WorldWideScience

Sample records for pyrex

  1. Rapid bonding of Pyrex glass microchips.

    Science.gov (United States)

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.

  2. Antireflection Pyrex envelopes for parabolic solar collectors

    Science.gov (United States)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  3. Thermal behavior investigation of silicon-Pyrex micro heat pipe

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2014-02-01

    Full Text Available High heat flux is the major reason for the malfunctioning or shortened life of high-power light-emitting diodes (LEDs or integrated circuit (IC components. Cooling technical devices have been widely studied in recent years. A heat pipe made of silicon wafer and Pyrex 7740 has been used in the experiments. Silicon-to-Pyrex bonding is used for the visualization of the flow behavior of the working liquid in heat transfer. A thermal behavior testing system for micro heat pipes (MHPs, including a vacuum chamber, heat flux sensors and thermocouples, was designed and established. The experiments revealed the characteristics of the MEMS heat pipe in LEDs heat transfer, and the maximum equivalent thermal conductivity of the MHPs was 10.6 times that of the silicon wafer. Furthermore, the structure of MHP can be optimized based on these experimental results. They can also be the experimental basis for theoretical study of two-phase flow on the micro scale.

  4. Reactive ion etching of quartz and Pyrex for microelectronic applications

    Science.gov (United States)

    Zeze, D. A.; Forrest, R. D.; Carey, J. D.; Cox, D. C.; Robertson, I. D.; Weiss, B. L.; Silva, S. R. P.

    2002-10-01

    The reactive ion etching of quartz and Pyrex substrates was carried out using CF4/Ar and CF4/O2 gas mixtures in a combined radio frequency (rf)/microwave (μw) plasma. It was observed that the etch rate and the surface morphology of the etched regions depended on the gas mixture (CF4/Ar or CF4/O2), the relative concentration of CF4 in the gas mixture, the rf power (and the associated self-induced bias) and microwave power. An etch rate of 95 nm/min for quartz was achieved. For samples covered with a thin metal layer, ex situ high resolution scanning electron microscopy and atomic force microscopy imaging indicated that, during etching, surface roughness is produced on the surface beneath the thin metallic mask. Near vertical sidewalls with a taper angle greater than 80° and smooth etched surfaces at the nanometric scale were fabricated by carefully controlling the etching parameters and the masking technique. A simulation of the electrostatic field distribution was carried out to understand the etching process using these masks for the fabrication of high definition features.

  5. Final Design and Performance Parameters of the Payloads PYREX, PHLUX and RESPECT on EXPERT

    Science.gov (United States)

    Lein, Sebastian; Steinbeck, Andreas; Preci, Arianit; Fertig, Markus; Herdrich, Georg; Röser, Hans-Peter; Auweter-Kurtz, Monika

    An overview of the IRS payload development for ESA's EXPERT mission is given. The final design and performance parameters of the payloads PYREX, PHLUX and RESPECT are described. PYREX is a sensor system measuring the thermal protection system (TPS) rear side temperature. PHLUX is a catalysis based experiment to determine the dissociation degree of the boundary layer. RESPECT applies optical emission spectroscopy to measure spectrally resolved the radiation onto a TPS surface.

  6. Stress-Free Bonding Technology with Pyrex for Highly Integrated 3D Fluidic Microsystems

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-09-01

    Full Text Available In this article, a novel Pyrex reflow bonding technology is introduced which bonds two functional units made of silicon via a Pyrex reflow bonding process. The practical application demonstrated here is a precision dosing system that uses a mechanically actuated membrane micropump which includes passive membranes for fluid metering. To enable proper functioning after full integration, a technique for device assembly must be established which does not introduce additional stress into the system, but fulfills all other requirements, like pressure tolerance and chemical stability. This is achieved with a stress-free thermal bonding principle to bond Pyrex to silicon in a five-layer stack: after alignment, the silicon-Pyrex-silicon stack is heated to 730 °C. Above the glass transition temperature of 525 °C Pyrex exhibits viscoelastic behavior. This allows the glass layer to come into close mechanical contact with the upper and lower silicon layers. The high temperature and the close contact promotes the formation of a stable and reliable Si-O-Si bond, without introducing mechanical stress into the system, and without deformation upon cooling due to thermal mismatch.

  7. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dionigi, F.; Hansen, O. [CINF, Department of Physics, Building 312, Fysikvej, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark); Department of Micro- and Nanotechnology, Nanotech, Building 345 East, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark); Nielsen, M. G.; Chorkendorff, I.; Vesborg, P. C. K. [CINF, Department of Physics, Building 312, Fysikvej, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark); Pedersen, T. [Department of Micro- and Nanotechnology, Nanotech, Building 345 East, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby (Denmark)

    2013-10-15

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented.

  8. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements.

    Science.gov (United States)

    Dionigi, F; Nielsen, M G; Pedersen, T; Hansen, O; Chorkendorff, I; Vesborg, P C K

    2013-10-01

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ~0.4 and ~4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented.

  9. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    Science.gov (United States)

    Dionigi, F.; Nielsen, M. G.; Pedersen, T.; Hansen, O.; Chorkendorff, I.; Vesborg, P. C. K.

    2013-10-01

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ˜0.4 and ˜4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented.

  10. On prediction of solar cooker performance and cooking in pyrex pots

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, A.M.A.; Taha, M.M.; Akyurt, M.

    1986-01-01

    Results of experiments conducted on the Arafa cookers that featured insulated receivers with Pyrex pots are presented. The utility of an absorption plate is described. A method is outlined whereby the performance curves of solar cooking are transformed into straight lines. The resulting S-constants are utilized for the prediction of the time-temperature relationships of cookers operating at various levels of insolation for a given charge.

  11. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    DEFF Research Database (Denmark)

    Dionigi, Fabio; Nielsen, Morten Godtfred; Pedersen, Thomas;

    2013-01-01

    -vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical...... characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic...

  12. EPR study of ZnS: Mn2 + nanocrystals and pyrex glasses

    Institute of Scientific and Technical Information of China (English)

    刘俊业; 刘春旭; 郑荧光; 李丹; 窦恺; 许武; 虞家琪

    1999-01-01

    Pyrex glasses with different ZnS: Mn2+ contents were prepared by melting method. It has been found that Mn ion may occupy two sites: (Mn2+)sub and (Mn2+)int from photoluminescene (PL) and photoluminescence excitation (PLE) spectra. The results were confirmed by the further electron paramagnetic resonance (EPR) experiments and the three types of states (Mn2+)sub, (Mn2+)int and Mn clusters were identified. It was observed that the gfactor and the hyperfine structure (HFS) constant increase with the decreasing size of nanocrystallite. This may result from hybridization of sp3 electron states of ZnS and 3d5 electron states of Mn by the effects of quantum confinement and the surface states.

  13. One-shot genetic analysis in monolithic Silicon/Pyrex microdevices.

    Science.gov (United States)

    Potrich, C; Lunelli, L; Pasquardini, L; Sonn, D; Vozzi, D; Dallapiccola, R; Marocchi, L; Ferrante, I; Rossotto, O; Pederzolli, C

    2012-12-01

    Modern Lab-on-a-chip (LOC) platforms for genomic applications integrate several biological tasks in a single device. Combination of these processes into a single device minimizes sample loss and contamination problems as well as reducing analysis time and costs. Here we present a study of a microchip platform aimed at analyzing issues arising from the combination of different functions, such as DNA purification from blood, target amplification by PCR and DNA detection in a single silicon-based device. DNA purification is realized through two different strategies: 1) amine groups coating microchannel surfaces and 2) magnetic nanoparticles coated by chitosan. In the first strategy silicon/Pyrex microdevices coated with 3-aminopropyltriethoxysilane (APTES) or 3-2-(2-aminoethylamino)-ethylamino]-propyltrimethoxysilane (AEEA) were examined and their efficiency in human genomic DNA adsorption/desorption was evaluated. APTES treatment was the most suitable for the purification of a reasonable amount of DNA in a state suitable for the following PCR step. The second strategy has instead the main advantage of avoiding an elution step, since the DNA adsorbed on the magnetic nanoparticles can be used as PCR template. On-chip PCR was performed in a custom thermocycler, while the detection of PCR products was carried out by fluorescence reading. A complete genetic analysis was demonstrated on the monolithic silicon/Pyrex microchip, starting from less than 1 [Formula: see text]L of human whole blood and arriving at SNPs identification. The successful integration of DNA purification, amplification and detection on a single microdevice was proven without the need for biological passivation steps and possibly simplifying the realization of genomic detection devices.

  14. Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connections

    NARCIS (Netherlands)

    Blom, M.T.; Chmela, E.; Gardeniers, Johannes G.E.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Tijssen, R.; van den Berg, Albert

    Local anodic bonding of a common Kovar alloy to Pyrex is presented. This technique is ideally suitable for temperature-, solvent- and pressure-resistant microfluidic connections. In this paper we mainly concentrate on the stress problems occurring during and after bonding. Because of the different

  15. Two-dimensional structure of mountain wave observed by aircraft during the PYREX experiment

    Directory of Open Access Journals (Sweden)

    J. L. Attié

    Full Text Available This study presents an experimental analysis from aircraft measurements above the Pyrenees chain during the PYREX experiment. The Pyrenees chain, roughly WE oriented, is a major barrier for northerly and southerly airflows. We present a case of southerly flow (15 October 1990 and three successive cases of northerly flows above the Pyrenees (14, 15 and 16 November 1990 documented by two aircraft. The aircraft have described a vertical cross section perpendicular to the Pyrenean ridge. This area is described via the thermodynamical and dynamical fields which have a horizontal resolution of 10 km. Three methods for computing the vertical velocity of the air are presented. The horizontal advection terms which play a role in the budget equations are also evaluated. The altitude turbulence zone of 15 October are shown via turbulent fluxes, turbulent kinetic energy (TKE, dissipation rate of TKE and inertial length-scale. A comparison of results obtained by eddy-correlation and inertial-dissipation method is presented. The experimental results show a warm and dry downdraft for the southerly flow with large values for advection terms. All the mountain wave cases are also shown to present an important dynamical perturbation just above the Pyrenees at upper altitudes.

  16. Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing

    Science.gov (United States)

    Chung, C. K.; Liao, M. W.; Lin, S. L.

    2010-04-01

    Pyrex glass etching using laser ablation is an important technology for the microfluid application to lab-on-a-chip devices but suffers from the formation of surface crack. In this article, the addition of nonionic surfactant to water for glass ablation using water-assisted CO2 laser processing (WACLAP) has been investigated to enhance ablation rate and to eliminate conventional surface defects of cracks in air. WACLAP for Pyrex glass ablation can reduce thermal-stress-induced crack with water cooling and hydrophilic nonionic surfactant to water can enhance ablation performance. Compared to pure water, the 15% weight percent Lauramidopropyl Betaine surfactant solutions for WACLAP can enhance ablation rate from 13.6 to 25 μm/pass of Pyrex glass ablation at a linear laser energy density of 2.11 J/cm, i.e., 24 W power, 114 mm/s scanning speed, and obtain through-wafer etching at 3.16 J/cm for 20 passes without cracks on the surface. Effect of surfactant concentration and linear energy density on WACLAP was also examined. The possible mechanism of surfactant-enhanced phenomenon was discussed by the Newton’s law of viscosity of surfactant solution.

  17. Experimental study of a two-phase flow inside a pyrex channel using R-11 as refrigerant; Etude experimentale d'un ecoulement diphasique dans un canal en pyrex en utilisant le R-11 comme refrigerant

    Energy Technology Data Exchange (ETDEWEB)

    Bouaichaoui, Y.; Semine, M.; Belalouache, F. [Centre de Recherche Nucleaire de Birine/Comena, Djelfa (Algeria); Hanini, S. [Universite Yahia Fares de Medea, LBMPT (Algeria)

    2006-07-01

    This work deals with the experimental study of a two-phase flow inside a test loop, using R-11 as refrigerant. The test-loop is made of pyrex, allowing the visualization of the fluid structure changes during joule heating. Preliminary results have permitted to observe the boiling initiation phenomenon, which corresponds to the occurrence of the very first steam bubbles inside the flow, and the boiling crisis phenomenon which coincides with the formation of a steam coating around the heating element. The parameters controlling these phenomena have been measured and compared to the data available in the literature. (J.S.)

  18. Study of the effect of pyrex and quartz insulators on X-ray intensity in a 4 kJ plasma focus device

    Science.gov (United States)

    Koohestani, Saeedeh; Habibi, Morteza; Amrollahi, Reza

    2013-06-01

    In this paper we study the soft X-ray (SXR) and hard X-ray (HXR) intensity produced in different insulator sleeves by a 4 kJ plasma focus device (APF) using filtered PIN-diodes and a fast scintillation detector. The experiments were performed for a great number of neon filling gas pressures at voltages of 11, 12 and 13 kV. Lengths of 40 and 50 mm look optimal to yield the most SXR intensity for the Pyrex and Quartz insulators respectively. The device appears to optimize much better for Pyrex insulator than the Quartz. For Pyrex and Quartz insulators, the lengths of 40 mm and 50 mm seem optimal to yield maximum HXR intensity, respectively.

  19. Compostos luminescentes em matrizes macroporosas de sílica obtidas por tratamento hidrotérmico a partir de vidro pyrex

    OpenAIRE

    Sigoli, Fernando Aparecido [UNESP

    2001-01-01

    Neste trabalho, obteve-se uma matriz porosa com alto teor de sílica a partir de vidros Pyrex® utilizando-se o tratamento hidrotérmico. A matriz porosa é formada principalmente por dois processos: (i) reação da água no estado supercrítico com a rede vítrea e, (ii) separação e lixiviação de fases. A matriz apresenta-se macroporosa, possuindo também baixa percentagem de micro e mesoporos. Através de técnicas espectroscópicas verifica-se que a matriz apresenta grupos silanóis de superfície, os qu...

  20. Evaluation of a pyrex glass shield for the dose reduction in extremities to manipulate a {sup 90} Sr- {sup 90} Y generator; Evaluacion de un blindaje de vidrio pyrex para la reduccion de las dosis en extremidades al manipular un generador de {sup 90} Sr- {sup 90} Y

    Energy Technology Data Exchange (ETDEWEB)

    Ayra P, F.E.; Xiques C, A.; Torres B, M.B. [Centro de Isotopos, Carretera La Rada, Km 3 1/2, Guanabacoa, La Habana (Cuba)]. e-mail: feayra@centis.edu.cu

    2006-07-01

    The production of Y-90 of high activity it specifies (free of payee) for their use in radioimmunotherapy uses the Strontium 90 as isotope source. Depending on the method employee for the separation of both isotopes several types of generators are described in different bibliographies. The column generator used in the facilities of the Center of Isotopes requires of a frequent manipulation causing significant dose in the skin of the extremities due to the exhibition to the radiation beta of high energy. The properties of the shieldings for this radiation type have been well studied Y they consist in several publications. To be in correspondence with requirements of radiological protection in the Cuban legislation, the column was covered with a tube of glass pyrex of 5 mm of thickness and it was monitored the exposure with an ionization chamber. At the own time, the shielding using the Monte Carlo method was evaluated. It was used the MCNP 4C code to simulate the absorption of the beta particles generated in the process of disintegration of the Sr-90 and Y-90 in the glass shielding. The column generator and the fluence of beta particles were modeled in different points inside the shielding to determine if the experimentally measured values correspond to electrons that were not absorbed or to the weak stopping radiation generated in the glass due to the deceleration of these particles. A cylinder of 4 mm of diameter simulates the source (it dilutes) and a tube of walls of 6 mm of thickness simulates the shielding more the wall of the column around the generator. This it was divided in cells of 1 mm of thickness and the energy deposited in them was evaluated. The results show that all the electrons generated in the source are absorbed in the shielding and the exposure rates decrease in more of 78 times using the 5 mm of pyrex glass. The doses in extremities to the operators of the generator don't surpass the 70 mSv by year that is the dose restriction imposed in

  1. PHOTOCATALYTIC REACTOR PACKED WITH NOVEL TiO2 PHOTOCATALYST COATED PYREX-GLASS-COILS%新型Pyrex玻璃弹簧负载型TiO2催化剂构成的固定床光催化反应器

    Institute of Scientific and Technical Information of China (English)

    戴智铭; 陈爱平; 朱中南; 顾明元

    2002-01-01

    @@ The practical application of photocatalysts usually requires immobilization of the photocatalyst in several types of reactor configurations, so that the photocatalyst can be used continuously for treating aqueous or gaseous effluent streams and the expensive process of ultrafine particle separation and re-dispersion can be avoided. Different research groups have tried to immobilize TiO2 on various materials,such as, on the reactor wall, pipes, fiberglass mesh, beads, glass fiber, etc[1].

  2. 含有抗菌药物诺氟沙星的金属有机羰基钼配合物%Organometallic Carbonyl Molybdenum Complex of Antibacterial Drug Norfloxacin

    Institute of Scientific and Technical Information of China (English)

    王锡森; 宋玉梅; 熊仁根

    2005-01-01

    Hydrothermal treatment of Mo(CO)6, norfloxacin (H-Norf) and dilute hydroxide sodium solution in Pyrex Also 1 displays blue fluorescent emissions at 416~436 nm in the solid state upon irradiation by UV light. CCDC:241564.

  3. 30 CFR 18.46 - Headlights.

    Science.gov (United States)

    2010-07-01

    ... damage by guarding or location. (c) Lenses for headlights shall be glass or other suitable material with physical characteristics equivalent to 1/2-inch thick tempered glass, such as “Pyrex.” Lenses shall...

  4. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  5. Integration of robust fluidic interconnects using metal to glass anodic bonding

    Science.gov (United States)

    Briand, Danick; Weber, Patrick; de Rooij, Nicolaas F.

    2005-09-01

    This paper reports on the encapsulation of a piezoresistive silicon/Pyrex liquid flow sensor using metal to glass anodic bonding. The bonding technique allowed integrating robust metallic microfluidic interconnects and eliminating the use of glue and O-rings. The bonding parameters of a silicon/Pyrex/metal triple stack were chosen to minimize the residual stress and to obtain a strong and liquid tight bonding interface. The silicon/Pyrex liquid flow sensor was successfully bonded to metallic plates of Kovar and Alloy 42, on which tubes were fixed and a printed circuit board (PCB) was integrated. A post-bonding annealing procedure was developed to reduce the residual bonding stress. The characteristics of the encapsulated liquid flow sensor, such as the temperature coefficient of sensitivity, fulfilled the specifications. Wafer level packaging using metal to glass anodic bonding was considered to reduce the packaging size and cost.

  6. Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays

    DEFF Research Database (Denmark)

    In, Su-il; Nielsen, Morten Godtfred; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light.......Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light....

  7. Pushing the limits of the Foucault Test

    Science.gov (United States)

    Swanepoel, Johann

    2010-12-01

    The processes involved in the shaping and testing of two fast 20-inch diameter thin Pyrex mirrors are briefly described. Some improvements to extend the usefulness and accuracy of the age old Foucault knife-edge test, making use of affordable and easily available modern technology, are described in some detail.

  8. Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor.

    Science.gov (United States)

    Leclerc, Arnaud; Alamé, Mohamad; Schweich, Daniel; Pouteau, Patrick; Delattre, Cyril; de Bellefon, Claude

    2008-05-01

    The gas-liquid oxidation of cyclohexane is performed at high temperature (>200 degrees C) and pressure (up to 25 bar) using pure oxygen in a Pyrex capped silicon etched microreactor which allows convenient screen reaction conditions well above the flammability limit.

  9. Arno I-LA. Heyn* and Mark F. Zaranyilta2

    African Journals Online (AJOL)

    The major photolysis products were identified by mass spectrometry. The major primary .... The photolysis of TCC in 77% ethanol irradiated with Pyrex filtered UV light from a medium pressure .... spectrophotometer. UV-VIS spectra were ...

  10. Consumption of Base by Glassware.

    Science.gov (United States)

    Smith, Allen A.

    1986-01-01

    Discusses effects of Kimax and Pyrex glass on: (1) 0.4956 molar (M) ethanolic potassium hydroxide; (2) 0.1116 M aqueous sodium Hydroxide (NaOH); (3) 0.01081 M aqueous NaOH; (4) 0.001148 M aqueous NaOH; and on (5) distilled water. (JN)

  11. Small-Scale CW HF(DF) Chemical Laser

    Science.gov (United States)

    1977-08-03

    general public, including foreign nations. This technical report has been reviewed and is approved for publica - tion. Publication of this report does...Cco Lij L0 * cc LUz LUU =C C.CD -8O The discharge tahes place along a central core in the pyrex tube and terminates on a water-cooled Cu hole

  12. On-chip separation and sensing systems for hydrodynamic chromatography

    NARCIS (Netherlands)

    Blom, M.T.

    2002-01-01

    The feasibility of on-chip analytical separations using planar hydrodynamic chromatography (HDC) in Pyrex-silicon and fused silica chips has been demonstrated. In order to sketch the analytical separations area in which the HDC chip has to operate, an introduction was given of important macro-scale

  13. environmental implication of metal concentrations in soil, plant foods ...

    African Journals Online (AJOL)

    Preferred Customer

    provides information on the fertility status, index of nutrient availability and bases for fertilizer .... Metler balance AE 160 weighing machine (UK) in 50 mL Pyrex glass ... For the liquid sample, 5 mL of concentrated hydrochloric acid was added to 250 ..... Washington, D.C., 1968 and Federal Protection Agency, Nigeria, 1988.

  14. Development of an Advanced Flameless Combustion Heat Source Utilizing Heavy Fuels

    Science.gov (United States)

    2010-07-01

    the flame holder was red hot on the inner surface. ● CDI has experience with kerosene burner systems that do not exhibit flashback unless the fuel...determine the pressure drop properties of each. For each material, a thin disc was cemented into one end of a Pyrex tube, and compressed air at a known flow

  15. Microbubble Beam (MBB), A potential Dispersion Mechanism for Multiphase Gas-Liquid Microreactor Systems

    NARCIS (Netherlands)

    Doku, George N.; Verboom, Willem; Reinhoudt, David N.; Berg, van den Albert

    2003-01-01

    Systems consisting of single and multiple micropipet tips mounted in a channel for the generation of microbubble beams (MBB, as a gas−liquid dispersion mechanism) in moving liquids were constructed in stainless steel housing with Pyrex windows on both sides of the housing for imaging. Pressure head

  16. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems

    NARCIS (Netherlands)

    Roulet, Jean-Christophe; Völkel, Reinhard; Herzig, Hans Peter; Verpoorte, Elisabeth; De Rooij, Nico F.; Dändliker, René

    2002-01-01

    This article presents a new integrated microfluidic/microoptic device designed for basic biochemical analysis. The microfluidic network is Wet-etched in a Borofloat 33 (Pyrex) glass wafer and sealed by means of a second wafer. Unlike other similar microfluidic systems, elements of the detection syst

  17. PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Nielsen, Theodor; Clausen, Bjarne Hans

    2004-01-01

    We present an adhesive bonding technique developed for SU-8 based "lab-on-a-chip"- systems with integrated optical components. Microfluidic channels and optical components (e.g. wave-guides) are defined in SU-8 photoresist on a Pyrex glass substrate. The microfluidic channels are sealed by a second...

  18. PMMA to SU-8 Bonding for Polymer Based Lab-on -a-chip Systems with Integrated Optics

    DEFF Research Database (Denmark)

    Clausen, Bjarne

    2003-01-01

    An adhesive bonding technique for wafer-level sealing of SU-8 based lab-on-a-chip microsystems with integrated optical components is presented. Microfluidic channels and optical components, e.g. waveguides, are fabricated in cross-linked SU-8 and sealed with a Pyrex glass substrate by means...

  19. Measurements of Form and Frictional Drags over a Rough Topographic Bank

    Science.gov (United States)

    2014-09-01

    downstream of the ob- stacle (Gill 1982; Smith 1989; Baines 1995). The nature of the flow depends on the governing parameters such as Froude number Fr...1990: Momentum budget over the Pyrenees : The PYREX experiment. Bull. Amer. Meteor. Soc., 71, 806–818, doi:10.1175/ 1520-0477(1990)071,0806:MBOTPT.2.0

  20. Onifade et al., Afr J Tradit Complement Altern Med. (2013) 10(5):332 ...

    African Journals Online (AJOL)

    cadewumi

    1Immunology unit, College of Medicine, University of Ibadan, Nigeria .... potent anti-inflammatory, pyrexic and analgesic effects (Al-Ghamdi, 2001 and ... He had multiple popular pruritic skin lesions and weight loss evidenced by prominent zygomatic process with .... Assiut Veterinary Medical Journal, 32 (64):236–44. 3.

  1. The development of MEMS device packaging technology using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, J. W.; Kong, Y. J.; Kim, E. H.; Kim, H. S.; No, S. J. [Dankook Univ., Yongin (Korea, Republic of)

    2006-05-15

    Wafer-bonding techniques are key issues for the commercialization of MEMS(MicroElectroMechanical Systems) devices. The anodic bonding method and the wafer direct-bonding method are well-known major techniques for wafer bonding. Due to the anodic bonding method includes high voltage processes above 1.5 kV, the MEMS devices can be damaged during the bonding process or malfunctioned while long-term operation. On the other hand, since the wafer direct-bonding method includes a high temperature processes above 1000 .deg. C, temperature-sensitive materials and integrated circuits will be damaged or degraded during the bonding processes. Therefore, high-temperature bonding processes are not applicable for fabricating or packaging devices where temperature-sensitive materials exist. During the past few years, much effort has been undertaken to find a reliable bonding process that can be conducted at a low temperature. Unfortunately, these new bonding processes depend highly on the bonding material, surface treatment and surface flatness. In this research, a new packaging method using proton beam irradiation is proposed. While the energy loss caused in an irradiated material by X-rays or electron beams decreases with the surface distance, the energy loss caused by proton beams has a maximum value at the Bragg peak. Thus, the localized energy produced at the Bragg peak of the proton beams can be used to bond pyrex glass on a silicon wafer, so the MEMS damage is expected to be minimized. The localized heating caused by as well as the penetration depth, or the proton beam has been investigated. The energy absorbed in a stack of pyrex glass/silicon wafers due to proton-beam irradiation was numerically calculated for various proton energies by using the SRIM program. The energy loss was shown to be sufficiently localized at the interface between the pyrex glass and the silicon wafer. Proton beam irradiation was performed in the common environment of room temperature and

  2. Modeling of microdevices for SAW-based acoustophoresis --- a study of boundary conditions

    CERN Document Server

    Skov, Nils Refstrup

    2016-01-01

    We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of a piezoelectric transducer that actuates the device by surface acoustic waves (SAW). We compare the resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models comprising of only a water domain with simplified, approximate boundary conditions representing the surrounding solids. The reduced models are found to only approximate the acoustically hard pyrex systems to a limited degree for large wall thicknesses and not at all for the acoustically soft PDMS systems.

  3. Modeling of Microdevices for SAW-Based Acoustophoresis — A Study of Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Nils Refstrup Skov

    2016-10-01

    Full Text Available We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex or the elastomer polydimethylsiloxane (PDMS and placed on top of a piezoelectric transducer that actuates the device by surface acoustic waves (SAW. We compare the resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models comprising of only a water domain with simplified, approximate boundary conditions representing the surrounding solids. The reduced models are found to only approximate the acoustically hard pyrex systems to a limited degree for large wall thicknesses and but not very well for acoustically soft PDMS systems shorter than the PDMS damping length of 3 mm.

  4. On-line technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water

    Science.gov (United States)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K. Jr; Gibson EK, J. r. (Principal Investigator)

    1999-01-01

    Detailed here is a method for extracting and analyzing oxygen and hydrogen isotopes from 10 microL-sized water samples. Based on the traditional CO2-H2O equilibration technique, the oxygen isotope exchange reaction is done exclusively in sealed 6-mm (o.d.) Pyrex tubes at 25 degrees C, with full isotope exchange completed in at least 28 h. Using the same water sample employed in the 18O equilibration, D/H extractions are done in separate sealed 6-mm (o.d.) Pyrex tubes by reaction with Zn at 450 degrees C to form H2(g). Provided that a correction factor is applied to 18O analyses, accuracy and precision for both 18O and D/H are comparable to standard techniques using much larger samples.

  5. Microfluidic on chip viscometers.

    Science.gov (United States)

    Chevalier, J; Ayela, F

    2008-07-01

    We present the design and the process of fabrication of micromachined capillary on chip rheometers which have performed wall shear stress and shear rate measurements on silicon oil and ethanol-based nanofluids. The originality of these devices comes from the fact that local pressure drop measurements are performed inside the microchannels. Thus, the advantage over existing microviscometers is that they can be used with the fluid under test alone; no reference fluid nor posttreatment of the data are needed. Each on chip viscometer consists of anodically bonded silicon-Pyrex derivative microchannels equipped with local probes. The anodic bonding allows to reach relatively high pressure levels (up to approximately 10 bars) in the channels, and a broad range of shear stress and shear rate values is attainable. Dielectrophoretic and electrorheological effects can be highlighted by employing alternate microstripe electrodes patterned onto the inner side of the Pyrex wall.

  6. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  7. Effect of materials for micro-electro-mechanical systems on PCR yield.

    Science.gov (United States)

    Potrich, Cristina; Lunelli, Lorenzo; Forti, Stefania; Vozzi, Diego; Pasquardini, Laura; Vanzetti, Lia; Panciatichi, Cristina; Anderle, Mariano; Pederzolli, Cecilia

    2010-05-01

    In this study we analyzed the surface properties of different silicon-based materials used for micro-electro-mechanical systems (MEMS) production, such as thermally grown silicon oxide, plasma-enhanced chemical vapor deposition (PECVD)-treated silicon oxide, reactive-ion etch (RIE)-treated silicon oxide, and Pyrex. Substrates were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to define the surface chemical and morphological properties, and by fluorescence microscopy to directly assess the absorption of the different polymerase chain reaction (PCR) components. By using microchips fabricated with the same materials we investigated their compatibility with PCR reactions, exploiting the use of different enzymes and reagents or proper surface treatments. We established the best conditions for DNA amplification in silicon/Pyrex microdevices depending on the type of device and fabrication method used and the quality of reagents, rather than on the passivation treatment or increment in standard Taq polymerase concentration.

  8. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    Science.gov (United States)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  9. Estudio de la fermentación láctica para la extracción de quitina a partir de desechos de crustáceos

    OpenAIRE

    2011-01-01

    The extraction of chitin from crustacean waste involved the deproteinisation and demineralisation of crustacean shells using lactic acid fermentation with whey and sucrose as culture medium and carbon source, respectively. The fermentation process was carried out in a vertical Pyrex reactor of 4 L by 2 and 3 weeks at room temperature. The results showed that a good deproteinisation and demineralisation was obtained; however, the product still contained traces of proteins and pigments. Therefo...

  10. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles

    OpenAIRE

    Monfared M; Bahrololoom ME

    2016-01-01

    Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-par...

  11. Extraction of glass-wafers electrical properties based on S-parameters measurements of coplanar waveguides

    OpenAIRE

    Mendes, P. M.; Polyakov, A.; Bartek, M.; Burghartz, J.N.; Correia, J.H.

    2003-01-01

    The measured S-parameters of a coplanar waveguide (CPW) propagating the dominant mode were used to obtain the electrical permittivity and the dielectric loss tangent of three different glass wafers: non-alkaline Schott AF45, Corning Pyrex #7740 and Hoya SD-2. These properties were obtained up to 10 GHz. The obtained values were used together with the CPW model in ADS to obtain the simulated S-parameters for the used CPW cell. The obtained results shows good agreement b...

  12. The Use of Spider Webs as Passive Bioaerosol Collectors

    Science.gov (United States)

    2009-03-01

    The shortfalls of the BioWatch program were made clear in multiple articles previously cited. The need to explore inexpensive passive collection...digital balance, Sartorius Element model ELT 602 with 0.01g deviation. The DI volumes were measured using a 500 ml burette, Pyrex ® Single Metric...Informative. 12 July 2008. 60. "Microbial Growth." Article . pag. http://www.montgomerycollege.edu/~slester/BI203WebContents/203LecturesSp08

  13. Microfabricated Passive Magnetic Bead separators

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Lund-Olesen, Torsten; Smistrup, Kristian

    2006-01-01

    The use and manipulation of functionalized magnetic beads for bioanalysis in lab-on-a-chip systems is receiving growing interest. We have developed microfluidic systems with integrated magnetic structures for the capture and release of magnetic beads. The systems are fabricated in silicon by deep...... reactive ion etching combined with a number of metal deposition and etching steps followed by anodic bonding of a pyrex lid....

  14. International Symposium on Halide Glasses (2nd) (Extended Abstracts).

    Science.gov (United States)

    1983-08-05

    method in which Pyrex 7740 is the standard material. These results will be compared with our earlier results on a fluorozirconate glass ( ZBLAN glass ...AliS 215 INTERNATIONAL SYMPOSIUM ON HALIDE GLASSES 12ND) 1/1 (EXTENDED ABSTRACTS) (U) RENSSELAER POLY’TECHNIC INST TROY NY DEPT OF MATERIALS ENGINEE...Classification) Second International Symposium on Halide Glasses (Extended Abstracts) (U) 12. PERSONAL AUTHOR(S) Cornelius T. Moynihan Chairman 13a

  15. Terrain-Induced Midtropospheric Frontogenesis and Jet Streak Development During Storm-Fest IOP-17, 8 & 9 March 1992.

    Science.gov (United States)

    2011-07-21

    the Eastern Range providing meteorological consultation to both government and commercial launch programs. He is also was responsible for the...a barrier. Significant mountain ranges such as the Alps, Pyrenees , Tibetan Plateau, and the Rockies all influence the environment on their downwind...CCOPE) over Montana, the 1982 Alpine Experiment (ALPEX) over southern Europe, and the Pyrenees Experiment (PYREX) along the border of France and

  16. Microwave behavior in CoFe-based single- and two-phase magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Laboratory of Chemical Engineering and Resource Development, FST, UAE, BP 418, Tangier (Morocco); Innovative Technologies Laboratory, ENSA of Tangier, UAE, BP 1818, Tangier (Morocco); Infante, German; Torrejon, Jacob; Vazquez, Manuel [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Britel, Mohammed Reda [Innovative Technologies Laboratory, ENSA of Tangier, UAE, BP 1818, Tangier (Morocco); Brigui, Jamal [Laboratory of Chemical Engineering and Resource Development, FST, UAE, BP 418, Tangier (Morocco)

    2011-03-15

    The ferromagnetic resonance (FMR), spectra in the frequency range up to 12 GHz has been investigated as a function of applied DC magnetic field (up to 80 kA/m) for single-phase CoFe-based Pyrex-coated microwire as well as for biphase microwires after depositing an outer shell, with hard (CoNi) and soft (FeNi) magnetic character, respectively. In addition, a parallel study on the low-frequency magnetic hysteresis loop of all these samples has been performed. In particular, we have focused on the influence of the thickness of the insulating Pyrex layer and magnetic character of the outer magnetic phase. For single-phase microwires, the increase of the Pyrex thickness results in a continuous strengthening of the circular magnetoelastic anisotropy of the CoFe-based core as deduced from FMR and confirmed by low-frequency measurements. For biphase microwires three absorption peaks are observed: two of them can be ascribed to each magnetic phase since FMR frequencies obey the Kittel condition for a thin film. A third absorption peak is observed at lower frequencies that does not follow such an equation and can be ascribed to a pure geometrical effect of these biphase microwires. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Gas Surface Interactions Occurring on Materials Within Ultrahigh Vacuum. Ph.D. Thesis - va. Polytechnic Inst.

    Science.gov (United States)

    Outlaw, R. A.

    1972-01-01

    The physical adsorption of nitrogen on the chemically cleaned surfaces of Pyrex, 347 stainless steel and polycrystalline nickel was investigated over the pressure range 1 x 10 to the minus 12th power to 3 x 10 to the minus 7th power torr and for temperatures 77.4 and 87.4 K. The adsorption data were linearized by the Dubinin-Radushkevich equation. The metal surfaces were cleaned by electron impact desorption (EID) and the desorbed gases analyzed by mass spectrometry. Work function measurements were also used to indicate changes in the surface condition following an EID dose. At least a monolayer of gas was observed to desorb from the metal surfaces. The isotherms revealed that the metal surfaces were very heterogeneous and that the Pyrex surface had been leached. The calculated isosteric heats of adsorption indicated that the relative order of the physical binding of nitrogen to the solids was 347 stainless steel Pyrex nickel. A relationship was observed to exist in the dynamic technique between the equilibration time and the pressure above the absorbed layer. The slope of the log-log plot of these parameters was found to be sensitive to the surface heterogeneity and may be related to the activation energy for surface diffusion of physically absorbed molecules.

