome is constitutively activated in cryopyrin-associated periodic syndromes due to gain-of-function mutations resulting from point mutations within the neuronal apoptosis inhibitor protein/class 2 transcription factor/heterokaryon incompatibility/telomerase-associated protein-1 (NACHT) domain of the NALP3 protein. Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is caused by mutations in the genes encoding proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). These PSTPIP1 mutants are thought to bind to pyrin causing an increase in the pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ASC) pyroptosome assembly leading to procaspase-1 recruitment and therefore its activation. Hyperimmunoglublinemia D syndrome is caused by mevalonate kinase (MVK) deficiency, which may be affected by protein accumulation that leads to NALP3 inflammasome activation. Tumor necrosis factor receptor–associated periodic syndrome is associated with mutations in the tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A) gene which decreases the level of soluble tumor necrosis

  3. The Relationship between NALP3 and Autoinflammatory Syndromes.

    Science.gov (United States)

    Campbell, Lorna; Raheem, Irfan; Malemud, Charles J; Askari, Ali D

    2016-05-13

    The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome, which is required for synthesis of interleukin-1β, has been implicated in the pathogenesis of several autoinflammatory syndromes. This review of the literature summarizes the interconnectedness of NALP3 inflammasome with some of these disorders. Familial Mediterranean fever results from a mutation in the Mediterranean fever (MEFV) gene, which encodes the pyrin protein. Previous study results suggest that pyrin suppresses caspase-1 activation, perhaps by competing for the adaptor protein, termed, pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ACS) which therefore interferes with NALP3 inflammasome activation. The nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome is constitutively activated in cryopyrin-associated periodic syndromes due to gain-of-function mutations resulting from point mutations within the neuronal apoptosis inhibitor protein/class 2 transcription factor/heterokaryon incompatibility/telomerase-associated protein-1 (NACHT) domain of the NALP3 protein. Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is caused by mutations in the genes encoding proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). These PSTPIP1 mutants are thought to bind to pyrin causing an increase in the pyrin domain of apoptosis/speck-like protein containing a caspase-recruitment domain (ASC) pyroptosome assembly leading to procaspase-1 recruitment and therefore its activation. Hyperimmunoglublinemia D syndrome is caused by mevalonate kinase (MVK) deficiency, which may be affected by protein accumulation that leads to NALP3 inflammasome activation. Tumor necrosis factor receptor-associated periodic syndrome is associated with mutations in the tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A) gene which decreases the level of soluble tumor necrosis factor

  4. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  5. Vascular Endothelial Growth Factor Gene Polymorphism (rs2010963 and Its Receptor, Kinase Insert Domain-Containing Receptor Gene Polymorphism (rs2071559, and Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Sebastjan Merlo

    2016-01-01

    Full Text Available Background. The current study was designed to reveal possible associations between the polymorphisms of the vascular endothelial growth factor (VEGF gene (rs2010963 and its receptor, kinase insert domain-containing receptor (KDR gene polymorphism (rs2071559, and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus (T2DM. Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT and plaque characteristics (presence and structure were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Genotyping of VEGF/KDR polymorphisms (rs2010963, rs2071559 was performed using KASPar assays. Results. Genotype distributions and allele frequencies of the VEGF/KDR polymorphisms (rs2010963, rs2071559 were not statistically significantly different between diabetic patients and controls. In our study, we demonstrated an association between the rs2071559 of KDR and either CIMT or the sum of plaque thickness in subjects with T2DM. We did not, however, demonstrate any association between the tested polymorphism of VEGF (rs2010963 and either CIMT, the sum of plaque thickness, the number of involved segments, hsCRP, the presence of carotid plaques, or the presence of unstable carotid plaques. Conclusions. In the present study, we demonstrated minor effect of the rs2071559 of KDR on markers of carotid atherosclerosis in subjects with T2DM.

  6. Discovery and Optimization of Piperidyl-1,2,3-Triazole Ureas as Potent, Selective, and In Vivo-Active Inhibitors of Alpha/Beta-Hydrolase Domain Containing 6 (ABHD6)

    Science.gov (United States)

    Hsu, Ku-Lung; Tsuboi, Katsunori; Chang, Jae Won; Whitby, Landon R.; Speers, Anna E.; Pugh, Holly; Cravatt, Benjamin F.

    2014-01-01

    Alpha/beta-hydrolase domain containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) to regulate certain forms of cannabinoid receptor-dependent signaling in the nervous system. The full spectrum of ABHD6 metabolic activities and functions is currently unknown and would benefit from selective, in vivo-active inhibitors. Here, we report the development and characterization of an advanced series of irreversible (2-substituted)-piperidyl-1,2,3-triazole urea inhibitors of ABHD6, including compounds KT182 and KT203, which show exceptional potency and selectivity in cells (< 5 nM) and, at equivalent doses in mice (1 mg kg-1), served as systemic and peripherally-restricted ABHD6 inhibitors, respectively. We also describe an orally-bioavailable ABHD6 inhibitor KT185 that displays excellent selectivity against other brain and liver serine hydrolases in vivo. We thus describe several chemical probes for biological studies of ABHD6, including brain-penetrant and peripherally-restricted inhibitors that should prove of value for interrogating ABHD6 function in animal models. PMID:24152295

  7. Chicken Ig-like receptor B2, a member of a multigene family, is mainly expressed on B lymphocytes, recruits both Src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2, and inhibits proliferation

    NARCIS (Netherlands)

    Viertlboeck, B.C.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Gobel, T.W.

    2004-01-01

    Ig-like inhibitory receptors have been the focus of intensive research particularly in mouse and human. We report the cloning and characterization of three novel inhibitory chicken Ig-like receptors (CHIR) that display a two Ig-domain extracellular structure, a transmembrane region lacking charged

  8. The structure in solution of the b domain of protein disulfide isomerase

    NARCIS (Netherlands)

    Kemmink, J; Dijkstra, K; Mariani, M; Scheek, RM; Penka, E; Nilges, M; Darby, NJ

    1999-01-01

    Protein disulfide isomerase (PDI) is a multifunctional protein of the endoplasmic reticulum, which catalyzes the formation, breakage and rearrangement of disulfide bonds during protein folding. It consists of four domains designated a, b, b' and a'. Both a and a' domains contain an active site with

  9. Z-100, extracted from Mycobacterium tuberculosis strain Aoyama B, promotes TNF-α production via nucleotide-binding oligomerization domain containing 2 (Nod2)-dependent NF-κB activation in RAW264.7 cells.

    Science.gov (United States)

    Katsunuma, Kokichi; Yoshinaga, Koji; Ohira, Yuta; Eta, Runa; Sato, Takanori; Horii, Takayuki; Tanaka, Takao; Takei, Mineo; Seto, Koichi

    2015-03-01

    Macrophages are a major component of the innate immune system, and the cytokines they secrete are involved in antitumor responses. Z-100 is obtained from hot-water extract of human-type Mycobacterium tuberculosis strain Aoyama B and activates the innate immune response. However, while Z-100 is known to modulate macrophage activity, the mechanism behind this modulation is not fully understood. We evaluated the effects of Z-100 on the murine macrophage cell line RAW264.7. Tumor necrosis factor-alpha (TNF-α) production from RAW264.7 cells was strongly induced by Z-100 and interferon-gamma (IFN-γ) stimulation but only weakly induced by Z-100 alone. Quantitative gene expression analysis showed that nucleotide-binding oligomerization domain containing 2 (Nod2) expression was up-regulated by IFN-γ treatment in RAW264.7 cells while Z-100-induced TNF-α production was attenuated by Nod2 gene silencing. Further, componential analysis demonstrated that muramic acid and amino acids distinctive of muramyl dipeptide (MDP) were contained within Z-100 and Z-100Fr I, the low-molecular-weight fraction containing components Z-100Fr I enhanced TNF-α production in RAW264.7 cells and promoted NOD2-dependent nuclear factor-kappa B (NF-κB) activation in murine NOD2-expressing SEAP reporter HEK293 (HEK-Blue-mNOD2) cells. Taken together, these results suggest that Z-100 contains MDP-like molecules and augments NF-κB signaling via the direct activation of Nod2 in macrophages, which might be one mechanism driving the innate immune responses induced by Z-100 in cancer immunotherapy.

  10. The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice.

    Science.gov (United States)

    Muraille, E; Dassesse, D; Vanderwinden, J M; Cremer, H; Rogister, B; Erneux, C; Schiffmann, S N

    2001-01-01

    The germinative ventricular zone of embryonic brain contains neural lineage progenitor cells that give rise to neurons, astrocytes and oligodendrocytes. The ability to generate neurons persists at adulthood in restricted brain areas. During development, many growth factors exert their effects by interacting with tyrosine kinase receptors and activate the phosphatidylinositol 3-kinase and the Ras/MAP kinase pathways. By its ability to modulate these pathways, the recently identified Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 2, SHIP2, has the potential to regulate neuronal development. Using in situ hybridization technique with multiple synthetic oligonucleotides, we demonstrated that SHIP2 mRNA was highly expressed in the ventricular zone at early embryonic stages and subventricular zones at latter stages of brain and spinal cord and in the sympathetic chain. No significant expression was seen in differentiated fields. This restricted expression was maintained from embryonic day 11.5 to birth. In the periphery, large expression was detected in muscle and kidney and moderate expression in thyroid, pituitary gland, digestive system and bone. In the adult brain, SHIP2 was mainly restricted in structures containing neural stem cells such as the anterior subventricular zone, the rostral migratory stream and the olfactory tubercle. SHIP2 was also detected in the choroid plexuses and the granular layer of the cerebellum. The specificity of SHIP2 expression in neural stem cells was further demonstrated by (i) the dramatic increase in SHIP2 mRNA signal in neural cell adhesion molecule (N-CAM)-deficient mice, which present an accumulation of progenitor cells in the anterior subventricular zone and the rostral migratory stream, (ii) the abundant expression of 160-kDa SHIP2 by western blotting in proliferating neurospheres in culture and its downregulation in non-proliferating differentiated neurospheres. In conclusion, the close correlation between

  11. Apoptosis-associated speck-like protein containing a CARD (ASC) expression profiles in familial Mediterranean fever (FMF) patients with different MEFV mutation patterns.

    Science.gov (United States)

    Nalbantoglu, S; Tanyolac, B; Berdeli, A

    2013-01-01

    The inflammasome complex and the inflammatory pathway have been implicated in the pathogenesis of the most common autoinflammatory disorder, familial Mediterranean fever (FMF). Pyrin, the protein product of the FMF gene MEFV, interacts with the inflammasome complex adaptor protein ASC/PYCARD (apoptosis-associated speck-like protein with a CARD). Pyrin and ASC can both function as either inducers or suppressors of the cellular inflammatory response. We aimed to characterize ASC-induced gene expression profiles in FMF patients with different MEFV mutation patterns. A total of 165 Caucasian patients with clinical and molecular FMF diagnoses were enrolled in the study. ASC gene expression was quantified by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). ASC mRNA expression was increased in the MEFV mutation-positive group compared to the mutation-negative group (p = 0.001). The fold changes of ASC expression in the M694V homozygous (p = 0.02), M694V heterozygous (p = 0.012), compound heterozygous (p = 0.002), and R202Q/P369S/R408Q (p = 0.00) groups relative to the MEFV mutation-negative group were +2.4, +2.7, +3, and +3.4, respectively. qRT-PCR did not reveal a significant difference in ASC mRNA expression levels among the MEFV mutation-positive groups (p > 0.05). ASC mRNA expression was up-regulated in patients carrying MEFV mutations independent of mutation type. There was no significant relationship between specific MEFV genotypes and the level of ASC expression in the patient group analysed. Thus, the findings of this work may suggest a crucial relationship between mutant MEFV/pyrin and remarkable ASC up-regulation in FMF inflammation.

  12. HBV X protein interacts with cytoskeletal signaling proteins through SH3 binding.

    Science.gov (United States)

    Feng, Huixing; Tan, Tuan Lin; Niu, Dandan; Chen, Wei Ning

    2010-01-01

    The aim of this study was to investigate interactions between cellular SH3-containing proteins and the proline-rich domain in Hepatitis B Virus (HBV) X protein (HBx) The proline-rich domain of HBx (amino acids 19-58) as well as the relevant site-directed mutagenesis (proline to alanine residues) were cloned into pGEX-5X-1 and expressed as GST-PXXP and GST-AXXA probes. Panomics SH3 domain arrays were probed using both GST-PXXP and GST-AXXA to identify potential interacting SH3 domain containing proteins. The specific interactions were confirmed by the immunoprecipitation of the full-length SH3 domain-containing protein. We report here the binding assay which demonstrated interaction between PXXP domain in HBx and the SH3-domain containing proteins, in particular various signaling proteins involved in cytoskeletal reorganization. Our findings were consistent with similar virus-host interactions via SH3 binding for other viruses such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV) Further characterization of the proline-rich binding to SH3 domains could yield important information for the design of novel therapeutic measures against downstream disease causative effects of HBx in the liver cells.

  13. Proteomic analysis of SETD6 interacting proteins.

    Science.gov (United States)

    Cohn, Ofir; Chen, Ayelet; Feldman, Michal; Levy, Dan

    2016-03-01

    SETD6 (SET-domain-containing protein 6) is a mono-methyltransferase that has been shown to methylate RelA and H2AZ. Using a proteomic approach we recently identified several new SETD6 substrates. To identify novel SETD6 interacting proteins, SETD6 was immunoprecipitated (IP) from Human erythromyeloblastoid leukemia K562 cells. SETD6 binding proteins were subjected to mass-spectrometry analysis resulting in 115 new SETD6 binding candidates. STRING database was used to map the SETD6 interactome network. Network enrichment analysis of biological processes with Gene Ontology (GO) database, identified three major groups; metabolic processes, muscle contraction and protein folding.

