WorldWideScience

Sample records for pyrethroid-hydrolyzing carboxylesterase gene

  1. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2008-12-01

    Full Text Available Abstract Background Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes and developing various biotechnological applications. Results The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45–49%. The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3

  2. Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases

    International Nuclear Information System (INIS)

    Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2007-01-01

    Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are ∼ 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts (∼ 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected

  3. Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    International Nuclear Information System (INIS)

    Yang Dongfang; Wang Xiliang; Chen Yitzai; Deng Ruitang; Yan Bingfang

    2009-01-01

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  4. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip.

    Science.gov (United States)

    Nomura, Taiji

    2017-01-01

    Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.

  5. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Wei [The Second Affiliated Hospital of Dalian Medical University, Dalian 110623 (China); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Wang, Dan-Dan; Dou, Tong-Yi [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Hou, Jie [Dalian Medical University, Dalian 116044 (China); Feng, Liang; Yin, Heng [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Luo, Qun [Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Sun, Jie [The Second Affiliated Hospital of Dalian Medical University, Dalian 110623 (China); Ge, Guang-Bo, E-mail: geguangbo@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yang, Ling [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-04-15

    Pyrethroids are broad-spectrum insecticides that widely used in many countries, while humans may be exposed to these toxins by drinking or eating pesticide-contaminated foods. This study aimed to investigate the inhibitory effects of six commonly used pyrethroids against two major human carboxylesterases (CES) including CES1 and CES2. Three optical probe substrates for CES1 (DME, BMBT and DMCB) and a fluorescent probe substrate for CES2 (DDAB) were used to characterize the inhibitory effects of these pyrethroids. The results demonstrated that most of the tested pyrethroids showed moderate to weak inhibitory effects against both CES1 and CES2, but deltamethrin displayed strong inhibition towards CES1. The IC{sub 50} values of deltamethrin against CES1-mediated BMBT, DME, and DMCB hydrolysis were determined as 1.58 μM, 2.39 μM, and 3.3 μM, respectively. Moreover, deltamethrin was cell membrane permeable and capable of inhibition endogenous CES1 in living cells. Further investigation revealed that deltamethrin inhibited CES1-mediated BMBT hydrolysis via competitive manner but noncompetitively inhibited DME or DMCB hydrolysis. The inhibition behaviors of deltamethrin against CES1 were also studied by molecular docking simulation. The results demonstrated that CES1 had at least two different ligand-binding sites, one was the DME site and another was the BMBT site which was identical to the binding site of deltamethrin. In summary, deltamethrin was a strong reversible inhibitor against CES1 and it could tightly bind on CES1 at the same ligand-binding site as BMBT. These findings are helpful for the deep understanding of the interactions between xenobiotics and CES1. - Highlights: • The inhibitory effects of six commonly used pyrethroids on human carboxylesterases were investigated. • Deltamethrin displayed strong inhibitory effects against human carboxylesterase 1 (CES1). • Deltamethrin was cell membrane permeable and could inhibit intracellular CES1 in living

  6. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases

    International Nuclear Information System (INIS)

    Lei, Wei; Wang, Dan-Dan; Dou, Tong-Yi; Hou, Jie; Feng, Liang; Yin, Heng; Luo, Qun; Sun, Jie; Ge, Guang-Bo; Yang, Ling

    2017-01-01

    Pyrethroids are broad-spectrum insecticides that widely used in many countries, while humans may be exposed to these toxins by drinking or eating pesticide-contaminated foods. This study aimed to investigate the inhibitory effects of six commonly used pyrethroids against two major human carboxylesterases (CES) including CES1 and CES2. Three optical probe substrates for CES1 (DME, BMBT and DMCB) and a fluorescent probe substrate for CES2 (DDAB) were used to characterize the inhibitory effects of these pyrethroids. The results demonstrated that most of the tested pyrethroids showed moderate to weak inhibitory effects against both CES1 and CES2, but deltamethrin displayed strong inhibition towards CES1. The IC 50 values of deltamethrin against CES1-mediated BMBT, DME, and DMCB hydrolysis were determined as 1.58 μM, 2.39 μM, and 3.3 μM, respectively. Moreover, deltamethrin was cell membrane permeable and capable of inhibition endogenous CES1 in living cells. Further investigation revealed that deltamethrin inhibited CES1-mediated BMBT hydrolysis via competitive manner but noncompetitively inhibited DME or DMCB hydrolysis. The inhibition behaviors of deltamethrin against CES1 were also studied by molecular docking simulation. The results demonstrated that CES1 had at least two different ligand-binding sites, one was the DME site and another was the BMBT site which was identical to the binding site of deltamethrin. In summary, deltamethrin was a strong reversible inhibitor against CES1 and it could tightly bind on CES1 at the same ligand-binding site as BMBT. These findings are helpful for the deep understanding of the interactions between xenobiotics and CES1. - Highlights: • The inhibitory effects of six commonly used pyrethroids on human carboxylesterases were investigated. • Deltamethrin displayed strong inhibitory effects against human carboxylesterase 1 (CES1). • Deltamethrin was cell membrane permeable and could inhibit intracellular CES1 in living cells

  7. Carboxylesterase 1 genes

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Madsen, Majbritt Busk

    2018-01-01

    The carboxylesterase 1 gene (CES1) encodes a hydrolase that metabolizes commonly used drugs. The CES1-related pseudogene, carboxylesterase 1 pseudogene 1 (CES1P1), has been implicated in gene exchange with CES1 and in the formation of hybrid genes including the carboxylesterase 1A2 gene (CES1A2...

  8. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

    Directory of Open Access Journals (Sweden)

    Fan Xinjiong

    2012-03-01

    Full Text Available Abstract Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3 in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg. The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most

  9. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.

    Science.gov (United States)

    Zuo, Zhenqiang; Gong, Ting; Che, You; Liu, Ruihua; Xu, Ping; Jiang, Hong; Qiao, Chuanling; Song, Cunjiang; Yang, Chao

    2015-06-01

    Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.

  10. Carboxylesterases in lipid metabolism: from mouse to human

    Directory of Open Access Journals (Sweden)

    Jihong Lian

    2017-07-01

    Full Text Available ABSTRACT Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (overexpression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.

  11. Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Yongqiang Li

    2016-04-01

    Full Text Available Carboxylesterasesare an important class of detoxification enzymes involved in insecticide resistance in insects. A subgroup of Helicoverpa armigera esterases, known as Clade 001, was implicated in organophosphate and pyrethroid insecticide resistance due to their overabundance in resistant strains. In this work, a novel carboxylesterasegene 001D of H. armigera from China was cloned, which has an open reading frame of 1665 nucleotides encoding 554 amino acid residues. We used a series of fusion proteins to successfully express carboxylesterase 001D in Escherichia coli. Three different fusion proteins were generated and tested. The enzyme kinetic assay towards 1-naphthyl acetate showed all three purified fusion proteins are active with a Kcat between 0.35 and 2.29 s−1, and a Km between 7.61 and 19.72 μM. The HPLC assay showed all three purified fusion proteins had low but measurable hydrolase activity towards β-cypermethrin and fenvalerate insecticides (specific activities ranging from 0.13 to 0.67 μM·min−1·(μM−1·protein. The enzyme was stable up to 40 °C and at pH 6.0–11.0. The results imply that carboxylesterase 001D is involved in detoxification, and this moderate insecticide hydrolysis may suggest that overexpression of the gene to enhance insecticide sequestration is necessary to allow carboxylesterases to confer resistance to these insecticides in H. armigera.

  12. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change.

    Science.gov (United States)

    Cui, Feng; Li, Mei-Xia; Chang, Hai-Jing; Mao, Yun; Zhang, Han-Ying; Lu, Li-Xia; Yan, Shuai-Guo; Lang, Ming-Lin; Liu, Li; Qiao, Chuan-Ling

    2015-06-01

    Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana

    Directory of Open Access Journals (Sweden)

    Donnelly Martin J

    2007-01-01

    Full Text Available Abstract Background Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification – though equally important – remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. Results Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD gene family. Conclusion These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance.

  14. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  15. Nomenclature for alleles of the human carboxylesterase 1 gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik B.; Madsen, Majbritt B.; Bjerre, Ditte

    2017-01-01

    The carboxylesterase 1 gene (CES1) in humans encodes a hydrolase, which is implicated in the metabolism of several commonly used drugs 1. This gene is located on chromosome 16 with a highly homologous pseudogene, CES1P1, in its proximity. A duplicated segment of CES1 replaces most of CES1P1 in some...... appears to be low 8,13. The formation of hybrids consisting of a gene and a related pseudogene has been reported for other genes than CES1. This includes the hybrids of the gene encoding cytochrome P450 2D6 (CYP2D6) and pseudogene CYP2D7, that is, the so-called CYP2D7/D6 hybrids 14......,15. These are categorized as CYP2D6 variants and not as variants of pseudogene CYP2D716....

  16. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    Science.gov (United States)

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  17. Functional characterization of carboxylesterase gene mutations involved in Aphis gossypii resistance to organophosphate insecticides.

    Science.gov (United States)

    Gong, Y-H; Ai, G-M; Li, M; Shi, X-Y; Diao, Q-Y; Gao, X-W

    2017-12-01

    Carboxylesterases (CarEs) play an important role in detoxifying insecticides in insects. Over-expression and structural modification of CarEs have been implicated in the development of organophosphate (OP) insecticide resistance in insects. A previous study identified four nonsynonymous mutations (resulting in four amino acid residue substitutions) in the open reading frame of the carboxylesterase gene of resistant cotton aphids compared to the omethoate susceptible strain, which has possibly influenced the development of resistance to omethoate (a systemic OP insecticide). The current study further characterized the function of these mutations, both alone and in combination, in the hydrolysis of OP insecticides. The metabolism results suggest that the combination of four mutations, mainly existing in the laboratory-selected OP-resistant cotton aphid population, increased the OP hydrolase activity (approximately twofold) at the cost of detectable carboxylesterase activity. The functional studies of single or multiple mutations suggest the positive effect of H104R, A128V and T333P on the acquisition of OP hydrolase activity, especially the combination of H104R with A128V or T333P. K484R substitution decreased both the OP hydrolase activity and the CarE activity, indicating that this mutation primarily drives the negative effect on the acquisition of OP hydrolase activity amongst these four mutations in the resistant strain. The modelling and docking results are basically consistent with the metabolic results, which strongly suggest that the structural gene modification is the molecular basis for the OP resistance in this laboratory-selected cotton aphid strain. © 2017 The Royal Entomological Society.

  18. Carboxylesterase 1A2 encoding gene with increased transcription and potential rapid drug metabolism in Asian populations

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Madsen, Majbritt Busk; Lyauk, Yassine Kamal

    2017-01-01

    The carboxylesterase 1 gene (CES1) encodes a hydrolase implicated in the metabolism of commonly used drugs. CES1A2, a hybrid of CES1 and a CES1-like pseudogene, has a promoter that is weak in most individuals. However, some individuals harbor a promoter haplotype of this gene with two overlapping...

  19. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  20. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.

  1. Age-Related Inducibility of Carboxylesterases by the Antiepileptic Agent Phenobarbital and Implications in Drug Metabolism and Lipid Accumulation 1, 2

    Science.gov (United States)

    Xiao, Da; Chen, Yi-Tzai; Yang, Dongfang; Yan, Bingfang

    2014-01-01

    Carboxylesterases (CES) constitute a class of hydrolytic enzymes that play critical roles in drug metabolism and lipid mobilization. Previous studies with a large number of human liver samples have suggested that the inducibility of carboxylesterases is inversely related with age. To directly test this possibility, neonatal (10 days of age) and adult mice were treated with the antiepileptic agent phenobarbital. The expression and hydrolytic activity were determined on six major carboxylesterases including ces1d, the ortholog of human CES1. Without exception, all carboxylesterases tested were induced to a greater extent in neonatal than adult mice. The induction was detected at mRNA, protein and catalytic levels. Ces1d was greatly induced and found to rapidly hydrolyze the antiplatelet agent clopidogrel and support the accumulation of neutral lipids. Phenobarbital represents a large number of therapeutic agents that induce drug metabolizing enzymes and transporters in a species-conserved manner. The higher inducibility of carboxylesterases in the developmental age likely represents a general phenomenon cross species including human. Consequently, individuals in the developmental age may experience greater drug-drug interactions. The greater induction of ces1d also provides a molecular explanation to the clinical observation that children on antiepileptic drugs increase plasma lipids. PMID:22513142

  2. Carboxylesterase activities toward pesticide esters in crops and weeds.

    Science.gov (United States)

    Gershater, Markus; Sharples, Kate; Edwards, Robert

    2006-12-01

    Proteins were extracted from maize, rice, sorghum, soybean, flax and lucerne; the weeds Abutilon theophrasti, Echinochloa crus-galli, Phalaris canariensis, Setaria faberii, Setaria viridis, Sorghum halepense and the model plant Arabidopsis thaliana and assayed for carboxylesterase activity toward a range of xenobiotics. These included the pro-herbicidal esters clodinafop-propargyl, fenoxaprop-ethyl, fenthioprop-ethyl, methyl-2,4-dichlorophenoxyacetic acid (2,4-d-methyl), bromoxynil-octanoate, the herbicide-safener cloquintocet-mexyl and the pyrethroid insecticide permethrin. Highest activities were recorded with alpha-naphthyl acetate and methylumbelliferyl acetate. Esters of p-nitrophenol were also readily hydrolysed, with turnover declining as the chain length of the acyl component increased. Activities determined with model substrates were much higher than those observed with pesticide esters and were of limited value in predicting the relative rates of hydrolysis of the crop protection agents. Substrate preferences with the herbicides were typically 2,4-d-methyl>clodinafop-propargyl>fenthioprop-ethyl, fenoxaprop-ethyl and bromoxynil-octanoate. Isoelectric focussing in conjunction with staining for esterase activity using alpha-naphthyl acetate as substrate confirmed the presence of multiple carboxylesterase isoenzymes in each plant, with major qualitative differences observed between species. The presence of serine hydrolases among the resolved isoenzymes was confirmed through their selective inhibition by the organophosphate insecticide paraoxon. Our studies identify potentially exploitable differences between crops and weeds in their ability to bioactivate herbicides by enzymic hydrolysis and also highlight the usefulness of Arabidopsis as a plant model to study xenobiotic biotransformation.

  3. Prognostic impact of carboxylesterase 1 gene variants in patients with congestive heart failure treated with angiotensin-converting enzyme inhibitors

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl E.; Madsen, Majbritt B.; Torp-Pedersen, Christian

    2016-01-01

    OBJECTIVE: Most angiotensin-converting enzyme inhibitors (ACEIs) are prodrugs activated by carboxylesterase 1 (CES1). We investigated the prognostic importance of CES1 gene (CES1) copy number variation and the rs3815583 single-nucleotide polymorphism in CES1 among ACEI-treated patients with conge...

  4. Mechanism of Resistance Acquisition and Potential Associated Fitness Costs in Amyelois transitella (Lepidoptera: Pyralidae) Exposed to Pyrethroid Insecticides.

    Science.gov (United States)

    Demkovich, Mark; Siegel, Joel P; Higbee, Bradley S; Berenbaum, May R

    2015-06-01

    The polyphagous navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive pest of nut crops, including almonds and pistachios, in California orchards. Management of this insect has typically been a combination of cultural controls and insecticide use, with the latter increasing substantially along with the value of these commodities. Possibly associated with increased insecticide use, resistance has been observed recently in navel orangeworm populations in Kern County, California. In studies characterizing a putatively pyrethroid-resistant strain (R347) of navel orangeworm, susceptibility to bifenthrin and β-cyfluthrin was compared with that of an established colony of susceptible navel orangeworm. Administration of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in first-instar feeding bioassays with the pyrethroids bifenthrin and β-cyfluthrin produced synergistic effects and demonstrated that cytochrome P450 monooxygenases and carboxylesterases contribute to resistance in this population. Resistance is therefore primarily metabolic and likely the result of overexpression of specific cytochrome P450 monooxygenases and carboxylesterase genes. Resistance was assessed by median lethal concentration (LC50) assays and maintained across nine generations in the laboratory. Life history trait comparisons between the resistant strain and susceptible strain revealed significantly lower pupal weights in resistant individuals reared on the same wheat bran-based artificial diet across six generations. Time to second instar was greater in the resistant strain than the susceptible strain, although overall development time was not significantly different between strains. Resistance was heritable and may have an associated fitness cost, which could influence the dispersal and expansion of resistant populations in nut-growing areas in California. © The Authors 2015. Published by Oxford University Press on behalf of Entomological

  5. Pharmacodynamic Impact of Carboxylesterase 1 Gene Variants in Patients with Congestive Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Bie, Peter; Ferrero, Laura

    2016-01-01

    BACKGROUND: Variation in the carboxylesterase 1 gene (CES1) may contribute to the efficacy of ACEIs. Accordingly, we examined the impact of CES1 variants on plasma angiotensin II (ATII)/angiotensin I (ATI) ratio in patients with congestive heart failure (CHF) that underwent ACEI dose titrations. ...

  6. Gene cloning, expression, and characterization of a new carboxylesterase from Serratia sp. SES-01: comparison with Escherichia coli BioHe enzyme.

    Science.gov (United States)

    Kwon, Min-A; Kim, Hyun Suk; Oh, Joon Young; Song, Bong Keun; Song, Jae Kwang

    2009-02-01

    The carboxylesterase-encoding gene (bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity (91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures (20-40 degrees ) and alkaline pHs (7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

  7. Molecular Cloning and Characterization of a Newly Isolated Pyrethroid-Degrading Esterase Gene from a Genomic Library of Ochrobactrum anthropi YZ-1

    Science.gov (United States)

    Song, Jinlong; Shi, Yanhua; Li, Kang; Zhao, Bin; Yan, Yanchun

    2013-01-01

    A novel pyrethroid-degrading esterase gene pytY was isolated from the genomic library of Ochrobactrum anthropi YZ-1. It possesses an open reading frame (ORF) of 897 bp. Blast search showed that its deduced amino acid sequence shares moderate identities (30% to 46%) with most homologous esterases. Phylogenetic analysis revealed that PytY is a member of the esterase VI family. pytY showed very low sequence similarity compared with reported pyrethroid-degrading genes. PytY was expressed, purified, and characterized. Enzyme assay revealed that PytY is a broad-spectrum degrading enzyme that can degrade various pyrethroids. It is a new pyrethroid-degrading gene and enriches genetic resource. Kinetic constants of Km and Vmax were 2.34 mmol·L−1 and 56.33 nmol min−1, respectively, with lambda-cyhalothrin as substrate. PytY displayed good degrading ability and stability over a broad range of temperature and pH. The optimal temperature and pH were of 35°C and 7.5. No cofactors were required for enzyme activity. The results highlighted the potential use of PytY in the elimination of pyrethroid residuals from contaminated environments. PMID:24155944

  8. Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Small, G J; Hemingway, J

    2000-12-01

    Widespread resistance to organophosphorus insecticides (OPs) in Nilaparvata lugens is associated with elevation of carboxylesterase activity. A cDNA encoding a carboxylesterase, Nl-EST1, has been isolated from an OP-resistant Sri Lankan strain of N. lugens. The full-length cDNA codes for a 547-amino acid protein with high homology to other esterases/lipases. Nl-EST1 has an N-terminal hydrophobic signal peptide sequence of 24 amino acids which suggests that the mature protein is secreted from cells expressing it. The nucleotide sequence of the homologue of Nl-EST1 in an OP-susceptible, low esterase Sri Lankan strain of N. lugens is identical to Nl-EST1. Southern analysis of genomic DNA from the Sri Lankan OP-resistant and susceptible strains suggests that Nl-EST1 is amplified in the resistant strain. Therefore, resistance to OPs in the Sri Lankan strain is through amplification of a gene identical to that found in the susceptible strain.

  9. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.

    Directory of Open Access Journals (Sweden)

    Renato A Carvalho

    Full Text Available The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain or lambda-cyhalothrin (PYR strain were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE and pyrethroid (voltage-gated sodium channel, VGSC target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS. These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results

  10. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.

    Science.gov (United States)

    Carvalho, Renato A; Omoto, Celso; Field, Linda M; Williamson, Martin S; Bass, Chris

    2013-01-01

    The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide

  11. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).

    Science.gov (United States)

    Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin

    2018-02-02

    Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

    Directory of Open Access Journals (Sweden)

    Md. Zaherul Islam

    2016-08-01

    Full Text Available Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585, VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132 showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674 were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.

  13. Molecular cloning of a novel bioH gene from an environmental metagenome encoding a carboxylesterase with exceptional tolerance to organic solvents

    DEFF Research Database (Denmark)

    Shi, Yuping; Pan, Yingjie; Li, Bailin

    2013-01-01

    with a strong potential in industrial applications. CONCLUSIONS: This study constituted the first investigation of a novel bioHx gene in a biotin biosynthetic gene cluster cloned from an environmental metagenome. The bioHx gene was successfully cloned, expressed and characterized. The results demonstrated...... that BioHx is a novel carboxylesterase, displaying distinct biochemical properties with strong application potential in industry. Our results also provided the evidence for the effectiveness of functional metagenomic approach for identifying novel bioH genes from complex ecosystem.......ABSTRACT: BACKGROUND: BioH is one of the key enzymes to produce the precursor pimeloyl-ACP to initiate biotin biosynthesis de novo in bacteria. To date, very few bioH genes have been characterized. In this study, we cloned and identified a novel bioH gene, bioHx, from an environmental metagenome...

  14. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S.

    Science.gov (United States)

    Luo, Xiangwen; Zhang, Deyong; Zhou, Xuguo; Du, Jiao; Zhang, Songbai; Liu, Yong

    2018-05-09

    Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30-46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could detoxify various pyrethroid pesticides and degrade the optimal substrate fenpropathrin with a Km and Vmax value of 0.734 ± 0.013 mmol·l -1 and 0.918 ± 0.025 U·µg -1 , respectively. No cofactor was found to affect Est3385 activity but substantial reduction of enzymatic activity was observed when metal ions were applied. Taken together, a new pyrethroid degradation esterase was identified and characterized. Modification of Est3385 with protein engineering toolsets should enhance its potential for field application to reduce the pesticide residue from agroecosystems.

  15. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    Science.gov (United States)

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-04-20

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.

  16. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  17. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    Science.gov (United States)

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  18. Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B₁.

    Science.gov (United States)

    Hartinger, Doris; Schwartz, Heidi; Hametner, Christian; Schatzmayr, Gerd; Haltrich, Dietmar; Moll, Wulf-Dieter

    2011-08-01

    Fumonisins are carcinogenic mycotoxins that are frequently found as natural contaminants in maize from warm climate regions around the world. The aminotransferase FumI is encoded as part of a gene cluster of Sphingopyxis sp. MTA144, which enables this bacterial strain to degrade fumonisin B(1) and related fumonisins. FumI catalyzes the deamination of the first intermediate of the catabolic pathway, hydrolyzed fumonisin B(1). We used a preparation of purified, His-tagged FumI, produced recombinantly in Escherichia coli in soluble form, for enzyme characterization. The structure of the reaction product was studied by NMR and identified as 2-keto hydrolyzed fumonisin B(1). Pyruvate was found to be the preferred co-substrate and amino group receptor (K (M) = 490 μM at 10 μM hydrolyzed fumonisin B(1)) of FumI, but other α-keto acids were also accepted as co-substrates. Addition of the co-enzyme pyridoxal phosphate to the enzyme preparation enhanced activity, and saturation was already reached at the lowest tested concentration of 10 μM. The enzyme showed activity in the range of pH 6 to 10 with an optimum at pH 8.5, and in the range of 6°C to 50°C with an optimum at 35°C. The aminotransferase worked best at low salt concentration. FumI activity could be recovered after preincubation at pH 4.0 or higher, but not lower. The aminotransferase was denatured after preincubation at 60°C for 1 h, and the residual activity was also reduced after preincubation at lower temperatures. At optimum conditions, the kinetic parameters K (M) = 1.1 μM and k (cat) = 104/min were determined with 5 mM pyruvate as co-substrate. Based on the enzyme characteristics, a technological application of FumI, in combination with the fumonisin carboxylesterase FumD for hydrolysis of fumonisins, for deamination and detoxification of hydrolyzed fumonisins seems possible, if the enzyme properties are considered.

  19. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    Science.gov (United States)

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Age-Dependent Human Hepatic Carboxylesterase 1 (Ces1) and Carboxylesterase 2 (Ces2) Postnatal Ontogeny

    Science.gov (United States)

    Human hepatic carboxylesterase 1 and 2 (CES1 and CES2) are important for ester- and amide- bond containing pharmaceutical and environmental chemical disposition. Despite concern regarding juvenile sensitivity to such compounds, CES1 and CES2 ontogeny has not been well characteriz...

  1. The Relationship between TP53 Gene Status and Carboxylesterase 2 Expression in Human Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Momoko Ishimine

    2018-01-01

    Full Text Available Irinotecan (CPT-11 is an anticancer prodrug that is activated by the carboxylesterase CES2 and has been approved for the treatment of many types of solid tumors, including colorectal cancer. Recent studies with cell lines show that CES2 expression is regulated by the tumor suppressor protein p53. However, clinical evidence for this regulatory mechanism in cancer is lacking. In this study, we examined the relationship between TP53 gene status and CES2 expression in human colorectal cancer. Most colorectal cancer specimens (70%; 26 of 37 showed lower CES2 mRNA levels (≥1.5-fold lower than the adjacent normal tissue, and only 30% (12 of 37 showed similar (<1.5-fold lower or higher CES2 mRNA levels. However, TP53 gene sequencing revealed no relationship between CES2 downregulation and TP53 mutational status. Moreover, while colorectal cancer cells expressing wild-type p53 exhibited p53-dependent upregulation of CES2, PRIMA-1MET, a drug that restores the transcriptional activity of mutant p53, failed to upregulate CES2 expression in cells with TP53 missense mutations. These results, taken together, suggest that CES2 mRNA expression is decreased in human colorectal cancer independently of p53.

  2. Neurobehavioral toxicology of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Crofton, K.M.

    1986-01-01

    Pyrethroid insecticides are classified as either Type I or Type II based upon in vivo toxic signs, and neurophysiological and biochemical data. Both axonal sodium channels and the γ-aminobutyric acid (GABA) receptor complex have been proposed as the major site of action of the Type II pyrethroids. This investigation characterized the behavior and biochemical effects of low dosages of pyrethroids in rats. Type I and II pyrethroids were tested for effects on figure-eight maze activity and the acoustic startle response (ASR). All compounds decreased figure-eight maze activity. Interactions of Type I and II pyrethroids with the three major binding sites on the GABA complex were determined in vivo. Radioligand binding experiments assessed in vitro interactions of pyrethroids with the three major GABA-complex binding sites. None of the pyrethroids competed for [ 3 H]-muscimol or [ 3 H]-flunitrazepam binding. Only Type II pyrethroids inhibited binding of [ 35 S]-t-butylbicyclophosphorothionate (TBPS) in cortical synaptosome preparations with K/sub i/ values of 5 to 10 μM. The [ 35 S]-TBPS data implicate the TBPS/picrotoxinin binding site in the mechanism of Type II pyrethroid toxicity. The results of these experiments support the classification of pyrethroids into two classes, and demonstrate the utility of the figure-eight maze and the ASR in studies to elucidate neurotoxic mechanisms. The interaction of the Type II pyrethroids is probably restricted to the TBPS/picrotoxinin binding domain on the GABA complex as shown by both the in vivo and in vitro studies

  3. A Fungus-Inducible Pepper Carboxylesterase Exhibits Antifungal Activity by Decomposing the Outer Layer of Fungal Cell Walls.

    Science.gov (United States)

    Seo, Hyo-Hyoun; Park, Ae Ran; Lee, Hyun-Hwa; Park, Sangkyu; Han, Yun-Jeong; Hoang, Quyen T N; Choi, Gyung Ja; Kim, Jin-Cheol; Kim, Young Soon; Kim, Jeong-Il

    2018-05-01

    Colletotrichum species are major fungal pathogens that cause devastating anthracnose diseases in many economically important crops. In this study, we observed the hydrolyzing activity of a fungus-inducible pepper carboxylesterase (PepEST) on cell walls of C. gloeosporioides, causing growth retardation of the fungus by blocking appressorium formation. To determine the cellular basis for the growth inhibition, we observed the localization of PepEST on the fungus and found the attachment of the protein on surfaces of conidia and germination tubes. Moreover, we examined the decomposition of cell-wall materials from the fungal surface after reaction with PepEST, which led to the identification of 1,2-dithiane-4,5-diol (DTD) by gas chromatography mass spectrometry analysis. Exogenous DTD treatment did not elicit expression of defense-related genes in the host plant but did trigger the necrosis of C. gloeosporioides. Furthermore, the DTD compound displayed protective effects on pepper fruits and plants against C. gloeosporioides and C. coccodes, respectively. In addition, DTD was also effective in preventing other diseases, such as rice blast, tomato late blight, and wheat leaf rust. Therefore, our results provide evidence that PepEST is involved in hydrolysis of the outmost layer of the fungal cell walls and that DTD has antifungal activity, suggesting an alternative strategy to control agronomically important phytopathogens.

  4. Inhibition of human carboxylesterases hCE1 and hiCE by cholinesterase inhibitors.

    Science.gov (United States)

    Tsurkan, Lyudmila G; Hatfield, M Jason; Edwards, Carol C; Hyatt, Janice L; Potter, Philip M

    2013-03-25

    Carboxylesterases (CEs) are ubiquitously expressed proteins that are responsible for the detoxification of xenobiotics. They tend to be expressed in tissues likely to be exposed to such agents (e.g., lung and gut epithelia, liver) and can hydrolyze numerous agents, including many clinically used drugs. Due to the considerable structural similarity between cholinesterases (ChE) and CEs, we have assessed the ability of a series of ChE inhibitors to modulate the activity of the human liver (hCE1) and the human intestinal CE (hiCE) isoforms. We observed inhibition of hCE1 and hiCE by carbamate-containing small molecules, including those used for the treatment of Alzheimer's disease. For example, rivastigmine resulted in greater than 95% inhibition of hiCE that was irreversible under the conditions used. Hence, the administration of esterified drugs, in combination with these carbamates, may inadvertently result in decreased hydrolysis of the former, thereby limiting their efficacy. Therefore drug:drug interactions should be carefully evaluated in individuals receiving ChE inhibitors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids - a review.

    Science.gov (United States)

    Silva, Ana Paula B; Santos, Joselita Maria M; Martins, Ademir J

    2014-10-07

    Constant and extensive use of chemical insecticides has created a selection pressure and favored resistance development in many insect species worldwide. One of the most important pyrethroid resistance mechanisms is classified as target site insensitivity, due to conformational changes in the target site that impair a proper binding of the insecticide molecule. The voltage-gated sodium channel (NaV) is the target of pyrethroids and DDT insecticides, used to control insects of medical, agricultural and veterinary importance, such as anophelines. It has been reported that the presence of a few non-silent point mutations in the NaV gene are associated with pyrethroid resistance, termed as 'kdr' (knockdown resistance) for preventing the knockdown effect of these insecticides. The presence of these mutations, as well as their effects, has been thoroughly studied in Anopheles mosquitoes. So far, kdr mutations have already been detected in at least 13 species (Anopheles gambiae, Anopheles arabiensis, Anopheles sinensis, Anopheles stephensi, Anopheles subpictus, Anopheles sacharovi, Anopheles culicifacies, Anopheles sundaicus, Anopheles aconitus, Anopheles vagus, Anopheles paraliae, Anopheles peditaeniatus and Anopheles albimanus) from populations of African, Asian and, more recently, American continents. Seven mutational variants (L1014F, L1014S, L1014C, L1014W, N1013S, N1575Y and V1010L) were described, with the highest prevalence of L1014F, which occurs at the 1014 site in NaV IIS6 domain. The increase of frequency and distribution of kdr mutations clearly shows the importance of this mechanism in the process of pyrethroid resistance. In this sense, several species-specific and highly sensitive methods have been designed in order to genotype individual mosquitoes for kdr in large scale, which may serve as important tolls for monitoring the dynamics of pyrethroid resistance in natural populations. We also briefly discuss investigations concerning the course of Plasmodium

  6. Carboxylesterase-dependent cytotoxicity of dibasic esters (DBE) in rat nasal explants.

    Science.gov (United States)

    Trela, B A; Bogdanffy, M S

    1991-02-01

    Dibasic esters (DBE) are a solvent mixture of dimethyl adipate (DMA), dimethyl glutarate (DMG), and dimethyl succinate (DMS) used in the paint and coating industry. Subchronic inhalation toxicity studies have demonstrated that DBE induce a mild degeneration of the olfactory, but not the respiratory, epithelium of the rat nasal cavity. Carboxylesterase-mediated hydrolysis of the individual dibasic esters is more efficient in olfactory than in respiratory mucosal homogenates. In the present study, an in vitro system of cultured rat nasal explants was utilized to determine if DBE toxicity is dependent on a metabolic activation by nonspecific carboxylesterase. Explants from both the olfactory and the respiratory regions of the female rat nasal cavity were incubated for 2 hr in Williams' medium E containing 10-100 mM DMA, DMG, or DMS. DBE caused a dose-related increase in nasal explant acid phosphatase release, a biochemical index of cytotoxicity. HPLC analysis demonstrated parallel increases in the carboxylesterase-mediated formation of monomethyl ester metabolites. Diacid metabolite production in the nasal explant system was not entirely concentration-dependent. Metabolite concentrations and acid phosphatase release were generally greater in olfactory than respiratory tissues. DBE-induced cytotoxicity and acid metabolite production were markedly attenuated in nasal tissue excised from rats which were pretreated with bis(p-nitrophenyl)phosphate, a carboxylesterase inhibitor. This study presents a viable in vitro method for assessing organic ester cytotoxicity in the rat nasal cavity. It was shown that DBE are weak nasal toxicants under the conditions of this system. It was further demonstrated that DBE toxicity is dependent on a carboxylesterase-mediated activation. A similar mechanism was proposed for the nasal toxicity induced by other organic esters following inhalation exposure.

  7. Interaction of Ferulic Acid with Glutathione S-Transferase and Carboxylesterase Genes in the Brown Planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Yang, Jun; Sun, Xiao-Qin; Yan, Shu-Ying; Pan, Wen-Jun; Zhang, Mao-Xin; Cai, Qing-Nian

    2017-07-01

    Plant phenolics are crucial defense phytochemicals against herbivores and glutathione S-transferase (GST) and carboxylesterase (CarE) in herbivorous insects are well-known detoxification enzymes for such xenobiotics. To understand relationship between a plant phenolic and herbivore GST or CarE genes, we evaluated the relationship between a rice phenolic ferulic acid and resistance to brown planthopper (BPH, Nilaparvata lugens), and investigated the interaction of ferulic acid with GST or CarE genes in BPH. The results indicate that ferulic acid content in tested rice varieties was highly associated with resistance to BPH. Bioassays using artificial diets show that the phenolic acid toxicity to BPH was dose dependent and the LC 25 and LC 50 were 5.81 and 23.30 μg/ml at 72 hr, respectively. Activities of the enzymes BPH GST and CarE were increased at concentrations below the LC 50 of ferulic acid. Moreover, low ferulic acid concentrations (gene silencing (DIGS) of GST or CarE, it was shown that suppressed expression levels of NlGSTD1, NlGSTE1 and NlCE were 14.6%-21.2%, 27.8%-34.2%, and 10.5%-19.8%, respectively. Combination of NlGSTD1, NlGSTE1 or NlCE knockdown with ferulic acid increased nymph mortality by 92.9%, 119.9%, or 124.6%, respectively. These results suggest that depletion of detoxification genes in herbivorous insects by plant-mediated RNAi technology might be a new potential resource for improving rice resistance to BPH.

  8. Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin

    Directory of Open Access Journals (Sweden)

    Tornero-Velez Rogelio

    2008-11-01

    Full Text Available Abstract Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg or permethrin (1 – 100 mg/kg followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM and isotonic regression (PIR methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1 was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25% in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of

  9. Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance

    OpenAIRE

    Stevenson, Bradley J.; Pignatelli, Patricia; Nikou, Dimitra; Paine, Mark J. I.

    2012-01-01

    Background\\ud \\ud Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the role of...

  10. Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population.

    Science.gov (United States)

    Bona, Ana Caroline Dalla; Chitolina, Rodrigo Faitta; Fermino, Marise Lopes; de Castro Poncio, Lisiane; Weiss, Avital; Lima, José Bento Pereira; Paldi, Nitzan; Bernardes, Emerson Soares; Henen, Jonathan; Maori, Eyal

    2016-07-14

    Mosquitoes host and pass on to humans a variety of disease-causing pathogens such as infectious viruses and other parasitic microorganisms. The emergence and spread of insecticide resistance is threatening the effectiveness of current control measures for common mosquito vector borne diseases, such as malaria, dengue and Zika. Therefore, the emerging resistance to the widely used pyrethroid insecticides is an alarming problem for public health. Herein we demonstrated the use of RNA interference (RNAi) to increase susceptibility of adult mosquitoes to a widely used pyrethroid insecticide. Experiments were performed on a field-collected pyrethroid resistant strain of Ae. aegypti (Rio de Janeiro; RJ). Larvae from the resistant Ae. aegypti population were soaked with double-stranded RNAs (dsRNAs) that correspond either to voltage-gate sodium channel (VGSC), P-glycoprotein, or P450 detoxification genes and reared to adulthood. Adult mortality rates in the presence of various Deltamethrin pyrethroid concentrations were used to assess mosquito insecticide susceptibility. We characterized the RJ Ae. aegypti strain with regard to its level of resistance to a pyrethroid insecticide and found that it was approximately 6 times more resistant to Deltamethrin compared to the laboratory Rockefeller strain. The RJ strain displayed a higher frequency of Val1016Ile and Phe1534Cys substitutions of the VGSC gene. The resistant strain also displayed a higher basal expression level of VGSC compared to the Rockefeller strain. When dsRNA-treated mosquitoes were subjected to a standard pyrethroid contact bioassay, only dsRNA targeting VGSC increased the adult mortality of the pyrethroid resistant strain. The dsRNA treatment proved effective in increasing adult mosquito susceptibility over a range of pyrethroid concentrations and these results were associated with dsRNA-specific small interfering RNAs in treated adults, and the corresponding specific down regulation of VGSC gene expression

  11. Purification and biochemical properties of carboxylesterase from ...

    African Journals Online (AJOL)

    Carboxylesterase was purified from Fasciola gigantica through ammonium sulfate precipitation, chromatography on DEAE-Sepharose and gel filtration on a sephacryl S300. Three enzymes (EI, EII and EIII) were separated. EII and EIII were purified to homogeneity. The molecular weight of EII and EIII enzyme were 66 and ...

  12. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  13. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    Science.gov (United States)

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  14. Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Wang, Ying; Chen, Xia; Zhang, Zhichao; Li, Yue; Li, Wenru; Zhou, Qiang

    2017-12-01

    The widespread and extensive application of insecticides have promoted the development of resistance in the brown planthopper Nilaparvata lugens (Stål), one of the most important rice pests in Asia. To better understand the underlying molecular mechanisms of metabolic resistance to insecticides, a chlorpyrifos-resistant (CR) strain of N. lugens was selected and its possible resistance mechanism was investigated. Synergistic tests using carboxylesterases (CarEs) inhibitor triphenyl phosphate (TPP) decreased the resistance of N. lugens to chlorpyrifos, and CarE activities could be induced by low concentrations of chlorpyrifos. Subsequently, a gene putatively encoding CarE, namely NlCarE, predominant in the midgut and ovary was isolated and characterized. The expression levels of NlCarE were detected and compared between the CR and a susceptible (SS) strain of N. lugens. Consistent with the increased CarE activity, this gene was overexpressed in the CR strain compared to the SS strain. The transcript levels of NlCarE were up-regulated by chlorpyrifos exposure, showing dose- and time-dependent expression patterns. Furthermore, RNA interference (RNAi)-mediated knockdown of NlCarE followed by insecticide application significantly increased the susceptibility of N. lugens to chlorpyrifos. These results demonstrate that NlCarE plays an important role in chlorpyrifos detoxification and its overexpression may be involved in chlorpyrifos resistance in N. lugens. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Towards an identification of the pyrethroid pharmacophore. A molecular modelling study of some pyrethroid esters

    DEFF Research Database (Denmark)

    Byberg, J R; Jørgensen, Flemming Steen; Klemmensen, P D

    1987-01-01

    A molecular modelling and computer graphics study of a series of pyrethroid insecticides has been carried out. The three-dimensional arrangement of the groups essential for the biological activity (pharmacophore) has been identified for the acid and the alcohol moieties, respectively....... These pharmacophores are based on the relationship between molecular structure and biological activity for a number of pyrethroid esters. The pharmacophores, which describe the relative location in space of the unsaturated systems, the dimethyl groups and the ester moiety, may be useful in the design of novel...... compounds with pyrethroid activity....

  16. Mapping a Quantitative Trait Locus (QTL conferring pyrethroid resistance in the African malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Hunt Richard H

    2007-01-01

    Full Text Available Abstract Background Pyrethroid resistance in Anopheles funestus populations has led to an increase in malaria transmission in southern Africa. Resistance has been attributed to elevated activities of cytochrome P450s but the molecular basis underlying this metabolic resistance is unknown. Microsatellite and SNP markers were used to construct a linkage map and to detect a quantitative trait locus (QTL associated with pyrethroid resistance in the FUMOZ-R strain of An. funestus from Mozambique. Results By genotyping 349 F2 individuals from 11 independent families, a single major QTL, rp1, at the telomeric end of chromosome 2R was identified. The rp1 QTL appears to present a major effect since it accounts for more than 60% of the variance in susceptibility to permethrin. This QTL has a strong additive genetic effect with respect to susceptibility. Candidate genes associated with pyrethroid resistance in other species were physically mapped to An. funestus polytene chromosomes. This showed that rp1 is genetically linked to a cluster of CYP6 cytochrome P450 genes located on division 9 of chromosome 2R and confirmed earlier reports that pyrethroid resistance in this strain is not associated with target site mutations (knockdown resistance. Conclusion We hypothesize that one or more of these CYP6 P450s clustered on chromosome 2R confers pyrethroid resistance in the FUMOZ-R strain of An. funestus.