  18. High pressure-resistant SU-8 microchannels for monolithic porous structure integration

    Science.gov (United States)

    Carlier, Julien; Chuda, Katarzyna; Arscott, Steve; Thomy, Vincent; Verbeke, Bernard; Coqueret, Xavier; Camart, Jean Christophe; Druon, Christian; Tabourier, Pierre

    2006-10-01

    Integrated lab-on-chip (LOC) microsystems dedicated to proteomic analysis require specific pretreatment steps such as protein trypsic digestion, concentration, desalting or separation of biological samples. These steps can be achieved thanks to porous monolithic polymers. This paper deals with the integration of such a polymer into SU-8 microchannels by using a multi-material technology (SU-8, Pyrex and silicon). A solution for the fabrication of complete polymer microchannels which are high pressure- and solvents-resistant is proposed. This technique uses the negative photoresist SU-8 which is compatible with the protein analysis performed here. Our process requires a novel technological step using a silane coupling agent. This modification of the SU-8/Pyrex interface leads to the fabrication of a 100 µm × 160 µm section microchannel (length of 3 cm), closed with a Pyrex® lid by SU-8 bonding resistant to 80 bar. An improvement of the SU-8/monolithic structure is also demonstrated thanks to a specific treatment of the polymer enabling good anchoring of the monolith in the microchannels, and the pressure-resistance tests were also achieved with the monolithic structure integrated in the microchannels. A digestion step of a protein sample of benzoylarginine ethyl ester in a SU-8 microchannel was achieved after the functionalization of a monolith anchored in the microchannel. Analysis by UV/VIS spectroscopy of this in situ digestion has been reported.

  19. Passive flow regulators for drug delivery and hydrocephalus treatment

    Science.gov (United States)

    Chappel, E.; Dumont-Fillon, D.; Mefti, S.

    2014-03-01

    Passive flow regulators are usually intended to deliver or drain a fluid at a constant rate independently from pressure variations. New designs of passive flow regulators made of a stack of a silicon membrane anodically bonded to a Pyrex substrate are proposed. A first design has been built for the derivation of cerebrospinal fluid (CSF) towards peritoneum for hydrocephalus treatment. The device allows draining CSF at the patient production rate independently from postural changes. The flow rate is regulated at 20 ml/h in the range 10 to 40 mbar. Specific features to adjust in vivo the nominal flow rate are shown. A second design including high pressure shut-off feature has been made. The intended use is drug delivery with pressurized reservoir of typically 100 to 300 mbar. In both cases, the membrane comprises several holes facing pillars in the Pyrex substrate. These pillars are machined in a cavity which ensures a gap between the membrane and the pillars at rest. The fluid in the pressurized reservoir is directly in contact with the top surface of the membrane, inducing its deflection towards Pyrex substrate and closing progressively the fluidic pathway through each hole of the membrane. Since the membrane deflection is highly non-linear, FEM simulations have been performed to determine both radial position and diameter of the membrane holes that ensure a constant flow rate for a given range of pressure.

  20. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    Directory of Open Access Journals (Sweden)

    Bong-Cheol Shin

    2007-05-01

    Full Text Available This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 μm in minimum to 20 μm in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  1. Acoustic streaming and thermal instability of flow generated by ultrasound in a cylindrical container

    Science.gov (United States)

    Green, Adam; Marshall, Jeffrey S.; Ma, Dong; Wu, Junru

    2016-10-01

    A vertically orientated ultrasonic transducer contained within a closed cylindrical Pyrex tube was used to study the acoustic streaming flow within a cylindrical container. A particle-image velocimetry (PIV) system incorporating fluorescent 1.5 μm seeding particles suspended in a mixture of diethyl-phthalate and ethanol, whose optical index was matched to that of Pyrex, was used to allow for undistorted PIV imaging within the Pyrex tube. Temperature on the end-wall surface and acoustic pressure within the cylinder were measured for different end-wall materials. Variables considered included acoustic absorption and reflection coefficients, ultrasound intensity, container height, and thermal properties of the end-wall material. It was observed that a quasi-steady flow field driven by acoustic streaming is rapidly established within the container, which is typically dominated by a stationary vortex ring with downward flow along the ring axis. After sufficient time this quasi-stationary flow exhibits a thermal instability causing it to transform into a secondary flow state. Different types of secondary flow states were observed, including cases where the flow along the cylinder axis is oriented upward toward the ultrasound transducer and cases where the axial flow changes directions along the cylinder axis.

  2. The Effect of Solvent, Hydrogen Peroxide and Dioxide Titanium on Degradation of PCBs, Using Microwave Radiation in Order to Reduce Occupational Exposure

    Directory of Open Access Journals (Sweden)

    Tajik Reza

    2014-07-01

    Full Text Available Polychlorinated biphenyls (PCBs are one group of persistent organic pollutants (POPs that are of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment remains a very difficult challenge because the compounds are highly hydrophobic and have very low solubility in water. A 900 W domestic microwave oven, pyrex vessel reactor, pyrex tube connector and condensing system were used in this experiment. Radiation was discontinuous and ray powers were 540, 720 and 900 W. The PCBS were analyzed by GC-ECD. The application of microwave radiation and H2O2/TiO2 agents for the degradation of polychlorinated biphenyl contaminated oil was explored in this study. PCB – contaminated oil was treated in a pyrex reactor by microwave irradiation at 2450 MHz with the addition of H2O2/TiO2. A novel grain TiO2 (GT01 was used. The determination of PCB residues in oil by gas chromatography (GC revealed that rates of PCB decomposition were highly dependent on microwave power, exposure time, ratio to solvent with transformer oil in 3:1, the optimal amount of GT01 (0.2 g and 0.116 mol of H2O2 were used in the study. It was suggested that microwave irradiation with the assistance of H2O2/TiO2 might be a potential technology for the degradation of PCB – contaminated oil. The experiments show that MW irradiation, H2O2 oxidant and TiO2 catalyst lead to a degradation efficiency of PCBs only in the presence of ethanol. The results showed that the addition of ethanol significantly enhanced degradation efficiency of PCBs.

  3. Terahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Process

    Science.gov (United States)

    Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topalli, Kagan

    2017-08-01

    This paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations.

  4. Self-aligned cantilever positioning for on-substrate measurements using DVD pickup head

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, E. T.; Keller, Stephan Urs

    2010-01-01

    In this paper, we present a novel approach for measuring the resonant frequency of cantilevers fabricated in polymeric materials. We re-designed the use of a commercial DVD-ROM pickup head and combine it with a glass-polymer substrate in order to obtain a light and portable device to measure...... the resonant frequency of polymer cantilevers. The use of the Pyrex-SU-8 clamping substrate allows an easy replacement of the cantilever chips and a fast alignment process to the DVD-ROM laser beam. We show measurements of thermal noise for SU-8 and TOPAS cantilevers in air and liquid environment....

  5. 100% foundry compatible packaging and full wafer release and die separation technique for surface micromachined devices

    Energy Technology Data Exchange (ETDEWEB)

    OLIVER,ANDREW D.; MATZKE,CAROLYN M.

    2000-04-06

    A completely foundry compatible chip-scale package for surface micromachines has been successfully demonstrated. A pyrex (Corning 7740) glass cover is placed over the released surface micromachined die and anodically bonded to a planarized polysilicon bonding ring. Electrical feedthroughs for the surface micromachine pass underneath the polysilicon sealing ring. The package has been found to be hermetic with a leak rate of less than 5 x 10{sup {minus}8} atm cm{sup {minus}3}/s. This technology has applications in the areas of hermetic encapsulation and wafer level release and die separation.

  6. Uranium(Ⅵ) Complex Based on a Fluoroquinolone Ligand with Green Fluorescent Emission%具有绿色荧光发射效应的氟喹诺酮-铀(Ⅵ)配合物

    Institute of Scientific and Technical Information of China (English)

    瞿志荣

    2008-01-01

    A uranium(Ⅵ) complex [UO2(1-ethyl-6,8-difluoro-7-(3-methyl-piperazinium-1-yl)-4-oxo-1,4-dihydro-quinwater at 80 ℃ in Pyrex tube. The crystal belongs to monoclinic system, space group P21/c, with a=1.430(3) nm, b=1.032 1(18) nm, c=1.729(3) nm,β=106.67(3)° V=2.458(6) nm3, Z=4. This complex is a good green fluorescent material in solid state at room temperature. CCDC: 660959.

  7. SOI silicon on glass for optical MEMS

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, Jan Tue; Hansen, Ole

    2003-01-01

    A newly developed fabrication method for fabrication of single crystalline Si (SCS) components on glass, utilizing Deep Reactive Ion Etching (DRIE) of a Silicon On Insulator (SOI) wafer is presented. The devices are packaged at wafer level in a glass-silicon-glass (GSG) stack by anodic bonding...... and a final sealing at the interconnects can be performed using a suitable polymer. Packaged MEMS on glass are advantageous within Optical MEMS and for sensitive capacitive devices. We report on experiences with bonding SOI to Pyrex. Uniform DRIE shallow and deep etching was achieved by a combination...

  8. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders

    2007-01-01

    Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility...... of the measurements over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic concentration a hitherto unobserved reversal of the pumping direction has been...

  9. Photochemical Degradation of Composition B and Its Components

    Science.gov (United States)

    2007-09-01

    1,3,7,9-tetranitroindazolo-2,1-a- indazol -6-ol-12-one 1% N N O OH NO2 NO2 NO2 O2N 11 2,2’-dicarboxy-3,3’,5,5’- Tetranitroazoxybenzene Trace...a 450-watt, medium pressure, quartz, mercury-vapor lamp, housed in a quartz immersion well, and equipped with a 1.0-L reaction vessel. The Pyrex...percent wax. If no reaction occurred, the relative abundance of TNT in Composition B treatments would be approximately 66.4 percent of the

  10. Hollow infrared fibers fabricated by glass-drawing technique.

    Science.gov (United States)

    Matsuura, Yuji; Kasahara, Ryosuke; Katagiri, Takashi; Miyagi, Mitsunobu

    2002-06-17

    Hollow glass fibers for delivery of mid-infrared lasers are drawn from a glass-tube preform to produce a long and flexible hollow fiber at low cost. To utilize the interference effect of the thin glass wall, the wall thickness is controlled by the drawing speed. A Pyrex-glass hollow fiber with an inner diameter of 280 microm and a wall thickness of 9.92 microm shows a low loss at 2.94 microm of the Er:YAG laser wavelength when coated with a silver film on the outer surface.

  11. Development of Surface Plasmons/Electro Optic Devices for Active Control of Optical Characteristics

    Science.gov (United States)

    2008-12-01

    at 800nm, the actual data [Palik] is fitted using the set of parameters: ,( , )=(0.06, 6.73)pω ωγ ω . The incident magnetic field was assumed to be...Samples were fabricated by depositing gold films supported on DSP Si wafer, pyrex wafer and glass slides using a Thermionics e-beam evaporation...Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” App. Phys. Lett., vol 85(24) pp 5833-5835, 2004. [10] E.D

  12. Oceanic CO sub 2 measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses during Legs 1--3

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, C.D.

    1992-01-01

    During the winter and spring of 1991 we made preparations for sampling on three legs of the US World Ocean Circulation Experiment in the Pacific Ocean. These transects, postponed from an original start date early in 1991, took place between May 31 to October 1. For the project, 1400 0.5 liter Pyrex sampling bottles were used for the collection of sea water. A second major pre-expedition task was the construction of a dual titration cell system of new design, as described in the original proposal and our previous semi-annual report.

  13. Oceanic CO{sub 2} measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses during Legs 1--3. Technical progress report, 1 December 1990--28 January 1992

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, C.D.

    1992-05-01

    During the winter and spring of 1991 we made preparations for sampling on three legs of the US World Ocean Circulation Experiment in the Pacific Ocean. These transects, postponed from an original start date early in 1991, took place between May 31 to October 1. For the project, 1400 0.5 liter Pyrex sampling bottles were used for the collection of sea water. A second major pre-expedition task was the construction of a dual titration cell system of new design, as described in the original proposal and our previous semi-annual report.

  14. Precipitation of phenyl and phenoxypenicillin from solutions using ammonium sulfate.

    Science.gov (United States)

    Luengo, J M

    1985-09-01

    An easy, rapid, and available method for separating 6-aminopenicillanic acid (6-APA), benzylpenicillin (penicillin G), and other related molecules from aqueous solutions or complex industrial broths is described. A high concentration of ammonium sulphate induces partially or totally the precipitation of the penicillin present in the solutions, while 6-APA, phenylacetic, and phenoxyacetic acid always remain in the supernatant. The filtration through No. 4 Pyrex glass-fiber filter or Whatman 3MM paper permits the separation of the compounds present in the supernatant from the other ones precipitated. The precipitated product was identified, in all cases, as ammonium penicillin. This method is described here for the first time.

  15. JOINING MECHANISM OF FIELD-ASSISTED BONDING OF ELECTROLYTE GLASS TO METALS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Investigations of technological characteristics and bonding mechanism of field-assisted bonding are done, which are for bonding of electrolytes (Pyrex glass) to monocrystal silicon and aluminum. The features of microstructure and the distribution of the diffused elements in the bonding interface area are studied by means of SEM, EDX and XRD, and the influence of the technological factors on the bonding process is also studied. The model of"metal-oxides-glass"of bonding structure and ions diffusion and bonding in the condition of electrical field-assisted are indicated.

  16. Flashlamp-pumped Ti:Sapphire laser with different rods grown by Czochralski and Verneuil methods

    Science.gov (United States)

    Boquillon, J. P.; Said, J.

    1992-04-01

    The design and the development of a flashlamp-pumped Ti:Sapphire laser is described. Design criteria are discussed and performance improvements using different types of fluorescent UV converters or filters, such as organic dyes or doped glass are presented. We have tested different laser rods at various Ti-concentrations obtained by Verneuil or Czochralski growth techniques. The maximum laser output energy of 540 mJ with a differential efficiency up to 1% was achieved by using only a pyrex filter surrounding the laser rod.

  17. Gallium phosphide as a new material for anodically bonded atomic sensors

    Directory of Open Access Journals (Sweden)

    Nezih Dural

    2014-08-01

    Full Text Available Miniaturized atomic sensors are often fabricated using anodic bonding of silicon and borosilicate glass. Here we describe a technique for fabricating anodically bonded alkali-metal cells using GaP and Pyrex. GaP is a non-birefringent semiconductor that is transparent at alkali-metal resonance wavelengths, allowing new sensor geometries. GaP also has a higher thermal conductivity and lower He permeability than borosilicate glass and can be anodically bonded below 200 °C, which can also be advantageous in other vacuum sealing applications.

  18. Fabrication of a high-precision spherical micromirror by bending a silicon plate with a metal pad.

    Science.gov (United States)

    Wu, Tong; Hane, Kazuhiro

    2011-09-20

    We demonstrate here the fabrication of a smooth mirror surface by bending a thin silicon plate. A spherical surface is achieved by the bending moment generated in the circumference of the micromirror. Both convex and concave spherical micromirrors are realized through the anodic bonding of silicon and Pyrex glass. Since the mirror surface is originated from the polished silicon surface and no additional etching is introduced for manufacturing, the surface roughness is thus limited to the polishing error. This novel approach opens possibilities for fabricating a smooth surface for micromirror and microlens applications.

  19. Gallium phosphide as a new material for anodically bonded atomic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dural, Nezih; Romalis, Michael V., E-mail: romalis@princeton.edu [Physics Department, Princeton University, Princeton, New Jersey 08540 (United States)

    2014-08-01

    Miniaturized atomic sensors are often fabricated using anodic bonding of silicon and borosilicate glass. Here we describe a technique for fabricating anodically bonded alkali-metal cells using GaP and Pyrex. GaP is a non-birefringent semiconductor that is transparent at alkali-metal resonance wavelengths, allowing new sensor geometries. GaP also has a higher thermal conductivity and lower He permeability than borosilicate glass and can be anodically bonded below 200 °C, which can also be advantageous in other vacuum sealing applications.

  20. Gallium phosphide as a new material for anodically bonded atomic sensors

    Science.gov (United States)

    Dural, Nezih; Romalis, Michael V.

    2014-08-01

    Miniaturized atomic sensors are often fabricated using anodic bonding of silicon and borosilicate glass. Here we describe a technique for fabricating anodically bonded alkali-metal cells using GaP and Pyrex. GaP is a non-birefringent semiconductor that is transparent at alkali-metal resonance wavelengths, allowing new sensor geometries. GaP also has a higher thermal conductivity and lower He permeability than borosilicate glass and can be anodically bonded below 200 °C, which can also be advantageous in other vacuum sealing applications.

  1. A novel CE microchip with micro pillars column & double-L injection design for Capacitance Coupled Contactless Conductivity detection technology

    Science.gov (United States)

    Wang, Yineng; Messina, Walter; Cao, Xi; Hogan, Anna; van Zalen, Ed; Moore, Eric

    2016-10-01

    This novel capillary electrophoresis microchip, or also known as μTAS (micro total analysis system) was designed to separate complex aqueous based compounds, similar to commercial CE & microchip (capillary electrophoresis) systems, but more compact. This system can be potentially used for mobile/portable chemical analysis equipment. Un-doped silicon wafer & ultra-thin borofloat glass (Pyrex) wafers have been used to fabricate the device. Double-L injection feature, micro pillars column, bypass separation channel & hybrid- referenced C4D electrodes were designed to achieve a high SNR (signal to noise ratio), easy- separation, for a durable and reusable μTAS for CE use.

  2. Efficiency of Drude mirror-type selective transparent filters for solar thermal conversion.

    Science.gov (United States)

    Yoshida, S

    1978-01-01

    The efficiency of the solar collector consisting of a selective absorber and a selective transparent filter is derived for comparing and evaluating the collectors. The efficiency of Drude mirror type selective transparent filters is calculated in cases of a blackbody absorber and the Al(2)O(3)-Mo-Al(2)O(3)-Mo highly selective absorber. As Drude mirrors, Sn-doped In(2)O(3) films were formed on Pyrex glass plates by rf sputtering, and the dependence of the efficiencies on the operating conditions of the collector, including solar concentration and temperature of the absorber, is discussed.

  3. Solar disinfection of contaminated water: a comparison of three small-scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    McLoughlin, O.A.; Gill, L.W. [Dublin Univ. (Ireland). Dept. of Civil, Structural and Environmental Engineering; Kehoe, S.C. [Royal College of Surgeons in Ireland, Dublin (Ireland). Dept. of Surgery; McGuigan, K.G.; Duffy, E.F.; Al Touati, F. [Royal College of Surgeons in Ireland, Dublin (Ireland). Dept. of Physiology and Medical Physics; Gernjak, W.; Alberola, I.O.; Malato Rodriguez, S. [Plataforma Solar de Almeria (CIEMAT), Tabemas (Spain)

    2004-11-01

    This paper compares three different collector shapes for the disinfection of water heavily contaminated with Escherichia coli (K-12). Tests were carried out in real sunlight using laboratory scale reactors to determine the performance of different reflector profiles. The reactors were constructed using Pyrex tubing and aluminium reflectors of compound parabolic, parabolic and V-groove profiles. Results have shown that the compound parabolic reflector promoted a more successful inactivation of E. coli than the parabolic and V-groove profiles. Tests were also carried out to assess the improvement to disinfection which could be achieved using TiO{sub 2} coated Pyrex rods fixed within the reactors. This technique, however, yielded a slight enhancement in the compound parabolic reactor but no benefit to overall disinfection performance in either the parabolic or V-groove reactors. These results show that the use of UV sunlight to disinfect contaminated drinking water in a full-scale continuous flow solar reactor is both promising and an appropriate technology for developing countries but that the inclusion of a fixed photocatalyst within the reactor tubes has yet to prove any significant improvement. (Author)

  4. Optimizing Polymer Lab-on-Chip Platforms for Ultrasonic Manipulation: Influence of the Substrate

    Directory of Open Access Journals (Sweden)

    Itziar González

    2015-05-01

    Full Text Available The choice of substrate material in a chip that combines ultrasound with microfluidics for handling biological and synthetic microparticles can have a profound effect on the performance of the device. This is due to the high surface-to-volume ratio that exists within such small structures and acquires particular relevance in polymer-based resonators with 3D standing waves. This paper presents three chips developed to perform particle flow-through separation by ultrasound based on a polymeric SU-8 layer containing channelization over three different substrates: Polymethyl methacrylate (PMMA; Pyrex; and a cracked PMMA composite-like structure. Through direct observations of polystyrene microbeads inside the channel, the three checked chips exhibit their potential as disposable continuous concentration devices with different spatial pressure patterns at frequencies of resonance close to 1 Mhz. Chips with Pyrex and cracked PMMA substrates show restrictions on the number of pressure nodes established in the channel associated with the inhibition of 3D modes in the solid structure. The glass-substrate chip presents some advantages associated with lower energy requirements to collect particles. According to the results, the use of polymer-based chips with rigid substrates can be advantageous for applications that require short treatment times (clinical tests handling human samples and low-cost fabrication.

  5. Electrostatic transfer of epitaxial graphene to glass.

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne; Biedermann, Laura Butler; Beechem Iii, Thomas Edwin; Ross, Anthony Joseph, III

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.

  6. Microfabricated silicon gas chromatographic micro-channels: fabrication and performance

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, C.M.; Kottenstette, R.J.; Casalnuovo, S.A.; Frye-Mason, G.C.; Hudson, M.L.; Sasaki, D.Y.; Manginell, R.P.; Wong, C.C.

    1998-11-01

    Using both wet and plasma etching, we have fabricated micro-channels in silicon substrates suitable for use as gas chromatography (GC) columns. Micro-channel dimensions range from 10 to 80 {micro}m wide, 200 to 400 {micro}m deep, and 10 cm to 100 cm long. Micro-channels 100 cm long take up as little as 1 cm{sup 2} on the substrate when fabricated with a high aspect ratio silicon etch (HARSE) process. Channels are sealed by anodically bonding Pyrex lids to the Si substrates. We have studied micro-channel flow characteristics to establish model parameters for system optimization. We have also coated these micro-channels with stationary phases and demonstrated GC separations. We believe separation performance can be improved by increasing stationary phase coating uniformity through micro-channel surface treatment prior to stationary phase deposition. To this end, we have developed microfabrication techniques to etch through silicon wafers using the HARSE process. Etching completely through the Si substrate facilitates the treatment and characterization of the micro- channel sidewalls, which domminate the GC physico-chemical interaction. With this approach, we separately treat the Pyrex lid surfaces that form the top and bottom surfaces of the GC flow channel.

  7. Microfluidics in silicon/polymer technology as a cost-efficient alternative to silicon/glass

    Science.gov (United States)

    Kalkandjiev, K.; Riegger, L.; Kosse, D.; Welsche, M.; Gutzweiler, L.; Zengerle, R.; Koltay, P.

    2011-02-01

    We investigate TMMF photopolymer as a cost-efficient alternative to glass for the leak-tight sealing of high-density silicon microchannels. TMMF enables low temperature sealing and access to structures underneath via lamination and standard UV-lithography instead of costly glass machining and anodic bonding. TMMF is highly transparent and has a low autofluorescence for wavelengths larger than 400 nm. As the photopolymer is too thin for implementing bulky world-to-chip interfaces, we propose adhesive bonding of cyclic olefin copolymer (COC) modules. All materials were tested according ISO 10993-5 and showed no cytotoxic effects on the proliferation of L929 cells. To quantify the cost efficiency of the proposed techniques, we used an established silicon/Pyrex nanoliter dispenser as a reference and replaced structured Pyrex wafers by TMMF laminates and COC modules. Thus, consumable costs, manpower and machine time related to sealing of the microchannels and implementing the world-to-chip interface could be significantly reduced. Leak tightness was proved by applying a pressure of 0.2 MPa for 5 h without delamination or crosstalk between neighboring microchannels located only 100 µm apart. In contrast to anodic bonding, the proposed techniques are tolerant to surface inhomogeneities. They enable manufacturing of silicon/polymer microfluidics at lower costs and without compromising the performance compared to corresponding silicon/glass devices.

  8. An instrument to control parallel plate separation for nanoscale flow control

    Science.gov (United States)

    White, J.; Ma, H.; Lang, J.; Slocum, A.

    2003-11-01

    The handling of extremely small samples of gases and liquids has long been a subject of research among biologists, chemists, and engineers. A few scientific instruments, notably the surface force apparatus, have been used extensively to investigate very short-range molecular phenomena. This article describes the design, fabrication, and characterization of an easily manufactured, gas and liquid flow control device called the Nanogate. The Nanogate controls liquid flows under very high planar confinement, wherein the liquid film is, in one dimension, on the scale of nanometers, but is on the scale of hundreds of microns in its other dimensions. The liquid film is confined between a silica (Pyrex) surface with a typical roughness of Ra≈6 nm and a gold-covered silicon surface with a typical roughness of Ra≈2 nm. During the manufacturing process, the Pyrex flows and conforms to the gold-covered silicon surface, improving the mating properties of the two surfaces. The fluid film thickness can be controlled within 2 Å, from sub-10 nm up to 1 μm. Control of helium gas flow rates in the 10-9 atm cm3/s range, and sub-nl/s flow rates of water and methanol have been predicted and experimentally verified.

  9. Protection of MOS capacitors during anodic bonding

    Science.gov (United States)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  10. Microfluidic system with integrated microinjector for automated Drosophila embryo injection.

    Science.gov (United States)

    Delubac, Daniel; Highley, Christopher B; Witzberger-Krajcovic, Melissa; Ayoob, Joseph C; Furbee, Emily C; Minden, Jonathan S; Zappe, Stefan

    2012-11-21

    Drosophila is one of the most important model organisms in biology. Knowledge derived from the recently sequenced 12 genomes of various Drosophila species can today be combined with the results of more than 100 years of research to systematically investigate Drosophila biology at the molecular level. In order to enable automated, high-throughput manipulation of Drosophila embryos, we have developed a microfluidic system based on a Pyrex-silicon-Pyrex sandwich structure with integrated, surface-micromachined silicon nitride injector for automated injection of reagents. Our system automatically retrieves embryos from an external reservoir, separates potentially clustered embryos through a sheath flow mechanisms, passively aligns an embryo with the integrated injector through geometric constraints, and pushes the embryo onto the injector through flow drag forces. Automated detection of an embryo at injection position through an external camera triggers injection of reagents and subsequent ejection of the embryo to an external reservoir. Our technology can support automated screens based on Drosophila embryos as well as creation of transgenic Drosophila lines. Apart from Drosophila embryos, the layout of our system can be easily modified to accommodate injection of oocytes, embryos, larvae, or adults of other species and fills an important technological gap with regard to automated manipulation of multicellular organisms.

  11. Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.

    Science.gov (United States)

    Chaudhri, M Munawar

    2015-03-28

    In this article, high-speed photographic investigations of the dynamic crack initiation and propagation in several inorganic glasses by the impact of small spherical and conical projectiles are described. These were carried out at speeds of up to approximately 2×10(6) frames s(-1). The glasses were fused silica, 'Pyrex' (a borosilicate glass), soda lime and B(2)O(3). The projectiles were 0.8-2 mm diameter spheres of steel, glass, sapphire and tungsten carbide, and their velocities were up to 340 m s(-1). In fused silica and Pyrex, spherical projectiles' impact produced Hertzian cone cracks travelling at terminal crack velocities, whereas in soda-lime glass fast splinter cracks were generated. No crack bifurcation was observed, which has been explained by the nature of the stress intensity factor of the particle-impact-generated cracks, which leads to a stable crack growth. Crack bifurcation was, however, observed in thermally tempered glass; this bifurcation has been explained by the tensile residual stress and the associated unstable crack growth. A new explanation has been proposed for the decrease of the included angle of the Hertzian cone cracks with increasing impact velocity. B(2)O(3) glass showed dynamic compaction and plasticity owing to impact with steel spheres. Other observations, such as total contact time, crack lengths and response to oblique impacts, have also been explained.

  12. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  13. Improving the Gap between Model Predictions and Observations of Formaldehyde over the Remote Marine Regions

    Science.gov (United States)

    Trueblood, J.; Meskhidze, N.

    2013-05-01

    Formaldehyde (HCHO) is a ubiquitous oxidation product that exists in polluted rural and urban areas, as well as remote background sites where it is an important photochemical intermediate. HCHO levels of up to six times above what is typically predicted by photochemical models have been reported over the Marine Boundary Layer (MBL). As proposed mechanisms for HCHO production remain to be insufficient to explain such large discrepancies between model predictions and measured values, the role of marine regions in the creation of HCHO continues to be one of the largest sources of uncertainty in current global chemistry-transport models. Here we examine the viability of a proposed mechanism for the photochemical production of formaldehyde involving aerosols enriched with biologically produced organic matter. In this study, the phytoplankton Emiliania Huxleyi was incubated in autoclaved seawater contained within a 9 liter Pyrex glass bottle. Quantitative analysis of the enrichment of transparent exopolymer particles (TEP) and other biologically produced organic matter (dissolved and particulate) in the surface microlayer was carried out by employing Alldredge's alcian blue staining technique. To produce organic aerosols, enriched seawater was bubbled with hydrocarbon free air using a sintered glass filter placed 5 cm below the surface. Utilizing a mixed flow reaction scheme, produced aerosols were then pushed through stainless steel flow tubes into a separate 9-liter Pyrex glass container acting as a residence chamber. The container was surrounded with six Ushio 9W Midrange UVB lights to allow for the irradiation of aerosols at 306 nm. A flow rate of approximately 0.1 l/min allowed for an average aerosol residence time of 90 minutes inside the residence chamber. All air from the chamber was then passed through a 5" long Pyrex desorber tube packed with 60/80 Tenax that had been soaked in the derivatizing agent pentafluorophenyl hydrazine (PFPH). Subsequent thermal

  14. A severe hypersensitivity reaction to abacavir following re-challenge.

    Science.gov (United States)

    Todd, Sej; Emerson, C R

    2017-03-01

    We report this case to highlight the possibility of a severe hypersensitivity reaction as an important potential consequence of couples, living with HIV, sharing anti-retroviral treatment. An HIV-1 positive and carrier of HLA-B*57:01 allele, treatment experienced man was commenced one pill Regimen Stribild (tenofovir, emtricitabine, elvitegravir and cobicistat) in July 2015. On running short of medication, he admitted to sharing his partner's treatment (Triumeq; abacavir, lamivudine and dolutegravir). On the second occasion, re-introduction resulted in whole body rash 4 h post dose and was associated with fever, respiratory symptoms, headache and vomiting. On examination, he was pyrexic, tachyponeic, tachycardiac and hypotensive. Hypersensitivity to abacavir can cause significant morbidity. Re-challenge can result in a more rapid, severe and potentially life-threatening reaction. This potentially could become an increasing problem with more couples, living with HIV, sharing medication.

  15. Tuning of MEMS Gyroscope using Evolutionary Algorithm and "Switched Drive-Angle" Method

    Science.gov (United States)

    Keymeulen, Didier; Ferguson, Michael I.; Breuer, Luke; Peay, Chris; Oks, Boris; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David; Terrile, Rich; Yee, Karl

    2006-01-01

    We propose a tuning method for Micro-Electro-Mechanical Systems (MEMS) gyroscopes based on evolutionary computation that has the capacity to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. We present the results of an experiment to determine the speed and efficiency of an evolutionary algorithm applied to electrostatic tuning of MEMS micro gyros. The MEMS gyro used in this experiment is a pyrex post resonator gyro (PRG) in a closed-loop control system. A measure of the quality of tuning is given by the difference in resonant frequencies, or frequency split, for the two orthogonal rocking axes. The current implementation of the closed-loop platform is able to measure and attain a relative stability in the sub-millihertz range, leading to a reduction of the frequency split to less than 100 mHz.

  16. 一种含阻转异构体的二羧酸铀(Ⅵ)有机-金属配合物%Uranium(Ⅵ) Metal-organic Framework with Atropisomeric Dicarboxylic Ligand

    Institute of Scientific and Technical Information of China (English)

    瞿志荣

    2007-01-01

    Uranium (Ⅵ) complex [UO2((R,S)- 1,1' -binaphthylene-2,2'-dicarboxylate) (H2O)] was obtained by the hydrothermal treatment of UO2(NO3)2·6H2O with (R,S)-1,1'-binaphthylene-2,2'-dicarboxylic acid(BCA) (L) in water at 180 ℃ in Pyrex tube. The crystal belongs to monoclinic system, space group C2/c, with a=1.640 3(3) nm, b=1.1967(2) nm, c=1.066 3(17) nm, β=104.412(4)°, V=2.027 2(6) nm3, Z=4. CCDC: 659617.

  17. 6,6'-二硝基-2,2'-联苯酸铀(Ⅵ)配聚物%Uranium(Ⅵ) Coordination Polymer with 6,6'-dinitro-biphenyl-2,2'-dicarboxylic Acid Ligand

    Institute of Scientific and Technical Information of China (English)

    瞿志荣

    2007-01-01

    Uranium(Ⅵ) complex {[UO2((R,S)-1,1'-biphenyl-6,6'-dinitro-2,2'-dicarboxylate)(H2O)](H2O)} was obtained by the hydrothermal treatment of UO2(NO3)2·6H2O with (R,S)-6,6'-dinitro-biphenyl-2,2'-dicarboxylic acid(BSNCA) (L) in water at 180 ℃ in Pyrex tube. The crystal belongs to triclinic system, space group P-1, with a=0.903 45(14) nm, b=1.02443(16) nm, c=1.058 95(16) nm, α=90.411(3)°,β=112.934(3)°, γ=92.554(3)°. CCDC: 659613.

  18. Solar disinfection of contaminated water: a comparison of three small-scale continuous flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gill, L. W.; McLoughlin, O. A.; McGuigan, K. G.; Duffy, E. F.; Kehole, S. C.; Al Touati, F.; Gernjak, W.; Oller, I.; Fernandez, P.; Malato, S.

    2004-07-01

    This paper compaes three different collector shapes for the disinfection of water heavily contaminated with E. coli (k-12). Tests were carried out in real sunlight using laboratory scale reactors to determine the performance of different reflectors of compound parabolic, parabolic and V-groove profile. Results have shown successful inactivation of E. coli from an initial concentration of 1x10''6 CFU/ml in one litre within 60 minutes in all three cases. Tests were also carried out to assess the improvement to disinfection which could be achieved using TiO2 coated Pyrex rods fixed within the reactors. This technique, however, only yielded a slight benefit to overall disinfection performance. (Author) 13 refs.

  19. A novel method involving Matlab coding to determine the distribution of a collimated ionizing radiation beam

    Science.gov (United States)

    Ioan, M.-R.

    2016-08-01

    In ionizing radiation related experiments, precisely knowing of the involved parameters it is a very important task. Some of these experiments are involving the use of electromagnetic ionizing radiation such are gamma rays and X rays, others make use of energetic charged or not charged small dimensions particles such are protons, electrons, neutrons and even, in other cases, larger accelerated particles such are helium or deuterium nuclei are used. In all these cases the beam used to hit an exposed target must be previously collimated and precisely characterized. In this paper, a novel method to determine the distribution of the collimated beam involving Matlab coding is proposed. The method was implemented by using of some Pyrex glass test samples placed in the beam where its distribution and dimension must be determined, followed by taking high quality pictures of them and then by digital processing the resulted images. By this method, information regarding the doses absorbed in the exposed samples volume are obtained too.

  20. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    DEFF Research Database (Denmark)

    Kehres, Jan; Pedersen, Thomas; Masini, Federico

    2016-01-01

    -incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments......The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing...... at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles....

  1. Internal flow Patterns of the Horizontal Heat Mode Closed-Loop Oscillating Heat Pipe with Check Valves (HHMCLOHP/CV

    Directory of Open Access Journals (Sweden)

    S. Sangiamsuk

    2013-01-01

    Full Text Available This research was to study the internal flow patterns on heat transfer rates of the Horizontal Heat Mode Closed Loop Oscillating Heat Pipe with Check Valves (HHMCLOHP/CV. The HHMCLOHP/CV was made from a Pyrex glass capillary tube with a 2.4 mm inside diameter. There were 10 meandering turns with 2 check valves. Ethanol and a silver nano-ethanol mixture were used as working fluid. Experimental results found that if working fluid varies from ethanol to a silver nano-ethanol mixture and the evaporator temperature increases the main flow patterns were Slug flow + Annular flow. The main regime of each flow pattern can be determined from the flow pattern map.

  2. Eliminating thermal effects in z-scan measurements of thin PTCDA films.

    Science.gov (United States)

    Wickremasinghe, N; Wang, X; Schmitzer, H; Wagner, H P

    2014-10-06

    We investigate the two-photon absorption (TPA) and nonlinear refraction of a micrometer thick 3,4,9,10-perylentetracarboxyl-dianhydride (PTCDA) film using z-scans with tightly focused 100 fs laser pulses. The PTCDA film was grown by organic molecular beam deposition on a Pyrex substrate. To study the influence of sample heating, the pulse repetition rate was varied between 4 MHz and 50 kHz with an acousto-optic pulse selector. We find that thermal effects diminish for pulse repetition times longer than 5 and 0.75 µs when using a 10x or 20x microscope lens, respectively, resulting in a TPA coefficient of 6 cm/GW and a nonlinear refractive index of 1.2 x 10⁻¹³ cm²/W at a wavelength of 820 nm.

  3. Fabrication and Performance of a Photonic-Microfluidic Integrated Device

    Directory of Open Access Journals (Sweden)

    Benjamin R. Watts

    2012-02-01

    Full Text Available Fabrication and performance of a functional photonic-microfluidic flow cytometer is demonstrated. The devices are fabricated on a Pyrex substrate by photolithographically patterning the microchannels and optics in a SU-8 layer that is sealed via a poly(dimethylsiloxane (PDMS layer through a unique chemical bonding method. The resulting devices eliminate the free-space excitation optics through integration of microlenses onto the chip to mimic conventional cytometry excitation. Devices with beam waists of 6 μm and 12 μm in fluorescent detection and counting tests using 2.5 and 6 μm beads-show CVs of 9%–13% and 23% for the two devices, respectively. These results are within the expectations for a conventional cytometer (5%–15% and demonstrate the ability to integrate the photonic components for excitation onto the chip and the ability to maintain the level of reliable detection.

