WorldWideScience

Sample records for pyridoxal

  1. Synthesis of Some Pyridoxine and Pyridoxal Halophosphonates

    OpenAIRE

    Elshani, Sadik; Butula, Ljubica; Matijević-Sosa, Julija

    1996-01-01

    A new series of pyridoxine and pyridoxal chloro and fluorophosphonates have been synthesized. Partially protected pyridoxine 1, 2 or pyridoxal 4 reacted with methyl phosphonic dichloride in the presence of triethylamine at -10 °C. Thus, the following chlorophosphonate derivatives were obtained: 3,4'-0-isopropylidenepyridoxine-5'-0- methylchlorophosphonate (5), 4',5'-0-isobutylidenepyridoxine-3-0- methylchlorophosphonate (6), and monoethylacetalpyridoxal-3-0- methylchlorophosphonate (7). Simil...

  2. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase.

    Directory of Open Access Journals (Sweden)

    Mohini S Ghatge

    Full Text Available Pyridoxal 5'-phosphate (PLP is a cofactor for dozens of B(6 requiring enzymes. PLP reacts with apo-B(6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B(6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4'-aldehyde moiety forms covalent adducts with other compounds and non-B(6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B(6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.

  3. Pyridoxal 5'-phosphate, pyridoxal, and 4-pyridoxic acid in the paired serum and cerebrospinal fluid of children.

    Science.gov (United States)

    Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Tsuchiya, Hiroki; Yamaguchi, Tokito; Kobayashi, Katsuhiro

    2017-09-01

    We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in paired serum and cerebrospinal fluid (CSF) samples from children and investigated the effect of age on the concentrations and CSF-to-serum ratios of these vitamers. Serum and CSF samples prospectively collected from 49 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age on these vitamers, the PLP-to-PL ratio, CSF-to-serum PLP ratio, and CSF-to-serum PL ratio were evaluated using correlation analysis. The PLP, PL, and PA concentrations in the serum and CSF were higher at younger ages, except for CSF PA concentrations that were mostly below the limit of detection (<1.2nmol/l). The PLP-to-PL ratios in the serum and CSF correlated positively with age. The CSF-to-serum PLP ratio and CSF-to-serum PL ratio were independent of age. Age-related changes in PLP, PL, and PA in serum and in CSF from pediatric patients and CSF-to-serum ratios of PLP and PL demonstrated in this study will provide valuable information for evaluating PLP supply to the central nervous system from the peripheral blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pyridoxal, Vitamin B12 and Folate Metabolism Women Taking Oral ...

    African Journals Online (AJOL)

    1974-09-21

    Sep 21, 1974 ... in vitamin B" levels in 20 women taking aCA compared ... 250 flg folic acid daily while continuing to take aCA. .... A total of 1126 women between the ages of 20 and .... of a normal serum pyridoxal level during pregnancy.

  5. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    Science.gov (United States)

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Decreased serum pyridoxal levels in schizophrenia: meta-analysis and Mendelian randomization analysis

    Science.gov (United States)

    Tomioka, Yukiko; Kinoshita, Makoto; Umehara, Hidehiro; Watanabe, Shin-ya; Nakataki, Masahito; Iwayama, Yoshimi; Toyota, Tomoko; Ikeda, Masashi; Yamamori, Hidenaga; Shimodera, Shinji; Tajima, Atsushi; Hashimoto, Ryota; Iwata, Nakao; Yoshikawa, Takeo; Ohmori, Tetsuro

    2018-01-01

    Background Alterations in one-carbon metabolism have been associated with schizophrenia, and vitamin B6 is one of the key components in this pathway. Methods We first conducted a case–control study of serum pyridoxal levels and schizophrenia in a large Japanese cohort (n = 1276). Subsequently, we conducted a meta-analysis of association studies (n = 2125). Second, we investigated whether rs4654748, which was identified in a genome-wide association study as a vitamin B6-related single nucleotide polymorphism, was genetically implicated in patients with schizophrenia in the Japanese population (n = 10 689). Finally, we assessed the effect of serum pyridoxal levels on schizophrenia risk using a Mendelian randomization (MR) approach. Results Serum pyridoxal levels were significantly lower in patients with schizophrenia than in controls, not only in our cohort, but also in the pooled data set of the meta-analysis of association studies (standardized mean difference −0.48, 95% confidence interval [CI] −0.57 to −0.39, p = 9.8 × 10−24). We failed to find a significant association between rs4654748 and schizophrenia. Furthermore, an MR analysis failed to find a causal relationship between pyridoxal levels and schizophrenia risk (odds ratio 0.99, 95% CI 0.65–1.51, p = 0.96). Limitations Food consumption and medications may have affected serum pyridoxal levels in our cross-sectional study. Sample size, number of instrumental variables and substantial heterogeneity among patients with schizophrenia are limitations of an MR analysis. Conclusion We found decreased serum pyridoxal levels in patients with schizophrenia in this observational study. However, we failed to obtain data supporting a causal relationship between pyridoxal levels and schizophrenia risk using the MR approach. PMID:29688875

  7. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

    Science.gov (United States)

    Guerriero, Réjean M; Patel, Archana A; Walsh, Brian; Baumer, Fiona M; Shah, Ankoor S; Peters, Jurriaan M; Rodan, Lance H; Agrawal, Pankaj B; Pearl, Phillip L; Takeoka, Masanori

    2017-11-01

    Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    Science.gov (United States)

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Syntheses of sulphurated amino-acids from cystein, serine and phosphoserine using pyridoxal and a metal as catalysts (1961)

    International Nuclear Information System (INIS)

    Ratsisalovanina, O.; Chapeville, F.; Fromageot, P.

    1961-01-01

    Pyridoxal or pyridoxal phosphate in the presence of certain metals catalyzes the substitution of the -SH, -OH, or -O-PO 3 H 2 groups of cysteine, serine or phosphoserine by a -SH or -SO 3 H group brought by mineral sulfide or sulfite. (authors) [fr

  10. Contribution to the study of the substitution of the thiol group of cysteine in presence of pyridoxal or pyridoxal phosphate; Contribution a l'etude de la substitution du groupe thiol de la cysteine en presence de pyridoxal ou de phosphate de pyridoxal

    Energy Technology Data Exchange (ETDEWEB)

    Ratsisalovanina-Rajaonarivelo, Olga

    1960-11-15

    This academic work shows that the detachment of SH{sup -}, OH{sup -} and OPO{sub 3}H{sub 2}{sup -}, respectively from cysteine, serine and phosphoserine can occur with its substitution by a sulphur-containing group. The author first shows the ability of pyridoxal and of pyridoxal phosphate to catalyse the exchange between the sulphur of the cysteine thiol group and the sulphur of the mineral sulphide, and to catalyse the cysteine synthesis from serine or phosphoserine in presence of mineral sulphur. Then, she studied various parameters of the synthesis reaction: influence of concentrations, of temperature, of reaction time, of metal nature, of oxygen presence, and of pH on efficiency in terms of cysteic acid.

  11. A new fatal case of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency.

    Science.gov (United States)

    Ruiz, Angeles; García-Villoria, Judit; Ormazabal, Aida; Zschocke, Johannes; Fiol, Miquel; Navarro-Sastre, Aleix; Artuch, Rafael; Vilaseca, Maria Antonia; Ribes, Antonia

    2008-02-01

    We present a patient with severe pyridox(am)ine 5'-phosphate oxidase deficiency and homozygosity for a novel nonsense-mutation, p.A174X, in the PNPO gene who died with pyridoxal phosphate (PLP) treatment despite initial clinical recovery. He presented neonatally, with the classical clinical symptoms of the disease. Increase of urinary vanillactate was the first biochemical factor of alert. Amino acid and neurotransmitter analysis in CSF indicated reduced activity of several PLP-dependent enzymes. The diagnosis was confirmed by mutational studies. From this and the other reported patients it may be concluded that the administration of PLP should not be delayed until the complete biochemical evidence is obtained.

  12. A simple high-performance liquid chromatography (HPLC) method for the measurement of pyridoxal-5-phosphate and 4-pyridoxic acid in human plasma.

    Science.gov (United States)

    Cabo, Rona; Kozik, Karolina; Milanowski, Maciej; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2014-06-10

    Low concentration of plasma pyridoxal-5-phosphate (PLP) is associated with hyperhomocysteinemia and inflammation. Most methods for the measurement of plasma PLP require large specimen volume and involve the use of toxic reagents. We have developed a HPLC method for the measurement of PLP and 4-pyridoxic acid (4-PA) in plasma, which requires small specimen volume. The samples are prepared without adding any toxic reagents. Furthermore, we have examined whether intake of vitamin B6 affects the concentration of plasma PLP and 4-PA. The coefficient of variation of the method was 6% and the recovery of the added vitamin in plasma was about 100%. The concentrations of plasma PLP and 4-PA in 168 healthy subjects were 40.6 (8.4-165.0) nmol/L, median and (range) and 17.5 (3.7-114.79) nmol/L, median and (range) respectively. In the multiple regression analyses, the concentration of plasma PLP was associated with the concentration of plasma 4-PA (pplasma 4-PA was associated with plasma PLP (pplasma PLP and 4-PA. Our findings demonstrate that plasma 4-PA, BMI and sex are the major determinants of plasma PLP in healthy individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5′-phosphate as a phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang; Chen, Feng; Qi, Chao; Zhao, Jing; Wu, Jin

    2014-07-01

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects of experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.

  14. Fate of 1-aminoproline and urinary excretion of 1-aminoprolyl hydrazone of pyridoxal in rats

    International Nuclear Information System (INIS)

    Tsuji, Hideaki; Moritoki, Keiko; Ogawa, Tadashi; Sasaoka, Kei

    1977-01-01

    1-Aminoproline-U- 14 C was administered to rats by intraperitoneal injection. The radioactivity was distributed in all the tissues examined. Among them, kidney, lung, liver and spleen had high specific activity. The radioactivity in the tissues and blood decreased rapidly as a function of time, except in brain. About 80% of the radioactivity administered was excreted in urine within 24 hr. Besides intact 1-aminoproline, several radioactive compounds were detected in the urine sample, and one of them was identified as 1-aminopropyl hydrazone of pyridoxal. (auth.)

  15. Binding and uptake of {sup 125}iodine-labelled, oxidized low density lipoprotein by macrophages: Comparison of the effects of {alpha}-tocopherol, probucol, pyridoxal-5`-phosphate and magnesium-pyridoxal-5`-phosphate-glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Selmer, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Lehrstuhl fuer Phytopathologie; Senekowitsch-Schmidtke, R. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik; Schneider, W. [Steigerwald Arzneimittel, Darmstadt (Germany); Elstner, E.F. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Lehrstuhl fuer Phytopathologie

    1997-01-01

    Specific and unspecific binding and uptake (internalization) by macrophages of {sup 125}iodine-labelled, copper-oxidized human low density lipoprotein is differently influenced by the anti-oxidants {alpha}-tocopherol ({alpha}-Toc), probucol (Prob), pyridoxal-5`-phosphate (PP) and the magnesium-pyridoxal-5`-phosphate glutamate complex (MPPG). Binding as well as internalization, mediated by the so-called `scavenger receptor` is lower in the presence of MPPG whereas both specific binding and internalization are enhanced. The comparison of the effects in vitro allows a rating of the potentially anti-atherogenic and thus protective effects of the tested substances as follows: MPPG>PP>{alpha}-Toc>Prob. (orig.)

  16. Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature.

    Science.gov (United States)

    Guerin, Andrea; Aziz, Aly S; Mutch, Carly; Lewis, Jillian; Go, Cristina Y; Mercimek-Mahmutoglu, Saadet

    2015-08-01

    Pyridox(am)ine-5-phosphate oxidase deficiency is an autosomal recessive disorder of pyridoxine metabolism. Intractable neonatal epileptic encephalopathy is the classical presentation. Pyridoxal-5-phosphate or pyridoxine supplementation improves symptoms. We report a patient with myoclonic and tonic seizures at the age of 1 hour. Pyridoxal-5-phosphate was started on the first day of life and seizures stopped at the age of 3 days, but encephalopathy persisted for 4 weeks. She had normal neurodevelopmental outcome at the age of 12 months on pyridoxal-5-phosphate monotherapy. She had novel homozygous pathogenic frameshift mutation (c.448_451del;p.Pro150Argfs*27) in the PNPO gene. Long-lasting encephalopathy despite well-controlled clinical seizures does neither confirm nor exclude pyridox(am)ine-5-phosphate oxidase deficiency. Normal neurodevelopmental outcome of our patient emphasizes the importance of pyridoxal-5-phosphate treatment. Pyridox(am)ine-5-phosphate oxidase deficiency should be included in the differential diagnosis of Ohtahara syndrome and neonatal myoclonic encephalopathy as a treatable underlying cause. In addition, we reviewed the literature for pyridox(am)ine-5-phosphate oxidase deficiency and summarized herein all confirmed cases. © The Author(s) 2014.

  17. Kinetics and mechanism of the condensation of pyridoxal hydrochloride with L-tryptophan and D-tryptophan, and the chemical transformation of their products

    Science.gov (United States)

    Pishchugin, F. V.; Tuleberdiev, I. T.

    2017-10-01

    The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of CO2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.

  18. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase.

    Directory of Open Access Journals (Sweden)

    Cyril Moccand

    Full Text Available The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2 that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5'-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5'-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.

  19. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5'-phosphate oxidase.

    Science.gov (United States)

    Mills, Philippa B; Surtees, Robert A H; Champion, Michael P; Beesley, Clare E; Dalton, Neil; Scambler, Peter J; Heales, Simon J R; Briddon, Anthony; Scheimberg, Irene; Hoffmann, Georg F; Zschocke, Johannes; Clayton, Peter T

    2005-04-15

    In the mouse, neurotransmitter metabolism can be regulated by modulation of the synthesis of pyridoxal 5'-phosphate and failure to maintain pyridoxal phosphate (PLP) levels results in epilepsy. This study of five patients with neonatal epileptic encephalopathy suggests that the same is true in man. Cerebrospinal fluid and urine analyses indicated reduced activity of aromatic L-amino acid decarboxylase and other PLP-dependent enzymes. Seizures ceased with the administration of PLP, having been resistant to treatment with pyridoxine, suggesting a defect of pyridox(am)ine 5'-phosphate oxidase (PNPO). Sequencing of the PNPO gene identified homozygous missense, splice site and stop codon mutations. Expression studies in Chinese hamster ovary cells showed that the splice site (IVS3-1g>a) and stop codon (X262Q) mutations were null activity mutations and that the missense mutation (R229W) markedly reduced pyridox(am)ine phosphate oxidase activity. Maintenance of optimal PLP levels in the brain may be important in many neurological disorders in which neurotransmitter metabolism is disturbed (either as a primary or as a secondary phenomenon).

  20. Structure of alanine racemase from Oenococcus oeni with bound pyridoxal 5′-phosphate

    International Nuclear Information System (INIS)

    Palani, Kandavelu; Burley, Stephen K.; Swaminathan, Subramanyam

    2012-01-01

    Alanine racemase from O. oeni exists as a dimer in the crystal structure. Both monomers contribute to the two active sites present, one for each monomer. The crystal structure of alanine racemase from Oenococcus oeni has been determined at 1.7 Å resolution using the single-wavelength anomalous dispersion (SAD) method and selenium-labelled protein. The protein exists as a symmetric dimer in the crystal, with both protomers contributing to the two active sites. Pyridoxal 5′-phosphate, a cofactor, is bound to each monomer and forms a Schiff base with Lys39. Structural comparison of alanine racemase from O. oeni (Alr) with homologous family members revealed similar domain organization and cofactor binding

  1. Lysine Restriction and Pyridoxal Phosphate Administration in a NADK2 Patient.

    Science.gov (United States)

    Tort, Frederic; Ugarteburu, Olatz; Torres, Maria Angeles; García-Villoria, Judit; Girós, Marisa; Ruiz, Angeles; Ribes, Antonia

    2016-11-01

    We report the case of a 10-year-old Spanish girl with mutations in NADK2 Prenatal central nervous system abnormalities showed ventriculomegaly, colpocephaly, and hypoplasia of the corpus callosum. At birth, axial hypotonia, uncoordinated movements, microcephaly, and generalized cerebellar atrophy were detected. Metabolic investigations revealed high lysine, lactate, and pipecolic acid levels in blood and cerebrospinal fluid. Pyruvate carboxylase and pyruvate dehydrogenase activity in fibroblasts were normal. Beginning at birth she received biotin, thiamine, and carnitine supplementation. A lysine-restricted diet was started when she was 1 month old. Because pipecolic acid was high, pyridoxine was added to treatment. At 3 years old, astatic myoclonic epilepsy appeared, with no response to levetiracetam. We switched pyridoxine to pyridoxal phosphate, with electroclinical improvement. Because the activity of mitochondrial respiratory chain complexes III and IV was slightly low in muscle, other cofactors such as ubidecarenone, idebenone, vitamin E, and creatine were added to the treatment. At 8 years old, plasma acylcarnitine testing was performed, and high levels of 2-trans, 4-cis-decadienoylcarnitine were found. Whole exome sequencing identified a homozygous splice site mutation in NADK2 (c.956+6T>C; p.Trp319Cysfs*21). This substitution generates exon skipping, leading to a truncated protein. In fact, NADK2 messenger RNA and the corresponding protein were almost absent. Now, at 10 years of age she presents with ataxia and incoordination. She has oromotor dysphasia but is able to understand fluid language and is a very friendly girl. We hypothesize that the patient's clinical improvement could be due to her lysine-restricted diet together with cofactors and pyridoxal phosphate administration. Copyright © 2016 by the American Academy of Pediatrics.

  2. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  3. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5'-phosphate with isoniazid in an aqueous solution

    Science.gov (United States)

    Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.

    2017-05-01

    Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.

  4. 4-Pyridoxic Acid in the Spent Dialysate: Contribution to Fluorescence and Optical Monitoring.

    Science.gov (United States)

    Kalle, Sigrid; Tanner, Risto; Arund, Jürgen; Tomson, Ruth; Luman, Merike; Fridolin, Ivo

    2016-01-01

    In this work we estimated the contribution of the fluorescence of 4-pyridoxic acid (4-PA) to the total fluorescence of spent dialysate with the aim of evaluating the on-line monitoring of removal of this vitamin B-6 metabolite from the blood of patients with end-stage renal disease (ESRD). Spectrofluorometric analysis of spent dialysate, collected from hemodialysis and hemodiafiltration sessions of 10 patients receiving regularly pyridoxine injections after dialysis treatment, was performed in the range of Ex/Em 220-500 nm. 4-PA in dialysate samples was identified and quantified using HPLC with fluorescent and MS/MS detection. Averaged HPLC chromatogram of spent dialysate had many peaks in the wavelength region of Ex320/Em430 nm where 4-PA was the highest peak with contribution of 42.2±17.0% at the beginning and 47.7±18.0% in the end of the dialysis. High correlation (R = 0.88-0.95) between 4-PA concentration and fluorescence intensity of spent dialysate was found in the region of Ex310-330/Em415-500 nm, respectively. 4-PA elimination from the blood of ESRD patients can be potentially followed using monitoring of the fluorescence of the spent dialysate during dialysis treatments.

  5. 4-Pyridoxic Acid in the Spent Dialysate: Contribution to Fluorescence and Optical Monitoring.

    Directory of Open Access Journals (Sweden)

    Sigrid Kalle

    Full Text Available In this work we estimated the contribution of the fluorescence of 4-pyridoxic acid (4-PA to the total fluorescence of spent dialysate with the aim of evaluating the on-line monitoring of removal of this vitamin B-6 metabolite from the blood of patients with end-stage renal disease (ESRD.Spectrofluorometric analysis of spent dialysate, collected from hemodialysis and hemodiafiltration sessions of 10 patients receiving regularly pyridoxine injections after dialysis treatment, was performed in the range of Ex/Em 220-500 nm. 4-PA in dialysate samples was identified and quantified using HPLC with fluorescent and MS/MS detection.Averaged HPLC chromatogram of spent dialysate had many peaks in the wavelength region of Ex320/Em430 nm where 4-PA was the highest peak with contribution of 42.2±17.0% at the beginning and 47.7±18.0% in the end of the dialysis. High correlation (R = 0.88-0.95 between 4-PA concentration and fluorescence intensity of spent dialysate was found in the region of Ex310-330/Em415-500 nm, respectively.4-PA elimination from the blood of ESRD patients can be potentially followed using monitoring of the fluorescence of the spent dialysate during dialysis treatments.

  6. Maternal plasma pyridoxal-5'-phosphate concentrations and risk of isolated oral clefts in the Philippines.

    Science.gov (United States)

    Tamura, Tsunenobu; Munger, Ronald G; Nepomuceno, Buena; Corcoran, Christopher; Cembrano, Joselito; Solon, Florentino

    2007-04-01

    We report that inadequate vitamin B-6 status of Filipino mothers, assessed by erythrocyte aspartate aminotransferase activity coefficient (EAST-AC), is associated with an increased risk for isolated cleft lip with or without cleft palate (CL/P) in their children. Its association with the status assessed by plasma pyridoxal-5'-phosphate (PLP) concentrations is unknown. In a case-control study in the Philippines including 46 cases (mothers of a child with CL/P) and 392 controls (mothers of an unaffected child), we evaluated the association between the risk for CL/P and maternal vitamin B-6 status assessed by PLP and EAST-AC. The ORs of CL/P were estimated by classifying mothers by PLP (>30, 20-30, and values, compared to those with adequate status by both values. Inadequate vitamin B-6 status assessed by maternal PLP and EAST-AC values independently and both combined was associated with an increased risk for CL/P. The association was highest when both values were considered, suggesting that the measurement of both PLP and EAST-AC provides better assessment of vitamin B-6 status than either measurement alone.

  7. Identification and characterization of a pyridoxal 5'-phosphate phosphatase in the silkworm (Bombyx mori).

    Science.gov (United States)

    Huang, ShuoHao; Han, CaiYun; Ma, ZhenQiao; Zhou, Jie; Zhang, JianYun; Huang, LongQuan

    2017-03-01

    Vitamin B 6 comprises six interconvertible pyridine compounds, among which pyridoxal 5'-phosphate (PLP) is a coenzyme for over 140 enzymes. PLP is also a very reactive aldehyde. The most well established mechanism for maintaining low levels of free PLP is its dephosphorylation by phosphatases. A human PLP-specific phosphatase has been identified and characterized. However, very little is known about the phosphatase in other living organisms. In this study, a cDNA clone of putative PLP phosphatase was identified from B. mori and characterized. The cDNA encodes a polypeptide of 343 amino acid residues, and the recombinant enzyme purified from E. coli exhibited properties similar to that of human PLP phosphatase. B. mori has a single copy of the PLPP gene, which is located on 11th chromosome, spans a 5.7kb region and contains five exons and four introns. PLP phosphatase transcript was detected in every larva tissue except hemolymph, and was most highly represented in Malpighian tube. We further down-regulated the gene expression of the PLP phosphatase in 5th instar larvae with the RNA interference. However, no significant changes in the gene expression of PLP biosynthetic enzymes and composition of B 6 vitamers were detected as compared with the control. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pharmacokinetic and imaging studies of the hepatobiliary agent sup(99m)Tc-pyridoxal leucine

    International Nuclear Information System (INIS)

    Sawas-Dimopoulou, C.; Chiotellis, E.; Dassiou, A.; Papanicolaou, N.; Simitzis, G.; Koutoulidis, K.; Hadzilouka-Mantaka, A.

    1978-01-01

    An investigation into the usefulness of sup(99m)Tc-pyridoxal leucine has demonstrated its advantages over 131 I-rose bengal in the diagnosis of patients with several liver and gall bladder complaints. Toxicity studies in mice, rabbits and dogs showed no histological signs of tissular lesions at doses of up to 5000 to 25,000 times the clinical dose. Visualization of the liver, gall bladder and biliary excretion into intestines was rapid. The appearance of activity into the intestines was delayed in patients with partial obstruction of the common bile duct. Insufficient diagnostic information was provided in jaundiced patients with higher levels of bilirubin (7 to 12 mg%). These patients showed reduced liver uptake with high background, and intestinal activity was not always clearly visualized in an 18 h study. At bilirubin levels higher than 12 mg% no liver uptake was usually observed, but only renal activity. 131 I-rose bengal was preferable for the differential diagnosis of obstructive jaundice in these patients. (U.K.)

  9. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    Science.gov (United States)

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  10. Chemical modification of human muscle aldose reductase by pyridoxal 5'-phosphate

    International Nuclear Information System (INIS)

    Morjana, N.A.; Lyons, C.; Flynn, T.G.

    1987-01-01

    Aldose reductase (ALR2) is a monomeric oxidoreductase (Mr, 37,000). This enzyme catalyzes the reduction of a wide variety of aliphatic and aromatic aldehydes to their corresponding alcohols. The ability to reduce D-glucose and utilize NADH distinguishes ALR2 from aldehyde reductase (ALR1) which is exclusively NADPH-dependent. As part of a study to determine active site residues critical for binding and catalysis they have investigated the behavior of ALR2 with pyridoxal phosphate (PLP). In contrast to ALR1, which is inactivated by PLP, the reaction of ALR2 with PLP results in a 2-3 fold activation with the incorporation of 1 mol of PLP/mol enzyme. However, despite a 3-fold increase in k/sub cat/, there is also a 13-14 fold increase in the Km for both coenzyme and substrate and catalytic efficiency (k/sub cat//Km) is actually decreased. Reaction of ALR2 with 3 [H] PLP followed by digestion with endoproteinase Lys-C enabled the separation and purification by HPLC of a peptide containing a single pyridoxyllysine residue. The sequence of this 32 residue peptide is highly homologous with a peptide similarly obtained from pig and human ALR1 and is identical with one from pig ALR2. In all four enzymes, pig ALR1, ALR2; human ALR1, ALR2, a tetrapeptide containing the pyridoxylated lysine (I-P-K-S) shows absolute identity. Thus, despite differences in substrate and coenzyme specificity, the active site in both ALR1 and ALR2 is relatively conserved

  11. The role of axial chirality in Schiff bases of pyridoxal phosphate and amino acids in the mechanism of racemase enzyme : a quantum-chemical study

    NARCIS (Netherlands)

    Genderen, van M.H.P.; Buck, H.M.

    1989-01-01

    In the enzymatic racemization of L and D amino acids, the coenzyme pyridoxal phosphate (PLP) forms a Schiff base with the amino acid. In the first step of the isomerization reaction, both the L and D PLP-amino acid compounds are deprotonated by a single basic site in the enzyme, which is normally

  12. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2016-03-01

    Full Text Available Pyridoxal phosphate (PLP-dependent enzymes are one of the most important enzymes involved in plant N metabolism. Here, we explored the evolution of group II PLP-dependent decarboxylases (PLP_deC, including aromatic L-amino acid decarboxylase, glutamate decarboxylase, and histidine decarboxylase in the plant lineage. Gene identification analysis revealed a higher number of genes encoding PLP_deC in higher plants than in lower plants. Expression profiling of PLP_deC orthologs and syntelogs in (L. Heynh., pepper ( L., and tomato ( L. pointed toward conserved as well as distinct roles in developmental processes such as fruit maturation and ripening and abiotic stress responses. We further characterized a putative promoter of tomato ripening-associated gene ( operating in a complex regulatory circuit. Our analysis provides a firm basis for further in-depth exploration of the PLP_deC gene family, particularly in the economically important Solanaceae family.

  13. Thermodynamic and microscopic equilibrium constants of molecular species formed from pyridoxal 5'-phosphate and 2-amino-3-phosphonopropionic acid in aqueous and D2O solution

    International Nuclear Information System (INIS)

    Szpoganicz, B.; Martell, A.E.

    1984-01-01

    Schiff base formation between pyridoxal 5'-phosphate (PLP) and 2-amino-3-phosphonopropionic acid (APP) has been investigated by measurement of the corresponding NMR and electronic absorption spectra. A value of 0.26 was found for the formation constant of the completely deprotonated Schiff base species, and is much smaller than the values reported for pyridoxal-β-chloroalanine and pyridoxal-O-phosphoserine. The protonation constants for the aldehyde and hydrate forms of PLP were determined in D 2 O by measurement of the variation of chemical shifts with pD (pH in D 2 O). The hydration constants of PLP were determined in a pD range 2-12, and species distributions were calculated. The protonation constants of the APP-PLP Schiff base determined by NMR in D 2 O were found to have the log values 12.54, 8.10, 6.70, and 5.95, and the species distributions were calculated for a range of pD values. Evidence is reported for hydrogen bonding involving the phosphate and phosphonate groups of the diprotonated Schiff base. The cis and trans forms of the Schiff bases were distinguished with the aid of the nuclear Overhauser effect. 43 references, 9 figures, 3 tables

  14. Differences in the roles of a glutamine amidotransferase subunit of pyridoxal 5'-phosphate synthase between Bacillus circulans and Bacillus subtilis.

    Science.gov (United States)

    Itagaki, Shiori; Haga, Minami; Oikawa, Yuji; Sakoda, Ayaka; Ohke, Yoshie; Sawada, Hiroshi; Eguchi, Tadashi; Tamegai, Hideyuki

    2013-01-01

    BtrC2 of the butirosin producer Bacillus circulans is a non-catalytic subunit of 2-deoxy-scyllo-inosose (DOI) synthase that is involved in butirosin biosynthesis, and also a homolog of glutamine amidotransferase subunit (PdxT) of pyridoxal 5'-phosphate (PLP) synthase of Bacillus subtilis. BtrC2 has been found to have functions in B. circulans both in primary and secondary metabolism. In this study, we investigated the properties of PdxT of B. subtilis in order to determine whether the property of enzyme stabilization is universal among PdxT homologs. Complementation with PdxT in the btrC2 disruptant of B. circulans restored the growth and short-term production of antibiotics, but long-term production of antibiotics cannot be restored. Additionally, PdxT did not bind physically with or stabilize BtrC. Our results indicate that the function of BtrC2 in secondary metabolism is specific properties, not universal among PdxT homologs.

  15. Pyridoxal derived chemosensor for chromogenic sensing of Cu2+ and fluorogenic sensing of Fe3+ in semi-aqueous medium

    International Nuclear Information System (INIS)

    Sahoo, Suban K.; Sharma, Darshna; Moirangthem, Anuradha; Kuba, Aman; Thomas, Rini; Kumar, Rajender; Kuwar, Anil; Choi, Heung-Jin; Basu, Anupam

    2016-01-01

    An easy-to-prepare chemosensor L was developed by condensation of pyridoxal with 1,8-diaminonaphthalene. In DMSO:H 2 O (1:1, v/v), sensor L displayed a highly selective and sensitive response towards Cu 2+ via perceptible color and UV–vis absorbance changes among the other tested metal ions. However, the fluorescence of L is selectively quenched in the presence of both Fe 3+ and Cu 2+ . With a micromolar detection limit and non-interference from other co-existing metal ions, this sensor can be applied over a wide pH range for the detection of Fe 3+ and Cu 2+ . In addition, the cytotoxicity and fluorescence changes of L within live HeLa cells were examined in the absence and presence of Cu 2+ . - Highlights: • A new noncytotoxic chemosensor derived from vitamin B 6 cofactor was introduced. • Sensor showed colorimetric sensing ability towards Cu 2+ . • Sensor showed fluorescent turn-off sensing ability towards Fe 3+ and Cu 2+ . • Detection limit was better than the prescribed permissible limit.

  16. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    International Nuclear Information System (INIS)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-01-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with [ 3 H]-NaBH 4 , and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active site peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P

  17. Pyridoxal phosphate as a probe of the cytoplasmic domains of transmembrane proteins: Application to the nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Perez-Ramirez, B.; Martinez-Carrion, M.

    1989-01-01

    A novel procedure has been developed to specifically label the cytoplasmic domains of transmembrane proteins with the aldehyde pyridoxal 5-phosphate (PLP). Torpedo californica acetylcholine receptor (AcChR) vesicles were loaded with [ 3 H]pyridoxine 5-phosphate ([ 3 H]PNP) and pyridoxine-5-phosphate oxidase, followed by intravesicular enzymatic oxidation of [ 3 H]PNP at 37 degree C in the presence of externally added cytochrome c as a scavenger of possible leaking PLP product. The four receptor subunits were labeled whether the reaction was carried out on the internal surface or separately designed to mark the external one. On the other hand, the relative pyridoxylation of the subunits differed in both cases, reflecting differences in accessible lysyl residues in each side of the membrane. Even though there are no large differences in the total lysine content among the subunits and there are two copies of the α-subunit, internal surface labeling by PLP was greatest for the highest molecular weight (δ) subunit, reinforcing the concept that the four receptor subunits are transmembranous and may protrude into the cytoplasmic face in a fashion that is proportional to their subunit molecular weight. Yet, the labeling data do not fit well to any of the models proposed for AcChR subunit folding. The method described can be used for selective labeling of the cytoplasmic domains of transmembrane proteins in sealed membrane vesicles

  18. Studies on the increase of capillary permeability in rat skin under the action of pyridoxal 5' phosphate

    International Nuclear Information System (INIS)

    Garcia Agudo, N.L. del M. de.

    1979-01-01

    The activity of pyridoxal 5'-phosphate (PLP) is described on the vascular permeability response, measured in the abdominal wall of rats from the amount of extravased Evans blue labelled with radioactive iodine 125 or 131. The PLP effect is related to histamine release as it has been showed by tha use of antihistaminics. An attempt has been made in order to correlate structure and biological activity by using PLP analogs. The intact molecule of PLP seems to be the proper active substance. The critical role of calcium in histamine release is discussed in relation to our observations. In the presence of high concentrations of calcium and lantanium, PLP fails to increase the vascular permeability; magnesium does not show any influence. The calcium mobilization produced by theophylline results in inhibition of the response. The course of the reaction between PLP and histamine in vitro was followed; the synthetic cyclic product is deprived of activity and does not interfere with the intrinsic effects of PLP and histamine. (Author) [pt

  19. Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA-and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study.

    Science.gov (United States)

    Dietmann, Anelia; Wallner, Bernd; König, Rebekka; Friedrich, Katrin; Pfausler, Bettina; Deisenhammer, Florian; Griesmacher, Andrea; Seger, Christoph; Matuja, William; JilekAall, Louise; Winkler, Andrea S; Schmutzhard, Erich

    2014-06-01

    Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients. Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured. Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans. In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.

  20. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.

    Science.gov (United States)

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri

    2014-02-01

    The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5'-phosphate-binding protein YggS.

    Science.gov (United States)

    Ito, Tomokazu; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2016-12-01

    Escherichia coli YggS is a highly conserved pyridoxal 5'-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/MS and MS/MS analyses of the compound with propyl chloroformate derivatization, and co-chromatography analysis identified this compound as γ-l-glutamyl-l-2-aminobutyryl-glycine (ophthalmic acid), a glutathione (GSH) analogue in which the l-Cys moiety is replaced by l-2-AB. We also determine the metabolic consequence of the yggS mutation. Absence of YggS initially increases l-2-AB availability, and then causes ophthalmic acid accumulation and CoA limitation in the cell. The expression of a γ-glutamylcysteine synthetase and a glutathione synthetase in a ΔyggS background causes high-level accumulation of ophthalmic acid in the cells (∼1.2 nmol/mg cells) in a minimal synthetic medium. This opens the possibility of a first fermentative production of ophthalmic acid. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C-C bond formation - structure, spectral and magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Murašková, V.; Szabó, N.; Pižl, M.; Hoskovcová, I.; Dušek, Michal; Huber, Š.; Sedmidubský, D.

    2017-01-01

    Roč. 461, May (2017), s. 111-119 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : iron(III) dinuclear complex * dialkoxo bridged pyridoxal Schiff base * C-C bond * crystal structure * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.002, year: 2016

  3. Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5′-phosphate-binding protein YggS

    OpenAIRE

    Ito, Tomokazu; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2016-01-01

    Escherichia coli YggS is a highly conserved pyridoxal 5′-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/M...

  4. Determination of copper (II) in foodstuffs based on its quenching effect on the fluorescence of N,N'-bis(pyridoxal phosphate)-o-phenylenediamine.

    Science.gov (United States)

    Xu, Canhui; Liao, Lifu; He, Yunfei; Wu, Rurong; Li, Shijun; Yang, Yanyan

    2015-01-01

    A Schiff base-type fluorescence probe was prepared for the detection of copper (II) in foodstuffs. The probe is N,N'-bis(pyridoxal phosphate)-o-phenylenediamine (BPPP). It was synthesized by utilizing the Schiff base condensation reaction of pyridoxal 5-phosphate with 1,2-phenylenediamine. BPPP has the properties of high fluorescence stability, good water solubility and low toxicity. Its maximum excitation wavelength and maximum fluorescence emission wavelength are at 389 and 448 nm, respectively. When BPPP coexists with copper (II), its fluorescence is dramatically quenched. Under a certain condition, the fluorescence intensity decreased proportionally to the concentration of copper (II) by the quenching effect. Based on this fact, we established a fluorescence quenching method for the determination of copper (II). Under optimal conditions a linear range was found to be 0.5-50 ng/mL with a detection limit of 0.2 ng/mL. The method has been applied to determine copper (II) in foodstuff samples and the analytical results show good agreement with that obtained from atomic absorption spectrometry method. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An LC-MS/MS-Based Method for the Quantification of Pyridox(am)ine 5'-Phosphate Oxidase Activity in Dried Blood Spots from Patients with Epilepsy.

    Science.gov (United States)

    Wilson, Matthew P; Footitt, Emma J; Papandreou, Apostolos; Uudelepp, Mari-Liis; Pressler, Ronit; Stevenson, Danielle C; Gabriel, Camila; McSweeney, Mel; Baggot, Matthew; Burke, Derek; Stödberg, Tommy; Riney, Kate; Schiff, Manuel; Heales, Simon J R; Mills, Kevin A; Gissen, Paul; Clayton, Peter T; Mills, Philippa B

    2017-09-05

    We report the development of a rapid, simple, and robust LC-MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B 6 , affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5'-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5'-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day-25 years), 13 children with other seizure disorders receiving B 6 supplementation (1 month-16 years), and 37 child hospital controls (5 days-15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena.