  17. Production, Purification, and Gene Cloning of a β-Fructofuranosidase with a High Inulin-hydrolyzing Activity Produced by a Novel Yeast Aureobasidium sp. P6 Isolated from a Mangrove Ecosystem.

    Science.gov (United States)

    Jiang, Hong; Ma, Yan; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2016-08-01

    After screening of over 300 yeast strains isolated from the mangrove ecosystems, it was found that Aureobasidium sp. P6 strain had the highest inulin-hydrolyzing activity. Under the optimal conditions, this yeast strain produced an inulin-hydrolyzing activity of 30.98 ± 0.8 U/ml after 108 h of a 10-l fermentation. After the purification, a molecular weight of the enzyme which had the inulin-hydrolyzing activity was estimated to be 47.6 kDa, and the purified enzyme could actively hydrolyze both sucrose and inulin and exhibit a transfructosylating activity at 30.0 % sucrose, converting sucrose into fructooligosaccharides (FOS), indicating that the purified enzyme was a β-D-fructofuranosidase. After the full length of a β-D-fructofuranosidase gene (accession number KU308553) was cloned from Aureobasidium sp. P6 strain, a protein deduced from the cloned gene contained the conserved sequences MNDPNGL, RDP, ECP, FS, and Q of a glycosidehydrolase GH32 family, respectively, but did not contain a conserved sequence SVEVF, and the amino acid sequence of the protein from Aureobasidium sp. P6 strain had a high similarity to that of the β-fructofuranosidase from any other fungal strains. After deletion of the β-D-fructofuranosidase gene, the disruptant still had low inulin hydrolyzing and invertase activities and a trace amount of the transfructosylating activity, indicating that the gene encoding an inulinase may exist in the Aureobasidium sp. P6 strain.

  18. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa.

    Science.gov (United States)

    Irving, Helen; Wondji, Charles S

    2017-08-09

    Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other

  19. Infestation by pyrethroids resistant bed bugs in the suburb of Paris, France

    Directory of Open Access Journals (Sweden)

    Durand R.

    2012-11-01

    Full Text Available Bed bugs are hematophagous insects responsible for a re-emerging and challenging indoor pest in many countries. Bed bugs infestations may have health consequences including nuisance biting, cutaneous and systemic reactions. This resurgence can probably be attributed to factors such as increased international travel and development of resistance against insecticides. Resistance against pyrethroids has been reported several times from the USA and rarely in Europe. In France, very few data on bed bugs are available. The present study aimed to assess the infestation by bed bugs of a complex of two high-rise apartment buildings in the suburb of Paris and to evaluate their susceptibility to pyrethroid insecticides. We inspected for bed bugs 192 out of 198 apartments units (97% and interviewed their residents. 76 (39.6% apartments were infested. Among the 97 residents living in infested apartments, 53 (54.6% reported bed bug bites. A total of 564 bed bugs were collected in the infested units. Bioassays showed that 54 out of 143 bed bugs were resistant to pyrethroids (37.8%; 95% confidence interval: 29.9-45.7%. DNA sequencing showed that all bed bugs tested (n = 124 had homozygous L925I kdr-like gene mutation. The level of pyrethroid resistance found indicates that this phenomenon was already established in the site and prompts the need to reevaluate the wide use of pyrethroids to control bed bugs.

  20. Mutation in the Sodium Channel Gene Corresponds With Phenotypic Resistance of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) to Pyrethroids.

    Science.gov (United States)

    Klafke, G M; Miller, R J; Tidwell, J; Barreto, R; Guerrero, F D; Kaufman, P E; Pérez de León, A A

    2017-11-07

    The brown dog tick, Rhipicephalus sanguineus sensu lato (Latreille), is a cosmopolitan ectoparasite and vector of pathogens that kill humans and animals. Pyrethroids represent a class of synthetic acaricides that have been used intensely to try to control the brown dog tick and mitigate the risk of tick-borne disease transmission. However, acaricide resistance is an emerging problem in the management of the brown dog tick. Understanding the mechanism of resistance to acaricides, including pyrethroids, is important to adapt brown dog tick control strategies. The main objective of this study was to determine if target-site mutations associated with pyrethroid resistance in other pests could be associated with phenotypic resistance detected in a brown dog tick population from Florida. We amplified segment 6 of the domain III of the voltage-sensitive sodium channel protein, using cDNAs synthesized from pyrethroid-susceptible and pyrethroid-resistant tick strains. A single nucleotide point mutation (SNP) identified in a highly conserved region of domain III S6 in the resistant ticks resulted in an amino acid change from phenylalanine to leucine. This mutation is characteristic of resistance phenotypes in other tick species, and is the first report of this mutation in R. sanguineus. Molecular assays based on this knowledge could be developed to diagnose the risk for pyrethroid resistance, and to inform decisions on integrated brown dog tick management practices. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Physical and chemical properties of pyrethroids.

    Science.gov (United States)

    Laskowski, Dennis A

    2002-01-01

    The physical and chemical properties of the pyrethroids bifenthrin, cyfluthrin, cypermethrin (also zetacypermethrin), deltamethrin, esfenvalerate (also fenvalerate), fenpropathrin, lambda-cyhalothrin (also cyhalothrin), permethrin, and tralomethrin have been reviewed and summarized in this paper. Physical properties included molecular weight, octanol-water partition coefficient, vapor pressure, water solubility, Henry's law constant, fish biocencentration factor, and soil sorption, desorption, and Freundlich coefficients. Chemical properties included rates of degradation in water as a result of hydrolysis, photodecomposition, aerobic or anaerobic degradation by microorganisms in the absence of light, and also rates of degradation in soil incubated under aerobic or anaerobic conditions. Collectively, the pyrethroids display a highly nonpolar nature of low water solubility, low volatility, high octanol-water partition coefficients, and have high affinity for soil and sediment particulate matter. Pyrethroids have low mobility in soil and are sorbed strongly to the sediments of natural water systems. Although attracted to living organisms because of their nonpolar nature, their capability to bioconcentrate is mitigated by their metabolism and subsequent elimination by the organisms. In fish, bioconcentration factors (BCF) ranged from 360 and 6000. Pyrethroids in water solution tend to be stable at acid and neutral pH but [table: see text] become increasingly susceptible to hydrolysis at pH values beyond neutral. Exceptions at higher pH are bifenthrin (stable), esfenvalerate (stable), and permethrin (half-life, 240 d). Pyrethroids vary in susceptibility to sunlight. Cyfluthrin and tralomethrin in water had half-lives of 0.67 and 2.5 d; lambda-cyhalothrin, esfenvalerate, deltamethrin, permethrin, and cypermethrin were intermediate with a range of 17-110 d; and bifenthrin and fenpropathrin showed the least susceptibility with half-lives of 400 and 600 d, respectively

  2. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Gastrointestinal Degradation of Fumonisin B₁ by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine.

    Science.gov (United States)

    Masching, Sabine; Naehrer, Karin; Schwartz-Zimmermann, Heidi-Elisabeth; Sărăndan, Mihai; Schaumberger, Simone; Dohnal, Ilse; Nagl, Veronika; Schatzmayr, Dian

    2016-03-21

    The mycotoxin fumonisin B₁ (FB₁) is a frequent contaminant of feed and causes various adverse health effects in domestic animals. Hence, effective strategies are needed to prevent the impact of fumonisins on livestock productivity. Here we evaluated the capability of the fumonisin carboxylesterase FumD to degrade FB₁ to its less toxic metabolite hydrolyzed FB₁ (HFB₁) in the gastrointestinal tract of turkeys and pigs. First, an ex vivo pig model was used to examine the activity of FumD under digestive conditions. Within 2 h of incubation with FumD, FB₁ was completely degraded to HFB₁ in the duodenum and jejunum, respectively. To test the efficacy of the commercial application of FumD (FUMzyme) in vivo, female turkeys (n = 5) received either basal feed (CON), fumonisin-contaminated feed (15 mg/kg FB₁+FB₂; FB) or fumonisin-contaminated feed supplemented with FUMzyme (15 U/kg; FB+FUMzyme) for 14 days ad libitum. Addition of FUMzyme resulted in significantly decreased levels of FB₁ in excreta, whereas HFB₁ concentrations were significantly increased. Compared to the FB group (0.24 ± 0.02), the mean serum sphinganine-to-sphingosine (Sa/So) ratio was significantly reduced in the FB+FUMzyme group (0.19 ± 0.02), thus resembling values of the CON group (0.16 ± 0.02). Similarly, exposure of piglets (n = 10) to 2 mg/kg FB₁+FB₂ for 42 days caused significantly elevated serum Sa/So ratios (0.39 ± 0.15) compared to the CON group (0.14 ± 0.01). Supplementation with FUMzyme (60 U/kg) resulted in gastrointestinal degradation of FB₁ and unaffected Sa/So ratios (0.16 ± 0.02). Thus, the carboxylesterase FumD represents an effective strategy to detoxify FB₁ in the digestive tract of turkeys and pigs.

  4. Effect of Beauveria bassiana infection on detoxification enzyme transcription in pyrethroid resistant Anopheles arabiensis: a preliminary study.

    Science.gov (United States)

    Nardini, Luisa; Blanford, Simon; Coetzee, Maureen; Koekemoer, Lizette L

    2014-04-01

    Fungal biopesticides are of great interest to vector control scientists as they provide a novel and environmentally friendly alternative to insecticide use. The aim of this study was to determine whether genes associated with pyrethroid resistance in Anopheles arabiensis from Sudan and South Africa are further induced following exposure to the entomopathogenic fungus, Beauveria bassiana (strain GHA). Following B. bassiana bioassays, RNA was extracted from infected mosquitoes and the transcription of four important insecticide resistance genes, CYP9L1, CYP6M2 and CYP4G16 (cytochrome P450s) and TPX4 (thioredoxin peroxidase) was investigated using quantitative real-time PCR. Beauveria bassiana strain GHA was highly infective and virulent against An. arabiensis. In terms of changes in gene transcription, overall, the fold change (FC) values for each gene in the infected strains, were lower than 1.5. The FC values of CYP9L1, CYP6M2 and TPX4, were significantly lower than the FC values of the same genes in uninfected resistant An. arabiensis. These data suggest that B. bassiana does not enhance the pyrethroid resistant phenotype on a molecular level as the two An. arabiensis strains used here, with different pyrethroid resistance mechanisms, revealed no increase in pre-existing metabolic transcripts. This supports the fact that fungal pathogens are suitable candidates for vector control, particularly with regard to the development of novel vector control strategies.

  5. Structure of recombinant human carboxylesterase 1 isolated from whole cabbage looper larvae

    International Nuclear Information System (INIS)

    Greenblatt, Harry M.; Otto, Tamara C.; Kirkpatrick, Melanie G.; Kovaleva, Elena; Brown, Susan; Buchman, George; Cerasoli, Douglas M.; Sussman, Joel L.

    2012-01-01

    Large quantities of recombinant human carboxylesterase 1 have been produced in an economical whole insect larvae system. The crystal structure of this enzyme is essentially identical to that produced by cell culture techniques. The use of whole insect larvae as a source of recombinant proteins offers a more cost-effective method of producing large quantities of human proteins than conventional cell-culture approaches. Human carboxylesterase 1 has been produced in and isolated from whole Trichoplusia ni larvae. The recombinant protein was crystallized and its structure was solved to 2.2 Å resolution. The results indicate that the larvae-produced enzyme is essentially identical to that isolated from cultured Sf21 cells, supporting the use of this expression system to produce recombinant enzymes for crystallization studies

  6. Neurological Deficits After Long-term Pyrethroid Exposure

    DEFF Research Database (Denmark)

    Hansen, Martin Rune Hassan; Jørs, Erik; Lander, Flemming

    2017-01-01

    Pyrethroid pesticides have been suggested to be a cause of Parkinson disease and other neurodegenerative diseases. To investigate this, a cross-sectional study was conducted among 120 Bolivian public health vector program spray men, primarily exposed to pyrethroids. Pesticide exposure and central...

  7. Gastrointestinal Degradation of Fumonisin B1 by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine

    Directory of Open Access Journals (Sweden)

    Sabine Masching

    2016-03-01

    Full Text Available The mycotoxin fumonisin B1 (FB1 is a frequent contaminant of feed and causes various adverse health effects in domestic animals. Hence, effective strategies are needed to prevent the impact of fumonisins on livestock productivity. Here we evaluated the capability of the fumonisin carboxylesterase FumD to degrade FB1 to its less toxic metabolite hydrolyzed FB1 (HFB1 in the gastrointestinal tract of turkeys and pigs. First, an ex vivo pig model was used to examine the activity of FumD under digestive conditions. Within 2 h of incubation with FumD, FB1 was completely degraded to HFB1 in the duodenum and jejunum, respectively. To test the efficacy of the commercial application of FumD (FUMzyme in vivo, female turkeys (n = 5 received either basal feed (CON, fumonisin-contaminated feed (15 mg/kg FB1+FB2; FB or fumonisin-contaminated feed supplemented with FUMzyme (15 U/kg; FB+FUMzyme for 14 days ad libitum. Addition of FUMzyme resulted in significantly decreased levels of FB1 in excreta, whereas HFB1 concentrations were significantly increased. Compared to the FB group (0.24 ± 0.02, the mean serum sphinganine-to-sphingosine (Sa/So ratio was significantly reduced in the FB+FUMzyme group (0.19 ± 0.02, thus resembling values of the CON group (0.16 ± 0.02. Similarly, exposure of piglets (n = 10 to 2 mg/kg FB1+FB2 for 42 days caused significantly elevated serum Sa/So ratios (0.39 ± 0.15 compared to the CON group (0.14 ± 0.01. Supplementation with FUMzyme (60 U/kg resulted in gastrointestinal degradation of FB1 and unaffected Sa/So ratios (0.16 ± 0.02. Thus, the carboxylesterase FumD represents an effective strategy to detoxify FB1 in the digestive tract of turkeys and pigs.

  8. Gastrointestinal Degradation of Fumonisin B1 by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine

    Science.gov (United States)

    Masching, Sabine; Naehrer, Karin; Schwartz-Zimmermann, Heidi-Elisabeth; Sărăndan, Mihai; Schaumberger, Simone; Dohnal, Ilse; Nagl, Veronika; Schatzmayr, Dian

    2016-01-01

    The mycotoxin fumonisin B1 (FB1) is a frequent contaminant of feed and causes various adverse health effects in domestic animals. Hence, effective strategies are needed to prevent the impact of fumonisins on livestock productivity. Here we evaluated the capability of the fumonisin carboxylesterase FumD to degrade FB1 to its less toxic metabolite hydrolyzed FB1 (HFB1) in the gastrointestinal tract of turkeys and pigs. First, an ex vivo pig model was used to examine the activity of FumD under digestive conditions. Within 2 h of incubation with FumD, FB1 was completely degraded to HFB1 in the duodenum and jejunum, respectively. To test the efficacy of the commercial application of FumD (FUMzyme) in vivo, female turkeys (n = 5) received either basal feed (CON), fumonisin-contaminated feed (15 mg/kg FB1+FB2; FB) or fumonisin-contaminated feed supplemented with FUMzyme (15 U/kg; FB+FUMzyme) for 14 days ad libitum. Addition of FUMzyme resulted in significantly decreased levels of FB1 in excreta, whereas HFB1 concentrations were significantly increased. Compared to the FB group (0.24 ± 0.02), the mean serum sphinganine-to-sphingosine (Sa/So) ratio was significantly reduced in the FB+FUMzyme group (0.19 ± 0.02), thus resembling values of the CON group (0.16 ± 0.02). Similarly, exposure of piglets (n = 10) to 2 mg/kg FB1+FB2 for 42 days caused significantly elevated serum Sa/So ratios (0.39 ± 0.15) compared to the CON group (0.14 ± 0.01). Supplementation with FUMzyme (60 U/kg) resulted in gastrointestinal degradation of FB1 and unaffected Sa/So ratios (0.16 ± 0.02). Thus, the carboxylesterase FumD represents an effective strategy to detoxify FB1 in the digestive tract of turkeys and pigs. PMID:27007395

  9. Cloning and characterization of a carboxylesterase from Bacillus coagulans 81-11

    CSIR Research Space (South Africa)

    Mnisi, SM

    2005-04-01

    Full Text Available significant amino acid sequence identity with carboxylesterases from thermophilic Geobacillus spp. and sequence analysis showed that the protein contains the signature G-X-S-XG included in most esterases and lipases. Enzyme assays using p-nitrophenyl (p...

  10. Environmentally relevant pyrethroid mixtures: A study on the correlation of blood and brain concentrations of a mixture of pyrethroid insecticides to motor activity in the rat.

    Science.gov (United States)

    Hughes, Michael F; Ross, David G; Starr, James M; Scollon, Edward J; Wolansky, Marcelo J; Crofton, Kevin M; DeVito, Michael J

    2016-06-01

    Human exposure to multiple pyrethroid insecticides may occur because of their broad use on crops and for residential pest control. To address the potential health risk from co-exposure to pyrethroids, it is important to understand their disposition and toxicity in target organs such as the brain, and surrogates such as the blood when administered as a mixture. The objective of this study was to assess the correlation between blood and brain concentrations of pyrethroids and neurobehavioral effects in the rat following an acute oral administration of the pyrethroids as a mixture. Male Long-Evans rats were administered a mixture of β-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate and cis- and trans-permethrin in corn oil at seven dose levels. The pyrethroid with the highest percentage in the dosing solution was trans-permethrin (31% of total mixture dose) while deltamethrin and esfenvalerate had the lowest percentage (3%). Motor activity of the rats was then monitored for 1h. At 3.5h post-dosing, the animals were euthanized and blood and brain were collected. These tissues were extracted and analyzed for parent pyrethroid using HPLC-tandem mass spectrometry. Cypermethrin and cis-permethrin were the predominate pyrethroids detected in blood and brain, respectively, at all dosage levels. The relationship of total pyrethroid concentration between blood and brain was linear (r=0.93). The pyrethroids with the lowest fraction in blood were trans-permethrin and β-cyfluthrin and in brain were deltamethrin and esfenvalerate. The relationship between motor activity of the treated rats and summed pyrethroid blood and brain concentration was described using a sigmoidal Emax model with the Effective Concentration50 being more sensitive for brain than blood. The data suggests summed pyrethroid rat blood concentration could be used as a surrogate for brain concentration as an aid to study the neurotoxic effects of pyrethroids administered as a mixture under the conditions

  11. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  12. Sacubitril Is Selectively Activated by Carboxylesterase 1 (CES1) in the Liver and the Activation Is Affected by CES1 Genetic Variation.

    Science.gov (United States)

    Shi, Jian; Wang, Xinwen; Nguyen, Jenny; Wu, Audrey H; Bleske, Barry E; Zhu, Hao-Jie

    2016-04-01

    Sacubitril was recently approved by the Food and Drug Administration for use in combination with valsartan for the treatment of patients with heart failure with reduced ejection fraction. As a prodrug, sacubitril must be metabolized (hydrolyzed) to its active metabolite sacubitrilat (LBQ657) to exert its intended therapeutic effects. Thus, understanding the determinants of sacubitril activation will lead to the improvement of sacubitril pharmacotherapy. The objective of this study was to identify the enzyme(s) responsible for the activation of sacubitril, and determine the impact of genetic variation on sacubitril activation. First, an incubation study of sacubitril with human plasma and the S9 fractions of human liver, intestine, and kidney was conducted. Sacubitril was found to be activated by human liver S9 fractions only. Moreover, sacubitril activation was significantly inhibited by the carboxylesterase 1 (CES1) inhibitor bis-(p-nitrophenyl) phosphate in human liver S9. Further incubation studies with recombinant human CES1 and carboxylesterase 2 confirmed that sacubitril is a selective CES1 substrate. The in vitro study of cell lines transfected with wild-type CES1 and the CES1 variant G143E (rs71647871) demonstrated that G143E is a loss-of-function variant for sacubitril activation. Importantly, sacubitril activation was significantly impaired in human livers carrying the G143E variant. In conclusion, sacubitril is selectively activated by CES1 in human liver. The CES1 genetic variant G143E can significantly impair sacubitril activation. Therefore, CES1 genetic variants appear to be an important contributing factor to interindividual variability in sacubitril activation, and have the potential to serve as biomarkers to optimize sacubitril pharmacotherapy. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Ndula, Miranda; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2016-07-01

    Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genomewide transcription profiling, we revealed that metabolic resistance through upregulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most upregulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolize both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolize only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays, we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolize only the pyrethroids. Other upregulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (odds ratio 7.3; P resistance and improve the design of effective resistance management strategies to control this malaria vector. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. Syntetiske pyrethroider i private hjem

    DEFF Research Database (Denmark)

    Jensen, Karl-Martin Vagn; Fomsgaard, Inge S.; Kilpinen, Ole Østerlund

    2015-01-01

    A number of different methods are tested to elucidate the accumulation of synthetic pyrethroids in private homes. When the target pest is resistant, there is a potential risk that persistent synthetic pyrethroids accumulate because of repeated treatments. The highest residue found was 8260 µg lam...... lambda-cyhalothrin in a vacuum-cleaner sample (vacuumed for 10 minutes) and 1252 µg lambda-cyhalothrin in a “cotton sock dosimeter” sample. Similar data for deltamethrin was 805 µg in a vacuum-cleaner sample and 806 µg in a “cotton sock dosimeter” sample....

  15. Tissue distribution, isozyme abundance and sensitivity to chlorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Hernandez, Juan C. [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III, 45071 Toledo (Spain)], E-mail: juancarlos.sanchez@uclm.es; Wheelock, Craig E. [Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm (Sweden)

    2009-01-15

    A laboratory-based study was conducted to determine the basal carboxylesterase (CbE) activity in different tissues of the earthworm Lumbricus terrestris, and its sensitivity to the organophosphate (OP) pesticide chlorpyrifos-oxon (CPx). Carboxylesterase activity was found in the pharynx, crop, gizzard, anterior intestine, wall muscle and reproductive tissues of L. terrestris, and multiple tissue-specific isozymes were observed by native gel electrophoresis. Esterase activity and sensitivity to CPx inhibition varied on a tissue- and substrate-specific basis, suggesting isoforms-specific selectivity to OP-mediated inhibition. Three practical issues are recommended for the use of earthworm CbE activity as a biomarker of pesticide exposure: (i) CbE should be measured using several routine substrates, (ii) it should be determined in selected tissues instead of whole organism homogenate, and (iii) earthworm CbE activity should be used in conjuncture with other common biomarkers (e.g., ChE) within a multibiomarker approach to assess field exposure of OPs, and potentially other agrochemicals. - The measurement of carboxylesterase inhibition in earthworm is a sensitive and complementary biomarker of pesticide exposure.

  16. Tissue distribution, isozyme abundance and sensitivity to chlorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Sanchez-Hernandez, Juan C.; Wheelock, Craig E.

    2009-01-01

    A laboratory-based study was conducted to determine the basal carboxylesterase (CbE) activity in different tissues of the earthworm Lumbricus terrestris, and its sensitivity to the organophosphate (OP) pesticide chlorpyrifos-oxon (CPx). Carboxylesterase activity was found in the pharynx, crop, gizzard, anterior intestine, wall muscle and reproductive tissues of L. terrestris, and multiple tissue-specific isozymes were observed by native gel electrophoresis. Esterase activity and sensitivity to CPx inhibition varied on a tissue- and substrate-specific basis, suggesting isoforms-specific selectivity to OP-mediated inhibition. Three practical issues are recommended for the use of earthworm CbE activity as a biomarker of pesticide exposure: (i) CbE should be measured using several routine substrates, (ii) it should be determined in selected tissues instead of whole organism homogenate, and (iii) earthworm CbE activity should be used in conjuncture with other common biomarkers (e.g., ChE) within a multibiomarker approach to assess field exposure of OPs, and potentially other agrochemicals. - The measurement of carboxylesterase inhibition in earthworm is a sensitive and complementary biomarker of pesticide exposure

  17. Interactions of pyrethroid insecticides with GABAA and peripheral-type benzodiazepine receptors

    International Nuclear Information System (INIS)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1RαS, cis cypermethrin having an ED 50 value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of [ 3 H]Ro5-4864 to rat brain membranes with a significant correlation between the log EC 50 values for their activities as proconvulsants and the log IC 50 values for their inhibition of [ 3 H]Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific [ 35 S]TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of [ 35 S]TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated 36 Chloride influx. Moreover, the Type II pyrethroids elicited an increase in 36 chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin

  18. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa.

    Science.gov (United States)

    Riveron, Jacob M; Ibrahim, Sulaiman S; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J; Ishak, Intan H; Wondji, Charles S

    2017-06-07

    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes ( CYP6P9a and CYP6P9b ) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. Copyright © 2017 Riveron et al.

  19. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa

    Science.gov (United States)

    Riveron, Jacob M.; Ibrahim, Sulaiman S.; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J.; Ishak, Intan H.; Wondji, Charles S.

    2017-01-01

    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. PMID:28428243

  20. A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China.

    Science.gov (United States)

    Zhen, Congai; Gao, Xiwu

    2016-02-01

    In China, the green mirid bug, Apolygus lucorum (Meyer-Dür), has caused severe economic damage to many kinds of crops, especially the cotton and jujubes. Pyrethroid insecticides have been widely used for controlling this pest in the transgenic Bt cotton field. Five populations of A. lucorum collected from cotton crops at different locations in China were evaluated for lambda-cyhalothrin resistance. The results showed that only the population collected from Shandong Province exhibited 30-fold of resistance to lambda-cyhalothrin. Neither PBO nor DEF had obvious synergism when compared the synergistic ratio between SS and RR strain which was originated from the Shandong population. Besides, there were no statistically significant differences (p>0.05) in the carboxylesterase, glutathione S-transferase, or 7-ethoxycoumarin O-deethylase activities between the Shandong population and the laboratory susceptible strain (SS). The full-length sodium channel gene named AlVSSC encoding 2028 amino acids was obtained by RT-PCR and rapid amplification of cDNA ends (RACE). One single point mutation L1015F in the AlVSSC was detected only in the Shandong population. Our results revealed that the L1015F mutation associated with pyrethroid resistance was identified in A. lucorum populations in China. These results will be useful for the rational chemical control of A. lucorum in the transgenic Bt cotton field. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Expression and Purification of a Potential Antidote for Organophosphate Warfare Agents

    National Research Council Canada - National Science Library

    Lanclos, Kenneth

    2002-01-01

    ...) hydrolyze aliphatic and aromatic esters, and aromatic amides. Carboxylesterase may play an important role in the detoxification of xenobiotic chemicals that contain organophosphate (OP) compounds...

  2. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P., E-mail: dweston@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Asbell, A.M., E-mail: aasbell@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Hecht, S.A., E-mail: scott.hecht@noaa.gov [NOAA Fisheries, Office of Protected Resources, 510 Desmond Drive S.E., Lacey, WA 98503 (United States); Scholz, N.L., E-mail: nathaniel.scholz@noaa.gov [NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112 (United States); Lydy, M.J., E-mail: mlydy@siu.edu [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)

    2011-10-15

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: > Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. > Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. > Two creeks contained concentrations acutely lethal to sensitive invertebrates. > Bifenthrin was of greatest concern, though less than in prior studies. > Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  3. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    International Nuclear Information System (INIS)

    Weston, D.P.; Asbell, A.M.; Hecht, S.A.; Scholz, N.L.; Lydy, M.J.

    2011-01-01

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: → Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. → Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. → Two creeks contained concentrations acutely lethal to sensitive invertebrates. → Bifenthrin was of greatest concern, though less than in prior studies. → Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  4. Pyrethroid as a Substance of Abuse

    Directory of Open Access Journals (Sweden)

    Pravesh Sharma

    2014-01-01

    Full Text Available This is a case of a 22-year-old Hispanic male with a history of bipolar disorder and methamphetamine dependence who was admitted after presenting with suicidal ideations by slashing his throat with a machete. The patient had been smoking and inhaling “processed” pyrethroid for about eight weeks as an inexpensive methamphetamine substitute. He reported experiencing a “rush” similar to methamphetamine after using pyrethroid from liquid insecticide that had been heated (electrocuted or sprayed on hot metal sheets until it crystallized. The patient presented with no significant physical markings or findings but claimed to have his suicidal ideations precipitated by concerns of ill effects of pyrethroid on his health. He also had positive urine drug screen for methamphetamine, which he admitted to using on the day of admission. We conclude that it is important for physicians to maintain a high level of suspicion for alternate and uncommon substances of abuse as well as risks for suicidal tendencies in these patients.

  5. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  6. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  7. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  8. Co-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Background Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. Methodology/Principal Findings We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Conclusions/Significance Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti. PMID:25077956

  9. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus.

    Science.gov (United States)

    Zimmer, Christoph T; Bass, Chris; Williamson, Martin S; Kaussmann, Martin; Wölfel, Katharina; Gutbrod, Oliver; Nauen, Ralf

    2014-02-01

    The pollen beetle (Meligethes aeneus F.) is widespread throughout much of Europe where it is a major coleopteran pest of oilseed rape (Brassica napus). The reliance on synthetic insecticides for control, particularly the pyrethroid class, has led to the development of populations with high levels of resistance. Resistance to pyrethroids is now widespread throughout Europe and is thought to be mediated by enhanced detoxification by cytochrome P450ś and/or mutation of the pyrethroid target-site, the voltage-gated sodium channel. However, in the case of cytochrome P450 mediated detoxification, the specific enzyme(s) involved has (have) not yet been identified. In this study a degenerate PCR approach was used to identify ten partial P450 gene sequences from pollen beetle. Quantitative PCR was then used to examine the level of expression of these genes in a range of pollen beetle populations that showed differing levels of resistance to pyrethroids in bioassays. The study revealed a single P450 gene, CYP6BQ23, which is significantly and highly overexpressed (up to ∼900-fold) in adults and larvae of pyrethroid resistant strains compared to susceptible strains. CYP6BQ23 overexpression is significantly correlated with both the level of resistance and with the rate of deltamethrin metabolism in microsomal preparations of these populations. Functional recombinant expression of full length CYP6BQ23 along with cytochrome P450 reductase in an insect (Sf9) cell line showed that it is able to efficiently metabolise deltamethrin to 4-hydroxy deltamethrin. Furthermore we demonstrated by detection of 4-hydroxy tau-fluvalinate using ESI-TOF MS/MS that functionally expressed CYP6BQ23 also metabolizes tau-fluvalinate. A protein model was generated and subsequent docking simulations revealed the predicted substrate-binding mode of both deltamethrin and tau-fluvalinate to CYP6BQ23. Taken together these results strongly suggest that the overexpression of CYP6BQ23 is the primary

  10. Pyrethroid insecticides and radioligand displacement from the GABA receptor chloride ionophore complex

    International Nuclear Information System (INIS)

    Crofton, K.M.; Reiter, L.W.; Mailman, R.B.

    1987-01-01

    Radioligand binding displacement studies were conducted to determine the effects of Type I and II pyrethroids on 3 H-flunitrazepam (FLU), 3 H-muscimol (MUS), and ( 35 S-t-butylbicyclophosphorothionate (TBPS) binding. Competition experiments with 3 H-FLU and 3 H-MUS indicate a lack of competition for binding by the pyrethroids. Type I pyrethroids failed to compete for the binding of ( 35 S-TBPS at concentrations as high as 50 pM. Type II pyrethroids inhibited ( 35 S-TBPS binding to rat brain synaptosomes with Ki values ranging from 5-10 pM. The data presented suggest that the interaction of Type II pyrethroids with the GABA receptor-ionophore complex is restricted to a site near the TBPS/picrotoxinin binding site

  11. The Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) voltage-gated sodium channel and mutations associated with pyrethroid resistance in field-collected adult males.

    Science.gov (United States)

    Hopkins, B W; Pietrantonio, P V

    2010-05-01

    Helicoverpa zea is one of the most costly insect pests of food and fiber crops throughout the Americas. Pyrethroid insecticides are widely applied for its control as they are effective and relatively inexpensive; however, resistance to pyrethroids threatens agricultural systems sustainability because alternative insecticides are often more expensive or less effective. Although pyrethroid resistance has been identified in this pest since 1990, the mechanisms of resistance have not yet been elucidated at the molecular level. Pyrethroids exert their toxicity by prolonging the open state of the voltage-gated sodium channel. Here we report the cDNA sequence of the H. zea sodium channel alpha-subunit homologous to the para gene from Drosophila melanogaster. In field-collected males which were resistant to cypermethrin as determined by the adult vial test, we identify known resistance-conferring mutations L1029H and V421M, along with two novel mutations at the V421 residue, V421A and V421G. An additional mutation, I951V, may be the first example of a pyrethroid resistance mutation caused by RNA editing. Identification of the sodium channel cDNA sequence will allow for testing hypotheses on target-site resistance for insecticides acting on this channel through modeling and expression studies. Understanding the mechanisms responsible for resistance will greatly improve our ability to identify and predict resistance, as well as preserve susceptibility to pyrethroid insecticides. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat

    Science.gov (United States)

    Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household products. Due to the phase-out oforganophosphate pesticides, the use of pyrethroids has increased. The potential for human exposure to pyrethroids has prompted pharmacodynamic and pharmacokine...

  13. Residential runoff as a source of pyrethroid pesticides to urban creeks

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P. [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, CA 94720-3140 (United States)], E-mail: dweston@berkeley.edu; Holmes, R.W. [Water Branch, California Department of Fish and Game, 830 S Street, Sacramento, CA 95811 (United States)], E-mail: rholmes@dfg.ca.gov; Lydy, M.J. [Fisheries and Illinois Aquaculture Center, Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)], E-mail: mlydy@siu.edu

    2009-01-15

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations.

  14. Residential runoff as a source of pyrethroid pesticides to urban creeks

    International Nuclear Information System (INIS)

    Weston, D.P.; Holmes, R.W.; Lydy, M.J.

    2009-01-01

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations

  15. Target-site resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus F

    DEFF Research Database (Denmark)

    Nauen, Ralf; Zimmer, Christoph T; Andrews, Melanie

    2012-01-01

    by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We...... resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated...... detected a single nucleotide change that results in an amino acid substitution (L1014F) within the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has been found in several other insect pests and is known to confer moderate levels of resistance to pyrethroids. We developed...

  16. Toxicokinetics of the pyrethroid insecticide bifenthrin in blood and brain of the rat

    Science.gov (United States)

    Bifenthrin is a pyrethroid insecticide and human exposure to it can occur by oral, pulmonary and dermal routes. Pyrethroids are neurotoxic agents and it is generally believed that the parent pyrethroid is the toxic entity. The objective of this study was to assess the toxicokinet...

  17. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  18. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  19. Is cumulated pyrethroid exposure associated with prediabetes?

    DEFF Research Database (Denmark)

    Hansen, Martin Rune; Jørs, Erik; Lander, Flemming

    2014-01-01

    was to investigate an association between exposure to pyrethroids and abnormal glucose regulation (prediabetes or diabetes). A cross-sectional study was performed among 116 pesticide sprayers from public vector control programs in Bolivia and 92 nonexposed controls. Pesticide exposure (duration, intensity...... pyrethroids, a significant positive trend was observed between cumulative pesticide exposure (total number of hours sprayed) and adjusted OR of abnormal glucose regulation, with OR 14.7 [0.9-235] in the third exposure quintile. The study found a severely increased prevalence of prediabetes among Bolivian...

  20. A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila

    Directory of Open Access Journals (Sweden)

    Chertemps Thomas

    2012-06-01

    Full Text Available Abstract Background Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6, in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA. Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE in male

  1. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  2. Synthetic cannabimimetic agents metabolized by carboxylesterases

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Nielsen, Line M; Holm, Niels B

    2015-01-01

    Synthetic cannabimimetic agents are a large group of diverse compounds which act as agonists at cannabinoid receptors. Since 2004, synthetic cannabinoids have been used recreationally, although several of the compounds have been shown to cause severe toxicity in humans. In this study......, the metabolism of two indazole carboxamide derivatives, AB-PINACA and AB-FUBINACA, was investigated by using human liver microsomes (HLM). For both compounds, a major metabolic pathway was the enzymatic hydrolysis of the primary amide, resulting in the major metabolites AB-PINACA-COOH and AB-FUBINACA-COOH. Other...... major metabolic pathways were mono-hydroxylation of the N-pentyl chain in AB-PINACA and mono-hydroxylation of the 1-amino-3-methyl-1-oxobutane moiety in AB-FUBINACA. To identify the enzyme(s) responsible for the amide hydrolysis, incubations with recombinant carboxylesterases and human serum, as well...

  3. Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica

    Directory of Open Access Journals (Sweden)

    Guang-zhou Guo

    2010-01-01

    Full Text Available German cockroaches have become a large problem in the Shenzhen area because of their pesticide resistance, especially to pyrethroid. A pyrethroid called “Jia Chong Qing” to prevent pests for a long time were found to be resistant to “Jia Chong Qing” with resistance index of 3.88 measured using RT-PCR and immunohistochemistry analysis showed that both CYP4G19 mRNA and CYP4G19 protein expression levels in the wild strain were substantially higher than that of a sensitive strain. dsRNA segments derived from the target gene CYP4G19 were prepared using in vitro transcription and were microinjected into abdomens of the wild strain. Two to eight days after injection, the result showed that CYP4G19 mRNA expressions were significantly reduced in the groups injected with dsRNAs.

  4. A survey of pyrethroid-resistant populations of Meligethes aeneus F. in Poland indicates the incidence of numerous substitutions in the pyrethroid target site of voltage-sensitive sodium channels in individual beetles.

    Science.gov (United States)

    Wrzesińska, B; Czerwoniec, A; Wieczorek, P; Węgorek, P; Zamojska, J; Obrępalska-Stęplowska, A

    2014-10-01

    The pollen beetle (Meligethes aeneus F.) is the most devastating pest of oilseed rape (Brassica napus) and is controlled by pyrethroid insecticides. However, resistance to pyrethroids in Europe is becoming widespread and predominant. Pyrethroids target the voltage-sensitive sodium channel (VSSC), and mutations in VSSC may be responsible for pyrethroid insensitivity. Here, we analysed individual beetles that were resistant to esfenvalerate, a pyrethroid, from 14 populations that were collected from oilseed rape fields in Poland. We screened the VSSC domains that were presumed to directly interact with pyrethroids. We identified 18 heterozygous nucleic acid substitutions, amongst which six caused an amino acid change: N912S, G926S, I936V, R957G, F1538L and E1553G. Our analysis of the three-dimensional structure of these domains in VSSC revealed that some of these changes may slightly influence the protein structure and hence the docking efficiency of esfenvalerate. Therefore, these mutations may impact the susceptibility of the sodium channel to the action of this insecticide. © 2014 The Royal Entomological Society.

  5. Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils.

    Science.gov (United States)

    Avicor, Silas W; Wajidi, Mustafa F F; El-Garj, Fatma M A; Jaal, Zairi; Yahaya, Zary S

    2014-10-01

    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

  6. Evolution of resistance to pyrethroid insecticides in Musca domestica.

    Science.gov (United States)

    Scott, Jeffrey G

    2017-04-01

    Houseflies, Musca domestica L., are a significant pest because of the numerous diseases they transmit. Control of housefly populations, particularly at animal production facilities, is frequently done using pyrethroid insecticides which kill insects by prolonging the open time of the voltage-sensitive sodium channel (VSSC). Houseflies have evolved resistance to pyrethroids owing to mutations in Vssc and by cytochrome-P450-mediated detoxification. Three Vssc mutations are known: kdr (L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Generally, the levels of resistance conferred by these mutations are kdr-his resistance than kdr. P450-mediated resistance can result from overexpression of CYP6D1 or another P450 (unidentified) whose overexpression is linked to autosomes II or V. The initial use of field-stable pyrethroids resulted in different patterns of evolution across the globe, but with time these mutations have become more widespread in their distribution. What is known about the fitness costs of the resistance alleles in the absence of insecticide is discussed, particularly with respect to the current and future utility of pyrethroid insecticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Recent advances of pyrethroids for household use.

    Science.gov (United States)

    Ujihara, Kazuya; Mori, Tatsuya; Matsuo, Noritada

    2012-01-01

    Development of pyrethroids for household use and recent advances in the syntheses of (1R)-trans-chrysanthemic acid, the acid moiety of most of the household pyrethroids, are reviewed. As another important acid moiety, we discovered norchrysanthemic acid to have a significant vapor action at room temperature when esterified with fluorobenzyl alcohols. In particular, 2,3,5,6-tetrafluoro-4-methoxymethylbenzyl (1R)-trans-norchrysanthemate (metofluthrin) exhibits the highest potency in mosquito coil formulations as well as the vapor action at room temperature against various mosquitoes. Structure-activity relationships of norchrysanthemic acid esters and synthetic studies of norchrysanthemic acid are discussed.

  8. Analysis of carboxylesterase 2 transcript variants in cynomolgus macaque liver.

    Science.gov (United States)

    Uno, Yasuhiro; Igawa, Yoshiyuki; Tanaka, Maori; Ohura, Kayoko; Hosokawa, Masakiyo; Imai, Teruko

    2018-04-27

    Carboxylesterase (CES) is important for the detoxification of a wide range of drugs and xenobiotics. In this study, the hepatic level of CES2 mRNA was examined in cynomolgus macaques used widely in preclinical studies for drug metabolism. Three CES2 mRNAs were present in cynomolgus macaque liver. The mRNA level was highest for cynomolgus CES2A (formerly CES2v3), much lower for cynomolgus CES2B (formerly CES2v1) and extremely low for cynomolgus CES2C (formerly CES2v2). Most various transcript variants produced from cynomolgus CES2B gene did not contain a complete coding region. Thus, CES2A is the major CES2 enzyme in cynomolgus liver. A new transcript variant of CES2A, CES2Av2, was identified. CES2Av2 contained exon 3 region different from wild-type (CES2Av1). In cynomolgus macaques expressing only CES2Av2 transcript, CES2A contained the sequence of CES2B in exon 3 and vicinity, probably due to gene conversion. On genotyping, this CES2Av2 allele was prevalent in Indochinese cynomolgus macaques, but not in Indonesian cynomolgus or rhesus macaques. CES2Av2 recombinant protein showed similar activity to CES2Av1 protein for several substrates. It is concluded that CES2A is the major cynomolgus hepatic CES2, and new transcript variant, CES2Av2, has similar functions to CES2Av1.