  4. Design and Construction of a Microwave Plasma Ion Source

    CERN Document Server

    Çınar, Kamil

    2011-01-01

    This thesis is about the designing and constructing a microwave ion source. The ions are generated in a thermal and dense hydrogen plasma by microwave induction. The plasma is generated by using a microwave source with a frequency of 2.45 GHz and a power of 700 W. The generated microwave is pulsing with a frequency of 50 Hz. The designed and constructed microwave system generates hydrogen plasma in a pyrex plasma chamber. Moreover, an ion extraction unit is designed and constructed in order to extract the ions from the generated hydrogen plasma. The ion beam extraction is achieved and ion currents are measured. The plasma parameters are determined by a double Langmuir probe and the ion current is measured by a Faraday cup. The designed ion extraction unit is simulated by using the dimensions of the designed and constructed ion extraction unit in order to trace out the trajectories of the extracted ions.

  5. KINETIC STUDY OF SELECTIVE GAS-PHASE OXIDATION OF ISOPROPANOL TO ACETONE USING MONOCLINIC ZRO2 AS A CATALYST

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2015-08-01

    Full Text Available Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68% and selectivity (100% for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.

  6. On current termination in rotamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, N.; Euripides, P.; Jones, I.R.; Xu, S. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences

    1995-03-01

    A new series of rotamak experiments conducted in a 50 litre spherical pyrex discharge vessel is described. An analysis of the results, together with that of previous results from a smaller, 10 litre vessel, provides an explanation for the current termination phenomenon which is such a noteworthy and characteristic feature of all rotamak discharges studied to date. It is shown that the amplitude of the applied rotating magnetic field, B{sub {omega}}, has to be greater than a certain critical value, B{sub {omega}}{sup crit}, for the rotamak discharge to be maintained. Provided B{sub {omega}} {>=} B{sub {omega}}{sup crit}, the properties of the discharge are then determined by the behaviour of the circuit used to couple the RF generators to the plasma load. The conditions necessary for the production of a compact toroidal magnetic configuration are presented. (author).

  7. Thermodynamic properties of vapor complex Na2ZrCl6

    Institute of Scientific and Technical Information of China (English)

    LI Jun-li; YU Jin; YANG Dong-mei; WANG Zhi-chang

    2007-01-01

    Thermodynamic studies were carried out for the vapor complex of sodium chloride with zirconium tetrachloride at 718-778 K and 0.5-2.5 kPa by using high temperature phase equilibrium-quenching experiments, taking closed Pyrex glass ampoules as the reaction containers. The results show that the sole predominant vapor complex is Na2ZrCl6 for the ZrCl4-NaCl system under the experimental conditions. The thermodynamic equilibrium constants and other thermodynamic functions of the reaction 2NaCl(s)+ZrCl4(g)=Na2ZrCl6(g) have been derived from the measurements. The results for the changes in enthalpy and entropy are △H0=(-70.1±1.5) kJ/mol and △S0=(-105.9±2.0) J/(mol·K) in the temperature range.

  8. Construcción de un calorímetro isoperibolico de inmersión de precisión

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo G.

    2010-07-01

    Full Text Available Se diseña y construye un calorímetro isoperibólico tipo submarino para la medida de calores de inmersión de sólidos en líquidos. La celda calorimétrica, de una capacidad aproximada de 85 mi, se fabrica en vidrio Pyrex y va sumergida dentro de una chaqueta submarina construida en bronce cromado. El conjunto se introduce dentro de un termostato de agua estabilizado a 25 ±0,001 °C. El sensor de temperatura está constituido por termisiores NTC colocados en un puente de Maier transpuesto y provisto de una Fuente de intensidad constante. La sensibilidad del termómetro es del orden de 5 * I O' °C/p V cuando la corriente de medida en el puente es del orden de 1 mA.

  9. HOT EMBOSSING METHODS FOR PLASTIC MICROCHANNEL FABRICATION

    Institute of Scientific and Technical Information of China (English)

    LIU Junshan; WANG Liding; LIU Chong; LUO Yi

    2006-01-01

    Fabrication of microchannels on polymethylmethacrylate (PMMA) substrates using novel microfabrication methods is demonstrated. The image of microchannels is transferred from a silicon master possessing the inverse image of the microchannel to a PMMA plate by using hot embossing methods. The silicon master is electrostatically bonded to a Pyrex 7740 glass wafer, which improves the device yield from about 20 devices to hundreds of devices per master. Effects of embossing temperature, pressure and time on the accuracy of replication are systematically studied using the orthogonal factorial design. According to the suggested experimental model, the time for the whole embossing procedure is shorten from about 20 min to 6 min, and the accuracy of replication is 99.3%.The reproducibility of the hot embossing method is evaluated using 10 channels on different microfluidic devices, with variations of 1.4 % in depth and 1.8% in width.

  10. Pressure Dependent Wall Relaxation in Polarized $^3$He Gaseous Cells

    CERN Document Server

    Peng, C; Chu, P -H; Gao, H; Zhang, Y

    2013-01-01

    Pressure dependence of longitudinal relaxation time (T$_1$) due to the cell wall was observed previously at both room temperature and low temperature in valved Rb-coated refillable $^3$He gaseous cells in \\cite{Zheng2}. The diffusion of $^3$He from measurement cell through a capillary tube to the valve and the subsequent depolarization on the surface of the valve was proposed to possibly explain such a pressure dependence at room temperature \\cite{Saam}. In this paper, we investigate this diffusion effect through measurements of T$_1$ with newly designed Rb-coated Pyrex glass cells at 295 K as well as finite element analysis (FEA) studies. Both the experimental results and FEA studies show that the diffusion effect is insufficient to explain the observed linear pressure-dependent behavior of T$_1$.

  11. Thermal effusivity measurement based on analysis of 3D heat flow by modulated spot heating using a phase lag matrix with a combination of thermal effusivity and volumetric heat capacity

    Science.gov (United States)

    Ohta, Hiromichi; Hatori, Kimihito; Matsui, Genzou; Yagi, Takashi; Miyake, Shugo; Okamura, Takeo; Endoh, Ryo; Okada, Ryo; Morishita, Keisuke; Yokoyama, Shinichiro; Taguchi, Kohei; Kato, Hideyuki

    2016-11-01

    The study goal was to establish a standard industrial procedure for the measurement of thermal effusivity by a thermal microscope (TM), using a periodic heating method with a thermoreflectance (TR) technique. To accomplish this goal, a working group was organized that included four research institutes. Each institute followed the same procedure: a molybdenum (Mo) film was sputtered on the surface of Pyrex, yttria-stabilized zirconia (YSZ), alumina (Al2O3), Germanium (Ge), and silicon (Si) samples, and then the phase lag of the laser intensity modulation was measured by the resultant surface temperature. A procedure was proposed to calibrate the effect of 3D heat flow, based on the analytical solution of the heat conduction equation, and thermal effusivity was measured. The derived values show good agreement with literature values. As a result, the TM calibration procedure can be recommended for practical use in measuring the thermal effusivity in a small region of the materials.

  12. Opto-thermal analysis of a lightweighted mirror for solar telescope

    CERN Document Server

    Banyal, Ravinder K; Chatterjee, S

    2013-01-01

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

  13. Examination of glass-silicon and glass-glass bonding techniques for microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Raley, N.F.; Davidson, J.C.; Balch, J.W.

    1995-10-23

    We report here on the results of experiments concerning particular bonding processes potentially useful for ultimate miniaturization of microfluidic systems. Direct anodic bonding of continuous thin pyrex glass of 250 {mu}m thickness to silicon substrates gives multiple, large voids in the glass. Etchback of thick glass of 1200 {mu}m thickness bonded to silicon substrates gives thin continuous glass layers of 189 {mu}m thickness without voids over areas of 5 cm {times} 12 cm. Glass was also successfully bonded to glass by thermal bonding at 800{degrees}C over a 5 cm {times} 7 cm area. Anticipated applications include microfabricated DNA sequencing, flow injection analysis, and liquid and gas chromatography microinstruments.

  14. Glass microfabricated nebulizer chip for mass spectrometry.

    Science.gov (United States)

    Saarela, Ville; Haapala, Markus; Kostiainen, Risto; Kotiaho, Tapio; Franssila, Sami

    2007-05-01

    A microfluidic nebulizer chip for mass spectrometry is presented. It is an all-glass device which consists of fusion bonded Pyrex wafers with embedded flow channels and a nozzle at the chip edge. A platinum heater is located on the wafer backside. Fabrication of the chip is detailed, especially glass deep etching, wafer bonding, and metal patterning. Various process combinations of bonding and metallization have been considered (anodic bonding vs. fusion bonding; heater inside/outside channel; metallization before/after bonding; platinum lift-off vs. etching). The chip vaporizes the liquid sample (0.1-10 microL min(-1)) and mixes it with a nebulizer gas (ca. 100 sccm N2). Operating temperatures can go up to 500 degrees C ensuring efficient vaporization. Thermal insulation of the glass ensures low temperatures at the far end of the chip, enabling easy interconnections.

  15. Research on low-temperature anodic bonding using induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Chen Mingxiang; Yi Xinjian [Department Opto-electronic Engineering, Huazhong Uni. of Sci. and Tech., Wuhan 430074 (China); Yuan Liulin [Institute of Microsystems, Huazhong Uni. of Sci. and Tech., Wuhan 430074 (China); Institute of Microsystems, Huazhong Uni. of Sci. and Tech., Wuhan 430074 (China); Liu Sheng [Institute of Microsystems, Huazhong Uni. of Sci. and Tech., Wuhan 430074 (China); Department Mechanical Engineering, Wayne State University, Detroit, Michigan 48202 (United States)

    2006-04-01

    This paper presents a new low temperature silicon-glass anodic bonding process using induction heating. Anodic bonding between silicon and glass (Pyrex 7740) has been achieved at temperature below 300 deg. C and almost bubble-free interfaces have been obtained. A 1KW 400KHz power supply is used to induce heat in graphite susceptors (simultaneously as the high-voltage electrodes of anodic bonding), which conduct heat to the bonding pair and permanently join the pair in 5 minutes. The results of pull tests indicate a bonding strength of above 5.0MPa for induction heating, which is greater than the strength for resistive heating at the same temperature. The fracture mainly occurs across the interface or inside the glass other than in the interface when the bonding temperature is over 200 deg. C Finally, the interfaces are examined and analyzed by scanning electron microscopy (SEM) and the bonding mechanisms are discussed.

  16. Ion chromatography on-chip.

    Science.gov (United States)

    Murrihy, J P; Breadmore, M C; Tan, A; McEnery, M; Alderman, J; O'Mathuna, C; O'Neill, A P; O'Brien, P; Avdalovic, N; Haddad, P R; Glennon, J D; Advoldvic, N

    2001-07-27

    On-chip separation of inorganic anions by ion-exchange chromatography was realized. Micro separation channels were fabricated on a silicon wafer and sealed with a Pyrex cover plate using standard photolithography, wet and dry chemical etching, and anodic bonding techniques. Quaternary ammonium latex particles were employed for the first time to coat the separation channels on-chip. Owing to the narrow depths of the channels on the chip, 0.5-10 microm, there were more interactions of the analytes with the stationary phase on the chip than in a 50-microm I.D. capillary. With off-chip injection (20 nl) and UV detection, NO2-, NO3-, I-, and thiourea were separated using 1 mM KCl as the eluent. The linear ranges for NO2- and NO3- are from 5 to 1000 microM with the detection limits of 0.5 microM.

  17. Physisorption of Ar, Kr, CH4, and N2 on 304 stainless steel at very low pressures.

    Science.gov (United States)

    Troy, M.; Wightman, J. P.

    1971-01-01

    Determination of physisorption isotherms of these gases on stainless steel by pressure change measurements in very low pressure cryogenic baths where a steel nipple was brought in contact with the test gas at 77 to 90 K in a sealed constant-volume system. The position of the nipple in the gas was changed in such a manner that gas adsorption on a 47.5 sq cm area of the steel surface could be measured. The Dubinin-Radushkevich (DR) equation (1947) was used for an empirical description of isotherms at different temperatures. The mean adsorption energies calculated from the DR plots were 1290, 1545, 1490 and 1903 cal/mol for Ar, Kr, CH4 and N2, respectively, being about 10% higher than the corresponding values on Pyrex.

  18. Photolysis of hexaarylbiimidazole sensitized by dyes and application in photopolymerization

    Institute of Scientific and Technical Information of China (English)

    GAO, Fang(高放); XU, Jin- Qi(徐锦棋); SONG, Xiao-You(宋晓友); LI, Li-Dong(李立东); YANG, Yong-Yuan(杨永源); FENG, Shu-Jing(冯树京)

    2000-01-01

    Kinetic studies on the near-UV photo-initiating polymerization of methylmethacrylate (MMA) sensitized by dye/hexaarylbiimidazole systems were carried out. When exposed to highpressure mercury lamp (filtered by Pyrex glass), dye/hexaarylbiimidazole system undergoes quick electron transfer and free radicals are produced. RSH, as hydrogen donor, can improve the polymerization efficiency of MMA. Comparisons of influence of different dyes and different RSH on the conversion of MMA photopolymerization were carried out. Excellent results have been obtained in photoimaging studies, e.g. a minimum exposure energy of the photosensitive systems of 8 mJ/cm2 can be reached and the resolution of presensitized printing plate was ca. 10μm.

  19. Development of lightweight, glass mirror segments for the Large Deployable Reflector

    Science.gov (United States)

    Melugin, R. K.; Miller, J. H.; Angel, J. R. P.; Wangsness, P. A. A.; Parks, R. E.

    1986-01-01

    Accomplishments in the development of lightweight, honeycomb-core, sandwich mirror blanks made of borosilicate and high-silica glasses at the University of Arizona for the Large Deployable Reflector program are described. In this paper, work spanning the last 2 years is reported, highlighting a new mirror blank fabrication technique that permits the fabrication of the honeycomb core integrally with the front and back plates of the blank in a single furnace cycle. Two types of mirror blanks made by this method, an off-axis, aspheric segment and a smaller Vycor circular piece, are described. The fabrication of two off-axis, aspheric mirror segments is also described. Cryogenic test results are included on the test of a 38-cm diameter, lightweight, honeycomb core, sandwich mirror made of Pyrex.

  20. Analysis and Experiment of MEMS Based Microdroplet Ejector by a Piezoelectric Stack Actuator in Microfluidic Application

    Directory of Open Access Journals (Sweden)

    K. Ganesan

    2013-12-01

    Full Text Available Micro Electro Mechanical Systems (MEMS are uncovered to an assortment of liquid environments in applications such as chemical and biological sensors and micro fluidic devices. Green interactions between liquids and micro scale structures can lead to volatile performance of MEMS in liquid environments. In this study, the design and fabrication of a multi-material high-performance micro pump is presented. The micro pumps are fabricated using MEMS fabrication techniques, comprised of silicon and Pyrex micromachining and bonding. Manufacturing steps such as three small bulk cylindrical piezoelectric material elements that are integrated with micro-fabricated Silicon-on-Insulator (SOI and glass micro machined substrates using eutectic bonding and anodic bonding processes were successfully realized and provide a robust and scalable production technique for the micro pump. Exceptional flow rates of 0.1 mL/min with 1 W power consumption based on piezoelectric stack actuation achieved by appropriate design optimization.

  1. Annual report on the services for chemical analysis and scientific glassblowing in the fiscal year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Mitsuo; Obara, Kazuhiro; Toida, Yukio; Suzuki, Daisuke; Gunji, Katsubumi; Kato, Kaneharu; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    A variety of analytical service and glassblowing service was carried out on requests from other laboratories and R and D programs within the JAERI. In the field of analytical service, various samples such as nuclear fuels, nuclear materials and radioactive wastes, were analyzed using mainly Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermal Ionization Mass Spectrometry (TIMS), Electron Probe X-ray Microanalyzer (EPMA), etc., and mostly in combination with various chemical separation methods. In the glassblowing service, various experimental instruments and vessels, made of Pyrex glass or quartz glass were produced and repaired. Thirty-three requests for the analytical service and 115 requests for the glassblowing service have been received and treated in the fiscal year 1999. This report describes the activity of the analytical service and the glassblowing service performed in the fiscal year 1999. (author)

  2. Electronically reconfigurable metal-on-silicon metamaterial

    CERN Document Server

    Urzhumov, Yaroslav; Tyler, Talmage; Dhar, Sulochana; Nguyen, Vinh; Jokerst, Nan M; Schmalenberg, Paul; Smith, David R

    2012-01-01

    Reconfigurable metamaterial-based apertures can play a unique role in both imaging and in beam-forming applications, where current technology relies mostly on the fabrication and integration of large detector or antenna arrays. Here, we report the experimental demonstration of a voltage-controlled, silicon-based electromagnetic metamaterial operating in the W-band (75-110 GHz). In this composite semiconductor metamaterial, patterned gold metamaterial elements serve both to manage electromagnetic wave propagation while simultaneously acting as electrical Schottky contacts that control the local conductivity of the semiconductor substrate. The active device layers consist of a patterned metal on a 2-{\\mu}m-thick n-doped silicon layer, adhesively bonded to a transparent Pyrex wafer. The transmittance of the composite metamaterial can be modulated over a given frequency band as a function of bias voltage. We demonstrate a quantitative understanding of the composite device through the application of numerical appr...

  3. Bibliography on aircraft fire hazards and safety. Volume 1: Hazards. Part 1: Key numbers 1 to 817

    Science.gov (United States)

    Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)

    1974-01-01

    Ignition temperatures of n-hexane, n-octane, n-decane, JP-6 jet fuel, and aircraft engine oil MIL-7-7808 (0-60-18) were determined in air using heated Pyrex cylinders and Nichrome wires, rods, or tubes. Ignition temperature varied little with fuel-air ratio, but increased as the size of the heat source was decreased. Expressions are given which define the variation of the hot surface ignition temperatures of these combustibles with the radius and the surface area of the heat source. The expressions are applicable to stagnant or low velocity flow conditions (less than 0.2 in./sec.). In addition, the hot gas ignition temperatures of the combustible vapor-air mixtures were determined with jets of hot air. These ignition temperatures also varied little with fuel-air ratio and increased as the diameter of the heat sources was decreased.

  4. Lead removal from aqueous solutions by potassium titanate doped with silica; Remocion de plomo de soluciones acuosas por titanato de potasio dopado con silice

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar G, M. A.; Aguilar E, A. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes No. 120, 31109 Chihuahua (Mexico); Gorokhovsky, A. V.; Escalante G, J. I. [Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carretera Saltillo-Mty Km. 13, Apdo. Postal 663, Saltillo 25000, Coahuila (Mexico)], e-mail: mgzlz@hotmail.com

    2009-07-01

    This paper is related to elimination of Pb{sup 2+} ions from aqueous solutions by adsorption in potassium tetra titanate doped with silica. The adsorbent was prepared in the form of granules with pastes of potassium poly titanate (45 %), powdered Pyrex glass (5 %) and potato starch (50 %), which were extruded and thermally treated at 1100 C. The structural characteristic of the granulated adsorbent allows reducing the Pb concentration, from the solutions eluted through an adsorption column, to levels below the requirement of national standards. The effects of the time of saturation of the adsorbent and the ph of the solution were also investigated on the effectiveness of the adsorption of Pb. The mechanism of lead adsorption, by the developed adsorbent, is considered as a combination of adsorption, ion-exchange and co-precipitation processes. It is also shown that the lead-saturated adsorbent could be utilized to produce high-strength non-dangerous ceramic materials. (Author)

  5. Validation of numerical simulation with PIV measurements for two anastomosis models.

    Science.gov (United States)

    Zhang, Jun-Mei; Chua, Leok Poh; Ghista, Dhanjoo N; Zhou, Tong-Ming; Tan, Yong Seng

    2008-03-01

    Hemodynamics is widely believed to influence coronary artery bypass graft (CABG) stenosis. Although distal anastomosis has been extensively investigated, further studies on proximal anastomosis are still necessary, as the extent and initiation of the stenosis process may be influenced by the flow of the proximal anastomosis per se. Therefore, in this study, two models (i.e. 90 degrees and 135 degrees anastomotic models) were designed and constructed to simulate a proximal anastomosis of CABG for the left and right coronary arteries, respectively. Flow characteristics for these models were studied experimentally in order to validate the simulation results found earlier. PIV measurements were carried out on two Pyrex glass models, so that the disturbed flow (stagnation point, flow separation and vortex) found in both proximal anastomosis models using numerical simulation, could be verified. Consequently, a fair agreement between numerical and experimental data was observed in terms of flow characteristics, velocity profiles and wall shear stress (WSS) distributions under both steady and pulsatile flow conditions. The discrepancy was postulated to be due to the difference in detailed geometry of the physical and computational models, due to manufacturing limitations. It was not possible to reproduce the exact shape of the computational model when making the Pyrex glass model. The analysis of the hemodynamic parameters based on the numerical simulation study also suggested that the 135 degrees proximal anastomosis model would alleviate the potential of intimal thickening and/or atherosclerosis, more than that of a 90 degrees proximal anastomosis model, as it had a lower variation range of time-averaged WSS and the lower segmental average of WSSG.

  6. Radiation-induced densification of sol-gel SnO{sub 2}:Sb films

    Energy Technology Data Exchange (ETDEWEB)

    Canut, B. E-mail: bruno.canut@dpm1.univ-lyon1.fr; Teodorescu, V.; Roger, J.A.; Blanchin, M.G.; Daoudi, K.; Sandu, C

    2002-05-01

    Thin films of tin oxide doped with antimony (25 at.% nominal) were deposited on either silicon wafers or pyrex plates using the sol-gel dip coating technique. The samples processed on Si consist of a single layer of SnO{sub 2}:Sb dried at low temperature (150 deg. C) for 40 min. Three successive layers, subsequently dried and annealed at 500 deg. C for 1 h, were coated on pyrex substrates. Single and multilayered samples were then implanted at room temperature with Xe{sup +} ions in the 10{sup 14}-10{sup 16} cm{sup -2} fluence range. The incident energy (300 keV) was chosen so that the main part of collisional processes occurred within the film. The atomic composition and density of the irradiated targets were determined using Rutherford backscattering spectrometry in conjunction with profilometry measurements. Structural informations were obtained from transmission electron microscopy performed on cross-sectional specimen. The results show that ion beam processing is a promising route to densify sol-gel SnO{sub 2}:Sb films without overheating the underlying substrate. As an example, the density of a single layer sample irradiated at the highest fluences exceeds 80% of bulk SnO{sub 2} density, whereas only 45% of bulk density could be achieved by means of conventional annealing at 500 deg. C. A radiation-induced densification is also evidenced in the annealed multideposits. In this case, the whole film is polycrystalline before implantation and becomes amorphous in its densified part.

  7. Decomposition of Askarel Oil by Microwave Radiation and H202/TiO2 Agents in Order to Reduce Occupational Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2012-06-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBS are the groups of organicchemical material and toxic, persistent, bio accumulate and pose a risk of causingadverse effects to human health and the environment. PCB compounds arecaused the different health effects in human depending of age, sex, route of entry,intensity and frequency exposure. This study was conducted to determine theeffect of microwave rays, hydrogen peroxide, TiO2 catalyst and ethanol on theDecomposition of PCBS.Methods: In this experiment used a MW oven, Pyrex vessel reactor (250mlvolume, Pyrex tube connector and condensing system. A 900w domestic MWoven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Raypowers used in 540، 720 and 900w. The PCBS were analyzed by GC-ECDResults: The degradation of total PCBS in terms of 540, 720 and 900W was85.03%, 90.32% and 96.87% respectively. The degradation of total PCBS in termsof ratio to solvent with transformer oil in 1:1، 2:1 and 3:1 was 53.97%، 78.98% and95.13% respectively. The degradation of total PCBs in terms of not using of H2O2/TiO2 and using 20% of H2O2 and 0.05, 0.1, 0.15 and 0.2 g TiO2 was 68.78%,93.97%, 95.13%, 96.18% and 96.87 % respectively.Conclusion: The Microwave thermal reaction was applied for the dechlorinationof PCBs and high efficiencies were obtained. Microwave power and amounts ofreactants added are important factors influencing dechlorination efficiency.

  8. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS.

  9. Development of aerosol assisted chemical vapor deposition for thin film fabrication

    Science.gov (United States)

    Maulana, Dwindra Wilham; Marthatika, Dian; Panatarani, Camellia; Mindara, Jajat Yuda; Joni, I. Made

    2016-02-01

    Chemical vapor deposition (CVD) is widely used to grow a thin film applied in many industrial applications. This paper report the development of an aerosol assisted chemical vapor deposition (AACVD) which is one of the CVD methods. Newly developed AACVD system consists of a chamber of pyrex glass, two wire-heating elements placed to cover pyrex glass, a substrate holder, and an aerosol generator using an air brush sprayer. The temperature control system was developed to prevent condensation on the chamber walls. The control performances such as the overshoot and settling time were obtained from of the developed temperature controller. Wire-heating elements were controlled at certain setting value to heat the injected aerosol to form a thin film in the substrate. The performance of as-developed AACVD system tested to form a thin film where aerosol was sprayed into the chamber with a flow rate of 7 liters/minutes, and vary in temperatures and concentrations of precursor. The temperature control system have an overshoot around 25 °C from the desired set point temperature, very small temperature ripple 2 °C and a settling time of 20 minutes. As-developed AACVD successfully fabricated a ZnO thin film with thickness of below 1 µm. The performances of system on formation of thin films influenced by the generally controlled process such as values of setting temperature and concentration where the aerosol flow rate was fixed. Higher temperature was applied, the more uniform ZnO thin films were produced. In addition, temperature of the substrate also affected on surface roughness of the obtained films, while concentration of ZnO precursor determined the thickness of produce films. It is concluded that newly simple AACVD can be applied to produce a thin film.

  10. CHOLINERGIC NEURONS OF THE BASAL FOREBRAIN MEDIATE BIOCHEMICAL AND ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING SLEEP HOMEOSTASIS

    Science.gov (United States)

    Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika

    2015-01-01

    The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989

  11. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  12. Resonantly driven micromechanical energy converters; Resonante mikromechanische Energiewandler

    Energy Technology Data Exchange (ETDEWEB)

    Kuehne, Ingo

    2009-07-01

    the basis of these models appropriate concepts for the realisation of the energy harvester with MEMS technology are conceived. The capacitive energy transducer consists of a stack of three hermetically bonded wafers (Pyrex-SOI-Pyrex, 100 mm). The piezoelectric energy harvester is manufactured on standard 150 mm wafers. Finally, both types of energy harvesters are characterised by means of impedance measurements and by comprehensive shaker tests. The results prove the functionality of the developed energy harvesters and verify the validity of the respective model description. (orig.)

  13. Estudio de la fermentación láctica para la extracción de quitina a partir de desechos de crustáceos

    Directory of Open Access Journals (Sweden)

    Martha Benavente

    2011-06-01

    Full Text Available The extraction of chitin from crustacean waste involved the deproteinisation and demineralisation of crustacean shells using lactic acid fermentation with whey and sucrose as culture medium and carbon source, respectively. The fermentation process was carried out in a vertical Pyrex reactor of 4 L by 2 and 3 weeks at room temperature. The results showed that a good deproteinisation and demineralisation was obtained; however, the product still contained traces of proteins and pigments. Therefore, it was necessary to apply a chemical process with sodium hydroxide and sodium hypochlorite, to completely remove the proteins and pigments from the structure of crustacean shell. A recovery of 85 % was obtained. The comparison of FT-IR spectra of chitin produced and a sample of commercial chitin showed a correlation rate of 93-95 %, indicating that chitin produced using the combined method has a high degree of purity. Keywords: Chitin; Shrimp shell; Sucrose; Vertical reactor; Whey La extracción de quitina a partir de desechos de crustáceos involucró la fermentación acido láctica para la desproteinización y desmineralización del caparazón de camarón, haciendo uso de suero de leche y sacarosa, como sustrato y fuente de carbono. El proceso de fermentación se llevo a cabo en un reactor vertical de vidrio Pyrex de 4 L por un período de 2 y 3 semanas a temperatura ambiente. Los resultados mostraron que aunque hubo una buena desproteinización y desmineralización, todavía el producto contenía restos de proteínas y pigmentos. Por ello, se hizo necesario aplicar un procedimiento químico con hidróxido de sodio e hipoclorito de sodio, para remover completamente las proteínas y los pigmentos de la estructura del caparazón. Al final del proceso se obtuvo una recuperación del 85 %. La comparación de los espectros FT-IR de la quitina producida con una muestra de quitina comercial, mostró un porcentaje de correlación del 93-95 %, lo que indica que

  14. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.

    Science.gov (United States)

    Kappe, C Oliver

    2013-07-16

    In the past few years, the use of microwave energy to heat chemical reactions has become an increasingly popular theme in the scientific community. This nonclassical heating technique has slowly progressed from a laboratory curiosity to an established method commonly used both in academia and in industry. Because of its efficiency, microwave heating dramatically reduces reaction times (from days and hours to minutes and seconds) and improves product purities or material properties among other advantages. Since the early days of microwave chemistry, researchers have observed rate-accelerations and, in some cases, altered product distributions as compared with reactions carried out using classical oil-bath heating. As a result, researchers have speculated that so-called specific or nonthermal microwave effects could be responsible for these differences. Much of the debate has centered on the question of whether the electromagnetic field can exert a direct influence on a chemical transformation outside of the simple macroscopic change in bulk reaction temperature. In 2009, our group developed a relatively simple "trick" that allows us to rapidly evaluate whether an observed effect seen in a microwave-assisted reaction results from a purely thermal phenomenon, or involves specific or nonthermal microwave effects. We use a microwave reaction vessel made from silicon carbide (SiC) ceramic. Because of its high microwave absorptivity, the vessel shields its contents from the electromagnetic field. As a result, we can easily mimic a conventionally heated autoclave experiment inside a microwave reactor under carefully controlled reaction conditions. The switch from an almost microwave transparent glass (Pyrex) to a strongly microwave absorbing SiC reaction vial under otherwise identical reaction conditions (temperature profiles, pressure, stirring speed) then allows us to carefully evaluate the influence of the electromagnetic field on the particular chemical transformation

  15. Primary and secondary particles chemical composition of marine emissions from Mediterranean seawaters

    Science.gov (United States)

    D'Anna, Barbara; Meme, Aurelie; Rmili, Badr; Pey, Jorge; Marchand, Nicolas; Schwier, Allison; Sellegri, Karine; Charriere, Bruno; Sempere, Richard; Mas, Sebastien; Parin, David

    2015-04-01

    Marine emissions are among the largest source of both primary particles and do highly contribute secondary organic aerosols (SOA) at a global scale. Whereas physical processes control the primary production of marine aerosols, biological activity is responsible for most of the organic fraction released from marine sources, potentially transformed into SOA when exposed to atmospheric oxidants. The Mediterranean atmosphere displays important concentrations of SOA, especially in summer, when atmospheric oxidants and photochemical activity are at their maximum. The origin of these elevated concentrations of SOA remain unclear. Here we present the results from a mesocosms study in a remote location in Corsica and a chamber study (using fresh sea water from Western Mediterranean) as part of the Source of marine Aerosol particles in the Mediterranean atmosphere (SAM) project. The mesocosm study was conducted at the Oceanographic and Marine Station STARESO (Corsica) in May 2013. One mesocosm was used as a control (with no enrichment) and the other two were enriched with nitrate and phosphate respecting Redfield ratio (N:P = 16) in order to produce a bloom of biological activity. Physical and chemical properties of the enclosed water samples together with their surrounding atmosphere were monitored during 20 days by a multi-instrumental high-time resolution set-up. In parallel, numerous additional measurements were conducted including water temperature, incident light, pH, conductivity, chemical and biological analyses, fluorescence of chlorophyll, dissolved oxygen concentration. The chamber studies were performed in a Teflon chamber of 1. 5m3 that accommodates a pyrex-container for the fresh sea-water samples. After injection of sea-water in the pyrex-container, the system is allowed to stabilize to 20-30 minutes, then it was exposed to 60-100ppbv of ozone and/or UV-A irradiation. Aerosol concentrations and their physical characteristics were followed by means of Scanning

  16. Experimental study of air-cooled water condensation in slightly inclined circular tube using infrared temperature measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungdae [Nuclear Engineering Department, Kyung Hee University, Yongin (Korea, Republic of); Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok, E-mail: dekim@knu.ac.kr [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2016-11-15

    Highlights: • Air-cooled condensation experiments in an inclined Pyrex glass tube were performed. • High-resolution wall temperature data and flow regime formations could be obtained. • The local heat flux was strongly dependent on the air-side heat transfer. • A CFD analysis was conducted for calculating the local heat flux distribution. - Abstract: This study presents the results of an investigation of the air-cooled water condensation heat transfer characteristics inside a slightly inclined circular tube made of transparent Pyrex glass. The high-resolution wall temperature data and stratified film formations could be obtained with the assistance of an infrared (IR) thermometry technique and side-view visualization using a CCD camera. In all experimental cases, the condensation flow patterns were in the fully-stratified flow region. In addition, the experimentally measured void fraction corresponded well with the logarithmic mean void fraction model. The local temperature differences in the cooling air flow across the condenser tube and high-resolution temperature profiles on the tube’s outer wall were obtained in the experimental measurements. Under the experimental conditions of this study, the local heat flux distributions in the longitudinal direction of the test tube were strongly dependent on the cooling air velocity. And, with the help of IR thermometry, the tube outer wall temperature data at 45 local points could be measured. From the data, the asymmetry distribution of the local wall temperatures and the accurate location of the transition from two-phase mixture to single phase liquid inside the tube could be obtained. Also, the analysis of the thermal resistances by condensation, wall conduction and air convection showed that the air convective heat transfer behavior can play a dominant role to the local heat transfer characteristics. Finally, in order to obtain the local heat flux distribution along the tube’s outer wall, a two

  17. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    Science.gov (United States)

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass(®) and Pyrex.

  18. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  19. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films

    Science.gov (United States)

    S. Hamideh, Mortazavi; Mahmood, Ghoranneviss; Soheil, Pilehvar; Sina, Esmaeili; Shamim, Zargham; S. Ebrahim, Hashemi; Hamzeh, Jodat

    2013-04-01

    In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemical changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy after treatment for 2 min, 4 min and 6 min in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.

  20. Wall effect in deactivation of excited molecular oxygen {sup 1}{delta}g; Reiki sanso bunshi {sup 1}{delta}g no shikkatsu ni oyobosu hyomen hanno no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. [Mechanical Engineering Laboratory, Tsukuba (Japan)

    1993-10-25

    This paper discusses effects of surface reaction on deactivation of excited molecular oxygen in {sup 1}{Delta}g condition. Gaseous oxygen containing excited oxygen generated by microwave discharge at a concentration of less than 1% is flown into several kinds of tubes to be measured such as quartz tubes (with an inner diameter of about 10 mm), and the light emitting intensity of the excited oxygen was measured upstream and downstream of the tubes to be measured (with in-tube pressure of 1 Torr or 2 Torr) to derive its concentration change. The surface reaction on the tube wall was regarded as a primary reaction, and the concentration change of the excited oxygen in flows in the round tube (attributable to the surface reaction) was analyzed. With respect to effects of tube wall materials on deactivation of the excited molecular oxygen, the surface deactivation probability in the case of using low-activity materials has decreased in the order of Pyrex, PVC, quartz, PFA and PTFE. The surface deactivation probability in the case of using a metallic material, SUS316L, was about 1000 times larger than that in the quartz. 14 refs., 7 figs., 1 tab.

  1. Feline cholecystitis and acute neutrophilic cholangitis: clinical findings, bacterial isolates and response to treatment in six cases.

    Science.gov (United States)

    Brain, Philip H; Barrs, Vanessa R; Martin, Patricia; Baral, Randolph; White, Joanna D; Beatty, Julia A

    2006-04-01

    Clinicopathological findings from six cats with confirmed cholecystitis or acute neutrophilic cholangitis are presented. Historical findings included lethargy and anorexia or inappetence of up to five days duration. On physical examination all cats were pyrexic and four out of six were jaundiced and had cranial abdominal pain. Bile samples were obtained by cholecystocentesis at exploratory coeliotomy (two cases) or by percutaneous, ultrasound-guided cholecystocentesis (four cases). Gall bladder rupture and bile peritonitis occurred subsequent to ultrasound-guided cholecystocentesis in one case. The most common bacterial isolate was Escherichia coli (four cases); E coli was isolated alone in two cases, in combination with a Streptococcus species (one case) and in combination with a Clostridium species (one case). Streptococcus species alone was isolated from one case, as was Salmonella enterica serovar Typhimurium. The latter is the first reported case of Salmonella-associated cholecystitis in a cat. Concurrent pancreatic or intestinal disease was detected histologically in three cases. All cases were treated with antimicrobials based on in vitro susceptibility results. Treatment was successful in five cases. One cat with concurrent diffuse epitheliotropic intestinal lymphoma was euthanased. Percutaneous ultrasound-guided cholecystocentesis is an effective, minimally-invasive technique enabling identification of bacterial isolates in cats with inflammatory hepatobiliary disease.

  2. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  3. Design and Optimization of the SPOT Primary Mirror Segment

    Science.gov (United States)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  4. Incorporating metal into polarized 3He target cells

    Science.gov (United States)

    Katugampola, Sumudu K.; Matyas, Daniel J.; Wang, Yunxiao; Tobias, William A.; Nelyubin, Vladimir; Cates, Gordon D.