  14. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages.

    Science.gov (United States)

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P Monie, Tom; Bryant, Clare E

    2016-09-27

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response.

  15. CARD9 negatively regulates NLRP3-induced IL-1β production on Salmonella infection of macrophages

    Science.gov (United States)

    Pereira, Milton; Tourlomousis, Panagiotis; Wright, John; P. Monie, Tom; Bryant, Clare E.

    2016-01-01

    Interleukin-1β (IL-1β) is a proinflammatory cytokine required for host control of bacterial infections, and its production must be tightly regulated to prevent excessive inflammation. Here we show that caspase recruitment domain-containing protein 9 (CARD9), a protein associated with induction of proinflammatory cytokines by fungi, has a negative role on IL-1β production during bacterial infection. Specifically, in response to activation of the nucleotide oligomerization domain receptor pyrin-domain containing protein 3 (NLRP3) by Salmonella infection, CARD9 negatively regulates IL-1β by fine-tuning pro-IL-1β expression, spleen tyrosine kinase (SYK)-mediated NLRP3 activation and repressing inflammasome-associated caspase-8 activity. CARD9 is suppressed during Salmonella enterica serovar Typhimurium infection, facilitating increased IL-1β production. CARD9 is, therefore, a central signalling hub that coordinates a pathogen-specific host inflammatory response. PMID:27670879

  16. The Noc-domain containing C-terminus of Noc4p mediates both formation of the Noc4p-Nop14p submodule and its incorporation into the SSU processome.

    Science.gov (United States)

    Kühn, Holger; Hierlmeier, Thomas; Merl, Juliane; Jakob, Steffen; Aguissa-Touré, Almass-Houd; Milkereit, Philipp; Tschochner, Herbert

    2009-12-18

    Noc1p, Noc3p and Noc4p are eukaryotic proteins which play essential roles in yeast ribosome biogenesis and contain a homologous stretch of about 45 aminoacids (Noc-domain) of unknown function. Yeast Noc4p is a component of the small ribosomal subunit (SSU) processome, can be isolated as a stable Noc4p-Nop14p SSU-processome submodule from yeast cells, and is required for nuclear steps of small ribosomal subunit rRNA maturation. We expressed a series of mutated alleles of NOC4 in yeast cells and analysed whether the corresponding protein variants support vegetative growth, interact with Nop14p, and are incorporated into the SSU-processome. The data reveal that the essential C-terminus of Noc4p which contains 237 aminoacids including the Noc-domain represents a protein-protein interaction module. It is required and sufficient for its association with Nop14p and several nuclear precursors of the small ribosomal subunit. The N-terminal Noc4-part seems to be targeted to pre-ribosomes via the C-terminus of Noc4p and plays there an essential role in SSU-processome function. Replacement of the Noc4p-Noc-domain by its homologues Noc1p-counterpart results in a hybrid Noc4p variant which fails to associate with Nop14p and pre-ribosomes. On the other hand, exchange of 6 amino acids in the Noc1-Noc-domain of this hybrid Noc4p protein is sufficient to restore its essential in vivo functions. These data suggest that Noc-domains of Noc1p and Noc4p share a common structural backbone in which diverging amino acids play crucial roles in mediating specific regulated interactions. Our analysis allows us to distinguish between different functions of certain domains within Noc4p and contribute to the understanding of how incorporation of Noc4p into ribosomal precursors is coupled to rRNA processing and maturation of the small ribosomal subunit.

  17. Heterogeneity in the properties of mutant secreted lymphocyte antigen 6/urokinase receptor-related protein 1 (SLURP1) in Mal de Meleda

    DEFF Research Database (Denmark)

    Adeyo, Oludotun; Oberer, Monika; Ploug, M

    2015-01-01

    Genetic defects in SLURP1, a "lymphocyte antigen 6" (Ly6)-like protein, cause mal de Meleda, a palmoplantar keratoderma (PPK). The hallmark of Ly6 proteins is an 80-amino acid domain containing 10 cysteines, all arranged in a characteristic spacing pattern and all disulfide-bonded, creating a thr...

  18. Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Tang, Mingjuan; Liu, Xiaofei; Deng, Huaping; Shen, Shihua

    2011-12-01

    Jatropha curcas L. is an all-purpose biodiesel plant and is widely distributed in tropical and subtropical climates. It can grow well on poor quality soil which is not qualified for crop cultivation. This is very important for relieving land, food and energy crises. However, tropical and subtropical distribution limits the production of J. curcas seed. So it is valuable to know the molecular mechanism of J. curcas response to adverse abiotic environmental factors, especially freezing stress, in order to change the plant's characteristics. Until now there are just a few reports about J. curcas molecular biology. In this paper, we cloned and characterized a DNA binding protein from this plant, designated as JcDREB. Sequence analysis and yeast one-hybrid assays show that JcDREB can effectively function as a transcription factor of DREB protein family belonging to A-6 subgroup member. Expression patterns of JcDREB showed that it was induced by cold, salt and drought stresses, not by ABA. Over-expression of JcDREB in transgenic Arabidopsis exhibited enhanced salt and freezing stresses. Understanding the molecular mechanisms of J. curcas responses to environmental stresses, for example, high salinity, drought and low temperature, is crucial for improving their stress tolerance and productivity. This work provides more information about A-6 subgroup members of DREB subfamily.

  19. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.).

    Science.gov (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1. Its transcriptional activities and interactions with the acetyl-CoA carboxylase (BCCP2) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis, high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase (P < 0.05) in seed oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

  20. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from Coconut (Cocos nucifera L.) Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (Oryza sativa L.)

    Science.gov (United States)

    Sun, RuHao; Ye, Rongjian; Gao, Lingchao; Zhang, Lin; Wang, Rui; Mao, Ting; Zheng, Yusheng; Li, Dongdong; Lin, Yongjun

    2017-01-01

    Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1. Its transcriptional activities and interactions with the acetyl-CoA carboxylase (BCCP2) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis, high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase (P < 0.05) in seed oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined. PMID:28179911

  1. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling

    Science.gov (United States)

    Piao, Wenji; Song, Chang; Chen, Haiyan; Quevedo Diaz, Marco A.; Wahl, Larry M.; Fitzgerald, Katherine A.; Li, Liwu; Medvedev, Andrei E.

    2009-01-01

    Endotoxin tolerance reprograms cell responses to LPS by repressing expression of proinflammatory cytokines, while not inhibiting production of anti-inflammatory cytokines and antimicrobial effectors. Molecular mechanisms of induction and maintenance of endotoxin tolerance are incompletely understood, particularly with regard to the impact of endotoxin tolerization on signalosome assembly, activation of adaptor-kinase modules, and expression of negative regulators of TLR signaling in human cells. In this study, we examined LPS-mediated activation of MyD88-dependent and Toll-IL-1R-containing adaptor inducing IFN-β (TRIF)-dependent pathways emanating from TLR4 and expression of negative regulators of TLR signaling in control and endotoxin-tolerant human monocytes. Endotoxin tolerization suppressed LPS-inducible TLR4-TRIF and TRIF-TANK binding kinase (TBK)1 associations, induction of TBK1 kinase activity, activation of IFN regulatory factor (IRF)-3, and expression of RANTES and IFN-β. Tolerance-mediated dysregulation of the TLR4-TRIF-TBK1 signaling module was accompanied by increased levels of suppressor of IκB kinase-ε (SIKE) and sterile α and Armadillo motif-containing molecule (SARM). LPS-tolerant cells showed increased expression of negative regulators Toll-interacting protein (Tollip), suppressor of cytokine signaling (SOCS)-1, IL-1R-associated kinase-M, and SHIP-1, which correlated with reduced p38 phosphorylation, IκB-α degradation, and inhibited expression of TNF-α, IL-6, and IL-8. To examine functional consequences of increased expression of Tollip in LPS-tolerized cells, we overexpressed Tollip in 293/TLR4/MD-2 transfectants and observed blunted LPS-inducible activation of NF-κB and RANTES, while TNF-α responses were not affected. These data demonstrate dysregulation of TLR4-triggered MyD88- and TRIF-dependent signaling pathways and increased expression of negative regulators of TLR signaling in endotoxin-tolerant human monocytes. PMID:19656901

  2. Delineation of Methyl-DNA Binding Protein Interactions in the Prostate Cancer Genome (PC110091)

    Science.gov (United States)

    2014-03-01

    DNA Binding Protein Interactions in the Prostate Cancer Genome (PC110091) PRINCIPAL INVESTIGATOR: Roderick T Hori, PhD...13. SUPPLEMENTARY NOTES Prostate Cancer, Methylated DNA, Methyl- CpG Binding Domain, Chromatin Immunoprecipitation 14. ABSTRACT The purpose...of this study is to generate a genome-wide association profile of Methyl- CpG Domain-containing (MBD) proteins, such as MeCP2, MBD1, MBD2 and MBD4, in

  3. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  4. Bacterial LPS differently modulates inflammasome gene expression and IL-1β secretion in trophoblast cells, decidual stromal cells, and decidual endothelial cells.

    Science.gov (United States)

    Pontillo, A; Girardelli, M; Agostinis, C; Masat, E; Bulla, R; Crovella, S

    2013-05-01

    Three Nod-like receptors (NLR family, pyrin domain containing 1/NLRP1, NLR family, pyrin domain containing 3/NLRP3, NLR family, CARD domain containing 4/NLRC4) and the adaptor molecule PYD and CARD domain containing protein/PYCARD are involved in the assembling of multiprotein complexes known as inflammasomes, leading to caspase 1 activation and consequent interleukin (IL)-1β secretion. Considering that inflammasomes are involved in sensing pathogens and in triggering inflammatory and immune response, we hypothesized that they could also act in the placenta as an efficient innate mechanism during pregnancy infections. For this reason the activation of inflammasome was tested in 3 human placental cell populations in the presence of a common gram-negative compound (lipopolysaccharide [LPS]). The transcription of NLRP1, NLRP3, NLRC4, PYCARD, CASP1, and IL1B genes and the secretion of IL-1β were evaluated in human first trimester cytotrophoblasts (CTBs), decidual stromal cells (DSCs), and endothelial cells (DECs) stimulated with LPS. In CTBs and DSCs, LPS induced an augmented expression of CASP1 and IL1B and the specific upregulation of NLRP3 within the 3 NLRs tested. Moreover, LPS induced secretion of IL-1β from CTBs and DSCs. These results suggest the involvement of NLRP3 inflammasome in the placental innate response. The LPS did not affect inflammasome gene transcription and IL-1β production in DECs. Bacterial LPS enhances NLRP3 inflammasome components in trophoblast and DSCs, suggesting that this innate immune complex could play a key role in placental immune defense.

  5. Crystal structure of cyclic nucleotide-binding-like protein from Brucella abortus.

    Science.gov (United States)

    He, Zheng; Gao, Yuan; Dong, Jing; Ke, Yuehua; Li, Xuemei; Chen, Zeliang; Zhang, Xuejun C

    2015-12-25

    The cyclic nucleotide-binding (CNB)-like protein (CNB-L) from Brucella abortus shares sequence homology with CNB domain-containing proteins. We determined the crystal structure of CNB-L at 2.0 Å resolution in the absence of its C-terminal helix and nucleotide. The 3D structure of CNB-L is in a two-fold symmetric form. Each protomer shows high structure similarity to that of cGMP-binding domain-containing proteins, and likely mimics their nucleotide-free conformation. A key residue, Glu17, mediates the dimerization and prevents binding of cNMP to the canonical ligand-pocket. The structurally observed dimer of CNB-L is stable in solution, and thus is likely to be biologically relevant.

  6. 锚蛋白重复和激酶域1基因多态性与精神分裂症的关联研究%Association study of schizophrenia and ankyrin repeat and kinase domain containing 1 gene polymorphism

    Institute of Scientific and Technical Information of China (English)

    郭娟; 陈元堂; 何长江; 张丽; 吴瑜; 行养玲; 敖磊

    2010-01-01

    目的 探讨锚蛋白重复和激酶域1(ANKK1)基因多态性与精神分裂症的相关性.方法 收集符合美国DSM-Ⅳ精神分裂症诊断标准的112个先证者及其父母组成的核心家系,运用聚合酶链反应扩增及单核苷酸多态性的分子生物学技术,对ANK K1基因的rs4938015、rs7118900、rs2734849、rs1800497多态性分型,进行精神分裂症与锚蛋白重复和激酶域1基因多态性的关联分析和单体型相对风险率分析.结果 rs2734849等位基因与精神分裂症相关联(P=0.026),其中等位基因T是保护因素(Z=-2.19),A为危险因素(Z=2.19);rs4938015、rs7118900、rs1800497与精神分裂症无关联.三种单体型rs7118900-rs2734849的G/A、rs 2734849-rs1800497的A/C、rs7118900-rs2734849-rs1800497中的G/A/C与精神分裂症有关联(P值分别为0.032,0.041,0.046,基因型频率分别为0.36,0.29,0.17).结论 ANKK1基因与精神分裂症相关联.%Objective To detect the genetic association between schizophrenia and polymorphism of Ankyrin repeat and kinase domain containing 1 ( ANKK1 ) gene. Methods Observed in a sample of 112 parent/offspring trios where the proband net the American Classification and diagnostic Criteria for Mental Disorders The Forth Revised Edition, criteria for schizophrenia using correlation analysis and haplotype relative risk analysis. The polymorphism of Ankyrin repeat and kinase domain containing 1 gene was detected with PCR methods and SNP typing in all nucleus families. Results The rs2734849 allele was connected with schizophrenia(P= 0. 026). Allele T was protective factor( Z= -2.19) and allele A was the hazard factor( Z=2. 19). The rs4938015,rs7118900 and rs1800497 allele were independence with schizophrenia. Three kinds haplotypes of G/A in the rs7118900 -rs2734849, A/C in the rs2734849 -rs1800497, G/A/C in the rs7118900 -rs2734849 -rs1800497 were associated with schizophrenia ( The P values were 0.032,0. 041,0.046, the genotype frequencies were 0. 36,0.29,0. 17

  7. IQGAP1: A microtubule-microfilament scaffolding protein with multiple roles in nerve cell development and synaptic plasticity.