  9. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii.

    Science.gov (United States)

    Main, Bradley J; Everitt, Amanda; Cornel, Anthony J; Hormozdiari, Fereydoun; Lanzaro, Gregory C

    2018-04-04

    Malaria mortality rates in sub-Saharan Africa have declined significantly in recent years as a result of increased insecticide-treated bed net (ITN) usage. A major challenge to further progress is the emergence and spread of insecticide resistance alleles in the Anopheles mosquito vectors, like An. coluzzii. A non-synonymous mutation in the para voltage-gated sodium channel gene reduces pyrethroid-binding affinity, resulting in knockdown resistance (kdr). Metabolic mechanisms of insecticide resistance involving detoxification genes like cytochrome P450 genes, carboxylesterases, and glutathione S-transferases are also important. As some gene activity is tissue-specific and/or environmentally induced, gene regulatory variation may be overlooked when comparing expression from whole mosquito bodies under standard rearing conditions. We detected complex insecticide resistance in a 2014 An. coluzzii colony from southern Mali using bottle bioassays. Additional bioassays involving recombinant genotypes from a cross with a relatively susceptible 1995 An. coluzzii colony from Mali confirmed the importance of kdr and associated increased permethrin resistance to the CYP9K1 locus on the X chromosome. Significant differential expression of CYP9K1 was not observed among these colonies in Malpighian tubules. However, the P450 gene CYP6Z1 was overexpressed in resistant individuals following sublethal permethrin exposure and the carboxylesterase gene COEAE5G was constitutively overexpressed. The significant P450-related insecticide resistance observed in the 2014 An. coluzzii colony indicates that ITNs treated with the P450 inhibitor piperonyl butoxide (PBO) would be more effective in this region. The known insecticide resistance gene CYP6Z1 was differentially expressed exclusively in the context of sublethal permethrin exposure, highlighting the importance of tissue-specificity and environmental conditions in gene expression studies. The increased activity of the carboxylesterase

  10. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance.

    Science.gov (United States)

    Pan, Jing; Yang, Chan; Liu, Yan; Gao, Qi; Li, Mei; Qiu, Xinghui

    2018-04-01

    The house fly Musca domestica is an important disease vector. Point mutation-mediated target-site insensitivity of the voltage sensitive sodium channel (VSSC) and increased detoxification mediated by cytochrome P450 (CYP6D1) overexpression have been characterized as two major mechanisms of pyrethroid resistance. In this study, genetic mutations in the Vssc and CYP6D1 genes and their contribution to pyrethroid resistance were investigated. Twelve lines of house flies homozygous for four genotypes were established. House flies carrying the VSSC 1014F mutation and overexpressing CYP6D1 had higher resistance to pyrethroids than those carrying 1014F alone. The presence of the 15-bp insert in the promoter region of the CYP6D1 gene did not necessarily result in a significant increase in CYP6D1 mRNA and pyrethroid resistance levels. A novel Vssc allele carrying two mutations (G1924D and G2004S) in combination with the classic 1014F and a novel CYP6D1 allele that is very similar to CYP6D1v1 were identified in Chinese house flies. This work demonstrates the effect of genetic mutations in CYP6D1 and Vssc on the susceptibility of house flies to pyrethroids, and verifies that 15-bp insert-containing CYP6D1 alleles have a single origin. These findings offer insights into the evolution of insecticide resistance and have implications for house fly control. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Li Wen-Le

    2009-11-01

    Full Text Available Abstract Background Carboxylesterase is a multifunctional superfamily and ubiquitous in all living organisms, including animals, plants, insects, and microbes. It plays important roles in xenobiotic detoxification, and pheromone degradation, neurogenesis and regulating development. Previous studies mainly used Dipteran Drosophila and mosquitoes as model organisms to investigate the roles of the insect COEs in insecticide resistance. However, genome-wide characterization of COEs in phytophagous insects and comparative analysis remain to be performed. Results Based on the newly assembled genome sequence, 76 putative COEs were identified in Bombyx mori. Relative to other Dipteran and Hymenopteran insects, alpha-esterases were significantly expanded in the silkworm. Genomics analysis suggested that BmCOEs showed chromosome preferable distribution and 55% of which were tandem arranged. Sixty-one BmCOEs were transcribed based on cDNA/ESTs and microarray data. Generally, most of the COEs showed tissue specific expressions and expression level between male and female did not display obvious differences. Three main patterns could be classified, i.e. midgut-, head and integument-, and silk gland-specific expressions. Midgut is the first barrier of xenobiotics peroral toxicity, in which COEs may be involved in eliminating secondary metabolites of mulberry leaves and contaminants of insecticides in diet. For head and integument-class, most of the members were homologous to odorant-degrading enzyme (ODE and antennal esterase. RT-PCR verified that the ODE-like esterases were also highly expressed in larvae antenna and maxilla, and thus they may play important roles in degradation of plant volatiles or other xenobiotics. Conclusion B. mori has the largest number of insect COE genes characterized to date. Comparative genomic analysis suggested that the gene expansion mainly occurred in silkworm alpha-esterases. Expression evidence indicated that the expanded

  12. Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors.

    Science.gov (United States)

    Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal

    2018-01-01

    Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Pyrethroids (specifically type 2) such as fenvalerate (-5.534 kcal/mol: CD8), fluvalinate (-4.644 and - 4.431 kcal/mol: CD4 and CD45), and cypermethrin (-3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1.

  13. In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin

    Science.gov (United States)

    Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...

  14. Tissue time course and bioavailability of the pyrethroid insecticide bifenthrin in the Long-Evans rat

    Science.gov (United States)

    Bifenthrin is a pyrethroid insecticide and human exposure to it can occur by oral, pulmonary and dermal routes. Pyrethroids are neurotoxic agents and it is generally believed that the parent pyrethroid is the toxic entity. This study evaluated the oral disposition and bioavaila...

  15. Pyrethroid resistance in an Anopheles funestus population from Uganda.

    Directory of Open Access Journals (Sweden)

    John C Morgan

    2010-07-01

    Full Text Available The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved.A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin. Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate, malathion (organophosphate and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG.This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken

  16. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Stott, Robert; Irving, Helen; Wondji, Charles S

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  18. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  19. Voltage-gated sodium channels as targets for pyrethroid insecticides.

    Science.gov (United States)

    Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A

    2017-10-01

    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.

  20. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  1. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  2. Voltage-sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines.

    Science.gov (United States)

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2018-03-01

    Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage-sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia. We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid-resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21- to 107-fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000-fold resistance to DDT, 37.5-fold cross-resistance to indoxacarb and 13.4-fold cross-resistance to DCJW. Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of

  3. Analytical method for urinary metabolites of the fluorine-containing pyrethroids metofluthrin, profluthrin and transfluthrin by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Yoshida, Toshiaki

    2013-01-15

    An analytical method was developed for measurement of the major urinary metabolites in rats administered fluorine-containing pyrethroids (metofluthrin, profluthrin and transfluthrin) which are widely used recently as mosquito repellents or mothproof repellents. Eight metabolites, 2,3,5,6-tetrafluorobenzoic acid, 4-methyl-2,3,5,6-tetrafluorobenzoic acid, 2,2-dimethyl-3-(1-propenyl)-cyclopropanecarboxylic acid, 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid (carboxylic metabolites), 2,3,5,6-tetrafluorobenzyl alcohol, 4-methyl-2,3,5,6-tetrafluorobenzyl alcohol, 4-methoxymethyl-2,3,5,6-tetrafluorobenzyl alcohol and 4-hydroxymethyl-2,3,5,6-tetrafluorobenzyl alcohol (alcoholic metabolites), were extracted from enzymatic hydrolyzed urine using toluene and then concentrated. After transformation to their tert-butyldimethylsilyl derivatives for carboxylic metabolites or their trimethylsilyl derivatives for alcoholic metabolites, analysis was conducted by gas chromatography/mass spectrometry in the electron impact ionization mode. The calibration curves for each metabolite were linear over the concentration range of 0-20μg/ml in urine, and the quantification limits were between 0.009 and 0.03μg/ml. The relative errors and the relative standard deviations on replicate assays were less than 6% and 5%, respectively, for all concentrations studied. The measurements were accurate and precise. The collected urine samples could be stored for up to 1 month at -20°C in a freezer. The proposed method was applied to the analysis of several urine samples collected from rats treated with these pyrethroids. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. An integrative approach to understanding pyrethroid resistance in Rhipicephalus microplus and R. decoloratus ticks.

    Science.gov (United States)

    Wyk, Roelof Dj van; Baron, Samantha; Maritz-Olivier, Christine

    2016-06-01

    Rhipicephalus microplus and Rhipicephalus decoloratus species occur in regions with savannah and temperate climates, typically in grassland and wooded areas used as cattle pasture. Both species are associated with the transmission of Anaplasma and Babesia spp., impacting livestock health and quality of livestock-associated products. In Africa, tick control is predominantly mediated with the use of acaricides, such as synthetic pyrethroids. After several years on the market, reports of resistance to synthetic pyrethroids escalated but limited field data and validation studies have been conducted to determine the extent of acaricide resistance in Africa. Without this data, knowledge-based tick control will remain problematic and selection pressure will remain high increasing the rate of resistance acquisition. To date, several pyrethroid resistance associated single nucleotide polymorphisms (SNPs) have been reported for arthropods within the voltage-gated sodium channel. Three SNPs have been identified within this channel in pyrethroid resistant R. microplus ticks, but none has been reported for R. decoloratus. This study is the first to report the presence of a shared SNP within the voltage-gated sodium channel in both R. microplus and R. decoloratus, which is directly linked to pyrethroid resistance in R. microplus. As the mode of action by which these SNPs mediate pyrethroid resistance remains unknown, this study aims to set hypotheses by means of predictive structural modelling. This not only paves the way forward to elucidating the underlying biological mechanisms involved in pyrethroid resistance, but also improvement of existing acaricides and ultimately sustainable tick control management. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. PYRETHROID MODULATION OF SPONTANEOUS NEURONAL EXCITABILITY AND NEUROTRANSMISSION IN HIPPOCAMPAL NEURONS IN CULTURE

    Science.gov (United States)

    Pyrethroid insecticides have potent actions on voltage-gated sodium channels, inhibiting inactivation and increasing channel open times. These are thought to underlie, at least in part, the clinical symptoms of pyrethroid intoxication. However, disruption of neuronal activity at ...

  6. Pyrethroid resistance in Sitophilus zeamais is associated with a mutation (T929I) in the voltage-gated sodium channel.

    Science.gov (United States)

    Araújo, Rúbia A; Williamson, Martin S; Bass, Christopher; Field, Linda M; Duce, Ian R

    2011-08-01

    The maize weevil, Sitophilus zeamais, is the most important pest affecting stored grain in Brazil and its control relies heavily on the use of insecticides. The intensive use of compounds such as the pyrethroids has led to the emergence of resistance, and previous studies have suggested that resistance to both pyrethroids and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) may result from reduced sensitivity of the insecticide target, the voltage-gated sodium channel. To identify the molecular mechanisms underlying pyrethroid resistance in S. zeamais, the domain II region of the voltage-gated sodium channel (para-orthologue) gene was amplified by PCR and sequenced from susceptible and resistant laboratory S. zeamais strains that were selected with a discriminating dose of DDT. A single point mutation, T929I, was found in the para gene of the resistant S. zeamais populations and its presence in individual weevils was strongly associated with survival after DDT exposure. This is the first identification of a target-site resistance mutation in S. zeamais and unusually it is a super-kdr type mutation occurring in the absence of the more common kdr (L1014F) substitution. A high-throughput assay based on TaqMan single nucleotide polymorphism genotyping was developed for sensitive detection of the mutation and used to screen field-collected strains of S. zeamais. This showed that the mutation is present at low frequency in field populations and is a useful tool for informing control strategies. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  7. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.

    Science.gov (United States)

    Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang

    2014-03-03

    Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.

  8. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    Science.gov (United States)

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pyrethrum flowers and pyrethroid insecticides.

    OpenAIRE

    Casida, J E

    1980-01-01

    The natural pyrethrins from the daisy-like flower, Tanacetum or Chrysanthemum cinerariifolium, are nonpersistent insecticides of low toxicity to mammals. Synthetic analogs or pyrethroids, evolved from the natural compounds by successive isosteric modifications, are more potent and stable and are the newest important class of crop protection chemicals. They retain many of the favorable properties of the pyrethrins.

  10. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon

    International Nuclear Information System (INIS)

    Crow, J. Allen; Bittles, Victoria; Herring, Katye L.; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K.

    2012-01-01

    Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC 50 values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon > paraoxon > methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k inact /K I ) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC 50 values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon > paraoxon > methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1 and CES2

  11. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon

    Energy Technology Data Exchange (ETDEWEB)

    Crow, J. Allen; Bittles, Victoria; Herring, Katye L.; Borazjani, Abdolsamad [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Potter, Philip M. [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105 (United States); Ross, Matthew K., E-mail: mross@cvm.msstate.edu [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States)

    2012-01-01

    Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC{sub 50} values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon > paraoxon > methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k{sub inact}/K{sub I}) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC{sub 50} values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon > paraoxon > methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1

  12. Assessing Dietary Exposure to Pyrethroid Insecticides by LC/MS/MS of Food Composites

    Science.gov (United States)

    Introduction Pyrethroid insecticides are widely used to control household pests such as cockroaches, for public works control of mosquitoes, and on crops and livestock. Though more toxic to insects than to mammals, some pyrethroids are highly toxic to fish, bees, and cats. Perme...

  13. Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites.

    Science.gov (United States)

    O'Reilly, Andrias O; Williamson, Martin S; González-Cabrera, Joel; Turberg, Andreas; Field, Linda M; Wallace, B A; Davies, T G Emyr

    2014-03-01

    The pyrethroid insecticides are a very successful group of compounds that target invertebrate voltage-gated sodium channels and are widely used in the control of insects, ticks and mites. It is well established that some pyrethroids are good insecticides whereas others are more effective as acaricides. This species specificity is advantageous for controlling particular pest(s) in the presence of another non-target invertebrate, for example controlling the Varroa mite in honeybee colonies. We applied in silico techniques to compare the voltage-gated sodium channels of insects versus ticks and mites and their interactions with a range of pyrethroids and DDT analogues. We identified a single amino acid difference within the pyrethroid binding pocket of ticks/mites that may have significant impact on the effectiveness of pyrethroids as acaricides. Other individual amino acid differences within the binding pocket in distinct tick and mite species may provide a basis for future acaricidal selectivity. Three-dimensional modelling of the pyrethroid/DDT receptor site has led to a new hypothesis to explain the preferential binding of acaricidal pyrethroids to the sodium channels of ticks/mites. This is important for understanding pyrethroid selectivity and the potential effects of mutations that can give rise to resistance to pyrethroids in commercially-important pest species. © 2013 Society of Chemical Industry.

  14. Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Yoshida, Toshiaki

    2009-06-26

    An analytical method was developed for the simultaneous measurement of 18 pyrethroids (allethrin, bifenthrin, cyfluthrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, fenpropathrin, furamethrin, imiprothrin, metofluthrin, permethrin, phenothrin, prallethrin, profluthrin, resmethrin, tetramethrin and transfluthrin) in indoor air. The pyrethroids were collected for 24 h using a combination of adsorbents (quartz fiber filter disk and Empore C18 disk), with protection from light, and then extracted with acetone, concentrated, and analyzed by GC/MS. They could be determined accurately and precisely (detection limits: ca. 1 ng/m(3)). The collected pyrethroid samples could be stored for up to one month at 4 degrees C in a refrigerator.

  15. Residual pyrethroids in fresh horticultural products in Sonora, Mexico.

    Science.gov (United States)

    Aldana-Madrid, Maria L; Valenzuela-Quintanar, Ana I; Silveira-Gramont, Maria I; Rodríguez-Olibarría, Guillermo; Grajeda-Cota, Patricia; Zuno-Floriano, Fabiola G; Miller, Marion G

    2011-10-01

    This study was conducted to evaluate the presence of cyhialothrin, cyfluthrin, cypermethrin, fenvalerate, and deltamethrin in vegetables produced and consumed in Sonora, Mexico. A total of 345 samples were collected from cluster sampling of markets and fields. Approximately 9% of the samples tested positive for pyrethroids (residue range 0.004-0.573 mg kg(-1)). Based on the results, the potential toxicological risk of human exposure to the pyrethroid insecticides measured in vegetables appears to be minimal, with the estimated exposure being 1,000 times lower than admissible levels. © Springer Science+Business Media, LLC 2011

  16. Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl or a pyrethroid (lambdacyhalothrin alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2005-05-01

    Full Text Available Abstract Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM, an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L, a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1R. Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. Results and Conclusion All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1R and Ace.1S genes did not differ significantly from mosquitoes that carried only Ace.1S genes on any of the treated nets, indicating that the Ace.1R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut.

  17. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Coetzee M

    2010-08-01

    Full Text Available Abstract Background Malaria in South Africa is primarily transmitted by Anopheles funestus Giles. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control. Pyrethroid resistance in southern African An. funestus is primarily conferred by monooxygenase enzyme metabolism. However, selection for this resistance mechanism is likely to have occurred in conjunction with other factors that improve production of the resistance phenotype. A strong candidate is cuticle thickening. This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification. Results Measures of mean cuticle thickness in laboratory samples of female An. funestus were obtained using scanning electron microscopy (SEM. These females were drawn from a laboratory colony carrying the pyrethroid resistance phenotype at a stable rate, but not fixed. Prior to cuticle thickness measurements, these samples were characterised as either more or less tolerant to permethrin exposure in one experiment, and either permethrin resistant or susceptible in another experiment. There was a significant and positive correlation between mean cuticle thickness and time to knock down during exposure to permethrin. Mean cuticle thickness was significantly greater in those samples characterised either as more tolerant or resistant to permethrin exposure compared to those characterised as either less tolerant or permethrin susceptible. Further, insecticide susceptible female An. funestus have thicker cuticles than their male counterparts. Conclusion Pyrethroid tolerant or resistant An. funestus females are likely to have thicker cuticles than less tolerant or susceptible females, and females generally have

  18. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure.

    Science.gov (United States)

    Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun

    2016-04-01

    Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles.

  19. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...... calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug...

  20. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    Science.gov (United States)

    Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S

    2017-02-01

    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  1. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control.

    Directory of Open Access Journals (Sweden)

    Kayla G Barnes

    2017-02-01

    Full Text Available Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

  2. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  3. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities.

    Science.gov (United States)

    Vontas, John; Grigoraki, Linda; Morgan, John; Tsakireli, Dimitra; Fuseini, Godwin; Segura, Luis; Niemczura de Carvalho, Julie; Nguema, Raul; Weetman, David; Slotman, Michel A; Hemingway, Janet

    2018-05-01

    Since 2004, indoor residual spraying (IRS) and long-lasting insecticide-impregnated bednets (LLINs) have reduced the malaria parasite prevalence in children on Bioko Island, Equatorial Guinea, from 45% to 12%. After target site-based (knockdown resistance; kdr ) pyrethroid resistance was detected in 2004 in Anopheles coluzzii (formerly known as the M form of the Anopheles gambiae complex), the carbamate bendiocarb was introduced. Subsequent analysis showed that kdr alone was not operationally significant, so pyrethroid-based IRS was successfully reintroduced in 2012. In 2007 and 2014-2015, mass distribution of new pyrethroid LLINs was undertaken to increase the net coverage levels. The combined selection pressure of IRS and LLINs resulted in an increase in the frequency of pyrethroid resistance in 2015. In addition to a significant increase in kd r frequency, an additional metabolic pyrethroid resistance mechanism had been selected. Increased metabolism of the pyrethroid deltamethrin was linked with up-regulation of the cytochrome P450 CYP9K1. The increase in resistance prompted a reversion to bendiocarb IRS in 2016 to avoid a resurgence of malaria, in line with the national Malaria Control Program plan. Copyright © 2018 the Author(s). Published by PNAS.

  4. Molecular cloning, heterogenous expression and the induction ...

    African Journals Online (AJOL)

    user1

    2012-05-24

    May 24, 2012 ... Carboxylesterases (COEs) are a multifunctional supergene family and some of them play important roles in hydrolyzing a wide variety of carboxylic acid esters. In insects, COEs are related to xenobiotic detoxification, pheromone degradation and developmental regulation. In the present study, one silkworm ...

  5. Molecular identification of tuliposide B-converting enzyme: a lactone-forming carboxylesterase from the pollen of tulip.

    Science.gov (United States)

    Nomura, Taiji; Murase, Tatsunori; Ogita, Shinjiro; Kato, Yasuo

    2015-07-01

    6-Tuliposides A (PosA) and B (PosB), which are the major secondary metabolites in tulip (Tulipa gesneriana), are enzymatically converted to the antimicrobial lactonized aglycons, tulipalins A (PaA) and B (PaB), respectively. We recently identified a PosA-converting enzyme (TCEA) as the first reported member of the lactone-forming carboxylesterases. Herein, we describe the identification of another lactone-forming carboxylesterase, PosB-converting enzyme (TCEB), which preferentially reacts with PosB to give PaB. This enzyme was isolated from tulip pollen, which showed high PosB-converting activity. Purified TCEB exhibited greater activity towards PosB than PosA, which was contrary to that of the TCEA. Novel cDNA (TgTCEB1) encoding the TCEB was isolated from tulip pollen. TgTCEB1 belonged to the carboxylesterase family and was approximately 50% identical to the TgTCEA polypeptides. Functional characterization of the recombinant enzyme verified that TgTCEB1 catalyzed the conversion of PosB to PaB with an activity comparable with the native TCEB. RT-qPCR analysis of each part of plant revealed that TgTCEB1 transcripts were limited almost exclusively to the pollen. Furthermore, the immunostaining of the anther cross-section using anti-TgTCEB1 polyclonal antibody verified that TgTCEB1 was specifically expressed in the pollen grains, but not in the anther cells. N-terminal transit peptide of TgTCEB1 was shown to function as plastid-targeted signal. Taken together, these results indicate that mature TgTCEB1 is specifically localized in plastids of pollen grains. Interestingly, PosB, the substrate of TgTCEB1, accumulated on the pollen surface, but not in the intracellular spaces of pollen grains. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. Pyrethroid effects on freshwater invertebrates: A meta-analysis of pulse exposures

    DEFF Research Database (Denmark)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Kristensen, Esben Astrup

    2013-01-01

    Pyrethroids are widely used insecticides that may seriously harm aquatic organisms. Being strongly hydrophobic, pyrethroids in solution occur only in short pulses but may be retained in sediments for longer periods. Consequently, most studies consider the chronic exposure of sediment dwelling org......-exposure observation periods in future studies. The current risk assessment procedures and the higher tier approach are discussed in the light of our results. (C) 2013 Elsevier Ltd. All rights reserved....

  7. Antibodies from the sera of HIV-infected patients efficiently hydrolyze all human histones.

    Science.gov (United States)

    Baranova, Svetlana V; Buneva, Valentina N; Nevinsky, Georgy A

    2016-08-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Here, using ELISA it was shown that sera of HIV-infected patients and healthy donors contain autoantibodies against histones. Autoantibodies with enzymic activities (abzymes) are a distinctive feature of autoimmune diseases. It was interesting whether antibodies from sera of HIV-infected patients can hydrolyze human histones. Electrophoretically and immunologically homogeneous IgGs were isolated from sera of HIV-infected patients by chromatography on several affinity sorbents. We present first evidence showing that 100% of IgGs purified from the sera of 32 HIV-infected patients efficiently hydrolyze from one to five human histones. Several rigid criteria have been applied to show that the histone-hydrolyzing activity is an intrinsic property of IgGs of HIV-infected patients. The relative efficiency of hydrolysis of histones (H1, H2a, H2b, H3, and H4) significantly varied for IgGs of different patients. IgGs from the sera of 40% of healthy donors also hydrolyze histones but with an average efficiency approximately 16-fold lower than that of HIV-infected patients. Similar to proteolytic abzymes from the sera of patients with several autoimmune diseases, histone-hydrolyzing IgGs from HIV-infected patients were inhibited by specific inhibitors of serine and of metal-dependent proteases, but an unexpected significant inhibition of the activity by specific inhibitor of thiol-like proteases was also observed. Because IgGs can efficiently hydrolyze histones, a negative role of abzymes in development of acquired immune deficiency syndrome cannot be

  8. Concentrations of the urinary pyrethroid metabolite 3-phenoxybenzoic acid in farm worker families in the MICASA study

    Energy Technology Data Exchange (ETDEWEB)

    Trunnelle, Kelly J., E-mail: kjtrunnelle@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis 1 Shields Avenue, Davis, CA 95616 (United States); Bennett, Deborah H. [Department of Public Health Sciences, University of California, Davis, CA 95616 (United States); Ahn, Ki Chang [Department of Entomology and Cancer Center, University of California, Davis 1 Shields Avenue, Davis, CA 95616 (United States); Schenker, Marc B. [Department of Public Health Sciences, University of California, Davis, CA 95616 (United States); Tancredi, Daniel J. [Department of Pediatrics, University of California, Davis School of Medicine, 4610 X Street Sacramento, CA 95817 (United States); Gee, Shirley J. [Department of Entomology and Cancer Center, University of California, Davis 1 Shields Avenue, Davis, CA 95616 (United States); Stoecklin-Marois, Maria T. [Department of Public Health Sciences, University of California, Davis, CA 95616 (United States); Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis 1 Shields Avenue, Davis, CA 95616 (United States)

    2014-05-01

    Indoor pesticide exposure is a growing concern, particularly from pyrethroids, a commonly used class of pesticides. Pyrethroid concentrations may be especially high in homes of immigrant farm worker families who often live in close proximity to agricultural fields, and are faced with poor housing conditions, causing higher pest infestation and more pesticide use. We investigate exposure of farm worker families to pyrethroids in a study of mothers and children living in Mendota, CA within the population-based Mexican Immigration to California: Agricultural Safety and Acculturation (MICASA) Study. We present pyrethroid exposure based on an ELISA analysis of urinary metabolite 3-phenoxybenzoic acid (3PBA) levels among 105 women and 103 children. The median urinary 3PBA levels (children=2.56 ug/g creatinine, mothers=1.46 ug/g creatinine) were higher than those reported in population based studies for the United States general population, but similar to or lower than studies with known high levels of pyrethroid exposure. A positive association was evident between poor housing conditions and the urinary metabolite levels, showing that poor housing conditions are a contributing factor to the higher levels of 3PBA seen in the urine of these farm worker families. Further research is warranted to fully investigate sources of exposure. - Highlights: • We investigate exposure of farm worker families to pyrethroids. • We present pyrethroid exposure based on an ELISA analysis of urinary 3PBA levels. • 3PBA levels were higher than those reported for the U.S. general population. • Poor housing conditions may be associated with pyrethroid exposure.

  9. Concentrations of the urinary pyrethroid metabolite 3-phenoxybenzoic acid in farm worker families in the MICASA study

    International Nuclear Information System (INIS)

    Trunnelle, Kelly J.; Bennett, Deborah H.; Ahn, Ki Chang; Schenker, Marc B.; Tancredi, Daniel J.; Gee, Shirley J.; Stoecklin-Marois, Maria T.; Hammock, Bruce D.

    2014-01-01

    Indoor pesticide exposure is a growing concern, particularly from pyrethroids, a commonly used class of pesticides. Pyrethroid concentrations may be especially high in homes of immigrant farm worker families who often live in close proximity to agricultural fields, and are faced with poor housing conditions, causing higher pest infestation and more pesticide use. We investigate exposure of farm worker families to pyrethroids in a study of mothers and children living in Mendota, CA within the population-based Mexican Immigration to California: Agricultural Safety and Acculturation (MICASA) Study. We present pyrethroid exposure based on an ELISA analysis of urinary metabolite 3-phenoxybenzoic acid (3PBA) levels among 105 women and 103 children. The median urinary 3PBA levels (children=2.56 ug/g creatinine, mothers=1.46 ug/g creatinine) were higher than those reported in population based studies for the United States general population, but similar to or lower than studies with known high levels of pyrethroid exposure. A positive association was evident between poor housing conditions and the urinary metabolite levels, showing that poor housing conditions are a contributing factor to the higher levels of 3PBA seen in the urine of these farm worker families. Further research is warranted to fully investigate sources of exposure. - Highlights: • We investigate exposure of farm worker families to pyrethroids. • We present pyrethroid exposure based on an ELISA analysis of urinary 3PBA levels. • 3PBA levels were higher than those reported for the U.S. general population. • Poor housing conditions may be associated with pyrethroid exposure

  10. Specificity of carboxylesterase protection against the toxicity of organophosphorus compounds. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.M.

    1992-12-31

    The ability of endogenous carboxylesterase (CaE) to protect against the lethal effects of a variety of organophosphorus (OP) compounds was examined in rats. The in vivo protection provided by endogenous CaE was measured by the difference in the LD50 values of OP compounds in controlrats and rats whose CaE activity had been inhibited by sc injection with2 mg/kg of 2-(O cresyl)-4H-1,3,2-benzodi oxaphosphorin-2-oxide. Endogenous CaE provided significant protection against the in vivo toxicity of soman, sarin, tabun, and paraoxon, but not against dichlorvos, diisopropyl fluorophosphate, or ethoxymethyl-S-2- (DIISOPROPYLAMINO)ETHYL THIOPHOSPHONATE (VX). The relationship between the in vivo CaE protection against OP compounds and their relative reactivities with CaE and acetylcholinesterase (AChE) was evaluated by measuring the in vitro bimolecular rate constants (ki) for inhibition of plasma CaE and brain AChE. Except for VX, ki values for CaE inhibition varied <10-fold while ki values for AChE inhibition varied 105-fold. Chemical warfare agents, Nerve agents, Organophosphoruscompound soman, VX, Carboxylesterase, Protection, Pretreatment.

  11. Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems.

    Science.gov (United States)

    Riaz, Ghazala; Tabinda, Amtul Bari; Iqbal, Shakir; Yasar, Abdullah; Abbas, Mateen; Khan, Abdul Muqeet; Mahfooz, Yusra; Baqar, Mujtaba

    2017-10-03

    Extensive use of Pesticides in agriculture and its surface runoff in river water is a major environmental concern. The present study evaluated the phytoremediation potential of Eichornia crassipes, Pistia strateotes and algae (Chaetomorpha sutoria, Sirogonium sticticum and Zygnema sp.) for organochlorine and pyrethroid pesticides. Water and plant samples were extracted by liquid phase and solid phase extraction respectively and analyzed by high-performance liquid chromatography. Eleven treatments (T1-T11) with and without plants were used for phytoremediation of organochlorine and pyrethroid pesticides. During the experiment, P. strateotes, E. crassipes and algae (C. sutoria, S. sticticum and Zygnema sp.) showed the highest removal efficiency with 62 (71% root, 29% shoot), 60 (67% root, 33% shoot), and 58% respectively for organochlorine and 76 (76% root, 24% shoot), 68 (69% root, 31% shoot), and 70% respectively for pyrethroids for the respective aquatic plants. Dissipation rate constant of treatments with plants (T2, T3, T5, T6, T8, and T9) was significantly higher (p < 0.05) as compared to that of treatments without plants (T10 and T11, control) for both organochlorine and pyrethroid. The bioconcentration factor of pyrethroid treatments (T3, T6, and T9) was significantly higher (p < 0.05) as compared to that of organochlorine treatments (T2, T5 and T8). The removal efficiency of E. crassipes, P. strateotes and algae (C. sutoria, S. sticticum and Zygnema sp.) for pyrethroids was significantly higher (p < 0.01) as compared to that of organochlorine.

  12. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview.

    Science.gov (United States)

    Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing

    2017-02-15

    Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparative Bio-Efficacy and Synergism of New Generation Polyfluorobenzyl and Conventional Pyrethroids Against Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Sarkar, Manas; Akulwad, Ambadas; Kshirsagar, Rajendra; Muthukrishnan, Siva

    2018-05-28

    Intensive exposure to insecticides has resulted in the evolution of insecticide resistance in the mosquitoes. We tested the bio-efficacy of two Culex quinquefasciatus Say (Diptera: Culicidae) laboratory strains differentially bio-responsive to pyrethroids to understand the comparative efficacy of different polyfluorobenzyle and conventional pyrethroid molecules and the role of piperonyl butoxide (PBO) in synergizing these molecules in increased tolerance of mosquitoes to these molecules. We have taken deltamethrin (α-cyano pyrethroid with phenoxybenzyl moiety); permethrin (phenoxybenzyl pyrethroid without an α-cyano group); transfluthrin, dimefluthrin, metofluthrin, and meperfluthrin (polyfluorinated benzyl compounds); and prallethrin (modified cyclopentadienone compound) for this study. We found higher bio-efficacy in dimefluthrin, metofluthrin, and meperfluthrin compared with transfluthrin against tested mosquito strains. We found that transfluthrin exhibited synergism with PBO, which supports the hypothesis that P450 enzymes could play a role in the detoxification process of transfluthrin, which was earlier not believed. However, other polyfluorobenzyl pyrethroids with a 4-(methoxymethyl) phenyl capping in the tetrafluorobenzyl ring (dimefluthrin, metofluthrin, and meperfluthrin) exhibit greater synergism with PBO compared with transfluthrin. Further study is required to understand the mechanism for higher synergistic ratios in polyfluorobenzyl pyrethroids with 4-(methoxymethyl) phenyl moiety and ascertain the possible involvement of novel mechanisms that may involve in developing resistance. This is the first report of comparative bio-efficacy of multiple polyfluorobenzyl pyrethroids and PBO synergism against mosquitoes.

  14. Physical conditions affecting pyrethroid toxicity in arthropods

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect

  15. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    Science.gov (United States)

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  16. Passive dosing of pyrethroid insecticides to Daphnia magna: Expressing excess toxicity by chemical activity

    DEFF Research Database (Denmark)

    Nørgaard Schmidt, Stine; Gan, Jay; Kretschmann, A. C.

    2015-01-01

    ) Effective chemical activities resulting in 50% immobilisation (Ea50) will be estimated from pyrethroid EC50 values via the correlation of sub-cooled liquid solubility (S L, [mmol/L], representing a=1) and octanol to water partitioning ratios (Kow), (3) The excess toxicity observed for pyrethroids...

  17. Dissipation and Migration of Pyrethroids in Auricularia polytricha Mont. from Cultivation to Postharvest Processing and Dietary Risk

    Directory of Open Access Journals (Sweden)

    Jin-Jing Xiao

    2018-03-01

    Full Text Available In order to ensure raw consumption safety the dissipation behavior, migration, postharvest processing, and dietary risk assessment of five pyrethroids in mushroom (Auricularia polytricha Mont. cultivated under Chinese greenhouse-field conditions. Half-lives (t1/2 of pyrethroids in fruiting body and substrate samples were 3.10–5.26 and 17.46–40.06 d, respectively. Fenpropathrin dissipated rapidly in fruiting bodies (t1/2 3.10 d; bifenthrin had the longest t1/2. At harvest, pyrethroid residues in A. polytricha (except fenpropathrin were above the respective maximum residue limits (MRLs. Some migration of lambda-cyhalothrin was observed in the substrate-fruit body system. In postharvest-processing, sun-drying and soaking reduced pyrethroid residues by 25–83%. We therefore recommend that consumers soak these mushrooms in 0.5% NaHCO3 at 50 °C for 90 min. Pyrethroids exhibit a particularly low PF value of 0.08–0.13%, resulting in a negligible exposure risk upon mushroom consumption. This study provides guidance for the safe application of pyrethroids to edible fungi, and for the establishment of MRLs in mushrooms to reduce pesticide exposure in humans.

  18. EVALUATION OF SUGARCANE BAGASSE ACID HYDROLYZATE TREATMENTS FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    P.V. GURGEL

    1998-09-01

    Full Text Available Acid sugarcane bagasse hydrolyzate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolyzate was treated with bases containing mono-, di- or tri-valent cations and H2SO4, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolyzate recovery (in volume is greatly affected by the utilized base. Treatment using Al(OH3 and NaOH showed the best hydrolyzate recovery (87.5%, while the others presented a recovery of about 45% of the original hydrolyzate volume. Considering the whole process, best results were achieved by treatment using Al(OH3 and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolyzate.

  19. Partially hydrolyzed guar gum as a potential prebiotic source.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Patel, Ami; Shah, Nihir

    2018-06-01

    Guar galactomannan was enzymatically hydrolyzed to obtain partially hydrolyzed guar gum which can be utilized as prebiotic source. In present study, growth of probiotics (Lactic Acid Bacteria strains) were studied with glucose, partially hydrolyzed guar gum and native guar gum. All the six strains were galactose &/or mannose positive using the API CHl 50 test. Almost all these strains showed an ability to assimilate partially hydrolyzed guar gum with respect to increase in optical density and viable cell count with concomitant decrease in the pH of the growth medium. Streptococcus thermophilus MD2 exhibited higher growth (7.78 log cfu/ml) while P. parvulus AI1 showed comparatively less growth (7.24 log cfu/ml) as compared to used lactobacillus and Weissella strains. Outcomes of the current study suggest that partially hydrolyzed guar can be considered as potential prebiotic compound that may further stimulate the growth of potentially probiotic bacteria or native gut microflora. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Genetic Survey of Pyrethroid Insecticide Resistance in Aphids in New Brunswick, Canada, with Particular Emphasis on Aphids as Vectors of Potato virus Y.

    Science.gov (United States)

    MacKenzie, Tyler D B; Arju, Irin; Poirier, René; Singh, Mathuresh

    2018-05-28

    Aphids are viral vectors in potatoes, most importantly of Potato virus Y (PVY), and insecticides are frequently used to reduce viral spread during the crop season. Aphids collected from the potato belt of New Brunswick, Canada, in 2015 and 2016 were surveyed for known and novel mutations in the Na-channel (para) gene, coding for the target of synthetic pyrethroid insecticides. Specific genetic mutations known to confer resistance (kdr and skdr) were found in great abundance in Myzus persicae (Sulzer) (Hemiptera: Aphididae), which rose from 76% in 2015 to 96% in 2016. Aphids other than M. persicae showed lower frequency of resistance. In 2015, 3% of individuals contained the resistance mutation skdr, rising to 13% in 2016 (of 45 species). Several novel resistance mutations or mutations not before reported in aphids were identified in this gene target. One of these mutations, I936V, is known to confer pyrethroid resistance in another unrelated insect, and three others occur immediately adjacent and prompt similar chemical shifts in the primary protein structure, to previously characterized mutations associated with pyrethroid resistance. Most novel mutations were found in species other than M. persicae or others currently tracked individually by the provincial aphid monitoring program, which were determined by cytochrome C oxidase I (cox1) sequencing. Through our cox1 DNA barcoding survey, at least 45 species of aphids were discovered in NB potato fields in 2015 and 2016, many of which are known carriers of PVY.

  1. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000. Keywords: Soda Lake, Haloterrigena turkmenica, Carboxylesterase, Carboxylase, Xylose isomerase, Whole genome sequencing

  2. Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line.

    Science.gov (United States)

    Xiang, Dandan; Chu, Tianyi; Li, Meng; Wang, Qiangwei; Zhu, Guonian

    2018-06-01

    Mounting evidence suggests there is a link between exposure to synthetic pyrethroids (SPs) and the development of obesity. The information presented in this study suggests that cis-bifenthrin (cis-BF) could activate pregnane X receptor (PXR) mediated pathway and lead to the lipid accumulation of human hepatoma (HepG2) cells. Cells were incubated in the control or different concentrations of cis-BF for 24 h. The 1 × 10 -7  M and 1 × 10 -6  M cis-BF exposure were found to induce cellular triglyceride (TG) accumulation significantly. This phenomenon was further supported by Oil Red O Staining assay. The cis-BF exposure caused upregulation of PXR gene and protein. Correspondingly, we also observed the increased expression of downstream genes involved in lipid formation and the inhibition of the expression of β-oxidation. As chiral pesticide,cis-BF was further conformed to behave enantioselectivity in the lipid metabolism. Rather than 1R-cis-BF, HepG2 cells incubated with 1S-cis-BF exhibited a significant TG accumulation. 1S-cis-BF also showed a higher binding level, of which the KD value was 9.184 × 10 -8  M in the SPR assay, compared with 1R-cis-BF (3.463 × 10 -6  M). In addition, the molecular docking simulation analyses correlated well with the KD values measured by the SPR, indicating that 1S-cis-BF showed a better binding affinity with PXR. The results in this study also elucidates the differences between the two enantiomers of pyrethroid-induced toxicity in lipid metabolism of non-target organism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins.

    Science.gov (United States)

    Tahara, Ko; Nishiguchi, Mitsuru; Frolov, Andrej; Mittasch, Juliane; Milkowski, Carsten

    2018-08-01

    In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP-glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and -26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Factors Affecting Transfer of Pyrethroid Residues from Herbal Teas to Infusion and Influence of Physicochemical Properties of Pesticides

    Directory of Open Access Journals (Sweden)

    Jin-Jing Xiao

    2017-09-01

    Full Text Available The transfer of pesticide residues from herbal teas to their infusion is a subject of particular interest. In this study, a multi-residue analytical method for the determination of pyrethroids (fenpropathrin, beta-cypermethrin, lambda-cyhalothrin, and fenvalerate in honeysuckle, chrysanthemum, wolfberry, and licorice and their infusion samples was validated. The transfer of pyrethroid residues from tea to infusion was investigated at different water temperatures, tea/water ratios, and infusion intervals/times. The results show that low amounts (0–6.70% of pyrethroids were transferred under the different tea brewing conditions examined, indicating that the infusion process reduced the pyrethroid content in the extracted liquid by over 90%. Similar results were obtained for the different tea varieties, and pesticides with high water solubility and low octanol–water partition coefficients (log Kow exhibited high transfer rates. Moreover, the estimated values of the exposure risk to the pyrethroids were in the range of 0.0022–0.33, indicating that the daily intake of the four pyrethroid residues from herbal tea can be regarded as safe. The present results can support the identification of suitable tea brewing conditions for significantly reducing the pesticide residue levels in the infusion.