  6. A study of the mechanism of action of pyridoxal isonicotinoyl hydrazone at the cellular level using reticulocytes loaded with non-heme 59Fe

    International Nuclear Information System (INIS)

    Huang, A.R.; Ponka, P.; McGill Univ., Montreal, Quebec; Jewish General Hospital, Montreal, Quebec

    1983-01-01

    Pyridoxal isonicotinoyl hydrazone (PIH) has recently been identified as a new iron chelating agent with a high degree of iron mobilizing activity in vitro and in vivo which makes this compound a candidate drug in the treatment of iron overload. This study was undertaken to elucidate the mechanism of action of the iron mobilizing activity of PIH at the cellular level. An in vitro system of rabbit reticulocytes with a high level of non-heme 59 Fe was used as a model of iron overload. The effects of various biochemical and physiological manoeuvers on the mobilization of 59 Fe by PIH from the cells were studied. The fate of [ 14 C]-PIH in the in vitro system was also studied. Studies were also carried out using a crude mitochondrial fraction. (orig./AJ)

  7. Crystal structure of a photolysis product of vitamin B6: A pyridodihydrofuran-condensed skeleton compound of pyridoxal 5‧-phosphate

    Science.gov (United States)

    Aoki, Katsuyuki; Nakamura, Hideyuki; Hattori, Toshiaki; Hu, Ning-Hai; Onishi, Masayoshi

    2017-11-01

    An aqueous solution dissolving pyridoxal 5‧-phosphate (PLP) was exposed to sun-light at room temperature to yield a photolysis product, 4b,9b-dihydro-4b,9b-dihydroxy-1,6-dimethyl-4,9-bis(phosphonooxymethyl){pyrido[3‧,4‧:2,3]furo[4,5-b]}pyrido[4,3-d]furan (1), whose structure was crystallographically determined. The product 1 was found to be a novel C(sp3)-C(sp3) side-sharing pyridodihydrofuran-condensed skeleton compound with the two pyridodihydrofuran planes taking a 'V-shape'-like molecular configuration. Hydrogen bonding patterns of molecules of 1 in the crystal lattice are analyzed by the graph set approach. The most probable mechanism for the formation of 1 is described.

  8. Novel phenotypes of pyridox(am)ine-5'-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients.

    Science.gov (United States)

    Xue, Jiao; Chang, Xingzhi; Zhang, Yuehua; Yang, Zhixian

    2017-08-01

    To analyze the clinical and genetic characteristics of Chinese patients with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency. The clinical presentations and the responses to treatments were analyzed in 4 patients. Blood and urinary metabolic screenings, electroencephalogram (EEG), brain magnetic resonance imaging (MRI) and epilepsy-related genes detection were performed in all patients. Patient 1 and 2 were identical twin brothers, who were born at 35 +5 w gestation with a sign of encephalopathy. Their seizures started within the first day and could not be controlled by pyridoxine or pyridoxal-5'-phosphate (PLP) completely. Patient 3 presented seizures at 5 months, responding well to pyridoxine. Seizures in patient 4 began at 40 days after birth and were controlled by valproic acid and topiramate. EEG showed atypical hypsarrhythmia or multifocal epileptiform discharges in 3 patients, and showed normality in patient 4. MRI showed nonspecific abnormality or normality. Blood metabolic screening showed multiple amino acids level abnormalities in all cases. Urinary metabolic screening showed vanillactic acid prominently elevated in 3 patients. Genetic analysis revealed 5 mutations of PNPO, three of which were novel. The mutation c.445_448del was carried by the twins and patient 3. Assessment of psychomotor development indicated severe delay in 3 patients and borderline to mild delay in patient 3. This is the first time to report patients with PNPO deficiency diagnosed by gene analysis in China. The novel clinical characteristics and novel mutations found here expanded the phenotypes and genotypes of this disease. Further, the frameshift mutation c.445_448del might be high prevalence in PNPO deficiency in Chinese patients.

  9. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  10. Pyridoxal-5'-phosphate deficiency is associated with hyperhomocysteinemia regardless of antioxidant, thiamine, riboflavin, cobalamine, and folate status in critically ill patients.

    Science.gov (United States)

    Molina-López, Jorge; Florea, Daniela; Quintero-Osso, Bartolomé; de la Cruz, Antonio Pérez; Rodríguez-Elvira, Manuel; Del Pozo, Elena Planells

    2016-06-01

    Critically ill patients develop severe stress, inflammation and a clinical state that may raise the utilization and metabolic replacement of pyridoxal-5'-phosphate decreasing their body reserves. This study was designed to assess the nutritional pyridoxal-5'-phosphate status in critical care patients with systemic inflammatory response syndrome, comparing them with a group of healthy people, and studying it's association with factors involved in the pyridoxine and other B vitamins metabolism, as the total antioxidant capacity and Hcy as cardiovascular risk biomarker. Prospective, multicentre, comparative, observational and analytic study. One hundred and three critically ill patients from different hospitals, and eighty four healthy subjects from Granada, Spain, all with informed consent. Data from daily nutritional assessment, ICU severity scores, clinical and nutritional parameters, antioxidant status and homocysteine levels was taken at admission and at the seventh day of the ICU stay. Thiamine, riboflavin, pyridoxine and folate status proved deficient in a large number of patients, being significantly lower in comparison with control group, and significantly decreased at 7th day of ICU stay. Higher homocysteine was observed in patients compared with control group (p < 0.05) where 31.5 and 26.8 percent of subjects presented hyperhomocysteinemia at initial and final of study, respectively. Antioxidant status was lower than control group in two periods analysed, and decreased at 7th day of ICU stay (p < 0.05) being associated with PLP deficiency. PLP deficiency was also correlated with hyperhomocysteinemia at two times measured (r. -0.73, p < 0.001; r. -0.69, p < 0.001, respectively), showing at day 7 an odds ratio of 6.62 in our multivariate model. Critically ill patients with SIRS show deficient B vitamin and low antioxidant statuses. Despite association found between PLP deficiency and low antioxidant status in critically ill patients, PLP deficiency

  11. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    Science.gov (United States)

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pyridoxal derived chemosensor for chromogenic sensing of Cu{sup 2+} and fluorogenic sensing of Fe{sup 3+} in semi-aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Suban K., E-mail: suban_sahoo@rediffmail.com [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Department of Applied Chemistry, Kyungpook National University, Daegu 701702 (Korea, Republic of); Sharma, Darshna [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Moirangthem, Anuradha [Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal (India); Kuba, Aman; Thomas, Rini; Kumar, Rajender [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Kuwar, Anil [School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra 425001 (India); Choi, Heung-Jin [Department of Applied Chemistry, Kyungpook National University, Daegu 701702 (Korea, Republic of); Basu, Anupam, E-mail: abasu@zoo.buruniv.ac.in [Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal (India)

    2016-04-15

    An easy-to-prepare chemosensor L was developed by condensation of pyridoxal with 1,8-diaminonaphthalene. In DMSO:H{sub 2}O (1:1, v/v), sensor L displayed a highly selective and sensitive response towards Cu{sup 2+}via perceptible color and UV–vis absorbance changes among the other tested metal ions. However, the fluorescence of L is selectively quenched in the presence of both Fe{sup 3+} and Cu{sup 2+}. With a micromolar detection limit and non-interference from other co-existing metal ions, this sensor can be applied over a wide pH range for the detection of Fe{sup 3+} and Cu{sup 2+}. In addition, the cytotoxicity and fluorescence changes of L within live HeLa cells were examined in the absence and presence of Cu{sup 2+}. - Highlights: • A new noncytotoxic chemosensor derived from vitamin B{sub 6} cofactor was introduced. • Sensor showed colorimetric sensing ability towards Cu{sup 2+}. • Sensor showed fluorescent turn-off sensing ability towards Fe{sup 3+} and Cu{sup 2+}. • Detection limit was better than the prescribed permissible limit.

  13. Influence of folic acid, pyridoxal phosphate and cobalamin on plasma homocyst(e)ine levels and the susceptibility of low-density lipoprotein to ex-vivo oxidation.

    Science.gov (United States)

    Weiss, N; Feussner, A; Hailer, S; Spengel, F A; Keller, C; Wolfram, G

    1999-10-15

    Mild hyperhomocyst(e)inaemia is a risk factor for atherosclerotic vascular disease. In-vitro studies have shown that autooxidation of homocyst(e)ine is accompanied by the generation of oxygen radicals. This may lead to oxidative modification of low-density lipoproteins (LDL) and promote atherosclerotic vascular lesions. In male patients with peripheral arterial occlusive disease we determined fasting and post methionine load homocyst(e)ine levels by high performance liquid chromatography and the susceptibility of their LDL particles to ex-vivo oxidation by continously measuring the conjugated diene production induced by incubation with copper ions. Oxidation resistance (expressed as lag time), maximal oxidation rate, and extent of oxidation (expressed of total diene production) of LDL from patients with normal or mildly elevated homocyst(e)ine levels did not differ significantly. Folic acid, pyridoxal phosphate and cobalamin supplementation significantly decreased plasma homocyst(e)ine levels in hyperhomocyst(e)inaemic patients. This went along with a significant decrease in the extent of LDL oxidation and additionally increased HDL-cholesterol levels. The clinical relevance of these findings for the long-term course of atherosclerotic vascular disorders has to be determined by intervention studies.

  14. Active-site modification of mammalian DNA polymerase β with pyridoxal 5'-phosphate: Mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket

    International Nuclear Information System (INIS)

    Basu, A.; Kedar, P.; Wilson, S.H.; Modak, M.J.

    1989-01-01

    Pyridoxal 5'-phosphate is a potent inhibitor of the DNA polymerase activity of recombinant rat DNA polymerase β. Kinetic studies indicate that the mechanism of PLP inhibition is complex. In a lower range of PLP concentration, inhibition is competitive with respect to substrate dNTP, whereas at higher levels of PLP several forms of enzyme combine with PLP and are involved in the overall inhibition, and a possible model for these interactions during the catalytic process is suggested. Reduction of the PLP-treated enzyme with sodium [ 3 H]borohydride results in covalent incorporation of about 4 mol of PLP/mol of enzyme, and the modified enzyme is not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocks incorporation of 1 mol of PLP/mol of enzyme, and the enzyme so modified is almost fully active. This protective effect is not observed in the absence of template-primer. Tryptic peptide mapping of the PLP-modified enzyme reveals four major sites of modification. Of these four sites, only one is protected by dNTP from pyridoxylation. Sequence analysis of the tryptic peptide corresponding to the protected site reveals that it spans residues 68-80 in the amino acid sequence of the enzyme, with Lys 71 as the site of pyridoxylation. These results indicate that Lys 71 is at or near the binding pocket for the dNTP substrate

  15. Studies of zinc(II in pharmaceutical and biological samples by extractive spectrophotometry: using pyridoxal-4-phenyl-3-thiosemicarbazone as chelating reagent

    Directory of Open Access Journals (Sweden)

    Sarma L. Subramanyam

    2006-01-01

    Full Text Available Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT is proposed as a new sensitive reagent for the sensitive extractive spectrophotometric determination of zinc(II. PPT reacts with zinc(II in the pH range 5.0-6.0 to form a yellow colored complex, which was well extracted into n-butanol. The absorbance value of Zn(II-PPT complex was measured at different intervals of time at 430 nm, to ascertain the stability of the complex. It was observed that the color development was instantaneous and stable for more than 48 h. The system obeyed Beer's law up to 6.0 µg mL-1 of zinc(II, with an excellent linearity in terms of correlation coefficient value of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species is 1.6 X 10(4 L mol-1 cm-1 and 4.085 X 10-3 µg cm-2 at 430 nm. The detection limit of the method is 0.04 µg mL-1. To assess precision of the method, determinations were carried out at different concentrations; the relative standard deviation does not exceed 3.1%. The composition of the zinc(II complex with PPT was studied by the method of Job's continuous variation, molar ratio method, Asmus' method and slope ratio method. It has been satisfactorily applied for the determination of zinc(II, when present alone or in presence of diverse ions, which are usually associated with zinc(II in pharmaceutical and biological samples. Various certified reference materials (NIST 1573, NBS 1572 and NIST SRM 8435 have been tested for the determination of zinc for evaluating the accuracy of the developed method. The results of the proposed method are in agreement with flame atomic absorption spectometry.

  16. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    Directory of Open Access Journals (Sweden)

    Erendira Rojas-Ortega

    2018-05-01

    Full Text Available Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion, followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function.

  17. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    Science.gov (United States)

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    Science.gov (United States)

    Rojas-Ortega, Erendira; Aguirre-López, Beatriz; Reyes-Vivas, Horacio; González-Andrade, Martín; Campero-Basaldúa, Jose C.; Pardo, Juan P.; González, Alicia

    2018-01-01

    Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function. PMID:29867852

  19. Transition metal complexes with thiosemicarbazide-based ligands. Part 60. Reactions of copper(II bromide with pyridoxal S-methylisothiosemicarbazone (PLITSC. Crystal structure of [Cu(PLITSC−HH2O]Br•H2O

    Directory of Open Access Journals (Sweden)

    Leovac Vukadin M.

    2014-01-01

    Full Text Available The synthesis and structural characterization of a square-planar copper(II complex with pyridoxal S-methylisothiosemicarbazone (PLITSC of the formula [Cu(PLITSC−HH2O]Br•H2O (1 as the first Cu(II complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSCBr2] (2 and [Cu(PLITSCBr(MeOH]Br (3 were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry. [Projekat Pokrajisnkog sekretarijata za nauku i tehnoloski razvoj Vojvodine i Ministarstva nauke Republike Srbije, br. 172014

  20. An LC–MS/MS-Based Method for the Quantification of Pyridox(am)ine 5′-Phosphate Oxidase Activity in Dried Blood Spots from Patients with Epilepsy

    Science.gov (United States)

    2017-01-01

    We report the development of a rapid, simple, and robust LC–MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5′-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B6, affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5′-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5′-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day–25 years), 13 children with other seizure disorders receiving B6 supplementation (1 month–16 years), and 37 child hospital controls (5 days–15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena. PMID:28782931

  1. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase

    International Nuclear Information System (INIS)

    Seetharamappa, Jaldappagari; Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal; Overton, Ian M.; Niekirk, C. A. Johannes van; Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F.; Barton, Geoffrey J.; Coote, Peter J.; Naismith, James H.

    2007-01-01

    As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported. Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P2 1 2 1 2 1 . A complete data set was collected to 2.5 Å resolution

  2. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  3. The Pyridoxal 5′-Phosphate (PLP-Dependent Enzyme Serine Palmitoyltransferase (SPT: Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations

    Directory of Open Access Journals (Sweden)

    Ashley E. Beattie

    2013-01-01

    Full Text Available The pyridoxal 5′-phosphate (PLP-dependent enzyme serine palmitoyltransferase (SPT catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b, and mutations in both hLCB1 (e.g., C133W and C133Y and hLCB2a (e.g., V359M, G382V, and I504F have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1, an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F, and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.

  4. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2015-09-01

    Full Text Available Łukasz Uram,1 Magdalena Szuster,1 Aleksandra Filipowicz,2 Krzysztof Gargasz,3 Stanisław Wołowiec,3 Elżbieta Wałajtys-Rode4 1Bioorganic Chemistry Laboratory, Faculty of Chemistry, Rzeszow University of Technology, 2Cosmetology Department, University of Information Technology and Management in Rzeszow, 3Institute of Nursery and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, 4Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland Abstract: The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM dendrimer and its biotin–pyridoxal (BC-PAMAM bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ and squamous epithelial carcinoma (SCC-15 cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all

  5. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    Science.gov (United States)

    ... phosphate oxidase. This enzyme is involved in the conversion (metabolism) of vitamin B6 derived from food (in ... Related Information What does it mean if a disorder seems to run in my family? What are ...

  6. A Critical Examination of the Reaction of Pyridoxal 5-Phosphate with Human Hemoglobin Ao

    Science.gov (United States)

    1989-01-01

    sodium borohydride gives unacceptable levels of methemoglobin (i.e., > 10%). Excessive foaming and methemoglobin formation can be partially avoided using...a biochemical level . By using new advances in HPLC column technology, we could better determine hetero- geneity in the product mixture due solely to... diphosphoglycerate (2,3-DPG). 6 SFH, which had been stripped of 2,3-DPG, was deoxygenated with nitrogen and treated with a solution of PLP in Tris

  7. Tuning of the charge in octahedral ferric complexes based on pyridoxal-N-substituted thiosemicarbazone ligands

    NARCIS (Netherlands)

    Tido, Eddy W. Yemeli; Faulmann, Christophe; Roswanda, Robby; Meetsma, Auke; van Koningsbruggen, Petra J.

    2010-01-01

    Four novel mononuclear coordination compounds namely: [Fe(Hthpy)(2)](SO(4))(1/2)center dot 3.5H(2)O 1, [Fe(Hthpy)(2)]NO(3)center dot 3H(2)O 2, [Fe(H(2)mthpy)(2)](CH(3)C(6)H(4)SO(3))(3)center dot CH(3)CH(2)OH 3 and [Fe(Hethpy)(ethpy)]center dot 8H(2)O 4, (H(2)thpy = pyridoxalthiosemicarbazone,

  8. Determination of vitamin B6 vitamers and pyridoxic acid in plasma: development and evaluation of a high-performance liquid chromatographic assay

    DEFF Research Database (Denmark)

    Bisp, Marianne R; Bor, Mustafa Vakur; Heinsvig, Else-Marie

    2002-01-01

    buffer containing 1 g/L sodium bisulfite. The performance of the assay was evaluated by analyzing six plasma samples with interrelated concentration and two control samples (unspiked and vitamer spiked) over a 3-months period. The HPLC method was able to identify PLP, 4-PA, PM, PL, PN, and PMP from all...... other compounds in plasma in an analytical run of 46 min. The imprecisions and mean values (presented in parenthesis in nmol/L) were (unspiked and spiked sample) 9-8% (41-65) for PLP, 12-7% (18-40) for 4-PA, 67-28% (4-19) for PL, 15% (21) for PN, 10% (27) for PM, and 27% (17) for PMP. All three B6...... will be suitable for routine quantitation of PLP and 4-PA in human plasma. Udgivelsesdato: 2002-Jun-1...

  9. Urinary total flavonoid excretion but not 4-pyridoxic acid or potassium can be used as a biomarker for the intake of fruits and vegetables

    DEFF Research Database (Denmark)

    Krogholm, Kirstine Suszkiewicz; Haraldsdottir, J.; Knuthsen, Pia

    2004-01-01

    To gain better insight into the potential health effects of fruits and vegetables, reliable biomarkers of intake are needed. The main purpose of this study was to investigate the ability of flavonoid excretion in both 24-h and morning urine samples to reflect a low intake and moderate changes......-restricted flavonoid-free diet. On d 4, they were provided a strictly controlled diet containing no fruits or vegetables (basic diet). On d 5, they consumed the basic diet supplemented with 300 or 600 g of fruits and vegetables. The total excretion of flavonoids in 24-h urine samples increased linearly with increasing...... fruit and vegetable intakes (r(s) = 0.86, P flavonoids in morning urine also increased, but the association was weaker (r(s) = 0.59, P

  10. Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM)

    NARCIS (Netherlands)

    Dill, P.; Schneider, J.; Weber, P.; Trachsel, D.; Tekin, M.; Jakobs, C.A.J.M.; Thony, B.; Blau, N.

    2011-01-01

    We present an 8-year-old boy with folate receptor alpha (FRα) defect and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM syndrome). Both conditions are exceptionally rare autosomal recessive inherited diseases mapped to 11q13. Our patient was found to have novel

  11. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  12. Results from the European prospective investigation into cancer and nutrition link vitamin B6 catabolism and lung cancer risk

    NARCIS (Netherlands)

    Zuo, Hui; Ueland, Per Magne; Midttun, Øivind; Vollset, Stein Emil; Tell, Grethe S.; Theofylaktopoulou, Despoina; Travis, Ruth C.; Boutron-Ruault, Marie Christine; Fournier, Agnès; Severi, Gianluca; Kvaskoff, Marina; Boeing, Heiner; Bergmann, Manuela M.; Turzanski-Fortner, Renée; Kaaks, Rudolf; Trichopoulou, Antonia; Kotanidou, Anastasia; Lagiou, Pagona; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Bueno-De-Mesquita, H. Bas; Peeters, Petra H.; Grankvist, Kjell; Johansson, Mikael; Agudo, Antonio; Garcia, Jose Ramon Quiros; Larranaga, Nerea; Sanchez, Maria-Jose; Chirlaque, Maria-Dolores; Ardanaz, Eva; Chuang, Shu Chun; Gallo, Valentina; Brennan, Paul; Johansson, Mattias; Ulvik, Arve

    2018-01-01

    Circulating pyridoxal-5′-phosphate (PLP) has been linked to lung cancer risk. The PAr index, defined as the ratio 4-pyridoxic acid/(pyridoxal + PLP), reflects increased vitamin B6 catabolism during inflammation. PAr has been defined as a marker of lung cancer risk in a prospective cohort study, but

  13. Results from the European Prospective Investigation into Cancer and Nutrition Link Vitamin B6 Catabolism and Lung Cancer Risk.

    NARCIS (Netherlands)

    Zuo, Hui; Ueland, Per M; Midttun, Øivind; Vollset, Stein E; Tell, Grethe S; Theofylaktopoulou, Despoina; Travis, Ruth C; Boutron-Ruault, Marie-Christine; Fournier, Agnès; Severi, Gianluca; Kvaskoff, Marina; Boeing, Heiner; Bergmann, Manuela M; Fortner, Renée T; Kaaks, Rudolf; Trichopoulou, Antonia; Kotanidou, Anastasia; Lagiou, Pagona; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Bueno-de-Mesquita, H Bas; Peeters, Petra H; Grankvist, Kjell; Johansson, Mikael; Agudo, Antonio; Garcia, Jose Ramon Quiros; Larranaga, Nerea; Sanchez, Maria-Jose; Chirlaque, Maria Dolores; Ardanaz, Eva; Chuang, Shu-Chun; Gallo, Valentina; Brennan, Paul; Johansson, Mattias; Ulvik, Arve

    2018-01-01

    Circulating pyridoxal-5'-phosphate (PLP) has been linked to lung cancer risk. The PAr index, defined as the ratio 4-pyridoxic acid/(pyridoxal + PLP), reflects increased vitamin B6 catabolism during inflammation. PAr has been defined as a marker of lung cancer risk in a prospective cohort study, but

  14. Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: escherichia coli tryptophan indole-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    Analysis of the pH dependence of the kinetic parameters and competitive inhibitor Ki values for tryptophan indole-lyase suggests two enzymic groups must be unprotonated in order to facilitate binding and catalysis of tryptophan. The V/K for tryptophan and the pKi for oxindolyl-L-alanine, a putative transition state analogue and competitive inhibitor, decrease below two pK values of 7.6 and 6.0, while the Ki for L-alanine, also a competitive inhibitor, is 3300-fold larger (20 mM) than that for oxindolyl-L-alanine and increases below a single pK of 7.6. A single pK of 7.6 is also observed in the V/K profile for the alternate substrate, S-methyl-L-cysteine. Therefore, the enzymic group with a pK of 7.6 is responsible for proton abstraction at the 2-position of tryptophan, while the enzymic group with a pK of 6.0 interacts with the indole portion of tryptophan and probably catalyzes formation of the indolenine tautomer of tryptophan (in concert with proton transfer to C-3 of indole from the group with pK 7.6) to facilitate carbon-carbon bond cleavage and elimination of indole. The pH variation of the primary deuterium isotope effects for proton abstraction at the 2-position of tryptophan (DV = 2.5 and D(V/Ktrp) = 2.8) are pH independent, while the Vmax for tryptophan or S-methyl-L-cysteine is the same and also pH independent. Thus, substrates bind only to the correctly protonated form of the enzyme. Further, tryptophan is not sticky, and the pK values observed in both V/K profiles are the correct ones

  15. Ultra-performance liquid chromatography tandem mass-spectrometry (uplc-ms/ms) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk

    Science.gov (United States)

    A novel, rapid and sensitive Ultra Performance Liquid-Chromatography tandem Mass-Spectrometry (UPLC-MS/MS) method for the simultaneous determination of several B-vitamins in human milk was developed. Resolution by retention time or multiple reaction monitoring (MRM) for thiamin, riboflavin, flavin a...

  16. Typical and atypical phenotypes of PNPO deficiency with elevated CSF and plasma pyridoxamine on treatment

    NARCIS (Netherlands)

    Ware, T.L.; Earl, J.; Salomons, G.S.; Struys, E.A.; Peters, H.L.; Howell, K.B.; Pitt, J.J.; Freeman, J.L.

    2014-01-01

    Pyridox(am)ine phosphate oxidase (PNPO) deficiency causes severe early infantile epileptic encephalopathy and has been characterized as responding to pyridoxal-5′-phosphate but not to pyridoxine. Two males with PNPO deficiency and novel PNPO mutations are reported and their clinical, metabolic, and

  17. Kinetic analysis and chemical modification studies of nicotinate phosphoribosyltransferase from yeast

    International Nuclear Information System (INIS)

    Hess, S.L.

    1988-01-01

    Nicotinate phosphoribosyltransferase (NaPRTase) from Baker's yeast catalyzes the formation of nicotinate mononucleotide (NaMN) and pyrophosphate from phosphoribosyl α-1-pyrophosphate and nicotinate, concomitant with ATP hydrolysis. Using purified NaPRTase, initial velocity measurements were performed varying one substrate concentration at different fixed levels of the second substrate and maintaining the third substrate constant. Subsequently, an exchange of label was observed between ATP and [ 14 C]-ADP. This rate of exchange was inhibited by PRibPP and pyrophosphate. Incubations of NaPRTase with pyridoxal 5'-phosphate followed by sodium borohydride reduction led to inactivation of the enzyme. Pyridoxal was a less effective inhibitor than pyridoxal 5'-phosphate. The inactivation of the enzyme by pyridoxal 5'-phosphate was reversible upon flow dialysis, whereas reduction of the enzyme-pyridoxal complex with sodium borohydride rendered the inhibition irreversible. The presence of ATP or PRibPP, with or with Mg 2+ , provided protection against this inactivation, while a kinetic analysis revealed the inhibition to be competitive, and noncompetitive, respectively. One mole of [ 3 H]-pyridoxal phosphate was required to completely inactivate the enzyme, which was reduced in the presence of MgATP and MgPRibPP to 0.2 and 0.6, respectively. No incorporation of pyridoxal 5'-phosphate was observed in the combination of both of the two substrates

  18. Effects of irradiation on enzymes in E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, H.

    1962-08-15

    To determine the effects of irradiation on enzymes in Escherichia coli strain Crookes, the influence of x radiation on the content of the coenzyme pyridoxal phosphate was investigated. The method of pyridoxal phosphate assay used was based on the fact that E. coli is able to produce tryptophanase. Enzyme activity was measured by determination of indole produced from tryptophane. Doses of 10,000 and 80,000 r of x radiation were given to resting cells and growing cells. It was found that pyridoxal phosphate production and content were not infiuenced by irradiation. (H.M.G.)

  19. Vitamin B6 status of pregnant women attending antenatal clinic in ...

    African Journals Online (AJOL)

    Yemane Berhane

    pregnant mothers by measuring the serum levels of pyrodoxal-5-phosphate, and pyridoxal. One hundred and thirty ... of paramount importance in understanding the relationship between health and nutritional intake, and factors that influence ...

  20. Fortify Your Knowledge about Vitamins

    Medline Plus

    Full Text Available ... If you are an older adult, have dark skin, or are exposed to insufficient ultraviolet band radiation ( ... Vitamins B-3 (niacin): flushing, redness of the skin, upset stomach. B-6 (pyridoxine, pyridoxal, and pyridoxamine): ...

  1. Fortify Your Knowledge about Vitamins

    Medline Plus

    Full Text Available ... thiamine, riboflavin, niacin, pantothenic acid, biotin, vitamin B-6, vitamin B-12 and folate). AAFP cites two ... flushing, redness of the skin, upset stomach. B-6 (pyridoxine, pyridoxal, and pyridoxamine): Nerve damage to the ...

  2. Fortify Your Knowledge about Vitamins

    Medline Plus

    Full Text Available ... variety of biological processes, including growth, digestion, and nerve function. There are 13 vitamins that the body ... upset stomach. B-6 (pyridoxine, pyridoxal, and pyridoxamine): Nerve damage to the limbs, which may cause numbness, ...

  3. Fortify Your Knowledge about Vitamins

    Medline Plus

    Full Text Available ... thinners, talk to your doctor before taking vitamin E or vitamin K pills. Water-soluble Vitamins B-3 (niacin): flushing, redness of the skin, upset stomach. B-6 (pyridoxine, pyridoxal, and pyridoxamine): ...

  4. A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition

    NARCIS (Netherlands)

    Chuang, Shu-Chun; Stolzenberg-Solomon, Rachael; Ueland, Per Magne; Vollset, Stein Emil; Midttun, Oivind; Olsen, Anja; Tjonneland, Anne; Overvad, Kim; Boutron-Ruault, Marie-Christine; Morois, Sophie; Clavel-Chapelon, Francoise; Teucher, Birgit; Kaaks, Rudolf; Weikert, Cornelia; Boeing, Heiner; Trichopoulou, Antonia; Benetou, Vassiliki; Naska, Androniki; Jenab, Mazda; Slimani, Nadia; Romieu, Isabelle; Michaud, Dominique S.; Palli, Domenico; Sieri, Sabina; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Skeie, Guri; Duell, Eric J.; Rodriguez, Laudina; Molina-Montes, Esther; Maria Huerta, Jose; Larranaga, Nerea; Barricarte Gurrea, Aurelio; Johansen, Dorthe; Manjer, Jonas; Ye, Weimin; Sund, Malin; Peeters, Petra H. M.; Jeurnink, Suzanne; Wareham, Nicholas; Khaw, Kay-Tee; Crowe, Francesca; Riboli, Elio; Bueno-de-Mesquita, Bas; Vineis, Paolo

    Folate intake has shown an inverse association with pancreatic cancer; nevertheless, results from plasma measurements were inconsistent. The aim of this study is to examine the association between plasma total homocysteine, methionine, folate, cobalamin, pyridoxal 5'-phosphate, riboflavin, flavin

  5. The Synthesis of some B6 Vitamin Halophosphates

    OpenAIRE

    Elshani, S.; Butula, Lj.; Butula, I.; Vikić-Topić, D.; Berton, A.; Iriarte, A.

    1991-01-01

    A series of new halo-derivates of pyridoxine-3-O- or 5’-0-phosphates and pyridoxal-3-O- or 5’-0-phosphates have been synthesized. In the reaction of partially protected pyridoxine and pyridoxal (3-5) with phosphorusoxychlo- ride in the presence of triethylamine, the following dichlorophosphates were obtained: 3,4’-0-isopropylidenepyridoxine-5’-0-dichlorophosphate (6), 4,5’-0- isobutilidenepyridoxine-3-O-dichlorophosphate (7), and monoethylacetal-3-O- dicholorophosphate (8). Dichlorophosphates...

  6. Non-enzymic beta-decarboxylation of aspartic acid.

    Science.gov (United States)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  7. New radiopharmaceuticals for cholescintigraphy

    International Nuclear Information System (INIS)

    Baker, R.J.; Bellen, J.C.

    1974-01-01

    The use and chemical preparation of sup(99m)Tc-pyridoxal or any amino acid derivitive of pyridoxal labelled with technetium-99m or other radionuclide is described. These compounds include sup(99m)Tc-pyridoxylidenemethioninate, sup(99m)Tc-pyridoxylidenetyrosinate and in particular sup(99m)Tc-pyridoxylideneglutamate. The substances specified above all show sufficient accumulation in the gall bladder to enable this organ to be visualised by scintiscanning. (author)

  8. Rapid determination of the various native forms of vitamin B6 and B2 in cow's milk using ultra-high performance liquid chromatography.

    Science.gov (United States)

    Schmidt, A; Schreiner, M G; Mayer, H K

    2017-06-02

    As the formation of pyridoxal phosphate, the active cofactor of vitamin B 6 , is dependent on riboflavin 5-phosphate, we propose a fast and simple ultra-high performance liquid chromatography method for the simultaneous determination of the native B 6 vitamers pyridoxal, pyridoxine, pyridoxamine, their mono phosphorus esters and 4-pyridoxic acid as well as vitamin B 2 as riboflavin and its phosphorus ester riboflavin 5-phosphate in milk. Separation was achieved under 6.0min by reversed-phase and pH gradient elution. Sample preparation was optimized regarding various acids and pH levels. Changes in those parameters led to significant deviations of sample matrix breakdown efficiency. The optimized method was then validated regarding specificity, accuracy, precision, linearity, range, detection and quantification limits. As the method performed satisfactory, is was used to study commercial liquid cow's milk (n=31), regarding effects of the employed preservation technique (pasteurization, extended shelf-life, ultra-high temperature) on the composition and content of B 6 and B 2 vitamers. In cow's milk, vitamin B 6 mostly consists of pyridoxal and its phosphate ester, with pyridoxal phosphate being the bulk component. The catabolite of the vitamin B 6 metabolism, 4-pyridoxic acid was present in significant amounts in all studied samples, with up to 2.69μmolL -1 . Vitamin B 2 was present as riboflavin and its phosphate ester up to 12.86μmolL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simultaneous Determination of Underivatized Vitamin B1 and B6 in Whole Blood by Reversed Phase Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry

    Science.gov (United States)

    Puts, Johan; de Groot, Monique; Haex, Martin; Jakobs, Bernadette

    2015-01-01

    Background Vitamin B1 (thiamine-diphosphate) and B6 (pyridoxal-5’phosphate) are micronutrients. Analysis of these micronutrients is important to diagnose potential deficiency which often occurs in elderly people due to malnutrition, in severe alcoholism and in gastrointestinal compromise due to bypass surgery or disease. Existing High Performance Liquid Chromatography (HPLC) based methods include the need for derivatization and long analysis time. We developed an Ultra High Performance Liquid Chromatography Tandem Mass spectrometry (UHPLC-MS/MS) assay with internal standards for simultaneous measurement of underivatized thiamine-diphosphate and pyridoxal-5’phosphate without use of ion pairing reagent. Methods Whole blood, deproteinized with perchloric acid, containing deuterium labelled internal standards thiamine-diphosphate(thiazole-methyl-D3) and pyridoxal-5’phosphate(methyl-D3), was analyzed by UHPLC-MS/MS. The method was validated for imprecision, linearity, recovery and limit of quantification. Alternate (quantitative) method comparisons of the new versus currently used routine HPLC methods were established with Deming regression. Results Thiamine-diphosphate and pyridoxal-5’phosphate were measured within 2.5 minutes instrumental run time. Limits of detection were 2.8 nmol/L and 7.8 nmol/L for thiamine-diphosphate and pyridoxal-5’phosphate respectively. Limit of quantification was 9.4 nmol/L for thiamine-diphosphate and 25.9 nmol/L for pyridoxal-5’phosphate. The total imprecision ranged from 3.5–7.7% for thiamine-diphosphate (44–157 nmol/L) and 6.0–10.4% for pyridoxal-5’phosphate (30–130 nmol/L). Extraction recoveries were 101–102% ± 2.5% (thiamine-diphosphate) and 98–100% ± 5% (pyridoxal-5’phosphate). Deming regression yielded slopes of 0.926 and 0.990 in patient samples (n = 282) and national proficiency testing samples (n = 12) respectively, intercepts of +3.5 and +3 for thiamine-diphosphate (n = 282 and n = 12) and slopes of

  10. Simultaneous Determination of Underivatized Vitamin B1 and B6 in Whole Blood by Reversed Phase Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Johan Puts

    Full Text Available Vitamin B1 (thiamine-diphosphate and B6 (pyridoxal-5'phosphate are micronutrients. Analysis of these micronutrients is important to diagnose potential deficiency which often occurs in elderly people due to malnutrition, in severe alcoholism and in gastrointestinal compromise due to bypass surgery or disease. Existing High Performance Liquid Chromatography (HPLC based methods include the need for derivatization and long analysis time. We developed an Ultra High Performance Liquid Chromatography Tandem Mass spectrometry (UHPLC-MS/MS assay with internal standards for simultaneous measurement of underivatized thiamine-diphosphate and pyridoxal-5'phosphate without use of ion pairing reagent.Whole blood, deproteinized with perchloric acid, containing deuterium labelled internal standards thiamine-diphosphate(thiazole-methyl-D3 and pyridoxal-5'phosphate(methyl-D3, was analyzed by UHPLC-MS/MS. The method was validated for imprecision, linearity, recovery and limit of quantification. Alternate (quantitative method comparisons of the new versus currently used routine HPLC methods were established with Deming regression.Thiamine-diphosphate and pyridoxal-5'phosphate were measured within 2.5 minutes instrumental run time. Limits of detection were 2.8 nmol/L and 7.8 nmol/L for thiamine-diphosphate and pyridoxal-5'phosphate respectively. Limit of quantification was 9.4 nmol/L for thiamine-diphosphate and 25.9 nmol/L for pyridoxal-5'phosphate. The total imprecision ranged from 3.5-7.7% for thiamine-diphosphate (44-157 nmol/L and 6.0-10.4% for pyridoxal-5'phosphate (30-130 nmol/L. Extraction recoveries were 101-102% ± 2.5% (thiamine-diphosphate and 98-100% ± 5% (pyridoxal-5'phosphate. Deming regression yielded slopes of 0.926 and 0.990 in patient samples (n = 282 and national proficiency testing samples (n = 12 respectively, intercepts of +3.5 and +3 for thiamine-diphosphate (n = 282 and n = 12 and slopes of 1.04 and 0.84, intercepts of -2.9 and +20 for

  11. Chemical modification as an approach for the identification of UDPG-binding polypeptides of UDPG-glucose: (1,3)-Beta-glucan synthase

    International Nuclear Information System (INIS)

    Mason, T.L.