    Science.gov (United States)

    Jausoro, Ignacio; Mestres, Iván; Remedi, Mónica; Sanchez, Mónica; Cáceres, Alfredo

    2012-11-01

    In this article, we review our current understanding of the biology of IQ domain-containing GTPase-Activating Protein 1, IQGAP1, a scaffolding protein with multiple binding partners, which is widely expressed among different cell types, including neurons, and capable of linking Rho-GTPase signaling with cytosleletal elements and environmental cues. Interestingly, a series of recent studies suggest that IQGAP family members have an important role in neuronal development, synaptic plasticity and nervous system disorders involving alterations in spine density.

  8. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Science.gov (United States)

    Jääskeläinen, Pentti; Engelhardt, Peter; Hynönen, Ulla; Torkkeli, Mika; Palva, Airi; Serimaa, Ritva

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 Å and 435 Å.

  9. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Energy Technology Data Exchange (ETDEWEB)

    Jaeaeskelaeinen, Pentti [Department of Biomedical Engineering and Computational Science, PO Box 2200, FI-02015 Aalto University School of Science and Technology (Finland); Engelhardt, Peter [Haartman Institute, Department of Pathology, PO Box 21, FIN-00014 University of Helsinki (Finland); Hynoenen, Ulla; Palva, Airi [Department of Basic Veterinary Sciences, Division of Microbiology, FIN-00014 University of Helsinki (Finland); Torkkeli, Mika; Serimaa, Ritva, E-mail: ritva.serimaa@helsinki.f [Department of Physics, POB 64, 00014 University of Helsinki (Finland)

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 A and 435 A.

  10. The evolution and putative function of phosducin-like proteins in the malaria parasite Plasmodium.

    Science.gov (United States)

    Putonti, Catherine; Quach, Bryan; Kooistra, Rachel L; Kanzok, Stefan M

    2013-01-01

    Ubiquitous to the proteomes of all living species is the presence of proteins containing the thioredoxin (Trx)-domain. The best characterized Trx-domain containing proteins include the enzymes involved in cellular redox metabolism facilitated by their cysteine-containing active site. But not all members of the Trx-fold superfamily exhibit this catalytic motif, e.g., the phosducin-like (PhLP) family of proteins. Genome sequencing efforts have uncovered new Trx-domain containing proteins, and their redox activity and cellular functions have yet to be determined. The genome of the malaria parasite Plasmodium contains multiple thioredoxins and thioredoxin-like proteins which are of considerable interest given their role in the parasite's antioxidant defense. While adaptations within the Trx-domain have been studied, primarily with respect to redox active structures, PhLP proteins have not been examined. Using the uncharacterized phosducin-like protein from Plasmodium berghei PhLP-1, we investigated the evolution of PhLP proteins across all branches of the tree of life. As a result of our analysis, we have discovered the presence of two additional PhLP proteins in Plasmodium, PhLP-2 and PhLP-3. Sequence homology with annotated PhLP proteins in other species confirms that the Plasmodium PhLP-2 and PhLP-3 belong to the PhLP family of proteins. Furthermore, as a result of our analysis we hypothesize that the PhLP-2 thioredoxin was lost over time given its absence from higher-order eukaryotes. Probing deeper into the putative function of these proteins, inspection of the active sites indicate that PbPhLP-1 and PbPhLP-2 may be redox active while PbPhLP-3 is very likely not. The results of this phylogenetic study provide insight into the emergence of this family of Trx-domain containing proteins.

  11. Chaperone-interacting TPR proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Haslbeck, Veronika; Eckl, Julia M; Kaiser, Christoph J O; Papsdorf, Katharina; Hessling, Martin; Richter, Klaus

    2013-08-23

    The ATP-hydrolyzing molecular chaperones Hsc70/Hsp70 and Hsp90 bind a diverse set of tetratricopeptide repeat (TPR)-containing cofactors via their C-terminal peptide motifs IEEVD and MEEVD. These cochaperones contribute to substrate turnover and confer specific activities to the chaperones. Higher eukaryotic genomes encode a large number of TPR-domain-containing proteins. The human proteome contains more than 200 TPR proteins, and that of Caenorhabditis elegans, about 80. It is unknown how many of them interact with Hsc70 or Hsp90. We systematically screened the C. elegans proteome for TPR-domain-containing proteins that likely interact with Hsc70 and Hsp90 and ranked them due to their similarity with known chaperone-interacting TPRs. We find C. elegans to encode many TPR proteins, which are not present in yeast. All of these have homologs in fruit fly or humans. Highly ranking uncharacterized open reading frames C33H5.8, C34B2.5 and ZK370.8 may encode weakly conserved homologs of the human proteins RPAP3, TTC1 and TOM70. C34B2.5 and ZK370.8 bind both Hsc70 and Hsp90 with low micromolar affinities. Mutation of amino acids involved in EEVD binding disrupts the interaction. In vivo, ZK370.8 is localized to mitochondria in tissues with known chaperone requirements, while C34B2.5 colocalizes with Hsc70 in intestinal cells. The highest-ranking open reading frame with non-conserved EEVD-interacting residues, F52H3.5, did not show any binding to Hsc70 or Hsp90, suggesting that only about 15 of the TPR-domain-containing proteins in C. elegans interact with chaperones, while the many others may have evolved to bind other ligands.

  12. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    Science.gov (United States)

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  13. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module

    DEFF Research Database (Denmark)

    Rosenthal, J A; Chen, H; Slepnev, V I

    1999-01-01

    Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. E...... fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface....

  14. FYVE-dependent endosomal targeting of an arrestin-related protein in amoeba.

    Directory of Open Access Journals (Sweden)

    Dorian Guetta

    Full Text Available BACKGROUND: Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. METHODOLOGY AND PRINCIPAL FINDINGS: A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. SIGNIFICANCE: This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes.

  15. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    Science.gov (United States)

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  16. miR-155对含SH2区域的肌醇5’磷酸酶1转录后调控在急性髓系白血病发病机制中作用的初步研究%Preliminary study of role of post-transcription regulation on SH2 domain-containing inositol 5'-phosphatase 1 gene expression by miR-155 in the pathogenesis of acute myeloid leukemia

    Institute of Scientific and Technical Information of China (English)

    薛华; 赵松颖; 王静; 范丽霞; 化罗明; 罗建民

    2015-01-01

    目的 探讨miR-155对人类含SH2区域的肌醇5’磷酸酶1(SHIP1)的转录后调控在急性髓系白血病(AML)发病机制中的作用.方法 应用反转录聚合酶链反应(RT-PCR)法检测30例AML患者miR-155、SHIP1的mRNA表达水平,选取同年龄健康人骨髓为对照组.人白血病U937细胞转染miR-155类似物后,RT-PCR法检测转染细胞中miR-155、SHIP1的mRNA表达水平.Western blot法检测转染后细胞SHIP1、AKT、pAKT蛋白水平.流式细胞术检测转染后细胞凋亡的变化.结果 30例AML患者中,15例AML-M4及AML-M5患者SHIP1蛋白水平较非AML-M4及AML-M5患者明显降低,而miR-155表达水平相应升高(均P< 0.05).U937细胞转染miR-155后,SHIP1蛋白水平较转染阴性对照组降低(P<0.05),而p-AKT水平较转染阴性对照组明显升高,转染后细胞凋亡明显受抑(P<0.05).结论 miR-155可对SHIP1进行转录后调控,miR-155可能通过降低SHIP1活性而激活PI3K-AKT途径,抑制白血病细胞的凋亡,从而促进AML的发生.%Objective To investigate the role of microRNA-155 (miR-155) on post-transcription regulation of SH2 domain-containing inositol 5'-phosphatase 1 (SHIP1) gene expression in the pathogenesis of acute myeloid leukemia (AML).Methods Quantitative real-time polymerase chain reaction (RT-PCR) was performed to detect the expression of miR-155 and SHIP1 mRNA in the AML patients and controls.miR-155 mimics was transfected into U937cells (U937m) by using X-treme GENE siRNA transfection reagent.Cells without transfection (U937c) and cells with negative transfection (U937mc) were used as controls.RT-PCR was performed to detect the expression of miR-155 and SHIP1 mRNA in these cells.The expression of SHIP1,TAKT and pAKT were detected by Western blot in U937 cells.Apoptosis was studied by flow cytometry (FCM).Results The average level of SHIP1 protein content in 15 samples of patients with AML-M4 or AML-M5 from 30 AML patients was significantly lower compared with that of

  17. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  18. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses.

    Science.gov (United States)

    Ahlfors, Reetta; Lång, Saara; Overmyer, Kirk; Jaspers, Pinja; Brosché, Mikael; Tauriainen, Airi; Kollist, Hannes; Tuominen, Hannele; Belles-Boix, Enric; Piippo, Mirva; Inzé, Dirk; Palva, E Tapio; Kangasjärvi, Jaakko

    2004-07-01

    Experiments with several Arabidopsis thaliana mutants have revealed a web of interactions between hormonal signaling. Here, we show that the Arabidopsis mutant radical-induced cell death1 (rcd1), although hypersensitive to apoplastic superoxide and ozone, is more resistant to chloroplastic superoxide formation, exhibits reduced sensitivity to abscisic acid, ethylene, and methyl jasmonate, and has altered expression of several hormonally regulated genes. Furthermore, rcd1 has higher stomatal conductance than the wild type. The rcd1-1 mutation was mapped to the gene At1g32230 where it disrupts an intron splice site resulting in a truncated protein. RCD1 belongs to the (ADP-ribosyl)transferase domain-containing subfamily of the WWE protein-protein interaction domain protein family. The results suggest that RCD1 could act as an integrative node in hormonal signaling and in the regulation of several stress-responsive genes.

  19. The intracellular domain of the low affinity p75 nerve growth factor receptor is a death effector domain.

    Science.gov (United States)

    Park, Hyun H

    2009-01-01

    The death domain superfamily, comprising the death domain, death effector domain, caspase recruitment domain and pyrin domain subfamilies, is one of the largest classes of protein interaction modules, and plays a particularly critical function in the assembly and activation of apoptotic and inflammatory complexes. Members of the death domain superfamily share a common structural feature, the 6-helical bundle fold. However, individual subfamilies exhibit distinct structural and sequence characteristics. The most distinct feature identified in structural studies is that only the death effector domain contains a charge triad, which is formed by the E/D-RxDL motif. However, using sequence alignment and structural comparison, in the present study we found that the p75-NGFR death domain also contains a charge triad. We therefore suggest that the p75-NGFR death domain should be classified as belonging to the death effector domain.

  20. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Beibei Luo

    2017-07-01

    Full Text Available Diabetic cardiomyopathy (DCM, a common consequence of longstanding diabetes mellitus, is initiated by death of cardiomyocyte. Hyperglycemia-induced reactive oxygen species (ROS overproduction is a major contributor of the chronic low-grade inflammation that characterizes as the DCM. ROS may promote the activation of nucleotide-binding oligomerization domain like receptor (NLR pyrin domain containing 3 (NLRP3 inflammasome, a novel regulator of inflammation and cell death, by nuclear factor-kB (NF-κB and thioredoxin interacting/inhibiting protein (TXNIP. NLRP3 inflammasome regulates the death of cardiomyocyte and activation of fibroblast in DCM, which is involved in the structural and functional disorder of DCM. However, comprehensive understanding of molecular mechanisms linking NLRP3 inflammasome and disorder of cardiomyocyte and fibroblast in DCM is lacking. Here, we review the molecular mechanism(s of NLRP3 inflammasome activation in response to hyperglycemia in DCM.

  1. BURP蛋白家族研究进展%Progress in Researches of BURP Protein Family

    Institute of Scientific and Technical Information of China (English)

    饶俊; 郑新欣; 胡英考

    2009-01-01

    BURP蛋白家族是植物界中广泛存在的比较保守的结构基因家族,在胚胎形成和种子发育过程中具有功能.对BURP蛋白家族的结构特征及其4个亚家族成员的功能进行了综述.%BURP domain-containing proteins (BURP protein )have conservative structure and extensively exist in plants.This review gave an introduction of the structure and expression of BURP protein family. The functions of the four sub-family members of BURP protein family were also reviewed in details.The studies of BURP proteins have shown that BURP protein played important role in embryo formation and seed development process.The significance of study BURP proteins and explained the was also prospected.

  2. Enhanced interleukin-1beta production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals

    NARCIS (Netherlands)

    Mylona, E.E.; Mouktaroudi, M.; Crisan, T.O.; Makri, S.; Pistiki, A.; Georgitsi, M.; Savva, A.; Netea, M.G.; Meer, J.W. van der; Giamarellos-Bourboulis, E.J.; Joosten, L.A.B.