  5. Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil.

    Science.gov (United States)

    Martins, Ademir Jesus; Lins, Rachel Mazzei Moura de Andrade; Linss, Jutta Gerlinde Birgitt; Peixoto, Alexandre Afranio; Valle, Denise

    2009-07-01

    The nature of pyrethroid resistance in Aedes aegypti Brazilian populations was investigated. Quantification of enzymes related to metabolic resistance in two distinct populations, located in the Northeast and Southeast regions, revealed increases in Glutathione-S-transferase (GST) and Esterase levels. Additionally, polymorphism was found in the IIS6 region of Ae. aegypti voltage-gated sodium channel (AaNa(V)), the pyrethroid target site. Sequences were classified in two haplotype groups, A and B, according to the size of the intron in that region. Rockefeller, a susceptible control lineage, contains only B sequences. In field populations, some A sequences present a substitution in the 1011 site (Ile/Met). When resistant and susceptible individuals were compared, the frequency of both A (with the Met mutation) and B sequences were slightly increased in resistant specimens. The involvement of the AaNa(V) polymorphism in pyrethroid resistance and the metabolic mechanisms that lead to potential cross-resistance between organophosphate and pyrethroids are discussed.

  6. Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women

    International Nuclear Information System (INIS)

    Zhang, Jie; Hisada, Aya; Yoshinaga, Jun; Shiraishi, Hiroaki; Shimodaira, Kazuhisa; Okai, Takashi; Noda, Yumiko; Shirakawa, Miyako; Kato, Nobumasa

    2013-01-01

    Possible association between environmental exposure to pyrethroid insecticides and serum thyroid-related measures was explored in 231 pregnant women of 10–12 gestational weeks recruited at a university hospital in Tokyo during 2009–2011. Serum levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and thyroid biding globulin (TBG) and urinary pyrethroid insecticide metabolite (3-phenoxybenzoic acid, 3-PBA) were measured. Obstetrical information was obtained from medical records and dietary and lifestyle information was collected by self-administered questionnaire. Geometric mean concentration of creatinine-adjusted urinary 3-PBA was 0.363 (geometric standard deviation: 3.06) μg/g cre, which was consistent with the previously reported levels for non-exposed Japanese adult females. The range of serum fT4, TSH and TBG level was 0.83–3.41 ng/dL, 0.01–27.4 μIU/mL and 16.4–54.4 μg/mL, respectively. Multiple regression analysis was carried out by using either one of serum levels of thyroid-related measures as a dependent variable and urinary 3-PBA as well as other potential covariates (age, pre-pregnancy BMI, parity, urinary iodine, smoking and drinking status) as independent variables: 3-PBA was not found as a significant predictor of serum level of thyroid-related measures. Lack of association may be due to lower pyrethroid insecticide exposure level of the present subjects. Taking the ability of pyrethroid insecticides and their metabolite to bind to nuclear thyroid hormone (TH) receptor, as well as their ability of placental transfer, into consideration, it is warranted to investigate if pyrethroid pesticides do not have any effect on TH actions in fetus brain even though maternal circulating TH level is not affected. -- Highlights: • Pyrethroid exposure and thyroid hormone status was examined in pregnant women. • Urinary 3-phenoxybenzoic acid was used as a biomarker of exposure. • Iodine nutrition, age and other covariates were included

  7. Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Hisada, Aya [Department of Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Yoshinaga, Jun, E-mail: junyosh@k.u-tokyo.ac.jp [Department of Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Shiraishi, Hiroaki [National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8563 (Japan); Shimodaira, Kazuhisa; Okai, Takashi [Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Noda, Yumiko; Shirakawa, Miyako; Kato, Nobumasa [Department of Psychiatry and Neurology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2013-11-15

    Possible association between environmental exposure to pyrethroid insecticides and serum thyroid-related measures was explored in 231 pregnant women of 10–12 gestational weeks recruited at a university hospital in Tokyo during 2009–2011. Serum levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and thyroid biding globulin (TBG) and urinary pyrethroid insecticide metabolite (3-phenoxybenzoic acid, 3-PBA) were measured. Obstetrical information was obtained from medical records and dietary and lifestyle information was collected by self-administered questionnaire. Geometric mean concentration of creatinine-adjusted urinary 3-PBA was 0.363 (geometric standard deviation: 3.06) μg/g cre, which was consistent with the previously reported levels for non-exposed Japanese adult females. The range of serum fT4, TSH and TBG level was 0.83–3.41 ng/dL, 0.01–27.4 μIU/mL and 16.4–54.4 μg/mL, respectively. Multiple regression analysis was carried out by using either one of serum levels of thyroid-related measures as a dependent variable and urinary 3-PBA as well as other potential covariates (age, pre-pregnancy BMI, parity, urinary iodine, smoking and drinking status) as independent variables: 3-PBA was not found as a significant predictor of serum level of thyroid-related measures. Lack of association may be due to lower pyrethroid insecticide exposure level of the present subjects. Taking the ability of pyrethroid insecticides and their metabolite to bind to nuclear thyroid hormone (TH) receptor, as well as their ability of placental transfer, into consideration, it is warranted to investigate if pyrethroid pesticides do not have any effect on TH actions in fetus brain even though maternal circulating TH level is not affected. -- Highlights: • Pyrethroid exposure and thyroid hormone status was examined in pregnant women. • Urinary 3-phenoxybenzoic acid was used as a biomarker of exposure. • Iodine nutrition, age and other covariates were included

  8. Additivity of Pyrethroid Actions on Sodium Influx in Cortical Neurons in Cerebrocortical Neurons in Primary Culture

    Science.gov (United States)

    BACKGROUND: Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Although previous work has tested the additivity of pyrethroids in vivo, this has not been assessed directly at the primary molecular ...

  9. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2018-05-01

    Full Text Available D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100% D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  10. Toxic heritage: Maternal transfer of pyrethroid insecticides and sunscreen agents in dolphins from Brazil

    International Nuclear Information System (INIS)

    Alonso, Mariana B.; Feo, Maria Luisa; Corcellas, Cayo; Gago-Ferrero, Pablo; Bertozzi, Carolina P.; Marigo, Juliana; Flach, Leonardo; Meirelles, Ana Carolina O.; Carvalho, Vitor L.; Azevedo, Alexandre F.; Torres, João Paulo M.

    2015-01-01

    Pyrethroids (PYR) and UV filters (UVF) were investigated in tissues of paired mother-fetus dolphins from Brazilian coast in order to investigate the possibility of maternal transfer of these emerging contaminants. Comparison of PYR and UVF concentrations in maternal and fetal blubber revealed Franciscana transferred efficiently both contaminants to fetuses (F/M > 1) and Guiana dolphin transferred efficiently PYR to fetuses (F/M > 1) different than UVF (F/M < 1). PYR and UVF concentrations in fetuses were the highest-ever reported in biota (up to 6640 and 11,530 ng/g lw, respectively). Muscle was the organ with the highest PYR and UVF concentrations (p < 0.001), suggesting that these two classes of emerging contaminants may have more affinity for proteins than for lipids. The high PYR and UVF concentrations found in fetuses demonstrate these compounds are efficiently transferred through placenta. This study is the first to report maternal transfer of pyrethroids and UV filters in marine mammals. - Highlights: • First time maternal transfer of pyrethroids and UV filters in mammals was reported. • Pollutants in fetus tissues characterize their transplacental transfer. • Fetuses had pyrethroid and UV filter levels 10 times higher than their mothers. • Muscle was the organ presented with the highest concentrations of PYR and UVF. - Pyrethroids and UV filter concentrations in fetus and mother dolphin tissues demonstrated placenta and milk transfer in marine mammals.

  11. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Moore, M.T. [USDA Agricultural Research Service National Sedimentation Laboratory, Water Quality and Ecology Research Unit, PO Box 1157, 598 McElroy Drive, Oxford, MS 38655 (United States)], E-mail: matt.moore@ars.usda.gov; Cooper, C.M.; Smith, S.; Cullum, R.F.; Knight, S.S.; Locke, M.A.; Bennett, E.R. [USDA Agricultural Research Service National Sedimentation Laboratory, Water Quality and Ecology Research Unit, PO Box 1157, 598 McElroy Drive, Oxford, MS 38655 (United States)

    2009-01-15

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. - A wetland length of 215 m x 30 m mitigated pyrethroid runoff from a 14 ha field.

  12. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland

    International Nuclear Information System (INIS)

    Moore, M.T.; Cooper, C.M.; Smith, S.; Cullum, R.F.; Knight, S.S.; Locke, M.A.; Bennett, E.R.

    2009-01-01

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. - A wetland length of 215 m x 30 m mitigated pyrethroid runoff from a 14 ha field

  13. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants.

    Science.gov (United States)

    Ko, Moonkyung; Cho, Jung Hyun; Seo, Hyo-Hyoun; Lee, Hyun-Hwa; Kang, Ha-Young; Nguyen, Thai Son; Soh, Hyun Cheol; Kim, Young Soon; Kim, Jeong-Il

    2016-08-01

    Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling

  14. Alternative treatments for indoor residual spraying for malaria control in a village with pyrethroid- and DDT-resistant vectors in The Gambia

    NARCIS (Netherlands)

    Tangena, J.A.A.; Adiamoh, M.; Alessandro, D' U.; Jarju, L.; Jawara, M.; Jeffries, D.; Malik, N.; Nwakanma, D.; Kaur, H.; Takken, W.; Lindsay, S.W.; Pinder, M.

    2013-01-01

    Background: Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently

  15. Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects.

    Science.gov (United States)

    Nkya, Theresia Estomih; Akhouayri, Idir; Kisinza, William; David, Jean-Philippe

    2013-04-01

    By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations.

    Science.gov (United States)

    Barbee, Gary C; Stout, Michael J

    2009-11-01

    Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non-target crayfish associated with rice-crayfish crop rotations. One solution to the near-exclusive reliance on pyrethroids in a rice-crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice-crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda-cyhalothrin and etofenprox. Neonicotinoid insecticides are at least 2-3 orders of magnitude less acutely toxic (96 h LC(50)) than pyrethroids to juvenile Procambarid crayfish: lambda-cyhalothrin (0.16 microg AI L(-1)) = etofenprox (0.29 microg AI L(-1)) > clothianidin (59 microg AI L(-1)) > thiamethoxam (967 microg AI L(-1)) > dinotefuran (2032 microg AI L(-1)). Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice-crayfish crop rotations. Further field-level neonicotinoid acute and chronic toxicity testing with crayfish is needed. (c) 2009 Society of Chemical Industry.

  17. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Cedergreen, Nina; Kronvang, Brian

    2016-01-01

    Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epi......Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin....... MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration–response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced...

  18. Genetic diversity, acaricide resistance status and evolutionary potential of a Rhipicephalus microplus population from a disease-controlled cattle farming area in South Africa.

    Science.gov (United States)

    Robbertse, Luïse; Baron, Samantha; van der Merwe, Nicolaas A; Madder, Maxime; Stoltsz, Wilhelm H; Maritz-Olivier, Christine

    2016-06-01

    The Southern cattle tick, Rhipicephalus microplus is a hematophagous ectoparasite of great veterinary and economic importance. Along with its adaptability, reproductive success and vectoring capacity, R. microplus has been reported to develop resistance to the major chemical classes of acaricides currently in use. In South Africa, the Mnisi community in the Mpumalanga region offers a unique opportunity to study the adaptive potential of R. microplus. The aims of this study therefore included characterising acaricide resistance and determining the level and pattern of genetic diversity for R. microplus in this region from one primary population consisting of 12 communal dip-stations. The level of acaricide resistance was evaluated using single nucleotide polymorphisms (SNPs) in genes that contribute to acaricide insensitivity. Additionally, the ribosomal internal transcribed spacer 2 (ITS2) gene fragments of collected individuals were sequenced and a haplotype network was constructed. A high prevalence of alleles attributed to resistance against formamidines (amitraz) in the octopamine/tyramine (OCT/Tyr) receptor (frequency of 0.55) and pyrethroids in the carboxylesterase (frequency of 0.81) genes were observed. Overall, the sampled tick population was homozygous resistant to pyrethroid-based acaricides in the voltage-gated sodium channel (VGS) gene. A total of 11 haplotypes were identified in the Mnisi R. microplus population from ITS2 analysis with no clear population structure. From these allele frequencies it appears that formamidine resistance in the Mnisi community is on the rise, as the R. microplus populations is acquiring or generating these resistance alleles. Apart from rearing multi-resistant ticks to commonly used acaricides in this community these ticks may pose future problems to its surrounding areas. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Pyrethroid insecticides in wild bird eggs from a World Heritage Listed Park: A case study in Doñana National Park (Spain).

    Science.gov (United States)

    Corcellas, Cayo; Andreu, Ana; Máñez, Manuel; Sergio, Fabrizio; Hiraldo, Fernando; Eljarrat, Ethel; Barceló, Damià

    2017-09-01

    Recent studies demonstrated that the common pyrethroid insecticides are present in aquatic biota tissues. In this study, 123 samples of unhatched eggs of 16 wild bird species collected from 2010 to 2012 in Doñana National and Natural Park were analysed to determine 13 pyrethroids. This study represents the first time that pyrethroids are detected in tissues of terrestrial biota, 93% of these samples being positive to those pollutants. Levels of total pyrethroids ranged from not detected to 324 ng g -1 lw. The samples were characterized by stable isotope analysis. Species with diets based on anthropogenic food showed higher levels of pyrethroids and lower values of δ 15 N. Finally, we characterized the isomers of pyrethroids and discerned some isomeric- and enantiomeric-specific accumulations. In particular, tetramethrin and cyhalothrin showed an enantiomeric-selective accumulation of one enantiomer, highlighting the need to assess toxicological effects of each enantiomer separately to be able to make a correct risk assessment of pyrethroids in birds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as lecithins...

  1. Demonstration of carboxylesterase in cytology samples of human nasal respiratory epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.A.; Nikula, K.J.; Avila, K. [and others

    1995-12-01

    The epithelial lining of the nasal airways is a target for responses induced by a variety of toxicant exposures. The high metabolic capacity of this tissue has been suggested to play a role in both protection of the airways through detoxication of certain toxicants, as well as in activation of other compounds to more toxic metabolites. Specifically, nasal carboxylesterase (CE) has been shown to mediate the toxicity of inhaled esters and acrylates by converting them to more toxic acid and alcohol metabolites which can be cytotoxic and/or carcinogenic to the nasal mucosa. Due to difficulties in extrapolating rodent models to human, new paradigms using human cells and tissues are essential to understanding and evaluating the metabolic processes in human nasal epithelium.

  2. Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff.

    Science.gov (United States)

    Bennett, Erin R; Moore, Matthew T; Cooper, Charles M; Smith, Sammie; Shields, F Douglas; Drouillard, Ken G; Schulz, Ralf

    2005-09-01

    Drainage ditches are indispensable components of the agricultural production landscape. A benefit of these ditches is contaminant mitigation of agricultural storm runoff. This study determined bifenthrin and lambda-cyhalothrin (two pyrethroid insecticides) partitioning and retention in ditch water, sediment, and plant material as well as estimated necessary ditch length required for effective mitigation. A controlled-release runoff simulation was conducted on a 650-m vegetated drainage ditch in the Mississippi Delta, USA. Bifenthrin and lambda-cyhalothrin were released into the ditch in a water-sediment slurry. Samples of water, sediment, and plants were collected and analyzed for pyrethroid concentrations. Three hours following runoff initiation, inlet bifenthrin and lambda-cyhalothrin water concentrations ranged from 666 and 374 microg/L, respectively, to 7.24 and 5.23 microg/L at 200 m downstream. No chemical residues were detected at the 400-m sampling site. A similar trend was observed throughout the first 7 d of the study where water concentrations were elevated at the front end of the ditch (0-25 m) and greatly reduced by the 400-m sampling site. Regression formulas predicted that bifenthrin and lambda-cyhalothrin concentrations in ditch water were reduced to 0.1% of the initial value within 280 m. Mass balance calculations determined that ditch plants were the major sink and/or sorption site responsible for the rapid aqueous pyrethroid dissipation. By incorporating vegetated drainage ditches into a watershed management program, agriculture can continue to decrease potential non-point source threats to downstream aquatic receiving systems. Overall results of this study illustrate that aquatic macrophytes play an important role in the retention and distribution of pyrethroids in vegetated agricultural drainage ditches.

  3. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L).

    Science.gov (United States)

    Wei, Y; Appel, A G; Moar, W J; Liu, N

    2001-11-01

    A German cockroach (Blatella germanica (L)) strain, Apyr-R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr-R (97- and 480-fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr-R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43- and 48-fold increases in toxicity of permethrin in ACY and Apyr-R, respectively. Similarly, injection increased the toxicity of deltamethrin 27-fold in ACY and 28-fold in Apyr-R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr-R. Apyr-R showed cross-resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase-mediated detoxication is not the mechanism responsible for cross-resistance. Apyr-R showed no cross-resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi-resistance mechanisms in Apyr-R did not confer significant cross-resistance to this compound. Thus, we propose

  4. Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination.

    Science.gov (United States)

    Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K

    2016-10-01

    Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat

    OpenAIRE

    Scollon, Edward J.; Starr, James M.; Crofton, Kevin M.; Wolansky, Marcelo J.; DeVito, Michael J.; Hughes, Michael F.

    2011-01-01

    The potential for human exposure to pyrethroid pesticides has prompted pharmacodynamic and pharmacokinetic research to better characterize risk. This work tested the hypothesis that blood and brain concentrations of the pyrethroid bifenthrin are predictive of neurotoxic effects. Adult male Long Evans rats received a single oral dose of bifenthrin dissolved in corn oil. Using figure-eight mazes, motor activity was measured for 1 h at 4- and 7-h following exposure to bifenthrin (0–16 mg/kg or 0...

  6. Comparative sensitivity of field and laboratory populations of Hyalella azteca to the pyrethroid insecticides bifenthrin and cypermethrin.

    Science.gov (United States)

    Clark, Stephen L; Ogle, R Scott; Gantner, Andrew; Hall, Lenwood W; Mitchell, Gary; Giddings, Jeffrey; McCoole, Matthew; Dobbs, Michael; Henry, Kevin; Valenti, Ted

    2015-10-01

    Hyalella azteca are epibenthic invertebrates that are widely used for toxicity studies. They are reported to be more sensitive to pyrethroid insecticides than most other test species, which has prompted considerable use of this species in toxicity testing of ambient surface waters where the presence of pyrethroids is suspected. However, resident H. azteca have been found in some ambient water bodies reported to contain surface water and/or sediment pyrethroid concentrations that are toxic to laboratory reared H. azteca. This observation suggests differences in the sensitivities of laboratory reared and field populations of H. azteca to pyrethroids. The goal of the present study was to determine the sensitivities of laboratory reared and field populations of H. azteca to the pyrethroids bifenthrin and cypermethrin. Specimens of H. azteca were collected from resident populations at field sites that are subject to varied land-use activities as well as from laboratory populations. These organisms were exposed to bifenthrin- or cypermethrin-spiked water in 96-h water-only toxicity tests. The resulting data demonstrated that: 1) field-collected populations in urban and agricultural settings can be >2 orders of magnitude less sensitive to the pyrethroids than laboratory reared organisms; 2) field-collected organisms varied in their sensitivity (possibly based on land-use activities), with organisms collected from undeveloped sites exhibiting sensitivities similar to laboratory reared organisms; and 3) the sensitivity of field-collected "tolerant" organisms increased in subsequent generations reared under laboratory conditions. Potential mechanisms for these differences are discussed. © 2015 SETAC.

  7. Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Esteve-Turrillas, Francesc A. [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain); Pastor, Agustin [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain)]. E-mail: agustin.pastor@uv.es; Guardia, Miguel de la [Analytical Chemistry Department, University of Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot, Valencia (Spain)

    2006-02-23

    A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass-mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 deg. C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile-hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C{sub 18}. Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, {lambda}-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 {+-} 8 to 103 {+-} 7% for microwave-assisted extraction, versus 54 {+-} 4 to 104 {+-} 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure. High concentration levels of pyrethroid compounds, from 0.14 to 7.3 {mu}g/SPMD, were found in indoor air after 2 h of a standard application.

  8. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples.

    Science.gov (United States)

    Feo, M L; Eljarrat, E; Barceló, D

    2010-04-09

    A simple, efficient and environmentally friendly analytical methodology is proposed for extracting and preconcentrating pyrethroids from water samples prior to gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS) analysis. Fourteen pyrethroids were selected for this work: bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, fenpropathrin, tau-fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin and tralomethrin. The method is based on ultrasound-assisted emulsification-extraction (UAEE) of a water-immiscible solvent in an aqueous medium. Chloroform was used as extraction solvent in the UAEE technique. Target analytes were quantitatively extracted achieving an enrichment factor of 200 when 20 mL aliquot of pure water spiked with pyrethroid standards was extracted. The method was also evaluated with tap water and river water samples. Method detection limits (MDLs) ranged from 0.03 to 35.8 ng L(-1) with RSDs values or =0.998. Recovery values were in the range of 45-106%, showing satisfactory robustness of the method for analyzing pyrethroids in water samples. The proposed methodology was applied for the analysis of river water samples. Cypermethrin was detected at concentration levels ranging from 4.94 to 30.5 ng L(-1). Copyright 2010 Elsevier B.V. All rights reserved.

  9. Olyset Duo® (a pyriproxyfen and permethrin mixture net: an experimental hut trial against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus in Southern Benin.

    Directory of Open Access Journals (Sweden)

    Corine Ngufor

    Full Text Available Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF, an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen.The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone and a LN with pyriproxyfen alone (PPF LN. Laboratory tunnel tests were performed to substantiate the findings in the experimental huts.Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01. Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001. The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets.Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and management of pyrethroid resistant vectors by

  10. Wood hydrolyzate treatments for improved fermentation of wood sugars to 2,3-butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, F.R.; McCaskey, T.A.

    1989-01-01

    Acid-hydrolyzed hardwood contains compounds inhibitory to micro-organisms that convert wood sugars to fermentation products such as fuels and chemicals. Several methods of treating acid-hydrolyzed hardwood (hydrolyzate) to reduce the levels of potential microbial inhibitors (acetate, furfural, sulfate, and phenolics) were evaluated. The methods evaluated were precipitation with calcium hydroxide, extraction with organic solvents, treatment with ion-exchange resins, adsorption resins, and activated charcoal. Treatment of the hydrolyzate with an anion exchange resin (Amberlite IRA-400) was the most effective method for removing potential inhibitors. Non-treatment hydrolyzate adjusted to pH 6 inhibited growth of a 2,3-butanediol-producing culture of Klebsiella pneumoniae. However, hydrolyzate treated with Amberlite IRA-400 was not inhibitory and resulted in yields of 2,3-butanediol that were greater than 90% of theoretical. (author).

  11. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays.

    Science.gov (United States)

    Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J

    2017-05-01

    Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.

  12. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Directory of Open Access Journals (Sweden)

    Michael B Tropak

    2016-01-01

    Full Text Available Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA. Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP, and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM, CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.

  13. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Science.gov (United States)

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  14. Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring

    International Nuclear Information System (INIS)

    Esteve-Turrillas, Francesc A.; Pastor, Agustin; Guardia, Miguel de la

    2006-01-01

    A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass-mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 deg. C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile-hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C 18 . Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, λ-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 ± 8 to 103 ± 7% for microwave-assisted extraction, versus 54 ± 4 to 104 ± 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure. High concentration levels of pyrethroid compounds, from 0.14 to 7.3 μg/SPMD, were found in indoor air after 2 h of a standard application

  15. Comparative metabolism of the pyrethroids bifenthrin and deltamethrin in the bulb mite Rhizoglyphus robini

    International Nuclear Information System (INIS)

    Ruzo, L.O.; Cohen, E.; Capua, S.

    1988-01-01

    The fate of 14 C-radiolabeled bifenthrin and deltamethrin was studied in the mite, Rhizoglyphus robini. Administered either by ingestion or by contact, both pyrethroids were efficiently metabolized, but deltamethrin was degraded to a much greater extent. The identified metabolites arise from a combination of ester cleavage, oxidation, and conjugation reactions. With 14 C-acid- and 14 C-alcohol-labeled bifenthrin, the free metabolites detected were the 4'-hydroxy derivative of the ester, the primary ester cleavage products, the acid, and its 4'-hydroxy derivative from the alcohol moiety, as well as several unidentified metabolites. Using 14 C-alcohol-labeled deltamethrin, 3-phenoxybenzoic acid and its 4'-hydroxylated product and several unknown metabolites were detected. Conjugates comprised the bulk of total pyrethroid metabolites. In addition to ester cleavage products, the 4'-hydroxylated bifenthrin was also identified. For the first time in invertebrates, a conjugated pyrethroid ester was observed

  16. Widespread Pyrethroid and DDT Resistance in the Major Malaria Vector Anopheles funestus in East Africa Is Driven by Metabolic Resistance Mechanisms

    Science.gov (United States)

    Mulamba, Charles; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Barnes, Kayla G.; Mukwaya, Louis G.; Birungi, Josephine; Wondji, Charles S.

    2014-01-01

    Background Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. Methodology/Principal Findings Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. Conclusion The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management. PMID:25333491

  17. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  18. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta).

    Science.gov (United States)

    Haddi, Khalid; Berger, Madeleine; Bielza, Pablo; Cifuentes, Dina; Field, Linda M; Gorman, Kevin; Rapisarda, Carmelo; Williamson, Martin S; Bass, Chris

    2012-07-01

    The tomato leaf miner, Tuta absoluta (Lepidoptera) is a significant pest of tomatoes that has undergone a rapid expansion in its range during the past six years and is now present across Europe, North Africa and parts of Asia. One of the main means of controlling this pest is through the use of chemical insecticides. In the current study insecticide bioassays were used to determine the susceptibility of five T. absoluta strains established from field collections from Europe and Brazil to pyrethroids. High levels of resistance to λ cyhalothrin and tau fluvalinate were observed in all five strains tested. To investigate whether pyrethroid resistance was mediated by mutation of the para-type sodium channel in T. absoluta the IIS4-IIS6 region of the para gene, which contains many of the mutation sites previously shown to confer knock down (kdr)-type resistance to pyrethroids across a range of different arthropod species, was cloned and sequenced. This revealed that three kdr/super-kdr-type mutations (M918T, T929I and L1014F), were present at high frequencies within all five resistant strains at known resistance 'hot-spots'. This is the first description of these mutations together in any insect population. High-throughput DNA-based diagnostic assays were developed and used to assess the prevalence of these mutations in 27 field strains from 12 countries. Overall mutant allele frequencies were high (L1014F 0.98, M918T 0.35, T929I 0.60) and remarkably no individual was observed that did not carry kdr in combination with either M918T or T929I. The presence of these mutations at high frequency in T. absoluta populations across much of its range suggests pyrethroids are likely to be ineffective for control and supports the idea that the rapid expansion of this species over the last six years may be in part mediated by the resistance of this pest to chemical insecticides. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    International Nuclear Information System (INIS)

    Hughes, Michael F.; Edwards, Brenda C.

    2010-01-01

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using

  20. An amino acid substitution (L925V associated with resistance to pyrethroids in Varroa destructor.

    Directory of Open Access Journals (Sweden)

    Joel González-Cabrera

    Full Text Available The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed.

  1. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  2. Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bouwman, H. [School for Environmental Sciences and Development, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom 2520 (South Africa)]. E-mail: drkhb@puk.ac.za; Sereda, B. [Agricultural Research Council, Plant Protection Research Institute, Private Bag X134 Queenswood, Pretoria 0121 (South Africa); Meinhardt, H.M. [South African Bureau of Standards, Testing and Conformity Services (Pty) Ltd, Private Bag X191, Pretoria 0001 (South Africa)

    2006-12-15

    DDT and pyrethroids were determined in 152 breast-milk samples from three towns in KwaZulu-Natal, South Africa, one of which had no need for DDT for malaria control. All compounds were found present in breast milk. Primiparae from one town had the highest mean {sigma}DDT whole milk levels (238.23 {mu}g/l), and multiparae from the same town had the highest means for permethrin (14.51 {mu}g/l), cyfluthrin (41.74 {mu}g/l), cypermethrin (4.24 {mu}g/l), deltamethrin (8.39 {mu}g/l), and {sigma}pyrethroid (31.5 {mu}g/l), most likely derived from agriculture. The ADI for DDT was only exceeded by infants from one town, but the ADI for pyrethroids was not exceeded. Since the ADI for DDT was recently reduced from 20 to 10 {mu}g/kg/bw, we suggest that this aspect be treated with concern. We therefore raise a concern based on toxicant interactions, due to the presence of four different pyrethroids and DDT. Breastfeeding however, remains safe under prevailing conditions. - The simultaneous presence of DDT and pyrethroid residues in breast milk raises the question of infant exposure and safety.

  3. Synthesis and Insecticidal Activity of an Oxabicyclolactone and Novel Pyrethroids

    Directory of Open Access Journals (Sweden)

    Elson S. de Alvarenga

    2012-11-01

    Full Text Available Deltamethrin, a member of the pyrethroids, one of the safest classes of pesticides, is among some of the most popular and widely used insecticides in the World. Our objective was to synthesize an oxabicyclolactone 6 and five novel pyrethroids 8–12 from readily available furfural and D-mannitol, respectively, and evaluate their biological activity against four insect species of economic importance namely A. obtectus, S. zeamais, A. monuste orseis, and P. americana. A concise and novel synthesis of 6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one (6 from furfural is described. Photochemical addition of isopropyl alcohol to furan-2(5H-one afforded 4-(1'-hydroxy-1'-methylethyltetrahydro-furan-2-one (3. The alcohol 3 was directly converted into 4-(1'-bromo-1'-methylethyl-tetrahydrofuran-2-one (5 in 50% yield by reaction with PBr3 and SiO2. The final step was performed by cyclization of 5 with potassium tert-butoxide in 40% yield. The novel pyrethroids 8–12 were prepared from methyl (1S,3S-3-formyl-2,2-dimethylcyclopropane-1-carboxylate (7a by reaction with five different aromatic phosphorous ylides. Compounds 6–12 presented high insecticidal activity, with 6 and 11 being the most active. Compound 6 killed 90% of S. zeamais and 100% of all the other insects evaluated. Compound 11 killed 100% of all insects tested.

  4. Comparative metabolism of the pyrethroids bifenthrin and deltamethrin in the bulb mite Rhizoglyphus robini

    Energy Technology Data Exchange (ETDEWEB)

    Ruzo, L.O.; Cohen, E.; Capua, S. (The Hebrew Univ. of Jerusalem (Israel))

    The fate of {sup 14}C-radiolabeled bifenthrin and deltamethrin was studied in the mite, Rhizoglyphus robini. Administered either by ingestion or by contact, both pyrethroids were efficiently metabolized, but deltamethrin was degraded to a much greater extent. The identified metabolites arise from a combination of ester cleavage, oxidation, and conjugation reactions. With {sup 14}C-acid- and {sup 14}C-alcohol-labeled bifenthrin, the free metabolites detected were the 4{prime}-hydroxy derivative of the ester, the primary ester cleavage products, the acid, and its 4{prime}-hydroxy derivative from the alcohol moiety, as well as several unidentified metabolites. Using {sup 14}C-alcohol-labeled deltamethrin, 3-phenoxybenzoic acid and its 4{prime}-hydroxylated product and several unknown metabolites were detected. Conjugates comprised the bulk of total pyrethroid metabolites. In addition to ester cleavage products, the 4{prime}-hydroxylated bifenthrin was also identified. For the first time in invertebrates, a conjugated pyrethroid ester was observed.

  5. Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments

    International Nuclear Information System (INIS)

    Harwood, Amanda D.; Landrum, Peter F.; Weston, Donald P.; Lydy, Michael J.

    2013-01-01

    The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. - Highlights: ► Can use bioavailability-based methods for pyrethroids in sediments. ► Tenax was a more sensitive technique. ► Tenax extractable concentrations relate to invertebrate mortality. - This research provides an important first step in using bioavailability-based techniques for estimating the bioavailability and toxicity of hydrophobic pesticides in field sediments.

  6. Investigation of viscosity of whole hydrolyze sweetened condensed milk

    Directory of Open Access Journals (Sweden)

    O. Kalinina

    2015-05-01

    Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.

  7. Hydrolyzed Vegetable Protein Containing Products Recalls

    Data.gov (United States)

    U.S. Department of Health & Human Services — This list includes products subject to recall in the United States since February 2010 related to hydrolyzed vegetable protein (HVP) paste and powder distributed by...

  8. Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin.

    Science.gov (United States)

    Beggel, Sebastian; Connon, Richard; Werner, Inge; Geist, Juergen

    2011-09-01

    The combination of molecular and whole-organism endpoints in ecotoxicology provides valuable information about the ecological relevance of sublethal stressor effects in aquatic ecosystems such as those caused by the use of insecticides and translocation of their residues into surface waters. This study contributes knowledge about the sublethal effects of a common use insecticide, the synthetic pyrethroid bifenthrin, on larval fathead minnow (Pimephales promelas). Transcriptomic responses, assessed by quantitative real-time PCR, combined with individual effects on swimming performance were used to estimate the ecological relevance of insecticide impacts. Significant transcriptomic responses were observed at 0.07 μg L(-1) bifenthrin (lowest observed effect concentration, LOEC) but mostly followed a biphasic rather than a linear dose-response with increasing concentration. Transcript patterns for genes involved in detoxification, neuromuscular function and energy metabolism were linked to an impairment of swimming performance at ≥0.14 μg L(-1) bifenthrin. With increasing treatment concentration, a significant down-regulation was observed for genes coding for cyp3a, aspartoacylase, and creatine kinase, whereas metallothionein was up-regulated. Additionally, bifenthrin induced endocrine responses as evident from a significant up-regulation of vitellogenin and down-regulation of insuline-like growth factor transcripts. Recovery occurred after 6 days and was dependent on the magnitude of the initial stress. During the recovery period, down-regulation of vitellogenin was observed at lowest exposure concentrations. The data presented here emphasize that links can be made between gene transcription changes and behavioral responses which is of great value for the evaluation and interpretation of biomarker responses. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Fermentation of corn-cob hydrolyzates with butanol bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Senkevich, V V; Scheblykina, N A; Lipshits, V V

    1960-01-01

    Experiments to produce BuOH from hydrolyzates of corn cobs and sunflower husks after addition to beet molasses are described. Corn cobs were heated at atmosphere pressure at 100/sup 0/ for 3 to 8 hourse at 4.1% initial H/sub 2/SO/sub 4/ concentration, for sunflower hulls 120/sup 0/ for 20 minutes was used. The concentration,of solids was 25 and 33%, respectively. The hydrolyzate was neutralized with lime to pH 6.7 to 6.9 and (NH/sub 4/)/sub 2/DO/sub 4/ and superphosphate were added. The best yields were obtained if the mash contained 40 to 60% hydrolyzate and 60 to 40% molasses (on sugar basis). The sugar content of the mashes was 3.7%. Yields in total organic solvents and BuOH were 40% and 27%, respectively, calculated on the initial sugar in the mash. Fermentation time was 2 to 3 days. The strain used in probably a variety of Clostridium butylicum.

  10. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    Science.gov (United States)

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  11. Neurotoxicological effects and the mode of action of pyrethroid insecticides

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Bercken, Joep van den

    1990-01-01

    Neuroexcitatory symptoms of acute poisoning of vertebrates by pyrethroids are related to the ability of these insecticides to modify electrical activity in various parts of the nervous system. Repetitive nerve activity, particularly in the sensory nervous system, membrane depolarization, and

  12. Composition of the enzymatic and acid hydrolyzates of gamma-irradiated rice straw

    International Nuclear Information System (INIS)

    Abad, L.V.; Banzon, R.B.; Rosa, A. de la

    1989-01-01

    Gamma irradiation was utilized to induce structural changes in rice straw that would enhance the conversion of its cellulose and ligno-cellulosic components to glucose and other reducing sugars. With the appropriate fermentation conditions these sugars can eventually be converted into alcohol. Rice straw materials were irradiated at varying doses (0-500 kgy) and hydrolyzed by the use of a) cellulose enzyme and b) 1% sulfuric acid. The composition of the hydrolyzates of rice straw was studied by thin layer chromatography (TLC) coupled with the Nelson-Somogyi test for its quantification. Acid hydrolyzates of rice straw showed a maximum increase of 16.46% in its total reducing sugars at 300 Kgy. TLC of the acid hydrolyzates of rice straw revealed the presence of glucose, xylose, arabinose, and cellobiose. However, it was only with xylose that a significant increase in yield was observed with the non-irradiated straw 12.55% xylose yield was noted while with rice straw-irradiated at 400 Kgy a maximum yield of 15.90% xylose was obtained. Total reducing sugar of the enzymatic hydrolyzate of rice straw showed a maximum increase of 205% at 500 Kgy. TLC revealed that only glucose was present in the enzymatic hydrolyzate. Glucose yield increase from 2.49% (0 Kgy) to 7.31% (500 Kgy). The results showed that radiation pre-treatment of rice straw induces significant increases in reducing sugar for both enzymatic and hydrolyzate. (Auth.). 2 tabs.; 1 fig

  13. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment

    International Nuclear Information System (INIS)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J.; You, Jing

    2014-01-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air–water flux, including air–water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air–water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. - Highlights: • Transport fluxes of chlorpyrifos and pyrethroids were assessed in Guangzhou, China. • Sediment acted as a sink for chlorpyrifos and pyrethroids. • Air-to-water transport decreased the exposure risk of atmospheric chlorpyrifos. • Dynamic transport might increase the risk of pyrethroids in air and sediment. • Flux-based pesticide concentrations provide a way to estimate sediment toxicity. - Regional risk assessment could be improved by integrating dynamic flux information derived from inter-compartmental models

  14. Association of a carboxylesterase 1 polymorphism with appetite reduction in children and adolescents with attention-deficit/hyperactivity disorder treated with methylphenidate.

    Science.gov (United States)

    Bruxel, E M; Salatino-Oliveira, A; Genro, J P; Zeni, C P; Polanczyk, G V; Chazan, R; Rohde, L A; Hutz, M H

    2013-10-01

    Carboxylesterase 1 is the enzyme involved in methylphenidate (MPH) metabolism. The aim of this study was to evaluate the association between a -75 T>G polymorphism and appetite reduction in children with attention-deficit/hyperactivity disorder (ADHD). A sample of 213 children with ADHD was investigated. The primary outcome was appetite reduction measured by the Barkley Stimulant Side Effect Rating Scale applied at baseline, at 1 and 3 months of treatment. MPH doses were augmented until no further clinical improvement or significant adverse events occurred. The G allele presented a trend for association with appetite reduction scores (P=0.05). A significant interaction between the G allele and treatment over time for appetite reduction scores was also observed (P=0.03). The G allele carriers presented a higher risk for appetite reduction worsening when compared with T allele homozygotes (odds ratio=3.47, P=0.01). The present results suggest an influence of carboxylesterase 1 -75 T>G polymorphism on the worsening of appetite reduction with MPH treatment in youths with ADHD.

  15. Determination of seven pyrethroids and six pyrethrins in water by liquid chromatography/mass spectrometry

    Science.gov (United States)

    ccanccapa, alexander; Masia, Ana; Pico, Yolanda

    2016-04-01

    Pyrethroids are the synthetic analogues of pyrethrins which were developed as pesticides from the extracts of dried and powdered flower heads of Chrysanthemum cinerariaefolium. They are increasingly used in agriculture due to their broad biological activity and slow development of pest resistance. Contamination of fresh-water ecosystems appears either because of the direct discharge of industrial and agricultural effluents or as a result of effluents from sewage treatment works; residues can thus accumulate in the surrounding biosphere [1, 2]. These substances, mostly determined by gas chromatography mass spectrometry (GC-MS) can be difficult to analyse due to their volatility and degradability. The purpose of this study is, as an alternative, to develop a fast and sensitive multi-residue method for the target analysis of 7 pyrethroids and the 6 natural pyrethrins currently used in water samples by liquid chromatography tandem mass spectrometry (LC-MS/MS). The compounds included in the study were acrinathrin, etofenprox, cyfluthrin, esfenvalerate, cyhalothrin, cypermethrin and flumethrin as pyrethroids and a commercial mix of pyrethrins containing Cinerin I, Jasmolin I, pyrethrin I, cinerin II, jasmolin II, pyrethrins II in different percentages. As a preliminary step, the ionization and fragmentation of the compounds were optimized injecting individual solutions of each analyte at 10 ppm in the system, using a gradient elution profile of water-methanol both with 10 mM ammonium formate. The ESI conditions were: capillary voltage 4000 V, nebulizer15 psi, source temperature 300◦C and gas flow 10 L min-1. [M+H]+, [M+Na]+ ,[M+NH3]+ ,[M+NH4+]+ were tested as precursor ions. The most intense signal was for ammonium adduct for all compounds. The optimal fragmentor range for product ions were between 20 to 80 ev and the collision energy ranged between 5 to 86 ev. The efficiency of the method was tested in water samples from Turia River without any known exposure to

  16. Home Use of a Pyrethroid-Containing Pesticide and Facial Paresthesia in a Toddler: A Case Report

    Directory of Open Access Journals (Sweden)

    Alexandra Perkins

    2016-08-01

    Full Text Available Paresthesias have previously been reported among adults in occupational and non-occupational settings after dermal contact with pyrethroid insecticides. In this report, we describe a preverbal 13-month-old who presented to his primary care pediatrician with approximately 1 week of odd facial movements consistent with facial paresthesias. The symptoms coincided with a period of repeat indoor spraying at his home with a commercially available insecticide containing two active ingredients in the pyrethroid class. Consultation by the Northwest Pediatric Environmental Health Specialty Unit and follow-up by the Washington State Department of Health included urinary pyrethroid metabolite measurements during and after the symptomatic period, counseling on home clean up and use of safer pest control methods. The child’s symptoms resolved soon after home cleanup. A diagnosis of pesticide-related illness due to pyrethroid exposure was made based on the opportunity for significant exposure (multiple applications in areas where the child spent time, supportive biomonitoring data, and the consistency and temporality of symptom findings (paresthesias. This case underscores the vulnerability of children to uptake pesticides, the role of the primary care provider in ascertaining an exposure history to recognize symptomatic illness, and the need for collaborative medical and public health efforts to reduce significant exposures in children.