    1989-01-01

    The lysine-reactive chemical modification reagents uridine diphosphate pyridoxal (UDP-pyridoxal) and formaldehyde (HCHO) were used to identify UDPG-binding polypeptides of UDP-glucose: (1,3)-β-D-glucan synthase (GS) from red beet storage tissue. Complete enzyme inactivation occurred after exposure to micromolar levels of UDP-pyridoxal and millimolar levels of HCHO. Divalent cations (Mg 2+ and Ca 2+ , particularly Ca 2+ ) were required by both for inactivation. Substrate (UDPG) and chelators (EDTA and EGTA) protected plasma membrane GS (PMGS) against UDP-pyridoxal and HCHO inhibition. UDPG protected CHAPS solubilized GS (CSGS) against UDP-pyridoxal inactivation, but not against HCHO. It was concluded that beet GS contains a lysine residue at the UDPG-binding site. When PMGS was directly labeled with UDP[ 3 H]-pyridoxal or [ 14 C]HCHO, random labeling occurred. Therefore, a multi-step labeling procedure was developed. Nonessential lysine residues were first blocked with HCHO while 5 mM UDPG protected the active site lysine. Background labeling was reduced 4-fold. Membranes were recovered by centrifugation and the active site lysine exposed to [ 14 C] HCHO. Major labeled polypeptides were at 200, 76, and 54 kD. Minor polypeptides were seen at 94, 82, 68, 60, and 20-25 kD. CSGS was labeled by a modified multi-step procedure. CSGS was blocked by reaction with UDP-pyridoxal in the presence of UDPG. CSGS was then recovered by product entrapment and labeled with [ 14 C]HCHO. Background labeling was reduced by 8-fold and potential UDPG-binding polypeptides narrowed to 68, 54, 25 and 22 kD

  12. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models

    Directory of Open Access Journals (Sweden)

    Hyuk Hwa Kim

    2018-02-01

    Full Text Available In the current study, we investigated the inhibitory activity of pyridoxine, pyridoxal, and pyridoxamine, against various digestive enzymes such as α-glucosidases, sucrase, maltase, and glucoamylase. Inhibition of these enzymes involved in the absorption of disaccharide can improve post-prandial hyperglycemia due to a carbohydrate-based diet. Pyridoxal (4.14 mg/mL of IC50 had the highest rat intestinal α-glucosidase inhibitory activity, followed by pyridoxamine and pyridoxine (4.85 and 5.02 mg/mL of IC50, respectively. Pyridoxal demonstrated superior inhibition against maltase (0.38 mg/mL IC50 and glucoamylase (0.27 mg/mLIC50. In addition, pyridoxal showed significant higher α-amylase inhibitory activity (10.87 mg/mL of IC50 than that of pyridoxine (23.18 mg/mL of IC50. This indicates that pyridoxal can also inhibit starch hydrolyzing by pancreatic α-amylase in small intestine. Based on these in vitro results, the deeper evaluation of the anti-hyperglycemic potential of pyridoxine and its derivatives using Sprague-Dawley (SD rat models, was initiated. The post-prandial blood glucose levels were tested two hours after sucrose/starch administration, with and without pyridoxine and its derivatives. In the animal trial, pyridoxal (p < 0.05 had a significantly reduction to the postprandial glucose levels, when compared to the control. The maximum blood glucose levels (Cmax of pyridoxal administration group were decreased by about 18% (from 199.52 ± 22.93 to 164.10 ± 10.27, p < 0.05 and 19% (from 216.92 ± 12.46 to 175.36 ± 10.84, p < 0.05 in sucrose and starch loading tests, respectively, when compared to the control in pharmacodynamics study. The pyridoxal administration significantly decreased the minimum, maximum, and mean level of post-prandial blood glucose at 0.5 h after meals. These results indicate that water-soluble vitamin pyridoxine and its derivatives can decrease blood glucose level via the inhibition of carbohydrate

  13. Public health significance of elevated homocysteine

    Science.gov (United States)

    Homocysteine is a sulfur amino acid whose metabolism stands at the intersection of two pathways: remethylation, which requires folic acid and vitamin B12 coenzymes; and transsulfuration, which requires pyridoxal-5'-phosphate, the vitamin B6 coenzyme. Data from a number of laboratories suggest that m...

  14. Vitamin B6 in plasma and cerebrospinal fluid of children.

    Directory of Open Access Journals (Sweden)

    Monique Albersen

    Full Text Available Over the past years, the essential role of vitamin B6 in brain development and functioning has been recognized and genetic metabolic disorders resulting in functional vitamin B6 deficiency have been identified. However, data on B6 vitamers in children are scarce.B6 vitamer concentrations in simultaneously sampled plasma and cerebrospinal fluid (CSF of 70 children with intellectual disability were determined by ultra performance liquid chromatography-tandem mass spectrometry. For ethical reasons, CSF samples could not be obtained from healthy children. The influence of sex, age, epilepsy and treatment with anti-epileptic drugs, were investigated.The B6 vitamer composition of plasma (pyridoxal phosphate (PLP > pyridoxic acid > pyridoxal (PL differed from that of CSF (PL > PLP > pyridoxic acid > pyridoxamine. Strong correlations were found for B6 vitamers in and between plasma and CSF. Treatment with anti-epileptic drugs resulted in decreased concentrations of PL and PLP in CSF.We provide concentrations of all B6 vitamers in plasma and CSF of children with intellectual disability (±epilepsy, which can be used in the investigation of known and novel disorders associated with vitamin B6 metabolism as well as in monitoring of the biochemical effects of treatment with vitamin B6.

  15. Liquid chromatographic determination with fluorescence detection of B6 vitamers and riboflavin in milk and pharmaceuticals

    International Nuclear Information System (INIS)

    Gatti, R.; Gioia, M.G.

    2005-01-01

    A simple, reliable and selective high performance liquid chromatographic method with fluorescence detection at different programmed wavelengths has been developed for the simultaneous analysis of B 6 vitamers (pyridoxal 5'-phosphate, 4-pyridoxic acid, pyridoxal, pyridoxine and pyridoxamine) and Vitamin B 2 in commercial vitaminized milk and in woman milk. The chromatographic separations were performed on a reversed phase octyl column by using a mobile phase consisting of sodium pentanesulfonate in 1% acetic acid-methanol-tetrahydrofuran under gradient elution conditions. The fluorescence intensity of pyridoxal 5'-phosphate was enhanced by post-column photochemical conversion, giving significantly different fluorescence spectra by a on-line photoreactor switched OFF and ON under irradiation at 254 nm. In addition, a simple and rapid method in isocratic conditions without the need of photochemical conversion was proposed for the analysis of Vitamin B 6 and Vitamin B 2 in pharmaceuticals. Linearity, precision, recovery, selectivity and sensitivity were found satisfactory for each analysed compound. Quantitation limits ranged from 26 to 240 fmol

  16. Functional vitamin B-6 status and long-term mortality in renal transplant recipients

    NARCIS (Netherlands)

    Minović, Isidor; Veen, van der Anna; Faassen, van Martijn; Riphagen, Ineke J.; Berg, van den Else; Ley, van der Claude; Gomes-Neto, António W.; Geleijnse, Johanna M.; Eggersdorfer, Manfred; Navis, Gerjan J.; Kema, Ido P.; Bakker, Stephan J.L.

    2017-01-01

    Background: Low plasma concentrations of pyridoxal 5'-phosphate (PLP) are common in renal transplant recipients (RTRs) and confer increased risk of long-term mortality. To our knowledge, it is not known whether low plasma PLP concentrations have functional (i.e., intracellular) consequences and,

  17. Consequences of a Deficit in Vitamin B-6 Biosynthesis de Novo for Hormone Homeostasis and Root Development in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Boycheva, S.; Dominguez, A.; Rolčík, Jakub; Dominguez, T.; Fitzpatrick, T.B.

    2015-01-01

    Roč. 167, č. 1 (2015), s. 102-117 ISSN 0032-0889 Institutional support: RVO:61389030 Keywords : PYRIDOXAL 5'-PHOSPHATE SYNTHASE * EARLY SEEDLING DEVELOPMENT * AUXIN RESPONSE ELEMENTS Subject RIV: CE - Biochemistry Impact factor: 6.280, year: 2015

  18. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency

    NARCIS (Netherlands)

    Pena, Izabella A; Roussel, Yann; Daniel, Kate; Mongeon, Kevin; Johnstone, Devon; Weinschutz Mendes, Hellen; Bosma, Marjolein; Saxena, Vishal; Lepage, Nathalie; Chakraborty, Pranesh; Dyment, David A; van Karnebeek, Clara D M; Verhoeven-Duif, Nanda; Bui, Tuan Vu; Boycott, Kym M.; Ekker, Marc; MacKenzie, Alex

    2017-01-01

    Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment,

  19. Homocyst(e)ine metabolism in hemodialysis patients treated with vitamins B6, B12 and folate.

    Science.gov (United States)

    Henning, B F; Zidek, W; Riezler, R; Graefe, U; Tepel, M

    2001-03-01

    Hyperhomocyst(e)inemia is commonly accepted as an independent atherosclerotic risk factor. In most hemodialysis patients, serum homocyst(e)ine is markedly elevated and may contribute to premature atherosclerosis in these patients. Whereas the beneficial effect of folate supplementation on serum homocyst(e)ine has been extensively studied, there are less detailed studies on the effects of cobalamin and pyridoxal phosphate alone, or in combination with folate. We examined the effect of a four-week course of intravenous treatment with folate (1.1 mg), cobalamin (1.0 mg), and pyridoxal phosphate (5.0 mg), administered once (group 1), twice (group 2) or thrice (group 3) weekly in 33 hemodialysis patients divided in three groups of 11 patients. All patients were followed for a further four weeks after treatment was stopped. Serum homocyst(e)ine, cobalamin, folate and pyridoxal phosphate, as well as the metabolites of homocyst(e)ine, methylmalonate, 2-methylcitrate and cystathionine, were determined before, during and after treatment. Baseline serum homocyst(e)ine correlated significantly with serum folate (P=0.0149), cobalamin (P=0.0047) and pyridoxal phosphate (P=0.0408). Correlations independent from the other metabolites or vitamins were found for methylmalonate (P=0.003) and folate (P=0.029). All regimens increased serum cobalamin significantly (in group 1 from 444 +/- 215 to 17,303 +/- 11,989 pg/ml, Pine was lowered significantly by 39.8% +/- 31.9% (Pine levels. Increasing cobalamin levels and additional treatment with folate and pyridoxal phosphate 156 may decrease serum homocyst(e)ine in the same way as high doses of folate alone.

  20. Synthesis and biological incorporation of icons into macromolecules for NMR study. Final report, June 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    Grant, D.M.; Horton, W.J.

    1978-01-01

    Carbon-13 enrichment synthesis and incorporation into three important biological systems have been carried out to provide materials for carbon-13 magnetic resonance studies. These systems include antibody-labeled haptens, labeled t-RNA and 5S-RNA molecules, and pyridoxal-5'-phosphate-labeled substrate mixtures. The synthesis phase of the work has been completed in all three cases, and the NMR studies completed on all but the antibody-hapten system which is still in process having been absorbed into other supported projects. Publications are now in preparation for the RNA and pyridoxal work. Preliminary results on the antibody-haptens work are encouraging as signals of antibody absorbed haptens have been observed but the results are still not yet conclusive

  1. Radiometric-microbiologic assay fo vitamin B-6: analysis of plasma samples

    International Nuclear Information System (INIS)

    Guilarte, T.R.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for the analysis of vitamin B-6 in plasma was developed. The method is based on the measurement of 14CO2 generated from the metabolism of DL-l-14C-valine (L-l-14C-valine) by Kloeckera brevis. The assay is specific for the biologically active forms of the vitamin, that is, pyridoxine, pyridoxal and pyridoxamine, and their respective phosphorylated forms. The biologically inert vitamin B-6 metabolite (4-pyridoxic acid) did not generate a response at concentrations tested. The radiometric technique was shown to be sensitive to the 1 nanogram level. Reproducibility and recovery studies gave good results. Fifteen plasma samples were assayed using the radiometric and turbidimetric techniques. The correlation coefficient was r . 0.98. Turbid material or precipitated debris did not interfere with the radiometric microbiologic assay, thus allowing for simplification of assay procedure

  2. Protective Therapies for Monomethylhydrazine: Comparison of Pyridoxine and Physical Restraint in the Monkey

    Science.gov (United States)

    1979-04-01

    Pharmaco1, Exp. Ther. 140:133. 14. Meldrum , B. S. (1975). Epilepsy and y-aminobutyric acid -mediated inhibition. Int. Rev. Neurobiol. 17:1-36. 15. Rougeul, A...within the context of established neurochemical influences of the hydrazines on synthesis of the inhibitory neurotransmitter, gamma amino- butyric acid ...pyridoxal phosphate, a reaction which absorbs this coenzyme in the synthesis of glutamic acid decar- boxylase (GAD) and gamma-aminobutyric acid (GABA

  3. Radiolysis of pyridoxine (vitamin B6) in aqueous solution under different conditions

    International Nuclear Information System (INIS)

    Albarran, Guadalupe; Ramirez-Cahero, Fernando; Aliev, Roustam

    2008-01-01

    Aqueous solutions of pyridoxine (1 mM) without or with additive of K 3 [Fe(CN) 6 ] (2.5 mM) were gamma-irradiated at different doses and dose rate of 2.16 kGy/h in the absence of air, in the presence of air or by their saturation with N 2 O. The radiolytic products were analyzed with HPLC, mass spectrometry and UV spectroscopy. 2,4,5-Trihydroxymethyl-3-pyridinol, pyridoxal, isopyridoxal and 6-hydroxypyridoxine were formed by radiolysis in the absence of K 3 [Fe(CN) 6 ], and their concentrations were much higher in samples saturated with N 2 O. Pyridoxi-3,6-quinone was found by radiolysis under all the above-mentioned conditions but only in the presence of K 3 [Fe(CN) 6 ]. Besides, the pyridoxal formation increased in the presence of this oxidizing agent. G values of pyridoxal formation and pyridoxine degradation were quantified. Some details of the radiolytic product formation were discussed

  4. Radiolysis of pyridoxine (vitamin B{sub 6}) in aqueous solution under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albarran, Guadalupe [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico 04510, D.F. (Mexico)], E-mail: albarran@nucleares.unam.mx; Ramirez-Cahero, Fernando; Aliev, Roustam [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2008-05-15

    Aqueous solutions of pyridoxine (1 mM) without or with additive of K{sub 3}[Fe(CN){sub 6}] (2.5 mM) were gamma-irradiated at different doses and dose rate of 2.16 kGy/h in the absence of air, in the presence of air or by their saturation with N{sub 2}O. The radiolytic products were analyzed with HPLC, mass spectrometry and UV spectroscopy. 2,4,5-Trihydroxymethyl-3-pyridinol, pyridoxal, isopyridoxal and 6-hydroxypyridoxine were formed by radiolysis in the absence of K{sub 3}[Fe(CN){sub 6}], and their concentrations were much higher in samples saturated with N{sub 2}O. Pyridoxi-3,6-quinone was found by radiolysis under all the above-mentioned conditions but only in the presence of K{sub 3}[Fe(CN){sub 6}]. Besides, the pyridoxal formation increased in the presence of this oxidizing agent. G values of pyridoxal formation and pyridoxine degradation were quantified. Some details of the radiolytic product formation were discussed.

  5. Apoenzyme of aspartate aminotransferase isozymes in serum and its diagnostic usefullness for hepatic diseases.

    Science.gov (United States)

    Kamei, S; Ohkubo, A; Yamanaka, M

    1979-08-15

    Aspartate aminotransferase in the sera of normal subjects and of patients with hepatic diseases has been immunologically separated into two isoenzymes, cytosolic aspartate aminotransferase and mitochondrial aspartate aminotransferase. The activity of the isoenzymes was measured in three different buffer solutions with or without pyridoxal 5'-phosphate. To attain maximal activation, the apoenzyme of mitochondrial fraction must be preincubated with pyridoxal 5'-phosphate longer than that of the cytosolic fraction in either of the three reaction mixtures. In most sera the activity of both isoenzymes increased substantially in the presence of pyridoxal 5'-phosphate regardless of the type of buffer solutions. Both the apoenzymatic activity and the ratio of apo- to holo-enzymatic activity of each of the isoenzymes varied among samples from the patients with hepatic diseases. However, significantly high ratios of apo- to holo-enzymatic activity of both isoenzymes were observed in the patients with hepatoma in contrast with those with other hepatic diseases. These findings suggest that the simultaneous measurement of both apo- and holo-enzyme activities of aspartate aminotransferase isoenzymes may be useful in the clinical assessment of hepatic diseases.

  6. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity

    International Nuclear Information System (INIS)

    Kuramitsu, Seiki; Hiromi, Keitaro; Hayashi, Hideyuki; Morino, Yoshimasa; Kagamiyama, Hiroyuki

    1990-01-01

    The four half-transamination reactions [the pyridoxal form of Escherichia coli aspartate aminotransferase (AspAT) with aspartate or glutamate and the pyridoxamine form of the enzyme with oxalacetate or 2-oxoglutarate] were followed in a stopped-flow spectrometer by monitoring the absorbance change at either 333 or 358 nm. The reaction progress curves in all cases gave fits to a monophasic exponential process. Kinetic analyses of these reactions showed that each half-reaction is composed of the following three processes: (1) the rapid binding of an amino acid substrate to the pyridoxal form of the enzyme; (2) the rapid binding of the corresponding keto acid to the pyridoxamine form of the enzyme; (3) the rate-determining interconversion between the two complexes. This mechanism was supported by the findings that the equilibrium constants for half- and overall-transamination reactions and the steady-state kinetic constants agreed well with the predicted values on the basis of the above mechanism using pre-steady-state kinetic parameters. The significant primary kinetic isotope effect observed in the reaction with deuterated amino acid suggests that the withdrawal of the α-proton of the substrates is rate determining. The pyridoxal form of E. coli AspAT reacted with a variety of amino acids as substrates. The substrate specificity of the E. coli enzyme was much broader than that of pig isoenzymes, reflecting some subtle but distinct difference in microenvironment accommodating the side chain of the substrate between e. coli and mammalian AspATs

  7. Enzyme replacement therapy for murine hypophosphatasia.

    Science.gov (United States)

    Millán, José Luis; Narisawa, Sonoko; Lemire, Isabelle; Loisel, Thomas P; Boileau, Guy; Leonard, Pierre; Gramatikova, Svetlana; Terkeltaub, Robert; Camacho, Nancy Pleshko; McKee, Marc D; Crine, Philippe; Whyte, Michael P

    2008-06-01

    Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2-/-), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, microCT, and histomorphometry. Akp2-/- mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2-/- mice.

  8. Enzyme Replacement Therapy for Murine Hypophosphatasia*

    Science.gov (United States)

    Millán, José Luis; Narisawa, Sonoko; Lemire, Isabelle; Loisel, Thomas P; Boileau, Guy; Leonard, Pierre; Gramatikova, Svetlana; Terkeltaub, Robert; Camacho, Nancy Pleshko; McKee, Marc D; Crine, Philippe; Whyte, Michael P

    2008-01-01

    Introduction Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5`-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. Materials and Methods Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2−/−), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, μCT, and histomorphometry. Results Akp2−/− mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. Conclusions Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2−/− mice. PMID:18086009

  9. Effects of gamma-radiation on some components of food and agricultural products (pyridoxine, folic acid, methionine)

    International Nuclear Information System (INIS)

    Gehlehtseanu, I.

    1974-01-01

    the effects of gamma radiation on individual components of food and agricultural products (Pyridoxine, folic acid, methionine) were investigated. Some of the studies have provided support for the hypothesis that the structural changes occurring in separately irradiated components of a foodstuff are greater than those taking place in the same components when present in the foodstuff. Results of irradiating pyridoxine and pyridoxal in an aqueous medium; of folic acid in aqueous solutions and in solid state; and of methionine in aqueous solutions and solid state, are given. (E.T.)

  10. EFFECT OF FOOD-MICROORGANISMS ON GAMMA-AMINOBUTYRIC ACID PRODUCTION BY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Jozef Hudec

    2012-02-01

    Full Text Available Lactic acid bacteria (LAB are nice targets in order to study γ-aminobutyric acid (GABA production that has been reported to be effective in order to reduce blood pressure in experimental animals and human beings. In this study, we aimed to γ-aminobutyric acid (GABA production in aerobical and anaerobical conditions, using different sources of microorganisms. The highest selectivity of GABA from precursor L-monosodium glutamate (82.22% has been reported using of microorganisms from banana, and with addition of pyridoxal-5-phosphate (P-5-P. For augmentation of selectivity the application of the further stimulating factors of GABA biosynthesis is needed.

  11. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA production

    Directory of Open Access Journals (Sweden)

    Qian Lin

    2013-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 µM of pyridoxal phosphate (PLP, produced 187 mM of GABA.

  12. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    Science.gov (United States)

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  13. Supply with the vitamins B1, B2 and B6 in carcinomas before and after radiotherapy

    International Nuclear Information System (INIS)

    Grimm, U.; Wulff, K.; Schmidt, W.

    1983-01-01

    In 108 breast cancer, 63 cervix carcinoma, 35 corpus carcinoma and 15 ovarial cancer patients the erythrocyte transketolase, gluthathione reductase and aspartate aminotransferase activity were determined as parameters for the supply with vitamin B 1 , B 2 and B 6 before and after radiotherapy. The effects of thiamine pyrophosphate determined in cancer patients were normal but the effects of flavin adenine dinucleotide and pyridoxal-5-phosphate were significantly increased compared to the controls. These results revealed radiation-induced disorders in the B 2 metabolism and tumor-induced disorders in the B 6 metabolism. Both disorders can be avoided by treatment with vitamin B complex. (author)

  14. /sup 99m/Tc-labelled hepatobiliary radiopharmaceuticals

    International Nuclear Information System (INIS)

    Galli, G.; Maini, C.L.

    1986-01-01

    During the last 15 years many compounds labelled with /sup 99m/Tc have been proposed for use in cholescintigraphy. A short chronological list includes: toluidine blue, penicillamine, tetracycline, dihydrothioctic acid, mercaptoisubutyric acid, pyridoxals, pyridoxylideneaminates, carboxyl-hydroxyquinoline, substituted acetanilide iminodiacetates (so called IDAs), ethylenediamine-N, N-diacetate derivatives (such as sulfonyl-EDDA and benzoyl-EDDA), and orthoiodohippurate analogues. Among all these compounds the IDAs have been those most extensively used for basic and clinical research. A large series of IDA derivatives has been developed, and the properties of 33 of them have recently been tested

  15. Cysteic acid and taurine synthesis from sulphate in the chick embryo; Synthese de l'acide cysteique et de la taurine a partir du sulfate dans l'oeuf embryonne de poule

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    The formation of taurine from sulphate was studied in the chick embryo using the radioisotopes of: sulphur, carbon and hydrogen. The following reactions occur: 1) reduction of sulphate to sulphite; 2) fixation of the sulphite on a carbon chain with an amino group, resulting from desulphydration of L-cysteine, which leads to the formation of L-cysteic acid; 3) decarboxylation of L-cysteic acid. Reaction (1) takes place only in the endo-dermal cells of the yolk sac; reaction (2) in these same cells and in the yolk; reaction (3) is general, localized in the yolk sac, in the yolk as well as in the tissues of the embryo itself. The enzyme which catalyses reaction (2) has been purified; the coenzyme is pyridoxal phosphate. The desulphydration of cysteine by this enzyme is a reversible reaction. In non-physiological conditions of concentration and temperature, pyridoxal phosphate catalyses in the presence of metallic ions, the desulphydration of cysteine and the formation of cysteic acid from sulphite. (author) [French] On a montre que la formation de taurine a partir de sulfate dans I'oeuf embryonne de poule, etudiee a l'aide des radioisotopes, du soufre, du carbone et de l'hydrogene, correspond aux reactions suivantes: 1) reduction du sulfate en sulfite; 2) fixation du sulfite sur une chaine tricarbonee et aminee provenant de la desulfhydration de la L-cysteine, fixation conduisant a la formation d'acide L-cysteique; 3) decarboxylation de l'acide L-cysteique. La reaction (1) a lieu uniquement dans les cellules de l'endoderme du sac vitellin; la reaction (2) dans les memes cellules et dans le vitellus; la reaction (3) est plus generale, elle est localisee dans le sac vitellin, dans le vitellus et dans les tissus de l'embryon. L'enzyme qui catalyse la reaction (2) a ete purifie; il possede le phosphate de pyridoxal comme coenzyme. La desulfhydration de la cysteine par cet enzyme est une reaction reversible. Dans les conditions non physiologiques de concentration et de

  16. Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jirásková-Vaníčková, Jana; Ettrich, Rüdiger; Vorlová, Barbora; Hoffman, Hillary Elizabeth; Lepšík, Martin; Jansa, Petr; Konvalinka, Jan

    2011-01-01

    Roč. 12, č. 7 (2011), s. 1037-1055 ISSN 1389-4501 R&D Projects: GA MŠk 1M0508; GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : amino acid analogs * L-erythro-3-hydroxyaspartate (L-EHA) * D-serine * neurodegenerative diseases * NMDA receptors * pyridoxal-5´-phosphate (PLP) Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.553, year: 2011

  17. Long-Term Follow-up of a Successfully Treated Case of Congenital Pyridoxine-Dependent Epilepsy

    OpenAIRE

    Proudfoot, Malcolm; Jardine, Philip; Straukiene, Agne; Noad, Rupert; Parrish, Andrew; Ellard, Sian; Weatherby, Stuart

    2013-01-01

    Autosomal recessive disorders affecting pyridoxine (vitamin B6) metabolism are a rare but well-recognized cause of neonatal seizures. Antiquitin deficiency, caused by mutations in ALDH7A1, is a disorder of the lysine degradation pathway causing accumulation of an intermediate that complexes with pyridoxal phosphate. Reports of long-term follow-up of neonatal pyridoxine-dependent seizures (PDS) remain scarce and prognostic information is varied. We report a case of PDS in a 47-year-old lady wh...

  18. In vitro cytotoxicity of the ternary PAMAM G3–pyridoxal–biotin bioconjugate

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2013-12-01

    Full Text Available Łukasz Uram, Magdalena Szuster, Krzysztof Gargasz, Aleksandra Filipowicz, Elżbieta Wałajtys-Rode, Stanisław Wołowiec Cosmetology Department, University of Information Technology and Management in Rzeszów, Rzeszów, Poland Abstract: A third-generation polyamidoamine dendrimer (PAMAM G3 was used as a macromolecular carrier for pyridoxal and biotin. The binary covalent bioconjugate of G3, with nine molecules of biotin per one molecule of G3 (G39B, and the ternary covalent bioconjugate of G3, with nine biotin and ten pyridoxal molecules (G39B10P, were synthesized. The biotin and pyridoxal residues of the bioconjugate were available for carboxylase and transaminase enzymes, as demonstrated in the conversion of pyruvate to oxaloacetate and alanine to pyruvate, respectively, by in vitro monitoring of the reactions, using 1H nuclear magnetic resonance spectroscopy. The toxicity of the ternary bioconjugate (BC-PAMAM was studied in vitro on BJ human normal skin fibroblasts and human squamous cell carcinoma (SCC-15 cell cultures in comparison with PAMAM G3, using three cytotoxicity assays (XTT, neutral red, and crystal violet and an estimation of apoptosis by confocal microscopy detection. The tests have shown that BC-PAMAM has significantly lower cytotoxicity compared with PAMAM. Nonconjugated PAMAM was not cytotoxic at concentrations up to 5 µM (NR and 10 µM (XTT, and BC-PAMAM was not cytotoxic up to 50 µM (both assays for both cell lines. It has been also found that normal fibroblasts were more sensitive than SCC to both PAMAM and BC-PAMAM. The effect of PAMAM and BC-PAMAM on the initiation of apoptosis (PAMAM in fibroblasts at 5 µM and BC-PAMAM at 10 µM in both cell lines corresponded with cytotoxicity assays for both cell lines. We concluded that normal fibroblasts are more sensitive to the cytotoxic effects of the PAMAM G3 dendrimer and that modification of its surface cationic groups by substitution with biologically active molecules

  19. New Methods for the Analysis of Water-Soluble Vitamins in Infant Formula and Adult/Pediatric Nutritionals.

    Science.gov (United States)

    Martin, Frederic; Giménez, Ester Campos; Konings, Erik

    2016-01-01

    Water-soluble vitamins (WSVs) are a group of organic compounds which are essential micronutrients. WSVs could be divided between the B complex group and vitamin C (l-ascorbic acid). Within the B complex group, eight vitamins are recognized: vitamins B1 (thiamin), B2 (riboflavin), B3 (niacin or niacinamide), B5 (pantothenic acid), B6 (pyridoxine, pyridoxal, or pyridoxamine), B7 (biotin), B9 (folic acid), and B12 (various cobalamins). This paper reviews the new methods for the analysis of these vitamins, with a focus on infant formula and adult nutritionals.

  20. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    OpenAIRE

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmo...

  1. Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study

    Czech Academy of Sciences Publication Activity Database

    Vorlová, Barbora; Nachtigallová, Dana; Jirásková-Vaníčková, Jana; Ajani, Haresh; Jansa, Petr; Řezáč, Jan; Fanfrlík, Jindřich; Otyepka, M.; Hobza, Pavel; Konvalinka, Jan; Lepšík, Martin

    2015-01-01

    Roč. 89, Jan 7 (2015), s. 189-197 ISSN 0223-5234 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:61388963 Keywords : NMDA receptor * pyridoxal-5 '-phosphate-dependent enzyme * human/mouse serine racemase * malonate-based inhibitors * semiempirical quantum mechanical calculations Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  2. The Parkinson's disease death rate: carbidopa and vitamin B6

    Directory of Open Access Journals (Sweden)

    Hinz M

    2014-10-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole31Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3Cole Center for Healing, Cincinnati, OH, USAAbstract: The only indication for carbidopa and benserazide is the management of L-3,4-dihydroxyphenylalanine (L-dopa-induced nausea. Both drugs irreversibly bind to and permanently deactivate pyridoxal 5'-phosphate (PLP, the active form of vitamin B6, and PLP-dependent enzymes. PLP is required for the function of over 300 enzymes and proteins. Virtually every major system in the body is impacted directly or indirectly by PLP. The administration of carbidopa and benserazide potentially induces a nutritional catastrophe. During the first 15 years of prescribing L-dopa, a decreasing Parkinson's disease death rate was observed. Then, in 1976, 1 year after US Food and Drug Administration approved the original L-dopa/carbidopa combination drug, the Parkinson's disease death rate started increasing. This trend has continued to the present, for 38 years and counting. The previous literature documents this increasing death rate, but no hypothesis has been offered concerning this trend. Carbidopa is postulated to contribute to the increasing Parkinson's disease death rate and to the classification of Parkinson's as a progressive neurodegenerative disease. It may contribute to L-dopa tachyphylaxis.Keywords: L-dopa, levodopa, vitamin B6, pyridoxal 5'-phosphate

  3. Cysteic acid and taurine synthesis from sulphate in the chick embryo

    International Nuclear Information System (INIS)

    Chapeville, F.

    1960-01-01

    The formation of taurine from sulphate was studied in the chick embryo using the radioisotopes of: sulphur, carbon and hydrogen. The following reactions occur: 1) reduction of sulphate to sulphite; 2) fixation of the sulphite on a carbon chain with an amino group, resulting from desulphydration of L-cysteine, which leads to the formation of L-cysteic acid; 3) decarboxylation of L-cysteic acid. Reaction (1) takes place only in the endo-dermal cells of the yolk sac; reaction (2) in these same cells and in the yolk; reaction (3) is general, localized in the yolk sac, in the yolk as well as in the tissues of the embryo itself. The enzyme which catalyses reaction (2) has been purified; the coenzyme is pyridoxal phosphate. The desulphydration of cysteine by this enzyme is a reversible reaction. In non-physiological conditions of concentration and temperature, pyridoxal phosphate catalyses in the presence of metallic ions, the desulphydration of cysteine and the formation of cysteic acid from sulphite. (author) [fr

  4. Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine

    International Nuclear Information System (INIS)

    Dekant, W.; Lash, L.H.; Anders, M.W.

    1987-01-01

    The bioactivation of S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFC) was studied with purified bovine kidney cysteine conjugate β-lyase and with N-dodecylpyridoxal bromide in cetyltrimethylammonium bromide micelles as a pyridoxal model system. The β-lyase and the pyridoxal model system converted CTFC to chlorofluoroacetic acid and inorganic fluoride, which were identified by 19 F NMR spectrometry. 2-Chloro-1,1,2-trifluoroethanethiol and chlorofluorothionoacetyl fluoride were formed as metabolites of CTFC and were trapped with benzyl bromide and diethylamine, respectively, to yield benzyl 2-chloro-1,1,2-trifluoroethyl sulfide and N,N-diethyl chlorofluorothioacetamide, which were identified by gas chromatography/mass spectrometry. The bioactivation mechanism of CTFC therefore involves the initial formation of the unstable thiol 2-chloro-1,1,2-trifluoroethanethiol, which loses hydrogen fluoride to form the acylating agent chlorofluorothionoacetyl fluoride; hydrolysis of the thionoacyl fluoride affords the stable, terminal metabolites chlorofluoroacetic acid and inorganic fluoride. The intermediate acylating agent and chlorofluoroacetic acid may contribute to the cytotoxic effects of CTFC

  5. Impact of Pre-Pregnancy BMI on B Vitamin and Inflammatory Status in Early Pregnancy: An Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Anne-Lise Bjørke-Monsen

    2016-11-01

    Full Text Available Maternal nutrition and inflammation have been suggested as mediators in the development of various adverse pregnancy outcomes associated with maternal obesity. We have investigated the relation between pre-pregnancy BMI, B vitamin status, and inflammatory markers in a group of healthy pregnant women. Cobalamin, folate, pyridoxal 5′-phosphate, and riboflavin; and the metabolic markers homocysteine, methylmalonic acid, and 3-hydroxykynurenine/xanthurenic acid ratio (HK/XA; and markers of cellular inflammation, neopterin and kynurenine/tryptophan ratio (KTR were determined in pregnancy week 18 and related to pre-pregnancy body mass index (BMI, in 2797 women from the Norwegian Mother and Child Cohort Study (MoBa. Pre-pregnancy BMI was inversely related to folate, cobalamin, pyridoxal 5′-phosphate (PLP, and riboflavin (p < 0.001, and associated with increased neopterin and KTR levels (p < 0.001. Inflammation seemed to be an independent predictor of low vitamin B6 status, as verified by low PLP and high HK/XA ratio. A high pre-pregnancy BMI is a risk factor for low B vitamin status and increased cellular inflammation. As an optimal micronutrient status is vital for normal fetal development, the observed lower B vitamin levels may contribute to adverse pregnancy outcomes associated with maternal obesity and B vitamin status should be assessed in women with high BMI before they get pregnant.

  6. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    Science.gov (United States)

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Characterization of a bordetella pertussis diaminopimelate (DAP) biosynthesis locus identifies dapC, a novel gene coding for an N-succinyl-L,L-DAP aminotransferase.

    Science.gov (United States)

    Fuchs, T M; Schneider, B; Krumbach, K; Eggeling, L; Gross, R

    2000-07-01

    The functional complementation of two Escherichia coli strains defective in the succinylase pathway of meso-diaminopimelate (meso-DAP) biosynthesis with a Bordetella pertussis gene library resulted in the isolation of a putative dap operon containing three open reading frames (ORFs). In line with the successful complementation of the E. coli dapD and dapE mutants, the deduced amino acid sequences of two ORFs revealed significant sequence similarities with the DapD and DapE proteins of E. coli and many other bacteria which exhibit tetrahydrodipicolinate succinylase and N-succinyl-L,L-DAP desuccinylase activity, respectively. The first ORF within the operon showed significant sequence similarities with transaminases and contains the characteristic pyridoxal-5'-phosphate binding motif. Enzymatic studies revealed that this ORF encodes a protein with N-succinyl-L,L-DAP aminotransferase activity converting N-succinyl-2-amino-6-ketopimelate, the product of the succinylase DapD, to N-succinyl-L,L-DAP, the substrate of the desuccinylase DapE. Therefore, this gene appears to encode the DapC protein of B. pertussis. Apart from the pyridoxal-5'-phosphate binding motif, the DapC protein does not show further amino acid sequence similarities with the only other known enzyme with N-succinyl-L,L-DAP aminotransferase activity, ArgD of E. coli.

  8. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    Science.gov (United States)

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  9. Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy

    International Nuclear Information System (INIS)

    Ramesh, V.; McClatchey, A.I.; Ramesh, N.; Benoit, L.A.; Berson, E.L.; Shih, V.E.; Gusella, J.F.

    1988-01-01

    Gyrate atrophy (GA), a recessive eye disease involving progressive loss of vision due to chorioretinal degeneration, is associated with a deficiency of the mitochondrial enzyme ornithine aminotransferase with consequent hyperornithinemia. Genetic heterogeneity of GA has been suggested by the demonstration that administration of pyridoxine to increase the level of pyridoxal phosphate, a cofactor of OATase, reduces hyperornithinemia in a subset of patients. The authors have cloned and sequences cDNAs for OATase from two GA patients, one responsive and one nonresponsive to pyridoxine treatment. The respective cDNAs contained different single missense mutations, which were sufficient to eliminate OATase activity when each cDNA was tested in a eukaryotic expression system. However, like the enzyme in fibroblasts from the pyridoxine-responsive patient, OATase encoded by the corresponding cDNA from this individual showed a significant increase in activity when assayed in the presence of an increased pyridoxal phosphate concentration. These data firmly establish that both pyridoxine responsive and nonresponsive forms of GA result from mutations in the OATase structural gene. Moreover, they provide a molecular characterization of the primary lesion in a pyridoxine-responsive genetic disorder

  10. In situ FT-IR spectroelectrochemical study of electrooxidation of pyridoxol on a gold electrode

    International Nuclear Information System (INIS)

    Wang Meiling; Zhang Youyu; Xie Qingji; Yao Shouzhuo

    2005-01-01

    The electrochemical oxidation of pyridoxol (PN) on a polycrystalline gold electrode was investigated by cyclic voltammetry and in situ Fourier transform infrared spectroscopy (FTIRS). In 0.1 M aqueous NaOH solution, the gold electrode showed a high catalytic activity for the irreversible oxidation process of PN. The individual ionic species and the major tautomeric equilibria of PN molecules in aqueous solutions were evidenced well from the pH-dependent attenuated total reflectance (ATR) spectra, and the results were in good agreement with the voltammetric observations. In situ single potential alteration infrared reflectance spectroscopy (SPAIRS) demonstrated that a lactone form of PN, rather than pyridoxal aldehyde, was likely formed, which was subsequently diffused into the thin layer solution and underwent hydrolysis slowly to pyridoxic acid (PA) as the final product. In addition, the adsorption of PN at Au electrode was characterized by in situ subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS) method, which revealed that the adsorption of deprotonated PN, via nitrogen atom in vertical configuration on electrode surface, occurred from -0.5 V versus Ag vertical bar AgCl vertical bar KCl(sat), which was much lower than the potential of PN electrooxidation observed from ca. 0 V

  11. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  12. Quantification of vitamin B6 vitamers in human cerebrospinal fluid by ultra performance liquid chromatography–tandem mass spectrometry

    International Nuclear Information System (INIS)

    Ham, M. van der; Albersen, M.; Koning, T.J. de; Visser, G.; Middendorp, A.; Bosma, M.; Verhoeven-Duif, N.M.; Sain-van der Velden, M.G.M. de

    2012-01-01

    Highlights: ► We present a sensitive UPLC–MS/MS method for quantification of B6 vitamers in human CSF. ► Our method is very accurate since stable isotope labeled internal standards are used. ► We present data on light sensitivity, temperature dependence and rostrocaudal gradient. ► With PN supplementation, concentrations of PL, PM, PN and PA in CSF are increased. ► Our fully validated method is suitable for implementation in a diagnostic setting. - Abstract: Since vitamin B6 is essential for normal functioning of the central nervous system, there is growing need for sensitive analysis of B6 vitamers in cerebrospinal fluid (CSF). This manuscript describes the development and validation of a rapid, sensitive and accurate method for quantification of the vitamin B6 vitamers pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxic acid (PA), pyridoxal 5′-phosphate (PLP), pyridoxamine 5′-phosphate (PMP) and pyridoxine 5′-phosphate (PNP) in human CSF. The method is based on ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) with a simple sample preparation procedure of protein precipitation using 50 g L −1 trichloroacetic acid containing stable isotope labeled internal standards: PL-D 3 for PL and PM, PN- 13 C 4 for PN, PA-D 2 for PA and PLP-D 3 for the phosphorylated vitamers. B6 vitamers were separated (Acquity HSS-T3 UPLC column) with a buffer containing acetic acid, heptafluorobutyric acid and acetonitrile. Positive electrospray ionization was used to monitor transitions m/z 168.1 → 150.1 (PL), 169.1 → 134.1 (PM), 170.1 → 134.1 (PN), 184.1 → 148.1 (PA), 248.1 → 150.1 (PLP), 249.1 → 232.1 (PMP) and 250.1 → 134.1 (PNP). The method was validated at three concentration levels for each B6 vitamer in CSF. Recoveries of the internal standards were between 93% and 96%. Intra- and inter-assay variations were below 20%. Accuracy tests showed deviations from 3% (PN) to 39% (PMP). Limits of quantification were

  13. The PAr index, an indicator reflecting altered vitamin B-6 homeostasis, is associated with long-term risk of stroke in the general population: the Hordaland Health Study (HUSK).