    2017-01-01

    An upcoming measurement at Jefferson Laboratory (JLab) of the electric form factor of the neutron will utilize a polarized 3He target at high luminosity. While polarized 3He targets at JLab have previously been made entirely of glass, we describe progress toward incorporating metal windows for the electron beam. Under the conditions of our targets, very few studies have been done on the spin-relaxation of nuclear-polarized 3He on metal surfaces. We have found good performance by using Oxygen Free High Conductivity (OFHC) copper substrates electroplated with gold. The glass-to-metal transitions within our test cells were based on Housekeeper seals. We have further established that Uranium glass (Canary glass) has excellent spin-relaxation properties, and can serve as a transition glass from Pyrex to Aluminosilicate glass (GE180). Another finding was that spin-relaxation properties were sensitive to the manner in which cells were annealed, an important issue because of constraints when annealing cells containing both metal and glass.

  5. Micro-reactor for heterogeneous catalysis. Applications: hydrogen storage in hydrocarbons and filter for gas sensor; Microreacteur pour la catalyse heterogene: applications: stockage d'hydrogene dans les hydrocarbures: filtre pour capteur gaz

    Energy Technology Data Exchange (ETDEWEB)

    Roumanie, M

    2005-10-15

    This manuscript presents the design and the use of silicon micro-structured reactor for heterogeneous catalysis and especially for the dehydrogenation of methyl-cyclohexane reaction. This reaction enables on one hand to store hydrogen and on the other hand to realize technological developments since it is endothermic and difficult to carry out. By consequence, a new micro-reactor obtained by DRIE was designed and capped with a Pyrex wafer. It bundles micro-heaters deposited by screen-printing and a high temperature metallic connection. It comprises either a catalyst coming from micro-technology, Pt film deposited by sputtering or a classic catalyst, platinum supported on alumina. For this last catalyst, the micro-reactor previously pre-oxidized is pretreated by oxygen plasma or liquid way so that the deposit to walls. The wash coat could be done in open micro-reactor by dip coating in the suspension or in closed micro-reactor under vacuum or by liquid circulation. After catalytic tests realised in a macro-reactor, the Pt/Al{sub 2}O{sub 3} catalyst was chosen to be inserted in the micro-reactor. The catalytic tests realised in a micro-reactor coupled with a mass spectrometer let to show the presence of hydrogen. In parallel, the micro-reactor was used as filter to improve gas sensor selectivity. (author)

  6. Fast sorption measurements of volatile organic compounds on building materials: Part 1 – Methodology developed for field applications

    Directory of Open Access Journals (Sweden)

    M. Rizk

    2016-03-01

    Full Text Available A Proton Transfer Reaction-Mass Spectrometer (PTR-MS has been coupled to the outlet of a Field and Laboratory Emission Cell (FLEC, to measure volatile organic compounds (VOC concentration during a sorption experiments (Rizk et al., this issue [1]. The limits of detection of the PTR-MS for three VOCs are presented for different time resolution (2, 10 and 20 s. The mass transfer coefficient was calculated in the FLEC cavity for the different flow rates. The concentration profile obtained from a sorption experiment performed on a gypsum board and a vinyl flooring are also presented in comparison with the profile obtained for a Pyrex glass used as a material that do not present any sorption behavior (no sink. Finally, the correlation between the concentration of VOCs adsorbed on the surface of the gypsum board at equilibrium (Cse and the concentration of VOCs Ce measured in the gas phase at equilibrium is presented for benzene, C8 aromatics and toluene.

  7. LC and ferromagnetic resonance in soft/hard magnetic microwires

    Science.gov (United States)

    Tian, Bin; Vazquez, Manuel

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.

  8. A 13.56 MHz multicusp ion source for high intensity Ar beam

    Science.gov (United States)

    Boonyawan, D.; Chirapatpimol, N.; Sanguansak, N.; Vilaithong, T.

    2000-02-01

    A 13.56 MHz radio frequency (rf) inductively coupled multicusp ion source has been developed for producing an intense argon beam with current density in excess of 30 mA cm-2. The source chamber is a 10 cm diam aluminum cylinder surrounded by 20 rows of 3.5 kG Sm-Co5 magnets which form a longitudinal line-cusp field configuration. The rf antenna coil, placed inside the source chamber, is made of a braided wire threaded through a two turn pyrex tube 6 cm in diameter to prevent electrical leakage and ion sputtering. A 10:1 turns-ratio matching transformer is used to match the 50 Ω output impedance of the rf generator to the impedance of the plasma load. Preliminary measurements were carried out with a single- and four-hole aperture extracting system using argon gas. For single-hole extraction with pressure at 5 mTorr and rf power at 500 W, the ion current density was 27 mA cm-2. Under the same operating condition, a four-hole extracting system could achieve almost the same amount of current density of 25 mA cm-2.

  9. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Santra, T. S.; Liu, C. H.; Bhattacharyya, T. K.; Patel, P.; Barik, T. K.

    2010-06-01

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of CC, CH, SiC, and SiH bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio ID/IG. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  10. Catalytic oxidation of calcium sulfite in solution/aqueous slurry

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao; WANG Da-hui

    2004-01-01

    Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10-4 mol/L, and oxygen is of 0.2-0.4 atm.

  11. Preparation and characterization of sensing layers for pH detection in living plant cells

    Science.gov (United States)

    Mrazek, J.; Kasik, I.; Nekola, J.; Martan, T.; Podrazky, O.; Pospisilova, M.; Matejec, V.

    2011-05-01

    Local chemical sensing in living cells by fluorescence methods with submicron spatial resolution is in the scope of biologist because of bringing new information about biochemical processes in living matter [1]. One of the most important monitored variables is pH. Despite of progress of novel submicron probes suitable for in-situ measurement in living cells [1] and biological micro samples [2] still there is a lack off suitable opto-chemical transducers sensitive around pH 5-7 limiting development of novel fluorescence sensors. Moreover, the interaction of the immobilized transducer with the matrix can strongly affect its fluorescence properties. In our contributition the 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence pH transducer was incorporated into organosols based on tetraethylorthosilicate (TEOS), 3-glycidoxypropyltrimethoxysilane (GPTMS) and 3-aminopropyltriethoxysilane (APTES). Formed organosols were spin-coated onto Pyrex glass substrates and thermally treated at 140°C for 4 hours. Prepared thin layers were exposed to Britton-Robinson buffers with different pH ranging from 4 to 8 pH units. Optical properties of immobilized BCECF were investigated by the mean of absorption and fluorescence spectroscopy Acquired results were compared with the properties of BCECF solutions. It was found that all matrices reduce the sensitivity of the BCECF transducer comparing to the free solution. GPTMS and APTES contained layers exhibited better mechanical properties and increase the solubility of BCECF inside prepared layers comparing to layers prepared from pure TEOS.

  12. Zinc oxide films prepared by sol-gel spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Y.; Sakata, H. [Tokai Univ., Hiratsuka, Kanagawa (Japan). Dept. of Appl. Chem.

    2000-08-22

    The d.c. electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 10 cycle spin-coated and dried zinc acetate films followed by annealing in air at 500-575 C. The films deposited on the Pyrex glass substrate were polycrystalline and c-axis oriented. A minimum film resistivity gave 28.2 {omega} cm at an annealing temperature of 525 C. The temperature dependence of the conductivity indicated electron transport in the conduction band due to thermal excitation of donor electrons for temperatures from 250 to 300 K. The grain boundary scattering effect due to thermionic emission was confirmed. For temperatures below 250 K nearest-neighbor hopping conduction was dominant in the films. The films were transparent in the visible range above 400 nm and had sharp ultraviolet absorption edges at 380 nm. The absorption edge analysis revealed that the optical band gap energy for the films was 3.20-3.21 eV and the electronic transition was of the direct transition type. From the Urbach tail analysis the width of the localized state E{sub e}=0.07-0.08 eV. (orig.)

  13. Laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of reactions of atmospheric interest

    Science.gov (United States)

    Albaladejo, J.; Cuevas, C. A.; Notario, A.; Martínez, E.

    Atomic chlorine is highly reactive with a variety of organic and inorganic compounds so that relatively small concentrations can compete with the tropospheric oxidants (OH, O3 and NO3) in determining the tropospheric fate of such compounds [1]. Besides, there is a lot of evidence that bromine compounds play significant role in the ozone chemistry both in the troposphere and in the stratosphere [2]. In this work we show the laser photolysis-resonance fluorescence technique (LP-RF) applied to the study of gas phase reactions of halogen atoms with volatile organic compounds (VOCs) of interest in atmospheric chemistry [3]. By means of this technique is possible to measure the rate constants of theses reactions, and subsequently obtain the Arrhenius parameters. Halogens atoms are produced in a excess of the VOC and He, by photolyzing Cl2 at 308 nm to obtain Cl atoms, or CF2Br2 at 248 nm for Br atoms, both cases using a pulsed excimer laser. The radiation (135 nm) from a microwave-driven lamp, through which He containing a low concentrations of Cl2 or Br2 was flowed, was used to excite the resonance fluorescence from the corresponding halogen atom in the jacketed Pyrex reaction cell. Signal were obtained using photon-counting techniques in conjunction with multichannel scaling. The fluorescence signal from the PMT was processed by a preamplifier and sent to an multichannel scaler to collect the time-resolved signal. The multichannel scaler was coupled to a microcomputer for further kinetics analysis.

  14. Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

    Science.gov (United States)

    de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.

    2014-03-01

    We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.

  15. Vacuum annealing temperature on spray In2S3 layers

    Science.gov (United States)

    Bouguila, Nourredine; Timoumi, Abdelmajid; Bouzouita, Hassen

    2014-02-01

    Indium sulfide In2S3 thick films are deposited on glass substrates using spray technique over the optimum conditions experiments (Ts = 340 °C, S/In = 2). The films are polycrystalline and have thickness of about 1.8 μm. These films are annealed in a vacuum sealed pyrex tubes (10-5 torr). Physico-chemical characterizations by SEM observation, X-ray diffraction and EDX analysis are undertaked on these films. This treatment has improved crystallinity of samples. It has allowed thus to stabilize β and γ varieties of In2S3 material. In2O3 and In6S7 phases have appeared with very weak intensities at high temperatures. The best structure quality are obtained at 300 °C for the optimum annealed temperature (Ts = 340 °C, S/In = 2), for which samples are constituted in dominance by γ phase oriented preferentially towards (1 0 2). The grain size is 42 nm of this phase. Chemical composition of such films has changed relatively to non-treated film but it seems not be affected by treatment temperature. Atomic molar ratio S/In is obtained for 0.9. Optical study shows that these layers are transparent in the visible and optical direct band gap increases as function of annealed temperature.

  16. A sensitive Faraday rotation setup using triple modulation

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, G.; Abney, J.; Broering, M.; Korsch, W. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2015-07-15

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ{sup 2} dependence was observed.

  17. Doppler-free spectroscopy of metastable calcium in a discharge heat pipe

    Science.gov (United States)

    Hansen, Dirk; Hemmerich, Andreas

    2005-08-01

    We report on Doppler-free frequency modulation spectroscopy and polarization spectroscopy in a discharge heat pipe of yet unexplored transitions connecting the metastable P23(4s4p) state of calcium atoms with the multiply excited states P23(4p4p) and D33(4s3d) . Calcium vapor is efficiently produced in a heat pipe operating in a small Pyrex cell filled with 2torr of neon. A dc discharge running at 500V efficiently populates the metastable triplet states. Narrow resonances with bandwidths of a few tens of MHz with excellent signal-to-noise ratios are observed, well suited as references for laser frequency stabilization. Examination of the Zeeman shifts lets us determine the Landé g factors of the excited states and compare them with the predictions based on the Russel-Saunders coupling scheme. We describe an economic, simple, and robust experimental setup that should work for other alkaline-earth-metal atoms like Mg and Sr, as well as for other solid elements with insufficient vapor pressures at room temperature.

  18. The Helical Oscillating Heat Pipe: Flow Pattern Behaviour Study

    Directory of Open Access Journals (Sweden)

    Y. Sriudom

    2015-01-01

    Full Text Available This research aims to study the effect of evaporator temperature, pitch distance, and working fluid on the internal flow pattern and the heat transfer characteristics of the helical oscillating heat pipe. A Pyrex tube with an inner diameter of 2.4 mm was used to study the flow pattern in the evaporator section. The pitch distance varied at 1, 1.5, and 2 cm. Water and R-123 were used as working fluid with a filling ratio of 80% by total volume. In the evaporator section, the water temperature varied at 60, 75, and 90°C to supply heat to the heat pipe. In the condenser section, air with a temperature of 25°C was used as heat sink. From the results, it was found that 4 internal flow patterns, bubble flow, slug flow, annular flow, and stratified wavy flow, were observed in the evaporator section for both working fluids. The heat transfer rate decreased when the pitch distance was increased from 1 to 2 cm. The maximum heat flux was 2,132.6 and 1,773.4 W/m2 for the working fluid of R-123 and water, respectively. Both occurred at a pitch distance of 1 cm and an evaporator temperature of 90°C.

  19. Effect of Evaporator Lengths and Ratio of Check Valves to Number of Turns on Internal Flow Patterns of a Closed-Loop Oscillating Heat-Pipe With Check Valves

    Directory of Open Access Journals (Sweden)

    S. Rittidech

    2008-01-01

    Full Text Available A visualization study of the internal flow patterns of a closed–loop oscillating heat-pipe with check valves (CLOHP/CV at normal operating condition for several evaporator lengths (Le, and ratio of check valves to number of turns (Rcv has been conducted. This article describes the effects of varying Le, and Rcv on flow patterns. The CLOHP/CV used a Pyrex glass tube with inside diameter of 2.4 mm. The evaporator length of 50 and 150 mm. (the lengths of evaporator, adiabatic and condenser were equal were employed with 10 turns, with Rcv of 0.2 and 1. R123 was used as the working fluid with filling ratio of 50% of internal volume of tube. It was found that the internal flow patterns could be classified according to the Le and Rcv as follows: At the high heat source when the Le decreases the main flow changes from the bubble flow with slug flow to disperse bubble flow. The Rcv decreases the main flow changes from the disperse bubble flow with bubble flow to disperse bubble When the velocity of slug increases, the length of vapor bubbles rapidly decreases and the heat flux rapidly increases.

  20. A Comparative Study between the Filamentary and Glow Modes of DBD Plasma in the Treatment of Wool Fibers

    Directory of Open Access Journals (Sweden)

    Doaa. M. El-Zeer

    2014-03-01

    Full Text Available In the present research it has been studied the effect of the DBD plasma on the treatment and modification of the surface a printing properities of the wool. Two types of DBD plasma have been investigated namely; the filamentary mode FDBD plasma and the glow mode GDBD plasma to reach the best condition of the treatment. Two discharge cells have been constructed one of them is for the generation of Atmospheric pressure glow discharge APGD and the other is for the generation of filamentary dielectric barrier discharge FDBD plasma. These two cells have the same dimensions except for the type of the dielectric barrier. In the APGD cell the dielectric barrier is a commercial porous fiber while in the FDBD cell the barrier is a Pyrex glass. It has been found that changing the type of the dielectric barriers acquires the discharge different properties. The efficiencies of these two types of discharge in the treatment of the textiles has been examined by treating the wool fabric with these two types of DBD plasma at different conditions of the current and treatment time. The induced changes in wool properties, such as whiteness index, wettability, tensile strength, elongation %, surface morphology, printability and fastness properties, have been investigated. The surface characterization was performed using FTIR and SEM imaging. It has been discovered that GDBD plasma is more efficient than FDBD because of not only its homogeneity but also the high concentration of nitrogen excited species that are the responsible for the surface activation of the textile.

  1. Hantaviruses: an emerging public health threat in India? A review

    Indian Academy of Sciences (India)

    S Chandy; P Abraham; G Sridharan

    2008-11-01

    The emerging viral diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are a cause of global concern as they are increasingly reported from newer regions of the world. The hantavirus species causing HFRS include Hantaan virus, Seoul virus, Puumala virus, and Dobrava-Belgrade virus while Sin Nombre virus was responsible for the 1993 outbreak of HCPS in the Four Corners Region of the US. Humans are accidental hosts and get infected by aerosols generated from contaminated urine, feces and saliva of infected rodents. Rodents are the natural hosts of these viruses and develop persistent infection. Human to human infections are rare and the evolution of the virus depends largely on that of the rodent host. The first hantavirus isolate to be cultured, Thottapalayam virus, is the only indigenous isolate from India, isolated from an insectivore in 1964 in Vellore, South India. Research on hantaviruses in India has been slow but steady since 2005. Serological investigation of patients with pyrexic illness revealed presence of anti-hantavirus IgM antibodies in 14.7% of them. The seropositivity of hantavirus infections in the general population is about 4% and people who live and work in close proximity with rodents have a greater risk of acquiring hantavirus infections. Molecular and serological evidence of hantavirus infections in rodents and man has also been documented in this country. The present review on hantaviruses is to increase awareness of these emerging pathogens and the threats they pose to the public health system.

  2. An X band RF MEMS switch based on silicon-on-glass architecture

    Indian Academy of Sciences (India)

    M S Giridhar; Ashwini Jambhalikar; J John; R Islam; C L Nagendra; T K Alex

    2009-08-01

    Communication systems such as those used on satellite platforms demand high performance from individual components that make up the varoius systems and sub-systems. Switching and routing of RF signals between various modules is a routine and critical operation that determines the overall efficiency of the entire system. In this paper, we present the design and fabrication aspects of a direct contact RF MEMS switch designed to operate in the X band (8–12 GHz) with a target insertion of about 0·5 dB and isolation better than 30 dB. The actuation voltage is expected to be around 50 V. The die size is designed to be 3 mm (H) × 3 mm(W) × 2 mm(H). The switch is built from a low residual stress device layer of a highly conducting (0·005 Ohms-cm) silicon on insulator (SOI) wafer. After subsequent lithographic steps, the wafer is bonded to a Pyrex glass wafer which has been previously patterned with gold transmission lines and pull in electrodes. Being built from a single crystal silicon structure, the mechanical robustness of the actuator is much greater than the those in similar membrane-based devices. A 6 mask fabrication process utilizing Deep Reactive Ion Etching to achieve high aspect ratio stiction free structures was developed and implemented. Devices from the first fabrication run are being analysed in our laboratory.

  3. Zeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance

    Science.gov (United States)

    Almazán, Fernando; Pellejero, Ismael; Morales, Alberto; Urbiztondo, Miguel A.; Sesé, Javier; Pina, M. Pilar; Santamaría, Jesús

    2016-08-01

    A novel 6-step microfabrication process is proposed in this work to prepare microfluidic devices with integrated zeolite layers. In particular, microfabricated preconcentrators designed for volatile organic compounds (VOC) sensing applications are fully described. The main novelty of this work is the integration of the pure siliceous MFI type zeolite (silicalite-1) polycrystalline layer, i.e. 4.0  ±  0.5 μm thick, as active phase, within the microfabrication process just before the anodic bonding step. Following this new procedure, Si microdevices with an excellent distribution of the adsorbent material, integrated resistive heaters and Pyrex caps have been obtained. Firstly, the microconcentrator performance has been assessed by means of the normal hexane breakthrough curves as a function of sampling and desorption flowrates, temperature and micropreconcentrator design. In a step further, the best preconcentrator device has been tested in combination with downstream Si based microcantilevers deployed as VOC detectors. Thus, a preliminar evaluation of the improvement on detection sensitivity by silicalite-1 based microconcentrators is presented.

  4. A High-Pressure Polarized $^3$He Gas Target for Nuclear Physics Experiments Using A Polarized Photon Beam

    CERN Document Server

    Ye, Q; Chen, W; Gao, H; Zheng, W; Zong, X; Averett, T; Cates, G D; Tobias, W A

    2009-01-01

    Following the first experiment on three-body photodisintegration of polarized $^3$He utilizing circularly polarized photons from High Intensity Gamma Source (HI$\\gamma$S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized $^3$He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce photon beam induced backgrounds. The target is based on the technique of spin-exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is $\\sim$62\\% determined from both NMR-AFP and EPR polarimetry. The $X$ parameter is estimated to be $0.17\\pm0.06$ and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 $^3$He target cell used previously at HI$\\gamma$S. This is the first time that sol-gel coating technique has been used in a polarized $^3$He target for nuclea...

  5. Continuous emission of keV x-rays from low-pressure, low-field, low-power-RF plasma columns and significance to mirror confinement

    Science.gov (United States)

    Jandovitz, P.; Swanson, C.; Glasser, A.; Cohen, S. A.

    2016-10-01

    We report on observations of a continuous stream of 0.8-6.0 keV x-rays emitted from cool (bulk Te 4 eV), tenuous (ne 1010 cm-3), 4-cm-diameter hydrogen or argon plasma columns generated in an axisymmetric, high-mirror-ratio, tandem mirror machine heated in one end cell by an external RF (27 MHz) antenna operating at low power, 20-600 W. The continuous emission of x-rays is evidence of the steady production of energetic electrons. The source appears to be ion-induced secondary electron emission from a floating carbon cup in the vacuum system about 2 cm from the RF antenna. The cup is charged to a high negative potential, perhaps by other secondary electrons emitted from the self-biased Pyrex vessel under the antenna. X-ray emission in the central cell increases as the mirror ratio increases, an effect we attribute to increased trapping of passing particles due to non-adiabatic scattering at the midplane of the central cell. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  6. Laser-initiated decomposition products of indocyanine green (ICG) and carbon black sensitized biological tissues

    Science.gov (United States)

    Kokosa, John M.; Przyjazny, Andrzej; Bartels, Kenneth E.; Motamedi, Massoud; Hayes, Donald J.; Wallace, David B.; Frederickson, Christopher J.

    1997-05-01

    Organic dyes have found increasing use a s sensitizers in laser surgical procedures, due to their high optical absorbances. Little is known, however, about the nature of the degradation products formed when these dyes are irradiated with a laser. Previous work in our laboratories has shown that irradiation of polymeric and biological tissues with CO2 and Nd:YAG lasers produces a host of volatile and semivolatile by-products, some of which are known to be potential carcinogens. This work focuses on the identification of the chemical by-products formed by diode laser and Nd:YAG laser irradiation of indocyanine green (ICG) and carbon black based ink sensitized tissues, including bone, tendon and sheep's teeth. Samples were mounted in a 0.5-L Pyrex sample chamber equipped with quartz optical windows, charcoal filtered air inlet and an outlet attached to an appropriate sample trap and a constant flow pump. By-products were analyzed by GC/MS and HPLC. Volatiles identified included benzene and formaldehyde. Semi-volatiles included traces of polycyclic aromatics, arising from the biological matrix and inks, as well as fragments of ICG and the carbon ink components. The significance of these results will be discussed, including the necessity of using appropriate evacuation devices when utilizing lasers for surgical procedures.

  7. Helicon Discharge with Selectable Nitrogen Reactive Species Production as a Plasma Source for III-group Nitrides Growth by MBE

    Science.gov (United States)

    Biloiu, Costel; Doss, Forest; Scime, Earl

    2004-11-01

    Plasma assisted molecular beam epitaxy (PAMBE) of III-N materials is a potential alternative to MOCVD for fabrication of high quality wide band gap semiconductor devices. In the helicon plasma source, it may be possible to control the population of specific reactive nitrogen species by modification of the electron energy distribution function through the resonant wave-particle interaction arising from electrons traveling at same velocity as the helicon wave phase velocity. We report preliminary results on control of reactive nitrogen species performed in a steady state, high density, helicon plasma source CHEWIE (Compact HElicon Waves and Instabilities Experiment). The helicon vacuum chamber is a 12 cm long, Pyrex tube, 6 cm in diameter, connected to a stainless steel diffusion chamber. RF power of up to 1.0 kW over a frequency range of 3-28 MHz is used to create the steady state plasma. A 7 cm long, half wave, m = +1, helical antenna couples the rf energy into the plasma. A single solenoidal magnetic field coil surrounds the source and is capable of generating axial magnetic fields up to 600 G. Optical emission spectroscopy investigations show that under certain conditions, the decay from the long lived A^3Σ_u^+ state dominates the emission spectrum of the plasma.

  8. A novel sacrificial-layer process based on anodic bonding and its application in an accelerometer

    Directory of Open Access Journals (Sweden)

    Lingyun Wang

    2015-04-01

    Full Text Available It is found in our experiments that the depletion layer of anodic bonding is etched faster than the bulk glass (Pyrex 7740 in hydrofluoric acid (HF. Based on this interesting phenomenon, a novel process of a sacrificial layer is proposed in this paper. In order to deeply understand and investigate the rules concerning the influence of bonding parameters on this effect, firstly the width of the depletion layer under different bonding voltages and temperatures and the selection ratio of etching are revealed. To validate the feasibility of the method, a micro-machined accelerometer is designed and fabricated. The test results of resonant frequency and sensitivity of the fabricated accelerometer are 3254.5 Hz and 829.85–844.93 mV/g, respectively. This was further evidence that the depletion layer could be used as a sacrificial layer and the removable structure could be successfully released by fast etching this layer. The important feature of this method is that only one mask is needed in the whole process and therefore it could greatly simplify the fabrication process of the device.

  9. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.

    Science.gov (United States)

    Bethke, Kevin; Andrei, Virgil; Rademann, Klaus

    2016-01-01

    As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.

  10. Avaliação da Redução da Poluição do Chorume Tratado por Processo Fotoquímico

    Directory of Open Access Journals (Sweden)

    Núbia Natália Brito

    2011-10-01

    Full Text Available Este trabalho teve como objetivo avaliar a redução da poluição do chorume proveniente do aterro sanitário da cidade de Limeira-SP, através de tratamento por processo fotoquímico utilizando H2O2/UV. Os estudos foram realizados em um reator de vidro Pyrex de capacidade volumétrica de 1.7 L (100 mm de diâmetro interno, 145 mm de diâmetro externo e altura total de 300 mm equipado com sistema de refrigeração à água e recirculação do chorume. Os melhores resultados de reduções dos valores de alguns parâmetros de controle ambiental foram: 46 % de Carbono Orgânico Total (COT, 93 % de fenóis totais, 97 % de nitrogênio amoniacal e 91 % de redução da cor do chorume. Estes resultados foram alcançados utilizando as seguintes condições experimentais otimizadas: volume de H2O2 35 mL, adicionados ao reator em alíquotas de 15, 10, e 10 mL, temperatura 45oC, lâmpada de 400 Watts e tempo de tratamento de 90 minutos.

  11. Removal of lead and nickel from aqueous solutions by SiO{sub 2} doped potassium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Gonzalez, Miguel A., E-mail: mgzlz@hotmail.com [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, C.P 31109 Chihuahua (Mexico); Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carr. Saltillo-Mty, Km. 13, AP 663, CP 25 000, Saltillo, Coahuila (Mexico); Gorokhovsky, Alexander V. [Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carr. Saltillo-Mty, Km. 13, AP 663, CP 25 000, Saltillo, Coahuila (Mexico); Aguilar-Elguezabal, Alfredo [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, C.P 31109 Chihuahua (Mexico)

    2010-10-25

    This paper is related to the elimination of Pb{sup 2+} and Ni{sup 2+} ions from aqueous solutions by adsorption in potassium tetratitanate doped with silica. The adsorbent was prepared in the form of pellets from potassium polytitanate (45 W%), powdered Pyrex glass (5 W%) and potato starch pastes (50 W%), which were extruded and heat treated at 1100 deg. C. The physicochemical characteristics of the granulated adsorbent allow the retention of lead from the aqueous solutions when passed through of an adsorption column, and the lead concentration in wastewater can fulfill the maximum permissible limits of national regulations. The experimental techniques used were: ICP, SEM, BET, Mercury Porosimetry and XRD. The nickel ions removal was carried out in sets of systems batches. The effects of the time on flow of the adsorbent and the pH of the solution on the effectiveness of the adsorption of Pb were also investigated. The maximum amounts removed of lead and nickel were 28 and 19.9 mg/g in batch sets. The mechanism of lead and nickel retention on the developed adsorbent is considered as a combination of adsorption, ion-exchange and precipitation processes. At basic pH values and with the adsorption results obtained in this paper proposes a kind of complex surface based on the formation of metal hydroxide on the surface of the original adsorbent. It is also shown that the lead-saturated adsorbent could be stabilized by means of a heat treatment.

  12. Solution of the neutron transport equation by the collision probability for 3D geometries; Resolution de l`equation du transport pour les neutrons par la methode des probabilites de collision dans le geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B.

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in the interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent and inter-assembly (UO{sub 2}-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author). 30 refs.

  13. Solution of the neutron transport equation by the collision probability method for 3D geometries; Resolution de l`equation du transport par les neutrons par la methode des probabilites de collision dans les geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface-current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent, inter-assembly (U02-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author) 30 refs.

  14. Gas phase photocatalytic water splitting in silicon based µ-reactors

    DEFF Research Database (Denmark)

    Dionigi, Fabio; Vesborg, Peter Christian Kjærgaard

    to the water splitting experiments, the results obtained with SrTiO2 and TiO2 are presented. These semiconductors are well known examples of materials active under UV illumination. However to achieve high efficiency of solar energy conversion the catalysts needs to be active for longer wavelength. Ga......N:ZnO is one of the few photocatalysts that is able to achieve overall water splitting with visible light. Therefore the reaction has been studied focusing on this material. GaN:ZnO loaded with Rh2-yCryO3 showed high activity and hydrogen and oxygen could even be detected under illumination with a solar light...... to the products detection using μ-reactors. In particular a new kind of μ-reactor that has a Pyrex lid on both sides is presented. With this reactor is possible to measure the absorbance of the materials deposited inside the μ-reactor and to combine optical measurements and spectroscopy with the detection...

  15. The 14C-AMS Laboratory at IF-UFF

    Energy Technology Data Exchange (ETDEWEB)

    Macario, K.D.; Gomes, P.R.S.; Anjos, R.M.; Linares, R.; Carvalho, C.R.A.; Castro, M.D.; Oliveira, F.M.; Alves, E.Q.; Chanca, I.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In 2009 a radiocarbon sample preparation laboratory dedicated to Accelerator Mass Spectrometry was installed at the Physics Institute of the Fluminense Federal University. At the Radiocarbon Laboratory samples of several kinds of materials such as charcoal, sediments, wood and shells go through specific chemical treatment and conversion to carbon dioxide. Graphite reduction is performed in sealed Pyrex tubes, using Zinc, Titanium Hydrate, and iron catalyst within an inner tube. Samples have been successfully produced yielding fluffy homogeneous graphite leading to high and stable currents in the ion source. For sample measurement an accelerator system produced by the National Electrostatics Corporation (NEC), was installed in the Physics Institute. The machine, specially developed to carbon analysis, is the State of the Art in 14C - AMS studies and its acquisition represent a very important step for Brazil towards the development of science and technology regarding radiocarbon studies. The system includes an open air deck 250 kV single stage electrostatic accelerator with magnetic and electrostatic analyzers that enable isotope separation and detection. Radiocarbon concentrations are measured to 1 part in 10{sup 15} with precision of 0.3 The Nuclear Applied Physics group on Chronological Studies is now performing multidisciplinary research in collaboration with Brazilian and foreign groups from several fields of science such as Archaeology, Geophysics, Oceanography and Biology, in studies on the evolution of marine, terrestrial and Antarctic ecosystems. (author)

  16. Frequency-tuning radiofrequency plasma source operated in inductively-coupled mode under a low magnetic field

    Science.gov (United States)

    Takahashi, Kazunori; Nakano, Yudai; Ando, Akira

    2017-07-01

    A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.

  17. Performance of Photocatalytic Oxidation of Tetracycline in Aqueous Solution by TiO2 Nanofibers

    Directory of Open Access Journals (Sweden)

    Allahbakhsh Javid

    2013-08-01

    Full Text Available The presence of pharmaceutical compounds in water and soil has become an environmental concern. The aim of this study was to evaluate the performance of TiO 2 nanofiber in the oxidation of the antibiotic tetracycline. TiO 2 nanofiber was fabricated by electro-spinning method, and then was calcined at 560?C for 2 h. Central composite design (CCD statistic model was used to optimize tetracycline concentration, time and pH for TiO 2 catalyst. A tubular Pyrex glass reactor with diameter of 15 cm and height of 30 cm was designed and a 125W Philips HPLN lamp (UV, ? > 254 nm was used as light source. Samples were measured by high-performance liquid chromatography (HPLC. Equation of model suggests a direct relationship between pH and time with efficiency of tetracycline removal. The observations indicated that time is the most significant (scaled estimate = + 28.04 parameter in efficiency of tetracycline removal. The application of response surface methodology yielded the equation of Y?=?65.82?+?5.74?pH?+?28.04 time?+?(?3.07(pH 2 ?+?(?6.6(time 2 , with R 2 = 0.986 which represents good reliability of model. Based on the response surface plots optimum conditions for degradation of tetracycline with maximum efficiency of around 95% was attained. These conditions are as follow; concentration: 50 mg/l, pH= 8.3, time= 15 min.

  18. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas

    2013-10-10

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  19. 1ω, 2ω, and 3ω methods for measurements of thermal properties

    Science.gov (United States)

    Dames, Chris; Chen, Gang

    2005-12-01

    3ω methods are commonly used to measure the thermal conductivity of a substrate adjacent to a strip heater or the thermal conductivity and specific heat of a suspended wire. Here we consider the general case of a line heater that is also used to sense temperature. Analysis of all harmonics is presented in terms of generic thermal and electrical transfer functions and is readily adapted to other experimental configurations. We identify voltage signals at 2ω and 1ω that contain the same information about the thermal properties as the 3ω signal. The 2ω voltage requires a dc offset at the current source. The 1ω voltage requires a very stable current source, but eliminates the need for higher-harmonic detection, and is advantageous for studying the dynamics of systems with very fast thermal response times. The 1ω,2ω, and 3ω methods compare favorably with experiments using a suspended platinum wire and a line heater on a Pyrex substrate. With a modern lock-in amplifier, no common-mode voltage subtraction is necessary, which simplifies the experiment compared to the common practice of balancing a bridge or using a multiplying digital-to-analog converter. We also show that the widespread practice of using a voltage source to approximate a current source is only valid when the sample resistance is small compared to the total electrical resistance of the circuit, and derive and experimentally verify a correction factor to be used otherwise.

  20. Characterization of inductively coupled plasma generated by a quadruple antenna

    Science.gov (United States)

    Shafir, G.; Zolotukhin, D.; Godyak, V.; Shlapakovski, A.; Gleizer, S.; Slutsker, Ya; Gad, R.; Bernshtam, V.; Ralchenko, Yu; Krasik, Ya E.

    2017-02-01

    The results of the characterization of large-scale RF plasma for studying nonlinear interaction with a high-power (˜400 MW) short duration (˜0.8 ns) microwave (˜10 GHz) beam are presented. The plasma was generated inside a Pyrex tube 80 cm in length and 25 cm in diameter filled by either Ar or He gas at a pressure in the range 1.3-13 Pa using a 2 MHz RF generator with a matching system and a quadruple antenna. Good matching was obtained between the plasma parameters, which were determined using different methods including a movable Langmuir probe, microwave cut-off, interferometry, and optical emission spectroscopy. It was shown that, depending on the gas pressure and RF power delivered to the antenna, the plasma density and electron temperature can be controlled in the range 1 × 1010-5 × 1012 cm-3 and 1-3.5 eV, respectively. The plasma density was found to be uniform in terms of axial (˜60 cm) and radial (˜10 cm) dimensions. Further, it was also shown that the application of the quadruple antenna, with resonating capacitors inserted in its arms, decreases the capacitive coupling of the antenna and the plasma as well as the RF power loss along the antenna. These features make this plasma source suitable for microwave plasma wake field experiments.

  1. Preparation Of Planar Optical SiO2-TiO2 And LiNbO3 Waveguides With A Dip Coating Method And An Embossing Technique For Fabricating Grating Couplers And Channel Waveguides

    Science.gov (United States)

    Tiefenthaler, K.; Briguet, V.; Buser, E.; Horisberger, M.; Lukosz, W.

    1983-11-01

    Planar monomode and multimode Si02-Ti02 waveguides were prepared with a dip coating method from Liquicoat solutions supplied by E. MERCK. By varying the Si02:Ti02 mixture ratio the value of the refractive index nF of the waveguiding films on Pyrex glass substrates can be chosen to lie between nF-1.6 and nF =1.36 First results on the preparation of LiNb03 waveguides are also presented. Thicknesses, refractive indices and losses of the waveguides were determined at the blue-green Ar laser wavelengths and at the He-Ne laser wavelengths λ=632.8 nm and λ=1.153 μm. With an embossing technique we fabricated surface relief gratings on Si02-Ti02 wave-guides. We used them successfully as input grating couplers. We propose to use this emboss-ing technique to fabricate channel waveguides and other integrated optical components in inorganic hard waveguiding materials such as Si02-Ti02.