  17. In vivo dermal absorption of pyrethroid pesticides in the rat.

    Science.gov (United States)

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  18. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC Gene in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jiabao Xu

    2016-05-01

    Full Text Available Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr. Previous studies reported various mutations in the voltage-gated sodium channel (VGSC gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established.A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested.A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations.Two novel kdr

  19. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus.

    Science.gov (United States)

    Xu, Jiabao; Bonizzoni, Mariangela; Zhong, Daibin; Zhou, Guofa; Cai, Songwu; Li, Yiji; Wang, Xiaoming; Lo, Eugenia; Lee, Rebecca; Sheen, Roger; Duan, Jinhua; Yan, Guiyun; Chen, Xiao-Guang

    2016-05-01

    Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). Previous studies reported various mutations in the voltage-gated sodium channel (VGSC) gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established. A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested. A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T) was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S) was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations. Two novel kdr mutations, I1532T

  20. Intake of Hydrolyzed Casein is Associated with Reduced Body Fat Accretion and Enhanced Phase II Metabolism in Obesity Prone C57BL/6J Mice

    Science.gov (United States)

    Clausen, Morten Rahr; Zhang, Xumin; Yde, Christian C.; Ditlev, Ditte B.; Lillefosse, Haldis H.; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn; Bertram, Hanne C.

    2015-01-01

    The amount and form of dietary casein have been shown to affect energy metabolism and lipid accumulation in mice, but the underlying mechanisms are not fully understood. We investigated 48 hrs urinary metabolome, hepatic lipid composition and gene expression in male C57BL/6J mice fed Western diets with 16 or 32 energy% protein in the form of extensively hydrolyzed or intact casein. LC-MS based metabolomics revealed a very strong impact of casein form on the urinary metabolome. Evaluation of the discriminatory metabolites using tandem mass spectrometry indicated that intake of extensively hydrolyzed casein modulated Phase II metabolism associated with an elevated urinary excretion of glucuronic acid- and sulphate conjugated molecules, whereas glycine conjugated molecules were more abundant in urine from mice fed the intact casein diets. Despite the differences in the urinary metabolome, we observed no differences in hepatic expression of genes involved in Phase II metabolism, but it was observed that expression of Abcc3 encoding ATP binding cassette c3 (transporter of glucuronic acid conjugates) was increased in livers of mice fed hydrolyzed casein. As glucuronic acid is derived from glucose and sulphate is derived from cysteine, our metabolomic data provided evidence for changes in carbohydrate and amino acid metabolism and we propose that this modulation of metabolism was associated with the reduced glucose and lipid levels observed in mice fed the extensively hydrolyzed casein diets. PMID:25738501

  1. Prenatal Exposure to DDT and Pyrethroids for Malaria Control and Child Neurodevelopment: The VHEMBE Cohort, South Africa.

    Science.gov (United States)

    Eskenazi, Brenda; An, Sookee; Rauch, Stephen A; Coker, Eric S; Maphula, Angelina; Obida, Muvhulawa; Crause, Madelein; Kogut, Katherine R; Bornman, Riana; Chevrier, Jonathan

    2018-04-06

    Although indoor residual spraying (IRS) with dichlorodiphenyltrichloroethane (DDT) and pyrethroids effectively controls malaria, it potentially increases human exposure to these insecticides. Previous studies suggest that prenatal exposure to these insecticides may impact human neurodevelopment. We aimed to estimate the effects of maternal insecticide exposure and neurodevelopment of toddlers living in a malaria-endemic region currently using IRS. The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) is a birth cohort of 752 mother-child pairs in Limpopo, South Africa. We measured maternal exposure to DDT and its breakdown product, dichlorodiphenyldichloroethylene (DDE), in maternal serum, and measured pyrethroid metabolites in maternal urine. We assessed children's neurodevelopment at 1 and 2 y of age using the Bayley Scales of Infant Development, third edition (BSID-III), and examined associations with maternal exposure. DDT and DDE were not associated with significantly lower scores for any BSID-III scale. In contrast, each 10-fold increase in cis -DCCA, trans -DCCA, and 3-phenoxybenzoic acid were associated, respectively, with a -0.63 (95% CI: -1.14, -0.12), -0.48 (95% CI: -0.92, -0.05), and -0.58 (-1.11, -0.06) decrement in Social-Emotional scores at 1 y of age. In addition, each 10-fold increase in maternal cis -DBCA levels was associated with significant decrements at 2 y of age in Language Composite scores and Expressive Communication scores [β=-1.74 (95% CI: -3.34, -0.13) and β=-0.40 (95% CI: -0.77, -0.04), respectively, for a 10-fold increase]. Significant differences by sex were estimated for pyrethroid metabolites and motor function scores at 2 y of age, with higher scores for boys and lower scores for girls. Prenatal exposure to pyrethroids may be associated at 1 y of age with poorer social-emotional development. At 2 y of age, poorer language development was observed with higher prenatal pyrethroid levels. Considering the

  2. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli.

    Science.gov (United States)

    Ishii, Y; Ohno, A; Taguchi, H; Imajo, S; Ishiguro, M; Matsuzawa, H

    1995-01-01

    Escherichia coli TUH12191, which is resistant to piperacillin, cefazolin, cefotiam, ceftizoxime, cefuzonam, and aztreonam but is susceptible to cefoxitin, latamoxef, flomoxef, and imipenem, was isolated from the urine of a patient treated with beta-lactam antibiotics. The beta-lactamase (Toho-1) purified from the bacteria had a pI of 7.8, had a molecular weight of about 29,000, and hydrolyzed beta-lactam antibiotics such as penicillin G, ampicillin, oxacillin, carbenicillin, piperacillin, cephalothin, cefoxitin, cefotaxime, ceftazidime, and aztreonam. Toho-1 was markedly inhibited by beta-lactamase inhibitors such as clavulanic acid and tazobactam. Resistance to beta-lactams, streptomycin, spectinomycin, sulfamethoxazole, and trimethoprim was transferred by conjugational transfer from E. coli TUH12191 to E. coli ML4903, and the transferred plasmid was about 58 kbp, belonging to incompatibility group M. The cefotaxime resistance gene for Toho-1 was subcloned from the 58-kbp plasmid by transformation of E. coli MV1184. The sequence of the gene for Toho-1 was determined, and the open reading frame of the gene consisted of 873 or 876 bases (initial sequence, ATGATG). The nucleotide sequence of the gene (DDBJ accession number D37830) was found to be about 73% homologous to the sequence of the gene encoding a class A beta-lactamase produced by Klebsiella oxytoca E23004. According to the amino acid sequence deduced from the DNA sequence, the precursor consisted of 290 or 291 amino acid residues, which contained amino acid motifs common to class A beta-lactamases (70SXXK, 130SDN, and 234KTG). Toho-1 was about 83% homologous to the beta-lactamase mediated by the chromosome of K. oxytoca D488 and the beta-lactamase mediated by the plasmid of E. coli MEN-1. Therefore, the newly isolated beta-lactamase Toho-1 produced by E. coli TUH12191 is similar to beta-lactamases produced by K. oxytoca D488, K. oxytoca E23004, and E. coli MEN-1 rather than to mutants of TEM or SHV enzymes

  3. Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides.

    Science.gov (United States)

    Li, Jiabao; Cai, Shichun; Luo, Yuanming; Dong, Xiuzhu

    2011-09-01

    Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.

  4. Lambda-Cyhalothrin Resistance in the Lady Beetle Eriopis connexa (Coleoptera: Coccinellidae) Confers Tolerance to Other Pyrethroids.

    Science.gov (United States)

    Torres, J B; Rodrigues, A R S; Barros, E M; Santos, D S

    2015-02-01

    Pyrethroid insecticides are widely recommended to control insect defoliators but lack efficacy against most aphid species. Thus, conserving aphid predators such as the lady beetle Eriopis connexa (Germar) is important to pest management in crop ecosystems that require pyrethroid sprays. In a greenhouse, early fourth-instar larvae and 5-day-old adults from susceptible (S) and resistant (R) E. connexa populations were caged on lambda-cyhalothrin-treated cotton plants, after which survival and egg production (for those caged at adult stage) were assessed. In the laboratory, similar groups were subjected to dried residues and topical treatment with one of eight pyrethroids (alpha-cypermethrin, bifenthrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, zeta-cypermethrin, and lambda-cyhalothrin), the organophosphate methidathion, or water and wetting agent. After caging on treated cotton terminals, 66% of the R-population larvae survived to adulthood, compared with 2% of those from the S-population. At 12 d after caging at adult stage under the same conditions, 64% of the females from the R-population survived and laid eggs, compared with 100% mortality and no oviposition for the S-females. In trials involving dried insecticide residues, gain in survival based on the survival difference (percentage for R-population minus percentage for S-population) across all tested pyrethroids varied from 3 to 63% for larvae and from 3 to 70% for adults. In trials involving topical sprays of the tested pyrethroids, survival differences ranged from 36 to 96% for larvae and from 21 to 82% for adults. Fenpropathrin and bifenthrin were the least and most toxic, respectively. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Hypersensitivity Reaction and Acute Respiratory Distress Syndrome in Pyrethroid Poisoning and Role of Steroid Therapy

    Directory of Open Access Journals (Sweden)

    Jisa George

    2015-06-01

    Full Text Available Background: Pyrethroids are generally of low toxicity to humans, but in suicidal poisonings which are usually associated with ingestion of high doses, they lead to severe systemic effects. Case Report: A 30-year old woman presented to emergency department with a history of intentional ingestion of about 15 mL of prallethrin around 3 days earlier. She complained of shortness of breath along with chest pain for the last 2 days. She reported no vomiting or stomach pain prior to presentation to hospital. On chest auscultation, breath sounds were mildly decreased in bilateral infrascapular areas with generalized crepitation. Arterial blood gas analysis revealed respiratory alkalosis. Chest X ray and computed tomography of thorax revealed widespread confluent areas of consolidation with interlobular septal thickening involving bilateral parahilar regions suggestive of acute respiratory distress syndrome (ARDS. The patient did not respond to broad spectrum antibiotic coverage, diuretics and oxygen inhalation. Intravenous methylprednisolone (2 mg/kg/day divided 6 hourly was started and slowly tapered off during the next days. The patient discharged after 3 weeks in good health. Discussion: As pyrethroids can affect sodium channels, the osmotic gradient of alveolar epithelium probably disrupts and therefore, alveolar infiltrations gradually spread over lungs. In addition, there is a possibility of hypersensitivity reactions to pyrethroids, which can cause progressive inflammation and involve respiratory tract in severe cases. Conclusion: Pyrethroid poisoning can lead to ARDS. Steroid therapy may help such patients tide over the pulmonary crisis.

  6. Pyrethroid insecticide accumulation in primary cultures of cortical neurons in vitro

    Science.gov (United States)

    Primary cultures of neurons have been widely utilized to study the actions of pyrethroids and other neurotoxicants, with the presumption that the media concentration accurately reflects the dose received by the cells. However, recent studies have demonstrated that lipophilic comp...

  7. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains.

    Science.gov (United States)

    Queenan, A M; Torres-Viera, C; Gold, H S; Carmeli, Y; Eliopoulos, G M; Moellering, R C; Quinn, J P; Hindler, J; Medeiros, A A; Bush, K

    2000-11-01

    Three sets of carbapenem-resistant Serratia marcescens isolates have been identified in the United States: 1 isolate in Minnesota in 1985 (before approval of carbapenems for clinical use), 5 isolates in Los Angeles (University of California at Los Angeles [UCLA]) in 1992, and 19 isolates in Boston from 1994 to 1999. All isolates tested produced two beta-lactamases, an AmpC-type enzyme with pI values of 8.6 to 9.0 and one with a pI value of approximately 9.5. The enzyme with the higher pI in each strain hydrolyzed carbapenems and was not inhibited by EDTA, similar to the chromosomal class A SME-1 beta-lactamase isolated from the 1982 London strain S. marcescens S6. The genes encoding the carbapenem-hydrolyzing enzymes were cloned in Escherichia coli and sequenced. The enzyme from the Minnesota isolate had an amino acid sequence identical to that of SME-1. The isolates from Boston and UCLA produced SME-2, an enzyme with a single amino acid change relative to SME-1, a substitution from valine to glutamine at position 207. Purified SME enzymes from the U. S. isolates had beta-lactam hydrolysis profiles similar to that of the London SME-1 enzyme. Pulsed-field gel electrophoresis analysis revealed that the isolates showed some similarity but differed by at least three genetic events. In conclusion, a family of rare class A carbapenem-hydrolyzing beta-lactamases first described in London has now been identified in S. marcescens isolates across the United States.

  8. SME-Type Carbapenem-Hydrolyzing Class A β-Lactamases from Geographically Diverse Serratia marcescens Strains

    Science.gov (United States)

    Queenan, Anne Marie; Torres-Viera, Carlos; Gold, Howard S.; Carmeli, Yehuda; Eliopoulos, George M.; Moellering, Robert C.; Quinn, John P.; Hindler, Janet; Medeiros, Antone A.; Bush, Karen

    2000-01-01

    Three sets of carbapenem-resistant Serratia marcescens isolates have been identified in the United States: 1 isolate in Minnesota in 1985 (before approval of carbapenems for clinical use), 5 isolates in Los Angeles (University of California at Los Angeles [UCLA]) in 1992, and 19 isolates in Boston from 1994 to 1999. All isolates tested produced two β-lactamases, an AmpC-type enzyme with pI values of 8.6 to 9.0 and one with a pI value of approximately 9.5. The enzyme with the higher pI in each strain hydrolyzed carbapenems and was not inhibited by EDTA, similar to the chromosomal class A SME-1 β-lactamase isolated from the 1982 London strain S. marcescens S6. The genes encoding the carbapenem-hydrolyzing enzymes were cloned in Escherichia coli and sequenced. The enzyme from the Minnesota isolate had an amino acid sequence identical to that of SME-1. The isolates from Boston and UCLA produced SME-2, an enzyme with a single amino acid change relative to SME-1, a substitution from valine to glutamine at position 207. Purified SME enzymes from the U.S. isolates had β-lactam hydrolysis profiles similar to that of the London SME-1 enzyme. Pulsed-field gel electrophoresis analysis revealed that the isolates showed some similarity but differed by at least three genetic events. In conclusion, a family of rare class A carbapenem-hydrolyzing β-lactamases first described in London has now been identified in S. marcescens isolates across the United States. PMID:11036019

  9. Pyrethroid Susceptibility Has Been Maintained in the Dengue Vector, Aedes aegypti (Diptera: Culicidae), in Queensland, Australia.

    Science.gov (United States)

    Endersby-Harshman, Nancy M; Wuliandari, Juli Rochmijati; Harshman, Lawrence G; Frohn, Verena; Johnson, Brian J; Ritchie, Scott A; Hoffmann, Ary A

    2017-11-07

    Although pesticide resistance is common in insect vectors of human diseases, the evolution of resistance might be delayed if management practices are adopted that limit selection of resistance alleles. Outbreaks of dengue fever have occurred in Queensland, Australia, since the late 1800s, leading to ongoing attempts to control the mosquito vector, Aedes aegypti (L.). Since the 1990s, pyrethroid insecticides have been used for this purpose, but have been applied in a strategic manner with a variety of delivery methods including indoor residual spraying, lethal ovitraps, and use of insect growth regulators as larvicides. Separate selection experiments on mosquitoes from Queensland using Type I and Type II pyrethroids did not produce resistant lines of Ae. aegypti, and bioassays of field material from Queensland showed only weak tolerance in comparison with a susceptible line. There was no evidence of knockdown resistance (kdr) mutations in Ae. aegypti from Queensland, in stark contrast to the situation in nearby southeast Asia. We suspect that careful management of pyrethroid insecticide use combined with surveillance and interception of exotic incursions has helped to maintain pyrethroid (and particularly kdr-based) susceptibility in Ae. aegypti in Australia. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland.

    Science.gov (United States)

    Wielgomas, Bartosz; Nahorski, Wacław; Czarnowski, Wojciech

    2013-06-01

    Urinary concentrations of pyrethroid metabolites were measured in the first void urine samples collected from 132 healthy people living in the Gdańsk region of Northern Poland in 2010 and 2011. Four metabolites of synthetic pyrethroids: cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids (cis-, trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br2CA) and 3-phenoxybenzoic acid (3-PBA) were simultaneously liquid-liquid extracted, derivatized with hexafluoroisopropanol and analyzed by a gas chromatography ion-trap mass spectrometry. All the analytes were detected and quantified in the samples with various frequency, 3-phenoxybenzoic being the most often (80%) and the others less frequently (7-11%). Distribution of 3-PBA concentrations followed log-normal model, the mean concentration of 3-phenoxybenzoic acid: 0.393 μg/L (0.327 μg/g creatinine) is similar to those of the other general populations in various regions of the world. Neither sex nor age were predictors of urinary 3-PBA. Our findings suggest wide exposure to pyrethroid insecticides in the Polish general population. There is a continuous need to further study the exposure to synthetic pyrethroids among the general population since there is a strong, increasing trend in their usage. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Resistance to pyrethroid insecticides in house flies, Musca domestica L., (Diptera: Muscidae) collected from urban areas in Punjab, Pakistan.

    Science.gov (United States)

    Khan, Hafiz Azhar Ali; Akram, Waseem; Fatima, Ammara

    2017-12-01

    House flies are one of the major public health pests in urban settings. People usually use insecticides containing pyrethroids for the management of house flies; however, there is a lack of information on pyrethroid resistance in house flies from urban areas. In the present study, resistance to four pyrethroids (beta-cyfluthrin, deltamethrin, permethrin, transfluthrin) was assessed in house flies collected from urban areas of Punjab, Pakistan. Significant levels of resistance to all the pyrethroids were found in different strains of house flies. The resistance ratios (RRs) at the median lethal dose (LD 50 ) level were in the range of 5.25- to 11.02-fold for beta-cyfluthrin, 7.22- to 19.31-fold for deltamethrin, 5.36- to 16.04-fold for permethrin, and 9.05- to 35.50-fold for transfluthrin. Pairwise comparison of the log LD 50 s revealed a highly significant correlation (p house flies from urban areas of Punjab. Regular resistance monitoring surveys and integrated approaches for the management of house flies are needed to retain the efficacy of these insecticides for a longer period of time.

  12. Strategic control of ticks with synthetic pyrethroids in Theileria parva ...

    African Journals Online (AJOL)

    The effect of tick control by strategic dipping in synthetic pyrethroids on growth and survival rates of calves in Eastern Tanzania where Theileria parva and other tick borne infections (babesiosis, anaplasmosis and ehrlichiosis) are endemic was measured. One day to five months old Tanganyika short horn zebu (Bos indicus) ...

  13. Improving wood hydrolyzate fermentation by using schizosaccharomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnyi, M Ya; Ustinova, V I; Petrushko, G I

    1967-01-01

    The development of Schizosaccharomycetes (I) in wood hydrolyzates is not observed when fermentation is carried out by the convetional batch process, evidently because of the highly inhibitory action of the medium. More recently, with the introduction of continuous fermentation of wood and other hydrolyzates, the occurrence of I has been frequently reported, and in some hydrolysis plants, I became predominant, eliminating the budding yeast strains. The phenomenon can be attributed to higher temperatures employed in continuous fermentation, and to a more favorable medium, as the hydrolyzate is diluted with spent fermentation liquor (the flow of fresh medium constitutes about 20% of the fermentation-vat volume). The I cells, when grown under favorable conditions, have a high fermenting power, adapt easily to the fermentation of galactose, and give higher yields of ethanol than the budding yeast. As observed at plants using I, however, the cells are sensitive to variations in the fermentation process, and are inactivated upon storage. This is usually attributed to their inability to store polysaccharides, and especially glycogen. An experimental study undertaken to determine conditions under which reserve polysaccharides accumulate in I cells showed that the important factor is the quality of the medium in which the cells are grown and the conditions of storage. In media enriched with spent fermentaion liquor or with cell autolyzate and purified from toxic components, considerable amounts of glycogen accumulate in the cells.

  14. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Science.gov (United States)

    Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V

    2017-02-01

    Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high

  15. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Directory of Open Access Journals (Sweden)

    Lucila Traverso

    2017-02-01

    Full Text Available Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs, Cytochromes P450 (CYPs and Carboxyl/Cholinesterases (CCEs. Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease.The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms

  16. Antimicrobial activity of poultry bone and meat trimmings hydrolyzates in low-sodium turkey food.

    Science.gov (United States)

    Zanello, Pier Paolo; Sforza, Stefano; Dossena, Arnaldo; Lambertini, Francesca; Bottesini, Chiara; Nikolaev, Ilya V; Koroleva, Olga; Ciociola, Tecla; Magliani, Walter; Conti, Stefania; Polonelli, Luciano

    2014-02-01

    This research was aimed at the evaluation of the antimicrobial activity exerted by poultry protein hydrolyzates derived from industrial leftovers added to minced turkey meat, intended for the production of burgers for human consumption. Hydrolyzates were obtained through enzymatic hydrolysis from poultry bone and meat trimmings, as by-products from the poultry industry. Colony forming unit assays, under both laboratory and industrial conditions, were performed to assess microbial growth. Poultry protein hydrolyzates inhibited microbial growth occurring in semi-finished turkey meat during the normal retention period because of their water holding capacity resulting in a decreased water activity. Overall, the findings demonstrated that poultry protein hydrolyzates could decrease mesophilic, psychrophilic, and thermophilic bacterial growth for the entire product shelf-life. Bacterial growth inhibition obtained in minced turkey meat by addition of poultry protein hydrolyzates (1.5%), hygroscopic amino acids mixture (1.5%) or sodium chloride (1%) was similar. It is suggested that the use of hydrolyzates could allow the reduction of salt content in poultry meat based products leading to the production of low-sodium turkey food still maintaining acceptable sensory characteristics.

  17. The relationship between absorbency and density of bioplastic film made from hydrolyzed starch

    Science.gov (United States)

    Singan, Grace; Chiang, Liew Kang

    2017-12-01

    Water absorption in polymer blends such as starch-based bioplastic films is important to evaluate the stability characteristics of such films in water that will affect their long-term performance in final products. In this study, the absorbency of starch-based bioplastic films made from potato, cassava, and corn starches that have went through the hydrolysis process first to alter its characteristics and properties in terms of granular swelling and hydrophilicity behaviour. The final results showed that hydrolyzed cassava bioplastic film has the ability to absorb more water compared to hydrolyzed potato and corn bioplastic films. The reading of hydrolyzed cassava bioplastic film on the seventh day of immersion for all ratios were between 87.83 % to 131.29 %, while for hydrolyzed potato bioplastic films was 69.48 % to 92.41 % and hydrolyzed corn bioplastic films was 66.28 % to 74.18 %. Meanwhile, the density analysis was evaluated to determine its physical properties towards moisture condition. The results showed that the hydrolyzed cassava bioplastic films have higher density compared to the other two, which indicated that it is a more favourable raw material to produce biodegradable planting pot due to its ability to absorb more water. Hence, still manage to retain its shape with low brittle surface.

  18. Pyrethroids in chicken eggs from commercial farms and home production in Rio de Janeiro: Estimated daily intake and diastereomeric selectivity.

    Science.gov (United States)

    Parente, Cláudio E T; Lestayo, Julliana; Guida, Yago S; Azevedo-Silva, Claudio E; Torres, João Paulo M; Meire, Rodrigo O; Malm, Olaf

    2017-10-01

    In this study, pyrethroids were determined in chicken eggs from commercial farm (n = 60) and home egg production (n = 30). These pyrethroids were investigated: bifenthrin, phenothrin, permethrin, cyfluthrin, cypermethrin and fenvalerate, including most diastereomers. Quantification was done using GC-MS in a negative chemical ionization mode. Pyrethroids residues were found in 79% of the analyzed samples. Cypermethrin presented the highest occurrence, being quantified in 62 samples (69%) in concentrations (lipid weight - l w.) varying between 0.29 and 6408 ng g -1 , followed by phenothrin (24%), 21-3910 ng g -1 , permethrin (14%), 2.96-328 ng g -1 , and bifenthrin (11%), 3.77-16.7 ng g -1 . Cyfluthrin and fenvalerate were not detected. Home-produced eggs had a higher occurrence of pyrethroids (97%), with a greater predominance of phenothrin. In commercial production, 70% of the samples presented pyrethroid residues (predominantly cypermethrin). This is the first report about the presence of pyrethroids in home-produced eggs and the first description of a selectivity pattern with the predominance of cis diastereomers in chicken eggs. In general, estimated daily intake does not present a risk to human consumption, according to Brazilian and international standards (FAO/WHO). However, one third of the samples (30 eggs) had concentrations above the maximum residue limits (MRLs). The maximum cypermethrin concentration was 66 times the MRL, while the maximum phenothrin concentration was 11 times the limit. Further studies about transfer dynamics, bioaccumulation and metabolic degradation of stereoisomers are required, as well as determining if this selectivity pattern in food can increase consumer's health risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ISOLATION AND CHARACTERIZATION OF BIFENTHRIN CATABOLIZING BACTERIAL STRAIN BACILLUS CIBI FROM SOIL FOR PYRETHROIDS BIODEGRADATION

    OpenAIRE

    Preeti Pandey; Geetika Pant; G. Sibi

    2014-01-01

    Pyrethroids are commonly used in most parts of the world and are reported to have potential health risks. Bifenthrin, a third generation pyrethroid used as insecticide has caused potential effect on aquatic life and human health. Bioremediation is a practical approach to reduce pesticide in the environment and reports of microbial degradation of bifenthrin are meagre. This study was aimed at isolating and characterizing bacterial isolates for the efficient removal of bifenthrin residues in th...

  20. Pyrethroid tolerance of navel orangeworm after dietary exposure to almond phytochemicals

    Science.gov (United States)

    Inexpensive pyrethroid insecticides (IRAC Group 3A) play an increasingly important role for control of navel orangeworm in almonds and other nut crops. In addition to the insecticides used for their control, navel orangeworm larvae encounter a broad diversity of phytochemicals in their host plants. ...

  1. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip.

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-06-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.

  2. Identification and expression analysis of CYP4G25 gene from the ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... hormone, fatty acid, steroid, drug insecticide and phytotoxin (Mansuy et al., ... pyrethroid and organophosphate resistance (Andersen et al., 1994; Kasai and ... novel cytochrome P450 gene was identified from A. pernyi and its ...

  3. Pyrethroid insecticide lambda-cyhalothrin and its metabolites induce liver injury through the activation of oxidative stress and proinflammatory gene expression in rats following acute and subchronic exposure.

    Science.gov (United States)

    Aouey, Bakhta; Derbali, Mohamed; Chtourou, Yassine; Bouchard, Michèle; Khabir, Abdelmajid; Fetoui, Hamadi

    2017-02-01

    Lambda-cyhalothrin (LTC) [α-cyano-3-phenoxybenzyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclo-propanecarboxylate] is a synthetic type II pyrethroid insecticide commonly used in residential and agricultural areas. The potential hepatotoxicity of pyrethroids remains unclear and could easily be assessed by measuring common clinical indicators of liver disease. To understand more about the potential risks for humans associated with LTC exposure, male adult rats were orally exposed to 6.2 and 31.1 mg/kg bw of LTC for 7, 30, 45, and 60 days. Histopathological changes and alterations of main parameters related to oxidative stress and inflammatory responses in the liver were evaluated. Further, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] in the liver tissues were identified and quantified by ultra-high-performance liquid chromatography coupled to quadripole time-of-flight mass spectrometry (UHPLC-MS-Q-ToF). Results revealed that LTC exposure significantly increased markers of hepatic oxidative stress in a time-dependent and dose-dependent manner, and this was associated with an accumulation of CFMP and 3-PBA in the liver tissues. In addition, the levels of tumor necrosis factor-α (TNF-α) and interleukin (IL-6 and IL-1β) gene expressions were significantly increased in the liver of exposed rats compared to controls. Correlation analyses revealed that CFMP and 3-PBA metabolite levels in the liver tissues were significantly correlated with the indexes of oxidative stress, redox status, and inflammatory markers in rats exposed to lambda-cyhalothin. Overall, this study provided novel evidence that hepatic damage is likely due to increased oxidative stress and inflammation under the condition of acute and subchronic exposure to lambda-cyhalothrin and that LTC metabolites (CFMP and 3-PBA) could be used as

  4. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland.

    Science.gov (United States)

    Moore, M T; Cooper, C M; Smith, S; Cullum, R F; Knight, S S; Locke, M A; Bennett, E R

    2009-01-01

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides.

  5. Structure-related effects of pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Ruigt, GeS. F.; Bercken, J. van den

    1982-01-01

    The effects of seven different pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis, were investigated by means of electrophysiological methods. The results show that two classes of pyrethroid can be clearly distinguished. (i)

  6. Assessing Dietary Exposure to Pyrethroid Insecticides by LCIMS/MS of Food Composites

    Science.gov (United States)

    Method Commercially-obtained vegetables, chips, cereal, meat, and other solid food products were homogenized together to create composited control matrices at 1%, 5%, and 100/0 fat content. Lyophilized homogenates were spiked with 7 pyrethroids, 6 degradation products, bisphen...

  7. Comparative insecticidal efficacy of a new pyrethroid, metofluthrin, against colonies of Asian Culex quinquefasciatus and Culex pipiens pallens

    OpenAIRE

    Argueta, Tamara Belzabel Obispo; Kawada, Hitoshi; Shimabukuro, Kozue; Kubota, Shunichi; Shono, Yoshinori; Tsushima, Kazunori; Takagi, Masahiro

    2004-01-01

    Comparative insecticidal efficacy of metofluthrin, a newly synthesized pyrethroid, and other pyrethroids against several colonies of Asian Culex quinquefas-ciatus (from Indonesia, Thailand, Vietnam and Malaysia) was evaluated by topical application. Metofluthrin was the most effective against the four colonies of Cx. quinquefasciatus. The LD50-based relative effective ratio of metofluthrin against d-allethrin was higher in Cx. quinquefasciatus (33.3 to 78.8) than in Cx. pipiens pallens (27.8)...

  8. In-syringe dispersive liquid-liquid microextraction with liquid chromatographic determination of synthetic pyrethroids in surface water

    Directory of Open Access Journals (Sweden)

    Saeed S. Albaseer

    2012-03-01

    Full Text Available An indigenously fabricated in laboratory glass syringe was used for in-syringe dispersive liquid-liquid microextraction (is-DLLME and preconcentration of synthetic pyrethroids (SPs from surface waters suitable for their determination by high performance liquid chromatography. In contrast to classical DLLME, is-DLLME allows the use of lighter-than-water organic solvents and the analysis of environmental contaminants’ samples without prior filtration, which is of great importance due to the high affinity of pyrethroids to adsorb to solid particulates present in environmental samples. The effects of various parameters on the extraction efficiency were evaluated and optimized systemically using one-factor-at-a-time method (OFAT and statistically using full factorial design (24. Three SPs (viz.; cypermethrin, resmethrin and permethrin were analyzed. The method showed good accuracy with RSD% in the range of of 4.8–6.9%. The method detection limits of the three pesticides ranged from 0.14 to 0.16 ng mL-1. The proposed method was applied for the determination of synthetic pyrethroids in lake water

  9. Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

    Science.gov (United States)

    This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...

  10. Production of bioethanol from corn meal hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ljiljana Mojovic; Svetlana Nikolic; Marica Rakin; Maja Vukasinovic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology

    2006-09-15

    The two-step enzymatic hydrolysis of corn meal by commercially available {alpha}-amylase and glucoamylase and further ethanol fermentation of the obtained hydrolyzates by Saccharomyces cerevisiae yeast was studied. The conditions of starch hydrolysis such as substrate and enzyme concentration and the time required for enzymatic action were optimized taking into account both the effects of hydrolysis and ethanol fermentation. The corn meal hydrolyzates obtained were good substrates for ethanol fermentation by S. cerevisiae. The yield of ethanol of more than 80% (w/w) of the theoretical was achieved with a satisfactory volumetric productivity P (g/l h). No shortage of fermentable sugars was observed during simultaneous hydrolysis and fermentation. In this process, the savings in energy by carrying out the saccharification step at lower temperature (32{sup o}C) could be realized, as well as a reduction of the process time for 4 h. 31 refs., 5 figs., 2 tabs.

  11. Carboxylesterases from the seeds of an underutilized legume, Mucuna pruriens; isolation, purification and characterization.

    Science.gov (United States)

    Chandrashekharaiah, K S; Swamy, N Ramachandra; Murthy, K R Siddalinga

    2011-12-01

    Two carboxylesterases (ME-III and ME-IV) have been purified to apparent homogeneity from the seeds of Mucuna pruriens employing ammonium sulfate fractionation, cation exchange chromatography on CM-cellulose, gel-permeation chromatography on Sephadex G-100 and preparative PAGE. The homogeneity of the purified preparations was confirmed by polyacrylamide gel electrophoresis (PAGE), gel-electrofocussing and SDS-PAGE. The molecular weights determined by gel-permeation chromatography on Sephadex G-200 were 20.89 kDa (ME-III) and 31.62 kDa (ME-IV). The molecular weights determined by SDS-PAGE both in the presence and absence of 2-mercaptoethanol were 21 kDa (ME-III) and 30.2 kDa (ME-IV) respectively, suggesting a monomeric structure for both the enzymes. The enzymes were found to have Stokes radius of 2.4 nm (ME-III) and 2.7 nm (ME-IV). The isoelectric pH values of the enzymes, ME-III and ME-IV, were 6.8 and 7.4, respectively. ME-III and ME-IV were classified as carboxylesterases employing PAGE in conjunction with substrate and inhibitor specificity. The K(m) of ME-III and ME-IV with 1-naphthyl acetate as substrate was 0.1 and 0.166 mM while with 1-naphthyl propionate as substrate the K(m) was 0.052 and 0.0454 mM, respectively. As the carbon chain length of the acyl group increased, the affinity of the substrate to the enzyme increased indicating hydrophobic nature of the acyl group binding site. The enzymes exhibited an optimum temperature of 45°C (ME-III) and 37°C (ME-IV), an optimum pH of 7.0 (ME-III) and 7.5 (ME-IV) and both the enzymes (ME-III and ME-IV) were stable up to 120 min at 35°C. Both the enzymes were inhibited by organophosphates (dichlorvos and phosphamidon), but resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  13. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    Science.gov (United States)

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  14. EFFECTS OF PYRETHROIDS ON VOLTAGE-SENSITIVE CALCIUM CHANNELS: A CRITICAL EVALUATION OF STRENGTHS, WEAKNESSES, DATA NEEDS, AND RELATIONSHIP TO ASSESSMENT OF CUMULATIVE NEUROTOXICITY.

    Science.gov (United States)

    A recently published review (Soderlund et al., 2002, Toxicology 171, 3-59.) of the mechanisms of acute neurotoxicity of pyrethroid compounds postulated that voltage-sensitive calcium channels (VSCC) may be a target of some pyrethroid compounds and that effects on VSCC may contrib...

  15. Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples.

    Science.gov (United States)

    Mukdasai, Siriboon; Thomas, Chunpen; Srijaranai, Supalax

    2014-03-01

    Dispersive liquid microextraction (DLME) combined with dispersive µ-solid phase extraction (D-µ-SPE) has been developed as a new approach for the extraction of four pyrethroids (tetramethrin, fenpropathrin, deltamethrin and permethrin) prior to the analysis by high performance liquid chromatography (HPLC) with UV detection. 1-Octanol was used as the extraction solvent in DLME. Magnetic nanoparticles (Fe3O4) functionalized with 3-aminopropyl triethoxysilane (APTS) were used as the dispersive in DLME and as the adsorbent in D-µ-SPE. The extracted pyrethroids were separated within 30 min using isocratic elution with acetonitrile:water (72:28). The factors affecting the extraction efficiency were investigated. Under the optimum conditions, the enrichment factors were in the range of 51-108. Linearity was obtained in the range 0.5-400 ng mL(-1) (tetramethrin) and 5-400 ng mL(-1) (fenpropathrin, deltamethrin and permethrin) with the correlation coefficients (R(2)) greater than 0.995. Detection limits were 0.05-2 ng mL(-1) (water samples) and 0.02-2.0 ng g(-1) (vegetable samples). The relative standard deviations of peak area varied from 1.8 to 2.5% (n=10). The extraction recoveries of the four pyrethroids in field water and vegetable samples were 91.7-104.5%. The proposed method has high potential for use as a sensitive method for determination of pyrethroid residues in water and vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA

    Science.gov (United States)

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597

  17. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA.

    Science.gov (United States)

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T G Emyr; Field, Linda M; Schmehl, Daniel; Ellis, James D; Krieger, Klemens; Williamson, Martin S

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

  18. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth

    2011-01-01

    Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C......-terminal truncated form of chiA lacking a putative chitin-binding domain was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3) with an N-terminal (His)(6) tag. The purified enzyme hydrolyzes 4-nitrophenyl N,N'-diacetyl-ß-D-chitobioside, 4-nitrophenyl ß...

  19. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Neelamegan Dhamodharan

    2012-06-01

    Full Text Available Abstract Background Anandamide (Arachidonoyl ethanolamide is a potent bioactive lipid studied extensively in humans, which regulates several neurobehavioral processes including pain, feeding and memory. Bioactivity is terminated when hydrolyzed into free arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH. In this study we report the identification of a FAAH homolog from Dictyostelium discoideum and its function to hydrolyze anandamide. Results A putative FAAH DNA sequence coding for a conserved amidase signature motif was identified in the Dictyostelium genome database and the corresponding cDNA was isolated and expressed as an epitope tagged fusion protein in either E.coli or Dictyostelium. Wild type Dictyostelium cells express FAAH throughout their development life cycle and the protein was found to be predominantly membrane associated. Production of recombinant HIS tagged FAAH protein was not supported in E.coli host, but homologous Dictyostelium host was able to produce the same successfully. Recombinant FAAH protein isolated from Dictyostelium was shown to hydrolyze anandamide and related synthetic fatty acid amide substrates. Conclusions This study describes the first identification and characterisation of an anandamide hydrolyzing enzyme from Dictyostelium discoideum, suggesting the potential of Dictyostelium as a simple eukaryotic model system for studying mechanisms of action of any FAAH inhibitors as drug targets.

  20. Hydrolyzed infant formula and early β-cell autoimmunity

    DEFF Research Database (Denmark)

    Knip, Mikael; Åkerblom, Hans K; Becker, Dorothy

    2014-01-01

    -associated autoantibodies out of 4 analyzed. Autoantibodies to insulin, glutamic acid decarboxylase, and the insulinoma-associated-2 (IA-2) molecule were analyzed using radiobinding assays and islet cell antibodies with immunofluorescence during a median observation period of 7.0 years (mean, 6.3 years). RESULTS......IMPORTANCE: The disease process leading to clinical type 1 diabetes often starts during the first years of life. Early exposure to complex dietary proteins may increase the risk of β-cell autoimmunity in children at genetic risk for type 1 diabetes. Extensively hydrolyzed formulas do not contain...... intact proteins. OBJECTIVE: To test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of diabetes-associated autoantibodies in young children. DESIGN, SETTING, AND PARTICIPANTS: A double-blind randomized clinical trial of 2159 infants with HLA...

  1. Efficacy of mosquito nets treated with a pyrethroid-organophosphorous mixture against Kdr- and Kdr+ malaria vectors (Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Darriet F.

    2003-12-01

    Full Text Available In order to prevent the resistance of Anopheles gambiae s.l. to pyrethroids from spreading too quickly and to lengthen the effectiveness of insecticide impregnated mosquito nets, it has recently been suggested to use mixtures of insecticides that have different modes of action. This study presents the results obtained with tulle mosquito nets treated with bifenthrin (a pyrethroid] and chlorpyrifos-methyl (an organophosphorous both separately and in mixture on two strains of An. gambiae, one sensitive to all insecticides, and the other resistant to pyrethroids. The values of KDt50 and KDt95 and the mortality induced with the mixture of bifenthrin (25 mg/m2 and chlorpyrifos-methyl (4.5 mg/m2 show a significant synergistic effect on the strain of An. gambiae susceptible to insecticides. However, the tested combination does not induce any synergistic effect on the VKPR strain selected with permethrin, but only enhances the effectiveness of the two insecticides taken separately.