    Science.gov (United States)

    Zuo, Hui; Tell, Grethe S; Ueland, Per M; Nygård, Ottar; Vollset, Stein E; Midttun, Øivind; Meyer, Klaus; Ulvik, Arve

    2018-01-01

    Vitamin B-6 homeostasis is altered during inflammation and immune activation. It is unknown whether altered vitamin B-6 homeostasis is associated with the risk of stroke. We investigated the relation between the ratio plasma 4-pyridoxic acid: (pyridoxal + pyridoxal-5'-phosphate) (PAr) as an indicator of altered vitamin B-6 homeostasis and the risk of stroke in the general population. We conducted a prospective analysis of the community-based Hordaland Health Study (HUSK) in 6891 adults (born during 1925-1927 and 1950-1951) without known stroke at baseline (1998-1999). Participants were followed via linkage to the CVDNOR (Cardiovascular Disease in Norway) project and the Cause of Death Registry. HRs and 95% CIs were calculated using Cox proportional hazards analyses. A total of 390 participants (193 men and 197 women) developed stroke over a median follow-up period of 11 y. Study participants with elevated PAr experienced a higher risk of incident stroke in an essentially linear dose-response fashion. The HR (95% CI) for the highest compared with the lowest quartile of PAr was 1.97 (1.42, 2.73; P-trend trend <0.001) for ischemic stroke after adjustment for age, sex, body mass index (BMI), smoking, education, physical activity, estimated glomerular filtration rate, hypertension, diabetes, total cholesterol, and statin use. PAr had greater predictive strength than did C-reactive protein, current smoking, diabetes, hypertension, estimated glomerular filtration rate, and physical activity. The associations were similar in subgroups stratified by age group, sex, BMI, current smoking, hypertension, diabetes, and statin use at baseline. Higher plasma PAr was independently associated with increased risk of incident stroke in all participants and across all subgroups stratified by conventional risk predictors. Our novel findings point to and expand the range of inflammation and immune activation processes that may be relevant for the pathogenesis and prevention of stroke

  14. Quantification of vitamin B6 vitamers in human cerebrospinal fluid by ultra performance liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ham, M. van der, E-mail: M.vanderHam-3@umcutrecht.nl [Department of Metabolic Diseases and Netherlands Metabolomics Center, University Medical Center (UMC) Utrecht, Huispost KC02.069.1, Lundlaan 6, 3584 EA Utrecht (Netherlands); Albersen, M., E-mail: M.Albersen@umcutrecht.nl [Department of Metabolic Diseases and Netherlands Metabolomics Center, University Medical Center (UMC) Utrecht, Huispost KC02.069.1, Lundlaan 6, 3584 EA Utrecht (Netherlands); Koning, T.J. de, E-mail: T.deKoning@umcutrecht.nl [Department of Pediatric Metabolic Diseases, Wilhelmina Children' s Hospital, University Medical Center (UMC) Utrecht, Huispost KC03.063.0, Lundlaan 6, 3584 EA Utrecht (Netherlands); Visser, G., E-mail: G.Visser-4@umcutrecht.nl [Department of Pediatric Metabolic Diseases, Wilhelmina Children' s Hospital, University Medical Center (UMC) Utrecht, Huispost KC03.063.0, Lundlaan 6, 3584 EA Utrecht (Netherlands); Middendorp, A., E-mail: Alfred_Middendorp@waters.com [Waters Chromatography B.V., Florijnstraat 19, Postbus 379, 4870 AJ Etten-Leur (Netherlands); Bosma, M., E-mail: M.Bosma@umcutrecht.nl [Department of Metabolic Diseases and Netherlands Metabolomics Center, University Medical Center (UMC) Utrecht, Huispost KC02.069.1, Lundlaan 6, 3584 EA Utrecht (Netherlands); Verhoeven-Duif, N.M., E-mail: N.Verhoeven@umcutrecht.nl [Department of Metabolic Diseases and Netherlands Metabolomics Center, University Medical Center (UMC) Utrecht, Huispost KC02.069.1, Lundlaan 6, 3584 EA Utrecht (Netherlands); Sain-van der Velden, M.G.M. de, E-mail: M.G.deSain@umcutrecht.nl [Department of Metabolic Diseases and Netherlands Metabolomics Center, University Medical Center (UMC) Utrecht, Huispost KC02.069.1, Lundlaan 6, 3584 EA Utrecht (Netherlands)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer We present a sensitive UPLC-MS/MS method for quantification of B6 vitamers in human CSF. Black-Right-Pointing-Pointer Our method is very accurate since stable isotope labeled internal standards are used. Black-Right-Pointing-Pointer We present data on light sensitivity, temperature dependence and rostrocaudal gradient. Black-Right-Pointing-Pointer With PN supplementation, concentrations of PL, PM, PN and PA in CSF are increased. Black-Right-Pointing-Pointer Our fully validated method is suitable for implementation in a diagnostic setting. - Abstract: Since vitamin B6 is essential for normal functioning of the central nervous system, there is growing need for sensitive analysis of B6 vitamers in cerebrospinal fluid (CSF). This manuscript describes the development and validation of a rapid, sensitive and accurate method for quantification of the vitamin B6 vitamers pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxic acid (PA), pyridoxal 5 Prime -phosphate (PLP), pyridoxamine 5 Prime -phosphate (PMP) and pyridoxine 5 Prime -phosphate (PNP) in human CSF. The method is based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a simple sample preparation procedure of protein precipitation using 50 g L{sup -1} trichloroacetic acid containing stable isotope labeled internal standards: PL-D{sub 3} for PL and PM, PN-{sup 13}C{sub 4} for PN, PA-D{sub 2} for PA and PLP-D{sub 3} for the phosphorylated vitamers. B6 vitamers were separated (Acquity HSS-T3 UPLC column) with a buffer containing acetic acid, heptafluorobutyric acid and acetonitrile. Positive electrospray ionization was used to monitor transitions m/z 168.1 {yields} 150.1 (PL), 169.1 {yields} 134.1 (PM), 170.1 {yields} 134.1 (PN), 184.1 {yields} 148.1 (PA), 248.1 {yields} 150.1 (PLP), 249.1 {yields} 232.1 (PMP) and 250.1 {yields} 134.1 (PNP). The method was validated at three concentration levels for each B6 vitamer in CSF

  15. Quantification of vitamin B6 vitamers in human cerebrospinal fluid by ultra performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    van der Ham, M; Albersen, M; de Koning, T J; Visser, G; Middendorp, A; Bosma, M; Verhoeven-Duif, N M; de Sain-van der Velden, M G M

    2012-01-27

    Since vitamin B6 is essential for normal functioning of the central nervous system, there is growing need for sensitive analysis of B6 vitamers in cerebrospinal fluid (CSF). This manuscript describes the development and validation of a rapid, sensitive and accurate method for quantification of the vitamin B6 vitamers pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxic acid (PA), pyridoxal 5'-phosphate (PLP), pyridoxamine 5'-phosphate (PMP) and pyridoxine 5'-phosphate (PNP) in human CSF. The method is based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a simple sample preparation procedure of protein precipitation using 50 g L(-1) trichloroacetic acid containing stable isotope labeled internal standards: PL-D(3) for PL and PM, PN-(13)C(4) for PN, PA-D(2) for PA and PLP-D(3) for the phosphorylated vitamers. B6 vitamers were separated (Acquity HSS-T3 UPLC column) with a buffer containing acetic acid, heptafluorobutyric acid and acetonitrile. Positive electrospray ionization was used to monitor transitions m/z 168.1→150.1 (PL), 169.1→134.1 (PM), 170.1→134.1 (PN), 184.1→148.1 (PA), 248.1→150.1 (PLP), 249.1→232.1 (PMP) and 250.1→134.1 (PNP). The method was validated at three concentration levels for each B6 vitamer in CSF. Recoveries of the internal standards were between 93% and 96%. Intra- and inter-assay variations were below 20%. Accuracy tests showed deviations from 3% (PN) to 39% (PMP). Limits of quantification were in the range of 0.03-5.37 nM. Poor results were obtained for quantification of PNP. The method was applied to CSF samples of 20 subjects and two patients on pyridoxine supplementation. Using minimal CSF volumes this method is suitable for implementation in a routine diagnostic setting. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The interaction of diadenosine polyphosphates with P2X-receptors in the guinea-pig isolated vas deferens

    OpenAIRE

    Westfall, T D; McIntyre, C A; Obeid, S; Bowes, J; Kennedy, C; Sneddon, P

    1997-01-01

    The site(s) at which diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) and diadenosine 5′, 5′′′-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (300 nM–30 μM), suramin (3–100 μM) and pyridoxal-5′-phosphate (P-5-P) (3–1000 μM) inhibited contractions evo...

  17. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Directory of Open Access Journals (Sweden)

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  18. MR imaging signal enhancement of normal intracranial and extracranial structures

    International Nuclear Information System (INIS)

    Muraki, A.S.; Carvlin, M.J.; Francisco, J.; Rocklage, S.M.; Quay, S.

    1988-01-01

    The authors report their initial experience using a paramagnetic manganese chelate complex as a contrast agent for magnetic resonance (MR) imaging of the central nervous system. Five female cats weighing 2-4 kg were used, and anesthesia was induced and maintained with intravenous nembutal (15-25 mg/kg). This contrast agent, manganese (II) N, N'-bis(pyridoxal-5-phosphate) ethylenediamine-N,N'-diacetic acid, or Mn(DPDP)(Salutar), has previously shown efficacy for MR imaging of the hepatobiliary axis but has not been employed in neuroradiologic imaging. T1-weighted (repetition time, 400 msec, echo time, 15, 26 msec; 4-mm sections) spin-echo images were acquired before and after intravenous administration (100 μmol/kg) of the contrast agent. On post-contrast images, the pituitary gland, infundibulum and portohypophyseal system of the hypothalamus and choroid lexus demonstrated signal increase at t=0-30 minutes after injection

  19. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    Science.gov (United States)

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  20. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    Directory of Open Access Journals (Sweden)

    Thales Kronenberger

    2014-01-01

    Full Text Available Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines, the aspartate aminotransferase (AspAT, involved in the protein biosynthesis, and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism.

  1. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    Science.gov (United States)

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  2. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    Science.gov (United States)

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-08-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5‧-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.

  3. The hydrophobic substituent in aminophospholipids affects the formation kinetics of their Schiff bases.

    Science.gov (United States)

    Caldés, Catalina; Vilanova, Bartolomé; Adrover, Miquel; Donoso, Josefa; Muñoz, Francisco

    2013-04-01

    Schiff bases (SBs) are the initial products of non-enzymatic glycation reactions, which are associated to some diabetes-related diseases. In this work, we used physiological pH and temperature conditions to study the formation kinetics of the SBs of 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine (DPHE) and 1,2-dihexanoyl-sn-glycero-3-phospho-l-serine (DHPS) with various glycating compounds and with pyridoxal 5'-phosphate (an effective glycation inhibitor). Based on the obtained results, the hydrophobic environment simultaneously decreases the nucleophilic character of the amino group (k1) and increases its pKa, thereby increasing the formation rate of SB (kobs). Therefore, the presence of hydrophobic chains in aminophospholipids facilitates the formation and stabilization of SBs, and also, in a biological environment, their glycation. Additionally, the results confirm the inhibitory action of B6 vitamers on aminophospholipid glycation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    Science.gov (United States)

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast

    DEFF Research Database (Denmark)

    Andersen, Gorm; Andersen, Birgit; Dobritzsch, D.

    2007-01-01

    and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication similar to 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.......In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue...... to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V...

  6. Isolation and characterization of racemase from Ensifer sp. 23-3 that acts on α-aminolactams and α-amino acid amides.

    Science.gov (United States)

    Matsui, Daisuke; Fuhshuku, Ken-Ichi; Nagamori, Shingo; Takata, Momoko; Asano, Yasuhisa

    2017-11-01

    Limited information is available on α-amino-ε-caprolactam (ACL) racemase (ACLR), a pyridoxal 5'-phosphate-dependent enzyme that acts on ACL and α-amino acid amides. In the present study, eight bacterial strains with the ability to racemize α-amino-ε-caprolactam were isolated and one of them was identified as Ensifer sp. strain 23-3. The gene for ACLR from Ensifer sp. 23-3 was cloned and expressed in Escherichia coli. The recombinant ACLR was then purified to homogeneity from the E. coli transformant harboring the ACLR gene from Ensifer sp. 23-3, and its properties were characterized. This enzyme acted not only on ACL but also on α-amino-δ-valerolactam, α-amino-ω-octalactam, α-aminobutyric acid amide, and alanine amide.

  7. Synthesis of B6 vitamin

    Directory of Open Access Journals (Sweden)

    Vučijak Nevena Ž.

    2009-01-01

    Full Text Available The importance of vitamin B6 has been known since its discovery in the 1940's. Chemical tests, elestrometric titration determinations, and absorption spectrum studies showed that this vitamin exists in three major chemical forms: pyridoxine (an alcohol, pyridoxal (an aldehyde, and pyridoxamine (a primary amine. Vitamin B6 is needed for more than 100 enzymes involved in protein metabolism, and it is assumed that this vitamin is cofactor of metabolic processes more important than any other substance. A deficiency of vitamin B6 in the human diet leads to severe disorders. Vitamin B6 is necessary for the proper function of the immune and nervous system, and helps the body convert protein to energy. This paper describes the history, properties and applications of vitamin B6, elucidation of chemical structure, and different procedures for synthesis of pyridoxine and pyridoxamine.

  8. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural features and kinetic characterization of alanine racemase from Bacillus pseudofirmus OF4.

    Science.gov (United States)

    Dong, Hui; Hu, Tingting; He, Guangzheng; Lu, Deren; Qi, Jianxun; Dou, Yanshu; Long, Wei; He, Xin; Ju, Jiansong; Su, Dan

    2018-02-26

    Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes a reversible racemization between the enantiomers of alanine. d-Alanine is an indispensable constituent in the biosynthesis of bacterial cell-wall peptidoglycan, and its inhibition is lethal to prokaryotes, which makes it an attractive target for designing antibacterial drugs. In this study, the molecular structure of alanine racemase from Bacillus pseudofirmus OF4 (DadX OF4 ) was determined by X-ray crystallography to a resolution of 1.8 Å. The comparison of DadX OF4 with alanine racemases from other bacteria demonstrated a conserved overall fold. Enzyme kinetics analysis showed that the conserved residues at the substrate entryway and the salt bridge at the dimer interface are critical for enzyme activity. These structural and biochemical findings provide a template for future structure-based drug-development efforts targeting alanine racemases. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  11. Synthesis and biological incorporatin of icons into macromolecules for NMR study

    International Nuclear Information System (INIS)

    Grant, D.M.

    1976-02-01

    Work has proceeded successfully to synthesize novel 13 C-labeled materials for incorporation into macromolecules. Gram quantities of C-4 labeled uracil have been synthesized and incorporated, by means of a mutant bacterial strain into t-RNA. The t-RNA has been isolated, purified, and carbon-13 T 1 studies have begun. A modern, well equipped biochemistry laboratory has become functional during the present contract period. Good progress has been made on nonenzymatic reactions of pyridoxal-5'-phosphate with selected amino actions. This effort has successfully elucidated many reaction intermediates and products. In addition, 13 C containing haptens have been synthesized and screening tests have now begun on rabbits to verify the specificity of antibodies for two haptens

  12. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    Science.gov (United States)

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  13. Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase from Mycobacterium smegmatis

    International Nuclear Information System (INIS)

    Jackson, Colin J.; Taylor, Matthew C.; Tattersall, David B.; French, Nigel G.; Carr, Paul D.; Ollis, David L.; Russell, Robyn J.; Oakeshott, John G.

    2008-01-01

    Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation. Pyridoxine 5′-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5′-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M. smegmatis, Msmeg-3380, has been cloned. This enzyme has been recombinantly expressed in E. coli and purified to homogeneity. Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation

  14. Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase from Mycobacterium smegmatis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Colin J., E-mail: colin.jackson@csiro.au; Taylor, Matthew C.; Tattersall, David B.; French, Nigel G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia); Carr, Paul D.; Ollis, David L. [Research School of Chemistry, Australian National University, ACT 0200 (Australia); Russell, Robyn J.; Oakeshott, John G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia)

    2008-05-01

    Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation. Pyridoxine 5′-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5′-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M. smegmatis, Msmeg-3380, has been cloned. This enzyme has been recombinantly expressed in E. coli and purified to homogeneity. Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation.

  15. A Rare Case of Neonatal Hypophosphatasia: A Case Report

    Directory of Open Access Journals (Sweden)

    Nasim Pouralizadeh

    2018-03-01

    Full Text Available Hypophosphatasia is a rare hereditary disorder of bone metabolism.In this article, we presented the case of a male infant with a soft skull and short, deformed limbs at birth, followed by seizures and respiratory distress during admission in the neonatal intensive care unit (NICU. Prenatal ultrasound showed limb hypoplasia, skull hypomineralization, and polyhydramnios. Seizures occurred on day nine of admission. The neonate was intubated after pneumonia on day 12of birth and died due to the same cause and respiratory failure on day 14. Clinical presentation and low alkaline phosphatase (ALP confirmed the diagnosis of hypophosphatasia. The disorder covers a spectrum of severe neonatal type with severe hypomineralization to various adult types with osteomalacia and dental problems. Prenatal hypophosphatasia is diagnosed based on the clinical signs, including soft skull, short limbs, breathing difficulty, seizures, respiratory distress, laboratory results (low ALP and high pyridoxal 5-phosphate, and radiographic findings (hypomineralization and metaphyseal dysplasia.

  16. Catabolism and protein binding of /sup 99m/Tc pyridoxylideneglutamate

    International Nuclear Information System (INIS)

    Jansholt, A.L.; Krohn, K.A.; Stadalnik, R.C.; Matolo, N.M.; DeNardo, G.L.

    1978-01-01

    Various Tc-99m-labeled compounds have been suggested as replacements for [I-131] rose bengal for imaging of the hepatobiliary system. Among such compounds are Schiff's bases, which are tin-free Tc-chelates easily prepared by 30-min autoclaving of an equimolar mixture of pyridoxal and an amino acid at pH 8.5. We have compared the properties of several Schiff's bases, including Tc-99m pyridoxylideneglutamate (Tc-PyG) with [I-131] rose bengal. Under conditions described, Tc-PyG can be prepared free of Tc-pyridoxal and with 4 - radiochemical impurity. Blood clearance and biliary excretion were studied in three animal models and in normal human volunteers. In all animal models, Tc-PyG initially cleared from the blood more rapidly than rose bengal, but a significant amount of Tc-PyG was excreted in the urine, this in contrast to [I-131] rose bengal which was almost completely excreted through the biliary system. Species differences were observed in the degree of urinary versus biliary clearance of Tc-PyG, with significantly greater urinary excretion in dogs than in monkeys and rabbits. Replacing glutamate with other amino acids did not significantly increase the blood clearance rate or decrease urinary excretion, so that Tc-PyG appears to be at least as good as any of the others studied. Tc-PyG was only 20% bound to plasma proteins, and electrophoretic and chromatographic studies did not reveal any in vivo changes of Tc-PyG before excretion in urine or bile

  17. The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid.

    Science.gov (United States)

    Ringel, Michael T; Dräger, Gerald; Brüser, Thomas

    2017-11-10

    The periplasmic conversion of ferribactin to pyoverdine is essential for siderophore biogenesis in fluorescent pseudomonads, such as pathogenic Pseudomonas aeruginosa or plant growth-promoting Pseudomonas fluorescens The non-ribosomal peptide ferribactin undergoes cyclizations and oxidations that result in the fluorophore, and a strictly conserved fluorophore-bound glutamic acid residue is converted to a range of variants, including succinamide, succinic acid, and α-ketoglutaric acid residues. We recently discovered that the pyridoxal phosphate-containing enzyme PvdN is responsible for the generation of the succinamide, which can be hydrolyzed to succinic acid. Based on this, a distinct unknown enzyme was postulated to be responsible for the conversion of the glutamic acid to α-ketoglutaric acid. Here we report the identification and characterization of this enzyme in P. fluorescens strain A506. In silico analyses indicated a periplasmic transaminase in fluorescent pseudomonads and other proteobacteria that we termed PtaA for " p eriplasmic t ransaminase A " An in-frame-deleted ptaA mutant selectively lacked the α-ketoglutaric acid form of pyoverdine, and recombinant PtaA complemented this phenotype. The ptaA / pvdN double mutant produced exclusively the glutamic acid form of pyoverdine. PtaA is homodimeric and contains a pyridoxal phosphate cofactor. Mutation of the active-site lysine abolished PtaA activity and affected folding as well as Tat-dependent transport of the enzyme. In pseudomonads, the occurrence of ptaA correlates with the occurrence of α-ketoglutaric acid forms of pyoverdines. As this enzyme is not restricted to pyoverdine-producing bacteria, its catalysis of periplasmic transaminations is most likely a general tool for specific biosynthetic pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. High-dose vitamin B6 decreases homocysteine serum levels in patients with schizophrenia and schizoaffective disorders: a preliminary study.

    Science.gov (United States)

    Miodownik, Chanoch; Lerner, Vladimir; Vishne, Tali; Sela, Ben-Ami; Levine, Joseph

    2007-01-01

    Vitamin B6 plays an essential role in the normal functioning of the central nervous system. Normal homocysteine (Hcy) serum level is maintained by remethylation of Hcy to methionine by enzymes that require folic acid and vitamin B12 and by catabolism to cysteine by a vitamin B6-dependent enzyme. These findings may be consistent with the hypothesis that the vitamin B6 status may influence plasma Hcy levels. The aims of this preliminary study were (1) to determine whether a correlation exists between Hcy and vitamin B6 levels in patients with schizophrenia and schizoaffective disorders and (2) to investigate whether treatment with high-dose vitamin B6 may reduce Hcy levels in these patients. In this preliminary study, we enrolled 11 patients with schizophrenia or schizoaffective disorders (7 men and 4 women; mean age +/- SD, 50 +/- 12 years) receiving high doses of vitamin B6 treatment (1200 mg/d) for 12 weeks. Blood samples for the assessment of pyridoxal-5-phosphate and Hcy serum levels were obtained at baseline and after 12 weeks of treatment. Age was significantly positively correlated with Hcy levels at baseline (r = 0.392, P = 0.004). All other parameters, including diagnosis, disease duration, and pyridoxal-5-phosphate serum level, were not correlated with Hcy serum levels at baseline. After vitamin B6 treatment, Hcy serum levels significantly decreased (14.2 +/- 3.4 vs. 11.8 +/- 2.0 micromol/L, respectively, t = 2.679, P = 0.023); this decrease being statistically significant in men but not in women. High doses of vitamin B6 lead to a decrease in Hcy serum level in male patients with schizophrenia or schizoaffective disorder.

  19. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A. (Sungkyunkwan); (UTSMC)

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  20. Dietary supplement use and smoking are important correlates of biomarkers of water-soluble vitamin status after adjusting for sociodemographic and lifestyle variables in a representative sample of US adults1,2,3

    Science.gov (United States)

    Pfeiffer, Christine M.; Sternberg, Maya R.; Schleicher, Rosemary L.; Rybak, Michael E.

    2016-01-01

    Biochemical indicators of water-soluble vitamin (WSV) status have been measured in a nationally representative sample of the US population in NHANES 2003–2006. To examine whether demographic differentials in nutritional status were related to and confounded by certain variables, we assessed the association of sociodemographic (age, sex, race-ethnicity, education, income) and lifestyle variables (dietary supplement use, smoking, alcohol consumption, BMI, physical activity) with biomarkers of WSV status in adults (≥20 y): serum and RBC folate, serum pyridoxal-5′-phosphate (PLP), serum 4-pyridoxic acid, serum total cobalamin (B-12), plasma total homocysteine (tHcy), plasma methylmalonic acid (MMA), and serum ascorbic acid. Age (except for PLP) and smoking (except for MMA) were generally the strongest significant correlates of these biomarkers (|r| ≤0.43) and together with supplement use explained more of the variability as compared to the other covariates in bivariate analysis. In multiple regression models, sociodemographic and lifestyle variables together explained from 7% (B-12) to 29% (tHcy) of the biomarker variability. We observed significant associations for most biomarkers (≥6 out of 8) with age, sex, race-ethnicity, supplement use, smoking, and BMI; and for some biomarkers with PIR (5/8), education (1/8), alcohol consumption (4/8), and physical activity (5/8). We noted large estimated percent changes in biomarker concentrations between race-ethnic groups (from −24% to 20%), between supplement users and nonusers (from −12% to 104%), and between smokers and nonsmokers (from −28% to 8%). In summary, age, sex, and race-ethnic differentials in biomarker concentrations remained significant after adjusting for sociodemographic and lifestyle variables. Supplement use and smoking were important correlates of biomarkers of WSV status. PMID:23576641

  1. Dietary supplement use and smoking are important correlates of biomarkers of water-soluble vitamin status after adjusting for sociodemographic and lifestyle variables in a representative sample of U.S. adults.

    Science.gov (United States)

    Pfeiffer, Christine M; Sternberg, Maya R; Schleicher, Rosemary L; Rybak, Michael E

    2013-06-01

    Biochemical indicators of water-soluble vitamin (WSV) status were measured in a nationally representative sample of the U.S. population in NHANES 2003-2006. To examine whether demographic differentials in nutritional status were related to and confounded by certain variables, we assessed the association of sociodemographic (age, sex, race-ethnicity, education, income) and lifestyle (dietary supplement use, smoking, alcohol consumption, BMI, physical activity) variables with biomarkers of WSV status in adults (aged ≥ 20 y): serum and RBC folate, serum pyridoxal-5'-phosphate (PLP), serum 4-pyridoxic acid, serum total cobalamin (vitamin B-12), plasma total homocysteine (tHcy), plasma methylmalonic acid (MMA), and serum ascorbic acid. Age (except for PLP) and smoking (except for MMA) were generally the strongest significant correlates of these biomarkers (|r| ≤ 0.43) and together with supplement use explained more of the variability compared with the other covariates in bivariate analysis. In multiple regression models, sociodemographic and lifestyle variables together explained from 7 (vitamin B-12) to 29% (tHcy) of the biomarker variability. We observed significant associations for most biomarkers (≥ 6 of 8) with age, sex, race-ethnicity, supplement use, smoking, and BMI and for some biomarkers with PIR (5 of 8), education (1 of 8), alcohol consumption (4 of 8), and physical activity (5 of 8). We noted large estimated percentage changes in biomarker concentrations between race-ethnic groups (from -24 to 20%), between supplement users and nonusers (from -12 to 104%), and between smokers and nonsmokers (from -28 to 8%). In summary, age, sex, and race-ethnic differentials in biomarker concentrations remained significant after adjusting for sociodemographic and lifestyle variables. Supplement use and smoking were important correlates of biomarkers of WSV status.

  2. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.

    Science.gov (United States)

    Kücükgöze, Gökhan; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-08-01

    Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N 1 -methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde ( p- DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p- DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N 1 -methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different K M and k cat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Warmuth-Metz Monika

    2007-01-01

    Full Text Available Abstract Background Hypophosphatasia (HP is characterized by a genetic defect in the tissue-nonspecific alkaline phosphatase (TNSALP gene and predominantly an autosomal recessive trait. HP patients suffer from reduced bone mineralization. Biochemically, elevated concentrations of substrates of TNSALP, including pyridoxal-5'-phosphate and inorganic pyrophosphate occur in serum, tissues and urine. The latter has been associated with chronic inflammation and hyperprostaglandinism. Case presentation We report on 2 affected children presenting with multifocal inflammatory bone lesions mimicking malignancy: A 6 years old girl with short stature had been treated with human growth hormone since 6 months. Then she started to complain about a painful swelling of her left cheek. MRI suggested a malignant bone lesion. Bone biopsy, however, revealed chronic inflammation. A bone scan showed a second rib lesion. Since biopsy was sterile, the descriptive diagnosis of chronic non-bacterial osteomyelitis (CNO was established. The diagnostic tests related to growth failure were repeated and subsequent analyses demonstrated a molecular defect in the TNSALP gene. The second girl (10 years old complained about back pain after she had fallen from her bike. X rays of her spine revealed compressions of 2 thoracic vertebrae. At first these were considered trauma related, however a bone scan did show an additional lesion in the right 4th rib. A biopsy of this rib revealed a sterile lympho- plasmocytoid osteomyelitis suggesting multifocal CNO. Further analyses did show a decreased TNSALP in leukocytes and elevated pyridoxal phosphate in plasma, suggesting a heterozygous carrier status of HP. Conclusion Chronic bone oedema in adult HP and chronic hyper-prostaglandinism in childhood HP do suggest that in some HP patients bone inflammation is present in conjunction with the metabolic defect. Sterile multifocal osteomyelitis could be demonstrated. Non-steroidal anti

  4. Biochemical and functional characterization of MRA-1571 of Mycobacterium tuberculosis H37Ra and effect of its down-regulation on survival in macrophages

    International Nuclear Information System (INIS)

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Singh, Sudheer Kumar

    2017-01-01

    Amino acid biosynthesis has emerged as a source of new drug targets as many bacterial strains auxotrophic for amino acids fail to proliferate under in vivo conditions. Branch chain amino acids (BCAAs) are important for Mycobacterium tuberculosis (Mtb) survival and strains deficient in their biosynthesis were attenuated for growth in mice. Threonine dehydratase (IlvA) is a pyridoxal-5-phosphate (PLP) dependent enzyme that catalyzes the first step in isoleucine biosynthesis. The MRA-1571 of Mycobacterium tuberculosis H37Ra (Mtb-Ra), annotated to be coding for IlvA, was cloned, expressed and purified. Purified protein was subsequently used for developing enzyme assay and to study its biochemical properties. Also, E. coli BL21 (DE3) IlvA knockout (E. coli-ΔilvA) was developed and genetically complemented with Mtb-Ra ilvA expression construct (pET32a-ilvA) to make complemented E. coli strain (E. coli-ΔilvA + pET32a-ilvA). The E. coli-ΔilvA showed growth failure in minimal medium but growth restoration was observed in E. coli-ΔilvA + pET32a-ilvA. E. coli-ΔilvA growth was also restored in the presence of isoleucine. The IlvA localization studies detected its distribution in cell wall and membrane fractions with relatively minor presence in cytosolic fraction. Maximum IlvA expression was observed at 72 h in wild-type (WT) Mtb-Ra infecting macrophages. Also, Mtb-Ra IlvA knockdown (KD) showed reduced survival in macrophages compared to WT and complemented strain (KDC). - Highlights: • Mtb-Ra gene MRA-1571 codes for a functional threonine dehydratase (IlvA). • IlvA is pyridoxal 5’-phosphate dependent and is inhibited by isoleucine. • E. coli IlvA knockout growth can be supplemented by isoleucine or by Mtb-Ra IlvA. • The enzyme is primarily localized in cell wall and membrane fractions. • IlvA knockdown Mtb-Ra shows reduced growth in macrophages.

  5. Elimination of hydrogen sulphide and {beta} substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961); Desulfhydration et {beta} substitution de la cysteine catalysees par la cysteinelyase du sac vitellin et du jaune de l'oeuf de poule (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F; Fromageot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the {beta}-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this {beta}-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the {beta}-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the {beta}-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [French] Le sac vitellin et le jaune d'oeufs embryonnes de poule renferment une enzyme activee par le phosphate de pyridoxal, qui ne contient pas de fer, de magnesium, de cuivre ce de calcium et qui confere une reactivite particuliere au carbone {beta} de la cysteine. Cette reactivite se manifeste par l'aptitude que possede le carbone {beta} a fixer diverses molecules soufrees dont le soufre est reducteur, telles que le sulfure, le sulfite ou la cysteine elle-meme. En l'absence de reactifs capables de reagir avec le carbone {beta}, le complexe actif enzyme-chaine tricarbonee et aminee s'hydrolyse en acide pyruvique et en ammoniaque. La liberation d'hydrogene sulfure apparait ainsi comme une consequence soit de la substitution du carbone {beta} de la cysteine, soit de la decomposition du complexe qu'elle forme avec l'enzyme etudiee. Cette derniere semble donc posseder une activite distincte de celle des desulfhydrases connues jusqu'a present. Nous proposons de l'appeler cysteinelyase. (auteurs)

  6. The Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for γ-Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding†

    Science.gov (United States)

    Clift, Michael; Ji, Haitao; Deniau, Gildas P.; O’Hagan, David; Silverman, Richard B.

    2008-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5’-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5’-phosphate (PLP) to pyridoxamine 5’-phosphate (PMP). The enzyme then catalyzes the conversion of α-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred based on the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical

  7. Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress

    Directory of Open Access Journals (Sweden)

    Rumeau Dominique

    2009-11-01

    Full Text Available Abstract Background Vitamin B6 is a collective term for a group of six interconvertible compounds: pyridoxine, pyridoxal, pyridoxamine and their phosphorylated derivatives. Vitamin B6 plays essential roles as a cofactor in a range of biochemical reactions. In addition, vitamin B6 is able to quench reactive oxygen species in vitro, and exogenously applied vitamin B6 protects plant cells against cell death induced by singlet oxygen (1O2. These results raise the important question as to whether plants employ vitamin B6 as an antioxidant to protect themselves against reactive oxygen species. Results The pdx1.3 mutation affects the vitamin B6 biosynthesis enzyme, pyridoxal synthase (PDX1, and leads to a reduction of the vitamin B6 concentration in Arabidopsis thaliana leaves. Although leaves of the pdx1.3 Arabidopsis mutant contained less chlorophyll than wild-type leaves, we found that vitamin B6 deficiency did not significantly impact photosynthetic performance or shoot and root growth. Chlorophyll loss was associated with an increase in the chlorophyll a/b ratio and a selective decrease in the abundance of several PSII antenna proteins (Lhcb1/2, Lhcb6. These changes were strongly dependent on light intensity, with high light amplifying the difference between pdx1.3 and the wild type. When leaf discs were exposed to exogenous 1O2, lipid peroxidation in pdx1.3 was increased relative to the wild type; this effect was not observed with superoxide or hydrogen peroxide. When leaf discs or whole plants were exposed to excess light energy, 1O2-mediated lipid peroxidation was enhanced in leaves of the pdx1.3 mutant relative to the wild type. High light also caused an increased level of 1O2 in vitamin B6-deficient leaves. Combining the pdx1.3 mutation with mutations affecting the level of 'classical' quenchers of 1O2 (zeaxanthin, tocopherols resulted in a highly photosensitive phenotype. Conclusion This study demonstrates that vitamin B6 has a function in

  8. Crystal Structure of Serine Racemase that Produces Neurotransmitter font-variant:small-caps">d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    font-variant:small-caps">d-Serine is an endogenous coagonist for the N-methyl-font-variant:small-caps">d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of font-variant:small-caps">l-serine to yield font-variant:small-caps">d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-font-variant:small-caps">d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-font-variant:small-caps">d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  9. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    Science.gov (United States)

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effect of Omega-3 and Vitamins E + C Supplements on the Concentration of Serum B-Vitamins and Plasma Redox Aminothiol Antioxidant Status in Elderly Men after Strength Training for Three Months.

    Science.gov (United States)

    Stea, Tonje Holte; Stølevik, Solvor B; Berntsen, Sveinung; Ezzathkah Bastani, Nasser; Paulsen, Gøran; Lohne Seiler, Hilde; Hetlelid, Ken J; Blomhoff, Rune; Mansoor, Mohammad Azam

    2016-01-01

    Data on redox plasma aminothiol status in individuals on strength training are very limited. Therefore, we studied the effect of omega-3 and vitamins E + C supplementation on the concentration of B-vitamins and redox aminothiol status in elderly men after strength training for 3 months. Healthy men, age 60 ± 6 (mean ± SD) were randomly divided into 3 groups: group I received placebo (n = 17), group II consumed omega-3 (700 mg, n = 17), and group III consumed vitamins E + C (235 mg +1 g, n = 16) daily for 3 months. All participants completed a strength training program for the same period. The concentration of serum vitamin B12 decreased and the concentration of serum folate increased in group I after the intervention (p = 0.01, p = 0.009). The concentration of plasma 5-pyridoxal phosphate decreased in groups II and III (p = 0.03 and p = 0.01), whereas the concentration of serum uric acid decreased only in group II (p = 0.02). We detected an increase in the concentration of reduced form of aminothiols in all groups (p vitamins E + C supplementation affect the concentrations of serum B-vitamins and redox plasma aminothiol status in healthy elderly men on strength training. © 2016 S. Karger AG, Basel.

  11. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  12. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  13. A new "off-on" fluorescent probe for Al(3+) in aqueous solution based on rhodamine B and its application to bioimaging.

    Science.gov (United States)

    Huang, Qi; Zhang, Qingyou; Wang, Enze; Zhou, Yanmei; Qiao, Han; Pang, Lanfang; Yu, Fang

    2016-01-05

    In this paper, a new fluorescent probe has been synthesized and applied as "off-on" sensor for the detection of Al(3+) with a high sensitivity and excellent selectivity in aqueous media. The sensor was easily prepared by one step reaction between rhodamine B hydrazide and pyridoxal hydrochloride named RBP. The structure of the sensor has been characterized by nuclear magnetic resonance and electron spray ionization-mass spectrometry. The fluorescence intensity and absorbance for the sensor showed a good linearity with the concentration of Al(3+) in the range of 0-12.5μM and 8-44μM, respectively, with detection limits of 0.23μM and 1.90μM. The sensor RBP was preliminarily applied to the determination of Al(3+) in water samples from the lake of Henan University and tap water with satisfying results. Moreover, it can be used as a bioimaging reagent for imaging of Al(3+) in living cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.

    Science.gov (United States)

    Liu, Yuchen; Dos Santos, Patricia C; Zhu, Xiang; Orlando, Ron; Dean, Dennis R; Söll, Dieter; Yuan, Jing

    2012-02-17

    Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.