    2012-01-01

    ABSTRACT: INTRODUCTION: Monosodium urate monohydrate (MSU) crystals synergize with various toll-like receptor (TLR) ligands to induce cytokine production via activation of the NOD-like receptor (NLR) family, pyrin domain-containing 3 (NLPR3) inflammasome. This has been demonstrated in vitro using hu

  3. NCBI nr-aa BLAST: CBRC-TGUT-08-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available 53.1| NLR family, pyrin domain containing 3 [Homo sapiens] gb|EAW77184.1| cold autoinflammatory syndrome 1, ...isoform CRA_b [Homo sapiens] gb|EAW77186.1| cold autoinflammatory syndrome 1, isoform CRA_b [Homo sapiens] NP_004886.3 7e-92 36% ...

  4. Gene expression profiling of TIR-domain-containing adaptor molecule (TICAM)in channel catfish Ictalurus punctatus challenged with different pathogens including bacteria and virus%斑点叉尾(鱼回)TICAM在细菌和病毒感染后的基因表达特征

    Institute of Scientific and Technical Information of China (English)

    王启龙; 李敏; 路飏; 黄爱平; 曾令兵; 王文琪; 陈松林; 沙珍霞

    2012-01-01

    In mammals, Toll-IL-1 receptor (TIR) domain-containing adaptor molecule 1(TICAM-1) is a signaling adaptor for TLR3 and TLR4 that activates the transcription factors IRF-3, NF-kB, and AP-1, leading to the induction of type I interferon and cytokines. TICAM is also identified in some fish species, however, the gene expression profiling of TICAM is largely unknown in teleosts. Because bacteria such as Aeromonas hydrophila , Streptococcus spp. And Edwardsiella tarda and viruses such as channel catfish virus cause a multisystemic disease responsible for severe losses in channel catfish aquaculture in China. In this study, gene expression profiling of TICAM in different immune tissues(iver, headkidney, spleen,and intestine) after infection with these pathogens assayed by quantitative RT-PCR was described. After infection with A. Hydrophila, TICAM was up-regulated approximately 2. 3-fold at 24 h in liver and 1. 9-fold at 12 h in spleen, while expression of this gene was down-regulated in headkidney and intestine, with the lowest expression as 0. 15-fold at 48 h in headkidney, 0. 53-fold at 24 h in intestine, respectively. TICAM was up-regulated drastically in liver, spleen, headkidney and intestine after infection with Streptococcus spp. It reached the highest level with 23-fold in liver at 7 d post infection, and it increased about 10 times in headkidney and spleen after infection. The expression of TICAM increased in all tested tissues after infection with E. Tarda, especially it was up-regulated to the highest (23. 1-fold) at 7d in spleen. After infection with channel catfish virus, the gene TICAM expression was up-regulated in liver, headkidney and intestine moderately, with the highest expression of 3. 7-fold in liver at 72 h, 2. 8-fold in headkidney at 7 d, 1. 5-fold at 24 h in intestine. However, it was down-regulated in spleen,and its lowest expression was 0. 13-fold at 24 h. In conclusion, the results of this study suggest that the TICAM gene may play crucial

  5. Proteome identification of proteins interacting with histone methyltransferase SET8

    Institute of Scientific and Technical Information of China (English)

    Yi Qin; Huafang Ouyang; Jing Liu; Youhua Xie

    2013-01-01

    SET8 (also known as PR-Set7/9,SETD8,KMT5A),a member of the SET domain containing methyltransferase family,which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1),has been implicated in multiple biological processes,such as gene transcriptional regulation,cell cycle control,genomic integrity maintenance and development.In this study,we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8.In combination with mass spectrometry,we identified 40 proteins that potentially interact with SET8.DDX21,a nucleolar protein,was further confirmed to associate with SET8.Furthermore,we discovered a novel function of SET8 in the regulation of rRNA transcription.

  6. Structural Basis for Ubiquitin Recognition by the Otu1 Ovarian Tumor Domain Protein

    Energy Technology Data Exchange (ETDEWEB)

    T Messick; N Russel; A Iwata; K Sarachan; R Shiekhattar; I Shanks; F Reyes-Turcu; K Wilkinson; R Marmorstein

    2011-12-31

    Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of {approx}130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys{sup 48} linkages, having little or no activity on Lys{sup 63}- and Lys{sup 29}-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.

  7. Versatile TPR domains accommodate different modes of target protein recognition and function.

    Science.gov (United States)

    Allan, Rudi Kenneth; Ratajczak, Thomas

    2011-07-01

    The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.

  8. A novel Aurelia aurita protein mesoglein contains DSL and ZP domains.

    Science.gov (United States)

    Matveev, I V; Shaposhnikova, T G; Podgornaya, O I

    2007-09-01

    Body of the scyphoid jellyfish Aurelia aurita consists of 2 epithelia -- epidermis and gastroderm. The layers are separated by a thick layer of extracellular matrix -- mesoglea. A. aurita has a lot of cells in the mesoglea unlike many other Cnidarians. The major protein of the mesoglea with apparent molecular mass of 47 kDa was detected by SDS-PAGE. A partial mRNA of the protein 1421 bp long was cloned and sequenced. The search for homologous nucleotide and protein sequences shows that the mRNA sequence is novel. Deduced amino acid sequence of 416 aa contains zona pellucida (ZP) domain and Delta/Serrate/Lag-2 (DSL) domain. The protein was named mesoglein. According to reverse transcription PCR analysis it is expressed in the mature medusa exclusively in the mesogleal cells. Mesoglein belongs to the lowest phyla among ZP domain-containing proteins. The protein is supposed to be a structural element of the mesoglea extracellular matrix.

  9. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Al-Tawashi, Azza

    2012-02-28

    Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones

    Science.gov (United States)

    Truttmann, Matthias C.; Guo, Xuanzong; Engert, Christoph; Schwartz, Thomas U.; Ploegh, Hidde L.

    2016-01-01

    Protein AMPylation by Fic domain-containing proteins (Fic proteins) is an ancient and conserved post-translational modification of mostly unexplored significance. Here we characterize the Caenorhabditis elegans Fic protein FIC-1 in vitro and in vivo. FIC-1 is an AMPylase that localizes to the nuclear surface and modifies core histones H2 and H3 as well as heat shock protein 70 family members and translation elongation factors. The three-dimensional structure of FIC-1 is similar to that of its human ortholog, HYPE, with 38% sequence identity. We identify a link between FIC-1-mediated AMPylation and susceptibility to the pathogen Pseudomonas aeruginosa, establishing a connection between AMPylation and innate immunity in C. elegans. PMID:27138431

  11. The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones.

    Science.gov (United States)

    Truttmann, Matthias C; Cruz, Victor E; Guo, Xuanzong; Engert, Christoph; Schwartz, Thomas U; Ploegh, Hidde L

    2016-05-01

    Protein AMPylation by Fic domain-containing proteins (Fic proteins) is an ancient and conserved post-translational modification of mostly unexplored significance. Here we characterize the Caenorhabditis elegans Fic protein FIC-1 in vitro and in vivo. FIC-1 is an AMPylase that localizes to the nuclear surface and modifies core histones H2 and H3 as well as heat shock protein 70 family members and translation elongation factors. The three-dimensional structure of FIC-1 is similar to that of its human ortholog, HYPE, with 38% sequence identity. We identify a link between FIC-1-mediated AMPylation and susceptibility to the pathogen Pseudomonas aeruginosa, establishing a connection between AMPylation and innate immunity in C. elegans.

  12. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim

    Full Text Available Outer membrane (OM proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  13. Binding of Y-box proteins to RNA: involvement of different protein domains.

    Science.gov (United States)

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  14. Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in Trypanosoma brucei

    Science.gov (United States)

    Levy, Gabriela V.; Moretti, Georgina; Tekiel, Valeria S.; Sánchez, Daniel O.

    2015-01-01

    Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family. PMID:26284933

  15. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP.

    Science.gov (United States)

    Kim, Do Jin; Bitto, Eduard; Bingman, Craig A; Kim, Hyun-Jung; Han, Byung Woo; Phillips, George N

    2015-07-01

    Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann-like α/β overall fold. The bound AMP and conservation of residues in the ATP-binding loop suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members.

  16. Prion proteins leading to neurodegeneration.

    Science.gov (United States)

    La Mendola, D; Mendola, D L; Pietropaolo, A; Pappalardo, G; Zannoni, C; Rizzarelli, E

    2008-12-01

    Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evidences indicate that prion is a copper binding protein and thus involved in the copper metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in mammals while they seem to be spared to other species. The chicken prion protein (chPrP C) shares about 30% of identity in its primary sequence with mammal PrP C. Both types of proteins have an N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR studies have highlighted a similar globular domain containing three alpha-helices, one short 3(10)-helix and a short antiparallel beta-sheet. Despite this structural similarity, it should be noted that the normal isoform of mammalian PrP C is totally degraded by proteinase K, while avian PrP C is not, thereby producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper binding sites, the affinity and the coordination environment of metal ions are still matter of discussion for both mammal and avian proteins. In this review, we summarize the similarities and the differences between mammalian and avian prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, using a range of

  17. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Sofiya Fedosyuk

    2016-12-01

    Full Text Available Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83 structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240, we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.

  18. Arabinogalactan protein cluster from Jatropha curcas seed embryo contains fasciclin, xylogen and LysM proteins.

    Science.gov (United States)

    Sehlbach, Maria; König, Simone; Mormann, Michael; Sendker, Jandirk; Hensel, Andreas

    2013-10-15

    An non-GPI-anchored AGP cluster (Y2) was isolated from the seeds of Jatropha curcas L. (Euphorbiaceae) composed of 4.8% polypeptides (mainly Ala, Ser, Gly, Hyp, Glu) and a carbohydrate moiety composed of Gal, Ara, GlcA, Rha, Man and GlcN. Besides the typical structural features of arabinogalactan proteins, typical N-glycan linker of the complex type (GlcNAc4Man3Gal2Fuc1Xyl1) were identified. O-glycosylation occurred mainly via Hyp and to a lesser extent via Thr and Ser. N-glycans from the complex type, carrying at the innermost GlcNAc at position O-3 one α-Fuc-residue, were also present. MS analysis of the tryptic digest assigned peptides of three major protein groups: fasciclin-like arabinogalactan proteins, xylogen-like proteins and LysM domain-containing proteins. They could not be separated further and it is indicated that various homologous protein forms co-exist. Histological investigation of J. curcas seeds revealed the presence of AGPs in the vessels of cotyledons and in the procambium ring of the embryo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Inflammation in mice ectopically expressing human Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne (PAPA) Syndrome-associated PSTPIP1 A230T mutant proteins.

    Science.gov (United States)

    Wang, Donghai; Höing, Susanne; Patterson, Heide Christine; Ahmad, Umtul M; Rathinam, Vijay A K; Rajewsky, Klaus; Fitzgerald, Katherine A; Golenbock, Douglas T

    2013-02-15

    Pyogenic Arthritis, Pyoderma Gangrenosum, and Acne Syndrome (PAPA syndrome) is an autoinflammatory disease caused by aberrant production of the proinflammatory cytokine interleukin-1. Mutations in the gene encoding proline serine threonine phosphatase-interacting protein-1 (PSTPIP1) have been linked to PAPA syndrome. PSTPIP1 is an adaptor protein that interacts with PYRIN, the protein encoded by the Mediterranean Fever (MEFV) gene whose mutations cause Familial Mediterranean Fever (FMF). However, the pathophysiological function of PSTPIP1 remains to be elucidated. We have generated mouse strains that either are PSTPIP1 deficient or ectopically express mutant PSTPIP1. Results from analyzing these mice suggested that PSTPIP1 is not an essential regulator of the Nlrp3, Aim2, or Nlrc4 inflammasomes. Although common features of human PAPA syndrome such as pyogenic arthritis and skin inflammation were not recapitulated in the mouse model, ectopic expression of the mutant but not the wild type PSTPIP1 in mice lead to partial embryonic lethality, growth retardation, and elevated level of circulating proinflammatory cytokines.

  20. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.

    Science.gov (United States)

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-05-01

    Flooding stress restricts soybean growth, it results in decrease the production. In this report, to understand how nuclear proteins in soybean affected by flooding, abundance changes of those proteins was analyzed. Nuclear proteins were extracted from the root tips of soybean treated with or without flooding stress. The extracted proteins were analyzed using a label-free quantitative proteomic technique. Of a total of 94 nuclear proteins that were found to be responsive to flooding, the 19 and 75 proteins were increased and decreased, respectively. The identified flooding-responsive proteins were functionally classified, revealing that 8 increased proteins changed in protein synthesis, posttranslational modification, and protein degradation, while 34 decreased proteins were involved in transcription, RNA processing, DNA synthesis, and chromatin structure maintenance. Among these proteins, those whose levels changed more than 10 fold included two poly ADP-ribose polymerases and a novel G-domain-containing protein that might be involved in RNA binding. The mRNA expression levels of these three proteins indicated a similar tendency to their protein abundance changes. These results suggest that acceleration of protein poly-ADP-ribosylation and suppression of RNA metabolism may be involved in root tip of soybean under flooding stress.

  1. Protein universe containing a PUA RNA-binding domain.

    Science.gov (United States)

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  2. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition.

    Science.gov (United States)

    Wienk, Hans; Slootweg, Jack C; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2013-07-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.

  3. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Science.gov (United States)

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  4. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  5. The CBS domain: a protein module with an emerging prominent role in regulation.