  2. Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum

    International Nuclear Information System (INIS)

    Ortigueira, Joana; Pinto, Tiago; Gouveia, Luísa; Moura, Patrícia

    2015-01-01

    The biological hydrogen production from Spirogyra sp. biomass was studied in a SBR (sequential batch reactor) equipped with a biogas collecting and storage system. Two acid hydrolysis pre-treatments (1N and 2N H 2 SO 4 ) were applied to the Spirogyra biomass and the subsequent fermentation by Clostridium butyricum DSM 10702 was compared. The 1N and 2N hydrolyzates contained 37.2 and 40.8 g/L of total sugars, respectively, and small amounts of furfural and HMF (hydroxymethylfurfural). These compounds did not inhibit the hydrogen production from crude Spirogyra hydrolyzates. The fermentation was scaled up to a batch operated bioreactor coupled with a collecting system that enabled the subsequent characterization and storage of the biogas produced. The cumulative hydrogen production was similar for both 1N and 2N hydrolyzate, but the hydrogen production rates were 438 and 288 mL/L.h, respectively, suggesting that the 1N hydrolyzate was more suitable for sequential batch fermentation. The SBR with 1N hydrolyzate was operated continuously for 13.5 h in three consecutive batches and the overall hydrogen production rate and yield reached 324 mL/L.h and 2.59 mol/mol, respectively. This corresponds to a potential daily production of 10.4 L H 2 /L Spirogyra hydrolyzate, demonstrating the excellent capability of C. butyricum to produce hydrogen from microalgal biomass. - Highlights: • Production of biohydrogen from crude Spirogyra hydrolyzates. • Set-up of a collecting and storage system for continuous biogas sampling. • The hydrogen production rate is 324 mL/L.h in the SBR (sequential batch reactor). • The SBR produces daily an equivalent to 10.4 L H 2 /L of crude Spirogyra hydrolyzate

  3. The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation

    Directory of Open Access Journals (Sweden)

    R.C.L.B. Rodrigues

    2001-09-01

    Full Text Available This paper analyzes the influence of pH, temperature and degree of hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after the vacuum evaporation process. Furfural and 5-Hydroxymethylfurfural were almost totally removed in all the experiments, irrespective of pH and temperature and whether the charcoal was added before or after the vacuum evaporation process. Adding activated charcoal before the vacuum evaporation process favored the removal of phenolic compounds for all values of pH. Acetic acid, on the contrary, was most effectively removed when the activated charcoal was added after the vacuum evaporation process at an acid pH (0.92 and at the highest degree of hydrolyzate concentration (f=4. However, addition of activated charcoal before or after vacuum evaporation at an acid pH (0.92 and at the highest degree of hydrolyzate concentration (f=4 favored the removal of both acetic acid and phenolic compounds.

  4. Leg loss in Lutzomyia longipalpis (Diptera: Psychodidae) due to pyrethroid exposure: Toxic effect or defense by autotomy?

    Science.gov (United States)

    Santamaría, E; Cabrera, O L; Avendaño, J; Pardo, R H

    2016-01-01

    Phlebotomine sandflies lose their legs after exposure to pyrethroids. In some insects leg loss helps to defend them from intoxication and predation, a phenomenon known as autotomy. A field observation has shown that sandflies that have lost some legs are still able to blood-feed. The aims of the study were to determine whether leg loss in sandflies, after exposure to deltamethrin, is due to autotomy and to establish the effect of the leg loss on blood-feeding. Two experiments were carried out with Lutzomyia longipalpis: (i) Females were individually exposed to a sublethal time of deltamethrin and mortality and the number of leg loss were recorded; and (ii) Groups of females with complete legs or with 1-3 legs lost due to pyrethroid exposure were offered a blood meal and percentages of blood-fed and fully-fed females were recorded. Most females lost a median of 1 leg within 1-48 h post-exposure to deltamethrin. Mortality (after 24 h) was significantly higher for exposed females with lost legs (31.1%), compared to exposed females with complete legs (7.3%), and there were no differences in mortality between females with complete legs and the control (unexposed females). There were no differences between the three treatments in the percentages of blood-fed and fully-fed females. Leg loss in sandflies is a toxic effect of pyrethroids and there was no evidence of autotomy. The loss of up to three legs after exposure to pyrethroids does not affect blood-feeding behaviour in laboratory and probably also in wild conditions.

  5. IN VITRO ESTIMATES OF METABOLIC PARAMETERS AND THEIR USE IN PREDICTIVE PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING (PBPK) OF THE TYPE I PYRETHROIDS PERMETHRIN AND BIFENTHRIN

    Science.gov (United States)

    Pyrethroids are a class of neurotoxic insecticides that are used in a variety of agricultural and household activities. Hepatic clearance of the Type I pyrethroids permethrin and bifenthrin may be a critical determinant of their toxic effect. Rat LD50s reported in the literatur...

  6. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA.

    Directory of Open Access Journals (Sweden)

    Joel González-Cabrera

    Full Text Available The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

  7. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes

    International Nuclear Information System (INIS)

    Choi, J.-S.; Soderlund, David M.

    2006-01-01

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1

  8. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    Science.gov (United States)

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  9. Extensive protein hydrolyzation is indispensable to prevent IgE-mediated poultry allergen recognition in dogs and cats.

    Science.gov (United States)

    Olivry, Thierry; Bexley, Jennifer; Mougeot, Isabelle

    2017-08-17

    The central premise for the commercialization of diets with hydrolyzed ingredients is that the small-sized digested peptides would be unable to crosslink allergen-specific IgE at the surface of tissue mast cells and induce their degranulation. Evidence for the validity of this concept to diagnose food allergies in dogs and cats is limited, however. Our objectives were to study the recognition of standard and variably hydrolyzed poultry extracts by sera from dogs and cats with elevated chicken-specific serum IgE. Forty sera from dogs and 40 from cats with undetectable, low, medium or high serum levels of chicken-specific IgE were tested by ELISA on plates coated with the positive controls chicken, duck and turkey meat extracts and the negative controls beef meat (dogs) or wheat (cats). Plates were also coated with a non-hydrolyzed chicken meal, and mildly- or extensively-hydrolyzed poultry feather extracts. The frequencies of dogs with positive IgE against the various extracts were: chicken meat: 100%, duck and turkey meats: 97%, beef meat: 3%, non-hydrolyzed chicken meal: 73%, mildly-hydrolyzed poultry feathers: 37% and extensively-hydrolyzed poultry feathers: 0%. For cats, these respective percentages were (with wheat replacing beef as a negative control): 100, 84, 97, 7, 7, 0 and 0%. To detect any allergenic cross-reactivity between poultry meat-based and feather hydrolysate-derived extracts, an IgE ELISA inhibition was also done. Ten canine sera with the highest level of anti-poultry IgE in the previous experiment were incubated overnight with a previously optimized 50 μg amount of each of the extracts used above. We performed ELISA on plates coated with chicken, duck or turkey meats with or without inhibitors. The median inhibition percentages after incubation with the non-hydrolyzed chicken meal were ~22%, with the mildly-hydrolyzed poultry feathers: 14-22%, and those with the extensively-hydrolyzed poultry feathers: 5 to 10%; the last inhibition level was

  10. Hydrolyzable tannins in Bixa Orellana L.

    OpenAIRE

    Lima, Ricardo Jorge Cruz; Moreno, Antonio Jeferson de Deus; Castro, Solange Fernanda Loureiro de; Gonçalves, José de Ribamar Santos; Olivera, Antonio Benedito de; Sasaki, José Marcos; Freire, Paulo de Tarso Cavalcante

    2006-01-01

    The aqueous material found in the fruits of Bixa Orellana L. was collected, dried, and characterized using several experimental techniques, namely phytochemical analysis in order to identify the biologically active constituents, Fourier transform infrared (FT-IR) spectroscopy for vibrational analysis, and X-ray powder diffraction in order to identify the presence of crystalline phases in the sample. The results showed that the aqueous material possesses high concentrations of hydrolyzable tan...

  11. Pyrethroid pesticide-induced alterations in dopamine transporter function

    International Nuclear Information System (INIS)

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2006-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD

  12. A Novel Lactone-Forming Carboxylesterase: Molecular Identification of a Tuliposide A-Converting Enzyme in Tulip1[W

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-01-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185

  13. Chemical and proteolysis-derived changes during long-term storage of lactose-hydrolyzed ultrahigh-temperature (UHT) milk.

    Science.gov (United States)

    Jansson, Therese; Jensen, Hanne B; Sundekilde, Ulrik K; Clausen, Morten R; Eggers, Nina; Larsen, Lotte B; Ray, Colin; Andersen, Henrik J; Bertram, Hanne C

    2014-11-19

    Proteolytic activity in milk may release bitter-tasting peptides and generate free amino terminals that react with carbohydrates, which initiate Maillard reaction. Ultrahigh temperature (UHT) heat treatment inactivates the majority of proteolytic enzymes in milk. In lactose-hydrolyzed milk a β-galactosidase preparation is applied to the milk after heat treatment, which has proteolytic side activities that may induce quality deterioration of long-term-stored milk. In the present study proteolysis, glycation, and volatile compound formation were investigated in conventional (100% lactose), filtered (60% lactose), and lactose-hydrolyzed (<1% lactose) UHT milk using reverse phase high-pressure liquid chromatography-mass spectrometry, proton nuclear magnetic resonance, and gas chromatography-mass spectrometry. Proteolysis was observed in all milk types. However, the degree of proteolysis was significantly higher in the lactose-hydrolyzed milk compared to the conventional and filtered milk. The proteins most prone to proteolysis were β-CN and αs1-CN, which were clearly hydrolyzed after approximately 90 days of storage in the lactose-hydrolyzed milk.

  14. LABORATORY PROTECTION RATE OF TORN BEDNETS TREATED WITH THREE DOSAGES OF PYRETHROIDE AGAINST ANOPHELES CULICIFACIES

    Directory of Open Access Journals (Sweden)

    G. Babaee

    2007-05-01

    Full Text Available Evaluated under laboratory condition. The objective of the present study was to observe the effect of impregnated torn bednets on the number of bites by An. culicifacies A glass made tunnel test was designed to The effect of torn bednets treated with three dosages of cyfluthrin 5% EW, were induce hungry female mosquitoes to pass through holes cut in the pyrethroid treated nets. A guinea pig used as bait to attract mosquitoes through circular holes in the netting. With untreated netting, 72-87% of laboratory-reared females passed through the holes overnight, 64-92% blood-fed successfully and 0.3/9-4/3% died. When the netting was treated with cyfluthrin at doses of 25, 50 and 100 mg a.i./m2, the entry Index (the proportions that passed through the holes overnight were 43.37%, 42.82% and 24.72%; mortality rates were 66.31%, 81.45% and 95.99%; and the feeding rate were 45%, 27% and 3%. In conclusion it should be stressed that efficacy of pyrethroid impregnated bednets using “Tunnel Tests” showing acceptable protection rate both in lower and higher dosages as well as cause dead in the blood-fed mosquitoes. In addition, the higher dosages of these three dosages pyrethroid provided good levels of protection against An. culicifacies.

  15. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides.

    Science.gov (United States)

    Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S

    2014-08-01

    The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.

  16. Measurement of Pyrethroids and Their Environmental Degradates in Fruits and Vegetables using a Modification of the Quick Easy Cheap Effective Rugged Safe (QuEChERS) Method

    Science.gov (United States)

    Pyrethroid insecticides are used extensively in agriculture and they, as well as their environmental degradates, may remain as residues on food products such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring ...

  17. Distribution of Pyrethroid Resistant Populations of Triatoma infestans in the Southern Cone of South America.

    Directory of Open Access Journals (Sweden)

    Marinely Bustamante Gomez

    2016-03-01

    Full Text Available A number of studies published during the last 15 years showed the occurrence of insecticide resistance in Triatoma infestans populations. The different toxicological profiles and mechanisms of resistance to insecticides is due to a genetic base and environmental factors, being the insecticide selective pressure the best studied among the last factors. The studies on insecticide resistance on T. infestans did not consider the effect of environmental factors that may influence the distribution of resistance to pyrethroid insecticides. To fill this knowledge gap, the present study aims at studying the association between the spatial distribution of pyrethroid resistant populations of T. infestans and environmental variables.A total of 24 articles reporting on studies that evaluated the susceptibility to pyrethroids of 222 field-collected T. infestans populations were compiled. The relationship between resistance occurrence (according to different criteria with environmental variables was studied using a generalized linear model. The lethal dose that kills 50% of the evaluated population (LD50 showed a strong linear relationship with the corresponding resistance ratio (RR50. The statistical descriptive analysis of showed that the frequency distribution of the Log (LD50 is bimodal, suggesting the existence of two statistical groups. A significant model including 5 environmental variables shows the geographic distribution of high and low LD50 groups with a particular concentration of the highest LD50 populations over the region identified as the putative center of dispersion of T. infestans.The occurrence of these two groups concentrated over a particular region that coincides with the area where populations of the intermediate cytogenetic group were found might reflect the spatial heterogeneity of the genetic variability of T. infestans, that seems to be the cause of the insecticide resistance in the area, even on sylvatic populations of T. infestans

  18. Is imidacloprid an effective alternative for controlling pyrethroid-resistant populations of Triatoma infestans (Hemiptera: Reduviidae in the Gran Chaco ecoregion?

    Directory of Open Access Journals (Sweden)

    Guillermo Carvajal

    2014-09-01

    Full Text Available The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p < 0.01. A spot-on formulation of imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level.

  19. Investigation of hydrolyzed polyacrylonitrile fibers utilization for the removal of strontium from liquid nuclear waste

    International Nuclear Information System (INIS)

    Kaplan, U.; Altas, Y.

    2009-01-01

    In this study polyacrylonitrile fiber (PANF) was hydrolyzed both with sodium and potassium hydroxide solutions using alkali hydrolysing method and hydrolyzed polyacrylonitrile fibers (HPANF) were obtained. These two types of hydrolyzed fibers were compared taking into consideration strontium adsorption capacities and it was decided that the hydrolysis with KOH solution is more convenient. The hydrolyzed polyacrylonitrile fiber was characterized by DTA/TGA, FTIR and SEM analysis. The adsorption behaviors of HPANF towards Sr ions was investigated by batch technique, the parameters affect the strontium adsorption such as the initial pH of the solution, Sr concentration, temperature, shaking time, adsorbent dose (V/m ratio) were determined. The adaptation of the obtained adsorption equilibrium data to Langmuir and Freundlich isotherm models were investigated and some of the thermodynamic values of the system (ΔGo, ΔHo, ΔSo) were calculated.

  20. Research observation: Hydrolyzable and condensed tannins in plants of the northwest

    Science.gov (United States)

    Gonzalez-Hernandez, M. P.; Karchesy, J.; Starkey, Edward E.

    2003-01-01

    Tannins are secondary metabolites that may influence feeding by mammals on plants. We analyzed hydrolyzable and condensed tannins in 30 plant species consumed by livestock and deer, as a preliminary attempt to study their possible implications on browsing and grazing in forest ecosystems. Heathers (Ericaceae) and plants of the Rose (Rosaceae) family had tannins, while forbs, grasses and shrubs other than the heathers did not show astringency properties. We found the highest tannin content of all the species in Rubus sp., with the highest value around 180 mg TAE/g dry weight in spring. Potentilla erecta, Alnus glutinosa and Quercus robur were next with 57 to 44 mg TAE/g dw. Total tannins in heathers ranged from 22 to 36 mg TAE/g dw. Levels of condensed tannins were higher than hydrolyzable for most of the species. Only Betula alba, Calluna vulgaris, Pteridium aquilinum and Vaccinium myrtillus had 100% hydrolyzable tannins. Tannin content of the species changed seasonally with highest values during the growing season, corresponding to late winter or early spring, depending on the species.

  1. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  2. Dipeptidyl peptidase IV inhibitory activity of protein hydrolyzates ...

    African Journals Online (AJOL)

    Background: Type 2 diabetes is a chronic metabolic disorder. Recently, dipeptidyl peptidase IV (DPP-IV) inhibitors that protect incretin hormones from being cleaved by DPP-IV have been used as drugs to control glycemia. This study examined the potential hypoglycemic effect of amaranth grain storage protein hydrolyzates ...

  3. An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD.

    Science.gov (United States)

    He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong

    2018-01-24

    An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.

  4. Hydrolyzed collagen interferes with in vitro photoprotective effectiveness of sunscreens

    Directory of Open Access Journals (Sweden)

    Daniela D'Almeida Peres

    2017-06-01

    Full Text Available ABSTRACT The chronological skin aging is a progressive and natural process with genetic and physiological changes. However, ultraviolet (UV radiation may accelerate the oxidative stress, generating carcinogenesis and photoaging. Natural compounds and their applications are considered a trend in the cosmetic market. The protein-based film-forming compounds play an important role, once it collaborates for the better distribution of sunscreens on the skin. Here we investigated the in vitro photoprotective effectiveness of sunscreens containing the hydrolyzed collagen associated with UVA, UVB and/or inorganic filters. Sunscreens were developed with octocrylene (7.5%, butyl methoxydibenzoylmethane (avobenzone (3.0% and/or titanium dioxide (5.0%, associated or not with the hydrolyzed collagen (3.0%. In vitro photoprotective effectiveness was determined in a Labsphere(r UV2000S by the establishment of the sun protection factor (SPF and critical wavelength (nm values. Physicochemical and organoleptic characteristics were also assayed. The hydrolyzed collagen subjectively improved the formulation sensory characteristics. However, this bioactive compound led to a decrease of the SPF values of the photoprotective formulations containing octocrylene alone and octocrylene + butyl methoxydibenzoylmethane + TiO2. This inadequate interaction may be considered during the development of new sunscreens intended to contain protein-based components.

  5. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    Science.gov (United States)

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  6. Antimicrobial activity of tempeh gembus hydrolyzate

    Science.gov (United States)

    Noviana, A.; Dieny, F. F.; Rustanti, N.; Anjani, G.; Afifah, D. N.

    2018-02-01

    Tropical disease can be prevented by consumming fermented foods that have antimicrobial activity. One of them is tempeh gembus that has short shelf life. It can be overcome by processing it into hydrolyzate. This study aimed to determine antimicrobial activity of tempeh gembus hydrolyzate. Tempeh gembus was made of local soybean from Grobogan. They were added 5,000 ppm, 8,000 ppm, and 10,000 ppm of bromelain enzyme (TGH BE). Antimicrobial effects of TGH BE were tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Steptococcus mutans. Antimicrobial test was carried out using Kirby-Bauer Disc Diffussion method. Soluble protein test used Bradford method. The largest inhibition zone against S. aureus and S. mutans were shown by TGH BE 8,000 ppm, 0.89±0.53 mm and 2.40±0.72 mm. The largest inhibition zone of B. subtilis, 7.33±2,25 mm, was shown by TGH BE 5,000 ppm. There wasn’t antimicrobial effect of TGH BE against E. coli. There weren’t significant differences of soluble protein (P=0.293) and the inhibition zones againt S. aureus (P = 0.967), E. coli (P = 1.000), B. subtilis (P = 0.645), S. mutans (P=0.817) of all treatments. There were antimicrobial activities of TGH BE against S. aureus, B. subtilis, and S. mutans.

  7. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin

    NARCIS (Netherlands)

    N'Guessan, R.; Boko, P.; Odjo, A.; Knols, B.G.J.; Akogbeto, M.; Rowland, M.

    2009-01-01

    Objective To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Method Eight-week trial conducted in experimental

  8. Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion.

    Science.gov (United States)

    Francavilla, Ruggiero; De Angelis, Maria; Rizzello, Carlo Giuseppe; Cavallo, Noemi; Dal Bello, Fabio; Gobbetti, Marco

    2017-07-15

    The aim of this study was to demonstrate the capacity of probiotic lactobacilli to hydrolyze immunogenic gluten peptides. Eighteen commercial strains of probiotic lactobacilli with highly variable peptidase activity (i.e., aminopeptidase N, iminopeptidase, prolyl endopeptidyl peptidase, tripeptidase, prolidase, prolinase, and dipeptidase), including toward Pro-rich peptides, were tested in this study. Ten probiotic strains were selected on the basis of their specific enzyme activity. When pooled, these 10 strains provided the peptidase portfolio that is required to completely degrade the immunogenic gluten peptides involved in celiac disease (CD). The selected probiotic mixture was able to completely hydrolyze well-known immunogenic epitopes, including the gliadin 33-mer peptide, the peptide spanning residues 57 to 68 of the α9-gliadin (α9-gliadin peptide 57-68), A-gliadin peptide 62-75, and γ-gliadin peptide 62-75. During digestion under simulated gastrointestinal conditions, the pool of 10 selected probiotic lactobacilli strongly hydrolyzed the wheat bread gluten (ca. 18,000 ppm) to less than 10 ppm after 360 min of treatment. As determined by multidimensional chromatography (MDLC) coupled to nanoelectrospray ionization (nano-ESI)-tandem mass spectrometry (MS/MS), no known immunogenic peptides were detected in wheat bread that was digested in the presence of the probiotics. Accordingly, the level of cytokines (interleukin 2 [IL-2], IL-10, and interferon gamma [IFN-γ]) produced by duodenal biopsy specimens from CD patients who consumed wheat bread digested by probiotics was similar to the baseline value (negative control). Probiotics that specifically hydrolyze gluten polypeptides could also be used to hydrolyze immunogenic peptides that contaminate gluten-free products. This could provide a new and safe adjunctive therapy alternative to the gluten-free diet (GFD). IMPORTANCE This study confirmed that probiotic Lactobacillus strains have different enzymatic

  9. Determination of Pyrethroids in Tea Brew by GC-MS Combined with SPME with Multiwalled Carbon Nanotube Coated Fiber.

    Science.gov (United States)

    Ren, Dongxia; Sun, Chengjun; Ma, Guanqun; Yang, Danni; Zhou, Chen; Xie, Jiayu; Li, Yongxin

    2018-01-01

    A new method has been developed to simultaneously determine 7 pyrethroid residues in tea brew using gas chromatography-mass spectrometry (GC-MS) combined with solid phase microextraction (SPME) with multiwalled carbon nanotubes (MWCNTs) coated fiber. The MWCNTs coated fiber of SPME was homemade by using stainless steel wire as coating carrier and polyacrylonitrile (PAN) solution as adhesive glue. Under the optimized conditions, a good linearity was shown for bifenthrin, fenpropathrin, permethrin, and cyfluthrin in 1-50 ng mL -1 and for cypermethrin, fenvalerate, and deltamethrin in 5-50 ng mL -1 . The correlation coefficients were in the range of 0.9948-0.9999. The average recoveries of 7 pyrethroids were 94.2%-107.3% and the relative standard deviations (RSDs) were less than 15%. The detection limit of the method ranged from 0.12 to 1.65 ng mL -1 . The tea brew samples made from some commercial tea samples were analyzed. Among them, bifenthrin, fenpropathrin, and permethrin were found. The results show that the method is rapid and sensitive and requires low organic reagent consumption, which can be well used for the detection of the pyrethroids in tea brew.

  10. The biological activity of a novel pyrethroid: metofluthrin.

    Science.gov (United States)

    Sugano, Masayo; Ishiwatari, Takao

    2012-01-01

    Metofluthrin (commercial name: SumiOne(®), Eminence(®)) is a novel pyrethroid insecticide developed by Sumitomo Chemical Co., Ltd. Metofluthrin has extremely high insecticidal activity to various pest insects, especially to mosquitoes. In addition, Metofluthrin has relatively high volatility and low mammalian toxicity. Metofluthrin is therefore suitable for use not only in conventional mosquito control formulations such as coils and liquid vaporizers, but also in a variety of novel devices that do not require heating, such as fan vaporizers and paper and resin emanators. Here we describe the insecticidal activity of Metofluthrin mainly against mosquitoes in various formulations in both laboratory and field trials.

  11. Biannual monitoring of pyrethroid and neonicotinoid susceptibility in Danish pollen beetle (Meligethes aeneus F.) populations

    DEFF Research Database (Denmark)

    Kaiser, Caroline; Kristensen, Michael; Jensen, Karl-Martin Vagn

    2015-01-01

    ) were used. Pollen beetle populations were collected from 47 locations of Denmark with the help of the consultants and the farmers of the various regions in 2014. Further six populations were tested from Sweden and one from Germany. In the following year 2015, the monitoring continued to find out......The pollen beetle (Meligethes aeneus F.) is a serious pest in the northern countries in oilseed rape. To determine the present level of pyrethroid and neonicotinoid susceptibility of Danish pollen beetle populations, standardized methods recommended by IRAC (Insecticide Resistance Action Committee......, if the resistance level which was determined in 2014 was stable in selected regions. Therefore pollen beetle populations from 14 locations in Denmark and five locations in Germany have been tested. For all tests the standardised methods for pyrethroids, the Adult-vial-test No. 11 and the Adult-vials-test No. 21...

  12. Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Bao, Yan-Yuan; Li, Bao-Ling; Liu, Zhao-Bu; Xue, Jian; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2010-09-01

    The widespread use of insecticides has caused the resurgence of the brown planthopper, Nilaparvata lugens, in Asia. In this study, we investigated an organo-phosphorous insecticide, triazophos, and its ability to induce gene expression variation in female N. lugens nymphs just before emergence. By using the suppression subtractive hybridization method, a triazophos-induced cDNA library was constructed. In total, 402 differentially expressed cDNA clones were obtained. Real-time qPCR analysis confirmed that triazophos up-regulated the expression of six candidate genes at the transcript level in nymphs on day 3 of the 5th instar. These genes encode N. lugens vitellogenin, bystin, multidrug resistance protein (MRP), purine nucleoside phosphorylase (PNP), pyrroline-5-carboxylate reductase (P5CR) and carboxylesterase. Our results imply that the up-regulation of these genes may be involved in the induction of N. lugens female reproduction or resistance to insecticides.

  13. EPA's SHEDS-multimedia model: children's cumulative pyrethroid exposure estimates and evaluation against NHANES biomarker data

    Science.gov (United States)

    The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cum...

  14. Metabolic resistance in Nilaparvata lugens to etofenprox, a non-ester pyrethroid insecticide.

    Science.gov (United States)

    Sun, Huahua; Yang, Baojun; Zhang, Yixi; Liu, Zewen

    2017-03-01

    Etofenprox, a non-ester pyrethroid insecticide, will be registered to control rice pests such as the brown planthopper (BPH, Nilaparvata lugens Stål) in mainland China. Insecticide resistance is always a problem to the effective control of N. lugens by chemical insecticides. An etofenprox resistance selection of N. lugens was performed in order to understand the related mechanisms. Through successive selection by etofenprox for 16 generations in the laboratory, an etofenprox-resistant strain (G16) with the resistance ratio (RR) of 422.3-fold was obtained. The resistance was partly synergised (2.68-fold) with the metabolic inhibitor PBO, suggesting a role for P450 monooxygenases. In this study, 11 P450 genes were significantly up-regulated in G16, among which eight genes was above 2.0-fold higher than that in US16, a population with the same origin of G16 but without contacting any insecticide in the laboratory. The expression level of four genes (CYP6AY1, CYP6FU1 and CYP408A1 from Clade 3, and CYP425A1 from Clade 4) were above 4.0-fold when compared to US16. RNA interference (RNAi) was performed to evaluate the importance of the selected P450s in etofenprox resistance. When CYP6FU1, CYP425A1 or CYP6AY1 was interfered, the susceptibility was significantly recovered in both G16 and US16, while the knockdown of CYP408A1 or CYP353D1 did not cause significant changes in etofenprox susceptibility. We supposed that CYP6FU1 was the most important P450 member for etofenprox resistance because of the highest expression level and the most noticeable effects on resistance ratios following RNAi. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dietary cumulative acute risk assessment of organophosphorus, carbamates and pyrethroids insecticides for the Brazilian population.

    NARCIS (Netherlands)

    Jardim, Andreia Nunes Oliveira; Brito, Alessandra Page; van Donkersgoed, Gerda; Boon, Polly E; Caldas, Eloisa Dutra

    Cumulative acute dietary risk assessments of organophosphorus (OPs), carbamates (CBs) and pyrethroids (PYs) were conducted for the Brazilian population. Residue data for 30786 samples of 30 foods were obtained from two national monitoring programs and one University laboratory, and consumption data

  16. Process for preventing discoloration in hydrolyzed ethylene-vinyl acetate copolymers by exposure to radiation

    International Nuclear Information System (INIS)

    Hoyt, J.M.; Koch, K.; Williams, M. Jr.

    1975-01-01

    A process for the hydrolysis of a solid interpolymer of an ethylenically unsaturated hydrocarbon and a vinyl ester of a 2 to 6 carbon atom aliphatic carboxylic acid to products having a low yellowness index involves contacting of the solid interpolymer with a substantially anhydrous hydrolyzing agent and subjecting at least one of said interpolymer and said hydrolyzing agent to radiation. (U.S.)

  17. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.

    Science.gov (United States)

    He, Yu-Cai; Ma, Cui-Luan; Xu, Jian-He; Zhou, Li

    2011-02-01

    Nitrile-hydrolyzing enzymes (nitrilase or nitrile hydratase/amidase) have been widely used in the pharmaceutical industry for the production of carboxylic acids and their derivatives, and it is important to build a method for screening for nitrile-hydrolyzing enzymes. In this paper, a simple, rapid, and high-throughput screening method based on the ferric hydroxamate spectrophotometry has been proposed. To validate the accuracy of this screening strategy, the nitrilases from Rhodococcus erythropolis CGMCC 1.2362 and Alcaligenes sp. ECU0401 were used for evaluating the method. As a result, the accuracy for assaying aliphatic and aromatic carboxylic acids was as high as the HPLC-based method. Therefore, the method may be potentially used in the selection of microorganisms or engineered proteins with nitrile-hydrolyzing enzymes.

  18. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Directory of Open Access Journals (Sweden)

    Li-Wei Zou

    2017-06-01

    Full Text Available Human carboxylesterase 1 (hCE1, one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs were assayed using D-Luciferin methyl ester (DME and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA, and ursolic acid (UA were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22, led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking

  19. Thermostable cellulase from a thermomonospora gene

    Science.gov (United States)

    Wilson, D.B.; Walker, L.P.; Zhang, S.

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity. 3 figs.

  20. Novel ambler class A carbapenem-hydrolyzing beta-lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France.

    Science.gov (United States)

    Girlich, Delphine; Poirel, Laurent; Nordmann, Patrice

    2010-01-01

    A Pseudomonas fluorescens isolate (PF-1) resistant to carbapenems was recovered during an environmental survey performed with water from the Seine River (Paris). It expressed a novel Ambler class A carbapenemase, BIC-1, sharing 68 and 59% amino acid identities with beta-lactamases SFC-1 from Serratia fonticola and the plasmid-encoded KPC-2, respectively. beta-Lactamase BIC-1 hydrolyzed penicillins, carbapenems, and cephalosporins except ceftazidime and monobactams. The bla(BIC-1) gene was chromosomally located and was also identified in two other P. fluorescens strains isolated from the Seine River 3 months later.

  1. Measurement of pyrethroids and their environmental degradation products in fresh fruits and vegetables using a modification of the quick easy cheap effective rugged safe (QuEChERS) method

    Science.gov (United States)

    Pyrethroid insecticides are used extensively in agriculture, and they, as well as their environmental degradates, may remain as residues on foods such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring, it is ...

  2. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene.

    Science.gov (United States)

    Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley

    2014-06-01

    Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.

  3. Targeted application of an organophosphate-based paint applied on windows and doors against Anopheles coluzzii resistant to pyrethroids under real life conditions in Vallée du Kou, Burkina Faso (West Africa).

    Science.gov (United States)

    Poda, Serge B; Soma, Dieudonné D; Hien, Aristide; Namountougou, Moussa; Gnankiné, Olivier; Diabaté, Abdoulaye; Fournet, Florence; Baldet, Thierry; Mas-Coma, Santiago; Mosqueira, Beatriz; Dabiré, Roch K

    2018-04-02

    A novel strategy applying an organophosphate-based insecticide paint on doors and windows in combination with long-lasting insecticide-treated nets (LLINs) was tested for the control of pyrethroid-resistant malaria vectors in a village setting in Vallée du Kou, a rice-growing area west of Burkina Faso. Insecticide Paint Inesfly 5A IGR™, comprised of two organophosphates and an insect growth regulator, was applied to doors and windows and tested in combination with pyrethroid-treated LLINs. The killing effect was monitored for 5 months by early morning collections of anophelines and other culicids. The residual efficacy was evaluated monthly by WHO bioassays using Anopheles gambiae 'Kisumu' and local populations of Anopheles coluzzii resistant to pyrethroids. The spatial mortality efficacy (SME) at distances of 1 m was also assessed against pyrethroid-susceptible and -resistant malaria vectors. The frequency of L1014F kdr and Ace-1 R G119S mutations was, respectively, reported throughout the study. The Insecticide Paint Inesfly 5A IGR had been tested in past studies yielding a long-term mortality rate of 80% over 12 months against An. coluzzii, the local pyrethroid-resistant malaria vector. The purpose of the present study is to test if treating smaller, targeted surfaces (e.g. doors and windows) was also efficient in killing malaria vectors. Treating windows and doors alone yielded a killing efficacy of 100% for 1 month against An. coluzzii resistant to pyrethroids, but efficacy reduced quickly afterwards. Likewise, WHO cone bioassays yielded mortalities of 80-100% for 2 months but declined to 90 and 40% 2 and 3 months after treatment, respectively. Mosquitoes exposed to insecticide paint-treated surfaces at distances of 1 m, yielded mortality rates of about 90-80% against local pyrethroids-resistant An. coluzzii during the first 2 months, but decreased to 30% afterwards. Anopheles coluzzii was reported to be exclusively the local malaria vector and

  4. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-05-01

    Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Immunotoxicity of the pyrethroid insecticides deltametrin and alpha-cypermetrin

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard; Claesson, M. H.; Ropke, C.

    1996-01-01

    The synthetic pyrethroids deltametrin and alpha-cypermetrin were studied for effects on the immune system in 28-day studies in F344 male rats. Sixteen rats per group were dosed with either deltametrin 0, 1, 5, or 10 mg/kg body wt./day or alpha-cypermetrin 0, 4, 8, or 12 mg/kg body wt./day in soy...... bean oil by gavage. Haematology, bone marrow cell counts, tests for natural killer (NK) cell activity and mitogen response (Con A and STM) as well as quantitation of lymphocyte subpopulations were performed. Spleen cells from immunized animals (six animals/group) were tested for antibody production...

  6. Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors

    Science.gov (United States)

    Hames, Bonnie R.; Sluiter, Amie D.; Hayward, Tammy K.; Nagle, Nicholas J.

    2004-05-18

    A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

  7. Research observation: Hydrolyzable and condensed tannins in plants of northwest Spain forests

    Science.gov (United States)

    Gonzalez-Hernandez, M. P.; Karchesy, J.; Starkey, E.E.

    2003-01-01

    Tannins are secondary metabolites that may influence feeding by mammals on plants. We analyzed hydrolyzable and condensed tannins in 30 plant species consumed by livestock and deer, as a preliminary attempt to study their possible implications on browsing and grazing in forest ecosystems. Heathers (Ericaceae) and plants of the Rose (Rosaceae) family had tannins, while forbs, grasses and shrubs other than the heathers did not show astringency properties. We found the highest tannin content of all the species in Rubus sp., with the highest value around 180 mg TAE/g dry weight in spring. Potentilla erecta, Alnus glutinosa and Quercus robur were next with 57 to 44 mg TAE/g dw. Total tannins in heathers ranged from 22 to 36 mg TAE/g dw. Levels of condensed tannins were higher than hydrolyzable for most of the species. Only Betula alba, Calluna vulgaris, Pteridium aquilinum and Vaccinium myrtillus had 100% hydrolyzable tannins. Tannin content of the species changed seasonally with highest values during the growing season, corresponding to late winter or early spring, depending on the species.

  8. Pyrethroid toxicity in silver catfish, Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Francisco P. Montanha

    2012-12-01

    Full Text Available This study aimed to determine both the lethal and sublethal concentrations of Cypermethrin in young Silver Catfish (Brazilian "Jundiá", Rhamdia quelen on aquatic environment during 96 hours, as well as to determine the Cypermethrin and Deltamethrin sublethal concentrations during the initial embryonic development period of Rhamdia quelen, and to verify their respective rates of fertilization, hatching and survival. Pyrethroid nowadays is a widely used insecticide, which presents a high toxicity to fish. In order to determine lethal and sublethal concentrations, 120 silver catfish were used; each one had an average weight of 59.58±4.50g and an average size of 20.33±2.34cm. Concentrations used were 0, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0, 15.0 and 20.0mg of Cypermethrin per liter of water (mg/L. Fish were exposed to the product in 30-liter fish tanks. In each fish tank there were four fishes and the product was applied three times, i.e., a total of twelve fish were exposed to the product at each application, and a total of 120 fish during the entire experiment (n=120. In order to determine the Cypermethrin and Deltamethrin sublethal concentrations during the initial embryonic development, ovulation induction was performed on female fishes using hormones, and then and egg collection was performed. The eggs were then hydrated and fertilized in Cypermethrin and Deltamethrin in different concentrations: 0.001, 0.01, 0.1, 1.0 and 10.0mg/L of Cypermethrin and 0.001, 0.01, 0.1, 0.5 and 1.0mg/L of Deltamethrin, in addition to the control group (0mg/L. After fertilization, the eggs were kept in containers with the respective pesticides of Cypermethrin and Deltamethrin until hatching, when hatching rate was verified. Then the alevins, from the hatching, were kept on their respective concentrations of Cypermethrin and Deltamethrin so that the survival rate could be analyzed regarding the tested insecticides, during both 12-hour and 24-hour periods

  9. Determination of Pyrethroids in Tea Brew by GC-MS Combined with SPME with Multiwalled Carbon Nanotube Coated Fiber

    Directory of Open Access Journals (Sweden)

    Dongxia Ren

    2018-01-01

    Full Text Available A new method has been developed to simultaneously determine 7 pyrethroid residues in tea brew using gas chromatography-mass spectrometry (GC-MS combined with solid phase microextraction (SPME with multiwalled carbon nanotubes (MWCNTs coated fiber. The MWCNTs coated fiber of SPME was homemade by using stainless steel wire as coating carrier and polyacrylonitrile (PAN solution as adhesive glue. Under the optimized conditions, a good linearity was shown for bifenthrin, fenpropathrin, permethrin, and cyfluthrin in 1–50 ng mL−1 and for cypermethrin, fenvalerate, and deltamethrin in 5–50 ng mL−1. The correlation coefficients were in the range of 0.9948–0.9999. The average recoveries of 7 pyrethroids were 94.2%–107.3% and the relative standard deviations (RSDs were less than 15%. The detection limit of the method ranged from 0.12 to 1.65 ng mL−1. The tea brew samples made from some commercial tea samples were analyzed. Among them, bifenthrin, fenpropathrin, and permethrin were found. The results show that the method is rapid and sensitive and requires low organic reagent consumption, which can be well used for the detection of the pyrethroids in tea brew.

  10. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    Science.gov (United States)

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  11. Development of methods and systems for preparing hydrolyzates for acetone-butanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M

    1967-01-01

    Optimal conditions for hydrolysis of vegetable waste material, e.g., maize stalks, sunflower parings, and hemp wastes, with concentrated or dilute H/sub 2/SO/sub 4/ were established. Hydrolyzates were neutralized with Ca(OH)/sub 2/ to pH 5.5 to 6.0 and the supernatant was sterilized at 110 to 115/sup 0/ for 15 to 20 minutes and used for fermentation in mixtures with molasses or mash. The maximum amount of fermentation inhibitors which can be present in hydrolyzate is: 0.1% furfural, 0.03% HCO/sub 2/H and 0.001% As.

  12. ELISA AND SOL-GEL BASED IMMUNOAFFINITY PURIFICATION OF THE PYRETHROID BIOALLETHRIN IN FOOD AND ENVIRONMENTAL SAMPLES

    Science.gov (United States)

    The peer-reviewed article describes the development of a new sol-gel based immunoaffinity purification procedure and an immunoassay for the pyrethroid bioallethrin. The immunoaffinity chromatography procedure was applied to food samples providing an efficient cleanup prior to im...

  13. Magnetic solid-phase extraction of five pyrethroids from environmental water samples followed by ultrafast liquid chromatography analysis.

    Science.gov (United States)

    Yu, Xi; Sun, Ying; Jiang, Chunzhu; Sun, Xiumin; Gao, Yan; Wang, Yuanpeng; Zhang, Hanqi; Song, Daqian

    2012-08-30

    In this study, the polystyrene-coated magnetic nanoparticles (MNPs/PSt) were successfully prepared and characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and vibrating sample magnetometry. The as-prepared MNPs/PSt were used as the adsorbent in magnetic solid phase extraction of five pyrethroids, including lambda-cyhalothrin, deltamethrin, esfenvalerate, permethrin, bifenthrin, in environmental water samples. The five pyrethroids were determined by ultra fast liquid chromatography-ultraviolet spectrometry. The influencing factors, including amount of MNPs/Pst, extraction time, pH value, type and volume of desorption solvent and desorption time, were examined and optimized. The extraction recoveries obtained with merely 50mg of MNPs/Pst were very satisfactory. The whole extraction process could be completed within 0.5h. The MNPs/PSt can be reused after an easy washing process. Thus, a simple, green, economical, time saving and effective method for pyrethroids analysis in environmental water samples was established. A high enrichment factor of 500 was achieved and the limits of detection for lambda-cyhalothrin, deltamethrin, esfenvalerate, permethrin, bifenthrin were 0.015±0.001 ng mL(-1), 0.012±0.001 ng mL(-1), 0.026±0.001 ng mL(-1), 0.020±0.001 ng mL(-1), 0.013±0.001 ng mL(-1), respectively. Recoveries obtained by analyzing spiked water samples at three concentration levels (0.100±0.001 ng mL(-1), 1.000±0.001 ng mL(-1), 10.000±0.001 ng mL(-1)) were between 78.97±8.38% and 96.05±8.38%. The standard curves for the five pyrethroids showed good linearity with the correlation coefficients in the range of 0.9994-0.9999. The intra-day and inter-day precision were satisfactory with the RSDs in the range of 2.05-5.52% and 2.73-8.38%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Behavioral effects of type II pyrethroid cyhalothrin in rats

    International Nuclear Information System (INIS)

    Righi, D. Abbud; Palermo-Neto, J.

    2003-01-01

    Synthetic pyrethroids such as cyhalothrin are extensively used in agriculture for the control of a broad range of ectoparasites in farm animals. It has been suggested that type II pyrethroids might induce anxiogenic-like effects in laboratory animals. The present study was undertaken to investigate a possible anxiogenic-like outcome of cyhalothrin in rats. Adult male rats were orally dosed for 7 days with 1.0, 3.0, or 7.0 mg/kg/day of cyhalothrin, present in a commercial formulation (Grenade Coopers do Brazil S.A.). The neurobehavioral changes induced by cyhalothrin as well as those produced on corticosterone serum levels were measured 24 h after the last treatment. Picrotoxin (1.0 mg/kg) was also acutely used as a positive control for anxiety. Results showed that cyhalothrin: (1) induced some signs and symptoms of intoxication that included salivation, tremors, and liquid feces; (2) reduced total locomotor activity in the open-field; (3) reduced the percentage of time spent in open-field central zones; (4) increased immobility time in the open-field; (5) reduced the percentage of time spent in plus-maze open arms exploration; (6) reduced the time spent in social interactions, and (7) increased the levels of serum corticosterone. The behavioral changes reported for cyhalothrin (3.0 mg/kg/day) were similar of those induced by picrotoxin. The no effect level dose obtained for cyhalothrin in this study was 1.0 mg/kg/day. These results provide experimental evidence that cyhalothrin induces anxiety-like symptoms, with this effect being dose-related. Thus, anxiety must be included among the several signs and symptoms of pesticide intoxication

  15. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana.