  15. The biomarker-based validity of a food frequency questionnaire to assess the intake status of folate, pyridoxine and cobalamin among Iranian primary breast cancer patients.

    Science.gov (United States)

    Pirouzpanah, S; Taleban, F-A; Mehdipour, P; Atri, M; Hooshyareh-rad, A; Sabour, S

    2014-03-01

    Folate, pyridoxine and cobalamin are coenzymatically essential in one-carbon methyl metabolism, and their deficiencies could explain some alterations during breast carcinogenesis. We aimed to evaluate the validity of folate, pyridoxine and cobalamin estimates from a food frequency questionnaire (FFQ) on the basis of their corresponding fasting plasma biomarkers, in breast cancer (BC) patients. In a prospective, consecutive case series, 149 women with primary BC aged between 30 and 69 years as a representative sample of Iranian women with BC were recruited. The 136-item FFQ was used for the validity assay. Fasting plasma folate and cobalamin were tested by automated electrochemiluminescence. The high-pressure liquid chromatography with fluorescence detection was used to determine the plasma levels of pyridoxal-5'-phosphate (PLP) and total homocysteine (tHcy). Area under the curve (AUC) for assessing the diagnostic accuracy of folate-related data through an FFQ was 0.74 (Pfasting plasma concentrations. Our data supported the validity of new FFQ to rank individuals by dietary intake status of folate and cobalamin.

  16. Crystal Structure of the Homo sapiens Kynureninase-3-Hydroxyhippuric Acid Inhibitor Complex: Insights into the Molecular Basis Of Kynureninase Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Lima,Santiago; Kumar,Sunil; Gawandi,Vijay; Momany,Cory; Phillips,Robert S.; (Georgia)

    2009-02-23

    Homo sapiens kynureninase is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the hydrolytic cleavage of 3-hydroxykynurenine to yield 3-hydroxyanthranilate and L-alanine as part of the tryptophan catabolic pathway leading to the de novo biosynthesis of NAD{sup +}. This pathway results in quinolinate, an excitotoxin that is an NMDA receptor agonist. High levels of quinolinate have been correlated with the etiology of neurodegenerative disorders such as AIDS-related dementia and Alzheimer's disease. We have synthesized a novel kynureninase inhibitor, 3-hydroxyhippurate, cocrystallized it with human kynureninase, and solved the atomic structure. On the basis of an analysis of the complex, we designed a series of His-102, Ser-332, and Asn-333 mutants. The H102W/N333T and H102W/S332G/N333T mutants showed complete reversal of substrate specificity between 3-hydroxykynurenine and L-kynurenine, thus defining the primary residues contributing to substrate specificity in kynureninases.

  17. A S-cysteine conjugate, precursor of aroma of White Sauvignon

    Directory of Open Access Journals (Sweden)

    Takatoshi Tominaga

    1995-12-01

    Full Text Available 4-mercapto-4-methylpentan-2-one (4-MMP, a strongly odorant compound responsible for the « boxtree » or « broom plant » odour of the Sauvignon wines, can be enzymaticaly released in vitro from an odourless must extract. The enzyme source used is a cell-free extract of the gastrointestinal bacterium Eubacterium limosum. This crude preparation exhibits a cysteine β-lyase activity which requires the presence of pyridoxal phosphate. The release of 4-MMP is inhibited when the substrate is previously treated with N-hydroxysuccimide acetate which reacts with a primary amine. The same bacterial extract is also able to release 4-MMP, pyruvic acid and ammonium, from S-(4-méthylpentan-2-one-L-cysteine. On the other hand, the cleavage of S-(4-méthylpentan-2-oneD,L-homocysteine and S-(4-méthylpentan-2-one- glutathione is very limited. These results suggest that the precursor of 4-MMP in Sauvignon must is a S-cysteine conjugate. Such an aroma precursor in grapes or in other fruits has never been round berore.

  18. A study of effective atomic numbers and electron densities of some vitamins for electron, H, He and C ion interactions

    Science.gov (United States)

    Büyükyıldız, M.

    2017-09-01

    The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.

  19. Parkinson's disease: carbidopa, nausea, and dyskinesia

    Directory of Open Access Journals (Sweden)

    Hinz M

    2014-11-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole3 1Clinical Research, NeuroResearch Clinics, Cape Coral, FL, 2Stein Orthopedic Associates, Plantation, FL, 3Cole Center for Healing, Cincinnati, OH, USA Abstract: When ʟ-dopa use began in the early 1960s for the treatment of Parkinson's disease, nausea and reversible dyskinesias were experienced as continuing side effects. Carbidopa or benserazide was added to ʟ-dopa in 1975 solely to control nausea. Subsequent to the increasing use of carbidopa has been the recognition of irreversible dyskinesias, which have automatically been attributed to ʟ-dopa. The research into the etiology of these phenomena has identified the causative agent of the irreversible dyskinesias as carbidopa, not ʟ-dopa. The mechanism of action of the carbidopa and benserazide causes irreversible binding and inactivation of vitamin B6 throughout the body. The consequences of this action are enormous, interfering with over 300 enzyme and protein functions. This has the ability to induce previously undocumented profound antihistamine dyskinesias, which have been wrongly attributed to ʟ-dopa and may be perceived as irreversible if proper corrective action is not taken. Keywords: vitamin B6, PLP, irreversible, pyridoxal 5'-phosphate

  20. The Parkinson's disease death rate: carbidopa and vitamin B6.

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Cole, Ted

    2014-01-01

    The only indication for carbidopa and benserazide is the management of L-3,4-dihydroxyphenylalanine (L-dopa)-induced nausea. Both drugs irreversibly bind to and permanently deactivate pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, and PLP-dependent enzymes. PLP is required for the function of over 300 enzymes and proteins. Virtually every major system in the body is impacted directly or indirectly by PLP. The administration of carbidopa and benserazide potentially induces a nutritional catastrophe. During the first 15 years of prescribing L-dopa, a decreasing Parkinson's disease death rate was observed. Then, in 1976, 1 year after US Food and Drug Administration approved the original L-dopa/carbidopa combination drug, the Parkinson's disease death rate started increasing. This trend has continued to the present, for 38 years and counting. The previous literature documents this increasing death rate, but no hypothesis has been offered concerning this trend. Carbidopa is postulated to contribute to the increasing Parkinson's disease death rate and to the classification of Parkinson's as a progressive neurodegenerative disease. It may contribute to L-dopa tachyphylaxis.

  1. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Chien-Hui Wu

    2018-01-01

    Full Text Available Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO3, MnSO4, and Tween 80; and 10 μM pyridoxal phosphate (PLP resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG, for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.

  2. Purification, crystallization and preliminary X-ray crystallographic analysis of diaminopimelate epimerase from Acinetobacter baumannii

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Lee, Woo Cheol; Song, Jung Hyun; Kim, Seung Il; Lee, Je Chul; Cheong, Chaejoon; Kim, Hye-Yeon

    2012-01-01

    The crystallization and preliminary X-ray crystallographic analysis of diaminopimelate epimerase from A. baumannii are reported. The meso isomer of diaminopimelate (meso-DAP) is a biosynthetic precursor of l-lysine in bacteria and plants, and is a key component of the peptidoglycan layer in the cell walls of Gram-negative and some Gram-positive bacteria. Diaminopimelate epimerase (DapF) is a pyridoxal-5′-phosphate-independent racemase which catalyses the interconversion of (6S,2S)-2,6-diaminopimelic acid (ll-DAP) and meso-DAP. In this study, DapF from Acinetobacter baumannii was overexpressed in Escherichia coli strain SoluBL21, purified and crystallized using a vapour-diffusion method. A native crystal diffracted to a resolution of 1.9 Å and belonged to space group P3 1 or P3 2 , with unit-cell parameters a = b = 74.91, c = 113.35 Å, α = β = 90, γ = 120°. There were two molecules in the asymmetric unit

  3. Prognostic impact of vitamin B6 metabolism in lung cancer.

    Science.gov (United States)

    Galluzzi, Lorenzo; Vitale, Ilio; Senovilla, Laura; Olaussen, Ken André; Pinna, Guillaume; Eisenberg, Tobias; Goubar, Aïcha; Martins, Isabelle; Michels, Judith; Kratassiouk, Gueorgui; Carmona-Gutierrez, Didac; Scoazec, Marie; Vacchelli, Erika; Schlemmer, Frederic; Kepp, Oliver; Shen, Shensi; Tailler, Maximilien; Niso-Santano, Mireia; Morselli, Eugenia; Criollo, Alfredo; Adjemian, Sandy; Jemaà, Mohamed; Chaba, Kariman; Pailleret, Claire; Michaud, Mickaël; Pietrocola, Federico; Tajeddine, Nicolas; de La Motte Rouge, Thibault; Araujo, Natalia; Morozova, Nadya; Robert, Thomas; Ripoche, Hugues; Commo, Frederic; Besse, Benjamin; Validire, Pierre; Fouret, Pierre; Robin, Angélique; Dorvault, Nicolas; Girard, Philippe; Gouy, Sébastien; Pautier, Patricia; Jägemann, Nora; Nickel, Ann-Christin; Marsili, Sabrina; Paccard, Caroline; Servant, Nicolas; Hupé, Philippe; Behrens, Carmen; Behnam-Motlagh, Parviz; Kohno, Kimitoshi; Cremer, Isabelle; Damotte, Diane; Alifano, Marco; Midttun, Oivind; Ueland, Per Magne; Lazar, Vladimir; Dessen, Philippe; Zischka, Hans; Chatelut, Etienne; Castedo, Maria; Madeo, Frank; Barillot, Emmanuel; Thomale, Juergen; Wistuba, Ignacio Ivan; Sautès-Fridman, Catherine; Zitvogel, Laurence; Soria, Jean-Charles; Harel-Bellan, Annick; Kroemer, Guido

    2012-08-30

    Patients with non-small cell lung cancer (NSCLC) are routinely treated with cytotoxic agents such as cisplatin. Through a genome-wide siRNA-based screen, we identified vitamin B6 metabolism as a central regulator of cisplatin responses in vitro and in vivo. By aggravating a bioenergetic catastrophe that involves the depletion of intracellular glutathione, vitamin B6 exacerbates cisplatin-mediated DNA damage, thus sensitizing a large panel of cancer cell lines to apoptosis. Moreover, vitamin B6 sensitizes cancer cells to apoptosis induction by distinct types of physical and chemical stress, including multiple chemotherapeutics. This effect requires pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. In line with a general role of vitamin B6 in stress responses, low PDXK expression levels were found to be associated with poor disease outcome in two independent cohorts of patients with NSCLC. These results indicate that PDXK expression levels constitute a biomarker for risk stratification among patients with NSCLC. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Identification of proteins regulated by ferulic acid in a middle cerebral artery occlusion animal model-a proteomics approach.

    Science.gov (United States)

    Sung, Jin-Hee; Cho, Eun-Hae; Cho, Jae-Hyeon; Won, Chung-Kil; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-11-01

    Ferulic acid plays a neuroprotective role in cerebral ischemia. The aim of this study was to identify the proteins that are differentially expressed following ferulic acid treatment during ischemic brain injury using a proteomics technique. Middle cerebral artery occlusion (MCAO) was performed to induce a focal cerebral ischemic injury in adult male rats, and ferulic acid (100 mg/kg) or vehicle was administered immediately after MCAO. Brain tissues were collected 24 hr after MCAO. The proteins in the cerebral cortex were separated using two-dimensional gel electrophoresis and were identified by mass spectrometry. We detected differentially expressed proteins between vehicle- and ferulic acid-treated animals. Adenosylhomocysteinase, isocitrate dehydrogenase [NAD(+)], mitogen-activated protein kinase kinase 1 and glyceraldehyde-3-phosphate dehydrogenase were decreased in the vehicle-treated group, and ferulic acid prevented the injury-induced decreases in these proteins. However, pyridoxal phosphate phosphatase and heat shock protein 60 were increased in the vehicle-treated group, while ferulic acid prevented the injury-induced increase in these proteins. It is accepted that these enzymes are involved in cellular metabolism and differentiation. Thus, these findings suggest evidence that ferulic acid plays a neuroprotective role against focal cerebral ischemia through the up- and down-modulation of specific enzymes.

  5. Connective tissue integrity is lost in vitamin B-6-deficient chicks

    Science.gov (United States)

    Masse, P. G.; Yamauchi, M.; Mahuren, J. D.; Coburn, S. P.; Muniz, O. E.; Howell, D. S.

    1995-01-01

    The objective of the present investigation was to characterize further the connective tissue disorder produced by pyridoxine (vitamin B-6) deficiency, as previously evidenced by electron microscopy. Following the second post-natal week, fast growing male chicks were deprived of pyridoxine for a 1-mo period. Six weeks post-natally, blood concentrations in the experimental deficiency group had declined to deficiency levels as registered by low concentrations of pyridoxal phosphate (coenzyme form) in erythrocytes, but did not reach levels associated with neurological symptoms. Light microscopic study showed abnormalities in the extracellular matrix of the connective tissues. Collagen cross-links and the aldehyde contents were not significantly lower in cartilage and tendon collagens of vitamin B-6-deficient animals than in age-matched controls; also, their proteoglycan degrading protease and collagenase activities measured in articular cartilages were not greater. Thus, proteolysis was an unlikely alternative mechanism to account for the loss of connective tissue integrity. These results point to the need for further investigation into adhesive properties of collagen associated proteoglycans or other proteins in vitamin B-6-deficient connective tissue.

  6. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Glutamate decarboxylase (GAD catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA. In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C. Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C, superior thermostability (2.8-fold greater than that of GAD-C, and higher kcat/Km (1.6-fold higher than that of GAD-C. Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA.

  7. CHANGES IN SELECTIVITY OF GAMMA-AMINOBUTYRIC ACID FORMATION EFFECTED BY FERMENTATION CONDITIONS AND MICROORGANISMS RESOURCES

    Directory of Open Access Journals (Sweden)

    Kamila Kovalovská

    2011-10-01

    Full Text Available In this study we observe the effect of fermentation conditions and resources of microorganisms for production of γ-aminobutyric acid (GABA. The content of produced GABA depends on various conditions such as the amount of precursor, an addition of salt, enzyme and the effect of pH. The highest selectivity of GABA (74.0 % from the precursor (L-monosodium glutamate has been determinate in the follow conditions: in the presence of pre-cultured microorganisms from Encián cheese in amount 1.66 % (w/v the source of microorganisms/volume of the fermentation mixture, after the addition of 0.028 % (w/v of CaCl2/volume of the fermentation mixture, 100 μM of pyridoxal-5-phosphate (P-5-P and the GABA precursor concentration in the fermentation mixture 2.6 mg ml-1 in an atmosphere of gas nitrogen. Pure cultures of lactic acid bacteria increased the selectivity of GABA by an average of 20 % compared with bacteria from the path of Encián.

  8. Production of γ-aminobutyric acid by microorganisms from different food sources.

    Science.gov (United States)

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  9. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  10. Sulfur mobilization in cyanobacteria: the catalytic mechanism of L-cystine C-S lyase (C-DES) from synechocystis.

    Science.gov (United States)

    Campanini, Barbara; Schiaretti, Francesca; Abbruzzetti, Stefania; Kessler, Dorothea; Mozzarelli, Andrea

    2006-12-15

    Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.

  11. Topological disposition of the sequences -QRKIVE- and -KETYY in native (Na+ + K+)-ATPase

    International Nuclear Information System (INIS)

    Bayer, R.

    1990-01-01

    The dispositions with respect to the plane of the membrane of lysine-905 in the internal sequence -EQRKIVE- and of lysine-1012 in the carboxy-terminal sequence -RRPGGWVEKETYY of the α-polypeptide of sodium and potassium ion activated adenosinetriphosphatase have been determined. These lysines are found in peptides released from the intact α-polypeptide by the extracellular protease from Staphylococcus aureus strain V8 and by trypsin, respectively. Synthetic peptides containing terminal sequences of these were used to prepare polyclonal antibodies, which were then used to prepare immunoadsorbents directed against the respective peptides. Sealed, right-side-out membrane vesicles containing native (Na + + K + )-ATPase were labeled with pyridoxal phosphate and sodium [ 3 H]borohydride in the absence or presence of saponin. The labeled α-polypeptide was isolated from these vesicles and digested with appropriate proteases. The incorporation of radioactivity into the peptides binding to the immunoadsorbent directed against the sequence pyrERXIVE increased 3-fold int the presence of saponin as a result of the increased accessibility of this portion of the protein to the reagent when the vesicles were breached by saponin; hence, this sequence is located on the cytoplasmic face of the membrane. It was inferred that the carboxy-terminal sequence -KETYY is on the extracytoplasmic face since the incorporation of radioactivity into peptides binding to the immunoadsorbent directed against the sequence -ETYY did not change when the vesicles were breached with saponin

  12. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    International Nuclear Information System (INIS)

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-01-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH 3 , pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar

  13. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  14. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Palanimuthu, Duraippandi; Poon, Rachal; Sahni, Sumit; Anjum, Rukhsana; Hibbs, David; Lin, Hsuan-Yu; Bernhardt, Paul V; Kalinowski, Danuta S; Richardson, Des R

    2017-10-20

    Over 44 million people live with Alzheimer's disease (AD) worldwide. Currently, only symptomatic treatments are available for AD and no cure exists. Considering the lack of effective treatments for AD due to its multi-factorial pathology, development of novel multi-target-directed drugs are desirable. Herein, we report the development of a novel series of thiosemicarbazones derived from 1-benzylpiperidine, a pharmacophore within the acetylcholinesterase inhibitor, Donepezil. These thiosemicarbazones were designed to target five major AD hallmarks, including: low acetylcholine levels, dysfunctional autophagy, metal dys-homeostasis, protein aggregation and oxidative stress. Of these thiosemicarbazones, pyridoxal 4-N-(1-benzylpiperidin-4-yl)thiosemicarbazone (PBPT) emerged as the lead compound. This agent demonstrated the most promising multi-functional activity by exhibiting very low anti-proliferative activity, substantial iron chelation efficacy, inhibition of copper-mediated amyloid-β aggregation, inhibition of oxidative stress, moderate acetylcholinesterase inhibitory activity and autophagic induction. These diverse properties highlight the potential of the lead ligand, PBPT, as a promising multi-functional agent for AD treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Vegetative Valvular Endocarditis and Hepatitis Associated with Helcococcus ovis in a 7-year-old White Leghorn Rooster.

    Science.gov (United States)

    Crispo, Manuela; Stoute, Simone; Savaris, Thaiza; Bickford, Arthur; Santoro, Tiffany; Sentíes-Cué, C Gabriel

    2017-12-01

    Helcococcus ovis is a slow-growing, pyridoxal-dependent, Gram-positive coccus belonging to the Peptostreptococcaceae family. Bacteria belonging to the genus Helcococcus are considered normal inhabitants of keratinized epithelium in humans; however, several reports support their role as pathogens in humans and several animal species. This case report describes the identification of H. ovis in a white leghorn rooster with valvular vegetative endocarditis and hepatitis. In February 2017 one dead, 7-yr-old, white leghorn rooster was submitted to the California Animal Health and Food Safety Turlock laboratory for diagnostic testing. Postmortem and microscopic examination revealed vegetative endocarditis and aortic thrombosis associated with large numbers of Gram-positive cocci. Myocarditis and extensive necrotic hepatitis were also noticed. Helcococcus ovis was isolated in large numbers from the aortic endothelium and confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Bacterial colonies become evident 48 hr postincubation and exhibited a satellite growth around Escherichia coli on blood agar plates. A similar relationship has been described between Helcococcus spp. and Staphylococcus aureus. The primary site of infection in this chicken was not determined. To our understanding this is the first report of H. ovis infection in an avian species. The fastidious nature and nutritional requirements of Helcococcus spp. must be considered in order to allow proper identification and avoid misdiagnosis. Further studies are needed to define pathogenesis, virulence factors, and predisposing conditions associated with this microorganism.

  16. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  17. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    International Nuclear Information System (INIS)

    Avissar, Y.J.; Beale, S.I.; Ormerod, J.G.

    1989-01-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, δ-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO 2 , and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA Glu , ATP, Mg 2+ , NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-[ 3 H]glutamate and 1-[ 14 C]glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-[ 14 C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the α subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate

  19. Investigation of complexing of vitamine B-6 with rare earth ions by PMR and luminescent spectroscopy

    International Nuclear Information System (INIS)

    Buiklinskij, V.D.; Zelenov, V.I.; Zolin, V.F.; Koreneva, L.G.; Panyushkin, V.T.

    1981-01-01

    To investigate the complexing of pyridoxine (P), pyridoxal (PL) and pyridoxamine (PM) with lanthanide ions the changes of PMR spectra of ligands in the presence of cerium, praseodymium, neodymium, europium, gadolinium ions, as well as luminescence and absorption spectra of europium in the presence of ligands are used. Using the optical spectroscopy it has been shown that the PL and PM complexes do not have axial symmetry. The values of parameters of the crystalline field of the second order, determining the anisotropy of magnetic susceptibility of europium complexes are evaluated. With an aid of PMR and luminescence spectroscopy it is shown that lanthanide ions coordinate the hydroxy groups of ligands. In the case of P and especially PL oxygen of the substituent in position 4 takes part in the coordination. Using the PMR spectroscopy the difference of the substituent location near C4 in the PM complex from its location in the P and PL complexes as well as the difference in the position of lanthanide ion in the complexes of all the three ligands are detected. The reasons for the differences above are discussed [ru

  20. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wupeng; Stone, Everett; Zhang, Yan Jessie

    2017-02-01

    Enzyme therapeutics that can degrade l-methionine (l-Met) are of great interest as numerous malignancies are exquisitely sensitive to l-Met depletion. To exhaust the pool of methionine in human serum, we previously engineered an l-Met-degrading enzyme based on the human cystathionine-γ-lyase scaffold (hCGL-NLV) to circumvent immunogenicity and stability issues observed in the preclinical application of bacterially derived methionine-γ-lyases. To gain further insights into the structure–activity relationships governing the chemistry of the hCGL-NLV lead molecule, we undertook a biophysical characterization campaign that captured crystal structures (2.2 Å) of hCGL-NLV with distinct reaction intermediates, including internal aldimine, substrate-bound, gem-diamine, and external aldimine forms. Curiously, an alternate form of hCGL-NLV that crystallized under higher-salt conditions revealed a locally unfolded active site, correlating with inhibition of activity as a function of ionic strength. Subsequent mutational and kinetic experiments pinpointed that a salt bridge between the phosphate of the essential cofactor pyridoxal 5'-phosphate (PLP) and residue R62 plays an important role in catalyzing β- and γ-eliminations. Our study suggests that solvent ions such as NaCl disrupt electrostatic interactions between R62 and PLP, decreasing catalytic efficiency.

  1. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  2. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.

    Science.gov (United States)

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; De la Torre, Jesús; Antonia Molina-Henares, Maria; Ramos, Juan-Luis

    2017-10-01

    The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar K M values, the V max of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile.

    Science.gov (United States)

    Du, Longfei; Wang, Hong; Xu, Wei; Zeng, Yan; Hou, Yurong; Zhang, Yuqiu; Zhao, Xiujuan; Sun, Changhao

    2013-07-01

    In previously published articles, we evaluated the toxicity of four organophosphate (OP) pesticides (dichlorvos, dimethoate, acephate, and phorate) to rats using metabonomic technology at their corresponding no observed adverse effect level (NOAEL). Results show that a single pesticide elicits no toxic response. This study aimed to determine whether chronic exposure to a mixture of the above four pesticides (at their corresponding NOAEL) can lead to joint toxic action in rats using the same technology. Pesticides were administered daily to rats through drinking water for 24 weeks. The above mixture of the four pesticides showed joint toxic action at the NOAEL of each pesticide. The metabonomic profiles of rats urine were analyzed by ultraperformance liquid chromatography/mass spectrometry. The 16 metabolites statistically significantly changed in all treated groups compared with the control group. Dimethylphosphate and dimethyldithiophosphate exclusively detected in all treated groups can be used as early, sensitive biomarkers for exposure to a mixture of the OP pesticides. Moreover, exposure to the OP pesticides resulted in increased 7-methylguanine, ribothymidine, cholic acid, 4-pyridoxic acid, kynurenine, and indoxyl sulfate levels, as well as decreased hippuric acid, creatinine, uric acid, gentisic acid, C18-dihydrosphingosine, phytosphingosine, suberic acid, and citric acid. The results indicated that a mixture of OP pesticides induced DNA damage and oxidative stress, disturbed the metabolism of lipids, and interfered with the tricarboxylic acid cycle. Ensuring food safety requires not only the toxicology test data of each pesticide for the calculation of the acceptable daily intake but also the joint toxic action.

  4. Folate, vitamin B12, and vitamin B6 status of a group of high socioeconomic status women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort.

    Science.gov (United States)

    Fayyaz, Faiqa; Wang, Flora; Jacobs, René L; O'Connor, Deborah L; Bell, Rhonda C; Field, Catherine J

    2014-12-01

    Folic acid supplementation and food fortification policies have improved folate status in North American women of child bearing age. Recent studies have reported the possible inadequacy of vitamin B12 and B6 in the etiology of neural tube defects in folate-fortified populations. The aims of this study were to describe folate status and its relationship to supplementation and to assess vitamin B12 and B6 status in a cohort of pregnant women. Supplement intake data were collected in each trimester from the first cohort (n = 599) of the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Red blood cell folate (RBCF) and plasma folate, holotranscobalamin, and pyridoxal 5-phosphate were measured. Overt folate deficiency was rare (3%) but 24% of women in their first trimester had suboptimal RBCF concentration (1360 nmol·L(-1)) was observed in approximately half of the women during each pregnancy trimester. Vitamin B12 and B6 deficiencies were rare (pregnancy and over half the women had abnormally high RBCF, suggesting that supplementation during pregnancy is not appropriate in a cohort of women considered to be healthy and a low risk for nutritional deficiencies.

  5. Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by β-Cl-alanine

    International Nuclear Information System (INIS)

    Medlock, K.A.; Merrill, A.H. Jr.

    1987-01-01

    Serine palmitoyltransferase (SPT) is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the first committed step of long-chain base (LCB) synthesis. Inhibition of SPT activity and de novo biosynthesis of sphinganine and sphingosine was observed in vitro and in intact Chinese hamster ovary cells (CHO). In vitro studies revealed that inhibition was irreversible and concentration- and time-dependent, which are characteristics of suicide inhibition. Incubation of intact CHO cells with 5 mM β-Cl-alanine for 15 min completely inhibited SPT activity and LCB synthesis from [ 14 C]serine. The concentration dependences of inhibition of SPT activity and LCB formation were identical. There was no loss of viability of recovery of SPT activity over the 2 hour time course of these experiments. The synthesis of several other lipids was not affected by the same treatment. These results establish the association between the activity of SPT and the cellular rate of LCB formation and indicate that β-Cl-alanine can be used to study alterations in cellular LCB synthesis

  6. Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana

    Science.gov (United States)

    Strauch, Renee C.; Svedin, Elisabeth; Dilkes, Brian; Chapple, Clint; Li, Xu

    2015-01-01

    Plants produce diverse low-molecular-weight compounds via specialized metabolism. Discovery of the pathways underlying production of these metabolites is an important challenge for harnessing the huge chemical diversity and catalytic potential in the plant kingdom for human uses, but this effort is often encumbered by the necessity to initially identify compounds of interest or purify a catalyst involved in their synthesis. As an alternative approach, we have performed untargeted metabolite profiling and genome-wide association analysis on 440 natural accessions of Arabidopsis thaliana. This approach allowed us to establish genetic linkages between metabolites and genes. Investigation of one of the metabolite–gene associations led to the identification of N-malonyl-d-allo-isoleucine, and the discovery of a novel amino acid racemase involved in its biosynthesis. This finding provides, to our knowledge, the first functional characterization of a eukaryotic member of a large and widely conserved phenazine biosynthesis protein PhzF-like protein family. Unlike most of known eukaryotic amino acid racemases, the newly discovered enzyme does not require pyridoxal 5′-phosphate for its activity. This study thus identifies a new d-amino acid racemase gene family and advances our knowledge of plant d-amino acid metabolism that is currently largely unexplored. It also demonstrates that exploitation of natural metabolic variation by integrating metabolomics with genome-wide association is a powerful approach for functional genomics study of specialized metabolism. PMID:26324904

  7. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells

    International Nuclear Information System (INIS)

    Fuchs, O.

    1997-01-01

    The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)

  8. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    Directory of Open Access Journals (Sweden)

    Angel L. Pey

    2013-01-01

    Full Text Available Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.

  9. Metabolite Profile Analysis Reveals Functional Effects of 28-Day Vitamin B-6 Restriction on One-Carbon Metabolism and Tryptophan Catabolic Pathways in Healthy Men and Women123

    Science.gov (United States)

    da Silva, Vanessa R.; Rios-Avila, Luisa; Lamers, Yvonne; Ralat, Maria A.; Midttun, Øivind; Quinlivan, Eoin P.; Garrett, Timothy J.; Coats, Bonnie; Shankar, Meena N.; Percival, Susan S.; Chi, Yueh-Yun; Muller, Keith E.; Ueland, Per Magne; Stacpoole, Peter W.; Gregory, Jesse F.

    2013-01-01

    Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5′-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (restriction yielded increased cystathionine (53% pre- and 76% postprandial; P restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency. PMID:23966327

  10. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women.

    Science.gov (United States)

    da Silva, Vanessa R; Rios-Avila, Luisa; Lamers, Yvonne; Ralat, Maria A; Midttun, Øivind; Quinlivan, Eoin P; Garrett, Timothy J; Coats, Bonnie; Shankar, Meena N; Percival, Susan S; Chi, Yueh-Yun; Muller, Keith E; Ueland, Per Magne; Stacpoole, Peter W; Gregory, Jesse F

    2013-11-01

    Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (restriction yielded increased cystathionine (53% pre- and 76% postprandial; P restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.

  11. Effect of vitamin B6 status of the lactating rat on taurine biosynthesis and availability to the pup

    International Nuclear Information System (INIS)

    Trumbo, P.

    1990-01-01

    Cysteinesulfinate decarboxylase (CD), a pyridoxal 5'-phosphate-dependent enzyme, is believed to be rate-limiting for taurine biosynthesis in the rat. Although taurine is synthesized by the pup, it is abundant in milk of the lactating rat. CD activity has been shown to be reduced in vitamin B6-deficient, lactating rats and their pups, without much change in taurine concentration of certain tissues. To further understand the effect of B6 status of lactating rats on taurine biosynthesis and availability to their pups, pregnant dams were fed either a B6-deficient or B6-adequate (20 mg/kg) diet during gestation and 10 days postpartum. After this time period, all dams were gavaged 35 S cysteine and 3 H taurine, milk and tissues of the dams and pups collected, and taurine isolated by ion-exchange chromatography. There was no difference in the 35 S/ 3 H ratio in the heart or liver for the adequate and deficient dams. The 35 S/ 3 H ratio was slightly but significantly greater in the liver of the B6-adequate pups compared to the B6-deficient pups without a difference in the level of 3 H taurine (pmol/gram protein) in the milk or pup's liver. Results indicate that a B6 deficiency can influence taurine biosynthesis in the pup without impairing secretion of taurine in milk

  12. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  13. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation.

    Science.gov (United States)

    Wu, Chien-Hui; Hsueh, Yi-Huang; Kuo, Jen-Min; Liu, Si-Jia

    2018-01-04

    Lactic acid bacteria were isolated from fish and evaluated for their γ-aminobutyric acid (GABA)-producing abilities. Out of thirty-two isolates, Lactobacillus brevis RK03 showed the highest GABA production ability. The effects of various fermentation parameters including initial glutamic acid level, culture temperature, initial pH, and incubation time on GABA production were investigated via a singleparameter optimization strategy. For industrial large-scale production, a low-cost GABA producing medium (GM) broth was developed for fermentation with L. brevis RK03. We found that an optimized GM broth recipe of 1% glucose; 2.5% yeast extract; 2 ppm each of CaCO₃, MnSO₄, and Tween 80; and 10 μM pyridoxal phosphate (PLP) resulted in a maximum GABA yield of 62,523 mg/L after 88 h following the addition of 650 mM monosodium glutamate (MSG), for a conversion rate of 93.28%. Our data provide a practical approach for the highly efficient and economic production of GABA. In addition, L. brevis RK03 is highly resistant to gastric acid and bovine bile salt. Thus, the discovery of Lactobacillus strains with the ability to synthesize GABA may offer new opportunities in the design of improved health-promoting functional foods.

  14. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  15. Fragment Screening of Human Kynurenine Aminotransferase-II.

    Science.gov (United States)

    Jayawickrama, Gayan S; Nematollahi, Alireza; Sun, Guanchen; Church, W Bret

    2018-03-01

    Kynurenine aminotransferase-II (KAT-II) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that acts in the tryptophan metabolic pathway by catalyzing the transamination of kynurenine into kynurenic acid (KYNA). It is one of four isoforms in the KAT family, of which it is the primary homologue responsible for KYNA production in the mammalian brain. KAT-II is targeted for inhibition as KYNA is implicated in diseases such as schizophrenia, where it is found in elevated concentrations. Previously, many different approaches have been taken to develop KAT-II inhibitors, and herein fragment-based drug design (FBDD) approaches have been exploited to provide further lead compounds that can be designed into novel inhibitors. Surface plasmon resonance (SPR) was used to screen a fragment library containing 1000 compounds, of which 41 hits were identified. These hits were further evaluated with SPR, and 18 were selected for inhibition studies. From these hits, two fragments, F6037-0164 and F0037-7280, were pursued and determined to have an IC 50 of 524.5 (± 25.6) μM and 115.2 (± 4.5) μM, respectively. This strategy shows the viability of using FBDD in gleaning knowledge about KAT-II inhibition and generating leads for the production of KAT-II inhibitors.

  16. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    International Nuclear Information System (INIS)

    Faraci, W.S.; Walsh, C.T.

    1988-01-01

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L → D and D→ L directions for all three enzymes to assess the degree to which abstraction of the α-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of α- 3 H from substrate to product and solvent exchange/substrate conversion experiments in 3 H 2 O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis

  17. Proteome Profiling of Heat, Oxidative, and Salt Stress Responses in Thermococcus kodakarensis KOD1

    Directory of Open Access Journals (Sweden)

    Baolei eJia

    2015-06-01

    Full Text Available The thermophilic species, Thermococcus kodakarensis KOD1, a model microorganism for studying hyperthermophiles, has adapted to optimal growth under conditions of high temperature and salinity. However, the environmental conditions for the strain are not always stable, and this strain might face different stresses. In the present study, we compared the proteome response of T. kodakarensis to heat, oxidative, and salt stresses using two-dimensional electrophoresis, and protein spots were identified through MALDI-TOF/MS. Fifty-nine, forty-two, and twenty-nine spots were induced under heat, oxidative, and salt stresses, respectively. Among the up-regulated proteins, four proteins (a hypothetical protein, pyridoxal biosynthesis lyase, peroxiredoxin, and protein disulphide oxidoreductase were associated with all three stresses. Gene ontology analysis showed that these proteins were primarily involved metabolic and cellular processes. The KEGG pathway analysis suggested that the main metabolic pathways involving these enzymes were related to carbohydrate metabolism, secondary metabolite synthesis, and amino acid biosynthesis. These data might enhance our understanding of the functions and molecular mechanisms of thermophilic Archaea for survival and adaptation in extreme environments.

  18. Washout of water-soluble vitamins and of homocysteine during haemodialysis: effect of high-flux and low-flux dialyser membranes.

    Science.gov (United States)

    Heinz, Judith; Domröse, Ute; Westphal, Sabine; Luley, Claus; Neumann, Klaus H; Dierkes, Jutta

    2008-10-01

    Vitamin deficiencies are common in patients with end-stage renal disease (ESRD) owing to dietary restrictions, drug-nutrient interactions, changes in metabolism, and vitamin losses during dialysis. The present study investigated the levels of serum and red blood cell (RBC) folate, plasma pyridoxal-5'-phosphate (PLP), serum cobalamin, blood thiamine, blood riboflavin, and plasma homocysteine (tHcy) before and after haemodialysis treatment. Vitamin and tHcy blood concentrations were measured in 30 patients with ESRD before and after dialysis session either with low-flux (n = 15) or high-flux (n = 15) dialysers. After the dialysis procedure, significantly lower concentrations of serum folate (37%), plasma PLP (35%), blood thiamine (6%) and blood riboflavin (7%) were observed. No significant changes were found for serum cobalamin or for RBC folate. There were no differences in the washout of water-soluble vitamins between treatments with low-flux and high-flux membranes. Furthermore, a 41% lower concentration in tHcy was observed. The percentage decrease in tHcy was significantly greater in the patients treated with high-flux dialysers (48% vs 37%; P vitamins measured (r =-0.867, P water-soluble vitamins after dialysis, independently of the dialyser membrane. The monitoring of the vitamin status is essential in patients treated with high-flux dialysers as well as in patients treated with low-flux dialysers.

  19. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero

    2008-07-01

    A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).

  20. Simultaneous detection of water-soluble vitamins using the High Performance Liquid Chromatography (HPLC - a review

    Directory of Open Access Journals (Sweden)

    Rosemond Godbless Dadzie

    2014-01-01

    Full Text Available The water-soluble vitamins (WSV: ascorbic acid (vitamin C, thiamine (B1, riboflavin (B2, niacin (B3, panthothenic acid (B5, pyridoxine, and pyridoxal (B6, folic acid (B9, biotin(B8 , and B12 are very essential in the diet of humankind. As a result of ever increasing pressures from both consumers and legal enforcers, to specify accurately nutritive compositions of WSV that are present in food materials, many researchers have attempted to fill this niche through the provision of highly sensitive and rapid high performance liquid chromatography (HPLC procedures. In view of the health benefits of WSV, a replete of HPLC methods have been developed for simultaneous determination of their contents in nature and fortified food samples, nutritional supplements, as well as blood plasmas. The rate of losses of these vitamins during food processing and analysis, in addition to their transient dynamics, presents complexities in developing a highly sensitive HPLC procedure for their simultaneous separations and assays. This review critically assesses the different HPLC procedures developed by researchers and available in the open literature for simultaneous determination of water-soluble vitamins (WSV in dried tropical fruits materials. The study revealed that not a single chromatographic run developed by researchers can simultaneously elute all the WSV at a time. However, the HPLC procedures that are capable of determining all the WSV were coupled with electrospray ionization mass spectroscopy (ESI-MS, thus making the set-up expensive.

  1. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    Directory of Open Access Journals (Sweden)

    Vegard Lysne

    2015-06-01

    Full Text Available The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP, with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  2. Vitamin Status among Breastfed Infants in Bhaktapur, Nepal.