    Science.gov (United States)

    Baykov, Alexander A; Tuominen, Heidi K; Lahti, Reijo

    2011-11-18

    Regulatory CBS (cystathionine β-synthase) domains exist as two or four tandem copies in thousands of cytosolic and membrane-associated proteins from all kingdoms of life. Mutations in the CBS domains of human enzymes and membrane channels are associated with an array of hereditary diseases. Four CBS domains encoded within a single polypeptide or two identical polypeptides (each having a pair of CBS domains at the subunit interface) form a highly conserved disk-like structure. CBS domains act as autoinhibitory regulatory units in some proteins and activate or further inhibit protein function upon binding to adenosine nucleotides (AMP, ADP, ATP, S-adenosyl methionine, NAD, diadenosine polyphosphates). As a result of the differential effects of the nucleotides, CBS domain-containing proteins can sense cell energy levels. Significant conformational changes are induced in CBS domains by bound ligands, highlighting the structural basis for their effects.

  6. Inhibition of Tcf3 binding by I-mfa domain proteins.

    Science.gov (United States)

    Snider, L; Thirlwell, H; Miller, J R; Moon, R T; Groudine, M; Tapscott, S J

    2001-03-01

    We have determined that I-mfa, an inhibitor of several basic helix-loop-helix (bHLH) proteins, and XIC, a Xenopus ortholog of human I-mf domain-containing protein that shares a highly conserved cysteine-rich C-terminal domain with I-mfa, inhibit the activity and DNA binding of the HMG box transcription factor XTcf3. Ectopic expression of I-mfa or XIC in early Xenopus embryos inhibited dorsal axis specification, the expression of the Tcf3/beta-catenin-regulated genes siamois and Xnr3, and the ability of beta-catenin to activate reporter constructs driven by Lef/Tcf binding sites. I-mfa domain proteins can regulate both the Wnt signaling pathway and a subset of bHLH proteins, possibly coordinating the activities of these two critical developmental pathways.

  7. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

    DEFF Research Database (Denmark)

    Wilkinson, C R; Seeger, M; Hartmann-Petersen, R

    2001-01-01

    The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin-proteasome system. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA...... domain is responsible for this activity. Two other proteins containing this motif, the fission-yeast homologues of Rad23 and Dsk2, are also shown to bind multi-ubiquitin chains via their UBA domains. These two proteins are implicated, along with the fission-yeast Pus1(S5a/Rpn10) subunit of the 26 S...

  8. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  9. Proteomic screening method for phosphopeptide motif binding proteins using peptide libraries.

    Science.gov (United States)

    Christofk, Heather R; Wu, Ning; Cantley, Lewis C; Asara, John M

    2011-09-02

    Phosphopeptide binding domains mediate the directed and localized assembly of protein complexes essential to intracellular kinase signaling. To identify phosphopeptide binding proteins, we developed a proteomic screening method using immobilized partially degenerate phosphopeptide mixtures combined with SILAC and microcapillary LC-MS/MS. The method was used to identify proteins that specifically bound to phosphorylated peptide library affinity matrices, including pTyr, and the motifs pSer/pThr-Pro, pSer/pThr-X-X-X-pSer/pThr, pSer/pThr-Glu/Asp, or pSer/pThr-pSer/pThr in degenerate sequence contexts. Heavy and light SILAC lysates were applied to columns containing these phosphorylated and nonphosphorylated (control) peptide libraries respectively, and bound proteins were eluted, combined, digested, and analyzed by LC-MS/MS using a hybrid quadrupole-TOF mass spectrometer. Heavy/light peptide ion ratios were calculated, and peptides that yielded ratios greater than ∼3:1 were considered as being from potential phosphopeptide binding proteins since this ratio represents the lowest ratio from a known positive control. Many of those identified were known phosphopeptide-binding proteins, including the SH2 domain containing p85 subunit of PI3K bound to pTyr, 14-3-3 bound to pSer/pThr-Asp/Glu, polo-box domain containing PLK1 and Pin1 bound to pSer/pThr-Pro, and pyruvate kinase M2 binding to pTyr. Approximately half of the hits identified by the peptide library screens were novel. Protein domain enrichment analysis revealed that most pTyr hits contain SH2 domains, as expected, and to a lesser extent SH3, C1, STAT, Tyr phosphatase, Pkinase, C2, and PH domains; however, pSer/pThr motifs did not reveal enriched domains across hits.

  10. Pumilio Puf domain RNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-03-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example.

  11. Kobuviral Non-structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein.

    Science.gov (United States)

    Klima, Martin; Chalupska, Dominika; Różycki, Bartosz; Humpolickova, Jana; Rezabkova, Lenka; Silhan, Jan; Baumlova, Adriana; Dubankova, Anna; Boura, Evzen

    2017-02-07

    Picornaviruses are small positive-sense single-stranded RNA viruses that include many important human pathogens. Within the host cell, they replicate at specific replication sites called replication organelles. To create this membrane platform, they hijack several host factors including the acyl-CoA-binding domain-containing protein-3 (ACBD3). Here, we present a structural characterization of the molecular complexes formed by the non-structural 3A proteins from two species of the Kobuvirus genus of the Picornaviridae family and the 3A-binding domain of the host ACBD3 protein. Specifically, we present a series of crystal structures as well as a molecular dynamics simulation of the 3A:ACBD3 complex at the membrane, which reveals that the viral 3A proteins act as molecular harnesses to enslave the ACBD3 protein leading to its stabilization at target membranes. Our data provide a structural rationale for understanding how these viral-host protein complexes assemble at the atomic level and identify new potential targets for antiviral therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    Science.gov (United States)

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The PDZ protein discs-large (DLG): the 'Jekyll and Hyde' of the epithelial polarity proteins.

    Science.gov (United States)

    Roberts, Sally; Delury, Craig; Marsh, Elizabeth

    2012-10-01

    Discs-large (DLG) is a multi-PDZ domain-containing protein that belongs to the family of molecular scaffolding proteins known as membrane guanylate kinases or MAGUKs. DLG is a component of the Scribble polarity complex and genetic analyses of DLG in Drosophila have identified a role for the protein in several key biological processes including the regulation of apico-basal polarity of epithelial cells, as well as other polarity processes such as asymmetric cell division and cell invasion. Disturbance of DLG function leads to uncontrolled epithelial cell proliferation and neoplastic transformation, thereby defining DLG as a potential tumour suppressor. However, whether mammalian homologues of DLG (DLG1, DLG2, DLG3 and DLG4) also possess tumour suppressor functions is not known. In this minireview, we focus on the biological functions of DLG1 in human epithelial cells and on how the function of this MAGUK relates to its intracellular location. We examine some of the evidence that implies that DLG has both tumour suppressor and, paradoxically, oncogenic functions depending upon the precise cellular context. © 2012 The Authors Journal compilation © 2012 FEBS.

  14. Proteomic approach to reveal the proteins associated with encystment of the ciliate Euplotes encysticus.

    Directory of Open Access Journals (Sweden)

    Jiwu Chen

    Full Text Available In order to identify and reveal the proteins related to encystment of the ciliate Euplotes encysticus, we analyzed variation in the abundance of the proteins isolated from the resting cyst comparing with proteins in the vegetative cell. 2-D electrophoresis, MALDI-TOF MS techniques and Bioinformatics were used for proteome separation, quantification and identification. The comparative proteomics studies revealed 26 proteins with changes on the expression in the resting cysts, including 12 specific proteins and 14 differential proteins. 12 specific proteins and 10 out of the 14 differential proteins were selected and identified by MALDI-TOF MS. The identified specific proteins with known functions included type II cytoskeletal 1, keratin, Nop16 domain containing protein, protein arginine n-methyltransferase, epsilon-trimethyllysine hydroxylase and calpain-like protein. The identified differential proteins with known functions included Lysozyme C, keratinocyte growth factor, lysozyme homolog AT-2, formate acetyltransferase, alpha S1 casein and cold-shock protein. We discussed the functions of these proteins as well as their contribution in the process of encystment. These identified proteins covered a wide range of molecular functions, including gene regulation, RNA regulation, proteins degradation and oxidation resistance, stress response, material transport and cytoskeleton organization. Therefore, differential expression of these proteins was essential for cell morphological and physiological changes during encystment. This suggested that the peculiar proteins and differential proteins might play important roles in the process of the vegetative cells transforming into the resting cysts. These observations may be novel findings that bring new insights into the detailed mechanisms of dormancy.

  15. Differential distribution of Y-box-binding protein 1 and cold shock domain protein A in developing and adult human brain.

    Science.gov (United States)

    Bernstein, Hans-Gert; Lindquist, Jonathan A; Keilhoff, Gerburg; Dobrowolny, Henrik; Brandt, Sabine; Steiner, Johann; Bogerts, Bernhard; Mertens, Peter R

    2015-07-01

    The two cold shock domain containing proteins, Y-box-binding protein-1 and cold shock domain protein A were immunolocalized in developing and adult human brain. With the exception of a small population of hypothalamic astrocytes, brain Y-box-binding protein-1 was predominantly found in multiple neurons in the mature human CNS, which might be related to its involvement in neurotransmission and other neuron-associated functions. Cold shock domain protein A was typically observed in astrocytes, oligodendrocytes, choroid plexus epithelia and nerve fibers. However, in circumscribed brain regions as hypothalamus, habenula, and cerebellum, this protein was also expressed in neurons. In the prenatal brain, both proteins were found to be abundantly expressed in radial glial cells, neuroblasts and neurons, which might be an anatomical correlate of the proposed roles of both proteins in cell proliferation and differentiation. In addition, Y-box-binding protein-1 was identified in cultured, lipopolysaccharide-stimulated microglial cells, which underscores its putative role as a mediator in immune and inflammatory processes.

  16. The TIR-domain containing adaptor TRAM is required for TLR7 mediated RANTES production.

    Directory of Open Access Journals (Sweden)

    Enda Shevlin

    Full Text Available Toll-like receptor 7 (TLR7 plays a vital role in the immune response to ssRNA viruses such as human rhinovirus (HRV and Influenza, against which there are currently no treatments or vaccines with long term efficacy available. Clearly, a more comprehensive understanding of the TLR7 signaling axis will contribute to its molecular targeting. TRIF related adaptor molecule (TRAM plays a vital role in TLR4 signaling by recruiting TRIF to TLR4, followed by endosomal trafficking of the complex and initiation of IRF3 dependent type I interferon production as well as NF-κB dependent pro-inflammatory cytokine production. Towards understanding the molecular mechanisms that regulate TLR7 functionality, we found that TRAM(-/- murine macrophages exhibited a transcriptional and translational impairment in TLR7 mediated RANTES, but not TNFα, production. Suppression of TRAM expression in human macrophages also resulted in an impairment in TLR7 mediated CCL5 and IFN-β, but not TNFα, gene induction. Furthermore, suppression of endogenous human TRAM expression in human macrophages significantly impaired RV16 induced CCL5 and IFNβ, but not TNFα gene induction. Additionally, TRAM-G2A dose-dependently inhibited TLR7 mediated activation of CCL5, IFNβ and IFNα reporter genes. TLR7-mediated phosphorylation and nuclear translocation of IRF3 was impaired in TRAM(-/- cells. Finally, co-immunoprecipitation studies indicated that TRAM physically interacts with MyD88 upon TLR7 stimulation, but not under basal conditions. Our results clearly demonstrate that TRAM plays a, hitherto unappreciated, role in TLR7 signaling through a novel signaling axis containing, but not limited to, MyD88, TRAM and IRF3 towards the activation of anti-viral immunity.

  17. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes

    National Research Council Canada - National Science Library

    Sun, Xiao-Jian; Xu, Peng-Fei; Zhou, Ting; Hu, Ming; Fu, Chun-Tang; Zhang, Yong; Jin, Yi; Chen, Yi; Chen, Sai-Juan; Huang, Qiu-Hua; Liu, Ting Xi; Chen, Zhu

    2008-01-01

    .... Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies...

  18. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers....... The biophysical and structural investigations of PPIs consequently demand hybrid approaches, implementing orthogonal methods and strategies for global data analysis. Currently, impressive developments in hardware and software within several methodologies define a new era for the biostructural community. Data can...

  19. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions.

    Science.gov (United States)

    Salcedo, Suzana P; Marchesini, María I; Degos, Clara; Terwagne, Matthieu; Von Bargen, Kristine; Lepidi, Hubert; Herrmann, Claudia K; Santos Lacerda, Thais L; Imbert, Paul R C; Pierre, Philippe; Alexopoulou, Lena; Letesson, Jean-Jacques; Comerci, Diego J; Gorvel, Jean-Pierre

    2013-01-01

    Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.

  20. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68.

    Science.gov (United States)

    Huang, Ning; Xia, Yuqing; Zhang, Donghui; Wang, Song; Bao, Yitian; He, Runsheng; Teng, Junlin; Chen, Jianguo

    2017-04-19

    In animal cells, the centrosome is the main microtubule-organizing centre where microtubules are nucleated and anchored. The centriole subdistal appendages (SDAs) are the key structures that anchor microtubules in interphase cells, but the composition and assembly mechanisms of SDAs are not well understood. Here, we reveal that centrosome-binding proteins, coiled-coil domain containing (CCDC) 120 and CCDC68 are two novel SDA components required for hierarchical SDA assembly in human cells. CCDC120 is anchored to SDAs by ODF2 and recruits CEP170 and Ninein to the centrosome through different coiled-coil domains at its N terminus. CCDC68 is a CEP170-interacting protein that competes with CCDC120 in recruiting CEP170 to SDAs. Furthermore, CCDC120 and CCDC68 are required for centrosome microtubule anchoring. Our findings elucidate the molecular basis for centriole SDA hierarchical assembly and microtubule anchoring in human interphase cells.