    Science.gov (United States)

    Mitchell, Sara N; Stevenson, Bradley J; Müller, Pie; Wilding, Craig S; Egyir-Yawson, Alexander; Field, Stuart G; Hemingway, Janet; Paine, Mark J I; Ranson, Hilary; Donnelly, Martin James

    2012-04-17

    In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.

  16. Hydrolyzed sugar in cattle feeding. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, L K; Kurilov, N V; Mysnik, N D

    1978-01-01

    Hydrolyzed wood molasses (32% sugar) at 1 kg/day increased weight gains of bulls 14.6% in 86-day exports when given along with urea-containing granulated feed and straw. Rumen volatile fatty acids, feed digestibility, and N utilization were increased in bulls, and cow productivity was increased along with a 0.1 to 0.15% increase in milk fat content. Sulfite liquor at 400 g/day (4% of feed) also increased weight gains 13.9% in bulls.

  17. Yield of ethanol from enzyme-hydrolyzed yam (Dioscorea rotundata ...

    African Journals Online (AJOL)

    Fresh whole yam tubers and cocoyam corms were separately processed into flours by washing, peeling, blanching, slicing,drying and milling. The flours were enzyme-hydrolyzed by mixing 500g of flour with 2Lof water followed by treatment with a combination of bacterial alpha amylase, limit dextrinase and fungal alpha ...

  18. Conflict of interest: use of pyrethroids and amidines against tsetse and ticks in zoonotic sleeping sickness endemic areas of Uganda.

    Science.gov (United States)

    Bardosh, Kevin; Waiswa, Charles; Welburn, Susan C

    2013-07-10

    Caused by trypanosomes and transmitted by tsetse flies, Human African Trypanosomiasis and bovine trypanosomiasis remain endemic across much of rural Uganda where the major reservoir of acute human infection is cattle. Following elimination of trypanosomes by mass trypanocidal treatment, it is crucial that farmers regularly apply pyrethroid-based insecticides to cattle to sustain parasite reductions, which also protect against tick-borne diseases. The private veterinary market is divided between products only effective against ticks (amidines) and those effective against both ticks and tsetse (pyrethroids). This study explored insecticide sales, demand and use in four districts of Uganda where mass cattle treatments have been undertaken by the 'Stamp Out Sleeping Sickness' programme. A mixed-methods study was undertaken in Dokolo, Kaberamaido, Serere and Soroti districts of Uganda between September 2011 and February 2012. This included: focus groups in 40 villages, a livestock keeper survey (n = 495), a veterinary drug shop questionnaire (n = 74), participatory methods in six villages and numerous semi-structured interviews. Although 70.5% of livestock keepers reportedly used insecticide each month during the rainy season, due to a variety of perceptions and practices nearly half used products only effective against ticks and not tsetse. Between 640 and 740 litres of insecticide were being sold monthly, covering an average of 53.7 cattle/km(2). Sales were roughly divided between seven pyrethroid-based products and five products only effective against ticks. In the high-risk HAT district of Kaberamaido, almost double the volume of non-tsetse effective insecticide was being sold. Factors influencing insecticide choice included: disease knowledge, brand recognition, product price, half-life and mode of product action, product availability, and dissemination of information. Stakeholders considered market restriction of non-tsetse effective products the most

  19. Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera).

    Science.gov (United States)

    Oliver, Caitlin J; Softley, Samantha; Williamson, Sally M; Stevenson, Philip C; Wright, Geraldine A

    2015-01-01

    Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.

  20. Effects of the pyrethroid insecticide gamma-cyhalothrin on aquatic invertebrates in laboratory and outdoor microcosm tests

    NARCIS (Netherlands)

    Wijngaarden, van R.P.A.; Barber, I.; Brock, T.C.M.

    2009-01-01

    The sensitivity of a range of freshwater lentic invertebrates to gamma-cyhalothrin (GCH), a single enantiomer of the synthetic pyrethroid lambda-cyhalothrin, was assessed in single species laboratory tests and an outdoor multi-species ecosystem test. The most sensitive species in the laboratory

  1. Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron.

    Science.gov (United States)

    Velki, Mirna; Meyer-Alert, Henriette; Seiler, Thomas-Benjamin; Hollert, Henner

    2017-12-01

    The zebrafish as a test organism enables the investigation of effects on a wide range of biological levels from molecular level to the whole-organism level. The use of fish embryos represents an attractive model for studies aimed at understanding toxic mechanisms and the environmental risk assessment of chemicals. In the present study, a zebrafish (Danio rerio) in vivo model was employed in order to assess the effects of two commonly used pesticides, the insecticide diazinon and the herbicide diuron, on zebrafish early life stages. Since it was previously established that diazinon and diuron cause effects at the whole-organism level, this study assessed the suborganismic responses to exposure to these pesticides and the enzymatic responses (biochemical level) and the gene expression changes (molecular level) were analyzed. Different exposure scenarios were employed and the following endpoints measured: acetylcholinesterase (AChE), carboxylesterase (CES), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) activities; and gene expressions of the corresponding genes: acetylcholinesterase (ache), carboxylesterase (ces2), cytochrome P450 (cyp1a), glutathione-S-transferase (gstp1), catalase (cat), glutathione peroxidase (gpx1a) and additionally glutathione reductase (gsr). Significant changes at both the biochemical and the molecular level were detected. In addition, different sensitivities of different developmental stages of zebrafish were determined and partial recovery of the enzyme activity 48h after the end of the exposure was observed. The observed disparity between gene expression changes and alterations in enzyme activities points to the necessity of monitoring changes at different levels of biological organization. Different exposure scenarios, together with a comparison of the responses at the biochemical and molecular level, provide valuable data on the effects of diazinon and diuron on low

  2. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Murakami Katsuji

    2009-10-01

    Full Text Available Abstract Background Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi. Results We compared A. cellulolyticus and T. reesei cellulase activity against the three lignocellulosic materials: eucalyptus, Douglas fir and rice straw. Saccharification analysis using the supernatant from each culture demonstrated that the enzyme mixture derived from A. cellulolyticus exhibited 2-fold and 16-fold increases in Filter Paper enzyme and β-glucosidase specific activities, respectively, compared with that derived from T. reesei. In addition, culture supernatant from A. cellulolyticus produced glucose more rapidly from the lignocellulosic materials. Meanwhile, culture supernatant derived from T. reesei exhibited a 2-fold higher xylan-hydrolyzing activity and produced more xylose from eucalyptus (72% yield and rice straw (43% yield. Although the commercial enzymes Acremonium cellulase (derived from A. cellulolyticus, Meiji Seika Co. demonstrated a slightly lower cellulase specific activity than Accellerase 1000 (derived from T. reesei, Genencor, the glucose yield (over 65% from lignocellulosic materials by Acremonium cellulase was higher than that of Accellerase 1000 (less than 60%. In addition, the mannan-hydrolyzing activity of Acremonium cellulase was 16-fold higher than that of Accellerase 1000, and the conversion of mannan to mannobiose and mannose by Acremonium cellulase was more efficient. Conclusion We investigated the hydrolysis of lignocellulosic materials by cellulase derived from two types of filamentous fungi. We

  3. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats.

    Science.gov (United States)

    Martínez, María-Aránzazu; Ares, Irma; Rodríguez, José-Luis; Martínez, Marta; Roura-Martínez, David; Castellano, Victor; Lopez-Torres, Bernardo; Martínez-Larrañaga, María-Rosa; Anadón, Arturo

    2018-08-01

    This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury. Copyright © 2018. Published by Elsevier B.V.

  4. Hydrolyzed Casein Reduces Diet-Induced Obesity in Male C57BL/6J Mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis H.; Tastesen, Hanne Sørup; Du, Zhen-Yu

    2013-01-01

    used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein......The digestion rate of dietary protein is a regulating factor for postprandial metabolism both in humans and animal models. However, few data exist about the habitual consumption of proteins with different digestion rates with regard to the development of body mass and diet-induced obesity. Here, we...... diets had higher spontaneous locomotor activity than mice fed intact casein. During the light phase, mice fed hydrolyzed casein tended (P = 0.08) to have a lower respiratory exchange ratio, indicating lower utilization of carbohydrates as energy substrate relative to those fed intact casein. In further...

  5. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  6. A comparison of the fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms.

    Science.gov (United States)

    Farmer, D; Hill, I R; Maund, S J

    1995-08-01

    : The fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) were investigated in replicated 25 m(3) pond mesocosms. Three pesticide treatments which simulated spray drift deposition were examined: 0.7 g a.i. ha(-1) cypermethrin and 0.17 and 1.7 g a.i. ha(-1) lambda-cyhalothrin. Based on the use rate and pesticidal activity of the chemicals, the cypermethrin and lower lambda-cyhalothrin rates were approximately equivalent. After applications, pyrethroid residues in the water column declined rapidly. Treatment-related effects were observed on some macroinvertebrate taxa, most notably the Asellidae and Gammaridae. Surfacedwelling insects also suffered initial knock-down, particularly in the 1.7 g a.i. ha(-1) lambda-cyhalothrin treatment, but there was recovery after the spray period. No adverse effects occurred on algae, macrophytes or zooplankton, but there were occasional enhancements (e.g. algal biomass and abundances of copepod nauplii and Rotifera) which may have been indirect effects. An overall comparison of the treatments indicated that the higher lambda-cyhalothrin rate had the greatest effects, whilst the cypermethrin application had a somewhat greater impact than the lower lambda-cyhalothrin treatment rate (due to effects on peracarid crustaceans). The study indicated that should spray drift occur at the levels expected for either pyrethroid's normal use patterns, potential impacts on natural aquatic ecosystems would be minor and transient.

  7. Baseline susceptibility to pyrethroid and organophosphate insecticides in two old world sand fly species (diptera: psychodidae)

    Science.gov (United States)

    A study was conducted with support from the Department of Defense’s Deployed Warfighter Protection (DWFP) Program to evaluate the susceptibility of two old world sand fly species, Phlebotomus papatasi and P. duboscqi, to a number of commonly used pyrethroid and organophosphate insecticides. A simpl...

  8. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  9. Polymer-coated magnetic nanospheres for preconcentration of organochlorine and pyrethroid pesticides prior to their determination by gas chromatography with electron capture detection

    International Nuclear Information System (INIS)

    Yang, Genggeng; He, Zeying; Liu, Xueke; Liu, Chang; Zhan, Jing; Liu, Donghui; Wang, Peng; Zhou, Zhiqiang

    2016-01-01

    Magnetic polymer nanospheres were prepared and used as adsorbents for the extraction of organochlorine and pyrethroid pesticides from water samples. The adsorbents were synthesized by mini emulsion polymerization of N-vinylimidazole and divinylbenzene and simultaneous encapsulation of oleic acid-coated Fe 3 O 4 nanoparticles. Following desorption with ethyl acetate, the target analytes β-hexachlorocyclohexane, δ-hexachlorocyclohexane, p,p’-DDE, heptachlor, trans-chlordan, cis-chlordan, bifenthrin, β-cypermethrin, δ-methrin, λ-cyhalothrin and esfenvalerate were determined by gas chromatography with electron capture detection. Desorption conditions, extraction times and sample volume were screened by Plackett-Burman design and optimized by Box-Behnken design. Under the optimum conditions, the organochlorines can be quantified in the 20 to 400 ng L −1 concentration range, and the pyrethroids in the 400 to 4000 ng L −1 concentration range. The recoveries of organochlorines and pyrethroids from spiked real water samples are between 77.6 and 97.3 %, with relative standard deviations between 0.9 and 10.0 %. The method for magnetic solid phase extraction described here is fast, simple and friendly to the environment. (author)

  10. Similarity of hydrolyzing activity of human and rat small intestinal disaccharidases

    Directory of Open Access Journals (Sweden)

    Oku T

    2011-06-01

    Full Text Available Tsuneyuki Oku¹, Kenichi Tanabe¹, Shigeharu Ogawa², Naoki Sadamori¹, Sadako Nakamura¹¹Graduate School of Human Health Science, University of Nagasaki, Siebold, Nagayo, Japan; ²Juzenkai Hospital, Kagomachi, Nagasaki, JapanBackground: The purpose of this study was to clarify whether it is possible to extrapolate results from studies of the hydrolyzing activity of disaccharidases from rats to humans.Materials and methods: We measured disaccharidase activity in humans and rats using identical preparation and assay methods, and investigated the similarity in hydrolyzing activity. Small intestinal samples without malignancy were donated by five patients who had undergone bladder tumor surgery, and homogenates were prepared to measure disaccharidase activity. Adult rat homogenates were prepared using small intestine.Results: Maltase activity was the highest among the five disaccharidases, followed by sucrase and then palatinase in humans and rats. Trehalase activity was slightly lower than that of palatinase in humans and was similar to that of sucrase in rats. Lactase activity was the lowest in humans, but was similar to that of palatinase in rats. Thus, the hydrolyzing activity of five disaccharidases was generally similar in humans and rats. The relative activity of sucrose and palatinase versus maltase was generally similar between humans and rats. The ratio of rat to human hydrolyzing activity of maltase, sucrase, and palatinase was 1.9–3.1, but this was not a significant difference. Leaf extract from Morus alba strongly inhibited the activity of maltase, sucrase, and palatinase, but not trehalase and lactase, and the degree of inhibition was similar in humans and rats. L-arabinose mildly inhibited sucrase activity, but hardly inhibited the activity of maltase, palatinase, trehalase and lactase in humans and rats. The digestibility of 1-kestose, galactosylsucrose, and panose by small intestinal enzymes was very similar between humans and

  11. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Directory of Open Access Journals (Sweden)

    Kerah-Hinzoumbé Clément

    2009-09-01

    Full Text Available Abstract Background Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance

  12. Characterization of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Liu, Jie; Huang, Wenwen; Han, Haitao; She, Changchun; Zhong, Guohua

    2015-08-01

    Synthetic pyrethroid fenpropathrin has received increasing attention because of its environmental contamination and toxic effects on non-target organisms including human beings. Here we report the degradation characteristics of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for pyrethroid bioremediation in soils. 50mg·L(-1) of fenpropathrin was decreased to 20.6mg·L(-1) by the enzymatic extracts (869.4mg·L(-1)) within 30min. Kinetic constants Km and Vm were determined to be 1006.7nmol·L(-1) and 56.8nmol·min(-1), respectively. Degradation products were identified as 3-phenoxybenzaldehyde, α-hydroxy-3-phenoxy-benzeneacetonitrile and phenol by gas chromatography-mass spectrometry (GC-MS). In addition to degradation of fenpropathrin, the cell-free extracts could degrade other pyrethroids including beta-cypermethrin, cyfluthrin, deltamethrin and cypermethrin. Additionally, the reaction conditions were optimized. In the sterile and non-sterile soils, 50mg·kg(-1) of fenpropathrin was reduced to 15.3 and 13.9mg·L(-1) in 1d, respectively. Sprayed 100 and 300mg·kg(-1) of fenpropathrin emulsifiable concentrate (EC), up to 84.6% and 92.1% of soil fenpropathrin were removed from soils within 7d, respectively. Taken together, our results depict the biodegradation characteristics of cell-free extracts from B. cereus ZH-3, highlight its promising potential in bioremediation of pyrethroid-contaminated soils and also provide new insights into the utilization of degrading microbes. Copyright © 2015. Published by Elsevier B.V.

  13. Knockdown resistance in pyrethroid-resistant horn fly (Diptera: Muscidae populations in Brazil Resistência Knockdown em populações de mosca-dos-chifres do Brasil resistentes aos piretróides

    Directory of Open Access Journals (Sweden)

    Gustavo A. Sabatini

    2009-09-01

    Full Text Available To investigate the kdr (knockdown resistance resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South were molecular screened through polymerase chain reaction (PCR. The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population. This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.Com o objetivo de verificar a ocorrência e determinar a frequência da mutação kdr (knock down resistance em populações de Haematobia irritans (mosca-dos-chifres resistentes aos piretróides, foram analisados 1.804 indivíduos de 37 populações de todas as Regiões do Brasil. Com exceção da Região Nordeste, o kdr (knock down resistance gene foi encontrado em populações de todas as regiões. A mutação não foi detectada em 87,08% dos indivíduos. Entretanto, o gene foi amplificado de 12,92% das moscas, das quais 11,70% se mostraram heterozigotas resistentes e 1

  14. Concentrations versus amounts of biomarkers in urine: a comparison of approaches to assess pyrethroid exposure

    Directory of Open Access Journals (Sweden)

    Bouchard Michèle

    2008-11-01

    Full Text Available Abstract Background Assessment of human exposure to non-persistent pesticides such as pyrethroids is often based on urinary biomarker measurements. Urinary metabolite levels of these pesticides are usually reported in volume-weighted concentrations or creatinine-adjusted concentrations measured in spot urine samples. It is known that these units are subject to intra- and inter-individual variations. This research aimed at studying the impact of these variations on the assessment of pyrethroid absorbed doses at individual and population levels. Methods Using data obtained from various adult and infantile populations, the intra and inter-individual variability in the urinary flow rate and creatinine excretion rate was first estimated. Individual absorbed doses were then calculated using volume-weighted or creatinine-adjusted concentrations according to published approaches and compared to those estimated from the amounts of biomarkers excreted in 15- or 24-h urine collections, the latter serving as a benchmark unit. The effect of the units of measurements (volume-weighted or creatinine adjusted concentrations or 24-h amounts on results of the comparison of pyrethroid biomarker levels between two populations was also evaluated. Results Estimation of daily absorbed doses of permethrin from volume-weighted or creatinine-adjusted concentrations of biomarkers was found to potentially lead to substantial under or overestimation when compared to doses reconstructed directly from amounts excreted in urine during a given period of time (-70 to +573% and -83 to +167%, respectively. It was also shown that the variability in creatinine excretion rate and urinary flow rate may introduce a bias in the case of between population comparisons. Conclusion The unit chosen to express biomonitoring data may influence the validity of estimated individual absorbed dose as well as the outcome of between population comparisons.

  15. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost.

    Directory of Open Access Journals (Sweden)

    Luiz Paulo Brito

    Full Text Available Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV, inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the

  16. The Study of Alginate and Whey Protein Hydrolyzed Suplementation Utilization for Cell Release and Microencapsulated Lactobacillus Acidophilus Viability in Probiotic Ice Cream

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi

    2013-10-01

    Full Text Available The objectives of this research were to increase viability and activity of L. acidophilus encapsulated with alginate and whey protein hydrolyzed for cell release and microencapsulated Lactobacillus acidophilus viability in probiotic ice cream. The methods used were factorial experiment using Completely Randomized Design. Data was analysed with Variance Analysis. The results showed that the interaction between alginate and whey protein hydrolyzed supplemented could be increased the function of CaCl2 and also encapsulated L. acidophilus viability. The used alginate of 1% and whey protein hydrolyzed supplemented of 0,5% produced encapsulated L. acidophilus viability higher than before, but however, the utilization of alginate of 1% and whey protein hydrolyzed supplemented of 0% could release a few cell. Therefore, the utilization of alginate 1% and whey protein hydrolyzed supplemented 0,5% in ice cream produced L. acidophilus highest than other.   Keywords :   Lactobacillus acidophilus, microencapsulation, alginate, whey protein hydrolyzed, cell release, ice cream

  17. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Science.gov (United States)

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  18. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Mercédès Charreton

    Full Text Available The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…, before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence since (i few studies are available on locomotion at this stage and (ii in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h, three pyrethroids, namely cypermethrin (2.5 ng/bee, tetramethrin (70 ng/bee, tau-fluvalinate (33 ng/bee and the neonicotinoid thiamethoxam (3.8 ng/bee caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field

  19. Pyrethroid Resistance Alters the Blood-Feeding Behavior in Puerto Rican Aedes aegypti Mosquitoes Exposed to Treated Fabric

    Science.gov (United States)

    Emerging insecticide resistance is a major issue for vector control; it decreases effectiveness of insecticides, thereby requiring greater quantities for comparable control with a net increase in risk of disease resurgence, product cost, and damage risk to the ecosystem. Pyrethroid resistance has b...

  20. Hydrolyzable tannin analysis in food.

    Science.gov (United States)

    Arapitsas, Panagiotis

    2012-12-01

    The discovery of plant polyphenols in food is perhaps one of the biggest breakthroughs in modern food science. Plant polyphenols are known for their role in food quality and safety, since they contribute significantly to taste, flavour, colour, stability etc., while they are increasingly recognised as important factors in long-term health, contributing towards reducing the risk of chronic disease. Almost 200years ago, hydrolyzable tannins (HTs) were the first group of plant polyphenols subjected to analytical chemical research. Despite the lack of commercially available standards, food analysis research offers a wealth of papers dealing with extraction optimisation, identification and quantification of HTs. The object of this review is to summarise analytical chemistry applications and the tools currently used for the analysis of HTs in food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  2. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    Directory of Open Access Journals (Sweden)

    Pablo Luis Santo-Orihuela

    2013-12-01

    Full Text Available The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia and from domiciliary areas, including El Palmar (Bolivia and La Pista (Argentina. Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR value (44.90 compared to the susceptible reference strain (NFS, whereas the Veinte de Octubre samples had the lowest value (0.50. Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively. The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP.

  3. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds.

    Science.gov (United States)

    Omar, Raed; Li, Liya; Yuan, Tao; Seeram, Navindra P

    2012-08-24

    Three new hydrolyzable tannins including two gallotannins, jamutannins A (1) and B (2), and an ellagitannin, iso-oenothein C (3), along with eight known phenolic compounds were isolated from the seeds of Eugenia jambolana fruit. The structures were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for α-glucosidase inhibitory effects compared to the clinical drug acarbose.

  5. Adsorption and desorption of hydrolyzed metal ions. 3. Scandium and chromium

    International Nuclear Information System (INIS)

    Gray, B.; Matijevic, E.; Clarkson Univ., Potsdam, NY

    1987-01-01

    Adsorption of scandium(III) and chromium(III) species on a PVC latex was measured using radioactive isotopes; the uptake increased with increasing pH. The data were interpreted by combining aspects of the models of James and Healy and also of Anderson and Bockris. The experimental and calculated results agree quite well for scandium, but not for chromium. The deviation in the latter case is believed to be due to polymerization of the hydrolyzed chromium cations and to the interaction of chromium with the anionic surface groups of the latex. Neither of these interactions occur with scandium. Hydrolyzed scandium species adsorbed on the latex were removed by acidifying the dispersion, while chromium complexes were not, substantiating the proposed difference in the chemical nature of chromium and scandium species at the solid/solution interface. 32 refs.; 8 figs.; 8 tabs

  6. Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål).

    Science.gov (United States)

    Vontas, J G; Small, G J; Hemingway, J

    2000-12-01

    Organophosphorus and carbamate insecticide resistance in Nilaparvata lugens is based on amplification of a carboxylesterase gene, Nl-EST1. An identical gene occurs in susceptible insects. Quantitative real-time PCR was used to demonstrate that Nl-EST1 is amplified 3-7-fold in the genome of resistant compared to susceptible planthoppers. Expression levels were similar to amplification levels, with 1-15-fold more Nl-EST1 mRNA in individual insects and 5-11-fold more Nl-EST1 mRNA in mass whole body homogenates of resistant females compared to susceptibles. These values corresponded to an 8-10-fold increase in esterase activity in the head and thorax of individual resistant insects. Although amplification, expression and activity levels of Nl-EST1 in resistant N. lugens were similar, the correlation between esterase activity and Nl-EST1 mRNA levels in resistant individuals was not linear.

  7. A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae

    NARCIS (Netherlands)

    Dermauw, W.; Osborne, E.J.; Clark, R.M.; Grbić, M.; Tirry, L.; Van Leeuwen, T.

    2013-01-01

    Background: The ABC (ATP-binding cassette) gene superfamily is widespread across all living species. The majority of ABC genes encode ABC transporters, which are membrane-spanning proteins capable of transferring substrates across biological membranes by hydrolyzing ATP. Although ABC transporters

  8. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    Science.gov (United States)

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C

  10. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities.

    Science.gov (United States)

    Kim, Jin Kyoung; Shin, So-Yeon; Moon, Jin Seok; Li, Ling; Cho, Seung Kee; Kim, Tae-Jip; Han, Nam Soo

    2015-06-01

    The aim of this study was to isolate dextran-hydrolyzing bacteria from the human intestines and to identify their dextranolytic enzymes. For this, dextranase-producing microorganisms were screened from fecal samples by using blue dextran-containing media. Colonies producing a decolorized zone were isolated and they were grouped using RAPD-PCR. 16S rRNA gene sequencing analysis revealed the isolates were Bacteroides (B.) thetaiotaomicron, B. ovatus, B. vulgatus, B. dorei, B. xylanisolvens, B. uniformis, and Veillonella (V.) rogosae. Thin layer chromatography analysis showed that the dextranases exhibit mainly endo-type activity and produce various oligosaccharides including isomaltose and isomaltotriose. Zymogram analysis demonstrated that enzymes localized mainly in the cell membrane fraction and the molecular weight was 50-70 kDa. When cultured in a dextran-containing medium, all strains isolated in this study produced short-chain fatty acids, with butyric acid as the major compound. This is the first study to report that human intestinal B. xylanisolvens, B. dorei, and V. rogosae metabolize dextran utilizing dextranolytic enzymes. © 2015 Wiley Periodicals, Inc.

  11. The pyrethroid metabolites 3-phenoxybenzoic acid and 3-phenoxybenzyl alcohol do not exhibit estrogenic activity in the MCF-7 human breast carcinoma cell line or Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Laffin, Brian; Chavez, Marco; Pine, Michelle

    2010-01-01

    Synthetic pyrethroids are one of the most frequently and widely used class of insecticides, primarily because they have a higher insect to mammalian toxicity ratio than organochlorines or organophosphates. The basic structure of pyrethroids can be characterized as an acid joined to an alcohol by an ester bond. Pyrethroid degradation occurs through either oxidation at one or more sites located in the alcohol or acid moieties or hydrolysis at the central ester bond, the latter reaction being important for mammalian metabolism of most pyrethroids. The primary alcohol liberated from the ester cleavage is hydroxylated to 3-phenoxybenzyl alcohol, which for most pyrethroids is then oxidized to 3-phenoxybenzoic acid. These products may then be conjugated with amino acids, sulfates, sugars, or sugar acids. In vitro studies have suggested that some of the pyrethroids may have estrogenic activity. Interestingly, the chemical structure of specific pyrethroid metabolites indicates that they may be more likely to interact with the estrogen receptor than the parent compounds. Two of the pyrethroid metabolites, 3-phenoxybenzoic acid (3PBA) and 3-phenoxybenzyl alcohol (3PBalc) have been reported to have endocrine activity using a yeast based assay. 3PBAlc exhibited estrogenic activity with reported EC 50 s of 6.67 x 10 -6 and 2 x 10 -5 while 3PBAcid exhibited anti-estrogenic activity with a calculated IC 50 of 6.5 x 10 -5 . To determine if the metabolites were able to cause the same effects in a mammalian system, the estrogen-dependent cell line, MCF-7, was utilized. Cells were treated with 1.0, 10.0 or 100.0 μM concentrations of each metabolite and cytotoxicity was assessed. The two lowest concentrations of both metabolites did not induce cell death and even appeared to increase proliferation over that of the control cells. However, when cellular proliferation was measured using a Coulter counter neither metabolite stimulated proliferation (1.0 nM, 10.0 nM, or 10.0 μM) or

  12. Micronuclei induction in Rana catesbeiana tadpoles by the pyrethroid insecticide lambda-cyhalothrin

    OpenAIRE

    Campana, Marcela Alejandra; Panzeri, Ana María; Moreno, Víctor Jorge; Dulout, Fernando Noel

    2003-01-01

    Pyrethroid lambda-cyhalothrin genotoxicity was evaluated using the micronucleus test in Rana catesbeiana tadpoles. The effects of concentration and exposure time on the micronuclei frequency were studied in blood smears obtained from tadpoles exposed to four concentrations (0.02, 0.1, 0.2 and 0.4 mg/L) of the compound for 24, 48, 72 and 96 h and 8, 15, 20 and 30 days. As a positive control, tadpoles were exposed to cyclophosphamide (5 mg/L). The micronucleated cell frequency was expressed per...

  13. Eggshell membrane hydrolyzates activate NF-κB in vitro: possible implications for in vivo efficacy

    Directory of Open Access Journals (Sweden)

    Ruff KJ

    2015-02-01

    Full Text Available Kevin J Ruff,1 Paul L Durham,2 Austin O’Reilly,2 F Daniel Long1 1ESM Technologies, LLC, Carthage, MO, USA; 2Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA Purpose: Eggshell membrane (ESM has been shown to contain naturally occurring bioactive components, and biological activities such as reducing proinflammatory cytokines, liver fibrosis, and joint pain in osteoarthritis sufferers have also been reported for ESM matrix as a whole. Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB is a signaling protein found in the cytoplasm of nearly all human and animal cell types and is a primary regulator of immune function. The studies reported herein were designed to investigate the possible role that NF-κB activity might play in the reported biological activities of ESM. Methods: Three ESM hydrolyzates produced via fermentation, enzymatic, or chemical hydrolysis were evaluated in vitro in either human peripheral blood mononuclear cell or THP-1 (human leukemic monocyte cell cultures for NF-κB activity following 4-hour exposure. The hydrolyzates were compared with untreated control cells or cells incubated with lipopolysaccharide or ascorbic acid. The source of ESM activity was also evaluated. Results: NF-κB levels were increased above levels found in untreated cells at all three dilutions (1:100, 1:1,000, and 1:10,000 for the fermentation hydrolyzate of ESM (ESM-FH (P=0.021, P=0.020, P=0.009, respectively in peripheral blood mononuclear cells. The enzymatic hydrolyzate of ESM (ESM-EH also produced statistically significant levels of activated NF-κB at the 1:100 and 1:1,000 dilutions (P=0.004, P=0.006, respectively but fell just shy of significance at the 1:10,000 dilution (P=0.073. Similarly, ESM-FH (P=0.021, P=0.002 and ESM-EH (P=0.007, P=0.007 activated NF-κB in THP-1 cells at 1:1,000 and 1:10,000 dilutions, respectively. The chemical hydrolyzate of ESM (ESM-CH showed statistically

  14. Synergistic potential of dillapiole-rich essential oil with synthetic pyrethroid insecticides against fall armyworm

    OpenAIRE

    Fazolin, Murilo; Estrela, Joelma Lima Vidal; Medeiros, André Fábio Monteiro; Silva, Iriana Maria da; Gomes, Luiara Paiva; Silva, Maria Samylla de Farias

    2016-01-01

    ABSTRACT: The objective of this study was to evaluate the synergy and response homogeneity of the Spodoptera frugiperda larvae population to the Piper aduncum essential oil in combination with pyrethroid insecticides (alpha-cypermethrin, beta-cypermethrin, fenpropathrin, and gamma-cyhalothrin) compared to piperonylbutoxide (PBO) as positive control. Synergism (SF) comparisons were obtained using lethal concentration (LC50) and lethal dose (LD50) ratios of insecticides individually and in thei...

  15. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor

    International Nuclear Information System (INIS)

    Wang Zhijun; Wang Wei; Zhang Xihui; Zhang Guangming

    2009-01-01

    Laboratory experiments were conducted to investigate the performance of an anaerobic sequencing batch reactor (ASBR) for the digestion of thermally hydrolyzed sewage sludge. Both mesophilic ASBR and continuous-flow stirred tank reactors (CSTR) were evaluated with an equivalent loading rate of 2.71 kg COD/m 3 day at 20-day hydraulic retention time (HRT) and 5.42 kg COD/m 3 day at 10-day HRT. The average total chemical oxygen demand (TCOD) removals of the ASBR at the 20-day and 10-day HRT were 67.71% and 61.66%, respectively. These were 12.38% and 27.92% higher than those obtained by CSTR. As a result, the average daily gas production of ASBR was 15% higher than that of the CSTR at 20-day HRT, and 31% higher than that of the CSTR at 10-day HRT. Solids in thermally hydrolyzed sludge accumulated within ASBR were able to reach a high steady state with solid content of 65-80 g/L. This resulted in a relatively high solid retention time (SRT) of 34-40 days in the ASBR at 10-day HRT. However, too much solid accumulation resulted in the unsteadiness of the ASBR, making regular discharge of digested sludge from the bottom of the ASBR necessary to keep the reactor stable. The evolution of the gas production, soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFAs) in an operation cycle of ASBR also showed that the ASBR was steady and feasible for the treatment of thermally hydrolyzed sludge

  16. Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: Direct and indirect effects

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Geoff K. [Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX (United Kingdom)]. E-mail: gkf@soton.ac.uk; Brink, Paul J. van den [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, P.O. Box 8080, 6700 DD Wageningen (Netherlands)

    2007-05-15

    Non-target effects on terrestrial arthropod communities of the broad-spectrum insecticides chlorpyrifos and cypermethrin and the selective insecticide pirimicarb were investigated in winter wheat fields in summer. Effects of chlorpyrifos on arthropod abundance and taxonomic richness were consistently negative whereas effects of cypermethrin were negative for predatory arthropods but positive for soil surface Collembola. Pirimicarb effects were marginal, primarily on aphids and their antagonists, with no effect on the Collembola community. Collembola-predator ratios were significantly higher following cypermethrin treatment, suggesting that cypermethrin-induced increases in collembolan abundance represent a classical resurgence. Observations in other studies suggest Collembola resurgences may be typical after synthetic pyrethroid applications. Collembola responses to insecticides differed among species, both in terms of effect magnitude and persistence, suggesting that coarse taxonomic monitoring would not adequately detect pesticide risks. These findings have implications for pesticide risk assessments and for the selection of indicator species. - Direct and indirect insecticide effects differ among closely-related arthropod taxa; resurgence of Collembola may occur widely after synthetic pyrethroid insecticide applications.

  17. Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: Direct and indirect effects

    International Nuclear Information System (INIS)

    Frampton, Geoff K.; Brink, Paul J. van den

    2007-01-01

    Non-target effects on terrestrial arthropod communities of the broad-spectrum insecticides chlorpyrifos and cypermethrin and the selective insecticide pirimicarb were investigated in winter wheat fields in summer. Effects of chlorpyrifos on arthropod abundance and taxonomic richness were consistently negative whereas effects of cypermethrin were negative for predatory arthropods but positive for soil surface Collembola. Pirimicarb effects were marginal, primarily on aphids and their antagonists, with no effect on the Collembola community. Collembola-predator ratios were significantly higher following cypermethrin treatment, suggesting that cypermethrin-induced increases in collembolan abundance represent a classical resurgence. Observations in other studies suggest Collembola resurgences may be typical after synthetic pyrethroid applications. Collembola responses to insecticides differed among species, both in terms of effect magnitude and persistence, suggesting that coarse taxonomic monitoring would not adequately detect pesticide risks. These findings have implications for pesticide risk assessments and for the selection of indicator species. - Direct and indirect insecticide effects differ among closely-related arthropod taxa; resurgence of Collembola may occur widely after synthetic pyrethroid insecticide applications

  18. Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzing sesaminol triglucoside from Paenibacillus sp. KB0549.

    Directory of Open Access Journals (Sweden)

    Arun Nair

    Full Text Available The triglucoside of sesaminol, i.e., 2,6-O-di(β-D-glucopyranosyl-β-D- glucopyranosylsesaminol (STG, occurs abundantly in sesame seeds and sesame oil cake and serves as an inexpensive source for the industrial production of sesaminol, an anti-oxidant that displays a number of bioactivities beneficial to human health. However, STG has been shown to be highly resistant to the action of β-glucosidases, in part due to its branched-chain glycon structure, and these circumstances hampered the efficient utilization of STG. We found that a strain (KB0549 of the genus Paenibacillus produced a novel enzyme capable of efficiently hydrolyzing STG. This enzyme, termed PSTG, was a tetrameric protein consisting of identical subunits with an approximate molecular mass of 80 kDa. The PSTG gene was cloned on the basis of the partial amino acid sequences of the purified enzyme. Sequence comparison showed that the enzyme belonged to the glycoside hydrolase family 3, with significant similarities to the Paenibacillus glucocerebrosidase (63% identity and to Bgl3B of Thermotoga neapolitana (37% identity. The recombinant enzyme (rPSTG was highly specific for β-glucosidic linkage, and k cat and k cat/K m values for the rPSTG-catalyzed hydrolysis of p-nitrophenyl-β-glucopyraniside at 37°C and pH 6.5 were 44 s(-1 and 426 s(-1 mM(-1, respectively. The specificity analyses also revealed that the enzyme acted more efficiently on sophorose than on cellobiose and gentiobiose. Thus, rPSTG is the first example of a β-glucosidase with higher reactivity for β-1,2-glucosidic linkage than for β-1,4- and β-1,6-glucosidic linkages, as far as could be ascertained. This unique specificity is, at least in part, responsible for the enzyme's ability to efficiently decompose STG.

  19. Endogenous phosphorus excretion by sheep fed hydrolyzed sugarcane bagasse, lucerne hay and citrus pulp

    International Nuclear Information System (INIS)

    Dias, R.S.; Roque, A.P.; Vitti, D.M.S.S.

    2006-01-01

    The objective of this study was to determine endogenous phosphorus excretion in sheep fed with different diets. Sixteen male growing sheep, received a basic diet with: 42% hydrolyzed sugarcane bagasse (HSB), 45% lucerne hay (LH) plus 14% hydrolyzed sugarcane bagasse, and 30% citrus pulp (CTP) plus 40% hydrolyzed sugarcane bagasse. A dose of 7.7 MBq 32 P was injected into the left jugular vein of each animal. The P endogenous fecal losses were: 1.69, 2.50, 2.33 and 1.45 g/animal for treatments HSB, LH, and CTP respectively (P>0.05). The type of diet influenced slight endogenous P excretion but altered excretion of P in urine. Endogenous P excreted in feces (P F ) comes mainly from saliva and represents an important loss of P. The estimation of net requirements of phosphorus (P) for ruminants includes endogenous losses, which is also essential for calculating true absorption of this mineral. Physical structure of the feed may influence endogenous losses, altering the metabolism of P and also the demand of this mineral, therefore being important to know how different feeds affect endogenous P losses. (author)

  20. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

    Science.gov (United States)

    Akao, T; Che, Q M; Kobashi, K; Yang, L; Hattori, M; Namba, T

    1994-01-01

    A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a novel type of beta-glucosidase capable of hydrolyzing sennosides to sennidins. PMID:8161172

  1. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  2. Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates

    NARCIS (Netherlands)

    Schroer, A.F.W.; Belgers, J.D.M.; Brock, T.C.M.; Matser, A.M.; Maund, S.J.; Brink, van den P.J.

    2004-01-01

    The toxicity of the pyrethroid insecticide lambda-cyhalothrin to freshwater invertebrates has been investigated using data from short-term laboratory toxicity tests and in situ bioassays and population-level effects in field microcosms. In laboratory tests, patterns of toxicity were consistent with

  3. MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens.

    Science.gov (United States)

    Tian, Mengmeng; Liu, Bingqian; Hu, Hongxia; Li, Xixi; Guo, Qin; Zou, Feifei; Liu, Xianmiao; Hu, Mengxue; Guo, Juxin; Ma, Lei; Zhou, Dan; Sun, Yan; Shen, Bo; Zhu, Changliang

    2016-12-01

    MicroRNAs play critical roles in post-transcriptional regulation of gene expression, which participate in the modulation of almost all of the cellular processes. Although emerging evidence indicates that microRNAs are related with antineoplastic drugs resistance, whether microRNAs are responsible for insecticide resistance in mosquitos is poorly understood. In this paper, we found that miR-285 was significantly upregulated in the deltamethrin-resistant strain of Culex pipiens pallens, and overexpression miR-285 through microinjection increased mosquito survival rate against deltamethrin treatement. Using bioinformatic software, quantitative reverse transcription PCR, luciferase reporter assay and microinjection approaches, we conformed that CYP6N23 was the target of miR-285. Lower expression of CYP6N23 was observed in the deltamethrin-resistant strain. While, mosquito mortality rate was decreased after downregulating expression of CYP6N23 by dsRNA against CYP6N23 or miR-285 mimic microinjection. These findings revealed that miR-285 could target CYP6N23 to regulate pyrethroid resistance, providing new insights into mosquito insecticide resistance surveillance and control.

  4. Understanding the Role of Physical Properties of Cellulose on Its Hydrolyzability by Cellulases

    Science.gov (United States)

    O'Dell, Patrick Jonathan

    Cellulose has long been explored as a potential feedstock for biofuel, however the recalcitrance of cellulose makes its conversion into biofuel much more challenging and economically unfavorable compared to well-established processes for converting starch or sugar feedstocks into biofuel. Enzymes capable of hydrolyzing cellulose into soluble sugars, glucose and cellobiose, have been found to work processively along cellulose microfibrils starting from reducing end groups. For this study, cellulose was produced and purified in-house from Gluconacetobacter xylinum cultures, and characterized by quantifying functional groups (aldehyde, ketone, and carboxyl groups) to determine the extent of oxidation of cellulose due to the processing steps. The main goal of this study was to look at the impacts of ultrasonication on cellulose's structure and the enzymatic hydrolyzability of cellulose. A completely randomized experimental design was used to test the effect of ultrasonication time and amplitude (intensity) on changes in cellulose fibril length, degree of polymerization, and rates and extents of hydrolysis. Results indicated that sonication time does significantly impact both the fibril length and average degree of polymerization of cellulose. The impact of ultrasonication on the hydrolyzability of cellulose by commercial cellulase and beta-glucosidase preparations could not be effectively resolved due to high variability in the experimental results. These studies serve as a basis for future studies understanding the role of cellulose microstructure in the mechanism of cellulase hydrolysis of cellulose.