    Science.gov (United States)

    Ulak, Manjeswori; Chandyo, Ram K; Thorne-Lyman, Andrew L; Henjum, Sigrun; Ueland, Per M; Midttun, Øivind; Shrestha, Prakash S; Fawzi, Wafaie W; Graybill, Lauren; Strand, Tor A

    2016-03-08

    Vitamin deficiencies are known to be common among infants residing in low- and middle-income countries but relatively few studies have assessed several biochemical parameters simultaneously. The objective of the study was to describe the status of vitamins (A, D, E, B₆, B12 and folate) in breastfed infants. We measured the plasma concentrations of trans retinol, 25 hydroxy vitamin D, α-tocopherol, pyridoxal 5'-phosphate, cobalamin, folate, methylmalonic acid, homocysteine, hemoglobin and C-reactive protein from 467 randomly selected infants. One in five (22%) was deficient in at least one vitamin. Mean (SD) plasma folate concentration was 73 (35) nmol/L, and no infant in the sample was folate deficient. Vitamin B₆ deficiency and vitamin B12 deficiency was found in 22% and 17% of the infants, respectively. Elevated plasma methylmalonic acid or total homocysteine concentration was found in 82% and 62% of infants, respectively. Fifteen percent of infants were vitamin A deficient and 65% were marginally deficient in vitamin A. Fewer than 5% of infants had low plasma vitamin D concentration or vitamin E concentration (α-tocopherol importance of continued supplementation campaigns and support the expansion of food fortification and dietary diversification programs that target children and women in Nepal.

  3. Multiphoton manipulations of enzymatic photoactivity in aspartate aminotransferase.

    Science.gov (United States)

    Hill, Melissa P; Freer, Lucy H; Vang, Mai C; Carroll, Elizabeth C; Larsen, Delmar S

    2011-04-21

    The aspartate aminotransferase (AAT) enzyme utilizes the chromophoric pyridoxal 5'-phosphate (PLP) cofactor to facilitate the transamination of amino acids. Recently, we demonstrated that, upon exposure to blue light, PLP forms a reactive triplet state that rapidly (in microseconds) generates the high-energy quinonoid intermediate when bound to PLP-dependent enzymes [J. Am. Chem. Soc.2010, 132 (47), 16953-16961]. This increases the net catalytic activity (k(cat)) of AAT, since formation of the quinonoid is partially rate limiting via the thermally activated enzymatic pathway. The magnitude of observed photoenhancement initially scales linearly with pump fluence; however when a critical threshold is exceeded, the photoactivity saturates and is even suppressed at greater excitation fluences. The photodynamic mechanisms associated with this suppression behavior are characterized with the use of ultrafast multipulse pump-dump-probe and pump-repump-probe transient absorption techniques in combination with complementary two-color, steady-state excitation assays. Via multistate kinetic modeling of the transient ultrafast data and the steady-state assay data, the nonmonotonic incident power dependence of the photoactivty in AAT is decomposed into contributions from high-intensity dumping of the excited singlet state and repumping of the excited triplet state with induces the repopulation of the ground state via rapid intersystem crossing in the higher-lying triplet electronic manifold.

  4. Reflections on relevance: Psychotherapy and Psychosomatics in 2004.

    Science.gov (United States)

    Balon, Richard

    2005-01-01

    Relevance of an article is a highly desirable yet hardly predictable quality at the time of its publication. Article relevance is frequently measured by the impact factor of the journal where the article is published. Furthermore, impact factor, citation index and citation analysis are used as a measure of research progress and scientific wealth of a nation. The wisdom and significance of this approach to relevance is debatable and thus discussed here. In 2004, Psychotherapy and Psychosomatics published a variety of articles which, in the author's view, are clinically relevant. Several selected clinically relevant issues reviewed in this article include: the conceptualization of fibromyalgia as a stress disorder; the psychosocial impact and psychosocial interventions in cancer; the impact of alexithymia on patient care; the possible relationship between depression and nutrition (namely intake of folate and pyridoxal phosphate); the significance of hypercoagulability in panic-like anxiety; the questionable value of single isomer drugs, and the relevance and adequacy of clinimetrics versus psychometrics in clinical research. The reviewed issues seem to be relevant to clinical practice, research or both, but also to our critical thinking, and the critical review of the developments in psychiatry and psychology. Copyright 2005 S. Karger AG, Basel.

  5. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Identification of proteins regulated by curcumin in cerebral ischemia.

    Science.gov (United States)

    Shah, Fawad-Ali; Gim, Sang-Ah; Sung, Jin-Hee; Jeon, Seong-Jun; Kim, Myeong-Ok; Koh, Phil-Ok

    2016-03-01

    Curcumin is known to have a neuroprotective effect against cerebral ischemia. The objective of this study was to identify various proteins that are differentially expressed by curcumin treatment in focal cerebral ischemia using a proteomic approach. Adult male rats were treated with vehicle or curcumin 1 h after middle cerebral artery occlusion. Brain tissues were collected 24 h after the onset of middle cerebral artery occlusion, and cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. We detected several proteins with altered expression levels between vehicle- and curcumin-treated animals. Among these proteins, ubiquitin carboxy-terminal hydrolase L1, isocitrate dehydrogenase, adenosylhomocysteinase, and eukaryotic initiation factor 4A were decreased in the vehicle-treated animal, and curcumin treatment attenuated the injury-induced decreases of these proteins. Conversely, pyridoxal phosphate phosphatase was increased in the vehicle-treated animal, and curcumin treatment prevented decreases in this protein. The identified altered proteins are associated with cellular metabolism and differentiation. The results of this study suggest that curcumin exerts a neuroprotective effect by regulating the expression of various proteins in focal cerebral ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    Science.gov (United States)

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    International Nuclear Information System (INIS)

    Rosenberg, R.M.; O'Leary, M.H.

    1985-01-01

    The authors have measured the 13 C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D 2 O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D 2 O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13 C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13 C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier

  9. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy.

    Science.gov (United States)

    Dilena, Robertino; Striano, Pasquale; Gennaro, Elena; Bassi, Laura; Olivotto, Sara; Tadini, Laura; Mosca, Fabio; Barbieri, Sergio; Zara, Federico; Fumagalli, Monica

    2017-04-01

    Recent clinical evidence supports a targeted therapeutic approach for genetic epileptic encephalopathies based on the molecular dysfunction. A 2-day-old male infant presented with epileptic encephalopathy characterized by burst-suppression EEG background and tonic-clonic migrating partial seizures. The condition was refractory to phenobarbital, pyridoxine, pyridoxal phosphate and levetiracetam, but a dramatic response to an intravenous loading dose of phenytoin was documented by video-EEG monitoring. Over weeks phenytoin was successfully switched to carbamazepine to prevent seizure relapses associated with difficulty in maintaining proper blood levels of phenytoin. Genetic analysis identified a novel de novo heterozygous mutation (c.[4633A>G]p.[Met1545Val]) in SCN2A. At two years and three months of age the patient is still seizure-free on carbamazepine, although a developmental delay is evident. Sodium channel blockers represent the first-line treatment for confirmed or suspected SCN2A-related epileptic encephalopathies. In severe cases with compatible electro-clinical features we propose a treatment algorithm based on a test trial with high dose intravenous phenytoin followed in case of a positive response by carbamazepine, more suitable for long-term maintenance treatment. Because of their rarity, collaborative studies are needed to delineate shared therapeutic protocols for EIEE based on the electro-clinical features and the presumed underlying genetic substrate. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    Science.gov (United States)

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Low vitamin B6 but not homocyst(e)ine is associated with increased risk of stroke and transient ischemic attack in the era of folic acid grain fortification.

    Science.gov (United States)

    Kelly, Peter J; Shih, Vivian E; Kistler, J Philip; Barron, Megan; Lee, Hang; Mandell, Roseann; Furie, Karen L

    2003-06-01

    The introduction of cereal grain folic acid fortification in 1998 has reduced homocyst(e)ine (tHcy) concentrations in the US population. We performed a case-control study to determine the risk of stroke and transient ischemic attack (TIA) associated with tHcy and low vitamin status in a postfortification US sample. Consecutive cases with new ischemic stroke/TIA were compared with matched controls. Fasting tHcy, folate, pyridoxal 5'-phosphate (PLP), B12, and MTHFR 677C-->T genotype were measured. Mean PLP was significantly lower in cases than controls (39.97 versus 84.1 nmol/L, P<0.0001). After stroke risk factors were controlled for, a strong independent association was present between stroke/TIA and low PLP (adjusted odds ratio [OR], 4.6; 95% CI, 1.4 to 15.1; P<0.001) but not elevated tHcy (OR, 0.92; 95% CI, 0.4 to 2.1). Low B6 but not tHcy was strongly associated with cerebrovascular disease in this postfortification, folate-replete sample.

  12. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  13. Antinociceptive Effect of Rat D-Serine Racemase Inhibitors, L-Serine-O-Sulfate, and L-Erythro-3-Hydroxyaspartate in an Arthritic Pain Model

    Directory of Open Access Journals (Sweden)

    Claudio Laurido

    2012-01-01

    Full Text Available N-methyl-D-aspartic acid receptor (NMDAr activation requires the presence of D-serine, synthesized from L-serine by a pyridoxal 5′-phosphate-dependent serine racemase (SR. D-serine levels can be lowered by inhibiting the racemization of L-serine. L-serine-O-sulfate (LSOS and L-erythro-3-hydroxyaspartate (LEHA, among others, have proven to be effective in reducing the D-serine levels in culture cells. It is tempting then to try these compounds in their effectiveness to decrease nociceptive levels in rat arthritic pain. We measured the C-reflex paradigm and wind-up potentiation in the presence of intrathecally injected LSOS (100 μg/10 μL and LEHA (100 μg/10 μL in normal and monoarthritic rats. Both compounds decreased the wind-up activity in normal and monoarthritic rats. Accordingly, all the antinociceptive effects were abolished when 300 μg/10 μL of D-serine were injected intrathecally. Since no in vivo results have been presented so far, this constitutes the first evidence that SR inhibitions lower the D-serine levels, thus decreasing the NMDAr activity and the consequent development and maintenance of chronic pain.

  14. Importance of the terminal α-amino group of bradykinin and some kynins on capillary permeability increase

    International Nuclear Information System (INIS)

    Sugavara, S.

    1979-01-01

    A simple and reliable method is described for the quantitative evaluation of vascular permeability increase induced by vasoactive drugs with Evans blue labelled with iodine-125 or 131. By using this method the importance of α-amino group of bradykinin (Bk), kallidin (Kd) and methionyl-kallidin (Met-Kd) on the biological activity were studied after reacting the kinins with pyridoxal 5'-phosphate followed by reduction with sodium borohydride. Phosphopyridoxyl-kinins were formed leaving free the guanidino groups. Aminoacid analysis of phosphopyridoxyl-kinin showed that the efficiency of the reaction was extremely good in the blockage of α-amino groups [phosphopyridoxyl-bradikinin (PP-Bk) = 98,8%, phosphopyridoxyl-kallidin (PP-Kd) = 95,2%, phosphopyridoxyl-methionyl-kallidin (PP-Met-Kd) = 98,0%. Log dose-response curves were obtained for Bk, Kd, Met-Kd, acetyl-bradykinin (Ac-Bk), PP-Bk, PP-Kd and PP-Met-Kd and the relative potencies calculated through the Lineweaver-Burk plots. The relative potencies were: PP-Bk about 16% the activity of Bk, Ac-Bk about 31% the activity of Bk, PP-Kd about 17% the activity of Kd, PP-Met-Kd about 12% the activity of Met-Kd. The results show that the terminal α-amino group of kinins is important in the mechanisms of biological activity. (Author) [pt

  15. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.; Bolitho, M; Higgins, D; Lu, W; Ng, W; Jeffrey, P; Rabinowitz, J; Semmelhack, M; Hughson, F; Bassler, B

    2009-01-01

    Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release {ge}100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

  16. Topological disposition of the sequences -QRKIVE- and -KETYY in native (Na sup + + K sup + )-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, R. (Univ. of California, San Diego, La Jolla (USA))

    1990-03-06

    The dispositions with respect to the plane of the membrane of lysine-905 in the internal sequence -EQRKIVE- and of lysine-1012 in the carboxy-terminal sequence -RRPGGWVEKETYY of the {alpha}-polypeptide of sodium and potassium ion activated adenosinetriphosphatase have been determined. These lysines are found in peptides released from the intact {alpha}-polypeptide by the extracellular protease from Staphylococcus aureus strain V8 and by trypsin, respectively. Synthetic peptides containing terminal sequences of these were used to prepare polyclonal antibodies, which were then used to prepare immunoadsorbents directed against the respective peptides. Sealed, right-side-out membrane vesicles containing native (Na{sup +} + K{sup +})-ATPase were labeled with pyridoxal phosphate and sodium ({sup 3}H)borohydride in the absence or presence of saponin. The labeled {alpha}-polypeptide was isolated from these vesicles and digested with appropriate proteases. The incorporation of radioactivity into the peptides binding to the immunoadsorbent directed against the sequence pyrERXIVE increased 3-fold int the presence of saponin as a result of the increased accessibility of this portion of the protein to the reagent when the vesicles were breached by saponin; hence, this sequence is located on the cytoplasmic face of the membrane. It was inferred that the carboxy-terminal sequence -KETYY is on the extracytoplasmic face since the incorporation of radioactivity into peptides binding to the immunoadsorbent directed against the sequence -ETYY did not change when the vesicles were breached with saponin.

  17. In silico screening of potent natural inhibitor compounds against Human DOPA Decarboxylase for management of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Surya Narayan Rath

    2017-12-01

    Full Text Available Loss of dopaminergic neurons of the substantia nigra of the mid brain is a well studied pathophysiology of Parkinson’s disease (PD, is the second most common neurodegenerative disorder. To compensate dopamine levels at the Central Nervous System (CNS exogenous L-Dopa is generally administered. But the major part of the L-Dopa is metabolized by Dopa decarboxylase (DDC, E.C. 4.1.1.28, a pyridoxal 5’ –phosphate (PLP enzyme, which is abundant in CNS and hence, only 1-5% of L-Dopa reaches to dopaminergic neurons. In this context, co-administration of peripheral DDC inhibitors (carbidopa or benserazide has been successfully used for the symptomatic treatment of PD patients. But, due to use of synthetic drugs many adverse effects have been reported during treatment. Therefore, the current study is planned to discover some plant based potent natural inhibitors against human DDC as an alternative way for the management of PD. This study was conducted through virtual screening and molecular docking of DDC enzyme with phytochemicals like withania somnifera (ashwagandha, glycine max (soybean, vicia faba (broad bean, and marsilea quadrifolia (sunsunia etc to evaluate their inhibition properties. In silico study results shown a good binding affinity and predicted some of the phytochemicals as potent natural inhibitors against human DDC. This work could be validated further through experimental procedures.

  18. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.

    Science.gov (United States)

    Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2008-10-01

    L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (pDDC expression has significant discriminatory value between CaP and BPH (pDDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.

  19. A Dopa Decarboxylase Modulating the Immune Response of Scallop Chlamys farreri

    Science.gov (United States)

    Zhou, Zhi; Yang, Jialong; Wang, Lingling; Zhang, Huan; Gao, Yang; Shi, Xiaowei; Wang, Mengqiang; Kong, Pengfei; Qiu, Limei; Song, Linsheng

    2011-01-01

    Background Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. Methodology The full-length cDNA encoding DDC (designated CfDDC) was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, PDDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (PDDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc. PMID:21533240

  20. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis.

    Science.gov (United States)

    Perry, T L; Yong, V W; Kish, S J; Ito, M; Foulks, J G; Godolphin, W J; Sweeney, V P

    1985-10-01

    We examined autopsied brain from 10 patients with end-stage renal failure who had undergone repeated hemodialysis. Eight had classic symptoms, and two had suggestive symptoms of dialysis encephalopathy. Findings were compared with those in autopsied brain from control adults who had never been hemodialyzed. Mean gamma-aminobutyric acid (GABA) contents were significantly reduced in frontal and occipital cortex, cerebellar cortex, dentate nucleus, caudate nucleus, and medial-dorsal thalamus of the hemodialyzed patients, the reduction being greater than 40% in cerebral cortex and thalamus. Choline acetyltransferase activity was reduced by 25-35% in three cortical regions in the hemodialyzed patients. These two abnormalities were observed in the brain of each hemodialyzed patient, regardless of whether or not the patient died with unequivocal dialysis encephalopathy. Pyridoxal phosphate contents were substantially reduced in brains of the hemodialyzed patients, but metabolites of noradrenaline, 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) were present in normal amounts. Aluminum levels were abnormally high in frontal cortical gray matter in the hemodialyzed patients. Although this study does not clarify the role played by aluminum toxicity in the pathogenesis of dialysis encephalopathy, the abnormalities we found suggest the need for further neurochemical investigations in this disorder.

  1. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  2. L-allo-threonine aldolase with an H128Y/S292R mutation from Aeromonas jandaei DK-39 reveals the structural basis of changes in substrate stereoselectivity.

    Science.gov (United States)

    Qin, Hui-Min; Imai, Fabiana Lica; Miyakawa, Takuya; Kataoka, Michihiko; Kitamura, Nahoko; Urano, Nobuyuki; Mori, Koji; Kawabata, Hiroshi; Okai, Masahiko; Ohtsuka, Jun; Hou, Feng; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-06-01

    L-allo-Threonine aldolase (LATA), a pyridoxal-5'-phosphate-dependent enzyme from Aeromonas jandaei DK-39, stereospecifically catalyzes the reversible interconversion of L-allo-threonine to glycine and acetaldehyde. Here, the crystal structures of LATA and its mutant LATA_H128Y/S292R were determined at 2.59 and 2.50 Å resolution, respectively. Their structures implied that conformational changes in the loop consisting of residues Ala123-Pro131, where His128 moved 4.2 Å outwards from the active site on mutation to a tyrosine residue, regulate the substrate specificity for L-allo-threonine versus L-threonine. Saturation mutagenesis of His128 led to diverse stereoselectivity towards L-allo-threonine and L-threonine. Moreover, the H128Y mutant showed the highest activity towards the two substrates, with an 8.4-fold increase towards L-threonine and a 2.0-fold increase towards L-allo-threonine compared with the wild-type enzyme. The crystal structures of LATA and its mutant LATA_H128Y/S292R reported here will provide further insights into the regulation of the stereoselectivity of threonine aldolases targeted for the catalysis of L-allo-threonine/L-threonine synthesis.

  3. Synthesis of Thermally Switchable Chromatographic Materials with Immobilized Ti4+ for Enrichment of Phosphopeptides by Reversible Addition Fragmentation Chain Transfer Polymerization

    Science.gov (United States)

    Wang, Di; Cao, Zhihan; Pang, Xinzhu; Deng, Yulin; Li, Bo; Dai, Rongji

    2018-01-01

    Reversible phosphorylation of proteins is one of the most crucial types of post-translational modifications (PTMs). And it shows significant work in diversified biological processes. However, the separation technology of phosphorylated peptides is still an analytical challenge in phosphoproteomics, because phosphopeptides are alway in low stoichiometry. Thus, enrichment of phosphopeptides before detection is indispensable. In this study, a novel temperature regulated separation protocol was developed. Silica@p (NIPAAm-co-IPPA)-Ti4+, a new Ti(IV)-IMAC (Immobilized Metal Affinity chromatography) materials was synthesized by reversible addition fragmentation chain transfer polymerization (RAFT). By the unique thermally responsive properties of poly(N-isopropylacrylamide) (PNIPAAm), the captured phosphorylated peptides could be released by changing temperature only without applying any other eluant which could damage the phosphopeptides. We employed isopropanol phosphonic acid (IPPA) as an IMAC ligand for the immobilization of Ti(IV) which could increase the specific adsorption of phosphopeptides. The enrichment and release properties were examined by treatment with pyridoxal 5’-phosphate (PLP) and casein phosphopeptides (CPP). Two phosphorylated compounds above have temperature-stimulated binding to Ti4+. Finally, silica@p (NIPAAm-co-IPPA)-Ti4+ was successfully employed in pretreatment of phosphopeptides in a tryptic digest of a-casein and human serum albumin (HSA). The results indicated a great potential of this new temperature-responsive material in phosphoproteomics study.

  4. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    Science.gov (United States)

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  5. Engineering Saccharomyces cerevisiae To Release 3-Mercaptohexan-1-ol during Fermentation through Overexpression of an S. cerevisiae Gene, STR3, for Improvement of Wine Aroma▿

    Science.gov (United States)

    Holt, Sylvester; Cordente, Antonio G.; Williams, Simon J.; Capone, Dimitra L.; Jitjaroen, Wanphen; Menz, Ian R.; Curtin, Chris; Anderson, Peter A.

    2011-01-01

    Sulfur-containing aroma compounds are key contributors to the flavor of a diverse range of foods and beverages. The tropical fruit characters of Vitis vinifera L. cv. Sauvignon blanc wines are attributed to the presence of the aromatic thiols 3-mercaptohexan-1-ol (3MH), 3-mercaptohexan-1-ol-acetate, and 4-mercapto-4-methylpentan-2-one (4MMP). These volatile thiols are found in small amounts in grape juice and are formed from nonvolatile cysteinylated precursors during fermentation. In this study, we overexpressed a Saccharomyces cerevisiae gene, STR3, which led to an increase in 3MH release during fermentation of a V. vinifera L. cv. Sauvignon blanc juice. Characterization of the enzymatic properties of Str3p confirmed it to be a pyridoxal-5′-phosphate-dependent cystathionine β-lyase, and we demonstrated that this enzyme was able to cleave the cysteinylated precursors of 3MH and 4MMP to release the free thiols. These data provide direct evidence for a yeast enzyme able to release aromatic thiols in vitro that can be applied in the development of self-cloned yeast to enhance wine flavor. PMID:21478306

  6. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  7. A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Salomone-Stagni, Marco; Bartho, Joseph D; Polsinelli, Ivan; Bellini, Dom; Walsh, Martin A; Demitri, Nicola; Benini, Stefano

    2018-02-08

    The Gram-negative bacterium Erwinia amylovora is the etiological agent of fire blight, a devastating disease which affects Rosaceae such as apple, pear and quince. The siderophore desferrioxamine E plays an important role in bacterial pathogenesis by scavenging iron from the host. DfoJ, DfoA and DfoC are the enzymes responsible for desferrioxamine production starting from lysine. We have determined the crystal structures of each enzyme in the desferrioxamine E pathway and demonstrate that the biosynthesis involves the concerted action of DfoJ, followed by DfoA and lastly DfoC. These data provide the first crystal structures of a Group II pyridoxal-dependent lysine decarboxylase, a cadaverine monooxygenase and a desferrioxamine synthetase. DfoJ is a homodimer made up of three domains. Each monomer contributes to the completion of the active site, which is positioned at the dimer interface. DfoA is the first structure of a cadaverine monooxygenase. It forms homotetramers whose subunits are built by two domains: one for FAD and one for NADP + binding, the latter of which is formed by two subdomains. We propose a model for substrate binding and the role of residues 43-47 as gate keepers for FAD binding and the role of Arg97 in cofactors turnover. DfoC is the first structure of a desferrioxamine synthetase and the first of a multi-enzyme siderophore synthetase coupling an acyltransferase domain with a Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore domain (NIS). Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  9. S-adenosylmethionine decarboxylase from baker's yeast.

    Science.gov (United States)

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  10. The Mycobacterium tuberculosis Complex has a Pathway for the Biosynthesis of 4-Formamido-4,6-Dideoxy-d-Glucose.

    Science.gov (United States)

    Brown, Haley A; Vinogradov, Evgeny; Gilbert, Michel; Holden, Hazel M

    2018-05-15

    Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  11. Antiretroviral therapy provided to HIV-infected Malawian women in a randomized trial diminishes the positive effects of lipid-based nutrient supplements on breast-milk B vitamins.

    Science.gov (United States)

    Allen, Lindsay H; Hampel, Daniela; Shahab-Ferdows, Setareh; York, Emily R; Adair, Linda S; Flax, Valerie L; Tegha, Gerald; Chasela, Charles S; Kamwendo, Debbie; Jamieson, Denise J; Bentley, Margaret E

    2015-12-01

    Little information is available on B vitamin concentrations in human milk or on how they are affected by maternal B vitamin deficiencies, antiretroviral therapy, or maternal supplementation. The objective was to evaluate the effects of antiretroviral therapy and/or lipid-based nutrient supplements (LNSs) on B vitamin concentrations in breast milk from HIV-infected women in Malawi. Breast milk was collected from 537 women recruited within the Breastfeeding, Antiretrovirals, and Nutrition study at 2 or 6 wk and 24 wk postpartum. Women were assigned to receive antiretrovirals and LNSs, antiretrovirals only, LNSs only, or a control. Antiretrovirals and LNSs were given to the mothers from weeks 0 to 28. The antiretrovirals were zidovudine/lamivudine and nelfinavir or lopinavir/ritonavir. LNSs provided 93-118% of the Recommended Dietary Allowances of thiamin, riboflavin, niacin, pyridoxine, and vitamin B-12. Infants were exclusively breastfed. LNSs increased milk concentrations of all vitamins except thiamin, whereas antiretrovirals lowered concentrations of nicotinamide, pyridoxal, and vitamin B-12. Although antiretrovirals alone had no significant effect on riboflavin concentrations, they negatively affected the LNS-induced increase in this vitamin. Thiamin was not influenced by the study interventions. Concentrations of all B vitamins were much lower than usually accepted values. All B vitamins were low in milk, and all but thiamin were increased by maternal supplementation with LNSs. Antiretrovirals alone decreased concentrations of some B vitamins in milk. When LNS was given in addition to antiretrovirals, the negative effect of antiretrovirals offset the positive effect of LNSs for all vitamins except thiamin. This trial was registered at clinicaltrials.gov as NCT00164762. © 2015 American Society for Nutrition.

  12. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Chaparro

    2018-05-01

    Full Text Available Potato (Solanum tuberosum L. is an important global food crop that contains phytochemicals with demonstrated effects on human health. Understanding sources of chemical variation of potato tuber can inform breeding for improved health attributes of the cooked food. Here, a comprehensive metabolomics (UPLC- and GC-MS and ionomics (ICP-MS analysis of raw and cooked potato tuber was performed on 60 unique potato genotypes that span 5 market classes including russet, red, yellow, chip, and specialty potatoes. The analyses detected 2,656 compounds that included known bioactives (43 compounds, nutrients (42, lipids (76, and 23 metals. Most nutrients and bioactives were partially degraded during cooking (44 out of 85; 52%, however genotypes with high quantities of bioactives remained highest in the cooked tuber. Chemical variation was influenced by genotype and market class. Specifically, ~53% of all detected compounds from cooked potato varied among market class and 40% varied by genotype. The most notable metabolite profiles were observed in yellow-flesh potato which had higher levels of carotenoids and specialty potatoes which had the higher levels of chlorogenic acid as compared to the other market classes. Variation in several molecules with known association to health was observed among market classes and included vitamins (e.g., pyridoxal, ~2-fold variation, bioactives (e.g., chlorogenic acid, ~40-fold variation, medicinals (e.g., kukoamines, ~6-fold variation, and minerals (e.g., calcium, iron, molybdenum, ~2-fold variation. Furthermore, more metabolite variation was observed within market class than among market class (e.g., α-tocopherol, ~1-fold variation among market class vs. ~3-fold variation within market class. Taken together, the analysis characterized significant metabolite and mineral variation in raw and cooked potato tuber, and support the potential to breed new cultivars for improved health traits.

  13. High prevalence of mild hyperhomocysteinemia and folate, B/sub 12/ and B/sub 6/ deficiencies in an urban population in Karachi, Pakistan

    International Nuclear Information System (INIS)

    Yakub, M.; Iqbal, M.P.; Kakepoto, G.N.; Rafique, G.; Memon, Y.; Azam, I.; Mehboobali, N.; Parveen, S.

    2010-01-01

    To find out the prevalence of hyperhomocysteinemia, and deficiencies of folate, vitamin B6 and vitamin B12 in an urban population in Karachi, Pakistan. Methodology: In a pre and post experimental study, eight hundred and seventy-two apparently healthy adults (aged 18-60 years; 355 males and 517 females) were recruited from a low-income urban locality in East of Karachi from February 2006 to March 2007. Fasting venous blood was obtained. Serum was analyzed for folate and vitamin B12. Plasma was analyzed for pyridoxal phosphate (PLP, co enzymic form of B6) and total homocysteine. A group of vitamin-deficient individuals (n=194) was given 3-week supplementation with folic acid (5mg/ day), methylcobalamin (0.5mg/day) and pyridoxine hydrochloride (vitamin B6, 50 mg/day). After supplementation, serum/plasma levels of folate, vitamin B12, PLP and homocysteine were again determined. Prevalence of hyperhomocysteinemia (>15 mu mol/l) was 32%. Similarly percent values of folate deficiency (<3.5ng/ml), vitamin B6 deficiency (PLP<20 nmol/l) and vitamin B12 deficiency (<200pg/ml) in the study population were 27.5%, 33.7% and 9.74%, respectively. Hyperhomocysteinemia was associated with male sex, folate deficiency, vitamin B12 deficiency [OR (95%CI), 8.3(5.7-12.1); 2.5(1.76-3.58); 2.6(1.5-4.5), respectively]. A 3-week supplementation with folic acid, methylcobalamin and pyridoxine hydrochloride in vitamin deficient subjects decreased plasma homocysteine levels by 37%. High prevalence estimates of folate, vitamin B12, and vitamin B6 deficiencies appear to be the major determinants of hyperhomocysteinemia in a low income general population in Karachi. (author)

  14. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    Science.gov (United States)

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  15. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds

    Science.gov (United States)

    Chaparro, Jacqueline M.; Holm, David G.; Broeckling, Corey D.; Prenni, Jessica E.; Heuberger, Adam L.

    2018-01-01

    Potato (Solanum tuberosum L.) is an important global food crop that contains phytochemicals with demonstrated effects on human health. Understanding sources of chemical variation of potato tuber can inform breeding for improved health attributes of the cooked food. Here, a comprehensive metabolomics (UPLC- and GC-MS) and ionomics (ICP-MS) analysis of raw and cooked potato tuber was performed on 60 unique potato genotypes that span 5 market classes including russet, red, yellow, chip, and specialty potatoes. The analyses detected 2,656 compounds that included known bioactives (43 compounds), nutrients (42), lipids (76), and 23 metals. Most nutrients and bioactives were partially degraded during cooking (44 out of 85; 52%), however genotypes with high quantities of bioactives remained highest in the cooked tuber. Chemical variation was influenced by genotype and market class. Specifically, ~53% of all detected compounds from cooked potato varied among market class and 40% varied by genotype. The most notable metabolite profiles were observed in yellow-flesh potato which had higher levels of carotenoids and specialty potatoes which had the higher levels of chlorogenic acid as compared to the other market classes. Variation in several molecules with known association to health was observed among market classes and included vitamins (e.g., pyridoxal, ~2-fold variation), bioactives (e.g., chlorogenic acid, ~40-fold variation), medicinals (e.g., kukoamines, ~6-fold variation), and minerals (e.g., calcium, iron, molybdenum, ~2-fold variation). Furthermore, more metabolite variation was observed within market class than among market class (e.g., α-tocopherol, ~1-fold variation among market class vs. ~3-fold variation within market class). Taken together, the analysis characterized significant metabolite and mineral variation in raw and cooked potato tuber, and support the potential to breed new cultivars for improved health traits. PMID:29876353

  16. Interaction of Human Dopa Decarboxylase with L-Dopa: Spectroscopic and Kinetic Studies as a Function of pH

    Directory of Open Access Journals (Sweden)

    Riccardo Montioli

    2013-01-01

    Full Text Available Human Dopa decarboxylase (hDDC, a pyridoxal 5′-phosphate (PLP enzyme, displays maxima at 420 and 335 nm and emits fluorescence at 384 and 504 nm upon excitation at 335 nm and at 504 nm when excited at 420 nm. Absorbance and fluorescence titrations of hDDC-bound coenzyme identify a single pKspec of ~7.2. This pKspec could not represent the ionization of a functional group on the Schiff base but that of an enzymic residue governing the equilibrium between the low- and the high-pH forms of the internal aldimine. During the reaction of hDDC with L-Dopa, monitored by stopped-flow spectrophotometry, a 420 nm band attributed to the 4′-N-protonated external aldimine first appears, and its decrease parallels the emergence of a 390 nm peak, assigned to the 4′-N-unprotonated external aldimine. The pH profile of the spectral change at 390 nm displays a pK of 6.4, a value similar to that (~6.3 observed in both kcat and kcat/Km profiles. This suggests that this pK represents the ESH+ → ES catalytic step. The assignment of the pKs of 7.9 and 8.3 observed on the basic side of kcat and the PLP binding affinity profiles, respectively, is also analyzed and discussed.

  17. Aminotransferaza asparaginianowa – kluczowy enzym w metabolizmie ogólnoustrojowym człowieka

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  18. Novel risk factors for premature peripheral arterial occlusive disease in non-diabetic patients: a case-control study.

    Directory of Open Access Journals (Sweden)

    Annie M Bérard

    Full Text Available BACKGROUND: This study aimed to determine the prevalence of genetic and environmental vascular risk factors in non diabetic patients with premature peripheral arterial disease, either peripheral arterial occlusive disease or thromboangiitis obliterans, the two main entities of peripheral arterial disease, and to established whether some of them are specifically associated with one or another of the premature peripheral arterial disease subgroups. METHODS AND RESULTS: This study included 113 non diabetic patients with premature peripheral arterial disease (diagnosis <45-year old presenting either a peripheral arterial occlusive disease (N = 64 or a thromboangiitis obliterans (N = 49, and 241 controls matched for age and gender. Both patient groups demonstrated common traits including cigarette smoking, low physical activity, decreased levels of HDL-cholesterol, apolipoprotein A-I, pyridoxal 5'-phosphate (active form of B6 vitamin and zinc. Premature peripheral arterial occlusive disease was characterized by the presence of a family history of peripheral arterial and carotid artery diseases (OR 2.3 and 5.8 respectively, 95% CI, high lipoprotein (a levels above 300 mg/L (OR 2.3, 95% CI, the presence of the factor V Leiden (OR 5.1, 95% CI and the glycoprotein Ia(807T,837T,873A allele (OR 2.3, 95% CI. In thromboangiitis obliterans group, more patients were regular consumers of cannabis (OR 3.5, 95% CI and higher levels in plasma copper has been shown (OR 6.5, 95% CI. CONCLUSIONS: According to our results from a non exhaustive list of study parameters, we might hypothesize for 1 a genetic basis for premature peripheral arterial occlusive disease development and 2 the prevalence of environmental factors in the development of thromboangiitis obliterans (tobacco and cannabis. Moreover, for the first time, we demonstrated that the 807T/837T/873A allele of platelet glycoprotein Ia may confer an additional risk for development of peripheral

  19. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  20. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    Science.gov (United States)

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1991-01-01

    The locations have been determined, with respect to the plasma membrane, of lysine α380 and lysine γ486 in the α subunit and the γ subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the α subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the γ subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [ 3 H]-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine α380 and lysine γ486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine α380 is on the inside surface of a vesicle and lysine γ486 is on the outside surface. Because a majority (85%) of the total binding sites for α-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine α380 and lysine γ486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor

  2. Ratios of One-Carbon Metabolites Are Functional Markers of B-Vitamin Status in a Norwegian Coronary Angiography Screening Cohort.

    Science.gov (United States)

    Ulvik, Arve; Hustad, Steinar; McCann, Adrian; Midttun, Øivind; Nygård, Ottar K; Ueland, Per M

    2017-06-01

    Background: Functional (metabolic) markers of B-vitamin status, including plasma total homocysteine (tHcy) for folate and plasma methylmalonic acid (MMA) for vitamin B-12, suffer from moderate sensitivity and poor specificity. Ratios of metabolites belonging to the same pathway may have better performance characteristics. Objective: We evaluated the ratios of tHcy to total cysteine (tCys; Hcy:Cys), tHcy to creatinine (Hcy:Cre), and tHcy to tCys to creatinine (Hcy:Cys:Cre) as functional markers of B-vitamin status represented by a summary score composed of folate, cobalamin, betaine, pyridoxal 5'-phosphate (PLP), and riboflavin concentrations measured in plasma. Methods: Cross-sectional data were obtained from a cohort of patients with stable angina pectoris (2994 men and 1167 women) aged 21-88 y. The relative contribution of the B-vitamin score, age, sex, smoking, body mass index, and markers of renal function and inflammation to the variance of the functional B-vitamin markers was calculated by using multiple linear regression. Results: Compared with tHcy alone, Hcy:Cys, Hcy:Cre, and Hcy:Cys:Cre all showed improved sensitivity and specificity for detecting plasma B-vitamin status. Improvements in overall performance ranged from 4-fold for Hcy:Cys to ∼8-fold for Hcy:Cys:Cre and were particularly strong in subjects with the common 5,10-methylenetetrahydrofolate reductase (MTHFR) 677CC genotype. Conclusions: Ratios of tHcy to tCys and/or creatinine showed a severalfold improvement over tHcy alone as functional markers of B-vitamin status in Norwegian coronary angiography screenees. The biological rationale for these ratios is discussed in terms of known properties of enzymes involved in the catabolism of homocysteine and synthesis of creatine and creatinine. © 2017 American Society for Nutrition.

  3. B-Vitamin Intake and Biomarker Status in Relation to Cognitive Decline in Healthy Older Adults in a 4-Year Follow-Up Study.

    Science.gov (United States)

    Hughes, Catherine F; Ward, Mary; Tracey, Fergal; Hoey, Leane; Molloy, Anne M; Pentieva, Kristina; McNulty, Helene

    2017-01-10

    Advancing age can be associated with an increase in cognitive dysfunction, a spectrum of disability that ranges in severity from mild cognitive impairment to dementia. Folate and the other B-vitamins involved in one-carbon metabolism are associated with cognition in ageing but the evidence is not entirely clear. The hypothesis addressed in this study was that lower dietary intake or biomarker status of folate and/or the metabolically related B-vitamins would be associated with a greater than expected rate of cognitive decline over a 4-year follow-up period in healthy older adults. Participants (aged 60-88 years; n = 155) who had been previously screened for cognitive function were reassessed four years after initial investigation using the Mini-Mental State Examination (MMSE). At the 4-year follow-up assessment when participants were aged 73.4 ± 7.1 years, mean cognitive MMSE scores had declined from 29.1 ± 1.3 at baseline to 27.5 ± 2.4 ( p 0.56 points per year). Lower vitamin B6 status, as measured using pyridoxal-5-phosphate (PLP; vitamin B6 was also associated with a greater rate of cognitive decline (OR, 4.22; 95% CI, 1.28-13.90; p B-vitamins. In conclusion, lower dietary and biomarker status of vitamin B6 at baseline predicted a greater than expected rate of cognitive decline over a 4-year period in healthy older adults. Vitamin B6 may be an important protective factor in helping maintain cognitive health in ageing.