  1. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68

    Science.gov (United States)

    Huang, Ning; Xia, Yuqing; Zhang, Donghui; Wang, Song; Bao, Yitian; He, Runsheng; Teng, Junlin; Chen, Jianguo

    2017-01-01

    In animal cells, the centrosome is the main microtubule-organizing centre where microtubules are nucleated and anchored. The centriole subdistal appendages (SDAs) are the key structures that anchor microtubules in interphase cells, but the composition and assembly mechanisms of SDAs are not well understood. Here, we reveal that centrosome-binding proteins, coiled-coil domain containing (CCDC) 120 and CCDC68 are two novel SDA components required for hierarchical SDA assembly in human cells. CCDC120 is anchored to SDAs by ODF2 and recruits CEP170 and Ninein to the centrosome through different coiled-coil domains at its N terminus. CCDC68 is a CEP170-interacting protein that competes with CCDC120 in recruiting CEP170 to SDAs. Furthermore, CCDC120 and CCDC68 are required for centrosome microtubule anchoring. Our findings elucidate the molecular basis for centriole SDA hierarchical assembly and microtubule anchoring in human interphase cells. PMID:28422092

  2. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Science.gov (United States)

    von Tobel, Lukas; Mikeladze-Dvali, Tamara; Delattre, Marie; Balestra, Fernando R; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-11-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome.

  3. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Lukas von Tobel

    2014-11-01

    Full Text Available Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD syndrome.

  4. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Chang, Tsong-Min; Shi, Guey-Yueh; Wu, Hua-Lin; Wu, Chieh-Hsi; Su, Yan-Di; Wang, Hui-Lin; Wen, Hsin-Yun; Huang, Huey-Chun

    2011-01-01

    Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs) were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B. PMID:21423689

  5. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tsong-Min Chang

    2011-01-01

    Full Text Available Salvianolic acid B (Sal B, a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B.

  6. A common pathway in periodic fever syndromes.

    Science.gov (United States)

    McDermott, Michael F

    2004-09-01

    Familial Mediterranean fever (FMF) is an autosomal recessive disease due to mutations in pyrin, which normally inhibits pro-interleukin-1beta (IL-1beta) cytokine processing to the active form. A novel role for pyrin has been proposed by Shoham et al., who studied patients with an autosomal dominant disease called pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. They demonstrated an interaction between pyrin and proline serine threonine phosphatase-interacting protein 1 (PSTPIP1), the protein involved in PAPA, and thus revealed a biochemical pathway common to both FMF and PAPA.

  7. Structure and Function of the TIR Domain from the Grape NLR Protein RPV1.

    Science.gov (United States)

    Williams, Simon J; Yin, Ling; Foley, Gabriel; Casey, Lachlan W; Outram, Megan A; Ericsson, Daniel J; Lu, Jiang; Boden, Mikael; Dry, Ian B; Kobe, Bostjan

    2016-01-01

    The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signaling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices ("AE" interface). This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signaling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signaling.

  8. I-mfa domain proteins specifically interact with SERTA domain proteins and repress their transactivating functions.

    Science.gov (United States)

    Kusano, Shuichi; Shiimura, Yuki; Eizuru, Yoshito

    2011-09-01

    The I-mfa domain proteins I-mfa and HIC are considered to be candidate tumor suppressor genes and have been shown to be involved in transcriptional regulation. We show here that I-mfa and HIC specifically interact with SEI-1 through their C-terminal I-mfa domains in vivo. This interaction affects the intracellular localization of I-mfa and requires the region of SEI-1 between 30 and 90 amino acids, which includes its SERTA domain, and results in repression of its intrinsic transcriptional activity. I-mfa also decreases the levels of the SEI-1·DP-1 complex and endogenous Fbxw7 mRNA, the expression of which is coregulated by E2F·DP-1 and SEI-1 in an interaction-dependent manner in vitro. In addition, I-mfa also specifically interacts with other SERTA domain-containing proteins, including SEI-2, SEI-3, SERTAD3 and SERTAD4, through its I-mfa domain in vivo. This interaction also affects the intracellular localization of I-mfa and represses the intrinsic transcriptional activities of SEI-2 and SERTAD3, which are also involved in the E2F-dependent transcription. These data reveal for the first time that I-mfa domain proteins interact with SERTA domain proteins and negatively regulate their transcriptional activity. Because SEI-1, SEI-2 and SERTAD3, whose intrinsic transcriptional activities are repressed by I-mfa, are suggested to be oncogenes, I-mfa domain proteins may be involved in their oncogenic functions by negatively regulating their transcriptional activities.

  9. Protein Condensation

    Science.gov (United States)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  10. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression.

    Science.gov (United States)

    Lee, Nara; Yario, Therese A; Gao, Jessica S; Steitz, Joan A

    2016-03-22

    Epstein-Barr virus (EBV) produces a highly abundant noncoding RNA called EBV-encoded RNA 2 (EBER2) that interacts indirectly with the host transcription factor paired box protein 5 (PAX5) to regulate viral latent membrane protein 1/2 (LMP1/2) gene expression as well as EBV lytic replication. To identify intermediary proteins, we isolated EBER2-PAX5-containing complexes and analyzed the protein components by mass spectrometry. The top candidates include three host proteins splicing factor proline and glutamine rich (SFPQ), non-POU domain-containing octamer-binding protein (NONO), and RNA binding motif protein 14 (RBM14), all reported to be components of nuclear bodies called paraspeckles. In vivo RNA-protein crosslinking indicates that SFPQ and RBM14 contact EBER2 directly. Binding studies using recombinant proteins demonstrate that SFPQ and NONO associate with PAX5, potentially bridging its interaction with EBER2. Similar to EBER2 or PAX5 depletion, knockdown of any of the three host RNA-binding proteins results in the up-regulation of viral LMP2A mRNA levels, supporting a physiologically relevant interaction of these newly identified factors with EBER2 and PAX5. Identification of these EBER2-interacting proteins enables the search for cellular noncoding RNAs that regulate host gene expression in a manner similar to EBER2.

  11. The cAMP-binding Popdc proteins have a redundant function in the heart.

    Science.gov (United States)

    Brand, Thomas; Simrick, Subreena L; Poon, Kar Lai; Schindler, Roland F R

    2014-04-01

    Popdc (Popeye-domain-containing) genes encode membrane-bound proteins and are abundantly present in cardiac myocytes and in skeletal muscle fibres. Functional analysis of Popdc1 (Bves) and Popdc2 in mice and of popdc2 in zebrafish revealed an overlapping role for proper electrical conduction in the heart and maintaining structural integrity of skeletal muscle. Popdc proteins mediate cAMP signalling and modulate the biological activity of interacting proteins. The two-pore channel TREK-1 interacts with all three Popdc proteins. In Xenopus oocytes, the presence of Popdc proteins causes an enhanced membrane transport leading to an increase in TREK-1 current, which is blocked when cAMP levels are increased. Another important Popdc-interacting protein is caveolin 3, and the loss of Popdc1 affects caveolar size. Thus a family of membrane-bound cAMP-binding proteins has been identified, which modulate the subcellular localization of effector proteins involved in organizing signalling complexes and assuring proper membrane physiology of cardiac myocytes.

  12. An Experimentally Based Computer Search Identifies Unstructured Membrane-binding Sites in Proteins

    Science.gov (United States)

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D.

    2010-01-01

    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro. PMID:20018884

  13. Protein C

    Science.gov (United States)

    ... have an unexplained blood clot, or a family history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with the function of this protein may cause blood clots to ...

  14. Protein S

    Science.gov (United States)

    ... have an unexplained blood clot, or a family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with the function of this protein may cause blood clots to ...

  15. Disease: H00282 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available PMID:14476827 MUCKLE TJ, WELLSM Urticaria, deafness, and amyloidosis: a new heredo-familial...rer AA, Kolodner RD Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoi

  16. Caenorhabditis elegans NONO-1: Insights into DBHS protein structure, architecture, and function.

    Science.gov (United States)

    Knott, Gavin J; Lee, Mihwa; Passon, Daniel M; Fox, Archa H; Bond, Charles S

    2015-12-01

    Members of the Drosophila behavior/human splicing (DBHS) protein family have been characterized in the vertebrates Homo sapiens and Mus musculus, and the invertebrates Drosophila melanogaster and Chironomus tentans. Collectively, both vertebrate and invertebrate DBHS proteins function throughout gene regulation, largely but not always, within the nucleus. In this study, we report a structural and bioinformatic analysis of the DBHS protein family to guide future studies into DBHS protein function. To explore the structural plasticity of the family, we describe the 2.4 Å crystal structure of Caenorhabditis elegans non-POU domain-containing octamer-binding protein 1 (NONO-1). The structure is dimeric, with a domain arrangement consistent with mammalian DBHS proteins. Comparison with the DBHS structures available from H. sapiens reveals that there is inherent domain flexibility within the homologous DBHS region. Mapping amino acid similarity within the family to the NONO-1 dimer highlights the dimer interface, coiled-coil oligomerization motif, and putative RNA binding surfaces. Surprisingly, the interior surface of RNA recognition motif 2 (RRM2) that faces a large internal void is highly variable, but the external β2-β3 loops of RRM2 show remarkable preservation. Overall, the DBHS region is under strong purifying selection, whereas the sequences N- and C-terminal to the DBHS region are less constrained. The findings described in this study provide a molecular basis for further investigation into the mechanistic function of the DBHS protein family in biology.

  17. PRGL:A cell wall proline-rich protein containning GASA domain in Gerbera hybrida

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hy- droproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.

  18. Expression and characterization of the N-terminal half of antistasin, an anticoagulant protein derived from the leech Haementeria officinalis.

    Science.gov (United States)

    Palladino, L O; Tung, J S; Dunwiddie, C; Alves, K; Lenny, A B; Przysiecki, C; Lehman, D; Nutt, E; Cuca, G C; Law, S W

    1991-02-01

    Antistasin, a 15-kDa anticoagulant protein isolated from the salivary glands of the Mexican leech Haementeria officinalis, has been shown to be a potent inhibitor of factor Xa in the blood coagulation cascade. Antistasin possesses a twofold internal homology between the N- and C-terminal halves of the molecule, suggesting a gene duplication event in the evolution of the antistasin gene. This structural feature also suggests that either or both halves of the protein may possess biological activity if expressed as separate domains. Because the N-terminal domain contains a factor Xa P1-reactive site, we chose to express this domain in an insect cell baculovirus expression system. Characterization of this recombinant half antistasin molecule reveals that the N-terminal domain inhibits factor Xa in vitro, with a K(i) of 1.7 nM.

  19. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease

    NARCIS (Netherlands)

    Stoffels, Monique; Szperl, Agata; Simon, Anna; Netea, Mihai G.; Plantinga, Theo S.; van Deuren, Marcel; Kamphuis, Sylvia; Lachmann, Helen J.; Cuppen, Edwin; Kloosterman, Wigard P.; Frenkel, Joost; van Diemen, Cleo C.; Wijmenga, Cisca; van Gijn, Marielle; van der Meer, Jos W. M.

    2014-01-01

    Objectives Autoinflammatory disorders are disorders of the innate immune system. Standard genetic testing provided no correct diagnosis in a female patient from a non-consanguineous family of British descent with a colchicine-responsive autosomal dominant periodic fever syndrome. We aimed to unravel

  20. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease

    NARCIS (Netherlands)

    Stoffels, M.; Szperl, A.; Simon, A.; Netea, M.G.; Plantinga, T.S.; Deuren, M. van; Kamphuis, S.; Lachmann, H.J.; Cuppen, E.; Kloosterman, W.P.; Frenkel, J.; Diemen, C.C. van; Wijmenga, C.; Gijn, M. van; Meer, J.W.M. van der

    2014-01-01

    OBJECTIVES: Autoinflammatory disorders are disorders of the innate immune system. Standard genetic testing provided no correct diagnosis in a female patient from a non-consanguineous family of British descent with a colchicine-responsive autosomal dominant periodic fever syndrome. We aimed to

  1. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease

    NARCIS (Netherlands)

    Stoffels, Monique; Szperl, Agata; Simon, Anna; Netea, Mihai G.; Plantinga, Theo S.; van Deuren, Marcel; Kamphuis, Sylvia; Lachmann, Helen J.; Cuppen, Edwin; Kloosterman, Wigard P.; Frenkel, Joost; van Diemen, Cleo C.; Wijmenga, Cisca; van Gijn, Marielle; van der Meer, Jos W. M.

    Objectives Autoinflammatory disorders are disorders of the innate immune system. Standard genetic testing provided no correct diagnosis in a female patient from a non-consanguineous family of British descent with a colchicine-responsive autosomal dominant periodic fever syndrome. We aimed to unravel

  2. MEFV mutations affecting pyrin amino acid 577 cause autosomal dominant autoinflammatory disease

    NARCIS (Netherlands)

    Stoffels, Monique; Szperl, Agata; Simon, Anna; Netea, Mihai G; Plantinga, Theo S; van Deuren, Marcel; Kamphuis, Sylvia; Lachmann, Helen J; Cuppen, Edwin; Kloosterman, Wigard P; Frenkel, Joost; van Diemen, Cleo C; Wijmenga, Cisca; van Gijn, Marielle; van der Meer, Jos W M

    OBJECTIVES: Autoinflammatory disorders are disorders of the innate immune system. Standard genetic testing provided no correct diagnosis in a female patient from a non-consanguineous family of British descent with a colchicine-responsive autosomal dominant periodic fever syndrome. We aimed to

  3. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    Science.gov (United States)

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  4. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Science.gov (United States)

    Baumgartner, Roland; Stocker, Hugo; Hafen, Ernst

    2013-01-01

    Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  5. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Roland Baumgartner

    Full Text Available Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig, an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1 and Caprin (Capr and directly interacts with and regulates the RNA-binding protein Rasputin (Rin in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  6. Proline-rich Gla protein 2 is a cell-surface vitamin K-dependent protein that binds to the transcriptional coactivator Yes-associated protein.