  2. Photodegradation of 2,4-D induced by NO₂(-) in aqueous solutions: the role of NO₂.

    Science.gov (United States)

    Yu, Chunyan; Wang, Hua; Liu, Xuan; Quan, Xie; Chen, Shuo; Zhang, Jianlin; Zhang, Peng

    2014-07-01

    To elucidate the effect of nitrite ion (NO₂(-)) on the photodegradation of organic pollutants, a 300 W mercury lamp and Pyrex tubes restricting the transmission of wavelengths below 290 nm were used to simulate sunlight, and the photodegradation processes of 2,4-dichlorophenoxyacetic acid (2,4-D) with different concentrations of NO₂(-) in freshwater and seawater were studied. The effect of reactive oxygen species (ROS) on the photolysis of 2,4-D was also demonstrated using electron paramagnetic resonance (EPR). The results indicated that the 2,4-D photolysis reaction followed the first-order kinetics in freshwater and seawater under different concentrations of NO₂(-). Meanwhile, the photochemical reaction rate of 2,4-D increased with increasing concentration of NO₂(-). When the concentration of NO₂(-) was lower than 23 mg/L, the photodegradation rate of 2,4-D in seawater was higher than that in freshwater. However, when the concentration of NO₂(-) was reached 230 mg/L, 2,4-D degradation slowed down in seawater. It was important to note that EPR spectra showed NO₂ radical was generated in the NO₂(-) solution under simulated sunlight irradiation, indicating that 2,4-D photodegradation could be induced by NO₂. These results show the key role of NO₂(-) in photochemistry and are helpful for better understanding of the phototransformation of environmental contaminants in natural aquatic systems. Copyright © 2014. Published by Elsevier B.V.

  3. Application of heterogeneous photocatalysis solar and artificial for removal of ammonia nitrogen and total phosphorus in sanitary waste water; Aplicacao da fotocatalise heterogenea solar na remocao de nitrogenio amoniacal e fosforo total em esgoto sanitario

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: z_drica@yahoo.com.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (UNICAMP), Limeira, SP (Brazil). Fac. de Tecnologia

    2010-07-01

    The advanced oxidative processes (AOP) contribute or to polishing a plenty of effluent treatment, or improvement at any stage of treatment, being heterogeneous photocatalysis the most used among AOP. This study aimed to compare the heterogeneous photocatalysis in solar and artificial wastewater treatment according to the removal of ammonia nitrogen and phosphorus. The photocatalytic reactor using titanium dioxide (TiO{sub 2}) as semiconductor photocatalytic process. The heterogeneous photocatalysis using solar UV consisted material of PET bottles and the sample was added TiO{sub 2} in constant aeration for a period of 360 minutes. In the case of reactor artificial UV light protected by a quartz tube, the process was made in a Pyrex glass reactor, where the sample was undergoing 180 minutes of aeration. The photocatalytic tests for removal of ammonia nitrogen showed more favorable in the photocatalysis of artificial UV than the solar, coming achieve average efficiency of 51% and 32%, respectively. In the case of phosphorus, the situation was reversed, the solar UV photocatalytic average efficiency reached 51% and artificial UV 32 %. (author)

  4. Imaging of Hydrophilicity and its Inhomogeneity on a Titanium Dioxide Film Exposed to Ultraviolet Irradiation Using a Newly Developed Near-Infrared Camera.

    Science.gov (United States)

    Tanabe, Ichiro; Ishikawa, Daitaro; Furukawa, Daiki; Ishigaki, Mika; Goto, Takeyoshi; Morishima, Tetsu; Okuno, Toshiaki; Ozaki, Yukihiro

    2015-11-01

    This study has investigated hydrophilicity changes and their inhomogeneity of TiO2 films on Pyrex glasses by near-infrared (NIR) spectral imaging. Near-infrared spectra of TiO2 films in the 9000-4000 cm(-1) region were measured using a newly developed NIR camera named Compovision. A band in the 5400-4800 cm(-1) region, which is assigned to a combination (ν2 + ν3) mode of bending (ν2) and antisymmetric stretching (ν3) modes of the H2O molecule, was clearly identified and its intensity increased with time in the air. It is interesting that the increased rate rose with ultraviolet (UV) light irradiation (300-400 nm, 1 mW cm(-2)) compared to without UV light irradiation. This result suggested that the hydrophilicity of TiO2 was enhanced about twice upon the UV light irradiation. Moreover, the NIR images clarified spatial distributions of the hydrophilicity on the TiO2 surface with a significantly wide area (20 × 40 mm) and a high speed (within 5 s for one image). This rapid imaging system enabled us to detect the hydrophilicity change during only 1 min. The potential of this camera is quite superior, not only for basic research, but also for diverse industrial applications.

  5. Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass

    Science.gov (United States)

    Yen, Meng-Hua; Cheng, Ji-Yen; Wei, Cheng-Wey; Chuang, Yung-Chuan; Young, Tai-Horng

    2006-07-01

    This paper uses a widely available CO2 laser scriber (λ = 10.6 µm) to perform the direct-writing ablation of quartz, borofloat and pyrex substrates for the development of microfluidic chips and cell chips. The surface quality of the ablated microchannels and the presence of debris and distortion are examined by scanning electron microscopy, atomic force microscopy and surface profile measurement techniques. The developed laser ablation system provides a versatile and economic approach for the fabrication of glass microfluidic chips with crack-free structures. In the laser writing process, the desired microfluidic patterns are designed using commercial computer software and are then transferred to the laser scriber to ablate the trenches. This process eliminates the requirement for corrosive chemicals and photomasks, and hence the overall microchip development time is limited to less than 24 h. Additionally, since the laser writing process is not limited by the dimensions of a photomask, the microchannels can be written over a large substrate area. The machining capability and versatility of the laser writing system are demonstrated through its application to the fabrication of a borofloat microfluidic chip and the writing of a series of asymmetric trenches in a microwell array. It is shown that the minimum attainable trench width is 95 µm and that the maximum trench depth is 225 µm. The system provides an economic and powerful means of rapid glass microfluidic chip development. A rapid cell-patterning method based on this method is also demonstrated.

  6. Effective Carbon Dioxide Photoreduction over Metals (Fe-, Co-, Ni-, and Cu- Incorporated TiO2/Basalt Fiber Films

    Directory of Open Access Journals (Sweden)

    Jeong Yeon Do

    2016-01-01

    Full Text Available Mineralogical basalt fibers as a complementary adsorbent were introduced to improve the adsorption of CO2 over the surfaces of photocatalysts. TiO2 photocatalysts (M-TiO2 incorporated with 5.0 mol.% 3d-transition metals (Fe, Co, Ni, and Cu were prepared using a solvothermal method and mixed with basalt fibers for applications to CO2 photoreduction. The resulting 5.0 mol.% M-TiO2 powders were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence, Brunauer, Emmett, and Teller surface area, and CO2-temperature-programmed desorption. A paste composed of two materials was coated and fixed on a Pyrex plate by a thermal treatment. The 5.0 mol.% M-TiO2/basalt fiber films increased the adsorption of CO2 significantly, indicating superior photocatalytic behavior compared to pure TiO2 and basalt fiber films, and produced 158~360 μmol gcat-1 L−1 CH4 gases after an 8 h reaction. In particular, the best performance was observed over the 5.0 mol.% Co-TiO2/basalt fiber film. These results were attributed to the effective CO2 gas adsorption and inhibition of photogenerated electron-hole pair recombination.

  7. Pulsed light desorption of molecular nitrogen from a glass surface

    Science.gov (United States)

    Atutov, S. N.; Danilina, N. A.; Mikerin, S. L.; Plekhanov, A. I.

    2014-03-01

    Experimental results on the pulsed light desorption (PLD) of molecular Nitrogen from the surface of C-52 and Pyrex glasses are presented. The aim of the study was to determine the experimental conditions to obtain the maximum manifestation of the PLD effect of molecular gases. These studies were conducted in vacuum glass cells of different sizes and shapes filled by Nitrogen, whose inner surface was illuminated by the light of a powerful flash lamp. The variation in the density of the desorbed gas in the cell caused by PLD was studied using both a mass spectrometer and a vacuum gauge attached to the illuminated cells. The experimental results are in qualitative agreement with the theoretical model developed. We demonstrates that PLD can drastically increase a peak density of desorbed Nitrogen in a cell and the maximal Nitrogen density can be achieved in a small diameter long cell of cylindrical form. We believe that the results of this experiment can be applied to the loading of some gases inside a hollow-core, photonic band-gap fiber to generate a large optical depth for an experiment in low-light-level nonlinear optics.

  8. Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor.

    Science.gov (United States)

    Gutmann, Bernhard; Glasnov, Toma N; Razzaq, Tahseen; Goessler, Walter; Roberge, Dominique M; Kappe, C Oliver

    2011-01-01

    The decomposition of 5-benzhydryl-1H-tetrazole in an N-methyl-2-pyrrolidone/acetic acid/water mixture was investigated under a variety of high-temperature reaction conditions. Employing a sealed Pyrex glass vial and batch microwave conditions at 240 °C, the tetrazole is comparatively stable and complete decomposition to diphenylmethane requires more than 8 h. Similar kinetic data were obtained in conductively heated flow devices with either stainless steel or Hastelloy coils in the same temperature region. In contrast, in a flow instrument that utilizes direct electric resistance heating of the reactor coil, tetrazole decomposition was dramatically accelerated with rate constants increased by two orders of magnitude. When 5-benzhydryl-1H-tetrazole was exposed to 220 °C in this type of flow reactor, decomposition to diphenylmethane was complete within 10 min. The mechanism and kinetic parameters of tetrazole decomposition under a variety of reaction conditions were investigated. A number of possible explanations for these highly unusual rate accelerations are presented. In addition, general aspects of reactor degradation, corrosion and contamination effects of importance to continuous flow chemistry are discussed.

  9. Characterization by NMR of reactants and products of hydrofluoroether isomers, CF3(CF2)3OCH3 and (CF3)2C(F)CF2OCH3, reacting with isopropyl alcohol.

    Science.gov (United States)

    Knachel, Howard C; Benin, Vladimir; Moddeman, William E; Birkbeck, Janine C; Kestner, Thomas A; Young, Tanya L

    2013-07-01

    The 3M Company product Novec™ 71IPA DL, a mixture of methoxyperfluorobutane, methoxyperfluoroisobutane and 4.5 wt.% isopropyl alcohol, has been found to be very stable at ambient temperature, producing fluoride at the rate of ~1 ppm/year. Our earlier kinetic and theoretical studies have identified the reaction mechanism. This paper identifies the (1)H and (19)F NMR chemical shifts, multiplicities, and coupling constants of reactants and the major products that result from aging the mixture in sealed Pyrex NMR tubes for periods up to 1.8 years at temperatures from 26 °C to 102 °C. Chemical shifts and coupling constants of fluorine and hydrogen atoms on the hydrofluoroethers and isopropyl alcohol are traced through the reactions to their values in the products--esters, isopropylmethyl ether, and HF. These spectral positions, multiplicities, and coupling constants are presented in table format and as figures to clarify the transformations observed as the samples age. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Electrostatic transfer of patterned epitaxial graphene from SiC(0001) to glass

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura B; Beechem, Thomas E; Ross, Anthony J; Ohta, Taisuke; Howell, Stephen W, E-mail: lbieder@sandia.gov, E-mail: swhowel@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2010-12-15

    We report on a scalable electrostatic process to transfer epitaxial graphene onto alkali-containing glass substrates. Multilayer epitaxial graphene (MEG) was grown by heating silicon carbide (000 1-bar ) to high temperatures (1650-1700 deg. C) in an argon-mediated environment. Optical lithography was used to define patterned graphene regions, typically 20x20 {mu}m{sup 2}, which were then transferred to Pyrex substrates. For the electrostatic transfer, a large electric potential (1.2 kV) was applied between the donor MEG sample (anode) and the heated acceptor glass substrate (cathode). Atomic force microscopy scans of the transferred graphene showed that the morphology of the transferred multilayer graphene resembles that of the donor MEG. Raman spectroscopy analysis confirmed that the graphene can be transferred without inducing defects. The sheet resistance of the transferred graphene was as low as 150 {Omega}/{open_square}. The transfer of small (1-2 {mu}m wide) and large ({approx}70x70 {mu}m{sup 2}) graphene patterns to Zerodur demonstrates the versatility of this transfer technique.

  11. Electrostatic transfer of patterned epitaxial graphene from SiC(0001) to glass

    Science.gov (United States)

    Biedermann, Laura B.; Beechem, Thomas E.; Ross, Anthony J.; Ohta, Taisuke; Howell, Stephen W.

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene onto alkali-containing glass substrates. Multilayer epitaxial graphene (MEG) was grown by heating silicon carbide (000\\bar{1} ) to high temperatures (1650-1700 °C) in an argon-mediated environment. Optical lithography was used to define patterned graphene regions, typically 20×20 μm2, which were then transferred to Pyrex substrates. For the electrostatic transfer, a large electric potential (1.2 kV) was applied between the donor MEG sample (anode) and the heated acceptor glass substrate (cathode). Atomic force microscopy scans of the transferred graphene showed that the morphology of the transferred multilayer graphene resembles that of the donor MEG. Raman spectroscopy analysis confirmed that the graphene can be transferred without inducing defects. The sheet resistance of the transferred graphene was as low as 150 Ω/squ. The transfer of small (1-2 μm wide) and large (~70×70 μm2) graphene patterns to Zerodur demonstrates the versatility of this transfer technique.

  12. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    Science.gov (United States)

    Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.

    2017-03-01

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.

  13. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Couture, R.A.; Flynn, K.F.; Jardine, L.J.; Mecham, W.J.; Pelto, R.H.; Seitz, M.G.; Williams, J.

    1980-09-01

    In a project to identify the advantages and disadvantages of encapsulating solidified waste forms in a metal matrix, leach rates of hazardous radionuclides from various matrix mterials as a function of temperature are being studied. Also, a methodology for analyzing particle size distributions obtained in impact-testing of brittle waste-form materials has been applied to the impact testing of Pyrex spheres and to earlier impact tests of a variety of materials. The transport properties of nuclear waste in geologic media are being studied. Porosity of basalt columns was measured by a method based on the elution of tritiated water. Batch tests were performed to determine the effect of rubidium concentration on cesium adsorption by limestone. An apparatus for infiltrating intact rocks with high-pressure groundwater solutions was constructed. In work on trace-element transport in lithic material, the sorption by Fe/sub 2/O/sub 3/ of iodate in concentrations of 10/sup -2/ to 10/sup -13/M and from pH 3 to 8.7 was measured, as was the sorption of iodate by sea sediments.

  14. Fabrication of filamentary potassium-doped C 60 superconductors by suspension spinning method

    Science.gov (United States)

    Goto, T.; Maezawa, M.

    2004-10-01

    This paper describes the preparation of filamentary potassium-doped C 60 superconductors prepared by the suspension spinning method. Commercial C 60 powder was suspended in mixed poly(vinyl alcohol) solution of dimethyl sulfoxide and hexamethylphosphoric triamide (sample A). The viscous suspension was extruded as a filament into a precipitating medium of methyl alcohol and coiled on a drum. The filamentary sample was also prepared by the suspension spinning by using polyacrylonitrile solution of N, N-dimethylformamide (sample B). The samples were pyrolyzed to remove volatile components. Doping of potassium for the samples was prepared as following: At first, powder samples of nominal composition K 6C 60 was prepared by reaction of C 60 with excess potassium. The K 6C 60 powder and filamentary sample with stoichiometric ratio of K 3C 60 were placed in Pyrex glass tubes and vacuum-sealed and heated at 250 °C for 36 h. SQUID measurement shows the superconductivity of sample B with Tc=18 K. On the other hand, the superconductivity more than 2 K was not detected for sample A.

  15. A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules

    DEFF Research Database (Denmark)

    In, Su-Il; Vesborg, Peter Christian Kjærgaard; Abrams, Billie

    2011-01-01

    Nitrogen-doping (N-doping) is a popular strategy for promoting the absorption of visible light in TiO2 and other photocatalysts. We have grown TiO2 nanotubes onto non-conducting Pyrex in a one step process via single layer titanium films. In an attempt to improve the self-cleaning ability...... of vertically aligned TiO2 nanotube arrays under visible light irradiation we have doped them with nitrogen and tested the resulting nanotube films by two representative test methods. The first method is an established dye-test which is typically used as a “quick-and-dirty” screening for activity. The second...... method is the gas-phase oxidation reaction of CO-oxidation and methane. The encouraging results of the dye tests are in conflict with the discouraging results of the gas-phase tests. The fact that the dye test gives a “false positive” underscores the dangers of extrapolating photocatalytic performance...

  16. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology; Simulacion Monte Carlo de la interaccion del espectro de rayos X con el tejido humano, en el rango de energias de diagnostico radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L., E-mail: fredycayllahua@gmail.com [Universidad Nacional de San Agustin, Area de Fisica Medica, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  17. Thermal radiation and low-temperature-vapour growth of HgI 2 crystal in production furnace

    Science.gov (United States)

    Roux, A.; Fedoseyev, A.; Roux, B.

    1993-06-01

    Heat exchanges in a sealed ampoule in the LTVG (low temperature vapour growth) furnace have been modelled in order to compute temperature fields and control the growth of HgI 2 crystals from vapour phase at low temperatures. We use a coupled conductive-radiative model to determine the shapes of the source and the crystal at different equilibrium states (i.e. without growth rate). The model involves conductivity anisotropy in the crystal and radiative exchanges between grey and diffuse surfaces (source and crystal interfaces, Pyrex walls), which are considered as opaque. Internal buoyancy effect is not taken into account as the pressure inside the ampoule is very small. The source temperature is fixed. For different undercoolings, i.e. for different cold finger temperatures, the "equilibrium" isotherm between the source/gas and crystal/gas interface has been numerically obtained. This "equilibrium" isotherm, which is associated with the stop of the growing process, gives a crystal shape. This shape is compared with experimental results given by the ETH-Zürich group. The model would permit a better understanding and control of the future HgI 2 crystal growth experiment. The computations are performed using a finite element package (FIDAP).

  18. Conductive-radiative model for predicting the shape of HgI2 crystal grown in the LTVG furnace

    Science.gov (United States)

    Roux, A.; Fedoseyev, A.; Roux, Bernard

    1992-08-01

    The modeling of heat exchanges in a sealed ampoule in the LTVG (Low Temperature Vapor Growth) furnace is focused upon, in order to compute temperature fields and control the growth of HgI2 crystals from vapor phase at low temperatures. A coupled conductive radiative model was used to determine the shape of the source and the crystal at different equilibrium states (that is, without growth rate). The model involves conductivity anisotropy in the crystal and radiative exchanges between grey and diffuse surfaces (source and crystal interfaces, pyrex walls), which are considered as opaque. Internal buoyancy effect is not taken into account as the pressure inside the ampoule is very small. The source temperature is fixed. For different undercoolings, that is, for different cold finger temperatures, the 'equilibrium' isotherm between the source/gas and crystal/gas interfaces was numerically obtained. This 'equilibrium' isotherm, which is associated with the stop of the growing process, gives a crystal shape. This shape is compared with experimental results given by the ETH-Zurich group. The model would permit a better understanding and control of the future HgI2 crystal growth experiment. The computations are performed using a finite element package (FIDAP).

  19. Gas-Liquid Slug Flow in Microchannels

    Science.gov (United States)

    Guenther, Axel; de Mas, Nuria; Jhunjhunwala, Manish; Schmidt, Martin A.; Jensen, Klavs F.

    2003-11-01

    Slug flow is not only an attractive regime for conducting gas-liquid reactions in microchemical systems. It also provides a normal velocity that enhances liquid mixing for high Peclet number flows, e.g. for particle synthesis. We previously extended the flow regime diagrams initially obtained for micro heat-exchangers to the liquid deficient conditions relevant to microreactors. We use silicon-based single microchannels with rectangular and triangular cross-section and hydraulic diameters of 40-400 microns that are capped with Pyrex to provide for optical access. Ethanol, water, toluene, and nitrogen are the working fluids. Superficial velocities are varied between 0.01 and 10 m/s for the gas and 0.001 and 1 m/s for the liquid with corresponding Capillary and Bond numbers between 0.001 and 0.01. We complement pulsed-laser fluorescence microscopy and confocal scanning microscopy with a non-intrusive optical sensor to monitor the transient flow at sampling rates of 10 kHz. Interfacial area, void fraction, slug velocity U_s, and the transversal velocity component introduced by internal circulation in the liquid are determined. For comparable Peclet numbers, the transverse velocity between channel wall and center is lO0.1 U_s and allows for shorter mixing lengths than reported for micromixers with patterned walls. Gas and liquid are completely separated on-chip subsequent to the mixing step.

  20. Sodium contamination of SiO2 caused by anodic bonding

    Science.gov (United States)

    Schjølberg-Henriksen, K.; Jensen, G. U.; Hanneborg, A.; Jakobsen, H.

    2003-11-01

    In this paper we present an investigation of sodium contamination of SiO2 (oxide) during anodic bonding. Sodium contamination can be deleterious to the electrical properties of silicon structures. Silicon wafers with metal-oxide semiconductor (MOS) capacitors were bonded to Corning 7740 (Pyrex) glass wafers. The concentration of mobile ions was measured on capacitors outside and within glass cavities using the triangular voltage sweep method. Using secondary ion mass spectrometry analysis, it was confirmed that the ions were sodium. We found an increase in sodium concentration Nm between 1010 and 1013 cm-2, depending on the oxide location and the geometry of the glass cavity. The gate aluminium of the MOS capacitor was found to partly shield the oxide from contamination, causing a two to five times smaller increase in Nm. Reducing the bonding voltage from 800 to 500 V did not affect the increase in Nm significantly. In contrast, changing the ambient in the bonding chamber from vacuum to 1020 mbar air, reduced the contamination of capacitors situated outside the glass. A plasma-enhanced chemical vapour deposited Si3N4 film was found to be very beneficial in protecting the capacitors. The Si3N4 prevented sodium contamination of the capacitors situated within the glass cavities, and radically reduced the contamination of the capacitors situated outside the glass. The results suggest that the contaminating sodium originated from the bulk glass.

  1. Sorbent track: Quantitative monitoring of adsorbed VOCs under in-situ plasma exposure

    Science.gov (United States)

    Jia, Zixian; Rousseau, Antoine

    2016-08-01

    Sorbent-TRACK is a new device developed to monitor adsorption and surface oxidation of pollutants under direct plasma exposure. It is based on direct transmitted Fourier Transformed Infrared (FTIR) spectroscopy. A pyrex reactor under controlled gas pressure and composition is inserted on the infrared beam of a commercially available Nicolet 5700 FTIR spectrometer. A substrate holder is located on the optical path of the infrared beam. A thin pellet of a dedicated catalyst (CeO2 in the present work) is inserted in a substrate holder and can be exposed to direct plasma treatment using a Dielectric Barrier Discharge. The time resolution of Sorbent-TRACK is limited by the time resolution of the Nicolet 5700 FTIR spectrometer and close to 30 s. The dynamic of the adsorption and plasma oxidation of acetone and isopropanol on CeO2 are studied and intermediates are monitored. Performances and sensitivity of Sorbent-TRACK are reported Adsorption and oxidation of acetone leads to production of adsorbed isobutene and acetic acid, where oxidation of isopropanol gives mainly to adsorbed acetone, mesityl oxide and acetate. An increase of the plasma power leads to an increase of the isopropanol and acetone oxidation rate and a related increase of the production of adsorbed intermediates.

  2. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  3. Temperature, Magnetic field, and Gate Bias Dependence of the Infrared Hall Effect in Graphene

    Science.gov (United States)

    Ellis, C. T.; Stier, A. V.; Stabile, A.; Kim, M.-H.; Sambandamurthy, G.; Cerne, J.; Banerjee, S.

    2010-03-01

    In our study we probe the infrared Hall conductivity (σxy) for single and bilayer graphene in the 120-1000 meV range as a function of gate bias at temperatures down to 7K and magnetic fields up to 7T using Faraday measurements. Unlike the longitudinal conductivity (σxx), which measures the sum of the optical responses for left and right circularly polarized light, σxy measures the difference and therefore is sensitive to small changes in symmetry. While σxx and the DC Hall effect have revealed extraordinary properties of graphene (Zhang, Nature 2005; Novoselov, Nature 2005; Jiang, PRL 2007; etc...) recent calculations (Morimoto, PRL 2009) predict remarkable step-like features in the infrared σxy. We also probe the chiral response of graphene due to spatial inversion symmetry breaking. Our graphene samples are prepared using several methods, including anodically bonding graphite to pyrex, which can produce a high yield of large single layer graphene flakes (>100 μm) (Shukla et al., Solid State Comm. 2009), normal mechanical exfoliation of kish graphite, and grown chemical vapor deposition techniques.

  4. Final report of experimental laboratory-scale brittle fracture studies of glasses and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.J.; Mecham, W.J.; Reedy, G.T.; Steindler, M.J.

    1982-10-01

    An experimental program was conducted to characterize the fragments generated when brittle glasses and ceramics are impacted. The direct application of the results is to radioactive waste forms for which the effects of accidental impacts must be known or predictable. Two major measurable experimental responses used for characterization of these effects are (1) the size distribution of the fragments, including the sizes that are respirable, and (2) the increase in surface area of the brittle test specimen. This report describes the glass and ceramic materials characterized, the procedures and techniques used for the characterization of size distributions and surface areas, and the results of the two key responses of the impact tests. Five alternative methods of determining size distributions were compared. Also examined were the effects of diametral and axial specimen impact configurations and the use of mechanical stops to eliminate secondary crushing during testing. Microscopic characterizations of Pyrex and SRL 131 simulated waste glass and SYNROC fragments were also performed. Preliminary correlations of impact energy with key size-distribution parameters, fragment surface areas, and respirable fines were proposed as useful for future verification and for use with modeling and scale-up studies of brittle fracture of larger realistic waste forms. The impact fragments of all specimens could be described by lognormal size distributions.

  5. Structural, optical and thermal properties of {beta}-SnS{sub 2} thin films prepared by the spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Khelia, C.; Ben Nasrallah, T.; Amlouk, M.; Belgacem, S. [Faculte des Sciences, Tunis (Tunisia). Lab. de Physique de la Matiere Condensee; Maiz, F. [Equipe de Photothermique de Nabeul, Inst. Preparatoire aux Etudes d' Ingenieur de Nabeul (Tunisia); Mnari, M. [Lab. de Chimie Analytique, Campus Univ., Tunis (Tunisia)

    2000-03-01

    Tin disulfide {beta}-SnS{sub 2} thin films have been prepared on pyrex substrates by the spray pyrolysis technique using tin tetrachloride and thiourea as starting materials. The depositions were carried out in the range of substrate temperatures from 240 to 400 C. Highly c-axis oriented {beta}-SnS{sub 2} films, having a strong (001) X-ray diffraction line are obtained at temperature 280 C and using concentration ratio in solution R = [S]/[Sn] = 2.5. Films surfaces were analyzed by contact atomic force microscopy (AFM) and by scanning electron microscopy (SEM) in order to understand the effect of the deposited temperature on the surface structure. On the other hand, from transmission and reflection spectra, the band gap energy determined is about 2.71 eV. Finally using the photodeflection spectroscopy technique, the thermal conductivity K{sub c} and diffusivity D{sub c} were obtained. Their values are 10 Wm{sup -1}K{sup -1} and 10{sup -5} m{sup 2}s{sup -1} respectively. (orig.)

  6. Introduction to Plasma Spectroscopy 2.What do spectra tell us ?

    Science.gov (United States)

    Goto, Motoshi; Murakami, Izumi; Fujimoto, Takashi

    The collisional-radiative(CR) model is introduced as an improvement to the corona model. Its formulation indicates that the population of every excited level is divided into two independent components, i.e., the ionizing and recombining plasma components. For the pulsed discharge with helium gas in a Pyrex tube which exhibits intense line radiations twice, the first and second peaks are found to correspond to the ionizing and recombining plasmas, respectively, from the different population distributions over the n3D levels. The spectrum taken in the stationary phase of the main discharge in the Large Helical Device (LHD) with helium gas suggests an ionizing plasma, and for the other two spectra taken in the plasma terminating phase, the first and the second spectra indicate the recombining plasmas of ionized and neutral helium, respectively. In all these analyses, the electron temperature and density are the variable parameters and are determined as a result of fitting of calculation to the experimental data. The spectrum observed in the helium glow discharge cannot be reproduced by CR model calculations even if the quasi-steady-state approximation for meta stable states of neutral helium is removed. The opacity effect may be the origin of this difficulty.

  7. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy.

    Science.gov (United States)

    Wang, Z; Wang, D; Jiao, N; Tung, S; Dong, Z

    2011-12-01

    A silicon nanochannel system with integrated transverse electrodes was designed and fabricated by combining micro-electro-mechanical systems (MEMS) micromachining and atomic force microscopy (AFM)-based nanolithography. The fabrication process began with the patterning of microscale reservoirs and electrodes on an oxidised silicon chip using conventional MEMS techniques. A nanochannel, approximately 30 [micro sign]m long with a small semi-circular cross-sectional area of 20 nm × 200 nm, was then mechanically machined on the oxide surface between the micro reservoirs by applying AFM nanolithography with an all-diamond probe. Anodic bonding was used to seal off the nanochannel with a matching Pyrex cover. Continuous flow in the nanochannel was verified by pressurising a solution of fluorescein isothiocyanate in ethanol through the nanochannel in a vacuum chamber. It was further demonstrated by translocating negatively charged nanobeads (diameter approximately 20 nm) through the nanochannel by using an external DC electric field. The passage of the nanobeads caused a sharp increase in the transverse electrical conductivity of the nanochannel.

  8. The Development of MEMS Device Packaging Technology using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. W.; Kim, E. H.; Kim, C. Y.; Lee, D. H.; Sa, S. H. [Dankuk Univ., Seoul (Korea, Republic of)

    2007-04-15

    Microelectromechanical systems (MEMS) are the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through microfabrication technology. One of the major issues in MEMS is to obtain a reliable packaging. Since conventional packaging technologies for MEMS require high temperatures and high voltages, packaging failures are frequently involved. In order to realize a reliable packaging, we propose a novel packaging technology for MEMS devices using proton beams; proton beams lose their energies inside the irradiated matter and the maximum energy loss is placed at the Bragg peak. By bonding two materials using the locally deposited heat near the Bragg peak, the packaging damage can be minimized. The energies of the proton beam energies were chosen by the calculation of the stopping and range of ions in matter(SRIM) and the heat analysis was carried out by using the analysis system (ANSYS). For experiments, proton-beam irradiation was performed at room temperature and atmospheric pressure. The energies were 8 {approx} 45 MeV and the currents were 1 {approx} 30 {mu}A. The experimental results show good agreements with the simulation results; melting were found inside the irradiated acrylic block at the corresponding Bragg peaks, and bondings were achieved at the interface between two aluminum plates. We believe that this technique has the potential application in the pyrex-silicon bonding for MEMS packaging.

  9. A hybrid electrohydrodynamic drop-on-demand printing system using a piezoelectric MEMS nozzle

    Science.gov (United States)

    Kim, Young-Jae; Lee, Sang-Myun; Kim, Sangjin; Hwang, Jungho; Kim, Yong-Jun

    2012-04-01

    A unique hybrid jetting system based on electrohydrodynamic and piezoelectric forces has been designed to verify the control of the drop velocity and to obtain ultrafine droplets with a high jetting frequency. Piezoelectric nozzles have been fabricated using silicon on insulator wafers and Pyrex glass employing a MEMS process and an anodic bonding process. The plate-type electrode and moving stage were used for the printing process. The droplet ejection mechanisms from the nozzle using the hybrid jetting system were captured by a high-speed camera synchronized with a trigger signal. The deformation of the meniscus and the jetting delay time in regard to the high operational firing frequency were investigated. It was found that controlling the droplet velocity without a change in the droplet volume and obtaining a smaller dot (59 µm in diameter) in hybrid printing mode compared with inkjet printing mode (151 µm in diameter) were possible. These results show this system's promising applicability to the fabrication of micro patterning for a wide range of printed electronics applications.

  10. The development of an atom chip with through silicon vias for an ultra-high-vacuum cell

    Science.gov (United States)

    Chuang, Ho-Chiao; Li, Hsiang-Fu; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2013-08-01

    This paper describes the development, fabrication and examination of an atom chip through silicon vias (TSV), which is anodically bonded with a Pyrex glass cell to form an ultra-high-vacuum system for the application of Bose-Einstein condensation (BEC) experiments. The silicon via is etched by the inductively coupled plasma reactive ion etch and filled by copper plating technology. The metal wires on both sides of the atom chips are patterned by the lithography process. Three different sizes of TSV are made and tested by continuously applying a maximum current of 17 A under the vacuum (70 Torr) and in air. In addition, after the thermal cycling of an anodic bonding process (requested at 350 °C) and a high electric field of 1000 V m-1, the TSV on atom chips can still hold the ultra-high vacuum (UHV). The conductive and vacuum yields of the TSV improved from 50% to 100% and from 75% to 81.25%, respectively after the modification of the fabrication process. Finally, the UHV test of TSV on atom chips at room temperature can be reached at 8 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under the UHV environment.

  11. Robust pressure sensor for measurements in boundary layers of liquid fluids with medium total pressures

    Science.gov (United States)

    Beutel, T.; Ferreira, N.; Leester-Schädel, M.; Büttgenbach, S.

    2011-06-01

    In this work, the latest results of the design, fabrication and characterization of a new MEMS piezoresistive pressure sensor are presented. It is made of silicon using a boron diffusion process to create piezoresistors. Significant changes in the layout as well as in the micro-fabrication process have been made, e.g. anodic bonding of a Pyrex cover on the backside. These lead to a very precise pressure sensor, which is tailor made for high dynamic measurements in fluids with a total pressure up to 4 bar. This new piezoresistive pressure sensor has been developed in order to meet the special requirements of measurements in fluid mechanics, particularly with regard to the non-intrusive nature of the sensor. The sensor development, starting with the simulation of mechanical stresses within the diaphragm is described. These calculations have lead to an optimized placement of the piezoresistors in order to achieve a maximum sensitivity. The result of this work is a sensor which has well known properties. Important parameters including sensitivity, resonance frequency and maximum load are described precisely. These are necessary to enable new measurements in the boundary layer of fluids. The experiments and the initial results, e.g. its linearity and its dynamic capability are demonstrated in several figures.

  12. A novel sacrificial-layer process based on anodic bonding and its application in an accelerometer

    Science.gov (United States)

    Wang, Lingyun; He, Yong; Zhan, Zhan; Yu, Lingke; Wang, Huan; Chen, Daner

    2015-04-01

    It is found in our experiments that the depletion layer of anodic bonding is etched faster than the bulk glass (Pyrex 7740) in hydrofluoric acid (HF). Based on this interesting phenomenon, a novel process of a sacrificial layer is proposed in this paper. In order to deeply understand and investigate the rules concerning the influence of bonding parameters on this effect, firstly the width of the depletion layer under different bonding voltages and temperatures and the selection ratio of etching are revealed. To validate the feasibility of the method, a micro-machined accelerometer is designed and fabricated. The test results of resonant frequency and sensitivity of the fabricated accelerometer are 3254.5 Hz and 829.85-844.93 mV/g, respectively. This was further evidence that the depletion layer could be used as a sacrificial layer and the removable structure could be successfully released by fast etching this layer. The important feature of this method is that only one mask is needed in the whole process and therefore it could greatly simplify the fabrication process of the device.

  13. Application of negative velocity dispersion curves to the distinction between layer and substrate Rayleigh waves

    Science.gov (United States)

    Hadjoub, Zahia; Touati, Ibtissem; Doghmane, Malika; Doghmane, Abdellaziz

    2008-10-01

    This work concerns the investigation of loading layers/substrate structures in order to determine the critical thickness at which Rayleigh wave characteristics of layers can be completely distinguished from those of the substrates. To do so, we first calculate Rayleigh velocity dispersion curves of several thin film materials (about thirty) deposited on different slow and fast substrates (Be, Al 2O 3, AlN, Si, SiO 2, Mg, SiC, TiN, WC and Pyrex). Then, from the beginning of curve saturation (corresponding to the onset of intrinsic layer characteristics) we deduced normalized thickness transition for all layers/substrates combinations. Thus, we were able to deduce an analytical linear expression relating the critical thickness to combined effects of densities and velocities of both layers and substrates. Such a simple relation can be used, as an alternative method, to predict the transition critical thickness for any layer/substrate combination without the usual lengthy calculation of dispersion curves. To cite this article: Z. Hadjoub et al., C. R. Physique 9 (2008).

  14. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    Science.gov (United States)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  15. Isotope Fractionation of chlorine in Aqueous System: One Study on Anion-Exchange Chromatography.

    Science.gov (United States)

    Musashi, M.; Oi, T.; Eggenkamp, H.; Van Cappellen, P.

    2001-05-01

    Stable chlorine isotopes such as 37Cl and 35Cl have been paid attention as useful tool identifying the source, and monitoring the transport process and natural fate of chlorinated organic pollutants in air and groundwater. However, it is not established yet whether any isotope effects accompany biodegradation or reductive dehalogenation of the pollutants (Clark and Fritz, 1997). Here we first present an experimental determination of isotope fractionation factor of chlorine in aqueous system by using anion-exchange chromatographic technique. Into the Cl-free anion exchange resin (Muromac, OH- form) packed in a 30 cm long pyrex glass column and controlled temperature at 25 oC, hydrochloric solution was fed with controlling the flow rate constant. Effluent from the column was recovered by an automatic fraction collector and prepared for Cl isotope analysis. The Cl isotope ratio (δ 37Cl vs. SMOC) was measured by IR-MS at the Utrecht University with precision of 0.06 per-mil. Magnitude of the factor obtained was 1.00035 at 25 oC. The result indicates that the lighter isotope (35Cl) was preferably fractionated into the resin phase, while the heavier one (37Cl) was enriched into the aqueous phase. This trend suggests that molecular structure of hydrolysis with Cl in aqueous phase may be more stable than that of Cl ionically bonding with the resin. This result may offer physico-chemical insights into behavior and fate of the pollutants.