  4. Purification, crystallization and preliminary crystallographic analysis of human cystathionine β-synthase

    International Nuclear Information System (INIS)

    Oyenarte, Iker; Majtan, Tomas; Ereño, June; Corral-Rodríguez, María Angeles; Kraus, Jan P.; Martínez-Cruz, Luis Alfonso

    2012-01-01

    This article describes the crystallization and preliminary crystallographic analysis of a protein construct (hCBS 516–525 ) that contains the full-length cystathionine β-synthase from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525. Human cystathionine β-synthase (CBS) is a pyridoxal-5′-phosphate-dependent hemeprotein, whose catalytic activity is regulated by S-adenosylmethionine. CBS catalyzes the β-replacement reaction of homocysteine (Hcy) with serine to yield cystathionine. CBS is a key regulator of plasma levels of the thrombogenic Hcy and deficiency in CBS is the single most common cause of homocystinuria, an inherited metabolic disorder of sulfur amino acids. The properties of CBS enzymes, such as domain organization, oligomerization degree or regulatory mechanisms, are not conserved across the eukaryotes. The current body of knowledge is insufficient to understand these differences and their impact on CBS function and physiology. To overcome this deficiency, we have addressed the crystallization and preliminary crystallographic analysis of a protein construct (hCBS 516–525 ) that contains the full-length CBS from Homo sapiens (hCBS) and just lacks amino-acid residues 516–525, which are located in a disordered loop. The human enzyme yielded crystals belonging to space group I222, with unit-cell parameters a = 124.98, b = 136.33, c = 169.83 Å and diffracting X-rays to a resolution of 3.0 Å. The crystal structure appears to contain two molecules in the asymmetric unit which presumably correspond to a dimeric form of the enzyme

  5. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme.

    Science.gov (United States)

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in (2)H(2)O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-(2)H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The (2)H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the (2)H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of (2)H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Effects of excess pantothenic acid administration on the other water-soluble vitamin metabolisms in rats.

    Science.gov (United States)

    Shibata, Katsumi; Takahashi, Chisato; Fukuwatari, Tsutomu; Sasaki, Ryuzo

    2005-12-01

    To acquire the data concerning the tolerable upper intake level which prevents health problems from an excessive intake of pantothenic acid, an animal experiment was done. Rats of the Wistar strain (male, 3 wk old) were fed on a diet which contains 0%, 0.0016% (control group), 1%, or 3% calcium pantothenate for 29 d. The amount of weight increase, the food intake, and the organ weights were measured, as well as the pantothenic acid contents in urine, the liver and blood. Moreover, to learn the influence of excessive pantothenic acid on other water-soluble vitamin metabolism, thiamin, riboflavin, a vitamin B6 catabolite, the niacin catabolites, and ascorbic acid in urine were measured. As for the 3% addition group, enlargement of the testis, diarrhea, and hair damage were observed, and the amount of weight increase and the food intake were less than those of the control group. However, abnormality was not seen in the 1% addition group. The amount of pantothenic acid in urine, the liver, and blood showed a high correlation with intake level of pantothenic acid. It was only for 4-pyridoxic acid, a vitamin B6 catabolite, in urine that a remarkable difference was observed against the control group. Moreover, the (2-Py+4-Py)/MNA excretion ratio for these metabolites of the nicotinamide also indicated a low value in the 3% pantothenic acid group. As for the calcium pantothenate, it was found that the 3% level in the diet was the lowest-observed-adverse-effect-level (LOAEL) and the 1% level was the no-observed-adverse-effect-level (NOAEL).

  7. Newer Nutritional basis in the management of Rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Sharat Agarwal

    2010-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory autoimmune disorder culminating in joint destruction with functional impairment & deformities. This disease is associated with poor nutritional status in relation to various nutrients due to not only because of increased requirements & reduction in their absorption but also due to disease modifying anti-rheumatoid drugs (DMARD’s, Non-steroidal Anti-inflammatory Drugs (NSAID’s & corticosteroids prescribed to alleviate symptoms of this disease. This results in associated side effects like gastrointestinal bleeding & bone loss (osteoporosis. Supplementation with long chain n-3 polyunsaturated fatty acids (PUFA has constantly demonstrated an improvement in symptoms & reduction in dosages of NSAID’s. Such a supplementation can be provided with the use of fish oils which have an anti-inflammatory potential. Vitamin C (ascorbic acid use has been found to augment the anti-oxidant defenses, so also the use of Vitamin E (tocopherol which has got antiinflammatory action. Beneficial effects of Vitamin B6 (pyridoxal 5-phosphate used in conjunction with folate & Vitamin B12 have been documented in those group of RA patients with high homocysteine metabolism, there by reducing the cardiovascular risk in these patients. In addition role of Selenium, Iron, Zinc, Calcium, and Vitamin D has been discussed in this review article. Besides adding certain nutrients in food, elimination of certain foods like red meat, dairy products, cereals & wheat gluten have shown improvement in progression of this disease. This article emphasizes the need for dietary supervision in the hands of expert dietician, of the Rheumatoid arthritis patients.

  8. Defining the Architecture of the Core Machinery for the Assembly of Fe-S Clusters in Human Mitochondria.

    Science.gov (United States)

    Gakh, Oleksandr; Ranatunga, Wasantha; Galeano, Belinda K; Smith, Douglas S; Thompson, James R; Isaya, Grazia

    2017-01-01

    Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe 2+ , Fe 3+ , and S 2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture. © 2017 Elsevier Inc. All rights reserved.

  9. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H. [Cornell University, Ithaca, New York 14853-1301 (United States); Krishnamoorthy, Kalyanaraman; Begley, Tadhg P., E-mail: begley@tamu.edu [Texas A& M University, College Station, TX 77842 (United States); Ealick, Steven E., E-mail: begley@tamu.edu [Cornell University, Ithaca, New York 14853-1301 (United States)

    2011-10-01

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  10. Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by β-chloroalanine

    International Nuclear Information System (INIS)

    Medlock, K.A.; Merrill, A.H. Jr.

    1988-01-01

    The effects of β-chloroalanine (β-Cl-alanine) on the serine palmitoyltransferase activity and the de novo biosynthesis of sphinganine and sphingenine were investigated in vitro with rat liver microsomes and in vivo with intact Chinese hamster ovary (CHO) cells. The inhibition in vitro was rapid, irreversible, and concentration and time dependent and apparently involved the active site because inactivation only occurred with β-Cl-L-alanine and was blocked by L-serine. These are characteristics of mechanism-based (suicide) inhibition. Serine palmitoyltransferase (SPT) was also inhibited when intact CHO cells were incubated with β-Cl-alanine and this treatment inhibited [ 14 C]serine incorporation into long-chain bases by intact cells. The concentration dependence of the loss of SPT activity and of long-chain base synthesis was identical. The effects of β-Cl-alanine appeared to occur with little perturbation of other cell functions: the cells exhibited no loss in cell viability, [ 14 C]serine uptake was not blocked, total lipid biosynthesis from [ 14 C]acetic acid was not decreased (nor was the appearance of radiolabel in cholesterol and phosphatidylcholine), and [ 3 H]thymidine incorporation into DNA was not affected. There appeared to be little effect on protein synthesis based on the incorporation of [ 3 H]leucine, which was only decreased by 14%. Although β-Cl-L-alanine is known to inhibit other pyridoxal 5'-phosphate dependent enzymes, alanine and aspartate transaminases were not inhibited under these conditions. These results establish the close association between the activity of serine palmitoyltransferase and the cellular rate of long-chain base formation and indicate that β-Cl-alanine and other mechanism-based inhibitors might be useful to study alterations in cellular long-chain base synthesis

  11. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.

    Science.gov (United States)

    Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel

    2017-03-14

    Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.

  12. Emission of hydrogen sulfide by leaf tissue in response to L-cysteine

    International Nuclear Information System (INIS)

    Sekiya, J.; Schmidt, A.; Wilson, L.G.; Filner, P.

    1982-01-01

    Leaf discs and detached leaves exposed to L-cysteine emitted a volatile sulfur compound which was proven by gas chromatography to be H 2 S. This phenomenon was demonstrated in all nine species tested (Cucumis sativus, Cucurbita pepo, Nicotiana tabacum, Coleus blumei, Beta vulgaris, Phaseolus vulgaris, Medicago sativa, Hordeum vulgare, and Gossypium hirsutum). The emission of volatile sulfur by cucumber leaves occurred in the dark at a similar rate to that in the light. The emission of leaf discs reached the maximal rate, more than 40 picomoles per minute per square centimeter, 2 to 4 hours after starting exposure to L-cysteine; then it decreased. In the case of detached leaves, the maximum occurred 5 to 10 h after starting exposure. The average emission rate of H 2 S during the first 4 hours from leaf discs of cucurbits in response to 10 millimolar L-cysteine, was usually more than 40 picomoles per minute per square centimeter, i.e. 0.24 micromoles per hour per square decimeter. Leaf discs exposed to 1 millimolar L-cysteine emitted only 2% as much as did the discs exposed to 10 millimolar L-cysteine. The emission from leaf discs and from detached leaves lasted for at least 5 and 15 hours, respectively. However, several hours after the maximal emission, injury of the leaves, manifested as chlorosis, was evident. H 2 S emission was a specific consequence of exposure to L-cysteine; neither D-cysteine nor L-cysteine elicited H 2 S emission. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate dependent enzymes, inhibited the emission. In a cell free system from cucumber leaves, H 2 S formation and its release occurred in response to L-cysteine. Feeding experiments with [ 35 S]t-cysteine showed that most of the sulfur in H 2 S was derived from sulfur in the L-cysteine supplied

  13. Cystathionine γ-lyase

    Directory of Open Access Journals (Sweden)

    Halina Jurkowska

    2014-01-01

    Full Text Available γ-Cystathionase (CTH, EC: 4.4.1.1, an enzyme widely distributed in the world of prokaryotic and eukaryotic organisms, catalyzes the formation and transformations of sulfane sulfur-containing compounds and plays a pivotal role in the L-cysteine desulfuration pathway. Human, tetrameric CTH is composed of two dimers and each monomer binds pyridoxal phosphate (PLP. The gene, located on the short arm of chromosome 1, consists of 13 exons and 12 introns. As a result of alternative splicing, three isoforms of human CTH arise. Analysis of genetic variations of the CTH encoding gene showed a large number of polymorphisms. A decrease of the expression of CTH entails a drop in the level of cysteine , glutathione (GSH, taurine and hydrogen sulfide (H2S in the cells and, more importantly, leads to cystathioninuria. H2S, endogenously formed by CTH, affects the vasodilation and regulation of blood pressure. CTH knockout mice have decreased levels of H2S, hypertension, and reduced capacity for vascular endothelium relaxation. Overexpression of the gene encoding CTH in the cells leads to increased production of H2S. H2S plays a role in protection of neurons against oxidative stress, and stimulates an increase in γ-glutamylcysteine synthetase and thereby an increase in the level of GSH. Sulfurtransferases, including CTH, can locally prevent oxidative stress due to reversible oxidation of – SH groups in the presence of increased levels of reactive oxygen species, and reduction in the presence of GSH and/or reduced thioredoxin.

  14. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  15. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Science.gov (United States)

    Dobson, Renwick C J; Girón, Irma; Hudson, André O

    2011-01-01

    In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to L,L-diaminopimelate (L,L-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  16. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Directory of Open Access Journals (Sweden)

    Renwick C J Dobson

    Full Text Available In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL (E.C. 2.6.1.83 is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA to L,L-diaminopimelate (L,L-DAP, in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL. The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  17. Bioavailability of vitamin B-6 from rat diets containing wheat bran or cellulose

    International Nuclear Information System (INIS)

    Hudson, C.A.; Betschart, A.A.; Oace, S.M.

    1988-01-01

    Bioavailability of vitamin B-6 (B-6) in the total diet was studied in male, weanling Sprague-Dawley rats fed fiber-free (FF) diets with 0.2 or 6.9 mg pyridoxine/kg diet (0-, 2- or 6.9-PYR), 20% wheat bran (WB) diets with 3.9- or 5.5-PYR or 7% cellulose (C) diets with 0- or 2-PYR for 28 d. Body weight gain (mean +/- SEM) with 0-PYR was 70 +/- 9.0 and 81.2 +/- 4.2 g for FF and C, respectively. All other groups gained 170-180 g. Urinary excretion of 4-pyridoxic acid (4-PA), a major B-6 metabolite, for FF groups was 1.31 +/- 0.22, 2.26 +/- 0.28 and 6.39 +/- 1.73 micrograms/24 h, at 0-, 2- and 6.9-PYR, respectively. Rats fed WB diets excreted 4.99 +/- 0.58 and 9.81 +/- 0.76 micrograms/24 h (3.9- and 5.5-PYR, respectively) and those fed C diets excreted 1.46 +/- 0.34 and 2.69 +/- 0.72 micrograms/24 h (0- and 2-PYR). There was increasing turnover and shorter biological half-life of [ 14 C]pyridoxine (1 mu Ci injected on d 1) with increasing dietary B-6. Growth, 4-PA and 14 C turnover data indicated that WB contributed to B-6 intake of these rats. Cellulose acted as a simple dietary diluent and had no effect on indices of B-6 status. These data suggest that dietary fiber, as cellulose or the indigestible component of wheat bran, does not adversely affect the bioavailability of vitamin B-6

  18. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  19. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  20. Mechanism of inactivation of γ-aminobutyric acid aminotransferase by (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115).

    Science.gov (United States)

    Lee, Hyunbeom; Doud, Emma H; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-02-25

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  1. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  2. Development and application of novelty pretreatment method for the concurrent quantitation of eleven water-soluble B vitamins in ultrafiltrates after renal replacement therapy.

    Science.gov (United States)

    Wirkus, Dorota; Jakubus, Aleksandra; Owczuk, Radosław; Stepnowski, Piotr; Paszkiewicz, Monika

    2017-02-01

    Continous renal replacement therapy (CRRT) is particularly recommended for septic shock patients in intensive care units. The CRRT technique used most frequently is high volume continuous veno-venous haemofiltration. It provides a high rate of clearance of uremic toxins and inflammatory cytokines. However, it should also be taken into account that substances important for homeostasis may be concurrently unintentionally removed. Accordingly, water-soluble vitamins can be removed during continuous renal replacement therapy, and the estimate of the loss is critical to ensure appropriate supplementation. The aim of this work was to develop a simple methodology for a purification step prior to the LC-MS/MS determination of water-soluble vitamins in ultrafiltrate samples. For this purpose, two types of resin and a mix of resins were used as sorbents for the purification step. Moreover, parameters such as the amount of resin and the extraction time were optimized. The LC-MS/MS method was developed and validated for final determination of 11 vitamins. The results demonstrated the high purification capability of DEAE Sephadex resin with recoveries between 65 and 101% for water-soluble vitamins from ultrafiltrate samples. An optimized method was applied to assess the loss of B-group vitamins in patients after 24h of renal replacement therapy. The loss of vitamins B2, B6 pyridoxamine, B6 pyridoxal, B7, B1, and B5 in ultrafiltrates was similar in all patients. In the native ultrafiltrates, vitamins B6 pyridoxine, B9 and B12 were not detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold.

    Science.gov (United States)

    Fernandez, Francisco J; de Vries, Dominique; Peña-Soler, Esther; Coll, Miquel; Christen, Philipp; Gehring, Heinz; Vega, M Cristina

    2012-02-01

    The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for β-decarboxylation of l-aspartate increased fromcat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    Science.gov (United States)

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  5. Comparison of blood aminotransferase methods for assessment of myopathy and hepatopathy in Florida manatees (Trichechus manatus latirostris).

    Science.gov (United States)

    Harr, Kendal E; Allison, Kathryn; Bonde, Robert K; Murphy, David; Harvey, John W

    2008-06-01

    Muscle injury is common in Florida manatees (Trichechus manatus latirostris). Plasma aspartate aminotransferase (AST) is frequently used to assess muscular damage in capture myopathy and traumatic injury. Therefore, accurate measurement of AST and alanine aminotransferase (ALT) is important in managed, free-ranging animals, as well as in those rehabilitating from injury. Activities of these enzymes, however, are usually not increased in manatees with either acute or chronic muscle damage, despite marked increases in plasma creatine kinase activity. It is hypothesized that this absence of response is due to apoenzymes in the blood not detected by commonly used veterinary assays. Addition of coenzyme pyridoxal-5-phosphate (P5P or vitamin B6) should, therefore, result in higher measured enzyme activities. The objective of this study was to determine the most accurate, precise, and diagnostically useful method for aminotransferase measurement in manatees that can be used in veterinary practices and diagnostic laboratories. Additionally, appropriate collection and storage techniques were assessed. The use of an optimized commercial wet chemical assay with 100 micromol P5P resulted in a positive bias of measured enzyme activities in a healthy population of animals. However, AST and ALT were still much lower than that typically observed in domestic animals and should not be used alone in the assessment of capture myopathy and muscular trauma. Additionally, the dry chemistry analyzer, typically used in clinics, reported significantly higher and less precise AST and ALT activities with poor correlation to those measured with wet chemical methods found in diagnostic laboratories. Therefore, these results cannot be clinically compared. Overall, the optimized wet chemical method was the most precise and diagnostically useful measurement of aminotransferase in samples. Additionally, there was a statistically significant difference between paired serum and plasma measurement

  6. 130 kDa phosphatase from the liver of labeo rohita: isolation: purification and some kinetic properties

    International Nuclear Information System (INIS)

    Siddiqua, A.; Sherazi, M.; Shah, A.H.; Khan, A.R.; Khan, H.U.

    2009-01-01

    An isoenzyme of high molecular weight acid phosphatase (HM-ACP) from the live of fish rohu (Labeo Rohita) was isolated and purified to homogeneity. The enzyme had specific activity of 14.96 U/mg and a recovery of about 4%. The purification procedure included ammonium sulphate precipitation and series of chromatographic separations on SP-Sephadex C-50, CM-Cellulose and Sephacryl HR-200 columns. Nealry 500-folds purification was achieved. The molecular weight was estimated to be 120-130 kDa by polyacrylamide gel electrophoresis (PAGE) of native enzyme and 130 kDa by gel filtration on calibrated Sephadex G-100 column. sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under reduced and non-reduced condition showed a band corresponding to 66 kDa confirming the dimeric nature of enzyme. para nitrophenyl phosphate and flavin mononucleotide were hydrolyzed effectively by the enzyme and found to be good substrates. Optimum temperature for the enzyme was 50 degree C and temperature stability was 0 degree-50 degree C. Similarly optimum ph for the enzyme was 5.4 and ph stability was 4.8-6.0. The K/sub m/ for the p-nitrophenyl phosphate was estimated to be 0.15 mM. The enzyme was competitively inhibited by the phosphate, vanadate, molybdate, tartrate, fluoride and pyridoxal-5-PO/sub 4/ while pyridoxamine-5-PO/sub 4/ showed poor inhibition. Metal ions such as Ag/sup +/, Cu/sup ++/ Zn/sup ++/ showed strong inhibition on the enzyme activity while other divalent ions like Mg/sup ++/, Mn/sup ++/ and Co/sup ++/ were found to be poor inhibitors. Modifiers like EDTA, methanol, ethanol, acetone and glycerol had no effect on the enzyme's activity. (author)

  7. Tyrosine Aminotransferase Contributes to Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy1[W

    Science.gov (United States)

    Lee, Eun-Jeong; Facchini, Peter J.

    2011-01-01

    Tyrosine aminotransferase (TyrAT) catalyzes the transamination of l-Tyr and α-ketoglutarate, yielding 4-hydroxyphenylpyruvic acid and l-glutamate. The decarboxylation product of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetaldehyde, is a precursor to a large and diverse group of natural products known collectively as benzylisoquinoline alkaloids (BIAs). We have isolated and characterized a TyrAT cDNA from opium poppy (Papaver somniferum), which remains the only commercial source for several pharmaceutical BIAs, including codeine, morphine, and noscapine. TyrAT belongs to group I pyridoxal 5′-phosphate (PLP)-dependent enzymes wherein Schiff base formation occurs between PLP and a specific Lys residue. The amino acid sequence of TyrAT showed considerable homology to other putative plant TyrATs, although few of these have been functionally characterized. Purified, recombinant TyrAT displayed a molecular mass of approximately 46 kD and a substrate preference for l-Tyr and α-ketoglutarate, with apparent Km values of 1.82 and 0.35 mm, respectively. No specific requirement for PLP was detected in vitro. Liquid chromatography-tandem mass spectrometry confirmed the conversion of l-Tyr to 4-hydroxyphenylpyruvate. TyrAT gene transcripts were most abundant in roots and stems of mature opium poppy plants. Virus-induced gene silencing was used to evaluate the contribution of TyrAT to BIA metabolism in opium poppy. TyrAT transcript levels were reduced by at least 80% in silenced plants compared with controls and showed a moderate reduction in total alkaloid content. The modest correlation between transcript levels and BIA accumulation in opium poppy supports a role for TyrAT in the generation of alkaloid precursors, but it also suggests the occurrence of other sources for 4-hydroxyphenylacetaldehyde. PMID:21949209

  8. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Lee, Eun-Jeong; Facchini, Peter J

    2011-11-01

    Tyrosine aminotransferase (TyrAT) catalyzes the transamination of L-Tyr and α-ketoglutarate, yielding 4-hydroxyphenylpyruvic acid and L-glutamate. The decarboxylation product of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetaldehyde, is a precursor to a large and diverse group of natural products known collectively as benzylisoquinoline alkaloids (BIAs). We have isolated and characterized a TyrAT cDNA from opium poppy (Papaver somniferum), which remains the only commercial source for several pharmaceutical BIAs, including codeine, morphine, and noscapine. TyrAT belongs to group I pyridoxal 5'-phosphate (PLP)-dependent enzymes wherein Schiff base formation occurs between PLP and a specific Lys residue. The amino acid sequence of TyrAT showed considerable homology to other putative plant TyrATs, although few of these have been functionally characterized. Purified, recombinant TyrAT displayed a molecular mass of approximately 46 kD and a substrate preference for L-Tyr and α-ketoglutarate, with apparent K(m) values of 1.82 and 0.35 mm, respectively. No specific requirement for PLP was detected in vitro. Liquid chromatography-tandem mass spectrometry confirmed the conversion of L-Tyr to 4-hydroxyphenylpyruvate. TyrAT gene transcripts were most abundant in roots and stems of mature opium poppy plants. Virus-induced gene silencing was used to evaluate the contribution of TyrAT to BIA metabolism in opium poppy. TyrAT transcript levels were reduced by at least 80% in silenced plants compared with controls and showed a moderate reduction in total alkaloid content. The modest correlation between transcript levels and BIA accumulation in opium poppy supports a role for TyrAT in the generation of alkaloid precursors, but it also suggests the occurrence of other sources for 4-hydroxyphenylacetaldehyde.

  9. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  10. Electrostatic interactions drive native-like aggregation of human alanine:glyoxylate aminostransferase.

    Science.gov (United States)

    Dindo, Mirco; Conter, Carolina; Cellini, Barbara

    2017-11-01

    Protein aggregate formation is the basis of several misfolding diseases, including those displaying loss-of-function pathogenesis. Although aggregation is often attributed to the population of intermediates exposing hydrophobic surfaces, the contribution of electrostatic forces has recently gained attention. Here, we combined computational and in vitro studies to investigate the aggregation process of human peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme involved in glyoxylate detoxification. We demonstrated that AGT is susceptible to electrostatic aggregation due to its peculiar surface charge anisotropy and that PLP binding counteracts the self-association process. The two polymorphic mutations P11L and I340M exert opposite effects. The P11L substitution enhances the aggregation tendency, probably by increasing surface charge anisotropy, while I340M plays a stabilizing role. In light of these results, we examined the effects of the most common missense mutations leading to primary hyperoxaluria type I (PH1), a rare genetic disorder associated with abnormal calcium oxalate precipitation in the urinary tract. All of them endow AGT with a strong electrostatic aggregation propensity. Moreover, we predicted that pathogenic mutations of surface residues could alter charge distribution, thus inducing aggregation under physiological conditions. A global model describing the AGT aggregation process is provided. Overall, the results indicate that the contribution of electrostatic interactions in determining the fate of proteins and the effect of amino acid substitutions should not be underestimated and provide the basis for the development of new therapeutic strategies for PH1 aimed at increasing AGT stability. © 2017 Federation of European Biochemical Societies.

  11. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    Science.gov (United States)

    McAllister, Chandra H; Good, Allen G

    2015-01-01

    Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.

  12. Crystal structure of the S187F variant of human liver alanine: Aminotransferase associated with primary hyperoxaluria type I and its functional implications

    Science.gov (United States)

    Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara

    2013-01-01

    The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5′-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc. PMID:23589421

  13. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis.

    Science.gov (United States)

    Schaeffer, M C; Cochary, E F; Sadowski, J A

    1990-04-01

    Motor abnormalities have been observed in every species made vitamin B6 deficient, and have been detected and quantified early in vitamin B6 deficiency in young adult female Long-Evans rats with hind leg gait analysis. Our objective was to determine if hind leg gait analysis could be used to detect vitamin B6 deficiency in weanling (3 weeks) and aged (23 months) Fischer 344 male rats. Rats (n = 10 per group) were fed: the control diet ad libitum (AL-CON); the control diet devoid of added pyridoxine hydrochloride (DEF); or the control diet pair-fed to DEF (PF-CON). At 10 weeks, plasma pyridoxal phosphate concentration confirmed deficiency in both age groups. Gait abnormalities were detected in the absence of gross motor disturbances in both aged and weanling DEF rats at 2-3 weeks. Width of step was significantly reduced (16%, p less than 0.003) in DEF aged rats compared to AL- and PF-CON. This pattern of response was similar to that reported previously in young adult rats. In weanling rats, pair feeding alone reduced mean width of step (+/- SEM) by 25% compared to ad libitum feeding (2.7 +/- 0.1 vs 3.6 +/- 0.1 cm for PF- vs AL-CON, respectively, p less than 0.05). In DEF weanling rats, width (3.0 +/- 0.1 cm) was increased compared to PF-CON (11%, p less than 0.05) but decreased compared to AL-CON (16%, p less than 0.05). Width of step was significantly altered early in B6 deficiency in rats of different ages and strains and in both sexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy.

    Science.gov (United States)

    Coci, Emanuele G; Codutti, Luca; Fink, Christian; Bartsch, Sophie; Grüning, Gunnar; Lücke, Thomas; Kurth, Ingo; Riedel, Joachim

    2017-04-01

    Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ 1 -piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pseudomonas aeruginosa 4-amino-4-deoxychorismate lyase: spatial conservation of an active site tyrosine and classification of two types of enzyme.

    Directory of Open Access Journals (Sweden)

    Patrick E F O'Rourke

    Full Text Available 4-Amino-4-deoxychorismate lyase (PabC catalyzes the formation of 4-aminobenzoate, and release of pyruvate, during folate biosynthesis. This is an essential activity for the growth of gram-negative bacteria, including important pathogens such as Pseudomonas aeruginosa. A high-resolution (1.75 Å crystal structure of PabC from P. aeruginosa has been determined, and sequence-structure comparisons with orthologous structures are reported. Residues around the pyridoxal 5'-phosphate cofactor are highly conserved adding support to aspects of a mechanism generic for enzymes carrying that cofactor. However, we suggest that PabC can be classified into two groups depending upon whether an active site and structurally conserved tyrosine is provided from the polypeptide that mainly forms an active site or from the partner subunit in the dimeric assembly. We considered that the conserved tyrosine might indicate a direct role in catalysis: that of providing a proton to reduce the olefin moiety of substrate as pyruvate is released. A threonine had previously been suggested to fulfill such a role prior to our observation of the structurally conserved tyrosine. We have been unable to elucidate an experimentally determined structure of PabC in complex with ligands to inform on mechanism and substrate specificity. Therefore we constructed a computational model of the catalytic intermediate docked into the enzyme active site. The model suggests that the conserved tyrosine helps to create a hydrophobic wall on one side of the active site that provides important interactions to bind the catalytic intermediate. However, this residue does not appear to participate in interactions with the C atom that undergoes an sp(2 to sp(3 conversion as pyruvate is produced. The model and our comparisons rather support the hypothesis that an active site threonine hydroxyl contributes a proton used in the reduction of the substrate methylene to pyruvate methyl in the final stage of

  16. Consequences of a Deficit in Vitamin B6 Biosynthesis de Novo for Hormone Homeostasis and Root Development in Arabidopsis1[OPEN

    Science.gov (United States)

    Boycheva, Svetlana; Dominguez, Ana; Rolcik, Jakub; Boller, Thomas; Fitzpatrick, Teresa B.

    2015-01-01

    Vitamin B6 (pyridoxal 5′-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies. PMID:25475669

  17. Enhancement of the response to purinergic agonists in P2Y1 transfected 1321N1 cells by antagonists suramin and PPADS.

    Science.gov (United States)

    Brown, C A; Charlton, S J; Boarder, M R

    1997-03-01

    1. We have previously shown that both suramin and pyridoxal-phosphate-6-azophenyl-2',4' disulphonic acid (PPADS) act as antagonists at transfected P2Y1 receptors. Here we show that under certain experimental conditions these two P2 antagonists can enhance the response to agonists acting at these receptors. 2. The expression of either P2Y1 or P2Y2 receptors in 1321N1 human astrocytoma cells results, on a change of medium, in an elevation of basal (no added agonist) accumulation of [3H]-inositol(poly)phosphates([3H]-InsPx) compared to cells not expressing these receptors. This elevation is much greater in P2Y1 transfectants than in P2Y, transfectants. 3. Both PPADS and suramin reduced this basal level of [3H]-InsPx accumulation in the P2Y1 expressing cells. 4. When a protocol was used which required changing the culture medium, antagonists were added at a concentration which reduced the basal accumulation by about 50%, there was a significant stimulation in response to increasing concentrations of 2-methylthioadenosine 5'-triphosphate (2MeSATP), in the absence of antagonists there was no significant effect of the agonist. 5. However, when 2MeSATP was added in the absence of a change of medium and with no antagonist present, there was a several fold increase in [3H]-InsPx accumulation. These results show that a release of endogenous agonist activity (possibly ATP/ADP) from the P2Y1 expressing cells can create conditions in which a response to an agonist such as 2MeSATP can only be seen in the presence of a competitive antagonist.

  18. Affinity labelling in situ of the bL12 protein on E. coli 70S ribosomes by means of a tRNA dialdehyde derivative.

    Science.gov (United States)

    Hountondji, Codjo; Créchet, Jean-Bernard; Le Caër, Jean-Pierre; Lancelot, Véronique; Cognet, Jean A H; Baouz, Soria

    2017-12-01

    In this report, we have used periodate-oxidized tRNA (tRNAox) as an affinity laleling reagent to demonstrate that: (i) the bL12 protein contacts the CCA-arm of P-site bound tRNA on the Escherichia coli 70S ribosomes; (ii) the stoichiometry of labelling is one molecule of tRNAox bound to one polypeptide chain of endogenous bL12; (iii) cross-linking in situ of bL12 with tRNAox on the ribosomes provokes the loss of activity; (iv) intact tRNA protects bL12 in the 70S ribosomes against cross-linking with tRNAox; (v) both tRNAox and pyridoxal 5'-phosphate (PLP) compete for the same or for proximal cross-linking site(s) on bL12 inside the ribosome; (vi) the stoichiometry of cross-linking of PLP to the recombinant E. coli bL12 protein is one molecule of PLP covalently bound per polypeptide chain; (vii) the amino acid residue of recombinant bL12 cross-linked with PLP is Lys-65; (viii) Lys-65 of E. coli bL12 corresponds to Lys-53 of eL42 which was previously shown to cross-link with P-site bound tRNAox on human 80S ribosomes in situ; (ix) finally, E. coli bL12 and human eL42 proteins display significant primary structure similarities, which argues for evolutionary conservation of these two proteins located at the tRNA-CCA binding site on eubacterial and eukaryal ribosomes. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Wei-Chia Lee

    Full Text Available PURPOSE: To study the role of sensory dysfunction of bladder mucosa in bladder oversensitivity of rats with metabolic syndrome. MATERIALS AND METHODS: Female Wistar rats were fed a fructose-rich diet (60% or a normal diet for 3 months. Based on cystometry, the fructose-fed rats (FFRs were divided into a group with normal detrusor function or detrusor overactivity (DO. Acidic adenosine triphosphate (ATP solution (5mM, pH 3.3 was used to elicit reflex micturition. Cystometric parameters were evaluated before and after drug administration. Functional proteins of the bladder mucosa were assessed by western blotting. RESULTS: Compared to the controls, intravesical acidic ATP solution instillation induced a significant increase in provoked phasic contractions in both FFR groups and a significant decrease in the mean functional bladder capacity of group DO. Pretreatment with capsaicin for C-fiber desentization, intravesical liposome for mucosal protection, or intravenous pyridoxal 5-phosphate 6-azophenyl-2',4'-disulfonic acid for antagonized purinergic receptors can interfere with the urodynamic effects of intravesical ATP in FFRs and controls. Over-expression of TRPV1, P2X(3, and iNOS proteins, and down-regulation of eNOS proteins were observed in the bladder mucosa of both fructose-fed groups. CONCLUSIONS: Alterations of sensory receptors and enzymes in the bladder mucosa, including over-expression of TRPV1, P2X(3, and iNOS proteins, can precipitate the emergence of bladder phasic contractions and oversensitivity through the activation of C-afferents during acidic ATP solution stimulation in FFRs. The down-regulation of eNOS protein in the bladder mucosa of FFRs may lead to a failure to suppress bladder oversensitivity and phasic contractions. Sensory dysfunction of bladder mucosa and DO causing by metabolic syndrome are easier to elicit bladder oversensitivity to certain urothelium stimuli.

  20. Purinergic 2X receptors play a role in evoking the exercise pressor reflex in rats with peripheral artery insufficiency.

    Science.gov (United States)

    Stone, Audrey J; Yamauchi, Katsuya; Kaufman, Marc P

    2014-02-01

    Purinergic 2X (P2X) receptors on the endings of thin fiber afferents have been shown to play a role in evoking the exercise pressor reflex in cats. In this study, we attempted to extend this finding to decerebrated, unanesthetized rats whose femoral arteries were either freely perfused or were ligated 72 h before the start of the experiment. We first established that our dose of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2X receptor antagonist, attenuated the pressor response to α,β-methylene ATP (10 μg/kg), a P2X receptor agonist. We then compared the exercise pressor reflex before and after infusing PPADS into the arterial supply of the hindlimb muscles that were statically contracted. In rats with freely perfused femoral arteries, the peak pressor responses to contraction were not significantly attenuated by PPADS (before PPADS: 19 ± 2 mmHg, 13 min after PPADS: 17 ± 2 mmHg, and 25 min after PPADS: 17 ± 3 mmHg). Likewise, the cardioaccelerator and renal sympathetic nerve responses were not significantly attenuated. In contrast, we found that in rats whose femoral arteries were ligated PPADS significantly attenuated the peak pressor responses to contraction (before PPADS: 37 ± 5 mmHg, 13 min after PPADS: 27 ± 6 mmHg, and 25 min after PPADS: 25 ± 5 mmHg; P reflex in rats whose femoral arteries were ligated but play only a minimal role in evoking the reflex in rats whose femoral arteries were freely perfused.

  1. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases.

    Science.gov (United States)

    Su, Yang; Majtan, Tomas; Freeman, Katherine M; Linck, Rachel; Ponter, Sarah; Kraus, Jan P; Burstyn, Judith N

    2013-01-29

    Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.

  2. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase

    International Nuclear Information System (INIS)

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, S.F.; Kenny, J.W.; Thompson, G.A.

    1990-01-01

    The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB 3 H 4 or Ado[ 14 C]Met. Peptide sequencing of both 3 H- and 14 C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the 3 H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the 14 C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado [ 14 C]Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6

  3. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  5. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1 S ,3 S )-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbeom [Department; Doud, Emma H. [Department; Department; Wu, Rui [Department; Sanishvili, Ruslan [X-ray; Juncosa, Jose I. [Department; Liu, Dali [Department; Kelleher, Neil L. [Department; Department; Silverman, Richard B. [Department; Department

    2015-02-10

    gamma-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  6. Effect of diet on serotonergic neurotransmission in depression.

    Science.gov (United States)

    Shabbir, Faisal; Patel, Akash; Mattison, Charles; Bose, Sumit; Krishnamohan, Raathathulaksi; Sweeney, Emily; Sandhu, Sarina; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Ngu, Nguasaah; Sharma, Sushil

    2013-02-01

    Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B(6). Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B(6) to boost serotonergic neurotransmission in

  7. [Effect of vitamin sufficiency on adaptation syndrome in growing rats].

    Science.gov (United States)

    Sidorova, Iu S; Beketova, N A; Vrzhesinskaia, O A; Kodentsova, V M; Kosheleva, O V; Zorin, S N; Selifanov, A V; Mazo, V K

    2014-01-01

    The influence of vitamin supply of growing male -Wistar rats (n=21) with an initial body weight 53,5±0,9 g on their resistance to a single distress induced by the electric shock has been investigated. Control rats within 21 days received a complete semisynthetic diet,providingadequate amounts of vitamins. Combined vitamin deficiency in experimental rats was caused by 5-fold decrease of vitamin mixture amount in the feed and the total vitamin E exclusion from the mixture. On the 21st day, one day before the end of the experiment, both groups of rats were subjected to stress impact (electrocutaneous irritation on paws, 0,4 mA for 8 sec) and then animals were placed in metabolic cages to collect urine. By the end of the experiment, the animals with the combined vitamin deficiency lag behind in growth. Vitamin B2, A, B1 and E liver content decreased in experimental rats by 1,6, 2,3, 4,4 and 15 fold accordingly. Retinol plasma concentration was significantly reduced by 18%, α-tocopherol level - by 5 fold, urinary excretionof riboflavin and 4-pyridoxic acid (vitamin B6 metabolite) was significantly reduced by 6,5 and 2,46 times accordingly. MDA blood plasma concentration and the urinary ratio of oxidized and not oxidized form of 8-hydroxy-2'-deoxy-guanosine did not differ in both groups of rats. Urinary excretion of stress biomarker corticosterone in rats with combined vitamin deficit was 2,5-fold higher than in control rats. Thus, reducing of vitamins supply resulted in an increase of urine corticosterone in stressed rats, that characterized the intensity of general adaptation syndrome. This fact shows the importance of optimal sufficiency with vitamins in nonspecific (general) resistance to stress.