    Science.gov (United States)

    Kulman, John D; Harris, Jeff E; Xie, Ling; Davie, Earl W

    2007-05-22

    Proline-rich Gla protein 2 (PRGP2) is one of four known vertebrate transmembrane gamma-carboxyglutamic acid (Gla) proteins. Members of this protein family are broadly expressed in fetal and adult human tissues and share a common architecture consisting of a predicted propeptide and Gla domain, a single-pass transmembrane segment, and tandem Pro/Leu-Pro-Xaa-Tyr (PY) motifs near their C termini. Using a methodology developed for the regulated expression of enzymatically biotinylated proteins in mammalian cells, we demonstrate that PRGP2 undergoes gamma-glutamyl carboxylation in a manner that is both dependent upon the presence of a proteolytically cleavable propeptide and sensitive to warfarin, a vitamin K antagonist that is widely used as an antithrombotic agent. When expressed at physiologically relevant levels, the majority of PRGP2 is present in the gamma-glutamyl carboxylated, propeptide-cleaved (mature) form. We additionally demonstrate, by Western blotting and flow cytometry, that mature PRGP2 is predominantly located on the cell surface with the Gla domain exposed extracellularly. In a yeast two-hybrid screen that used the C-terminal cytoplasmic region of PRGP2 as bait, we identified the WW domain-containing transcriptional coactivator Yes-associated protein (YAP) as a binding partner for PRGP2. In GST pull-down experiments, both PRGP2 PY motifs and both YAP WW domains were essential for complex formation, as were residues proximal to the core sequence of the first PY motif. These findings suggest that PRGP2 may be involved in a signal transduction pathway, the impairment of which may be an unintended consequence of warfarin therapy.

  7. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation.

    Science.gov (United States)

    Assimon, Victoria A; Southworth, Daniel R; Gestwicki, Jason E

    2015-12-01

    Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.

  8. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    Science.gov (United States)

    Curran, Jerry; Makara, Michael A.; Mohler, Peter J.

    2015-01-01

    The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart. In the cardiomyocyte, these pathways are essential for the regulation of Ca2+, both at the level of the plasma membrane, but also in local cellular domains. One intracellular pathway often overlooked in relation to cardiovascular Ca2+ regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. As the endosomal system acts to regulate the expression and localization of membrane proteins central for cardiac Ca2+ regulation, understanding the in vivo function of this system in the heart is critical. This review will focus on endosome-based protein trafficking in the heart in both health and disease with special emphasis for the role of endocytic regulatory proteins, C-terminal Eps15 homology domain-containing proteins (EHDs). PMID:25709583

  9. Molecular evolution and expression of the CRAL_TRIO protein family in insects.

    Science.gov (United States)

    Smith, Gilbert; Briscoe, Adriana D

    2015-07-01

    CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in lepidopteran, making the lepidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages.

  10. Src-like adaptor protein 2 (SLAP2) binds to and inhibits FLT3 signaling

    Science.gov (United States)

    Moharram, Sausan A.; Chougule, Rohit A.; Su, Xianwei; Li, Tianfeng; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars; Kazi, Julhash U.

    2016-01-01

    Fms-like tyrosine kinase (FLT3) is a frequently mutated oncogene in acute myeloid leukemia (AML). FLT3 inhibitors display promising results in a clinical setting, but patients relapse after short-term treatment due to the development of resistant disease. Therefore, a better understanding of FLT3 downstream signal transduction pathways will help to identify an alternative target for the treatment of AML patients carrying oncogenic FLT3. Activation of FLT3 results in phosphorylation of FLT3 on several tyrosine residues that recruit SH2 domain-containing signaling proteins. We screened a panel of SH2 domain-containing proteins and identified SLAP2 as a potent interacting partner of FLT3. We demonstrated that interaction occurs when FLT3 is activated, and also, an intact SH2 domain of SLAP2 is required for binding. SLAP2 binding sites in FLT3 mainly overlap with those of SRC. SLAP2 over expression in murine proB cells or myeloid cells inhibited oncogenic FLT3-ITD-mediated cell proliferation and colony formation in vitro, and tumor formation in vivo. Microarray analysis suggests that higher SLAP2 expression correlates with a gene signature similar to that of loss of oncogene function. Furthermore, FLT3-ITD positive AML patients with higher SLAP2 expression displayed better prognosis compared to those with lower expression of SLAP2. Expression of SLAP2 blocked FLT3 downstream signaling cascades including AKT, ERK, p38 and STAT5. Finally, SLAP2 accelerated FLT3 degradation through enhanced ubiquitination. Collectively, our data suggest that SLAP2 acts as a negative regulator of FLT3 signaling and therefore, modulation of SLAP2 expression levels may provide an alternative therapeutic approach for FLT3-ITD positive AML. PMID:27458164

  11. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  12. Protein Structure

    Science.gov (United States)

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  13. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Directory of Open Access Journals (Sweden)

    Imhof Axel

    2007-07-01

    Full Text Available Abstract Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra.

  14. Interaction of Hepatitis C virus proteins with pattern recognition receptors

    Directory of Open Access Journals (Sweden)

    Imran Muhammad

    2012-06-01

    Full Text Available Abstract Hepatitis C virus (HCV is an important human pathogen that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. This positive stranded RNA virus is extremely efficient in establishing persistent infection by escaping immune detection or hindering the host immune responses. Recent studies have discovered two important signaling pathways that activate the host innate immunity against viral infection. One of these pathways utilizes members of Toll-like receptor (TLR family and the other uses the RNA helicase retinoic acid inducible gene I (RIG-I as the receptors for intracellular viral double stranded RNA (dsRNA, and activation of transcription factors. In this review article, we summarize the interaction of HCV proteins with various host receptors/sensors through one of these two pathways or both, and how they exploit these interactions to escape from host defense mechanisms. For this purpose, we searched data from Pubmed and Google Scholar. We found that three HCV proteins; Core (C, non structural 3/4 A (NS3/4A and non structural 5A (NS5A have direct interactions with these two pathways. Core protein only in the monomeric form stimulates TLR2 pathway assisting the virus to evade from the innate immune system. NS3/4A disrupts TLR3 and RIG-1 signaling pathways by cleaving Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF and Cardif, the two important adapter proteins of these signaling cascades respectively, thus halting the defense against HCV. NS5A downmodulates the expressions of NKG2D on natural killer cells (NK cells via TLR4 pathway and impairs the functional ability of these cells. TLRs and RIG-1 pathways have a central role in innate immunity and despite their opposing natures to HCV proteins, when exploited together, HCV as an ever developing virus against host immunity is able to accumulate these mechanisms for near unbeatable survival.

  15. VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus.

    Science.gov (United States)

    Wyles, Jessica P; Ridgway, Neale D

    2004-07-15

    We recently showed that oxysterol-binding protein (OSBP), one of twelve related PH domain containing proteins with lipid and sterol binding activity, interacts with VAMP-associated protein (VAP)-A on the endoplasmic reticulum (ER). In addition to OSBP, seven OSBP-related proteins (ORPs) bind VAP-A via a conserved E-F/Y-F/Y-DA 'FFAT' motif. We focused on this interaction for ORP9, which is expressed as a full-length (ORP9L) or truncated version missing the PH domain (ORP9S). Mutation analysis showed that the interaction required the ORP9 FFAT motif and the N-terminal conserved domain of VAP. Endogenous ORP9L displayed Golgi localization, which was partially mediated by the PH domain based on limited localization of OPR9-PH-GFP with the Golgi apparatus. When inducibly overexpressed, ORP9S and ORP9L colocalized with VAP-A and caused vacuolation of the ER as well as retention of the ER-Golgi intermediate compartment marker ERGIC-53/p58 in the ER. ORP9L mutated in the VAP-A binding domain (ORP9L-FY-->AA) did not localize to the ER but appeared with giantin and Sec31 on large vesicular structures, suggesting the presence of a hybrid Golgi-COPII compartment. Normal Golgi localization was also observed for ORP9L-FY-->AA. Results show that VAP binding and PH domains target ORP9 to the ER and a Golgi-COPII compartment, respectively, and that ORP9L overexpression in these compartments severely perturbed their organization.

  16. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa.

    Science.gov (United States)

    Yamaguchi, Airi; Kaneko, Takane; Inai, Tetsuichiro; Iida, Hiroshi

    2014-04-01

    Tektins (TEKTs) are composed of a family of filament-forming proteins localized in cilia and flagella. Five types of mammalian TEKTs have been reported, all of which have been verified to be present in sperm flagella. TEKT2, which is indispensable for sperm structure, mobility, and fertilization, was present at the periphery of the outer dense fiber (ODF) in the sperm flagella. By yeast two-hybrid screening, we intended to isolate flagellar proteins that could interact with TEKT2, which resulted in the isolation of novel two genes from the mouse testis library, referred as a TEKT2-binding protein 1 (TEKT2BP1) and -protein 2 (TEKT2BP2). In this study, we characterized TEKT2BP1, which is registered as a coiled-coil domain-containing protein 172 (Ccdc172) in the latest database. RT-PCR analysis indicated that TEKT2BP1 was predominantly expressed in rat testis and that its expression was increased after 3 weeks of postnatal development. Immunocytochemical studies discovered that TEKT2BP1 localized in the middle piece of rat spermatozoa, predominantly concentrated at the mitochondria sheath of the flagella. We hypothesize that the TEKT2-TEKT2BP1 complex might be involved in the structural linkage between the ODF and mitochondria in the middle piece of the sperm flagella.

  17. Exploring fold space preferences of new-born and ancient protein superfamilies.

    Directory of Open Access Journals (Sweden)

    Hannah Edwards

    Full Text Available The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide's structure and function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship between these ages and a diverse set of properties pertaining to a superfamily's sequence, structure and function. We note several marked differences between the populations of newly evolved and ancient structures, such as in their length distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We show that the structural preferences we report are not a residual effect of a more fundamental relationship with function. Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a comparison of domains containing greek key or jelly roll motifs.

  18. Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease.

    Science.gov (United States)

    Hossain, Manzar J; Korde, Reshma; Singh, Shivani; Mohmmed, Asif; Dasaradhi, P V N; Chauhan, V S; Malhotra, Pawan

    2008-04-01

    RNA-binding proteins play key roles in post-transcriptional regulation of gene expression. In eukaryotic cells, a multitude of RNA-binding proteins with several RNA-binding domains/motifs have been described. Here, we show the existence of two Tudor domain containing proteins, a survival of motor neuron (SMN)-like protein and a Staphylococcus aureus nuclease homologue referred to as TSN, in Plasmodium and other protozoan parasites. Activity analysis shows that Plasmodium falciparum TSN (PfTSN) possesses nuclease activity and Tudor domain is the RNA-binding domain. A specific inhibitor of micrococcal nucleases, 3',5'-deoxythymidine bisphosphate (pdTp) inhibits the nuclease as well as RNA-binding activities of the protein. PfTSN shows a predominant nuclear localization. Treatment of P. falciparum with pdTp, inhibited in vitro growth of both chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, while a four fold concentration of pdTp did not have any significant effect on the mammalian cell line, Huh-7D12. Altogether, these results suggest that PfTSN is an essential enzyme in the parasite's life cycle.

  19. Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions.

    Science.gov (United States)

    Ekman, Diana; Björklund, Asa K; Frey-Skött, Johannes; Elofsson, Arne

    2005-04-22

    Comparative studies of the proteomes from different organisms have provided valuable information about protein domain distribution in the kingdoms of life. Earlier studies have been limited by the fact that only about 50% of the proteomes could be matched to a domain. Here, we have extended these studies by including less well-defined domain definitions, Pfam-B and clustered domains, MAS, in addition to Pfam-A and SCOP domains. It was found that a significant fraction of these domain families are homologous to Pfam-A or SCOP domains. Further, we show that all regions that do not match a Pfam-A or SCOP domain contain a significantly higher fraction of disordered structure. These unstructured regions may be contained within orphan domains or function as linkers between structured domains. Using several different definitions we have re-estimated the number of multi-domain proteins in different organisms and found that several methods all predict that eukaryotes have approximately 65% multi-domain proteins, while the prokaryotes consist of approximately 40% multi-domain proteins. However, these numbers are strongly dependent on the exact choice of cut-off for domains in unassigned regions. In conclusion, all eukaryotes have similar fractions of multi-domain proteins and disorder, whereas a high fraction of repeating domain is distinguished only in multicellular eukaryotes. This implies a role for repeats in cell-cell contacts while the other two features are important for intracellular functions.

  20. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

    Directory of Open Access Journals (Sweden)

    Stephanie Jemielity

    2013-03-01

    Full Text Available Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4 specifically bind phosphatidylserine (PS. TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

  1. Ancylostoma ceylanicum Excretory-Secretory Protein 2 Adopts a Netrin-Like Fold and Defines a Novel Family of Nematode Proteins

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; L Harrison; M Cappello; Y Modis

    2011-12-31

    Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 {angstrom} resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinant AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2's netrin-likefold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.

  2. Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA.