  16. A Sensitive Faraday Rotation Setup Using Triple Modulation

    CERN Document Server

    Phelps, Gretchen; Broering, Mark; Korsch, Wolfgang

    2015-01-01

    The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constants of SF57 flint glass, pyrex glass, and air were tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, w...

  17. Study of Neutron From a Dense Plasma Focus Paco Instrument by Means of Nuclear Tracks Detectors

    Directory of Open Access Journals (Sweden)

    M. Milanese

    2016-08-01

    Full Text Available A most interesting feature of dense plasma foci is the acceleration of charge particle at energy in the range of MeV per nucleon. Using deuterium gas, this devices produce fusion D-D reactions, generation fast neutron pulses (~ 2.5 MeV. The device used in the present work is a Mather-type dense plasma focus, called PACO. It is a 2kJ device at 31 kV, with an oxygen-free copper anode, 50 mm long with 40 mm diameter. The coaxial cathode is formed by ten copper rods arranged in a squirrel cage configuration at a radius of 50mm. The insulator in an annular Pyrex® tube located at the base of the anode. The energy store is provided by four 1 µF (40 kV, 40 nH capacitors in parallel. The plasma focus was operated at 1.5 mb deuterium gas pressure. Neutron and accelerated particles are analyzed with material detectors (CR-39 Lantrack® for different conditions. A detailed study is made of track diameters when the plastic is chemically etched with, 6N KOH at 60°C (±1 for 12 h.

  18. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  19. Long-range pulselength scaling of 351nm laser damage thresholds

    Science.gov (United States)

    Foltyn, S. R.; Jolin, L. J.

    1986-12-01

    In a series of experiments incorporating 351nm pulselength of 9, 26, 54, and 625ns, it was found that laser damage thresholds increased as (pulselength)/sup x/, and that the exponent averaged 0.36 and ranged, for different samples, from 0.23 to 0.48. Similar results were obtained when only catastrophic damage was considered. Samples included Al2O3/SiO2 in both AR and HR multilayers, HR's of Sc2O3/SiO2 and HfO2/SiO2, and Al-on-pyrex mirror; 9ns thresholds were between 0.2 to 5.6 J/sq cm. When these data were compared with a wide range of other results - for wavelengths from 0.25 to 10.6 microns and pulselengths down to 4ps - a remarkably consistent picture emerged. Damage thresholds, on average, increase approximately as the cube-root of pulselength from picoseconds to nearly a microsecond, and do so regardless of wavelength or material under test.

  20. Elution behavior of short dsDNA strands in silicon micropillar array columns in ion pair reversed-phase chromatography mode.

    Science.gov (United States)

    Zhang, Lei; Majeed, Bivragh; Lynen, Frederic; Van Hoof, Chris; De Malsche, Wim

    2012-11-01

    In the present paper, dsDNA separation has been studied in a silicon micropillar array column using ion-pair RP-HPLC (IP-RP-HPLC). The deep-etched (32.0 μm) silicon micropillar array was fabricated by advanced deep UV lithography and by a dedicated Bosch etch process and then sealed by anodic bonding to a Pyrex glass. The pillar surface was subsequently conditioned hydrophobic. Working in isocratic mode under nonretained conditions, van Deemter curves of dsDNA and coumarin were established to assess the performance of the micropillar array column, resulting in plate heights of only a few micrometers. Working in gradient mode, separations of dsDNA fragments were evaluated. The relevant gradient operation parameters were studied to understand their influence on dsDNA separations. The correlation between DNA length and retention was measured and theoretically described in a length range of 50-500 bp, promising for the determination of DNA of an unknown length. Finally, a separation example demonstrated the excellent separation power of on-chip IP-RP chromatography by achieving a large operation range of DNA length (10-300 bp) with a 5-bp difference among 11 dsDNA fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimating index of refraction from polarimetric hyperspectral imaging measurements.

    Science.gov (United States)

    Martin, Jacob A; Gross, Kevin C

    2016-08-01

    Current material identification techniques rely on estimating reflectivity or emissivity which vary with viewing angle. As off-nadir remote sensing platforms become increasingly prevalent, techniques robust to changing viewing geometries are desired. A technique leveraging polarimetric hyperspectral imaging (P-HSI), to estimate complex index of refraction, N̂(ν̃), an inherent material property, is presented. The imaginary component of N̂(ν̃) is modeled using a small number of "knot" points and interpolation at in-between frequencies ν̃. The real component is derived via the Kramers-Kronig relationship. P-HSI measurements of blackbody radiation scattered off of a smooth quartz window show that N̂(ν̃) can be retrieved to within 0.08 RMS error between 875 cm-1 ≤ ν̃ ≤ 1250 cm-1. P-HSI emission measurements of a heated smooth Pyrex beaker also enable successful N̂(ν̃) estimates, which are also invariant to object temperature.

  2. Leptin Raises Defended Body Temperature without Activating Thermogenesis.

    Science.gov (United States)

    Fischer, Alexander W; Hoefig, Carolin S; Abreu-Vieira, Gustavo; de Jong, Jasper M A; Petrovic, Natasa; Mittag, Jens; Cannon, Barbara; Nedergaard, Jan

    2016-02-23

    Leptin has been believed to exert its weight-reducing action not only by inducing hypophagia but also by increasing energy expenditure/thermogenesis. Leptin-deficient ob/ob mice have correspondingly been thought to be thermogenically limited and to show hypothermia, mainly due to atrophied brown adipose tissue (BAT). In contrast to these established views, we found that BAT is fully functional and that leptin treatment did not increase thermogenesis in wild-type or in ob/ob mice. Rather, ob/ob mice showed a decreased but defended body temperature (i.e., were anapyrexic, not hypothermic) that was normalized to wild-type levels after leptin treatment. This was not accompanied by increased energy expenditure or BAT recruitment but, instead, was mediated by decreased tail heat loss. The weight-reducing hypophagic effects of leptin are, therefore, not augmented through a thermogenic effect of leptin; leptin is, however, pyrexic, i.e., it alters centrally regulated thresholds of thermoregulatory mechanisms, in parallel to effects of other cytokines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  4. Pool boiling with high heat flux enabled by a porous artery structure

    Science.gov (United States)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  5. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

    CERN Document Server

    Ozkan, A; Bogaerts, A; Reniers, F

    2016-01-01

    Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 ...

  6. Low cost vee-trough evacuated tube collector module

    Science.gov (United States)

    Selcuk, M. K.

    1979-01-01

    A low cost solar collector capable of operating at 150-200 C is described. An evacuated tube receiver is combined with asymmetric vee-trough concentrators. Peak efficiencies of about 40% at 120 C and 30% at 180 C are expected. Predicted future collector cost is $70/sq m which yields an energy cost of $4.20/GJ at 120 C. During the development of the vee trough/evacuated tube collector both mathematical models to predict thermal and optical performance were developed and tests run to verify theory. The asymmetric vee trough concentrator increases the solar flux intensity for an average value of 2 for year-round performance. Optimized collector module has reflector angles of 55 deg/85 deg. The aperture plane is tilted to the latitude. The reflector is made of electropolished aluminum. The supporting frame is formed by bending sheet metal. Evacuated tube receivers are Pyrex, 15 cm diam and 2.4 m long. The module has 12 tubes on right and left sides altogether. Attainable operation at temperatures on the order of 150-200 C are suitable for absorption refrigeration and power generation via Rankine engines.

  7. Ductile streaks in precision grinding of hard and brittle materials

    Indian Academy of Sciences (India)

    V C Venkatesh; S Izman; S Sharif; T T Mon; M Konneh

    2003-10-01

    Ductile streaks produced during diamond grinding of hard and brittle materials have aided the subsequent process of polishing. Two novel techniques were used to study the formation of ductile mode streaks during diamond grinding (primary process) of germanium, silicon, and glass. In the first technique, aspheric surfaces were generated on Ge and Si at conventional speeds (5000 rpm). In the second technique, diamond grinding of plano surfaces on glass and Si surfaces using high speed (100,000 rpm) was carried out. Form accuracy, surface finish and ductile mode grinding streaks are discussed in this paper. It was found that resinoid diamond wheels gave more ductile streaks than metal-bonded wheels but better form accuracy was obtained with the latter. Ductile streaks were obtained more easily with pyrex rather than with BK 7 glass thus necessitating very little time for polishing. Ductile streaks appeared in abundance on germanium rather than silicon. Both the novel grinding techniques were used on CNC machining centres.

  8. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Energy Technology Data Exchange (ETDEWEB)

    Mozetic, Miran; Cvelbar, Uros [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)], E-mail: miran.mozetic@ijs.si

    2009-08-15

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 x 10{sup 21} m{sup -3}. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O{sub 2} molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  9. Stretching cells with DEAs

    Science.gov (United States)

    Akbari, S.; Rosset, S.; Shea, H. R.

    2012-04-01

    Biological cells regulate their biochemical behavior in response to mechanical stress present in their organism. Most of the available cell cultures designed to study the effect of mechanical stimuli on cells are cm2 area, far too large to monitor single cell response or have a very low throughput. We have developed two sets of high throughput single cell stretcher devices based on dielectric elastomer microactuators to stretch groups of individual cells with various strain levels in a single experiment. The first device consists of an array of 100 μm x 200 μm actuators on a non-stretched PDMS membrane bonded to a Pyrex chip, showing up to 4.7% strain at the electric field of 96 V/μm. The second device contains an array of 100 μm x 100 μm actuators on a 160% uniaxially prestretched PDMS membrane suspended over a frame. 37% strain is recorded at the nominal electric field of 114 V/μm. The performance of these devices as a cell stretcher is assessed by comparing their static and dynamic behavior.

  10. Lift-Off Free Fabrication Approach for Periodic Structures with Tunable Nano Gaps for Interdigitated Electrode Arrays.

    Science.gov (United States)

    Partel, Stefan; Dincer, Can; Kasemann, Stephan; Kieninger, Jochen; Edlinger, Johannes; Urban, Gerald

    2016-01-26

    We report a simple, low-cost and lift-off free fabrication approach for periodic structures with adjustable nanometer gaps for interdigitated electrode arrays (IDAs). It combines an initial structure and two deposition process steps; first a dielectric layer is deposited, followed by a metal evaporation. The initial structure can be realized by lithography or any other structuring technique (e.g., nano imprint, hot embossing or injection molding). This method allows the fabrication of nanometer sized gaps and completely eliminates the need for a lift-off process. Different substrate materials like silicon, Pyrex or polymers can be used. The electrode gap is controlled primarily by sputter deposition of the initial structure, and thus, adjustable gaps in the nanometer range can be realized independently of the mask or stamp pattern. Electrochemical characterizations using redox cycling in ferrocenemethanol (FcMeOH) demonstrate signal amplification factors of more than 110 together with collection factors higher than 99%. Furthermore, the correlation between the gap width and the amplification factor was studied to obtain an electrochemical performance assessment of the nano gap electrodes. The results demonstrate an exponential relationship between amplification factor and gap width.

  11. Hydrocarbons emissions from Cerro Prieto Geothermal Power Plant, Mexico

    Science.gov (United States)

    Navarro, Karina; Navarro-González, Rafael; de la Rosa, José; Peralta, Oscar; Castro, Telma; Imaz, Mireya

    2014-05-01

    One of the most important environmental issues related to the use of geothermal fluids to generate electricity is the emission of non-condensable gases to the atmosphere. Mexico has one of the largest geothermal plants in the world. The facility is located at Cerro Prieto, Baja California, roughly 30 km south of Mexicali and the international boundary between Mexico and United States. The Cerro Prieto power plant has 13 units grouped on four individual powerhouses. Gas samples from 9 units of the four powerhouses were collected during 4 campaigns conducted in May-July, 2010, February, 2012, December, 2012, and May, 2013. Gas samples from the stacks were collected in 1000 ml Pyrex round flasks with Teflon stopcocks, and analyzed by gas chromatography-mass spectrometry. Methane was the most abundant aliphatic hydrocarbon, with a concentration that ranged from less than 1% up to 3.5% of the total gas mixture. Normal alkanes represented the second most abundant species, and displayed a decreasing abundance with increasing carbon number in the homologous series. Isoalkanes were also present as isobutane and isopentane. Cycloalkanes occurring as cyclopentane and cyclohexane, were detected only at trace level. Unsaturated hydrocarbons (alkenes and alkynes) were not detected. Benzene was detected at levels ranging from less than 1% up to 3.4% of the total gas mixture. Other aromatic hydrocarbons detected were toluene, and xylenes, and were present at lower concentrations (

  12. Micromachined strain gauges for the determination of liquid flow friction coefficients in microchannels

    Science.gov (United States)

    Baviere, R.; Ayela, F.

    2004-02-01

    In this research program, we have performed and tested cupro-nickel (Cu-Ni) strain gauges micromachined on different sorts of silicon nitride (Si3N4) membranes. The design of the gauges obeys an electrical Wheatstone bridge configuration. We have found a good agreement between the expected electromechanical response of the bridge and the experimental signals. The results have displayed sensitivity to static pressure ranging from 50 to 100 µV V-1 bar-1 as a function of the thickness and of the diameter of the membranes. This is part of a study devoted to determining liquid flow friction coefficients in silicon-Pyrex microchannels. Preliminary attempts (Reynolds number up to 300) made using global pressure measurements and with very simple local pressure probes are discussed. Further experiments using Cu-Ni strain gauges are described. Their micromachining, characterization and integration along silicon microchannels are presented. These sensors permitted us to perform the first local and reliable pressure drop measurements in a 7.5 µm deep microchannel. The results are in good agreement with the classical laminar theory for a Reynolds number ranging from 0.2 to 3.

  13. SQUID-Detected MRI in the Limit of Zero Static Field

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Nathan Dean [Univ. of California, Berkeley, CA (United States)

    2009-12-14

    This thesis describes an implementation of the so-called"zero-field MRI" (ZFMRI) pulse sequence, which allows for imaging in an arbitrarily low B0 field. The ZFMRI sequence created an effective unidirectional gradient field by using a train of pi pulses to average out the concomitant gradient components during encoding. The signals were acquired using a low-transition temperature dc Superconducting QUantum Interference Device (low-Tc dc SQUID) coupled to a first-order axial gradiometer. The experiments were carried out in a liquid helium dewar which was magnetically shielded with a single-layer mu-metal can around the outside and a superconducting Pb can contained within the helium space. We increased the filling factor of the custom-made, double-walled Pyrex insert by placing the liquid alcohol sample, at a temperature of approximately -50 degrees C, at the center of one loop of the superconducting gradiometer, which was immersed in the helium bath.

  14. Atmospheric reactivity of vinyl acetate: kinetic and mechanistic study of its gas-phase oxidation by OH, O3, and NO3.

    Science.gov (United States)

    Picquet-Varrault, B; Scarfogliero, M; Doussin, J-F

    2010-06-15

    Vinyl acetate is widely used in industry. It has been classified as a high-production volume (HPV) chemical in the United States. To evaluate its impact on the environment and air quality, its atmospheric reactivity toward the three main tropospheric oxidants (OH, NO(3), and O(3)) has been investigated. Kinetic and mechanistic experiments have been conducted at room temperature and atmospheric pressure using an indoor Pyrex simulation chamber coupled to Fourier transform infrared (FTIR) and UV-visible spectrometers. Rate constants for the reactions of vinyl acetate with OH, NO(3), and O(3) were equal to (2.3 +/- 0.3) x 10(-11), (7.3 +/- 1.8) x 10(-15), and (3.0 +/- 0.4) x 10(-18) cm(3) molecule(-1) s(-1), respectively. From these data, tropospheric lifetimes of vinyl acetate have been estimated as follows: tau(OH) = 6 h, tau(NO(3)) = 6 days, and tau(O(3)) = 5 days. This demonstrates that reaction with OH radicals is the main tropospheric loss process of this compound. From the mechanistic experiments, main oxidation products have been identified and quantified and oxidation schemes have been proposed for each studied reaction.

  15. Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor

    Directory of Open Access Journals (Sweden)

    Dominique M. Roberge

    2011-04-01

    Full Text Available The decomposition of 5-benzhydryl-1H-tetrazole in an N-methyl-2-pyrrolidone/acetic acid/water mixture was investigated under a variety of high-temperature reaction conditions. Employing a sealed Pyrex glass vial and batch microwave conditions at 240 °C, the tetrazole is comparatively stable and complete decomposition to diphenylmethane requires more than 8 h. Similar kinetic data were obtained in conductively heated flow devices with either stainless steel or Hastelloy coils in the same temperature region. In contrast, in a flow instrument that utilizes direct electric resistance heating of the reactor coil, tetrazole decomposition was dramatically accelerated with rate constants increased by two orders of magnitude. When 5-benzhydryl-1H-tetrazole was exposed to 220 °C in this type of flow reactor, decomposition to diphenylmethane was complete within 10 min. The mechanism and kinetic parameters of tetrazole decomposition under a variety of reaction conditions were investigated. A number of possible explanations for these highly unusual rate accelerations are presented. In addition, general aspects of reactor degradation, corrosion and contamination effects of importance to continuous flow chemistry are discussed.

  16. Laser Spectroscopic Study on Oxygen Isotope Effects in Ozone Surface Decomposition

    Science.gov (United States)

    Minissale, Marco; Boursier, Corinne; Elandaloussi, Hadj; Te, Yao; Jeseck, Pascal; Rouille, Christian; Zanon-Willette, Thomas; Janssen, Christof

    2016-04-01

    The isotope kinetics of ozone formation in the Chapman reaction [1] O + O2 + M → O3 + M (1) provides the primary example for a chemically induced oxygen isotope anomaly and is associated with large [2] and mass independent [3] oxygen isotope enrichments in the product molecule, linked to a symmetry selection in the ozone formation kinetics [4-5]. The isotopic composition of ozone and its transfer to other molecules is a powerful tracer in the atmospheric and biogeochemical sciences [6] and serves as a primary model for a possible explanation of the oxygen isotopic heterogeneity in the Solar system [7-8]. Recently, the isotope fractionation in the photolytic decomposition process O3 + hν → O2 + O (2) using visible light has been studied in detail [9-10]. Much less is currently known about the isotope fractionation in the dry deposition or in the gas phase thermal decomposition of ozone O3 + M → O2 + O +M. (3) Here we report on first spectroscopic studies of non-photolytic ozone decomposition using a cw-quantum cascade laser at 9.5 μm. The concentration of individual ozone isotopomers (16O3,16O16O17O, and 16O17O16O) in a teflon coated reaction cell is followed in real time at temperatures between 25 and 150 °C. Observed ozone decay rates depend on homogeneous (reaction (3)) processes in the gas phase and on heterogeneous reactions on the wall. A preliminary analysis reveals agreement with currently recommended ozone decay rates in the gas phase and the absence of a large symmetry selection in the surface decomposition process, indicating the absence of a mass independent fractionation effect. This result is in agreement with previous mass spectrometer (MS) studies on heterogeneous ozone formation on pyrex [11], but contradicts an earlier MS study [12] on ozone surface decomposition on pyrex and quartz. Implications for atmospheric chemistry will be discussed. [1] Morton, J., Barnes, J., Schueler, B. and Mauersberger, K. J. Geophys. Res. 95, 901 - 907 (1990

  17. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas

    2012-02-20

    compatibility of various materials commonly used while producing microfluidic devices is also pertinent and beneficial to other enzymatic reactions in microfluidic devices. Most PCR-friendly materials exhibit similar signals regardless of the inclusion or not of BSA in the PCR mixture; these materials are PP, PTFE, PDMS, wax (Tm 80°C), SiO2 quartz, pyrex and soda-lime glasses, NOA68, and mineral oil. Our results showed that there was near total adsorption of template DNA when the wax (Tm 60°C) was used (RBI = 9.2×101). In contrast, when NOA61, mineral oil and acrylic glue materials were employed, significant adsorption occurred (RBI < 1.5×103). The polymerase-inhibition experiments indicate that following materials do not have strong effects (RBI > 1.1×103) on polymerase: PC, PP, PTFE, PDMS, silicon with a layer of 560 nm SiO2, SiO2 quartz, pyrex, and soda-lime glass. Slight polymerase inhibition (RBI < 9.2×102) was observed with PMMA, PVC, waxes (Tm 56°C and 80°C), silicon, and NOA68. A very strong or near total inhibition (RBI < 1.8×102) was observed with wax (Tm 60°C), ITO glass, SU-8, NOA61, metal tubes, mineral oil, epoxy, and the acrylic glues. \\tOur results show that material selection for microfluidic PCR chips, which are characterized by large SAVR, is a vital part of optimizing PCR outcome. This study of the inhibitory effect of various common microfluidics materials has provided a new rapid testing method using only a PCR cycler, and it has confirmed and expanded the list of tested materials. The type of PCR compatibility test enables the most effectual choice of materials for use in biology-related experiments.

  18. Application of fractional factorial design to levan production by Zymomonas mobilis Aplicação do planejamento fatorial fracionário para a produção de levana por Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    I.R. Melo

    2007-03-01

    Full Text Available Levan is a non-toxic, biologically active, extra cellular polysaccharide composed solely by fructose units. Optimization of levan production by Zymomonas mobilis strain ZAG-12 employing a 2(4-1 fractional factorial design was performed to analyze the influence of the temperature (20, 25 e 30ºC agitation (50, 75 e 100 rpm, and the initial concentrations of both sucrose (150, 200 e 250 g.L-1 and yeast extract (2.0, 3.5 e 5.0g.L-1 on final levan concentration. Aerobic fermentation was performed batchwise in 500mL Pyrex flasks for 72 hours. Biomass, ethanol, levan and sucrose were determined at beginning and also at end of the fermentations. The experiments showed that the final levan concentration depended on initial sucrose concentration, temperature and agitation velocity and that the initial concentration of yeast extract did not influence levan production. However, when the production of ethanol and biomass were considered, it became evident that yeast extract was a significant variable. The best conditions for levan production occurred at 100 rpm agitation, 20ºC and 250g.L-1 of initial sucrose resulting in 14.67g.L-1 of levan.Levana é um polissacarídeo extracelular, biologicamente ativo, não tóxico, contendo em sua estrutura apenas frutose. A maximização da produção de levana, por via fermentativa, pela linhagem de Zymomonas mobilis ZAG-12, foi estudada utilizando-se um planejamento fatorial de dois níveis 2(4-1, variando-se as concentrações iniciais de sacarose (150, 200 e 250 g.L-1 , extrato de levedura (2.0, 3.5 e 5.0 g.L-1, temperatura (20, 25 e 30ºC e agitação (50, 75 e 100 rpm. As fermentações foram desenvolvidas por processos descontínuos em frascos Pyrex roscados, de 500 mL, contendo 300 mL de meio a base de sacarose, por 72 horas. No início e ao final do processo, foram dosados: biomassa, etanol, levana e sacarose como açúcares redutores totais. A análise dos dados mostra que o aumento da produção de levana

  19. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors; Etude experimentale des instabilites hydrodynamiques survenant dans les reacteurs nucleaires a ebullition

    Energy Technology Data Exchange (ETDEWEB)

    Fabreca, S. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [French] II a ete effectue une etude experimentale, en boucle hors-pile, des oscillations hydrodynamiques survenant dans les reacteurs a ebullition. L'etude a ete effectuee a la pression atmospherique et a une pression voisine de 8 atmospheres dans des canaux chauffes electriquement a puissance imposee constante et uniforme. Dans les essais a 8 atmospheres le canal etait un tube circulaire de diametre interieur 6 mm environ. A 1 atmosphere le canal etait de section annulaire 10 * 20 mm avec un tube interieur chauffant et un tube exterieur en pyrex. Le fonctionnement etait possible

  20. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    Science.gov (United States)

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  1. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M. Daniel [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  2. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  3. Obtention, sintering and operational tests of the obtention prototype TeO{sub 2} for the production of {sup 131} I; Obtencion, sinterizado y pruebas operacionales del prototipo de obtencion TeO{sub 2} para la produccion de {sup 131} I

    Energy Technology Data Exchange (ETDEWEB)

    Alanis M, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1997-12-15

    The demand that exists in Mexico of developing production techniques of applicable radiopharmaceuticals in nuclear medicine, it forces to the National Institute of Nuclear Research to develop the obtaining process of {sup 131} I by dry via starting from TeO{sub 2}. The obtaining process of {sup 131} I, it begins with the synthesis of the TeO{sub 2} like matter prevails, starting from the oxidation of Te-elementary one, inside HNO{sub 3}. Later on the TeO{sub 2}, passes to the sintering process in ingots form, in that way it is encapsulated in aluminum, to be irradiated under optimal parameters of irradiation in the nuclear reactor. The irradiated TeO{sub 2}, it passes to the stage of distillation of {sup 131} I, in a distillation equipment of {sup 131} I by dry via starting from TeO{sub 2}. The process equipment consists mainly of three parts: a) the system of distillation control, built of steel, aluminum, bronze and brass, among other, b) distillation system, built of glass pyrex and of quartz, in this system is where the chemical and nuclear reactions take place for the obtaining of {sup 131} I and c) electric system, is the one in charge of the electric energy supply for the process oven, ventilation system and vacuum system. The results of experimental tests, check the effectiveness of the production process of {sup 131} I in the ININ in routine form (industrial), however it is indispensable to optimize the physical, chemical and nuclear parameters that intervene in each stage of the process with the purpose to obtaining the maximum yield, purity, quality and radiological control and economic production costs. (Author)

  4. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging.

    Science.gov (United States)

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-12-16

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  5. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Zhenyu Luo

    2014-12-01

    Full Text Available This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  6. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  7. Atmospheric chemistry of 2,3-pentanedione: photolysis and reaction with OH radicals.

    Science.gov (United States)

    Szabó, Emese; Djehiche, Mokhtar; Riva, Matthieu; Fittschen, Christa; Coddeville, Patrice; Sarzyński, Dariusz; Tomas, Alexandre; Dóbé, Sándor

    2011-08-25

    The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.

  8. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.

    Science.gov (United States)

    Gutmann, Bernhard; Obermayer, David; Reichart, Benedikt; Prekodravac, Bojana; Irfan, Muhammad; Kremsner, Jennifer M; Kappe, C Oliver

    2010-10-25

    Silicon carbide (SiC) is a strongly microwave absorbing chemically inert ceramic material that can be utilized at extremely high temperatures due to its high melting point and very low thermal expansion coefficient. Microwave irradiation induces a flow of electrons in the semiconducting ceramic that heats the material very efficiently through resistance heating mechanisms. The use of SiC carbide reaction vessels in combination with a single-mode microwave reactor provides an almost complete shielding of the contents inside from the electromagnetic field. Therefore, such experiments do not involve electromagnetic field effects on the chemistry, since the semiconducting ceramic vial effectively prevents microwave irradiation from penetrating the reaction mixture. The involvement of electromagnetic field effects (specific/nonthermal microwave effects) on 21 selected chemical transformations was evaluated by comparing the results obtained in microwave-transparent Pyrex vials with experiments performed in SiC vials at the same reaction temperature. For most of the 21 reactions, the outcome in terms of conversion/purity/product yields using the two different vial types was virtually identical, indicating that the electromagnetic field had no direct influence on the reaction pathway. Due to the high chemical resistance of SiC, reactions involving corrosive reagents can be performed without degradation of the vessel material. Examples include high-temperature fluorine-chlorine exchange reactions using triethylamine trihydrofluoride, and the hydrolysis of nitriles with aqueous potassium hydroxide. The unique combination of high microwave absorptivity, thermal conductivity, and effusivity on the one hand, and excellent temperature, pressure and corrosion resistance on the other hand, makes this material ideal for the fabrication of reaction vessels for use in microwave reactors.

  9. Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM

    Science.gov (United States)

    Yan, Biing-Hwa; Yang, Ching-Tang; Huang, Fuang-Yuan; Lu, Zhe-Hong

    2007-02-01

    Electrochemical discharge machining (ECDM) is an alternative method to microdrill Pyrex glass for MEMS devices. However, the taper and the heat-affected zone of the microholes resulting from the thermal energy is a problem to which attention has to be paid. This study attempts to improve the ECDMed microhole quality by applying electrophoretic deposition grinding (EPDG). ECDM was first used to drill a microhole and was followed by EPDG to refine the hole. The experimental results demonstrated that selecting a suitable diameter of the tool in EPDG is important to improve the taper angle of microholes machined by ECDM. A step shape tool with phi210 µm diameter was designed as a critical factor for improving the taper. An excellent taper angle of 0.2° could be achieved. At the beginning of EPDG, the taper angle and wavy surface of the ECDMed hole were improved by the step shape tool. The subsequent EPDG further improved the surface roughness. Additionally, a sufficient grinding time was required to produce a fine surface. Improving surface roughness requires a higher tool rotation speed and a longer grinding time. However, the dislodging of abrasives in the entrance will worsen the roundness and increase the diameter difference of the hole. Suitable grinding parameters for use in the experiments include tool rotation speed: 1500 rpm, abrasive size: 0.3 µm and grinding time: 500 s. After EPDG, the surface roughness of the microholes achieved was 5 nm Ra. This study demonstrates the feasibility of using EPDG to improve the quality of the ECDMed hole.

  10. Boundary layer structure over the ocean observed by LEANDRE 1 during a tramontane event

    Science.gov (United States)

    Flamant, C.; Pelon, J.; Flamant, P.; Durand, P.

    1992-01-01

    A new airborne backscatter lidar, has been developed by CNRS (Service d'Aeronomie, (SA) Laboratoire de Meteorologie Dynamique (LMD) and the Institut des Sciences de 1'Univers) in the frame of the LEANDRE research program. It has been qualified on board the ARAT in autumn 1989 and spring 1990 and was involved in its first cooperative campaign during PYREX in October and November 1990. During this campaign, lidar observations of the perturbations induced on tropospheric flow and boundary layer structure were performed, and results are presented. A large number of experiments were performed, for synoptic situation description (meteorological radiosoundings, constant level balloons) and local flow analysis (aircrafts, radars, sodars). For the first time in such an experiment, a lidar has been flown on a research aircraft to perform altitude resolved observations of these perturbations, and we will present here results obtained for deflected flow structure. In the presence of a synoptic northerly flow, part of it is deflected to the east by the Pyrenees, and accelerated over the Mediterranean by the mountain surroundings. In this case, a low level wind is generated (the Tramontane) bringing cold and dry air over the Mediterranean Sea. As the sea is still at a warm temperature in November (around 17 degrees), an Internal Marine Boundary Layer rapidly grows over the first tens of kilometers and stabilizes at about 1 km depth, corresponding to an altitude just below the Lifting Condensation Level. The whole Marine Atmospheric Boundary Layer (MABL) is characterized by highly turbulent motions bringing large humid particles from the surface up to its top. The lidar signal due to scattering by these particles is then representative of the turbulent kinetic energy in this layer.

  11. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent

    2004-12-17

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  12. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Directory of Open Access Journals (Sweden)

    T. S. Santra

    2012-06-01

    Full Text Available Diamond-like nanocomposite (DLN thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS and atomic force microscopy (AFM respectively. We have analyzed the hardness by intensity ratio (ID/IG of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  13. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Science.gov (United States)

    Santra, T. S.; Bhattacharyya, T. K.; Tseng, F. G.; Barik, T. K.

    2012-06-01

    Diamond-like nanocomposite (DLN) thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO) based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD) technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM) respectively. We have analyzed the hardness by intensity ratio (ID/IG) of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  14. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent [Central Missouri State Univ., Warrensburg, MO (United States)

    2004-12-01

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  15. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

    Science.gov (United States)

    Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F.

    2016-08-01

    Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.

  16. Determining the Thermal Properties of Space Lubricants

    Science.gov (United States)

    Maldonado, Christina M.

    2004-01-01

    Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.

  17. Design and Simulation of a MEMS Structure for Electrophoretic and Dielectrophoretic Separation of Particles by Contactless Electrodes

    Science.gov (United States)

    Shaw, Harry C.

    2007-01-01

    Rapid identification of pathogenic bacterial species is an important factor in combating public health problems such as E. coli contamination. Food and waterborne pathogens account for sickness in 76 million people annually (CDC). Diarrheagenic E. coli is a major source of gastrointestinal illness. Severe sepsis and Septicemia within the hospital environment are also major problems. 75 1,000 cases annually with a 30-50% mortality rate (Crit Care Med, July '01, Vol. 29, 1303-10). Patient risks run the continuum from fever to organ failure and death. Misdiagnosis or inappropriate treatment increases mortality. There exists a need for rapid screening of samples for identification of pathogenic species (Certain E. coli strains are essential for health). Critical to the identification process is the ability to isolate analytes of interest rapidly. This poster discusses novel devices for the separation of particles on the basis of the dielectric properties, mass and surface charge characteristics is presented. Existing designs involve contact between electrode surfaces and analyte medium resulting in contamination of the electrode bearing elements Two different device designs using different bulk micromachining MEMS processes (PolyMUMPS and a PyrexBIGold electrode design) are presented. These designs cover a range of particle sizes from small molecules through eucaryotic cells. The application of separation of bacteria is discussed in detail. Simulation data for electrostatic and microfluidic characteristics are provided. Detailed design characteristics and physical features of the as fabricated PolyMUMPS design are provided. Analysis of the simulation data relative to the expected performance of the devices will be provided and subsequent conclusions discussed.

  18. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Aaron M [ORNL; Collins, Benjamin S [ORNL; Downar, Thomas [University of Michigan

    2017-01-01

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

  19. Exothermic properties of plaster-synthetic composite casts.

    Science.gov (United States)

    Burghardt, Rolf D; Anderson, John G; Reed, Rob A; Herzenberg, John E

    2014-03-01

    Plaster casts can cause burns. Synthetic casts do not. Composite plaster-synthetic casts have not been thoroughly evaluated. This study analyzed the temperature from plaster casts compared with composite casts in a variety of in vitro conditions that would simulate clinical practice. A Pyrex cylinder filled with constant body temperature circulating water simulated a human extremity. Circumferential casts, of either plaster or composite construction (plaster inner layer with outer synthetic layer), were applied to the model. Peak temperatures generated by the exothermic reactions were studied relative to the following variables: dip water temperature (24 °C versus 40 °C), cast thickness (16, 30, and 34 ply), and delayed (5-min) versus immediate application of the synthetic outer layers. Peak temperatures from the all-plaster casts were compared with the composite casts of the same thickness. Finally, the relative cast strength was determined. Potentially dangerous high temperatures were measured only when 40 °C dip water was used or when thick (30- or 34-ply) casts were made. Cast strength increased with increasing cast thickness. However, the presence of synthetics in the composite casts layers did not increase cast strength in every case. When applying composite casts, the outer synthetic layers should be applied several minutes after the plaster to minimize temperature rise. Composite casts do not routinely generate peak temperatures higher than plaster casts of similar thickness. Because the skin of children and the elderly is more temperature-sensitive than average adult skin, extra care should be taken to limit the exothermic reaction when casting children and the elderly: clean, room temperature dip water, minimal required cast thickness, avoidance of insulating pillows/blankets while the cast is drying.

  20. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F., E-mail: fro_brito@yahoo.com.m [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Alejo-Armenta, C. [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Coyoacan 04510, DF (Mexico); Camarillo, E.; Hernandez A, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico); Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, AP 14-740, 07000, DF (Mexico); Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico)

    2011-05-15

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 {mu}m, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: {yields} Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. {yields} Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. {yields} The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  1. [Flow of molten metal in denture base in horizontal centrifugal casting procedure. (Part 1) Flow, inflow volume and casting time of molten metal passing through single aprue into disk type mold (author's transl)].

    Science.gov (United States)

    Okamura, H

    1976-01-01

    A pyrex glass plate was fitted at the bottom of casting ring, and disk type wax pattern (thickness. 0.43 mm) was put on the plate. Five types of sprueing were applied. Pure tin was casted using holizontal centrifugal casting machine. Flow of molten metal was filmed by the motor drive camera with the method of stroboscope. The results were summarized as follows. 1) When the sprue was attached at the center of the disk type mold vertically, moten metal flowed like a concentric circle at the early stage of casting. It was affected gradually by the direction of gravity and revolution, and it filled the mold from the lower part to the upper part. 2) When the sprue gate was attached to the side edge of the mold, and the sprue gate was placed to the forward and backward direction against the revolution direction, molten metal filled from lower part to the upper part. 3) When the sprue gate was placed against upper edge, molten metal flow was affected by the direction of gravity and revolution. When the sprue gate was placed against lower edge, molten metal filled quietry from the lower part to the upper part. 4) Inflow volume per unit time (inflow rate) was small at the early stage of casting. Inflow rate increased and became constant at the next stage. At the latter stage it became small again. 5) Inflow rate increased with the increase of area of sprue. 6) The time which was necessary to fill the volume of 1 cm (about 80% of the mold volume) became short with the increase of area of sprue. It was also influenced by the type of sprueing.