  8. The interaction of diadenosine polyphosphates with P2x-receptors in the guinea-pig isolated vas deferens.

    Science.gov (United States)

    Westfall, T D; McIntyre, C A; Obeid, S; Bowes, J; Kennedy, C; Sneddon, P

    1997-05-01

    1. The site(s) at which diadenosine 5',5"'-P1,P4-tetraphosphate (AP4A) and diadenosine 5', 5"'-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-beta,gamma-dibromomethyleneATP (ARL 67156). 2. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (300 nM - 30 microM), suramin (3-100 microM) and pyridoxal-5'-phosphate (P-5-P) (3-1000 microM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 microM), AP4A (30 microM) and alpha,beta-methyleneATP (alpha,beta-meATP) (1 microM), in a concentration-dependent manner and abolished them at the highest concentrations used. 3. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and alpha,beta-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against alpha,beta-meATP and AP5A or alpha,beta-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism. 4. Desensitization of the P2xi-receptor by alpha,beta-meATP abolished contractions evoked by AP5A (3 microM) and AP4A (30 microM), but had no effect on those elicited by noradrenaline (100 microM). 5. ARL 67156 (100 microM) reversibly potentiated contractions evoked by AP4A (30 microM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 microM). 6. It is concluded that AP4A and AP5A act at the P2xi-receptor, or a site similar to the P2xi-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156.

  9. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach.

    Science.gov (United States)

    Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel

    2016-01-01

    Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility

  10. Vitamin B6 and Cancer Risk: A Field Synopsis and Meta-Analysis.

    Science.gov (United States)

    Mocellin, Simone; Briarava, Marta; Pilati, Pierluigi

    2017-03-01

    Vitamin B6 is involved in many biochemical reactions and might play a role in carcinogenesis. We summarized the evidence linking vitamin B6 to cancer risk. We conducted a systematic review of both observational and intervention studies investigating the relationship between vitamin B6 intake or blood levels of its bioactive form pyridoxal-5'-phosphate (PLP) and the risk of any type of cancer. Random-effects meta-analysis was used to calculate pooled relative risks (RRs) and their 95% confidence intervals (CIs) across studies for high vs low categories of vitamin intake or PLP levels. We also performed a random-effects dose-response meta-analysis. We identified 121 observational studies (participants, n = 1 924 506; cases, n = 96 , 436) and nine randomized controlled trials (RCTs; participants, n = 34 911; cases, n = 2539) considering 19 tumor sites. High intake of dietary (food only) vitamin B6 was statistically significantly associated with lower risk of all cancers (relative risk [RR] = 0.78, 95% CI = 0.73 to 0.84) and specific tumors, with special regard to gastrointestinal carcinomas (RR = 0.68, 95% CI = 0.61 to 0.75). An inverse association was also observed between high PLP levels and the risk of all cancers (RR = 0.66, 95% CI = 0.58 to 0.76) and single tumor sites, the most consistent results being those for gastrointestinal tumors (RR = 0.56, 95% CI = 0.48 to 0.65). There was a statistically significant inverse linear relationship between cancer risk and both vitamin B6 dietary intake and PLP levels. When total (food and supplements) intake was considered, the associations were weaker or null. Findings from RCTs did not support a protective effect of vitamin B6 against cancer, although this evidence was graded as low level. Epidemiological evidence supports the potential of vitamin B6 as a cancer risk reduction agent and the role of PLP as a cancer screening biomarker, especially for gastrointestinal tumors

  11. Hydrosoluble vitamins.

    Science.gov (United States)

    Chawla, Jasvinder; Kvarnberg, David

    2014-01-01

    The hydrosoluble vitamins are a group of organic substances that are required by humans in small amounts to prevent disorders of metabolism. Significant progress has been made in our understanding of the biochemical, physiologic and nutritional aspects of the water-soluble vitamins. Deficiency of these particular vitamins, most commonly due to inadequate nutrition, can result in disorders of the nervous system. Many of these disorders have been successfully prevented in developed countries; however, they are still common in developing countries. Of the hydrosoluble vitamins, the nervous system depends the most on vitamins B and C (ascorbic acid) for proper functioning. The B group vitamins include thiamin (vitamin B1), riboflavin (vitamin B2), niacin or niacinamide (vitamin B3), pantothenic acid (vitamin B5), pyridoxine or pyridoxal (vitamin B6) and cobalamin (vitamin B12). Clinical findings depend upon the deficiency of the underlying vitamin; generally, deficiency symptoms are seen from a combination rather than an isolated vitamin deficiency. True hereditary metabolic disorders and serious deficiency-associated diseases are rare and in general limited to particular geographic regions and high-risk groups. Their recognition is truly important as that determines the appropriate therapeutic management. The general availability of vitamins to practically everyone and several national health programs have saved many lives and prevented complications. However, there has been some apprehension for several decades about how harmless generous dosages of these vitamins are. Overt overdosages can cause vitamin toxicity affecting various body systems including the nervous system. Systemically, vitamin toxicity is associated with nonspecific symptoms, such as nausea, vomiting, diarrhea, and skin rash which are common with any acute or chronic vitamin overdose. At a national level, recommended daily allowances for vitamins become policy statements. Nutrition policy has far

  12. HPLC analysis of vitamin B6 in foods

    Directory of Open Access Journals (Sweden)

    V.-M. OLLILAINEN

    2008-12-01

    Full Text Available The objective of this work was to evaluate the methods for determination of vitamin B6 in foods. To achieve this, the literature review focused on sample treatment and liquid chromatographic analysis of vitamin B6 related compounds. In the experimental part, the chosen sample pretreatment and the high-performance liquid chromatographic (HPLC method were validated, and used to produce vitamin B6 data on various food items commonly consumed in Finland. The main emphasis of the sample treatment was on the extraction efficiency and the maintenance of the original concentration profile of the vitamers. Several acid extraction procedures were tested for this purpose. Perchloric acid was chosen as the extraction agent. Routine food analysis was then performed using dilute ice-cold perchloric acid extraction followed by an internally standardized ion-paired reversed-phase liquid chromatography. Food samples were hydrolyzed with takadiastase and alkaline phosphatase enzymes, phosphorylated and glycosylated vitamers were quantitated before and after the enzymatic digestion. This procedure enabled the extraction of vitamin B6 compounds in their intact forms, and the measurement of free, phosphorylated and glycosylated forms. The maintenance of the concentration profile of the vitamers was verified by using 14C -labeled pyridoxal 5'-phosphate in the examination of the extraction procedure. The extraction efficiency and laboratory performance were confirmed by interlaboratory studies. Up-to-date data on vitamin B6 content of about fifty common food items was produced. The data includes the results from meat and poultry, fish and fish product, dairy product, cereal and vegetable, and ready-to-eat food samples. Free and phosphorylated vitamin B6 compounds were measured in all food groups, and the glycosylated vitamer fraction was analyzed in all plant-derived foods. The results obtained in this work showed that vitamin B6 content of nearly all foods of plant

  13. The role of pyridoxine as a countermeasure for in-flight loss of lean body mass

    Science.gov (United States)

    Gilbert, Joyce A.

    1992-01-01

    Ground based and in flight research has shown that humans, under conditions of microgravity, sustain a loss of lean body tissue (protein) and changes in several biological processes including, reductions in red blood cell mass, and neurotransmitters. The maintenance of muscle mass, the major component of lean body mass, is required to meet the needs of space station EVAs. Central to the biosynthesis of amino acids, the building blocks of protein, is pyridoxine (vitamin B-6). Muscle mass integrity requires the availability of vitamin B-6 for protein metabolism and neurotransmitter synthesis. Furthermore, the formation of red blood cells require pyridoxine as a cofactor in the biosynthesis of hemoglobin, a protein that carries oxygen to tissues. In its active form, pyridoxal-5'-phosphate (PLP), vitamin B-6 serves as a link between amino acid and carbohydrate metabolism through intermediates of glycolysis and the tricarboxylic acid cycle. In addition to its role in energy metabolism, PLP is involved in the biosynthesis of hemoglobin and neurotransmitter which are necessary for neurological functions. Alterations in pyridoxine metabolism may affect countermeasures designed to overcome some of these biochemical changes. The focus of this research is to determine the effects of microgravity on the metabolic utilization of vitamin B-6, integrating nutrition as an integral component of the countermeasure (exercise) to maintain lean body mass and muscle strength. The objectives are: 1) to determine whether microgravity effects the metabolic utilization of pyridoxine and 2) to quantitate changes in B-6 vitamer distribution in tissue and excreta relative to loss of lean body tissue. The rationale for this study encompasses the unique challenge to control biochemical mechanisms effected during space travel and the significance of pyridoxine to maintain and counter muscle integrity for EVA activities. This experiment will begin to elucidate the importance of biochemical

  14. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1

    Directory of Open Access Journals (Sweden)

    Hartinger Doris

    2010-08-01

    Full Text Available Abstract Background Fumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. Results When expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3. Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3, which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the

  15. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization

    Directory of Open Access Journals (Sweden)

    Shiro Kato

    2018-03-01

    Full Text Available The Lactobacillus sakei strain LK-145 isolated from Moto, a starter of sake, produces potentially large amounts of three D-amino acids, D-Ala, D-Glu, and D-Asp, in a medium containing amylase-digested rice as a carbon source. The comparison of metabolic pathways deduced from the complete genome sequence of strain LK-145 to the type culture strain of Lactobacillus sakei strain LT-13 showed that the L- and D-amino acid metabolic pathways are similar between the two strains. However, a marked difference was observed in the putative cysteine/methionine metabolic pathways of strain LK-145 and LT-13. The cystathionine β-lyase homolog gene malY was annotated only in the genome of strain LT-13. Cystathionine β-lyase is an important enzyme in the cysteine/methionine metabolic pathway that catalyzes the conversion of L-cystathionine into L-homocysteine. In addition to malY, most genome-sequenced strains of L. sakei including LT-13 lacked the homologous genes encoding other putative enzymes in this pathway. Accordingly, the cysteine/methionine metabolic pathway likely does not function well in almost all strains of L. sakei. We succeeded in cloning and expressing the malY gene from strain LT-13 (Ls-malY in the cells of Escherichia coli BL21 (DE3 and characterized the enzymological properties of Ls-MalY. Spectral analysis of purified Ls-MalY showed that Ls-MalY contained a pyridoxal 5′-phosphate (PLP as a cofactor, and this observation agreed well with the prediction based on its primary structure. Ls-MalY showed amino acid racemase activity and cystathionine β-lyase activity. Ls-MalY showed amino acid racemase activities in various amino acids, such as Ala, Arg, Asn, Glu, Gln, His, Leu, Lys, Met, Ser, Thr, Trp, and Val. Mutational analysis revealed that the -amino group of Lys233 in the primary structure of Ls-MalY likely bound to PLP, and Lys233 was an essential residue for Ls-MalY to catalyze both the amino acid racemase and β-lyase reactions. In

  16. Navy Bean and Rice Bran Intake Alters the Plasma Metabolome of Children at Risk for Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Katherine J. Li

    2018-01-01

    (endocannabinoids, N-linoleoylglycine, 12,13-diHOME. Several diet-derived amino acids, phytochemicals, and cofactors/vitamins with cardioprotective properties were increased compared to control and/or baseline, including 6-oxopiperidine-2-carboxylate (1.87-fold, N-methylpipecolate (1.89-fold, trigonelline (4.44- to 7.75-fold, S-methylcysteine (2.12-fold (navy bean, salicylate (2.74-fold, and pyridoxal (3.35- to 3.96-fold (rice bran. Findings from this pilot study support the need for investigating the effects of these foods for longer durations to reduce CVD risk. Trial registration: clinicaltrials.gov (identifier NCT01911390.

  17. Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Directory of Open Access Journals (Sweden)

    Khan MA

    2013-04-01

    Full Text Available M A Khan,1 Madeline M López-Muñoz,2 Charles W Kaspar,3 Kai F Hung1 1Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA; 2Department of Biology, Universidad de Puerto Rico, Mayaguez, Puerto Rico; 3Bacteriology Department, University of Wisconsin, Madison, WI, USA Abstract: Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1's ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine-γ-lyase (EC 4.4.1.11, an enzyme known to carry out α, γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5'-phosphate (PLP binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ-lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum

  18. Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B₁.

    Science.gov (United States)

    Hartinger, Doris; Schwartz, Heidi; Hametner, Christian; Schatzmayr, Gerd; Haltrich, Dietmar; Moll, Wulf-Dieter

    2011-08-01

    Fumonisins are carcinogenic mycotoxins that are frequently found as natural contaminants in maize from warm climate regions around the world. The aminotransferase FumI is encoded as part of a gene cluster of Sphingopyxis sp. MTA144, which enables this bacterial strain to degrade fumonisin B(1) and related fumonisins. FumI catalyzes the deamination of the first intermediate of the catabolic pathway, hydrolyzed fumonisin B(1). We used a preparation of purified, His-tagged FumI, produced recombinantly in Escherichia coli in soluble form, for enzyme characterization. The structure of the reaction product was studied by NMR and identified as 2-keto hydrolyzed fumonisin B(1). Pyruvate was found to be the preferred co-substrate and amino group receptor (K (M) = 490 μM at 10 μM hydrolyzed fumonisin B(1)) of FumI, but other α-keto acids were also accepted as co-substrates. Addition of the co-enzyme pyridoxal phosphate to the enzyme preparation enhanced activity, and saturation was already reached at the lowest tested concentration of 10 μM. The enzyme showed activity in the range of pH 6 to 10 with an optimum at pH 8.5, and in the range of 6°C to 50°C with an optimum at 35°C. The aminotransferase worked best at low salt concentration. FumI activity could be recovered after preincubation at pH 4.0 or higher, but not lower. The aminotransferase was denatured after preincubation at 60°C for 1 h, and the residual activity was also reduced after preincubation at lower temperatures. At optimum conditions, the kinetic parameters K (M) = 1.1 μM and k (cat) = 104/min were determined with 5 mM pyruvate as co-substrate. Based on the enzyme characteristics, a technological application of FumI, in combination with the fumonisin carboxylesterase FumD for hydrolysis of fumonisins, for deamination and detoxification of hydrolyzed fumonisins seems possible, if the enzyme properties are considered.

  19. Evaluation and identification of histamine-forming bacteria on fish products of middle Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Rocco Mancusi

    2013-04-01

    Full Text Available Regulation EU 2073/2005 sets maximum concentration for histamine in fish and products thereof. To meet these criteria, manufacturers have to define performance objectives, such as the maximum allowed prevalence and number/activity of histamine-producing bacteria at relevant stage of production. In order to assess the presence and decarboxylase activity of contaminant bacteria we examined 51 samples of blue fish caught and processed in Emilia Romagna region. We collected 50 gr of fish (skin and gills or the entire product from 10 sample units from every lot. Analytical samples were cultured in Trypticase Soy Broth supplemented with histidine and pyridoxal HCl. Histamine was measured with an electrochemical biosensor after incubation at both 37°C for 24 h and 18-22°C for 48 h. Enrichments that showed relevant enzymatic activity were seeded on Niven agar to isolate suspected colonies and DNA extracts from these bacteria were analyzed by polymerase chain reaction (PCR for detecting specific sequences of the gene encoding pyridoxaldependent histidine decarboxylase (HDC. Overall, 29.4% samples showed relevant production of histamine in broth cultures (above a cut-off value set at 250 ng/mL and 53.3% of them (8 out of 15 samples allowed detection of HDC positive strains. All of them were typed as Morganella, which appears to be the most common of fish caught in middle Adriatic sea. Ten out of the twelve positive samples with enrichment cultures incubated at both 37 and 18-22°C (83% showed higher decarboxylase activity at room temperature, suggesting the presence of psychrotolerant strains. In addition, the prevalence of histamine-producing bacteria was higher at retail than at production level, probably as a consequence of manipulations and cross-contamination. The risk correlated to development of histamine-producing psychrotolerans bacteria cannot be controlled only with storage temperature: it is necessary for the food business operators to

  20. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  1. Short-Term Vitamin B-6 Restriction Does Not Affect Plasma Concentrations of Hydrogen Sulfide Biomarkers Lanthionine and Homolanthionine in Healthy Men and Women.

    Science.gov (United States)

    DeRatt, Barbara N; Ralat, Maria A; Gregory, Jesse F

    2016-03-09

    Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine β-synthase and cystathionine γ-lyase, with pyridoxal 5'-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R 2 = 0.36; P = 0.002) and after (R 2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in vitamin B-6 adequacy (R 2 = 0.41; P

  2. Short-Term Vitamin B-6 Restriction Does Not Affect Plasma Concentrations of Hydrogen Sulfide Biomarkers Lanthionine and Homolanthionine in Healthy Men and Women123

    Science.gov (United States)

    DeRatt, Barbara N; Ralat, Maria A; Gregory, Jesse F

    2016-01-01

    Background: Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine β-synthase and cystathionine γ-lyase, with pyridoxal 5′-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. Objective: To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. Methods: Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. Results: Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R2 = 0.36; P = 0.002) and after (R2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in

  3. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information.

    Science.gov (United States)

    Panwar, Bharat; Gupta, Sudheer; Raghava, Gajendra P S

    2013-02-07

    The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL). It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i) vitamin interacting residues (VIRs), (ii) vitamin-A interacting residues (VAIRs), (iii) vitamin-B interacting residues (VBIRs) and (iv) pyridoxal-5-phosphate (vitamin B6) interacting residues (PLPIRs) have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM) features of protein sequences. Finally, we selected best performing SVM modules and obtained highest MCC of 0.53, 0.48, 0.61, 0

  4. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    Science.gov (United States)

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP

  5. Determination of selected water-soluble vitamins using hydrophilic chromatography: a comparison of photodiode array, fluorescence, and coulometric detection, and validation in a breakfast cereal matrix.

    Science.gov (United States)

    Langer, Swen; Lodge, John K

    2014-06-01

    Water-soluble vitamins are an important class of compounds that require quantification from food sources to monitor nutritional value. In this study we have analysed six water-soluble B vitamins ([thiamine (B1), riboflavin (B2), nicotinic acid (B3, NAc), nicotinamide (B3, NAm), pyridoxal (B6), folic acid (B9)], and ascorbic acid (vit C) with hydrophilic interaction liquid chromatography (HILIC), and compared UV, fluorescent (FLD) and coulometric detection to optimise a method to quantitate the vitamins from food sources. Employing UV/diode array (DAD) and fluorimetric detection, six B vitamins were detected in a single run using gradient elution from 100% to 60% solvent B [10mM ammonium acetate, pH 5.0, in acetonitrile and water 95:5 (v:v)] over 18 min. UV detection was performed at 268 nm for B1, 260 nm for both B3 species and 284 nm for B9. FLD was employed for B2 at excitation wavelength of 268 nm, emission of 513 nm, and 284 nm/317 nm for B6. Coulometric detection can be used to detect B6 and B9, and vit C, and was performed isocratically at 75% and 85% of solvent B, respectively. B6 was analysed at a potential of 720 mV, while B9 was analysed at 600 mV, and vit C at 30 mV. Retention times (0.96 to 11.81 min), intra-day repeatability (CV 1.6 to 3.6), inter-day variability (CV 1.8 to 11.1), and linearity (R 0.9877 to 0.9995) remained good under these conditions with limits of detection varying from 6.6 to 164.6 ng mL(-1), limits of quantification between 16.8 and 548.7 ng mL(-1). The method was successfully applied for quantification of six B vitamins from a fortified food product and is, to our knowledge, the first to simultaneously determine multiple water-soluble vitamins extracted from a food matrix using HILIC. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.

    Science.gov (United States)

    Boycheva, Svetlana; Dominguez, Ana; Rolcik, Jakub; Boller, Thomas; Fitzpatrick, Teresa B

    2015-01-01

    Vitamin B(6) (pyridoxal 5'-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant. However, the single mutants exhibit substantial phenotypic differences, particularly at the level of root development, with pdx1.3 being more impaired than pdx1.1. Here, we investigate the differential regulation of PDX1.1 and PDX1.3 by identifying factors involved in their disparate phenotypes. Swapped-promoter experiments clarify the presence of distinct regulatory elements in the upstream regions of both genes. Exogenous sucrose (Suc) triggers impaired ethylene production in both mutants but is more severe in pdx1.3 than in pdx1.1. Interestingly, Suc specifically represses PDX1.1 expression, accounting for the stronger vitamin B6 deficit in pdx1.3 compared with pdx1.1. Surprisingly, Suc enhances auxin levels in pdx1.1, whereas the levels are diminished in pdx1.3. In the case of pdx1.3, the previously reported reduced meristem activity combined with the impaired ethylene and auxin levels manifest the specific root developmental defects. Moreover, it is the deficit in ethylene production and/or signaling that triggers this outcome. On the other hand, we hypothesize that it is the increased auxin content of pdx1.1 that is responsible for the root developmental defects observed therein. We conclude that PDX1.1 and PDX1.3 play partially nonredundant roles and are differentially regulated as manifested in disparate root growth impairment morphologies. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. B-Vitamin Intake and Biomarker Status in Relation to Cognitive Decline in Healthy Older Adults in a 4-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Catherine F. Hughes

    2017-01-01

    Full Text Available Advancing age can be associated with an increase in cognitive dysfunction, a spectrum of disability that ranges in severity from mild cognitive impairment to dementia. Folate and the other B-vitamins involved in one-carbon metabolism are associated with cognition in ageing but the evidence is not entirely clear. The hypothesis addressed in this study was that lower dietary intake or biomarker status of folate and/or the metabolically related B-vitamins would be associated with a greater than expected rate of cognitive decline over a 4-year follow-up period in healthy older adults. Participants (aged 60–88 years; n = 155 who had been previously screened for cognitive function were reassessed four years after initial investigation using the Mini-Mental State Examination (MMSE. At the 4-year follow-up assessment when participants were aged 73.4 ± 7.1 years, mean cognitive MMSE scores had declined from 29.1 ± 1.3 at baseline to 27.5 ± 2.4 (p < 0.001, but some 27% of participants showed a greater than expected rate of cognitive decline (i.e., decrease in MMSE > 0.56 points per year. Lower vitamin B6 status, as measured using pyridoxal-5-phosphate (PLP; <43 nmol/L was associated with a 3.5 times higher risk of accelerated cognitive decline, after adjustment for age and baseline MMSE score (OR, 3.48; 95% CI, 1.58 to 7.63; p < 0.05. Correspondingly, lower dietary intake (0.9–1.4 mg/day of vitamin B6 was also associated with a greater rate of cognitive decline (OR, 4.22; 95% CI, 1.28–13.90; p < 0.05. No significant relationships of dietary intake or biomarker status with cognitive decline were observed for the other B-vitamins. In conclusion, lower dietary and biomarker status of vitamin B6 at baseline predicted a greater than expected rate of cognitive decline over a 4-year period in healthy older adults. Vitamin B6 may be an important protective factor in helping maintain cognitive health in ageing.

  8. A dopa decarboxylase modulating the immune response of scallop Chlamys farreri.

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    Full Text Available BACKGROUND: Dopa decarboxylase (DDC is a pyridoxal 5-phosphate (PLP-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. METHODOLOGY: The full-length cDNA encoding DDC (designated CfDDC was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, P<0.05 at 3 h and reached the peak at 12 h (9.8-fold, P<0.05, and then recovered to the baseline level. The recombinant protein of CfDDC (rCfDDC was expressed in Escherichia coli BL21 (DE3-Transetta, and 1 mg rCfDDC could catalyze the production of 1.651±0.22 ng dopamine within 1 h in vitro. When the haemocytes were incubated with rCfDDC-coated agarose beads, the haemocyte encapsulation to the beads was increased significantly from 70% at 6 h to 93% at 24 h in vitro in comparison with that in the control (23% at 6 h to 25% at 24 h, and the increased haemocyte encapsulation was repressed by the addition of rCfDDC antibody (which is acquired via immunization 6-week old rats with rCfDDC. After the injection of DDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (P<0.05 of blank group at 12 h and 0.47-fold (P<0.05 at 24 h, respectively. CONCLUSIONS: These results collectively suggested that CfDDC, as a homologue of DDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc.

  9. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  10. A loss of Pdxk model of Parkinson disease in Drosophila can be suppressed by Buffy.

    Science.gov (United States)

    M'Angale, P Githure; Staveley, Brian E

    2017-06-12

    The identification of a DNA variant in pyridoxal kinase (Pdxk) associated with increased risk to Parkinson disease (PD) gene led us to study the inhibition of this gene in the Dopa decarboxylase (Ddc)-expressing neurons of the well-studied model organism Drosophila melanogaster. The multitude of biological functions attributable to the vitamers catalysed by this kinase reveal an overabundance of possible links to PD, that include dopamine synthesis, antioxidant activity and mitochondrial function. Drosophila possesses a single homologue of Pdxk and we used RNA interference to inhibit the activity of this kinase in the Ddc-Gal4-expressing neurons. We further investigated any association between this enhanced disease risk gene with the established PD model induced by expression of α-synuclein in the same neurons. We relied on the pro-survival functions of Buffy, an anti-apoptotic Bcl-2 homologue, to rescue the Pdxk-induced phenotypes. To drive the expression of Pdxk RNA interference in DA neurons of Drosophila, we used Ddc-Gal4 which drives expression in both dopaminergic and serotonergic neurons, to result in decreased longevity and compromised climbing ability, phenotypes that are strongly associated with Drosophila models of PD. The inhibition of Pdxk in the α-synuclein-induced Drosophila model of PD did not alter longevity and climbing ability of these flies. It has been previously shown that deficiency in vitamers lead to mitochondrial dysfunction and neuronal decay, therefore, co-expression of Pdxk-RNAi with the sole pro-survival Bcl-2 homologue Buffy in the Ddc-Gal4-expressing neurons, resulted in increased survival and a restored climbing ability. In a similar manner, when we inhibited Pdxk in the developing eye using GMR-Gal4, we found that there was a decrease in the number of ommatidia and the disruption of the ommatidial array was more pronounced. When Pdxk was inhibited with the α-synuclein-induced developmental eye defects, the eye phenotypes were

  11. Characterization of the anti tumoral activity of the thiosemicarbazones derived from N(4)-methyl-tolyl-2acetylpyridine And 2-pyridinoformamide and its metal complex: evaluation of the radiopharmaceutical potential; Caracterizacao da atividade antitumoral das tiossemicarbazonas derivadas de N(4)-metil-toluil-2-acetilpiridina e 2-piridinoformamida e seus complexos metalicos: avaliacao do potencial radiofarmaceutico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paulo Roberto Ornelas da

    2008-07-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. The most studied compounds are pyridine-based because of their resemblance to pyridoxal metabolites that attach to co-enzyme B{sub 6}-dependant enzymes. This work aimed the characterization of the anti tumoral effect of N(4)-methyl-tolyl-2-acetylpyridine and 2-pyridinoformamide-derived thiosemicarbazones and the development of a radiopharmaceutical based on a thiosemicarbazone metal complex for positron emission tomography. In the first phase of this study were synthesized twenty-one thiosemicarbazones, derived from N(4)methyl-2 acetylpyridine and 2-pyridine formamide, as well as their metal complexes (Sn, Ga and Cu). Their cytotoxic potential were evaluated against brain and breast tumor cells in vitro. Our results showed all of them presented powerful cytotoxic and antiproliferative activities against glioblastoma multiform and breast adenocarcinoma at very low concentrations (nanomolar range). Morphological alterations characteristic of apoptosis, such as cell shrinkage, chromatin condensation were observed. Copper chloride was used as control and has presented IC50 at millimolar range suggesting that copper complexation with thiosemicarbazone significantly increases (more than 1 million) the anti tumoral effect of this metal. Due to the potent anti tumoral activity of N(4)-methyl-tolyl-2-acetylpyridine derived thiosemicarbazones and the excellent properties of {sup 64}Cu (T{sub 1/2} = 12.7 hours, {beta}{sup +}, {beta}{sup -}, and EC decay), at the second part for this work it was developed a new imaging agent (radiopharmaceutical) for tumor detection by positron emission tomography (PET). The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN, via neutron capture reaction {sup 63}Cu (n,{gamma}) {sup 64}Cu, of the copper complex N(4)-ortho-toluyl-2

  12. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    Science.gov (United States)

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  13. Characterization of the anti tumoral activity of the thiosemicarbazones derived from N(4)-methyl-tolyl-2acetylpyridine And 2-pyridinoformamide and its metal complex: evaluation of the radiopharmaceutical potential

    International Nuclear Information System (INIS)

    Silva, Paulo Roberto Ornelas da

    2008-01-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. The most studied compounds are pyridine-based because of their resemblance to pyridoxal metabolites that attach to co-enzyme B 6 -dependant enzymes. This work aimed the characterization of the anti tumoral effect of N(4)-methyl-tolyl-2-acetylpyridine and 2-pyridinoformamide-derived thiosemicarbazones and the development of a radiopharmaceutical based on a thiosemicarbazone metal complex for positron emission tomography. In the first phase of this study were synthesized twenty-one thiosemicarbazones, derived from N(4)methyl-2 acetylpyridine and 2-pyridine formamide, as well as their metal complexes (Sn, Ga and Cu). Their cytotoxic potential were evaluated against brain and breast tumor cells in vitro. Our results showed all of them presented powerful cytotoxic and antiproliferative activities against glioblastoma multiform and breast adenocarcinoma at very low concentrations (nanomolar range). Morphological alterations characteristic of apoptosis, such as cell shrinkage, chromatin condensation were observed. Copper chloride was used as control and has presented IC50 at millimolar range suggesting that copper complexation with thiosemicarbazone significantly increases (more than 1 million) the anti tumoral effect of this metal. Due to the potent anti tumoral activity of N(4)-methyl-tolyl-2-acetylpyridine derived thiosemicarbazones and the excellent properties of 64 Cu (T 1/2 = 12.7 hours, β + , β - , and EC decay), at the second part for this work it was developed a new imaging agent (radiopharmaceutical) for tumor detection by positron emission tomography (PET). The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN, via neutron capture reaction 63 Cu (n,γ) 64 Cu, of the copper complex N(4)-ortho-toluyl-2-acetylpyridine thiosemicarbazone (Culac). The induced

  14. Presynaptic inhibition of spontaneous acetylcholine release mediated by P2Y receptors at the mouse neuromuscular junction.

    Science.gov (United States)

    De Lorenzo, S; Veggetti, M; Muchnik, S; Losavio, A

    2006-09-29

    At the neuromuscular junction, ATP is co-released with the neurotransmitter acetylcholine (ACh) and once in the synaptic space, it is degraded to the presynaptically active metabolite adenosine. Intracellular recordings were performed on diaphragm fibers of CF1 mice to determine the action of extracellular ATP (100 muM) and the slowly hydrolysable ATP analog 5'-adenylylimidodiphosphate lithium (betagamma-imido ATP) (30 muM) on miniature end-plate potential (MEPP) frequency. We found that application of ATP and betagamma-imido ATP decreased spontaneous secretion by 45.3% and 55.9% respectively. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A(1) adenosine receptor antagonist and alpha,beta-methylene ADP sodium salt (alphabeta-MeADP), which is an inhibitor of ecto-5'-nucleotidase, did not prevent the inhibitory effect of ATP, demonstrating that the nucleotide is able to modulate spontaneous ACh release through a mechanism independent of the action of adenosine. Blockade of Ca(2+) channels by both, Cd(2+) or the combined application of nitrendipine and omega-conotoxin GVIA (omega-CgTx) (L-type and N-type Ca(2+) channel antagonists, respectively) prevented the effect of betagamma-imido ATP, indicating that the nucleotide modulates Ca(2+) influx through the voltage-dependent Ca(2+) channels related to spontaneous secretion. betagamma-Imido ATP-induced modulation was antagonized by the non-specific P2 receptor antagonist suramin and the P2Y receptor antagonist 1-amino-4-[[4-[[4-chloro-6-[[3(or4)-sulfophenyl] amino]-1,3,5-triazin-2-yl]amino]-3-sulfophenyl] amino]-9,10-dihydro-9,10-dioxo-2-anthracenesulfonic acid (reactive blue-2), but not by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS), which has a preferential antagonist effect on P2X receptors. Pertussis toxin and N-ethylmaleimide (NEM), which are blockers of G(i/o) proteins, prevented the action of the nucleotide, suggesting that the effect is mediated by P2Y receptors

  15. Prediction of vitamin interacting residues in a vitamin binding protein using evolutionary information

    Directory of Open Access Journals (Sweden)

    Panwar Bharat

    2013-02-01

    Full Text Available Abstract Background The vitamins are important cofactors in various enzymatic-reactions. In past, many inhibitors have been designed against vitamin binding pockets in order to inhibit vitamin-protein interactions. Thus, it is important to identify vitamin interacting residues in a protein. It is possible to detect vitamin-binding pockets on a protein, if its tertiary structure is known. Unfortunately tertiary structures of limited proteins are available. Therefore, it is important to develop in-silico models for predicting vitamin interacting residues in protein from its primary structure. Results In this study, first we compared protein-interacting residues of vitamins with other ligands using Two Sample Logo (TSL. It was observed that ATP, GTP, NAD, FAD and mannose preferred {G,R,K,S,H}, {G,K,T,S,D,N}, {T,G,Y}, {G,Y,W} and {Y,D,W,N,E} residues respectively, whereas vitamins preferred {Y,F,S,W,T,G,H} residues for the interaction with proteins. Furthermore, compositional information of preferred and non-preferred residues along with patterns-specificity was also observed within different vitamin-classes. Vitamins A, B and B6 preferred {F,I,W,Y,L,V}, {S,Y,G,T,H,W,N,E} and {S,T,G,H,Y,N} interacting residues respectively. It suggested that protein-binding patterns of vitamins are different from other ligands, and motivated us to develop separate predictor for vitamins and their sub-classes. The four different prediction modules, (i vitamin interacting residues (VIRs, (ii vitamin-A interacting residues (VAIRs, (iii vitamin-B interacting residues (VBIRs and (iv pyridoxal-5-phosphate (vitamin B6 interacting residues (PLPIRs have been developed. We applied various classifiers of SVM, BayesNet, NaiveBayes, ComplementNaiveBayes, NaiveBayesMultinomial, RandomForest and IBk etc., as machine learning techniques, using binary and Position-Specific Scoring Matrix (PSSM features of protein sequences. Finally, we selected best performing SVM modules and

  16. From tryptophan to hydroxytryptophan: reflections on a busy life.

    Science.gov (United States)

    Fisher, Hans

    2009-01-01

    , plays an important role in wound healing and stress management. Pyridoxal phosphate is the cofactor for the enzyme histidine decarboxylase required for histamine synthesis and similarly serves as a cofactor for hydroxytryptophan decarboxylase, the enzyme that is part of the pathway to serotonin synthesis. Investigations into these pathways led to interesting findings: brain concentrations of serotonin could be increased by supplementing the diet of rats with tryptophan and pyridoxine; the elevated brain serotonin levels had behavioral consequences. Alcohol craving, addiction, and withdrawal symptoms are affected by serotonin concentrations in the brain, and alleviation of these conditions can be achieved with simultaneous administration of serotonin and dopamine agonists. In the midst of our early amino acid studies, we serendipitously also became involved with lipid metabolism in relation to atherosclerosis and blood cholesterol in a chicken model. This work led to the recognition that soluble fibers, like pectin, had strong cholesterol-lowering properties that were beneficial in lowering the incidence of coronary plaque formation. The research success that I have enjoyed has been coupled with the gift of three accomplished children who are making important contributions as professionals in their fields of endeavor. My wife and I are also blessed with 10 wonderful grandchildren, our pride and joy!

  17. Abiotrophia y Granulicatella Abiotrophia and Granulicatella

    Directory of Open Access Journals (Sweden)

    Horacio A. Lopardo

    2006-09-01

    Full Text Available Las antiguamente denominadas variantes nutricionales de estreptococos (VNS pertenecen a dos géneros, Abiotrophia y Granulicatella, los que desarrollan en medios líquidos con el agregado de sangre humana o, mejor aún, de 0,001% de clorhidrato de piridoxal (ClHP y 0,1% de clorhidrato de cisteína (ClHCys. Estas bacterias requieren de la ayuda de otros microorganismos para desarrollar en medios sólidos comunes (satelitismo. El satelitismo y la pirrolidonilarilamidasa (PYR son pruebas indicadoras para VNS. También pueden desarrollar en forma de pátina en medios con base de agar Columbia, sin agregados, lo que puede inducir a confusiones. Las infecciones más frecuentemente documentadas han sido las endocarditis. Entre las infecciones extravasculares, las más frecuentes son las oculares. Para la realización de las pruebas de sensibilidad a los antibióticos se pueden usar el Etest y los métodos de dilución, siempre con el agregado de 0,001% de ClHP. Cualquiera sea el método utilizado, parecería no haber demasiada correlación in vitro / in vivo. La resistencia a penicilina es similar en porcentaje y valores de CIM a la observada en estreptococos del grupo viridans. Para el tratamiento de endocarditis por VNS se recomienda la utilización de penicilina más gentamicina durante 4 a 6 semanas, y en caso de falla terapéutica o alergia a ß-lactámicos, el uso de vancomicina sola o con agregado de gentamicina y/o rifampicina.The nutritionally variant streptococci (NVS belong to two genera: Abiotrophia and Granulicatella. NVS grow in culture media with 0.001% pyridoxal hydrochloride (PHC and 0.1% cysteine hydrochloride (CysHC. These bacteria need the help of other organisms to grow on common solid media showing the effect known as "satellitism". Both, satellitism and the pyrrolidonilarilamidase test are the key tests for suspecting the presence of NVS. They can grow as a faint haze on blood agar or chocolate agar prepared with the Columbia

  18. Diabetes and branched-chain amino acids: What is the link?

    Science.gov (United States)

    Bloomgarden, Zachary

    2018-05-01

    branched-chain aminotransferase (BCAT), either cytosolic or mitochondrial, requiring pyridoxal to function as an amino group carrier, by which the BCAA with 2-ketoglutarate produce a branched-chain keto acid plus glutamate; and (ii) the irreversible mitochondrial process catalysed by branched-chain keto acid dehydrogenase (BCKDH) leading to formation of acetyl-coenzyme A (CoA), propionyl-CoA, and 2-methylbutyryl-CoA from leucine, valine, and isoleucine, respectively, which enter the tricarboxylic acid (Krebs) cycle as acetyl-CoA, propionyl-CoA, and 2-methylbutyryl-CoA, respectively, leading to ATP formation. The BCAA stimulate secretion of both insulin and glucagon and, when given orally, of both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), with oral administration leading to greater and more prolonged insulin and glucagon secretion. Insulin may particularly reduce BCAA turnover to a greater extent than that of other amino acids, and decreases the appearance and increases the uptake of amino acids. However, older studies of the effect of glucose or insulin on BCAA concentrations and rates of leucine appearance and oxidation showed no reduction in T2D, although the higher baseline levels of BCAA in obesity have long been recognized. Impaired function of BCAT and BCKDH has been posited, either as a primary genetic abnormality or due to effects of elevated fatty acids, proinflammatory cytokines, or insulin levels with consequent accumulation of branched-chain keto acids and metabolites such as diacylglycerol and ceramide, potentially contributing to the development of further insulin resistance, and decreased skeletal muscle BCAT and BCKDH expression has been shown in people with diabetes, supporting this concept. A Mendelian randomization study used measured variation in genes involved in BCAA metabolism to test the hypothesis of a causal effect of modifiable exposure on IR, showing that variants in protein phosphatase, Mg 2+ /Mn 2