    Directory of Open Access Journals (Sweden)

    Gunjan Arora

    2014-11-01

    Full Text Available Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK PknQ.In this study, we have characterized PknQ and explored its interaction with MupFHA (Mup018c, a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA (Mup012c, which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this interaction may also involve phospho-threonine/serine residues of MupDivIVA.Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need of further re-evaluating the FHA domain -pThr/pSer interaction model. MupFHA may serve as the ideal candidate for structural studies on this unique class of modular enzymes.

  3. Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA.

    Science.gov (United States)

    Arora, Gunjan; Sajid, Andaleeb; Singhal, Anshika; Joshi, Jayadev; Virmani, Richa; Gupta, Meetu; Verma, Nupur; Maji, Abhijit; Misra, Richa; Baronian, Grégory; Pandey, Amit K; Molle, Virginie; Singh, Yogendra

    2014-11-01

    Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK) PknQ. In this study, we have characterized PknQ and explored its interaction with MupFHA (Mup018c), a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA (Mup012c), which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this interaction may also involve phospho-threonine/serine residues of MupDivIVA. Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need of further re-evaluating the FHA domain -pThr/pSer interaction model. MupFHA may serve as the ideal candidate for structural studies on this unique class of modular enzymes.

  4. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression.

    Directory of Open Access Journals (Sweden)

    Quitterie Venot

    Full Text Available ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1 domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL, which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  5. Dnase1L3 Regulates Inflammasome-Dependent Cytokine Secretion

    Directory of Open Access Journals (Sweden)

    Guilan Shi

    2017-05-01

    Full Text Available Pediatric-onset systemic lupus erythematosus arises in humans and mice lacking the endonuclease Dnase1L3. When Dnase1L3 is absent, DNA from circulating apoptotic bodies is not cleared, leading to anti-DNA antibody production. Compared to early anti-DNA and anti-chromatin responses, other autoantibody responses and general immune activation in Dnase1L3−/− mice are greatly delayed. We investigated the possibility that immune activation, specifically inflammasome activation, is regulated by Dnase1L3. Here, we report that Dnase1L3 inhibition blocked both NLR family, pyrin domain containing 3 (NLRP3 and NLRC4 inflammasome-mediated release of high-mobility group box 1 protein and IL-1β. In contrast to IL-1β release, Dnase1L3 inhibition only mildly impaired NLRP3-dependent pyroptosis, as measured by propidium iodide uptake or LDH release. Mechanistically, we found that Dnase1L3 was needed to promote apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC nuclear export and speck formation. Our results demonstrate that Dnase1L3 inhibition separates cytokine secretion from pyroptosis by targeting ASC. These findings suggest that Dnase1L3 is necessary for cytokine secretion following inflammasome activation.

  6. Cloning and characterization of mr-s, a novel SAM domain protein, predominantly expressed in retinal photoreceptor cells

    Directory of Open Access Journals (Sweden)

    Koike Chieko

    2006-03-01

    Full Text Available Abstract Background Sterile alpha motif (SAM domains are ~70 residues long and have been reported as common protein-protein interaction modules. This domain is found in a large number of proteins, including Polycomb group (PcG proteins and ETS family transcription factors. In this work, we report the cloning and functional characterization of a novel SAM domain-containing protein, which is predominantly expressed in retinal photoreceptors and the pineal gland and is designated mouse mr-s (major retinal SAM domain protein. Results mr-s is evolutionarily conserved from zebrafish through human, organisms through which the mechanism of photoreceptor development is also highly conserved. Phylogenetic analysis suggests that the SAM domain of mr-s is most closely related to a mouse polyhomeotic (ph ortholog, Mph1/Rae28, which is known as an epigenetic molecule involved in chromatin modifications. These findings provide the possibility that mr-s may play a critical role by regulating gene expression in photoreceptor development. mr-s is preferentially expressed in the photoreceptors at postnatal day 3–6 (P3-6, when photoreceptors undergo terminal differentiation, and in the adult pineal gland. Transcription of mr-s is directly regulated by the cone-rod homeodomain protein Crx. Immunoprecipitation assay showed that the mr-s protein self-associates mainly through the SAM domain-containing region as well as ph. The mr-s protein localizes mainly in the nucleus, when mr-s is overexpressed in HEK293T cells. Moreover, in the luciferase assays, we found that mr-s protein fused to GAL4 DNA-binding domain functions as a transcriptional repressor. We revealed that the repression activity of mr-s is not due to a homophilic interaction through its SAM domain but to the C-terminal region. Conclusion We identified a novel gene, mr-s, which is predominantly expressed in retinal photoreceptors and pineal gland. Based on its expression pattern and biochemical analysis

  7. Purification and identification of an antibacterial protein from the symbiotic bacteria associated with novel entomopathogenic nematode, Rhabditis (Oscheius) sp.

    Science.gov (United States)

    Anju, K M; Archana, M M; Mohandas, C; Nambisan, Bala

    2015-04-01

    Entomopathogenic nematodes (EPN) belonging to the families steinernematidae and heterorhabditidae and their symbiotic bacteria Xenorhabdus and Photorhabdus are well-known as biological control agents and are found to produce a wide range of bioactive secondary metabolites. Studies carried out at the Central Tuber Crops Research Institute (CTCRI) on entomopathogenic nematodes resulted in the identification of novel EPN belonging to the family Rhabditidae. This study reports the purification of a high molecular weight antibacterial protein from culture filtrates of a bacterium (Bacillus cereus) symbiotically associated with a novel entomopathogenic nematode Rhabditis (Oscheius) species, maintained at CTCRI laboratory. Fermentation conditions were standardized and optimum antibacterial activity was observed in tryptic soy broth after 48 h incubation at 30 °C. The aqueous extracts yielded antibacterial proteins which were purified by ammonium sulfate precipitation followed by ion exchange chromatography and size exclusion chromatography. Native gel electrophoresis indicated an active protein of molecular mass 220KDa which resolved into a major band of 90 kDa and a minor band of about 40 kDa on SDS-PAGE. The 90 kDa protein showed antibacterial activity and was further analysed by MALDI TOF-MS/MS. The protein was identified as a TQXA (Threonine-glutamine dipeptide) domain containing protein from Bacillus cereus. The protein was found to be active against Bacillus subtilis MTCC2756, Staphylococus aureus MTCC902 and Escherichia coli MTCC 2622 and was thermally stable.

  8. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Xu, Qingping; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-10-01

    Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT_3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment.

  9. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.

    Science.gov (United States)

    Pugalenthi, Ganesan; Kandaswamy, Krishna Kumar; Suganthan, P N; Sowdhamini, R; Martinetz, Thomas; Kolatkar, Prasanna R

    2010-12-01

    Knowledge of three dimensional structure is essential to understand the function of a protein. Although the overall fold is made from the whole details of its sequence, a small group of residues, often called as structural motifs, play a crucial role in determining the protein fold and its stability. Identification of such structural motifs requires sufficient number of sequence and structural homologs to define conservation and evolutionary information. Unfortunately, there are many structures in the protein structure databases have no homologous structures or sequences. In this work, we report an SVM method, SMpred, to identify structural motifs from single protein structure without using sequence and structural homologs. SMpred method was trained and tested using 132 proteins domains containing 581 motifs. SMpred method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% specificity. The performance of SMpred was evaluated with MegaMotifBase using 188 proteins containing 1161 motifs. Out of 1161 motifs, SMpred correctly identified 1503 structural motifs reported in MegaMotifBase. Further, we showed that SMpred is useful approach for the length deviant superfamilies and single member superfamilies. This result suggests the usefulness of our approach for facilitating the identification of structural motifs in protein structure in the absence of sequence and structural homologs. The dataset and executable for the SMpred algorithm is available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/SMpred.htm.

  10. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hyung [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries several regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this

  11. Molecular Characterization of Soybean Mosaic Virus NIa Protein and its Processing Event in Bacterial Expression

    Directory of Open Access Journals (Sweden)

    Bong K. Choi

    2006-01-01

    Full Text Available Soybean mosaic virus (SMV-CN18 is an Rsv resistance-breaking (RB isolate to overcome soybean resistance genes Rsv1, Rsv3 and Rsv4. The aim of this study was to characterize nuclear inclusion protein a (NIa protein of RB isolate at the molecular level and demonstrate its processing into genome-linked protein (VPg and NIa-Pro domains in Esherichia coli containing a bacterial expression pET vector inserted with NIa gene. The full-length of NIa gene was synthesized by reverse transcription-polymerase chain reaction (RT-PCR and its 1298 nucleotides (nt and 432 amino acids (aa were deduced. The nt and aa sequences of NIa gene of SMV-CN18 shared high identities with the corresponding sequences of the NIa gene of the known SMV isolates, suggesting that the NIa is a highly conserved protein. The NIa-Pro domain contains a highly conserved structural motif for proteolysis, while the VPg domain contains a nuclear localization signal (NLS, a putative NTP-binding site and cellular factor-binding sites. The phylogenetic tree revealed that less divergence of NIa protein exists among twelve SMV isolates, which can be supported by a low bootstrap value between clades. In addition, the full-length of NIa gene, amplified by RT-PCR, was ligated into pET-28b E. coli expression vector with an N-terminal His6-tag. Optimal conditions for expression were at 1mM treatment of IPTG at 25°C for 5 hr. The released protein from bacterial lysates remained soluble and proved the processing form of the NIa polyprotein. E. coli expression system shows the processed product of 29 kDa VPg in SDS-PAGE confirmed by western blot analysis in both crude extracts and purified elution products, using Ni2+-NTA resin. The present study indicates that the N-terminal region of NIa which is processed and expressed in bacteria.

  12. Crystal structure of an eIF4G-like protein from Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bitto, Eduard; Bingman, Craig A.; McCoy, Jason G.; Wesenberg, Gary E.; Phillips, Jr., George N. (UW)

    2012-04-18

    The gene LOC 91917 Danio rerio (zebrafish) encodes a protein annotated in the UniProt knowledgebase as the middle domain of eukaryotic initiation factor 4G domain containing protein b (MIF4Gdb). Its molecular weight is 25.8 kDa, and it comprises 222 amino acid residues. BLAST searches revealed homologues of D. rerio MIF4Gdb in many eukaryotes including humans. The homologue sand MIF4Gdb were identified as members of the Pfam family, MIF4G (PF2854), which is named after the middle domain of eukaryotic initiation factor 4G (eIF4G). eIF4G is a component of eukaryotic translational initiation complex, and contains binding sites for other initiation factors, suggesting its critical role in translational initiation. The MIF4G domain also occurs in several other proteins involved in RNA metabolism, including the Nonsense-mediated mRNA decay 2 protein (NMD2/UPF2), and the nuclear cap-binding protein 80-kDa subunit (CBP80). Sequence and structure analysis of the MIF4G domains in many proteins indicate that the domain assumes an all helical fold and has tandem repeated motifs. The zebrafish protein described here has homology to domains of other proteins variously referred to as NIC-containing proteins (NMD2, eIF4G, CBP80). The biological function of D. rerio MIF4Gdb has not yet been experimentally characterized, and the annotation is based on amino acid sequence comparison. D. rerio MIF4Gdb did not share more than 25% sequence identity with any protein for which the three-dimensional structure is known and was selected as a target for structure determination by the Center for Eukaryotic Structural Genomics (CESG). Here, they report the crystal structure of D. rerio MIF4Gdb (UniGene code Dr.79360, UniProt code Q5EAQ1, CESG target number GO.79294).

  13. Proteomic identification of differentially expressed proteins between male and female plants in Pistacia chinensis.

    Science.gov (United States)

    Xiong, Erhui; Wu, Xiaolin; Shi, Jiang; Wang, Xiaoyan; Wang, Wei

    2013-01-01

    Pistacia chinensis is a strict dioecious plant with male and female flowers in individuals. In China, P. chinensis is widely planted for biodiesel oil due to high oil content in seeds. In practice it requires to grow more female plants for biodiesel production. At present, there are still no reliable methods for sex determination during the long juvenile stage of this species. In order to develop protein molecular markers for sex determination in P. chinensis, proteomic approach was used to identify differentially expressed proteins between male and female plants. Vegetative organs (leaf and stem) rather than reproductive organs/tissues were used for protein extraction so as to develop protein markers which can be used in siblings before flowering. Protein was extracted using a phenol-based protocol. By using two-dimensional electrophoresis, a total of 10 protein spots were found to be differentially expressed in leaf and stem between both sexes, of which 7 were successfully identified by mass spectrometry and matched to 6 functional proteins such as NB-ARC domain containing protein, light harvesting chlorophyll a/b binding protein, asorbate peroxidase (APX), eukaryotic translation initiation factor 5A2, temperature-induced lipocalin (TIL) and phosphoglycerate kinase (PGK). The sex-related difference displayed in a tissue-specific way, especially in stem. PGK existed in high abundance in stem phloem in the female, but was almost not detected in the male; APX and two TIL species were highly abundant in the stem of male plants, while their abundance was much lower in female plants. Moreover, these abundance differences were further confirmed in individual plants. Hence, it is assumed that APX, PGK and TIL might be promising candidates to serve as protein molecular markers for sex determination in P. chinensis. Our results form the basis for a further understanding of the biochemical mechanisms of sex determination in P. chinensis.

  14. PDZ-containing proteins: alternative splicing as a source of functional diversity.

    Science.gov (United States)

    Sierralta, Jimena; Mendoza, Carolina

    2004-12-01

    Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.

  15. An investigation of hierachical protein recruitment to the inhibitory platelet receptor, G6B-b.

    Science.gov (United States)

    Coxon, Carmen H; Sadler, Amanda J; Huo, Jiandong; Campbell, R Duncan

    2012-01-01

    Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC(50) for both CRP and collagen.