  2. The discrete regime of flame propagation

    Science.gov (United States)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  3. Improvement of the in vitro recordings in cortical slices by using customized flexible neuroprobes

    Directory of Open Access Journals (Sweden)

    Xavi Illa

    2015-04-01

    Full Text Available We have explored the feasibility of improving the quality of multiple recordings from spontaneously oscillating cortical slices. With that purpose we have taken advantage of the advances performed in the development of flexible neuproprobes, either fabricated on polyimide, SU-8, PDMS or parylene (Hassler et al. 2011. With these materials the contact between the electrodes and the tissue is enhanced with respect to the neuroprobes fabricated on rigid substrates, such as silicon or pyrex. However, we had to find a compromise between the necessity to achieve a good contact between the electrode and the slice and the need to allow the flow of oxygenated solution to the slice to maintain its healthy state when using flexible neuroprobes. To overcome this limitation, we have designed, fabricated and characterized a 16-electrode flexible neuroprobe that allocates an array of holes in its sensing area. This neuroprobe has been developed using SU-8 negative photoresist as a substrate material in the clean room facilities of the IMB-CNM. In particular, the neuroprobes have been fabricated following the process described in a previous article from the authors (Guimerà et al. 2013; using silicon wafers with an aluminum sacrificial layer as a support for the fabrication process. Then, the neuroprobes were released from the wafer by an anodic dissolution of the aluminum layer (Metz et al. 2005. In order to validate the usability of the fabricated device, the neuroprobes were used to record spontaneous slow oscillations to study the wave propagation along the cortical networks while manipulating them by means of pharmacological drugs or electric fields. We conclude that the perforated devices provide substantial improvement in the adherence of the electrodes to the tissue, on the mechanical stability of the recordings, and in the healthiness of the slices.

  4. Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fenton reaction.

    Science.gov (United States)

    Bossmann, S H; Oliveros, E; Göb, S; Kantor, M; Göppert, A; Lei, L; Yue, P L; Braun, A M

    2001-01-01

    The reaction mechanism of the oxidative degradation of polyvinyl alcohol (PVA) by the photochemically enhanced Fenton reaction was studied using a homogeneous (Fe2+(aq) + H2O2) and a heterogeneous reaction system (iron(III)-exchanged zeolite Y+ H2O2). In the homogeneous Fenton system, efficient degradation was observed in a batch reactor, equipped with a medium pressure mercury arc in a Pyrex envelope and employing 80% of the stoichiometric amount of H2O2 required for the total oxidation of PVA and a concentration ratio as low as I mole of iron(II) sulfate per 20 moles of PVA sub-units (C2H40). Model PVA polymers of three different molecular weights (15,000, 49,000 and 100,000 g mol(-1)) were found to follow identical degradation patterns. Strong experimental evidence supports the formation of supermacromolecules (MW: 1-5 x 10(6) g/mol) consisting of oxidized PVA and trapped iron(III) at an early reaction stage. Low molecular weight intermediates, such as oxalic acid, formic acid or formaldehyde were not found during PVA degradation in the homogeneous Fenton system, and we may deduce that the manifold of degradation reactions is mainly taking place within the super-macromolecules from which CO2 is directly released. However, in the heterogeneous Fenton system, the reaction behavior was found to be distinctly different: a decrease of the molecular weights of all three tested monodisperse PVA samples was observed by the broadening of the GPC-traces during irradiation, and oxalic acid was formed. The results lead to the mechanistic hypothesis that during the heterogeneous Fenton process, the cleavage of the PVA-chains may occur at random positions, the reactive centres being located inside the iron(III)-doped zeolite Y photocatalysts.

  5. In situ vitrification: application analysis for stabilization of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  6. Experimental study of heat-treated thin film Ti/Pt heater and temperature sensor properties on a Si microfluidic platform

    Science.gov (United States)

    Resnik, D.; Vrtačnik, D.; Možek, M.; Pečar, B.; Amon, S.

    2011-02-01

    Design, fabrication and characterization of thin film Ti/Pt heaters and integrated temperature sensors on a Si microfluidic platform are presented. Ti/Pt heaters and sensors provide controlled heating of microchannels realized on the opposite side of the Si platform. Ti/Pt heaters and sensors were fabricated simultaneously by a dc sputtering method and a lift-off process. Thermal annealing of deposited Ti/Pt layers in the temperature range of 300-700 °C was investigated revealing a strong impact on the Ti/Pt resistivity and, consequently, on the final resistance of fabricated heaters and sensors. Furthermore, it was determined that the temperature coefficient of resistance (TCR) for Ti/Pt temperature sensors and the heater increased with the annealing temperature. Microstructural analysis of deposited and annealed Ti/Pt layers carried out by AES and AFM revealed that recrystallization followed by a grain growth process of heat-treated Ti/Pt layers started at around 500 °C and correlated well with the behavior of electrical properties, but not with the TCR behavior of annealed layers. To reduce the heat losses of the heated Si platform, the heater and temperature sensors were covered hermetically by anodically bonded Pyrex glass with a prefabricated insulating cavity. According to this approach the power consumption was reduced by more than 25% due to the improved thermal insulation. Additional insulation steps implemented during thermal characterization of the assembled microfluidic platform further reduced the power consumption, but also increased the time response of the microfluidic reactor.

  7. Heavy metal removal from industrial wastewater by clinoptilolite.

    Science.gov (United States)

    Kocasoy, Günay; Sahin, Vicdan

    2007-12-01

    Clinoptilolite- a natural zeolite has been investigated for the removal of heavy metals from the wastewaters. A pyrex-glass column of 30 mm diameter and 600 mm height was used. The column was filled with the conditioned clinoptilolite of 0.5-1 mm. In the first stage of the research, synthetic wastewater containing single cation 0.02 N and 0.04 N Cu and 0.02 N Fe and Zn solutions were passed through the column. Two liter of 0.02 N Cu and 750 ml of the 0.04 N Cu solution was treated with 100 percent removal efficiency. Clinoptilolite column was regenerated for the reuse when the removal efficiency decreased. The cation exchange capacities were calculated as 1.0663 and 1.5342 meq/g clinoptilolite for 0.02 N and 0.04 N Cu solutions, respectively. In the second stage of this research, the same procedure was repeated with the actual wastewater samples of the equalization and the neutralization tanks of the Telka-Rabak Electrolytic Copper Industry. A volume of 1811 ml of the wastewater of the equalization tank and 180 ml of the neutralization tank wastewater, which had high concentrations of Ni, Zn, Cu and Fe, was treated with 100 percent efficiency. The cation exchange capacities of clinoptilolite for the wastewater of the equalization and the neutralization tanks for Cu were 0.4483 and 0.4274, respectively. It was observed that only one third of the single copper ion solutions were obtained with the actual wastewater having competing ions such as Zn, Fe and Ni. The experimental results also indicate that the clinoptilolite is an effective cation exchanger for the removal of the metals from the wastewater and the removal efficiency is higher when there is not ant competing ions.

  8. A purge and trap integrated microGC platform for chemical identification in aqueous samples.

    Science.gov (United States)

    Akbar, Muhammad; Narayanan, Shree; Restaino, Michael; Agah, Masoud

    2014-07-07

    The majority of current micro-scale gas chromatography (μGC) systems focus on air sampling to detect volatile organic compounds (VOCs). However, purging the VOCs from a water sample using microsystems is an unchartered territory. Various organic compounds used in everyday life find their way to water bodies. Some of these water organic compounds (WOCs) persist or degrade slowly, threatening not just human existence but also aquatic life. This article reports the first micro-purge extractor (μPE) chip and its integration with a micro-scale gas chromatography (μGC) system for the extraction and analysis of water organic compounds (WOCs) from aqueous samples. The 2 cm × 3 cm μPE chip contains two inlet and outlet ports and an etched cavity sealed with a Pyrex cover. The aqueous sample is introduced from the top inlet port while a pure inert gas is supplied from the side inlet to purge WOCs from the μPE chip. The outlets are assigned for draining water from the chip and for directing purged WOCs to the micro-thermal preconcentrator (μTPC). The trapped compounds are desorbed from the μTPC by resistive heating using the on-chip heater and temperature sensor, are separated by a 2 m long, 80 μm wide, and 250 μm deep polydimethylsiloxane (OV-1) coated μGC separation column, and are identified using a micro-thermal conductivity detector (μTCD) monolithically integrated with the column. Our experiments indicate that the combined system is capable of providing rapid chromatographic separation (<1.5 min) for quaternary WOCs namely toluene, tetrachloroethylene (PCE), chlorobenzene and ethylbenzene with a minimum detection concentration of 500 parts-per-billion (ppb) in aqueous samples. The proposed method is a promising development towards the future realization of a miniaturized system for sensitive, on-site and real-time field analysis of organic contaminants in water.

  9. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    Science.gov (United States)

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-01-01

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385

  10. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    Science.gov (United States)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-04-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  11. Evaluation of analgesic, antipyretic and anti-inflammatory activity of spirobarbitunylphenothiazines in rodents.

    Science.gov (United States)

    Sharma, Sunita; Lata, S; Kumar, A; Srivastava, V K

    2002-04-01

    Analgesic, antipyretic and anti-inflammatory activities of newly synthesized spirobarbitunylphenothiazines viz 10-[7, 11-Di(4-4' dimethoxphenyl)-3-oxo-9-methylaminoimino-2, 4-diazaspiro [5.5] undecane 1, 5 dione] acetylphenothiazine (test drug A) and 10-[7, 11-Di (N.N-dimethylaminophenyl)-3-oxo-9-methylaminoimino-2, 4-diazaspiro [5, 5] undecane-1, 5 dione] acetylphenothiazine (test drug B) have been screened in Swiss mice and Wistar rats. The peripheral analgesic activity of test drugs A and B was investigated by acetic acid induced writhing test in Swiss mice while the central analgesic action was assessed by hot-wire (tail flick test) of the analgesiometer and tail-clip test in Wistar rats. Antipyretic activity was assessed on Brewer's yeast induced pyrexic model while antiinflammatory activity was seen on carrageenan induced hind paw oedema. Analgesic activity was found to be only of peripheral type as there was reduction of 66% in writhing responses by test drugs A and B in dose of 80 mg/kg in mice. No change in the tail flick responses was observed on analgesiometer or by tail clip by both the test drugs. Reduction of 1.5 to 2.0 degrees C in rectal temperature was observed in pyretic rats by test drugs A and B in dose of 80 mg/kg. 80% reduction in paw volume was noted in 80 mg/kg dose of both the test drugs which was comparable to the anti-inflammatory activity of 300 mg/kg, p.o. of phenylbutazone.

  12. Organo-silane coated substrates for DNA purification

    Science.gov (United States)

    Pasquardini, L.; Lunelli, L.; Potrich, C.; Marocchi, L.; Fiorilli, S.; Vozzi, D.; Vanzetti, L.; Gasparini, P.; Anderle, M.; Pederzolli, C.

    2011-10-01

    The use of blood as DNA source to be employed in genetic analysis requires a purification process in order to remove proteins, lipids and any other contaminants, such as hemoglobin, which inhibit PCR. On the other hand, the increasing demand of miniaturized and automated biological tests able to reduce time and cost of analysis, requires the development and the characterization of materials aimed to perform the DNA purification processes in micro-devices. In this work we studied the interaction of DNA molecules with modified silicon based substrates, positively charged after deposition of a (3-aminopropyl)triethoxysilane (APTES) or 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEEA) interfacial layer. The evaluation of the DNA adsorption and elution capacity of different substrates (thermally grown silicon oxide, silicon oxide obtained by plasma enhanced chemical vapour deposition, and Pyrex ®) was studied taking into account the nature of the substrate and the effect of DNA length (in the 208-50,000 base pairs range). Main findings are that DNA elution capacity depends both on the utilized substrate and on the choice of the silanizing agent. Higher DNA recovery was obtained from AEEA-modified substrates, but the eluted DNA had different electrophoretic properties from native DNA. DNA with the same electrophoretic behaviour as genomic DNA was instead recovered from APTES-treated surfaces. Furthermore, the length of DNA present in the starting material strongly modulates the elution efficiency, longer DNA being released in a lesser amount, suggesting that opportunely modified surfaces could be used as systems for differential DNA separation.

  13. Critical Heat Flux in Inclined Rectangular Narrow Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Jeong J. Kim; Yong H. Kim; Seong J. Kim; Sang W. Noh; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    In light of the TMI-2 accident, in which the reactor vessel lower head survived the attack by molten core material, the in-vessel retention strategy was suggested to benefit from cooling the debris through a gap between the lower head and the core material. The GAMMA 1D (Gap Apparatus Mitigating Melt Attack One Dimensional) tests were conducted to investigate the critical heat flux (CHF) in narrow gaps with varying surface orientations. The CHF in an inclined gap, especially in case of the downward-facing narrow gap, is dictated by bubble behavior because the departing bubbles are squeezed. The orientation angle affects the bubble layer and escape of the bubbles from the narrow gap. The test parameters include gap sizes of 1, 2, 5 and 10 mm and the open periphery, and the orientation angles range from the fully downward-facing (180o) to the vertical (90o) position. The 15 ×35 mm copper test section was electrically heated by the thin film resistor on the back. The heater assembly was installed to the tip of the rotating arm in the heated water pool at the atmospheric pressure. The bubble behavior was photographed utilizing a high-speed camera through the Pyrex glass spacer. It was observed that the CHF decreased as the surface inclination angle increased and as the gap size decreased in most of the cases. However, the opposing results were obtained at certain surface orientations and gap sizes. Transition angles, at which the CHF changed in a rapid slope, were also detected, which is consistent with the existing literature. A semi-empirical CHF correlation was developed for the inclined narrow rectangular channels through dimensional analysis. The correlation provides with best-estimate CHF values for realistically assessing the thermal margin to failure of the lower head during a severe accident involving relocation of the core material.

  14. Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Sánchez-Barragán, Dámaso; Pozo-Ayuso, Diego F; Castaño-Álvarez, Mario

    2012-09-01

    A second generation of a battery-powered portable electrophoresis instrument for the use of ME with electrochemical detection was developed. As the first-generation, the main unit of the instrument (150 mm × 165 mm × 95 mm) consists of four-outputs high-voltage power supply (HVPS) with maximum voltage of 3 KV and acquisition system (bipotentiostat) containing 2-channels for dual electrochemical detection. A new reusable microfluidic platform was designed in order to incorporate the microchips with the portable instrument. In this case, the platform is integrated to the main unit of the instrument so that it is not necessary to have any external cable for the interconnection of both parts, making the use of the complete system easier. The new platform contains all the electrical connections for the HVPS and bipotentiostat, as well as fluidic ports for driving the solutions. The microfluidic electrophoresis instrument is controlled by means of a user-friendly interface from a computer. The possibility of wireless connection (Bluetooth®) allows the use of the instrument without any external cable improving the portability. Therefore, the second generation brings a more compact and integrated electrophoresis instrument for "in situ" applications using microfluidic chips in an easy way. The performance of the electrophoresis system was initially evaluated using single- and dual-channel SU-8/Pyrex microchips with different models of integrated electrodes including microelectrodes and interdigitated arrays. The method was tested in different analytical applications such as separation of neurotransmitters, chlorophenols, purine derivatives, vitamins, polyphenolic acids, and flavones.

  15. Fatal disseminated toxoplasmosis in an immunocompetent cat

    Directory of Open Access Journals (Sweden)

    Susanna S. Nagel

    2013-02-01

    Full Text Available A 10-year-old domestic short hair cat was referred for investigation of anorexia and polydipsia of 3 days’ duration. Clinically the cat was obese, pyrexic (39.8 °C, had acute abdominal pain and severe bilirubinuria. Haematology and serum biochemistry revealed severe panleukopenia, thrombocytopenia, markedly elevated alanine aminotransferase (ALT and five-fold increased pre-prandial bile acids. Ultrasonographic evaluation of the abdomen did not identify any abnormalities. Serum tests for feline immunodeficiency virus (FIV and feline leukaemia virus (FeLV were negative. Broad-spectrum antibiotic treatment for infectious hepatitis was to no avail; the cat deteriorated and died 72 h after admission. Necropsy revealed mild icterus and anaemia, severe multifocal hepatic necrosis, serofibrinous hydrothorax, pulmonary oedema and interstitial pneumonia. Histopathology confirmed the macroscopic findings and revealed multifocal microgranulomata in the brain and myocardium, as well as areas of necrosis in lymph nodes and multifocally in splenic red pulp. Long bone shaft marrow was hyperplastic with a predominance of leukocyte precursors and megakaryocytes and splenic red pulp showed mild extramedullary haemopoiesis. Immunohistochemical staining for Toxoplasma gondii was strongly positive, with scattered cysts and tachyzoites in the liver, lymph nodes, spleen, lungs, brain, salivary glands and intracellularly in round cells in occasional blood vessels. Immunohistochemical staining for corona virus on the same tissues was negative, ruling out feline infectious peritonitis (FIP. Polymerase chain reaction (PCR on formalin-fixed paraffin-wax embedded tissues was positive for Toxoplasma sp., but attempts at sequencing were unsuccessful. This was the first case report of fulminant disseminated toxoplasmosis in South Africa, in which detailed histopathology in an apparently immunocompetent cat was described.

  16. Preparation of (Bi, Sb) 2S 3 semiconductor films by photochemical deposition method

    Science.gov (United States)

    Sasaki, H.; Shibayama, K.; Ichimura, M.; Masui, K.

    2002-04-01

    The photochemical deposition (PCD) technique has the advantages of economy, the capability of large area deposition and of a fast reaction rate. In this report, the PCD method using UV light of an ultra-high pressure mercury lamp was applied to form (Bi x, Sb 1- x) 2S 3 semiconducting compounds from solutions containing BiCl 3 and/or SbCl 3 Na 2S 2O 3 at pH in the acidic range 1-3. The pH of the solution was adjusted with the addition of dilute HCl solution. The substrate for the film deposition was pretreated onto the commercial pyrex-glass plate surface with the well-known solution agent of Pd activator plus Sn sensitizer. In the PCD process, the film is only deposited onto the irradiated region of the substrate so as to make a pattern using the mask. This deposition process shows the heterogeneous nucleation and growth mechanism on the substrate surface. The deposition rate of the film using a 500 W mercury lamp was about 1 μm/30 min. The crystallization characteristics of the amorphous (Bi 2S 3) deposits were studied by means of X-ray diffraction, thermal analysis (DSC) and optical transmitted spectra evaluation in order to clarify the amorphous to crystal phase transformation. The amorphous deposits showed gradual light absorption in a wide range of optical wavelengths. On the contrary, annealed film showed a sharp absorption edge near 800 nm. The crystallization temperature of the amorphous deposits was about 250-300°C.

  17. Treatment non-adherence in teenage and young adult cancer patients: a preliminary study of patient perceptions.

    Science.gov (United States)

    Kondryn, Helena J; Edmondson, Claire L; Hill, Jonathan W; Eden, Tim O B

    2009-12-01

    Non-adherence (NA) by adolescents receiving cancer treatment is believed to be a major problem. However, adequate measures of NA have not been developed. The purpose of this study was to (1) assess the internal reliability of a new scale reflecting low-risk NA behaviours, (2) examine whether the scores on this scale were associated with high-risk NA behaviours and (3) assess the relationship between NA behaviours and patient attitudes towards stopping treatment. Thirty-three patients (16-24 years) with solid tumours reported on their previous adherence with treatment. Low-risk NA behaviours were assessed on a 0-40 scale derived from the sum of 10 items. High-risk NA behaviours and attitudes towards stopping treatment were assessed by questions with yes/no response options. Internal reliability of the low-risk NA scale was alpha=0.73. Patients not seeking help for pyrexia had higher total low-risk NA scores than those who sought help (mean 7.4, SD 5.3 vs mean 3.5, SD 3.6, t=2.1, p=0.03). There was also a trend for individuals who ignored pyrexia to be more likely to have contemplated stopping treatment than those who sought medical assistance (Fisher's Exact=0.09). A scale reflecting low-risk NA behaviour had good internal reliability and was associated with not seeking help when pyrexic. Ignoring a temperature was also associated with contemplating stopping treatment. We are now conducting a prospective study using the measure to assess validity against a range of information regarding NA.

  18. Interaction of NO2 with TiO2 surface under UV irradiation: measurements of the uptake coefficient

    Directory of Open Access Journals (Sweden)

    Y. Bedjanian

    2012-01-01

    Full Text Available The interaction of NO2 with TiO2 solid films was studied under UV irradiation using a low pressure flow reactor (1–10 Torr combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The NO2 to TiO2 reactive uptake coefficient was measured from the kinetics of NO2 loss on TiO2 coated Pyrex rods as a function of NO2 concentration, irradiance intensity (JNO2 = 0.002–0.012 s−1, relative humidity (RH = 0.06–69 %, temperature (T = 275–320 K and partial pressure of oxygen (0.001–3 Torr. TiO2 surface deactivation upon exposure to NO2 was observed. The initial uptake coefficient of NO2 on illuminated TiO2 surface (with 90 ppb of NO2 and JNO2≅0.006 s−1 was found to be γ0 = (1.2±0.4 ×10−4 (calculated using BET surface area under dry conditions at T = 300 K. The steady state uptake, γ, was several tens of times lower than the initial one, independent of relative humidity, and was found to decrease in the presence of molecular oxygen. In addition, it was shown that γ is not linearly dependent on the photon flux and seems to level off under atmospheric conditions. Finally, the following expression for γ was derived, γ = 2.3×10−3 exp(−1910/T/(1 + P0.36 (where P is O2 pressure in Torr, and recommended for atmospheric applications (for any RH, near 90 ppb of NO2 and JNO2 = 0.006 s−1.

  19. Kinetics of pro-inflammatory cytokines, interleukin-10, and virus neutralising antibodies during acute ephemeral fever virus infections in Brahman cattle.

    Science.gov (United States)

    Barigye, R; Melville, L F; Davis, S; Walsh, S; Hunt, N; Hunt, R; Elliot, N

    2015-12-15

    While fever and inflammation are hallmark features of bovine ephemeral fever (BEF), the cytokine networks that underlie the acute phase of the disease have not been empirically defined in cattle. This study characterised the plasma kinetics of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and IL-10 during acute BEF and elucidated on the relationship between the onset of the virus neutralizing antibody response and resolution of viraemia in natural BEF virus (BEFV) infections in cattle. Plasma from three BEFV-infected and three uninfected cattle was tested for the study cytokines by a cELISA, viraemia monitored by qRT-PCR, and virus neutralizing antibody titres determined using a standard protocol. Unlike the negative controls, plasma concentrations of IL-1β, TNF-α, IL-6, and IL-10 were consistently increased in the three virus-infected animals. Two of the infected heifers were recumbent and pyrexic on the first day of monitoring and increased cytokine production was already in progress by the time viraemia was detected in all the three infected animals. In all the virus-infected heifers, IL-1β was the most strongly expressed cytokine, IL-6 and IL-10 manifested intermediate plasma concentrations while TNF-α was the least expressed and demonstrated bi-phasic peaks three and five days after the onset of pyrexia. In two of the BEFV-infected heifers, viraemia resolved on the day of seroconversion while in the other infected animal, viral RNA was detectable up to three days after seroconversion. The present data document variable increase in plasma IL-1β, IL-6, TNF-α, and IL-10 during natural BEFV infections and the fact that upregulation of all but TNF-α precedes seroconversion. In addition to virus neutralising antibodies, it is likely that cytokine-mediated cellular mechanisms may be required for resolution of viraemia in BEF. Considering the anti-inflammatory properties of IL-10, its upregulation may potentially antagonise the fever response in BEFV

  20. Removal of Penicillin G by combination of sonolysis and Photocatalytic (sonophotocatalytic) process from aqueous solution: process optimization using RSM (Response Surface Methodology)

    Science.gov (United States)

    Almasi, Ali; Dargahi, Abdollah; Mohamadi, Mitra; Biglari, Hamed; Amirian, Farhad; Raei, Mehdi

    2016-01-01

    Introduction Penicillin G (PG) is used in a variety of infectious diseases, extensively. Generally, when antibiotics are introduced into the food chain, they pose a threat to the environment and can risk health outcomes. The aim of the present study was the removal of Penicillin G from an aqueous solution through an integrated system of UV/ZnO and UV/WO3 with Ultrasound pretreatment. Methods In this descriptive-analytical work dealing with the removal of Penicillin G from an aqueous solution, four significant variables, contact time (60–120 min), Penicillin G concentration (50–150 mg/L), ZnO dose (200–400 mg/L), and WO3 dose (100–200 mg/L) were investigated. Experiments were performed in a Pyrex reactor (batch, 1 Lit) with an artificial UV 100-Watt medium pressure mercury lamp, coupled with ultrasound (100 W, 40 KHz) for PG pre-treatment. Chemical Oxygen Demand (COD) was selected to follow the performance of the photo-catalytic process and sonolysis. The experiments were based on a Central Composite Design (CCD) and analyzed by Response Surface Methodology (RSM). A mathematical model of the process was designed according to the proposed degradation scheme. Results The results showed that the maximum removal of PG occurred in ultrasonic/UV/WO3 in the presence of 50 mg/L WO3 and contact time of 120 minutes. In addition, an increase in the PG concentration caused a decrease in COD removal. As the initial concentration of the catalyst increased, the COD removal also increased. The maximum COD removal (91.3%) achieved by 200 mg/L WO3 and 400 mg/l ZnO, a contact time of 120 minutes, and an antibiotic concentration of 50 mg/L. All of the variables in the process efficiency were found to be significant (p < 0.05). Catalyst dose and contact time were shown to have a positive effect on the response (p < 0.05). Conclusion The research data supported the conclusion that the combination of advanced oxidation process of sonolysis and photocatalytic (sonophotocatalytic

  1. Biradical vs singlet oxygen photogeneration in suprofen–cholesterol systems

    Science.gov (United States)

    Palumbo, Fabrizio; Bosca, Francisco; Morera, Isabel Maria

    2016-01-01

    Summary Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radicals or singlet oxygen (1O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT) chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradicals and 1O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloromethane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated fractions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of Ch and subsequent C–C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicating a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1–3 were very similar and matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analysis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 105 s−1. The capability of dyads 1–3 to photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads are unique in the sense that they

  2. Atmospheric CO{sub 2} concentrations and {delta}{sup 13}C values across the Antarctic Circumpolar Current between New Zealand and Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Longinelli, Antonio; Selmo, Enricomaria [Univ. of Parma, (Italy). Dept. of Earth Sciences; Giglio, Federico; Langone, Leonardo; Lenaz, Renzo; Ori, Carlo [Consiglio Nazionale delle Ricerche, Bologna (Italy). Inst. of Marine Sciences, Marine Geology Section

    2007-02-15

    Measurements of atmospheric CO{sub 2} concentrations were repeatedly carried out on the vessel 'Italica' of the Italian National Research Program in Antarctica, during cruises from Italy to Antarctica. Discrete air samples were also collected in 4-L Pyrex flasks during these cruises in order to carry out {delta}{sup 13}C analyses on atmospheric CO{sub 2}. The results acquired between New Zealand and Antarctica are reported here. The mean growth rate of the CO{sub 2} concentration from 1996 to 2003 in this area of the Southern Oceans is of about 1.8 ppmv/yr, in good agreement with NOAA/CMDL measurements. The rates of increase from cruise to cruise are rather variable. From 1996-1997 to 1998-1999 cruise the yearly growth rate is 2.75 ppmv/yr, close to the large growth rates measured in several areas and mainly related to the most severe El Nino event of the last years. The other yearly growth rates are of about 1.3 and 2 ppmv for the periods 1998-1999 to 2001-2002 and 2001-2002 to 2003-2004, respectively. The large difference between these two values is probably related to the uncertainty on the only two 2001-2002 discrete measurements of CO{sub 2} concentration in this area. The measured {delta}{sup 13}C values show two completely different distributions and a large interannual variability. The 1998-1999, 2002-2003, and 2003-2004 results obtained between about 55 deg S and 65 deg S across the Antarctic Polar Front show a marked negativization of up to more than 0.2% when compared to the background values. The results are related to local source regions of CO{sub 2}, as frequently found in the Southern Ocean by several authors; the negative {delta}{sup 13}C values are tentatively related to the possible contribution of different causes. Among them, the southward negative gradient of {delta}{sup 13}C of the dissolved inorganic carbon, the contribution from upwelling deep waters and from subsurface processes between the Northern SubAntarctic Front and the

  3. CO2 concentrations and delta13C (CO2) values in monthly sets of air samples from downtown Parma and the Parma and Taro river valleys, Emilia-Romagna, Italy.

    Science.gov (United States)

    Longinelli, Antonio; Selmo, Enricomaria

    2006-09-01

    Monthly sets of discrete air samples were collected from September 2004 to June 2005 in the town of Parma, along North-South and East-West runs (8 plus 8 samples), using four-litre Pyrex flasks. The CO2 concentrations and delta13C values were determined on these samples with the aim of evaluating quantitatively the contribution of domestic heating to the winter atmospheric CO2 pollution in downtown Parma by comparing autumn and spring atmospheric values with winter values. After separation of CO2 from the other air gases in the laboratory, the CO2 concentrations were calculated from the intensity of the 12C16O2+ ion beam in the mass spectrometer, after calibration with artificial air samples whose CO2 concentration was very carefully determined by the Monte Cimone Observatory (Sestola, Modena, Italy). The reproducibility of these measurements was of approximately +/-0.4 % and, consequently, the most probable error is not higher than+/-2-3 ppmv and does not affect the magnitude of the gradients between different samples. The standard deviation of delta13C measurements ranges from+/-0.02 to +/-0.04 per thousand (1sigma). The results suggest that the contribution of domestic heating to atmospheric CO2 pollution is almost negligible in the case of ground level atmosphere, where the main CO2 pollution is essentially related to the heavy car traffic. This is probably because of the fact that the gases from the domestic heating systems are discharged tens of metres above ground level at a relatively high temperature so that they rise quickly to the upper atmospheric layers and are then displaced by air masses dynamics. Monthly sets of discrete air samples were also collected from October 2004 to June 2005 along North-South runs from the town of Parma to the Apennine ridge following the Parma and the Taro river valleys (8 samples and 7 samples per set, respectively) and measured using the same technique. The aim of this study was the comparison between the town samples

  4. Atmospheric CO{sub 2} concentrations and (delta){sup 13}C values across the Antarctic Circumpolar Current between New Zealand and Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Longinelli, Antonio; Selmo, Enricomaria [Univ. of Parma, (Italy). Dept. of Earth Sciences; Giglio, Federico; Langone, Leonardo; Lenaz, Renzo; Ori, Carlo [Consiglio Nazionale delle Ricerche, Bologna (Italy). Inst. of Marine Sciences, Marine Geology Section

    2007-02-15

    Measurements of atmospheric CO{sub 2} concentrations were repeatedly carried out on the vessel 'Italica' of the Italian National Research Program in Antarctica, during cruises from Italy to Antarctica. Discrete air samples were also collected in 4-L Pyrex flasks during these cruises in order to carry out (delta){sup 13}C analyses on atmospheric CO{sub 2}. The results acquired between New Zealand and Antarctica are reported here. The mean growth rate of the CO{sub 2} concentration from 1996 to 2003 in this area of the Southern Oceans is of about 1.8 ppmv/yr, in good agreement with NOAA/CMDL measurements. The rates of increase from cruise to cruise are rather variable. From 1996-1997 to 1998-1999 cruise the yearly growth rate is 2.75 ppmv/yr, close to the large growth rates measured in several areas and mainly related to the most severe El Nino event of the last years. The other yearly growth rates are of about 1.3 and 2 ppmv for the periods 1998-1999 to 2001-2002 and 2001-2002 to 2003-2004, respectively. The large difference between these two values is probably related to the uncertainty on the only two 2001-2002 discrete measurements of CO{sub 2} concentration in this area. The measured (delta){sup 13}C values show two completely different distributions and a large interannual variability. The 1998-1999, 2002-2003, and 2003-2004 results obtained between about 55 deg S and 65 deg S across the Antarctic Polar Front show a marked negativization of up to more than 0.2% when compared to the background values. The results are related to local source regions of CO{sub 2}, as frequently found in the Southern Ocean by several authors; the negative (delta){sup 13}C values are tentatively related to the possible contribution of different causes. Among them, the southward negative gradient of (delta){sup 13}C of the dissolved inorganic carbon, the contribution from upwelling deep waters and from subsurface processes between the Northern SubAntarctic Front and the

  5. Effects of temperature and soil components on emissions from pyrolysis of pyrene-contaminated soil.

    Science.gov (United States)

    Risoul, Véronique; Richter, Henning; Lafleur, Arthur L; Plummer, Elaine F; Gilot, Patrick; Howard, Jack B; Peters, William A

    2005-11-11

    Effects of temperature and soil on yields and identities of light gases (H2, CH4, C2H2, C2H4, C2H6, CO, and CO2) and polycyclic aromatic hydrocarbons (PAH) from thermal treatment of a pyrene-contaminated (5 wt%) soil in the absence of oxygen were determined for a U.S. EPA synthetic soil matrix prepared to proxy U.S. Superfund soils. Shallow piles (140-170 mg) of contaminated soil particles and as controls, neat (non-contaminated) soil (140-160 mg), neat pyrene (10-15 mg), neat sand (230 mg), and pyrene-contaminated sand (160 mg), were heated in a ceramic boat inside a 1.65 cm i.d. pyrex tube at temperatures from 500 to 1100 degrees C under an axial flow of helium. Volatile products spent 0.2-0.4s at temperature before cooling. Light gases, PAH and a dichloromethane extract of the residue in the ceramic boat, were analyzed by gas chromatography or high pressure liquid chromatography (HPLC). Over 99% pyrene removal was observed when heating for a few tens of seconds in all investigated cases, i.e., at 500, 650, 750, 1000, and 1100 degrees C for soil, and 750 and 1000 degrees C for sand. However, each of these experiments gave significant yields (0.2-16 wt% of the initial pyrene) of other PAH, e.g., cyclopenta[cd]pyrene (CPP), which mutates bacterial cells and human cells in vitro. Heating pyrene-polluted soil gave pyrene conversions and yields of acetylene, CPP, and other PAH exceeding those predicted from similar, but separate heating of neat soil and neat pyrene. Up to 750 degrees C, recovered pyrene, other PAH, and light gases accounted for all or most of the initial pyrene whereas at 1000 and 1100 degrees C conversion to soot was significant. A kinetic analysis disentangled effects of soil-pyrene interactions and vapor phase pyrolysis of pyrene. Increase of residence time was found to be the main reason for the enhanced conversion of pyrene in the case of the presence of a solid soil or sand matrix. Light gas species released due to the thermal treatment, such as

  6. Reactivity of γ-Terpinene with NO3 radicals: experimental approach for kinetic and mechanistic study.

    Science.gov (United States)

    Fouqueau, Axel; Cirtog, Manuela; Le Quilleuc, Meryll; Cazaunau, Mathieu; Pangui, Edouard; Duncianu, Marius; Doussin, Jean-François; Picquet-Varrault, Bénédicte

    2017-04-01

    Biogenic Volatile Organic Compounds (BVOC) are highly emitted by vegetation and play a key role in atmospheric chemistry. They are very reactive with atmospheric oxidants (OH, NO3, ozone) and significantly contribute to the formation of Secondary Organic Aerosol (SOA) at the global scale [1]. In addition, night-time chemistry initiated by NO3 radicals leads to the formation of organic nitrates which behave as reservoirs for reactive nitrogen. However, the reactivity of NO3 radical with BVOCs other than isoprene and α- and β-pinene, remains poorly understood. Among the BVOCs, γ-Terpinene is one of the most emitted by vegetation[2]. Two kinetic works were previously published on γ-Terpinene [3] [4], but mechanistic has never been studied. Thus, the aim of this work is to study the reactivity of γ-Terpinene with NO3 by performing experiments in simulation chambers. Kinetic, mechanism and SOA yield will be investigated. For this purpose, two different simulation chambers have been used: - First one, consisting of a Pyrex reactor of 1 m3 [5] coupled to a long path in situ FTIR spectrometer and a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) in NO+ mode which was internally developed in LISA, to measure organic nitrates concentration. - Second one, the CESAM chamber (http://cesam.cnrs.fr) [6] is a 4.2 m3 stainless steel chamber which permits to conduct SOA experiments at different temperature and relative humidity. In situ FTIR and PTR-ToF-MS are used to measure gaseous concentrations, and a SMPS was used to characterize particulate phase. Kinetic and mechanistic results will be discussed and compared with the literature values. References [1] Brown S. S., Stutz J., Nighttime radical observations and chemistry. Chem. Soc. Rev. (2012) 41, 6405-6447 [2] Helmig D., Klinger L.F., et al., Biogenic volatile organic compound emissions (BVOCs) I. Identifications from three continental sites in the U.S. Chemosphere. (1999), Vol. 38, No. 9, pp. 2163

  7. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Maryanski, M [MGS Research, Inc., Madison, CT (United States)

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a

  8. Effect of Inclination Angle on Performance Limit of a Closed-End Oscillating Heat Pipe

    Directory of Open Access Journals (Sweden)

    T. Hudakorn

    2008-01-01

    Full Text Available This study presents the effect of inclination angle on the performance limit of a Closed-End Oscillating Heat Pipe (CEOHP. The study was divided into 2 corresponding parts. The first part was visual study. The CEOHP was made of Pyrex glass tube with the inner diameter of 1.0 mm, evaporator length of 50 mm and had 10 meandering turns. The lengths of the condenser, adiabatic and evaporator sections were equal. The working fluid was R123 with filling ratio at 50% of total volume of the tube. It was found from the experiment that the performance limit at the horizontal orientation was the initial dry-out because the insufficient condensed liquid film was supplied the evaporator section. At the range of inclination angle of 5-90°, the cause of performance limit was dry-out due to the flooding phenomena at the entrance of the evaporator section. The second part was quantitative study. The CEOHPs were made of copper tubes with 0.66, 1.06 and 2.03 mm inner diameters. The evaporator lengths of CEOHPs were 50, 100 and 150 mm and the number of meandering turns was 10. For each CEOHP, the lengths of evaporator, adiabatic and condenser sections were equal. The working fluids were R123, ethanol and water at a filling ratio of 50% of total volume of the tube. The experiments were conducted at the inclination angles of 0-90° with 10° increments. With the controlled vapor temperature of 60±5°C, it was found from the quantitative results that the critical heat flux decreases as the evaporator length increases and the critical heat flux increases with an increase in the inner diameter for all inclination angles. Moreover, this study establishes the correlation to predict the ratio of the critical heat flux at the inclination angle range of 10-90° and that at vertical position. The Standard Deviation (STD is ±13.8%.

  9. 一种低成本压电无阀微泵的研制%Research and fabrication of a low-cost valveless micropump based on piezoelectric actuation*

    Institute of Scientific and Technical Information of China (English)

    徐亮; 应济; 李俊

    2011-01-01

    提出了一种低成本的由压电材料驱动的平面扩张/收缩管无阀微泵的制作工艺.通过数值模拟确定了扩张/收缩管扩张角的最优值,在此基础上,采用光刻和湿法刻蚀工艺,刻蚀了300μm深的泵腔基片和100 μm深的盖片;使用等离子体清洗技术将其与PDMS薄膜键合,完成了可以实现单向泵送的压电无阀微泵样机制作.研究了该压电无阀微泵样机的性能,分别分析了压电振子的激励频率、电压和微泵背压对其流量的影响.实验结果表明:在100V,110Hz交流方波电压信号的作用下,微泵有最大输出流量为436μL/min,最大背压为620 Pa.%A low-cost valveless micropump based on piezoelectric actuation is presented. The optimized value of opening angle is obtained by numerical simulation, which is the reference of design parameters of the diffuser/ nozzle element. A 300 μm depth of pump chamber substrate and a 100 μm depth of cover are fabricated on pyrex glass using photographic and wet chemical etching processes. Then, by using plasma cleaning technology, they are bonded to PDMS membrane to accomplish the fabrication of the micropump. The maximum flow rate and baekpressure of the pump are about 436 μL/min and 620 Pa when applying a 100V square wave driving voltage at 110 Hz across the piezoelectric-disc.

  10. Crystallization of Yamato 980459 at 0.5 GPA: Are Residual Liquids Like QUE 94201?

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.; Mercer, C.

    2012-01-01

    The Martian basaltic meteorites Y980459 and QUE94201 (henceforth referred to as Y98 and QUE respectively) are thought to represent magmatic liquid compositions, rather than being products of protracted crystallization and accumulation like the majority of other martian meteorites. Both meteorite compositions have been experimentally crystallized at 1 bar, and liquidus phases were found to match corresponding mineral core compositions in the meteorites, consistent with the notion that these meteorites represent bona fide melts. They also represent the most primitive and most evolved basaltic martian samples, respectively. Y98 has Mg# (molar Mg/Mg+Fe) approximates 65, and lacks plagioclase; whereas QUE has Mg# approximates 40, and lacks olivine. However they share important geochemical characteristics (e.g. superchondritic CaO/Al2O3, very high epsilon(sub Nd) and low Sr-87/Sr-87) that suggest they sample a similar highly depleted mantle reservoir. As such, they represent likely endmembers of martian magmatic liquid compositions, and it is natural to seek petrogenetic linkages between the two. We make no claim that the actual meteorites themselves share a genetic link (the respective ages rule that out); we are exploring only in general whether primitive martian liquids like Y98 could evolve to liquids resembling QUE. Both experimental and computational efforts have been made to determine if there is indeed such a link. Recent petrological models at 1 bar generated using MELTS suggest that a QUE-like melt can be derived from a parental melt with a Y98 composition. However, experimental studies at 1 bar have been less successful at replicating this progression. Previous experimental crystallization studies of Y98 by our group at 0.5 GPa have produced melt compositions approaching that of QUE, although these results were complicated by the presence of small, variable amounts of H2O in some of the runs owing to the use of talc/pyrex experimental assemblies. Therefore we

  11. Image Optimization in Single Photon Emission Computed Tomography by Hardware Modifications with Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2010-06-01

    Full Text Available Introduction: In Single Photon Emission Computed Tomography (SPECT, the projection data used for image reconstruction are distorted by several factors, including attenuation and scattering of gamma rays, collimator structure, data acquisition method, organ motion, and washout of radiopharmaceuticals. All these make reconstruction of a quantitative SPECT image very difficult. Simulation of a SPECT system is a convenient method to assess the impact of these factors on the image quality. Materials and Methods: The SIMIND Monte Carlo program was employed to simulate a Siemens E.CAM SPECT system. Verification of the simulation was performed by comparing the performance parameters of the system. The verified system was used for SPECT simulations of homogenous and inhomogeneous voxelized phantoms in conjugation with hardware modifications. The resulting data were compared with those obtained from the simulated system without any modifications. Image quality was assessed by comparing the Structural SIMularity index (SSIM, contrast, and resolution of images. Results: The energy spectra acquired from both simulated and real SPECT systems demonstrated similar energy peak regions. The resulting full-widths-at-half-maximums were 13.92 keV for the simulation and 13.58 keV for experimental data, corresponding to energy resolutions of 9.95% and 9.61%, and with calculated sensitivities of 85.39 and 85.11 cps/MBq, respectively. Better performance parameters were obtained with a hardware-modified system constructed using a 0.944 cm thickness NaI(Tl crystal covered by a layer of 0.24 cm aluminum, a  slat of 4.5 cm Pyrex as a backscattering medium, and a parallel hole collimator of Pb-Sb alloy with 2.405 cm thickness. Conclusion: The modeling of a Siemens E.CAM SPECT system was performed with the SIMIND Monte Carlo code. Results obtained with the code are in good agreement with experimental results. The findings demonstrate that the proposed hardware modifications

  12. Education and equipment for people who smoke crack cocaine in Canada: progress and limits.

    Science.gov (United States)

    Strike, Carol; Watson, Tara Marie

    2017-05-12

    People who smoke crack cocaine experience a wide variety of health-related issues. However, public health programming designed for this population is limited, particularly in comparison with programming for people who inject drugs. Canadian best practice recommendations encourage needle and syringe programs (NSPs) to provide education about safer crack cocaine smoking practices, distribute safer smoking equipment, and provide options for safer disposal of used equipment. We conducted an online survey of NSP managers across Canada to estimate the proportions of NSPs that provide education and distribute safer smoking equipment to people who smoke crack cocaine. We also assessed change in pipe distribution practices between 2008 and 2015 in the province of Ontario. Analysis of data from 80 programs showed that the majority (0.76) provided education to clients on reducing risks associated with sharing crack cocaine smoking equipment and about when to replace smoking equipment (0.78). The majority (0.64) also distributed safer crack cocaine smoking equipment and over half of these programs (0.55) had done so for less than 5 years. Among programs that distributed pipes, 0.92 distributed the recommended heat-resistant Pyrex and/or borosilicate glass pipes. Only 0.50 of our full sample reported that their program provides clients with containers for safer disposal of used smoking equipment. The most common reasons for not distributing safer smoking equipment were not enough funding (0.32) and lack of client demand (0.25). Ontario-specific sub-analyses showed a significant increase in the proportion of programs distributing pipes in Ontario from 0.15 (2008) to 0.71 (2015). Our findings point to important efforts by Canadian NSPs to reduce harm among people who smoke crack cocaine through provision of education and equipment, but there are still limits that could be addressed. Our study can provide guidance for future cross-jurisdiction studies to describe relationships

  13. 复合板网填料性能研究%Study on the Performan ce of Compound Meshed-Sheet Struct ured Packing in Packed Columns

    Institute of Scientific and Technical Information of China (English)

    龙湘犁; 叶永恒

    2000-01-01

    A new kind of structured packing has been studied by laminating three meshed-sheets one upon another t o form a packing with the meshes o f the meshed-sheet sandwiched betw een the others being made fine and the meshes of the two outside bei ng made large so as to improve liquid diffusing over the packing and the liquid-gas mass-transfer effi ciency of the packing.Experiments were performed in a Pyrex glass co lumn of 0.470m internal diamet er with a packing height of 1.00m for all packing types. The column was operated in counter-current with water-air system. The liquid- side mass transfer characteristic was tested by stripping oxygen fro m saturated water into air by mean s of the NOL-HOL method. The packing tested had a specific geo metric area of 250m2/m3. The exp erimental results show that the co mpound meshed-sheet structured pac king has many advantages over othe r structured packings. Thus it can be concluded that the compound me shed-sheet structured packing may have a wide use in difficult separ ations with pressure gradient cons traints,low relative volatilities, and/or small liquid holdup because of its very high efficiency,large capacity,and low pressure drop.%对一种新型的金属复合板网填料进行了研究,它是由三层板网贴合为复合基材后加工成波纹填料。在φ500冷模实验塔内对250Y型填料的测试结果表明复合板网填料具有显著的性能优势。三层复合板网填料的压降比常用的金属板波纹填料低60%以上,通量大20%~40%。氧解吸实验结果表明三层复合板网填料的分离效率明显高于单层板网填料,尤其在液气比低的工况下,效率可以倍增,和广泛应用的金属Mellapac填料相比,复合板网填料的分离效率能高30%左右。

  14. A Performance Prediction Model for a Piezoresistive Transducer Pressure Sensor%压阻变换压力传感器的性能预测模型

    Institute of Scientific and Technical Information of China (English)

    宋续; 刘胜

    2004-01-01

    Performance for a piezoresistive transducer pressure sensor to thermal and pressure environments can be predic ted by finite element method.A simplified 1/8 model,considering silicon dioxide and nitride process as well as stack anod ic bonding and adhesive bonding processes,was developed.The FEM results were found to be comparable to experimental data.Case studies suggested that Pyrex stack induces certain amount of non-linearity,while it isolates hard epoxy nonlinear effect.Flexible epoxy bonding or soft adhesive bonding is preferred to the packaging process.The viscoelasticity and visco plasticity of bonding material will result in hysteresis and drift errors to sensor output.However,soft adhesive' s influence on sensor can be ignored under relative stable environments.More over,detailed design and process information will help to improve modeling application.%热、压环境下压阻变换压力传感器的性能可以通过有限元方法预测.这里研究了简化的1/8模型,模型考虑了二氧化硅和氮化硅生成过程及堆阳极键合和胶粘结合过程.结果发现有限元预测结果和实验数据具有可比性.范例研究表明,硼硅堆导致产生一定的非线性,但它隔离了硬环氧树脂的非线性.在包装过程中最好使用柔性环氧黏合或软黏胶性结合.黏合材料的黏弹性和黏塑性将会导致传感器输出的滞后和漂移误差.然而,在相对稳定的环境下,软黏合剂对传感器的影响可以忽略.此外,详细的设计和过程信息有助于提高模型的适用性.

  15. Physical and photoelectrochemical properties of spherical nanoparticles of α-AgBiS2

    Science.gov (United States)

    Bellal, B.; Berger, M. H.; Trari, M.

    2017-10-01

    We have investigated the physical and photo electrochemical properties of α-AgBiS2 (schapbachite), synthesized from Bi2S3 and Ag2S in evacuated Pyrex ampoule at 550 °C. The precursors are prepared by precipitation from nitrates in ethylene glycol using thiourea as complexing agent and sulfide source. AgBiS2 crystallizes in a rock salt structure (Fm-3m). The transmission electron micrograph shows spherical nanoparticles with an average size of 30 nm, a value very close to that obtained from the Williamson-Hall plot of the XRD powder pattern (33.06±1.28 nm). HRTEM gives inter reticular distance of 0.33 nm, a value in excellent agreement with that of the SAED analysis (d111=0.3276 nm). The diffuse reflectance spectrum indicates a direct optical transition of 0.89 eV. The thermal variation of the electrical conductivity is characteristic of semiconducting behavior with activation energy of 0.20 eV, electron mobility (μ300K) of 2.43 × 10-4 cm2 V-1 s-1 and an effective mass of 2.88 mo. The intensity-potential J(V) curve in alkaline medium (pH 10.2) shows a good electrochemical stability. The dark capacitance (C-2-V) exhibits a linear behavior, characteristic of n-type conduction (dC-2/dE>0), from which a flat band potential of 0.33 VSCE and an electrons density of 2.57 × 1021 cm-3 are determined. The valence band derives from S2-: 3p states while the conduction band is made up mainly of Ag+: 5 s orbital. The electrochemical impedance spectroscopy (EIS), measured in the dark and under illumination over the frequency range (10-3-105 Hz), indicates the contribution of both the bulk and grain boundaries. An equivalent electrical circuit was simulated from the Nyquist diagram at pH 10, indicating the bulk contribution in the transport mechanism.

  16. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G. [Accelerators Department, Nuclear Research Center, AEA, Cairo 13759 (Egypt); El Fiki, S. A.; Nouh, S. A. [Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); El Disoki, T. M. [Faculty of Girls, Ain Shams University, Cairo 11566 (Egypt)

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions

  17. Helium Isotopic Ratios of Core Samples from IODP Exp. 319 (NanTroSEIZE Stage 2)

    Science.gov (United States)

    Horiguchi, K.; Matsuda, J.; Wiersberg, T.; Shimo, Y.; Tamura, H.; Kumagai, H.; Suzuki, K.; Saito, S.; Kinoshita, M.; Araki, E.; Byrne, T.; McNeill, L. C.; Saffer, D.; Takahashi, K.; Eguchi, N. O.; Toczko, S.

    2009-12-01

    IODP Exp.319 of Nankai Trough Seismogenic Zone Drilling Program Stage 2 started at May 2009. Various advanced technologies including first riser-based scientific ocean drilling were carried out at this cruise. The Hole C0009A (Site C0009/ Hole A) recovered cutting and partly core samples from 703.9-1604 mbsf by riser-drilling. The core samples were collected between the depth of 1510.5 and 1593.9 mbsf. Here we report preliminary helium isotopic ratios of these cores. We collected three types of samples for our study: (1) gas of cores, (2) whole round cores (100 cc) and (3) small whole round cores (10 cc). The gas samples were taken immediately after the core recovery. The gas samples were collected from each core section by using a syringe, and it was transferred to the glass bottle using the water displacement method. The glass bottle was made by Pyrex glass with vacuum valve at each end. We collected two sizes of whole round core samples (100 cc and 10 cc) The 100 cc cores were collected from the bottom and top sections of coring. The 10 cc cores were taken from the other sections. The outer parts of these samples were carefully removed to avoid contaminations from drilling fluid. After the removal of contamination, we immediately stored the 100 cc samples into vacuum container and 10 cc samples into plastic bag under a dry condition, respectively. The gas samples were measured for helium isotopic ratios. The noble gas measurement was carried out at Osaka University by using VG5400 mass spectrometer. We measured helium isotopic ratio and 4He/20Ne ratio. The latter is useful for making correction of the air contamination. The obtained result of helium isotopic ratios shows that the radiogenic helium is prominent in all samples. In addition, the helium isotope ratios show a trend that the ratio at shallower part is slightly higher than that at deeper part. It is conceivable that this trend is due to the larger radiogenic ingrowths at the deeper part. However, the

  18. LC and ferromagnetic resonance in soft/hard magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Bin, E-mail: milesbintian@gmail.com [Wuhan Institute of Technology, 430073 Wuhan (China); Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Vazquez, Manuel [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2015-12-01

    The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co{sub 59.1}Fe{sub 14.8}Si{sub 10.2}B{sub 15.9} soft magnetic nucleus and a Co{sub 90}Ni{sub 10} hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices. - Graphical abstract: By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because of the LC resonance depending on the inductor and capacitors. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. - Highlights: • The two peaks spectra of multilayer microwires, CoFeSiB/CoNi, with magnetic biphase behavior have been reported. • One of the two absorption peaks is because of the ferromagnetic resonance of metallic core. • The other absorption peak is because of the LC resonance which depends on the capacitors

  19. Impact Flash Physics: Modeling and Comparisons With Experimental Results

    Science.gov (United States)

    Rainey, E.; Stickle, A. M.; Ernst, C. M.; Schultz, P. H.; Mehta, N. L.; Brown, R. C.; Swaminathan, P. K.; Michaelis, C. H.; Erlandson, R. E.

    2015-12-01

    Hypervelocity impacts frequently generate an observable "flash" of light with two components: a short-duration spike due to emissions from vaporized material, and a long-duration peak due to thermal emissions from expanding hot debris. The intensity and duration of these peaks depend on the impact velocity, angle, and the target and projectile mass and composition. Thus remote sensing measurements of planetary impact flashes have the potential to constrain the properties of impacting meteors and improve our understanding of impact flux and cratering processes. Interpreting impact flash measurements requires a thorough understanding of how flash characteristics correlate with impact conditions. Because planetary-scale impacts cannot be replicated in the laboratory, numerical simulations are needed to provide this insight for the solar system. Computational hydrocodes can produce detailed simulations of the impact process, but they lack the radiation physics required to model the optical flash. The Johns Hopkins University Applied Physics Laboratory (APL) developed a model to calculate the optical signature from the hot debris cloud produced by an impact. While the phenomenology of the optical signature is understood, the details required to accurately model it are complicated by uncertainties in material and optical properties and the simplifications required to numerically model radiation from large-scale impacts. Comparisons with laboratory impact experiments allow us to validate our approach and to draw insight regarding processes that occur at all scales in impact events, such as melt generation. We used Sandia National Lab's CTH shock physics hydrocode along with the optical signature model developed at APL to compare with a series of laboratory experiments conducted at the NASA Ames Vertical Gun Range. The experiments used Pyrex projectiles to impact pumice powder targets with velocities ranging from 1 to 6 km/s at angles of 30 and 90 degrees with respect to

  20. To study the flow property of seven commercially available zinc oxide eugenol impression material at various time intervals after mixing.

    Science.gov (United States)

    Katna, Vishal; Suresh, S; Vivek, Sharma; Meenakshi, Khandelwal; Ankita, Gaur

    2014-12-01

    Aims and objective of the study was to evaluate the flow property of seven commercially available zinc oxide eugenol impression materials at various time intervals, after mixing 49 samples (seven groups) were fabricated for flow property of the material. The sample were fabricated as equal length of base and accelerator paste of the test materials was taken on the glass slab and mixed with a rigid stainless steel spatula as per manufacturers recommendation till the homogenous mix was obtained. The mix material was loaded in glass syringe and 0.5 ml material was injected on a cellophane sheet placed on marked glass plate. A cellophane sheet and glass plate 70 and 500 g weight was carefully placed on freshly dispensed zinc oxide eugenol impression paste sequentially. The diameter of the mix was noted after 30 s and 1 min of load application and also after the final set of material. The diameter gives the flow of material. The samples were stored at the room temperature. The data of the flow property was analyzed with analysis of variance, Post hoc test and t test. The flow of the zinc oxide eugenol impression paste after 30 s, 1 min and final set of load application for Group A to Group G was noted. Maximum flow was seen for Group G zinc oxide eugenol impression material followed by Group F, D, E, B, C and A in descending order respectively after 30 s, where as the flow property changed after 1 min in the sequence of maximum for Group G followed by Group E, D, B, A, C, and F. Lastly after final set of the impression material the flow maximum for Group G followed by Group E, D, C, F, A and B in descending order. Based on statistical analysis of the results and within in the limitations of this in-vitro study, the following conclusions were drawn that; the flow of zinc oxide eugenol impression material after 30 s, 1 min and that after the final set was maximum for P.S.P. (Group G) and the flow for PYREX (Group A) was minimum.

  1. Low temperature hermetically sealed three-dimensional MEMS device for wireless optical communication

    Science.gov (United States)

    Agarwal, Rahul

    Novel processes were developed that resulted in a self-packaged device during the system integration, along with a transparent lid for inspection or optical probing. A new process was developed for improving the verticality in Micro Electro Mechanical Systems (MEMS) structures using Deep Reactive Ion Etching (DRIE). A self-pattered, mask-less photolithography technique was developed to metallize these vertical structures while maintaining a transparent window, for packaging of various MEMS devices. The verticality and metallization coverage were evaluated by incorporating the MEMS structures into an optical Corner Cube Retroreflector (CCR). A low temperature, hermetic sealing technique was also developed using In-Au thermo-compression bonding at 160°C. Cross-shaped 550microm deep vertical mirrors, with sidewall angles of 90.08° were etched with this new DRIE technique. This is the best reported sidewall angle for such deep structures. The typical scalloped DRIE sidewall roughness was reduced to 40nm using wet polishing. A bonded Pyrex wafer was used as the handle wafer during DRIE; it eventually forms the package window after DRIE. The metallized, vertical mirrors were bonded to a MEMS device chip to assemble and package the CCR. The MEMS device chip consisted of an array of torsion mirrors. The mirrors were designed to modulate at 6Vp-p--20V p-p, with the resonant frequencies ranging from 25 KHz--50 KHz. The design and simulation results are presented. To test the hermetic seal, helium leak tests were performed on the packaged device. Leak rates of as low as 2.8x10-8atm cc/s air were detected, which is better than the MIL-STD-883G of 5x10-8 atm cc/s air for a package volume of 7.8x10-3 CC. A microprocessor and temperature/humidity sensor was then integrated with the CCR to assemble a passive optical digital data communicator. A flexible circuit design and a folded packaging scheme were utilized to minimize the overall form factor. Flat, flexible polymer

  2. Attempted Isolation, Spectroscopic Characterization, and Computational Study of Diazirinone (N2CO), its Analogs, and their Precursors

    Science.gov (United States)

    Esselman, Brian J.; Nolan, Alex M.; Amberger, Brent K.; Shaffer, Chris J.; Woods, R. Claude; Stanton, John F.; McMahon, Robert J.

    2010-11-01

    research project has been used previously for the investigation of numerous small inorganic molecules and ions. The apparatus consists of a three-meter Pyrex discharge chamber with cylindrical electrodes at each end. The discharge operates at mTorr pressures and at temperatures as low as 77 K. The microwave signal is generated by a Gunn-diode microwave source, which is then further amplified and multiplied to reach the desired frequencies. The signal is focused onto a liquid-helium-cooled indium antimonide detector.

  3. Calibration of the Soft X-ray Telescopes (SXT) Onboard the ASTRO-H Satellite

    Science.gov (United States)

    Soong, Yang; Okajima, Takashi; Serlemitsos, Peter J.

    2013-01-01

    ASTRO-H is an astrophysics satellite dedicated for non-dispersive X-ray spectroscopic study on selective celestial X-ray sources. Among the onboard instruments there are four Wolter-I X-ray mirrors of their reflectors' figure in conical approximation. Two of the four are soft X-ray mirrors, of which the energy range is from a few hundred eV to 15 keV. The focal point instruments will be a calorimeter (SXS) and a CCD camera (SXI), respectively. The mirrors were in quadrant configuration with photons being reflected consecutively in the primary and secondary stage before landing on the focal plane of 5.6 m away from the interface between the two stages. The reflectors of the mirror are made of heat-formed aluminum substrate of the thickness gauged of 152 m, 229 m, and 305 m of the alloy 5052 H-19, followed by epoxy replication on gold-sputtered smooth Pyrex cylindrical mandrels to acquire the X-ray reflective surface. The epoxy layer is 10 m nominal and surface gold layer of 0.2 m. Improvements on angular response over its predecessors, e.g. Astro-E1/Suzaku mirrors, come from error reduction on the figure, the roundness, and the grazing angle/radius mismatching of the reflecting surface, and tighter specs and mechanical strength on supporting structure to reduce the reflector positioning and the assembly errors. Each soft x-ray telescope (SXT), FM1 or FM2, were integrated from four independent quadrants of mirrors. The stray-light baffles, in quadrant configuration, were mounted onto the integrated mirror. Thermal control units were attached to the perimeter of the integrated mirror to keep the mirror within operating temperature in space. The completed instrument went through a series of optical alignment, thus made the quadrant images confocal and their optical axes in parallel to achieve highest throughput possible. Environmental tests were carried out, and optical quality of the telescopes has been confirmed. The optical and x-ray calibrations also include

  4. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  5. An experimental investigation of multiple sulfur isotope fractionations during heterogenous reactions between SO2 and activated carbon

    Science.gov (United States)

    Hamasaki, H.; Watanabe, Y.; Ohmoto, H.

    2010-12-01

    Watanabe et al. (2009) reported that the reduced-S species produced from reactions between solid organic compounds and aqueous sulfate at 150-200 °C possessed anomalous isotopic fractionation (AIF) of S: Δ33S = 0.1 to 2.1 ‰. Based partly on these data, they suggested that the AIF-S signatures in some sedimentary rocks were produced during thermochemical sulfate reduction by solid organic compounds during the early stage of sediment diagenesis, rather than by atmospheric UV photolysis of volcanic SO2. Theoretical study by Lasaga et al. (2008) also suggested that variable AIF-S signatures could be generated during chemisorption of aqueous (or gaseous) S species on a solid surface (e.g., kerogen) under certain conditions. The main objective of this study was, therefore, to evaluate S isotope effects during different stages of reactions (e.g., adsorption, redox reactions) between a solid organic compound and SO2. We have conducted several series of experiments in a closed pyrex-glass system. About 1.8 gm (0.15 moles) of activated C (0.25-1.0 mm in diameter) was first evacuated at 300 °C for 5 days. Then 2.5 mmoles of pure SO2 gas was introduced in the system to react with activated carbon at 200 or 250 °C. Once the pSO2 became stabilized (typically after ~1 day), an aliquot of the SO2 gas (0.1 to 1.5 mmoles) was withdrawn into a pyrex-glass tube containing 20 % H2O2 solution to collect the SO2 as sulfate. After the pSO2 reached to a new steady value, another aliquot of SO2 was withdrawn from the system; sampling was continued until the amount of SO2 gas in the system decreased to 5 % of the initial value. The collected sulfate was converted to Ag2S for isotope analysis. After a series of experiment at 200 °C and another at 250 °C, the activated carbon was removed from the reaction system, treated sequentially by different chemical solutions to extract different forms of S compounds; the extracted S compounds were analyzed for their contents and isotopic ratios

  6. Concentrations and {delta}{sup 13}C values of atmospheric CO{sub 2} from oceanic atmosphere through time: polluted and non-polluted areas

    Energy Technology Data Exchange (ETDEWEB)

    Longinelli, Antonio; Selmo, Enrico [Univ. of Parma (Italy). Dept. of Earth Sciences; Lenaz, Renzo; Ori, Carlo [C.N.R., ISMAR, Bologna (Italy). Dept. of Marine Geology

    2005-11-01

    CO{sub 2} is one of the primary agents of global climate changes. The increase of atmospheric CO{sub 2} concentration is essentially related to human-induced emissions and, particularly, to the burning of fossil fuel whose {delta}{sup 13}C values are quite negative. Consequently, an increase of the CO{sub 2} concentration in the atmosphere should be paralleled by a decrease of its {delta}{sup 13}C. Continuous and/or spot measurements of CO{sub 2} concentrations were repeatedly carried out during the last decade and in the same period of the year along hemispheric courses from Italy to Antarctica on a vessel of the Italian National Research Program in Antarctica. During these expeditions, discrete air samples were also collected in 4-l Pyrex flasks in order to carry out precise carbon isotope analyses on atmospheric CO{sub 2} from different areas, including theoretically 'clean' open ocean areas, with the main purpose of comparing these open ocean results with the results obtained by the National Oceanic and Atmospheric Administration/World Meteorological Organization (NOAA/WMO) at land-based stations. According to the data obtained for these two variables, a relatively large atmospheric pollution is apparent in the Mediterranean area where the CO{sub 2} concentration has reached the value of 384 ppmv while quite negative {delta}{sup 13}C values have been measured only occasionally. In this area, southerly winds probably help to reduce the effect of atmospheric pollution even though, despite a large variability of CO{sub 2} concentrations, these values are consistently higher than those measured in open ocean areas by a few ppmv to about 10 ppmv. A marked, though non-continuous, pollution is apparent in the area of the Bab-el-Mandeb strait where {delta}{sup 13}C values considerably more negative than in the Central and Southern Red Sea were measured. The concentration of atmospheric CO{sub 2} over the Central Indian Ocean increased from about 361 ppmv at

  7. Concentrations and (delta){sup 13}C values of atmospheric CO{sub 2} from oceanic atmosphere through time: polluted and non-polluted areas

    Energy Technology Data Exchange (ETDEWEB)

    Longinelli, Antonio; Selmo, Enrico [Univ. of Parma (Italy). Dept. of Earth Sciences; Lenaz, Renzo; Ori, Carlo [C.N.R., ISMAR, Bologna (Italy). Dept. of Marine Geology

    2005-11-15

    CO{sub 2} is one of the primary agents of global climate changes. The increase of atmospheric CO{sub 2} concentration is essentially related to human-induced emissions and, particularly, to the burning of fossil fuel whose (delta){sup 13}C values are quite negative. Consequently, an increase of the CO{sub 2} concentration in the atmosphere should be paralleled by a decrease of its (delta){sup 13}C. Continuous and/or spot measurements of CO{sub 2} concentrations were repeatedly carried out during the last decade and in the same period of the year along hemispheric courses from Italy to Antarctica on a vessel of the Italian National Research Program in Antarctica. During these expeditions, discrete air samples were also collected in 4-l Pyrex flasks in order to carry out precise carbon isotope analyses on atmospheric CO{sub 2} from different areas, including theoretically 'clean' open ocean areas, with the main purpose of comparing these open ocean results with the results obtained by the National Oceanic and Atmospheric Administration/World Meteorological Organization (NOAA/WMO) at land-based stations. According to the data obtained for these two variables, a relatively large atmospheric pollution is apparent in the Mediterranean area where the CO{sub 2} concentration has reached the value of 384 ppmv while quite negative (delta){sup 13}C values have been measured only occasionally. In this area, southerly winds probably help to reduce the effect of atmospheric pollution even though, despite a large variability of CO{sub 2} concentrations, these values are consistently higher than those measured in open ocean areas by a few ppmv to about 10 ppmv. A marked, though non-continuous, pollution is apparent in the area of the Bab-el-Mandeb strait where (delta){sup 13}C values considerably more negative than in the Central and Southern Red Sea were measured. The concentration of atmospheric CO{sub 2} over the Central Indian Ocean increased from about 361 ppmv at

  8. Study and selection of structured packing material: metallic, polymeric or ceramic to operate a column of absorption polluting gases coming from brick kilns efficiently; Estudio y seleccion de material empaque estructurado: metalico, polimerico o ceramico, para operar eficientemente una columna de absorcion de gases contaminantes provenientes de hornos tabiqueros

    Energy Technology Data Exchange (ETDEWEB)

    Salazar P, A.

    2012-07-01

    In this research three structured packing materials were characterized: a metallic, polymeric and ceramic. The study of the physical properties of structured packing materials, and their behavior within the absorption column allowed to suggest a gas-liquid contactor material with higher mechanical and chemical resistance, which is more efficient for the treatment of sour gases from brick kilns. To study the mechanical properties (hardness, tension and elastic modulus) were used procedures of the American Society for Testing Materials, as well as resistance to corrosion. The geometric characteristics, the density, the melting temperature and the weight were tested with procedures of the measuring equipment. The structure was evaluated by X-ray diffraction, morphology was observed by scanning electron microscopy coupled to a sound of dispersive energy of X-ray, to quantify elemental chemical composition. The interaction of gas-liquid contactors materials in presence of CO{sub 2}, was evaluated in three absorption columns built of Pyrex glass, with a diameter of 0.1016 m, of 1.5 m in height, 0.0081m{sup 2} cross-sectional area, packed with every kind of material: metallic, polymeric and ceramic, processing a gas flow of 20m{sup 3} / h at 9% CO{sub 2}, in air and a liquid flow to 30% of Mea 5 L/min. The results of the properties studied were by the metallic material: more density, higher roughness, the greater tensile strength, greater resistance to corrosion in the presence of an aqueous solution of monoethanolamine (Mea) to 30% by weight, improvement more efficient absorption of CO{sub 2}, and higher modulus of elasticity. The polymeric material was characterized to have lower hardness, lower roughness, lower density, lower melting temperature, greater resistance to corrosion in the presence of 1 N H{sub 2}SO{sub 4} aqueous solution, and allowed an absorption efficiency of CO{sub 2}, 2% lower than that presented by the material metallic. The ceramic material found to

  9. Recent advances in technetium halide chemistry.

    Science.gov (United States)

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    (IV)) to d(5) (Tc(II)) is accompanied by the formation of metal-metal bonds in the coordination polyhedra. There is no metal-metal interaction in TcX4, a Tc═Tc double bond is present in α/β-TcCl3, and a Tc≡Tc triple bond is present in α/β-TcCl2. We investigated the thermal behavior of these binary halides in sealed tubes under vacuum at elevated temperature. Technetium tetrachloride decomposes stepwise to α-TcCl3 and β-TcCl2 at 450 °C, while β-TcCl3 converts to α-TcCl3 at 280 °C. The technetium dichlorides disproportionate to Tc metal and TcCl4 above ∼600 °C. At 450 °C in a sealed Pyrex tube, TcBr3 decomposes to Na{[Tc6Br12]2Br}, while TcI3 decomposes to Tc metal. We have used technetium tribromide in the preparation of new divalent complexes; we expect that the other halides will also serve as starting materials for the synthesis of new compounds (e.g., complexes with a Tc3(9+) core, divalent iodide complexes, binary carbides, nitrides, and phosphides, etc.). Technetium halides may also find applications in the nuclear fuel cycle; their thermal properties could be utilized in separation processes using halide volatility. In summary, we hope that these new insights on technetium binary halides will contribute to a better understanding of the chemistry of this fascinating element.

  10. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    pellet surface than the bulk of the pellet in leaching experiments. Thus, formation of oxidising species and radicals by radiolysis is expected to be disproportionately high as well. Therefore, when discussing high burnup fuel dissolution, the effect of the increased radiation field with burnup, as well as of the influence of the smaller grain size and increased porosity at the rim are mentioned as factors which contribute to increased dissolution rates. A third factor, increased fission product and actinide doping with burnup, has been discussed extensively in connection with increased resistance to air oxidation of the fuel. Samples from four different fuel rods, all operated in Pressurised Water Reactors (PWR), are used in the new series of corrosion experiments. They cover a burnup range from 58 to 75 MWd/kgU. The nuclide inventory of all four samples was determined by means of a combination of experimental nuclide analysis and sample specific modelling calculations. More than 40 different nuclides were analysed by isotope dilution analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), as well as other ICP-MS and gamma spectrometric methods. The content of roughly all fission products and actinides was also calculated separately for each sample. The experiments are performed under oxidising conditions in synthetic groundwater at ambient temperature. In order to make results as comparable as possible to those of the Series 11 experiments, the same procedure and the same leachant is used. At least nine consecutive contact periods of one and three weeks and two, three, six and twelve months are planned. The present report covers the first five contact periods up to a cumulative contact time of one year for all four samples and in addition the sixth period up to a cumulative contact time of two years for two of the samples. The samples, kept in position by a platinum wire spiral, are exposed to synthetic groundwater in a Pyrex flask. After the contact

  11. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices%芯片级原子器件MEMS碱金属蒸气腔室制作

    Institute of Scientific and Technical Information of China (English)

    尤政; 马波; 阮勇; 陈硕; 张高飞

    2013-01-01

    提出了基于两步低温阳极键合工艺的碱金属蒸气腔室制作方法,用于实现原子钟、原子磁力计及原子陀螺仪等器件的芯片级集成.由微机电系统(MEMS)体硅工艺制备了腔室结构.首先采用标准工艺将刻蚀有腔室的硅圆片与Pyrex玻璃阳极键合成预成型腔室,然后引入氮缓冲气体和由惰性石蜡包覆的微量碱金属铷或铯.通过两步阳极键合来密封腔室,键合温度低于石蜡燃点198℃.第一步键合预封装腔室,键合电压小于缓冲气体的击穿电压.第二步键合在大气氛围中进行,电压增至1 200 V来增强封装质量.通过高功率激光器局部加热释放碱金属,同时在腔壁上形成均匀的石蜡镀层以延长极化原子寿命.本文实现了160℃的低温阳极键合封装,键合率达到95%以上.封装的碱金属铷释放后仍具有金属光泽,实现的最小双腔室体积为6.5 mm×4.5 mm×2 mm.铷的吸收光谱表明铷有效地封装在腔室中,证明两步低温阳极键合工艺制作碱金属蒸气腔室是可行的.%This paper reported on the microfabrication of alkali metal vapor cells based on the two-step low temperature anodic bonding for the chip-scale integration of atomic clock,atomic magnetometer,atomic gyroscope and other atomic devices.Cell structures were fabricated by Micro-electromechanical System (MEMS) bulk silicon process,and the etched silicon with cells was firstly bonded to Pyrex glass to fabricate preformed chambers by the standard anodic bonding process.Then,nitrogen buffer gas and micro-scale alkali metal (rubidium or cesium) were introduced into the preformed cells.The two-step anodic bonding process was used to seal the cells at a temperature lower than the paraffin flash point (198 ℃).In the first step,bonding voltage was lower than the breakdown voltage of nitrogen buffer gas to pre-seal the cells.In the second step,the bonding was in air atmosphere,and the bonding voltage increased up to 1