  5. Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl

    Directory of Open Access Journals (Sweden)

    Chabi Joseph

    2010-02-01

    Full Text Available Abstract Background Scaling up of long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS with support from the Global Fund and President's Malaria Initiative is providing increased opportunities for malaria control in Africa. The most cost-effective and longest-lasting residual insecticide DDT is also the most environmentally persistent. Alternative residual insecticides exist, but are too short-lived or too expensive to sustain. Dow Agrosciences have developed a microencapsulated formulation (CS of the organophosphate chlorpyrifos methyl as a cost-effective, long-lasting alternative to DDT. Methods Chlorpyrifos methyl CS was tested as an IRS or ITN treatment in experimental huts in an area of Benin where Anopheles gambiae and Culex quinquefasiactus are resistant to pyrethroids, but susceptible to organophosphates. Efficacy and residual activity was compared to that of DDT and the pyrethroid lambdacyalothrin. Results IRS with chlorpyrifos methyl killed 95% of An. gambiae that entered the hut as compared to 31% with lambdacyhalothrin and 50% with DDT. Control of Cx. quinquefasciatus showed a similar trend; although the level of mortality with chlorpyrifos methyl was lower (66% it was still much higher than for DDT (14% or pyrethroid (15% treatments. Nets impregnated with lambdacyhalothrin were compromized by resistance, killing only 30% of An. gambiae and 8% of Cx. quinquefasciatus. Nets impregnated with chlorpyrifos methyl killed more (45% of An gambiae and 15% of Cx. quinquefasciatus, but its activity on netting was of short duration. Contact bioassays on the sprayed cement-sand walls over the nine months of monitoring showed no loss of activity of chlorpyrifos methyl, whereas lambdacyhalothrin and DDT lost activity within a few months of spraying. Conclusion As an IRS treatment against pyrethroid resistant mosquitoes chlorpyrifos methyl CS outperformed DDT and lambdacyhalothrin. In IRS campaigns, chlorpyrifos methyl CS should

  6. Kinetic and mass transfer studies on the isomerization of cellulose hydrolyzate using immobilized Streptomyces cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, T K; Chand, S

    1978-01-01

    Streptomyces cells possessing glucose isomerase activity, heat-treated and confined within polyester sacs have been used in batch/continuous isomerization of enzymatically hydrolyzed microcrystalline cellulose. Conversion data at different concentrations of substrate closely follow the reactor performance equation based on the reaction kinetics. The effect of external film and pore diffusional resistances were experimentally found to be negligible. The dispersion effects in the packed bed column have been evaluated by pulse input tracer analysis. Continuous operation of the column to isomerize cellulose hydrolyzate (2.0 M glucose) showed an exponential deactivation of enzyme activity with a half-life of 447 h.

  7. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment.

    Science.gov (United States)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J; You, Jing

    2014-07-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air-water flux, including air-water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air-water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of hydrolyzed Chlorella vulgaris by malted barley on the immunomodulatory response in ICR mice and in Molt-4 cells.

    Science.gov (United States)

    Kim, Na-Hyung; Kim, Kyu-Yeob; Jeong, Hyun-Ja; Kim, Hyung-Min; Hong, Seung-Heon; Um, Jae-Young

    2010-07-01

    Chlorella vulgaris is a unicellular and microscopic algae that is currently used in a variety of forms of tablets, capsules and liquid as a biological response modifier. The aim of this study was to investigate the effects of hydrolyzed Chlorella vulgaris by malted barley for its potential reduction of the immobility time in ICR mice and on the cytokine regulation in human T cell line, Molt-4. After a forced swimming test, the changes in aspects of blood biochemical parameters due to the administration of hydrolyzed Chlorella vulgaris by malted barley were examined. The effect of hydrolyzed Chlorella vulgaris by the malted barley-treated group for 14 days on the immobility time was significantly reduced in comparison with that of the control group (P cells. These results indicate that hydrolyzed Chlorella vulgaris by malted barley is useful for immune function improvements, enhanced physical stamina, and as a candidate for an anti-fatigue or antidepressant agent.

  9. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

    Science.gov (United States)

    Slininger, Patricia J; Dien, Bruce S; Kurtzman, Cletus P; Moser, Bryan R; Bakota, Erica L; Thompson, Stephanie R; O'Bryan, Patricia J; Cotta, Michael A; Balan, Venkatesh; Jin, Mingjie; Sousa, Leonardo da Costa; Dale, Bruce E

    2016-08-01

    Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market

  10. Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use

    Directory of Open Access Journals (Sweden)

    Stephen Marshall

    2016-11-01

    Full Text Available Trace organic compounds associated with human activity are now ubiquitous in the environment. As the population becomes more urbanised and the use of pesticides and person care products continues to increase, urban waterways are likely to receive higher loads of trace organic contaminants with unknown ecological consequences. To establish the extent of trace organic contamination in urban runoff, concentrations of emerging chemicals of concern were determined in sediments from 99 urban wetlands in and around Melbourne, Australia between February and April, 2015. As a preliminary estimation of potential risks to aquatic biota, we compared measured concentrations with thresholds for acute and chronic toxicity, and modelled toxic units as a function of demographic and land use trends. The synthetic pyrethroid insecticide bifenthrin was common and widespread, and frequently occurred at concentrations likely to cause toxicity to aquatic life. Personal care products DEET and triclosan were common and widely distributed, while the herbicides diuron and prometryn, and the fungicides pyrimethanil and trifloxystrobin occurred less frequently. Toxic unit modelling using random forests found complex and unexpected associations between urban land uses and trace organic concentrations. Synthetic pyrethroid insecticides were identified as emerging compounds of concern, particularly bifenthrin. In contrast with previous surveys, the highest bifenthrin concentrations were associated with lower housing and population density, implicating low-density residential land use in bifenthrin contamination. We discuss the implications for pesticide regulation and urban wetland management in a global context.

  11. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm.

    Science.gov (United States)

    Chang, Jing; Wang, Yinghuan; Wang, Huili; Li, Jianzhong; Xu, Peng

    2016-02-01

    In this study, the bioavailability and enantioselectivity differences between bifenthrin (BF, typeⅠpyrethroid) and lambad-cyhalothrin (LCT, type Ⅱ pyrethroid) in earthworm (Eisenia fetida) were investigated. The bio-soil accumulation factors (BSAFs) of BF was about 4 times greater than that of LCT. LCT was degraded faster than BF in soil while eliminated lower in earthworm samples. Compound sorption plays an important role on bioavailability in earthworm, and the soil-adsorption coefficient (K(oc)) of BF and LCT were 22 442 and 42 578, respectively. Metabolic capacity of earthworm to LCT was further studied as no significant difference in the accumulation of LCT between the high and low dose experiment was found. 3-phenoxybenzoic acid (PBCOOH), a metabolite of LCT produced by earthworm was detected in soil. The concentration of PBCOOH at high dose exposure was about 4.7 times greater than that of in low dose level at the fifth day. The bioaccumulation of BF and LCT were both enantioselective in earthworm. The enantiomer factors of BF and LCT in earthworm were approximately 0.12 and 0.65, respectively. The more toxic enantiomers ((+)-BF and (-)-LCT) had a preferential degradation in earthworm and leaded to less toxicity on earthworm for racemate exposure. In combination with other studies, a liner relationship between Log BSAF(S) and Log K(ow) was observed, and the Log BSAF(S) decreased with the increase of Log K(ow). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Incidence of urea-hydrolyzing Vibrio parahaemolyticus in Willapa Bay, Washington.

    Science.gov (United States)

    Kaysner, C A; Abeyta, C; Stott, R F; Lilja, J L; Wekell, M M

    1990-04-01

    A high incidence (71.5%) of Vibrio parahaemolyticus was found in samples of water, oysters, and sediment from a Washington State estuary which produces a significant amount of commercial product. Strains of V. parahaemolyticus capable of hydrolyzing urea comprised 58.4% of all V. parahaemolyticus isolates tested. Values for fecal coliforms were within certification criteria for commercial harvest and were not correlated with levels of V. parahaemolyticus.

  13. Extensive protein hydrolyzation is indispensable to prevent IgE-mediated poultry allergen recognition in dogs and cats

    OpenAIRE

    Olivry, Thierry; Bexley, Jennifer; Mougeot, Isabelle

    2017-01-01

    Background The central premise for the commercialization of diets with hydrolyzed ingredients is that the small-sized digested peptides would be unable to crosslink allergen-specific IgE at the surface of tissue mast cells and induce their degranulation. Evidence for the validity of this concept to diagnose food allergies in dogs and cats is limited, however. Our objectives were to study the recognition of standard and variably hydrolyzed poultry extracts by sera from dogs and cats with eleva...

  14. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  15. New catalytic roles for serine esterases: a 19F-NMR study of the interaction of 3,3,3-trifluoro-2,2-dihydroxy-1-phenyl-1-propanone with chicken liver carboxylesterase.

    Science.gov (United States)

    Bowles, M R; King, G J; Berndt, M C; Zerner, B

    1996-12-05

    The reactions of 3,3,3-trifluoro-2,2-dihydroxy-1-phenyl-1-propanone (TDPP) with chicken liver carboxylesterase have shown that this ketone hydrate is not only a potent inhibitor of the enzyme, but also a substrate for a number of enzyme-catalyzed reactions. The kinetics of inhibition are consistent with a mechanism in which the bound hydrate is initially dehydrated in a rate-limiting step catalyzed by the enzyme. Nucleophilic attack by the active-site serine on the parent ketone then produces a hemiketal adduct. However, the slow reactivation (by dialysis) of TDPP-inhibited enzyme indicates that the interaction with this inhibitor is more complex. At equilibrium, a dissociation constant of 2.4 pM was obtained for this interaction. 19F-NMR studies of the enzyme-TDPP complex show that after pre-equilibration, the major adduct is not the hemiketal adduct. It is proposed that this final adduct is a cross-linked adduct formed between TDPP, the active-site serine and the active-site histidine. 19F-NMR studies reveal that chicken liver carboxylesterase catalyses the cleavage of TDPP to yield either fluoride ion or trifluoroacetate, and also the benzilic acid rearrangement of TDPP to alpha-trifluoromethylmandelate. These products have also been identified in model studies of the reaction between TDPP and imidazole.

  16. Alcohol production by selected yeast strains in lactase-hydrolyzed acid whey

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, V S; Green, R; Sullivan, B C; Holsinger, V H

    1977-07-01

    Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90 percent of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30/sup 0/C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2 percent were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxic and galactose utilization problems must be considered.

  17. Synergistic insecticidal and repellent effects of combined pyrethroid and repellent-impregnated bed nets using a novel long-lasting polymer-coating multi-layer technique.

    Science.gov (United States)

    Faulde, Michael K; Nehring, Oliver

    2012-08-01

    New and improved strategies for malaria control and prevention are urgently needed. As a contribution to an optimized personal protection strategy, a novel long-lasting insecticide and repellent-treated net (LLIRN) has been designed by binding combinations of permethrin plus N,N-diethyl-m-toluamide (DEET), or insect repellent 3535 (IR3535), and etofenprox plus DEET, onto fibres of bed net fabric employing a new multi-layer polymer-coating technique. Protective repellent efficacy, toxicological effectiveness and residual activity of 12 LLIRN types have been evaluated by laboratory testing against adult Aedes aegypti. The novel multi-layer LLIRN design allowed simultaneous embedding at concentrations up to 5,930 mg/m(2) for DEET, 3,408 mg/m(2) for IR3535, 2,296 mg/m(2) for permethrin and 2,349 mg/m(2) for etofenprox, respectively. IR3535 layers prevented co-binding of additional pyrethroid-containing polymer layers, thus making pyrethroids plus DEET LLIRNs an ideal combination. All LLIRNs revealed synergistic insecticidal effects which, when measured against concentration controls of the isolated compounds, were significant in all LLIRN types designed. DEET in DEET plus permethrin LLIRNs significantly (p time from 55 to 75 %, the corresponding 100 % kill time (p time of etofenprox from 42 to 50 % (p = 0.004), the 100 % kill time from 25 to 38 % (p biting protection, even at low concentrations. One hundred percent biting and probing protection of stored LLIRNs was preserved for 83 weeks with the 5,930 mg/m(2) DEET and 2,139 mg/m(2) etofenprox LLIRN, for 72 weeks with the 5,002 mg/m(2) DEET and 2,349 mg/m(2) etofenprox LLIRN, for 63 weeks with the 3,590 mg/m(2) DEET and 1,208 mg/m(2) permethrin LLRN, and for 61 weeks with the 4,711 mg/m(2) DEET and 702 mg/m(2) etofenprox LLIRN. Because 100 % bite protection with up to 75 % quicker contact toxicity of pyrethroids were documented, synergistic toxicological and repellent effects of multi-layer polymer

  18. Stimulation of Interleukin-10 Production by Acidic β-Lactoglobulin-Derived Peptides Hydrolyzed with Lactobacillus paracasei NCC2461 Peptidases

    OpenAIRE

    Prioult, Guénolée; Pecquet, Sophie; Fliss, Ismail

    2004-01-01

    We have previously demonstrated that Lactobacillus paracasei NCC2461 may help to prevent cow's milk allergy in mice by inducing oral tolerance to β-lactoglobulin (BLG). To investigate the mechanisms involved in this beneficial effect, we examined the possibility that L. paracasei induces tolerance by hydrolyzing BLG-derived peptides and liberating peptides that stimulate interleukin-10 (IL-10) production. L. paracasei peptidases have been shown to hydrolyze tryptic-chymotryptic peptides from ...

  19. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116).

    Science.gov (United States)

    Srivastava, Neha; Srivastava, Manish; Kushwaha, Deepika; Gupta, Vijai Kumar; Manikanta, Ambepu; Ramteke, P W; Mishra, P K

    2017-08-01

    In the present work, production of hydrogen via dark fermentation has been carried out using the hydrolyzed rice straw and Clostridium pasteurianum (MTCC116). The hydrolysis reaction of 1.0% alkali pretreated rice straw was performed at 70°C and 10% substrate loading via Fe 3 O 4 /Alginate nanocomposite (Fe 3 O 4 /Alginate NCs) treated thermostable crude cellulase enzyme following the previously established method. It is noticed that under the optimized conditions, at 70°C the Fe 3 O 4 /Alginate NCs treated cellulase has produced around 54.18g/L sugars as the rice straw hydrolyzate. Moreover, the efficiency of the process illustrates that using this hydrolyzate, Clostridium pasteurianum (MTCC116) could produce cumulative hydrogen of 2580ml/L in 144h with the maximum production rate of 23.96ml/L/h in 96h. In addition, maximum dry bacterial biomass of 1.02g/L and 1.51g/L was recorded after 96h and 144h, respectively with corresponding initial pH of 6.6 and 3.8, suggesting higher hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  1. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass.

    Science.gov (United States)

    Sainio, Tuomo; Turku, Irina; Heinonen, Jari

    2011-05-01

    Adsorptive purification of concentrated acid hydrolyzate of lignocellulose was investigated. Cation exchange resin (CS16GC), neutral polymer adsorbent (XAD-16), and granulated activated carbon (GAC) were studied to remove furfural, HMF, and acetic acid from a synthetic hydrolyzate containing 20 wt.% H(2)SO(4). Adsorption isotherms were determined experimentally. Loading and regeneration were investigated in a laboratory scale column. GAC has the highest adsorption capacity, but regeneration with water was not feasible. XAD-16 and CS16GC had lower adsorption capacities but also shorter cycle times due to easier regeneration. Productivity increased when regenerating with 50 wt.% EtOH(aq) solution. To compare adsorbents, process performance was quantified by productivity and fraction of inhibitors removed. GAC yields highest performance when high purity is required and ethanol can be used in regeneration. For lower purities, XAD-16 and GAC yield approximately equal performance. When using ethanol must be avoided, CS16GC offers highest productivity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Combustion of Pure, Hydrolyzed and Methyl Ester Formed of Jatropha Curcas Lin oil

    Directory of Open Access Journals (Sweden)

    Muhaji Muhaji

    2015-10-01

    Full Text Available The density and viscosity of vegetable oil are higher than that of diesel oil. Thus its direct combustion in the diesel engine results many problems. This research was conducted to investigate the flame characteristics of combustion of jatropha curcas lin in pure, hydrolyzed and methyl ester form. The results indicated that the combustion of pure jatropha curcas lin occurs in three stages, hydrolyzed in two stages    and methyl ester in one stage. For pure jatropha curcas lin, in the first stage, unsaturated fatty acid burned for  0.265 s.  It is followed by saturated fatty acid, burned for 0.389 s in the second stage. And, in the last stage is the burned of glycerol for 0.560 s. Meanwhile for hydrolyzed one, in the first stage, unsaturated fatty acid burned for 0.736 s, followed by saturated fatty acid, burned  for 0.326 s in the second stage. And the last, for methyl ester is the burned for 0.712 s. The highest burning rate was for methyl ester which was 0.003931cc/s. The energy releasing rate of methyl ester, which was for 13,628.67 kcal/(kg.s resembled that of diesel oil the most, while the lowest rate was for pure jatropha curcas lin which was 8,200.94 kcal/(kg.s. In addition, massive explosion occurred in the fuel containing unsaturated fatty acid and glycerol

  3. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus, from India and its possible role in indoxacarb degradation

    Directory of Open Access Journals (Sweden)

    Shanivarsanthe Leelesh Ramya

    2016-06-01

    Full Text Available Abstract Diamondback moth (DBM, Plutella xylostella (Linnaeus, is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13 and adults (n = 12 of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%, followed by bacilli (15.4%. Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%, bacilli (16.7% and flavobacteria (16.7%. Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.

  4. Oleosins (24 and 18 kDa) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination.

    Science.gov (United States)

    Chen, Yeming; Zhao, Luping; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2014-01-29

    After oil bodies (OBs) were extracted from ungerminated soybean by pH 6.8 extraction, it was found that 24 and 18 kDa oleosins were hydrolyzed in the extracted OBs, which contained many OB extrinsic proteins (i.e., lipoxygenase, β-conglycinin, γ-conglycinin, β-amylase, glycinin, Gly m Bd 30K (Bd 30K), and P34 probable thiol protease (P34)) as well as OB intrinsic proteins. In this study, some properties (specificity, optimal pH and temperature) of the proteases of 24 and 18 kDa oleosins and the oleosin hydrolysis in soybean germination were examined, and the high relationship between Bd 30K/P34 and the proteases was also discussed. The results showed (1) the proteases were OB extrinsic proteins, which had high specificity to hydrolyze 24 and 18 kDa oleosins, and cleaved the specific peptide bonds to form limited hydrolyzed products; (2) 24 and 18 kDa oleosins were not hydrolyzed in the absence of Bd 30K and P34 (or some Tricine-SDS-PAGE undetectable proteins); (3) the protease of 24 kDa oleosin had strong resistance to alkaline pH while that of 18 kDa oleosin had weak resistance to alkaline pH, and Bd 30K and P34, resolved into two spots on two-dimensional electrophoresis gel, also showed the same trend; (4) 16 kDa oleosin as well as 24 and 18 kDa oleosins were hydrolyzed in soybean germination, and Bd 30K and P34 were always contained in the extracted OBs from germinated soybean even when all oleosins were hydrolyzed; (5) the optimal temperature and pH of the proteases were respectively determined as in the ranges of 35-50 °C and pH 6.0-6.5, while 60 °C or pH 11.0 could denature them.

  5. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae*

    Science.gov (United States)

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko

    2016-01-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-d-xylopyranose-(1→6)-d-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  6. Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The purpose of this study was to investigate the hydrolyzation of aspirin during the process of dissolution testing for aspirin delayed-release tablets. Hydrolysis product of salicylic acid can result in adverse effects and affect the determination of dissolution rate assaying. In this study, the technique of differential spectra was employed, which made it possible to monitor the dissolution testing in situ. The results showed that the hydrolyzation of aspirin made the percentage of salicylic acid exceed the limit of free salicylic acid (4.0, and the hydrolyzation may affect the quality detection of aspirin delayed-release tablets. Keywords: Aspirin delayed-release tablets, Drug dissolution test, Fiber-optic dissolution system, UV–vis spectrum

  7. A descriptive pilot study of cytokine production following stimulation of ex-vivo whole blood with commercial therapeutic feline hydrolyzed diets in individual healthy immunotolerant cats.

    Science.gov (United States)

    Kathrani, Aarti; Larsen, Jennifer A; Cortopassi, Gino; Datta, Sandipan; Fascetti, Andrea J

    2017-10-06

    Hydrolyzed diets are used in companion animals for the diagnosis and treatment of adverse food reaction. Similarly, hydrolyzed formulas are used in human infants with severe inflammatory bowel disease or milk allergy, and these must meet the standard of hypoallergenicity through rigorous testing. Unfortunately, no standards are currently applied to hydrolyzed veterinary therapeutic diets, and data for the immunogenicity of feline diets is also not available. Therefore, the main aim of this pilot study was to determine if ex-vivo whole blood stimulation assays could be used to characterize the cytokine response to hydrolyzed commercial diets in a small number of individual healthy immunotolerant cats. This approach has also been used to investigate cytokine production in response to cow milk protein in humans and currently similar studies do not exist in companion animals. Nine healthy cats previously eating the same basal diet were divided into groups and fed one of three hydrolyzed diets exclusively for 6 weeks. Heparinized whole blood was collected from each cat before and after the feeding trial. Ex-vivo whole blood stimulation assays were performed using crude extracts of the basal diet as a positive control, as this diet contained the same proteins present in the hydrolyzed diet but were intact, saline as a negative control, and each cat's respective hydrolyzed diet. Supernatants were collected and analyzed for tumor necrosis factor-alpha, interleukin-10 (IL-10), and interleukin-4 using enzyme-linked immunosorbant assay. Seven cats produced detectable amounts of the anti-inflammatory cytokine IL-10 upon stimulation with the basal diet. Two cats produced detectable amounts of IL-10 upon stimulation with a hydrolyzed soy-based diet and one cat produced a detectable amount of IL-10 upon stimulation with a hydrolyzed chicken-based diet (>125 pg/mL). Results from this pilot study suggest that in some healthy immunotolerant cats, some hydrolyzed diets may elicit a

  8. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  9. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  10. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    2017-01-01

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  11. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B. Gea; van Esch, Betty C. A. M.; Garssen, Johan; Faas, Marijke M.; de Vos, Paul

    Scope: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. Methods and results: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  12. Partially hydrolyzed whey proteins prevent clinical symptoms in a cow's milk allergy mouse model and enhance regulatory T and B cell frequencies

    NARCIS (Netherlands)

    Kiewiet, Mensiena B Gea; van Esch, Betty C A M; Garssen, Johan; Faas, Marijke M; Vos, Paul

    2017-01-01

    SCOPE: Partially hydrolyzed cow's milk proteins are used to prevent cow's milk allergy in children. Here we studied the immunomodulatory mechanisms of partial cow's milk hydrolysates in vivo. METHODS AND RESULTS: Mice were sensitized with whey or partially hydrolyzed whey using cholera toxin.

  13. Requirements for mammalian carboxylesterase inhibition by substituted ethane-1,2-diones.

    Science.gov (United States)

    Parkinson, Elizabeth I; Jason Hatfield, M; Tsurkan, Lyudmila; Hyatt, Janice L; Edwards, Carol C; Hicks, Latorya D; Yan, Bing; Potter, Philip M

    2011-08-01

    Carboxylesterases (CE) are ubiquitous enzymes found in both human and animal tissues and are responsible for the metabolism of xenobiotics. This includes numerous natural products, as well as a many clinically used drugs. Hence, the activity of these agents is likely dependent upon the levels and location of CE expression. We have recently identified benzil is a potent inhibitor of mammalian CEs, and in this study, we have assessed the ability of analogues of this compound to inhibit these enzymes. Three different classes of molecules were assayed: one containing different atoms vicinal to the carbonyl carbon atom and the benzene ring [PhXC(O)C(O)XPh, where X=CH₂, CHBr, N, S, or O]; a second containing a panel of alkyl 1,2-diones demonstrating increasing alkyl chain length; and a third consisting of a series of 1-phenyl-2-alkyl-1,2-diones. In general, with the former series of molecules, heteroatoms resulted in either loss of inhibitory potency (when X=N), or conversion of the compounds into substrates for the enzymes (when X=S or O). However, the inclusion of a brominated methylene atom resulted in potent CE inhibition. Subsequent analysis with the alkyl diones [RC(O)C(O)R, where R ranged from CH₃ to C₈H₁₇] and 1-phenyl-2-alkyl-1,2-diones [PhC(O)C(O)R where R ranged from CH₃ to C₆H₁₃], demonstrated that the potency of enzyme inhibition directly correlated with the hydrophobicity (clogP) of the molecules. We conclude from these studies that that the inhibitory power of these 1,2-dione derivatives depends primarily upon the hydrophobicity of the R group, but also on the electrophilicity of the carbonyl group. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota.

    Science.gov (United States)

    Gudeta, Dereje D; Bortolaia, Valeria; Pollini, Simona; Docquier, Jean-Denis; Rossolini, Gian M; Amos, Gregory C A; Wellington, Elizabeth M H; Guardabassi, Luca

    2016-01-01

    Carbapenemases are bacterial enzymes that hydrolyze carbapenems, a group of last-resort β-lactam antibiotics used for treatment of severe bacterial infections. They belong to three β-lactamase classes based amino acid sequence (A, B, and D). The aim of this study was to elucidate occurrence, diversity and functionality of carbapenemase-encoding genes in soil microbiota by functional metagenomics. Ten plasmid libraries were generated by cloning metagenomic DNA from agricultural ( n = 6) and grassland ( n = 4) soil into Escherichia coli . The libraries were cultured on amoxicillin-containing agar and up to 100 colonies per library were screened for carbapenemase production by CarbaNP test. Presumptive carbapenemases were characterized with regard to DNA sequence, minimum inhibitory concentration (MIC) of β-lactams, and imipenem hydrolysis. Nine distinct class B carbapenemases, also known as metallo-beta-lactamases (MBLs), were identified in six soil samples, including two subclass B1 (GRD23-1 and SPN79-1) and seven subclass B3 (CRD3-1, PEDO-1, GRD33-1, ESP-2, ALG6-1, ALG11-1, and DHT2-1). Except PEDO-1 and ESP-2, these enzymes were distantly related to any previously described MBLs (33 to 59% identity). RAIphy analysis indicated that six enzymes (CRD3-1, GRD23-1, DHT2-1, SPN79-1, ALG6-1, and ALG11-1) originated from Proteobacteria , two (PEDO-1 and ESP-2) from Bacteroidetes and one (GRD33-1) from Gemmatimonadetes . All MBLs detected in soil microbiota were functional when expressed in E. coli , resulting in detectable imipenem-hydrolyzing activity and significantly increased MICs of clinically relevant ß-lactams. Interestingly, the MBLs yielded by functional metagenomics generally differed from those detected in the same soil samples by antibiotic selective culture, showing that the two approaches targeted different subpopulations in soil microbiota.

  15. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  16. [Effect of extensively hydrolyzed formula on growth and development of infants with very/extremely low birth weight].

    Science.gov (United States)

    Gu, Chun-Yan; Jiang, Hui-Fen; Wang, Jin-Xiu

    2017-08-01

    To study the effect of extensively hydrolyzed formula on the growth and development in very low birth weight (VLBW) and extremely low birth weight (ELBW) infants. A total of 375 VLBW or ELBW infants were enrolled and divided into an observation group (187 infants) and a control group (188 infants) using a random number table. The infants in the observation group were given extensively hydrolyzed formula, and when the amount of extensively hydrolyzed formula reached 10 mL/time, it was changed to the standard formula for preterm infants. The infants in the control group were given standard formula for preterm infants. Both groups were fed for 4 consecutive weeks and were compared in terms of incidence rate of feeding intolerance, time to establish full enteral feeding, time to complete meconium excretion, number of spontaneous bowel movements, growth and development, motilin level at 4 and 10 days after feeding, and incidence rate of infection. Compared with the control group, the observation group had a lower rate of feeding intolerance (Pdevelopment, and reduce the incidence of infection in VLBW and ELBW infants.

  17. Effect of γ-rays irradiation and alkali solution pretreatment on hydrolyzing enzyme and microcosmic structure of core straw

    International Nuclear Information System (INIS)

    Tang Hongtao; Wang Feng; Li Weiming; Li An; Ha Yiming; Li Yanjie

    2012-01-01

    To increase yield of reducing sugar enzymatic hydrolyzed from corn straw yield of corn stalk on Enzymatic hydrolysis, γ-rays radiation and NaOH solution pretreatment were used. The changes of microstructure of the corn straw before and after pretreatments were characterized by IR, X-rays diffraction and SEM. The results shows that the γ-rays radiation can significantly decrease the essential concentration of NaOH solution and shorten the immersion time, but it could not affected the yield of reducing sugar remarkably. The scanning electron microscopy (SEM) results show that the sample which was treated at the 200 kGy irradiation dose and NaOH solution circumstance has the biggest surface area increase. The reducing sugar content of enzyme hydrolyzed corn straw treated at 200 kGy irradiation dose and 2% NaOH solution was achieved 48.34%, which provides the theoretical basis for industry ethanol production using enzyme hydrolyzed corn straw. (authors)

  18. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission

    Science.gov (United States)

    2014-01-01

    Background Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. Methods The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Results Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. Conclusion This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that

  19. Development of magnetic molecularly imprinted polymers based on carbon nanotubes - application for trace analysis of pyrethroids in fruit matrices.

    Science.gov (United States)

    Ma, Guifu; Chen, Ligang

    2014-02-14

    The sensitive and efficient magnetic molecularly imprinted polymers (MMIPs) were successfully synthesized using carbon nanotubes as matrix and Fe3O4 particles as magnetic ingredient. Tetraethyl orthosilicate was used as modification material of the carbon nanotubes. Cyhalothrin, methacrylic acid and ethylene glycol dimethacrylate were used as template molecule, functional monomer and cross-linker, respectively. Azo-isobutyronitrile and polyvinylpyrrolidone were used as initiator and dispersant, respectively. The MMIPs were used for the separation of pyrethroids including beta-cyfluthrin, cyhalothrin, cyphenothrin and permethrin in fruit samples followed by high performance liquid chromatography analysis. The polymers were characterized with Fourier transform infrared spectrometry, Brunauer-Emmett-Teller method, transmission electron microscopy and a physical property measurement system. The isothermal absorption experiment, kinetics absorption experiment and selectivity of MMIPs were studied in detail. Scatchard analysis revealed that two kinds of different binding sites existed in MMIPs. The maximum adsorption capacities of two binding sites were 65.21 and 189.83mgg(-1), and dissociation constants were 7.11 and 30.40μgmL(-1), respectively. The kinetic property of MMIPs was well fitted to the second-order equation. The selectivity experiment indicated that MMIPs had higher selectivity toward cyhalothrin and its structural analogs than reference compound. The feasibility of detecting pyrethroids from real samples was testified in spiked fruit samples with different concentrations (0.025, 0.25 and 2.5mgkg(-1)). The LODs of beta-cyfluthrin, cyhalothrin, cyphenothrin and permethrin were 0.0072, 0.0035, 0.0062 and 0.0068mgkg(-1), respectively. Precisions of intra-day and inter-day ranging from 2.6% to 4.3% and 4.2% to 5.6% were obtained, respectively. This method was applied to determine pyrethroids in different fruit samples including apple, pear, orange, grape and

  20. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission.

    Science.gov (United States)

    Ogoma, Sheila B; Lorenz, Lena M; Ngonyani, Hassan; Sangusangu, Robert; Kitumbukile, Mohammed; Kilalangongono, Masoudi; Simfukwe, Emmanuel T; Mseka, Anton; Mbeyela, Edgar; Roman, Deogratius; Moore, Jason; Kreppel, Katharina; Maia, Marta F; Moore, Sarah J

    2014-04-01

    Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence--reduction in house entry of mosquitoes; irritancy or excito-repellency--induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if delivered in suitable

  1. Effect Of Hydrolyzed Milk On The Adhesion Of Lactobacilli To Intestinal Cells*

    Directory of Open Access Journals (Sweden)

    Volštátová T.

    2015-03-01

    Full Text Available Milk is an essential part of the human diet and is undoubtedly a major calcium source in human nutrition, accepted well by most individuals. Knowledge on how the components from dairy products support or reduce the adherence of probiotics to the intestinal epithelium is limited. The purpose of this study was to investigate the effect of acid-hydrolyzed milk on the adhesion ability of two potentially probiotic strains (Lactobacillus plantarum S2, Lactobacillus gasseri R to in vitro human intestinal epithelial model consisting of Caco-2 and mucus-secreting HT29-MTX co-culture. The adhesion of our tested strains L. gasseri and L. plantarum was 4.74 and 7.16%, respectively, when using inoculum of 2 × 108 CFU ml–1. Addition of acid-hydrolyzed milk to co-culture decreased the adherence by 53.7% for L. gasseri R and by 62.2% for L. plantarum S2. The results of this study evidently indicate the potential importance of the food matrix as a factor influencing probiotic colonization of the gut.

  2. Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides.

    Science.gov (United States)

    Weston, Donald P; Ding, Yuping; Zhang, Minghua; Lydy, Michael J

    2013-01-01

    Few currently used agricultural pesticides are routinely monitored for in the environment. Even if concentrations are known, sediment LC(50) values are often lacking for common sediment toxicity testing species. To help fill this data gap, sediments in California's Central Valley were tested for nine hydrophobic pesticides seldom analyzed: abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin. Most were detected, but rarely at concentrations acutely toxic to Hyalella azteca or Chironomus dilutus. Only abamectin, fenpropathrin, and methyl parathion were found at concentrations of potential concern, and only in one or two samples. One-quarter of over 100 samples from agriculture-affected waterways exhibited toxicity, and in three-fourths of the toxic samples, pyrethroids exceeded concentrations expected to cause toxicity. The pyrethroid Bi-fen-thrin in particular, as well as lambda-cyhalothrin, cypermethrin, esfenvalerate, permethrin, and the organophosphate chlorpyrifos, were primarily responsible for the observed toxicity, rather than the more novel analytes, despite the fact that much of the sampling targeted areas of greatest use of the novel pesticides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  4. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids.

    Science.gov (United States)

    Plernsub, Suriya; Saingamsook, Jassada; Yanola, Jintana; Lumjuan, Nongkran; Tippawangkosol, Pongsri; Walton, Catherine; Somboon, Pradya

    2016-10-01

    In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection

  5. Fermentation by butyl bacteria of the hydrolyzates of plant refuse in admixture with molasses

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Lipshits, V V; Palovich, L A

    1965-01-01

    The husks of sunflower seeds or the stems of maize were hydrolyzed with 1.5 to 2.0% H/sub 2/SO/sub 4/ for 90 minutes at 1 to 1.6 atmosphere and 1 part of hydrolyzate was added to 3 parts of raw molasses at 80/sup 0/. Inversion of the sucrose content of the molasses occurred within 30 to 60 minutes, the hydrolyzate was neutralized to pH 6.5 with CaCO/sub 3/, and the CaSO/sub 4/ precipitated removed by pressure filtration through canvas. The filtered wort was sterilized for 10 to 13 minutes at 112/sup 0/, cooled, and added to a sterile solution of NH/sub 4/HSO/sub 4/-superphosphate, 0.1%, and yeast autolyzate, 0.03%. Fermentation of the pentose-hexose sugars was carried out at 37/sup 0/ using butyl bacteria (acetone-butanol process). Preliminary inversion of the molasses sucrose made it possible to increase the sugar content by 1 to 2% and the decrease the fermentation time from 65 to 75 to 50 to 55 hours, depending on the extent of inversion. This was important because of the poor invertase activity of the butyl bacteria. The total amount of acetone butanol and ethanol produced (31 to 37% on sugar) when using molasses so treated was up to 50% greater than when using untreated molasses. This increase was due to the greater synthesis of acetone and ethanol only, the amount of butanol remaining unchanged.

  6. COMPARISON OF VACUUM AND HIGH PRESSURE EVAPORATED WOOD HYDROLYZATE FOR ETHANOL PRODUCTION BY REPEATED FED-BATCH USING FLOCCULATING SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda

    2009-02-01

    Full Text Available With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID. More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively.

  7. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    Science.gov (United States)

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Structure-activity correlations for interactions of bicyclophosphorus esters and some polychlorocycloalkane and pyrethroid insecticides with the brain-specific t-butylbicyclophosphorothionate receptor

    International Nuclear Information System (INIS)

    Casida, J.E.; Lawrence, L.J.

    1985-01-01

    [ 35 S]t-Butylbicyclophosphorothionate or [ 35 S]TBPS is an improved radioligand for the picrotoxinin binding site in rat brain synaptic membranes. The toxic isomers of the hexachlorocyclohexanes, polychlorobornanes, and chlorinated cyclodienes displace [ 35 S]TBPS with a stereospecificity and potency generally correlated with their mammalian toxicity. In a few cases this correlation is improved by correction for metabolic activation or detoxification on using a coupled brain receptor/liver microsomal oxidase system. The alpha-cyano-3-phenoxybenzyl pyrethroids, although less potent, inhibit [ 35 S]TBPS binding in a stereospecific manner correlated with their toxicity. Scatchard analyses indicate that these three classes of polychlorocycloalkane insecticides act at the TBPS binding site within the gamma-aminobutyric acid (GABA) receptor-ionophore complex whereas the alpha-cyano pyrethroids interact with a closely associated site. These insecticides and TBPS analogs may serve as useful probes further to elucidate the topography of the TBPS binding site and its relationship to the chloride channel. 46 references

  9. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos

    International Nuclear Information System (INIS)

    Tu, Wenqing; Xu, Chao; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-01-01

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus–pituitary–thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T 4 ) and triiodothyronine (T 3 ) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. - Highlights: • Following respective exposure of embryos to BF and λ-CH, thyroid endocrine disruption was investigated in zebrafish embryos. • Thyroid hormones (T3 and T4 levels) were significantly altered after being exposed to BF and λ-CH. • Gene transcription modulation in the HPT axis was examined. • BF and λ-CH bioconcentration in zebrafish larvae were evident. • BF binds to thyroid hormone

  10. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenqing [Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Bin; Lin, Chunmian [Institute of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wu, Yongming [Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029 (China); Liu, Weiping [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-15

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus–pituitary–thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system. - Highlights: • Following respective exposure of embryos to BF and λ-CH, thyroid endocrine disruption was investigated in zebrafish embryos. • Thyroid hormones (T3 and T4 levels) were significantly altered after being exposed to BF and λ-CH. • Gene transcription modulation in the HPT axis was examined. • BF and λ-CH bioconcentration in zebrafish larvae were evident. • BF binds to thyroid

  11. Determination of five pyrethroids in tea drinks by dispersive solid phase extraction with polyaniline-coated magnetic particles.

    Science.gov (United States)

    Wang, Yuanpeng; Sun, Ying; Gao, Yan; Xu, Bo; Wu, Qiong; Zhang, Hanqi; Song, Daqian

    2014-02-01

    The polyaniline-coated magnetic particles with bowl-shaped morphology (Fe3O4/C/PANI microbowls) were successfully prepared and characterized by scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The prepared microbowls were used as the magnetic adsorbent in dispersive solid phase extraction of five pyrethroids, including cyhalothrin, beta-cypermethrin, esfenvalerate, permethrin and bifenthrin in plain tea drinks. The effects of experiment factors, including amount of Fe3O4/C/PANI microbowls, pH value, ultrasound extraction time and desorption conditions, were investigated. The extraction recoveries obtained with 8 mg of magnetic microbowls were satisfactory, and the microbowls can be reused after easy washing. Thus, a simple, selective and effective method for the determination of the pyrethroids was established successfully. The results showed that the method had good linearity (r=0.9992-0.9998), and the limits of detections (LODs) were from 0.025 to 0.032 ng mL(-1). The intra-day and inter-day relative standard deviations (RSDs) were in the range of 2.4-6.1% and 3.5-8.8%, respectively. Recoveries obtained by analyzing the real tea drinks were in the range of 72.1-118.4%. © 2013 Published by Elsevier B.V.

  12. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    Science.gov (United States)

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot

  13. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model.

    Science.gov (United States)

    Dalziel, Julie E; Young, Wayne; McKenzie, Catherine M; Haggarty, Neill W; Roy, Nicole C

    2017-12-13

    Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days. X-ray imaging tracked bead-transit for: gastric emptying (GE; 4 h), small intestine (SI) transit (9 h), and large intestine (LI) transit (12 h). GE for whey was 33 ± 12% faster than that for either casein or CPH. SI transit was decreased by 37 ± 9% for casein and 24 ± 6% for whey compared with hydrolyzed soy, and persisted for casein at 12 h. Although CPH and WPH did not alter transit compared with their respective intact counterparts, fecal output was increased by WPH. Slowed transit by casein was reversed by prucalopride (9-h), but not loperamide. However, rapid GE and slower SI transit for the HB compared with intact forms were inhibited by loperamide. The expected slower GI transit for casein relative to soy provided a comparative benchmark, and opioid receptor involvement was corroborated. Our findings provide new evidence that whey slowed SI transit compared with soy, independent of GE. Increased GI transit from stomach to colon for the HB compared with casein suggests that including hydrolyzed milk proteins in foods may benefit those with slowed intestinal transit.

  14. A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa.

    Science.gov (United States)

    Zimmer, Christian; Platz, Tanja; Cadez, Neza; Giffhorn, Friedrich; Kohring, Gert-Wieland

    2006-11-01

    In a screening procedure a pink-colored yeast was isolated from enrichment cultures with (2R,3R)-(-)-di-O-benzoyl-tartrate (benzoyl-tartrate) as the sole carbon source. The organism saar1 was identified by morphological, physiological, and 18S ribosomal DNA/internal transcribed spacer analysis as Rhodotorula mucilaginosa, a basidiomycetous yeast. During growth the yeast hydrolyzed the dibenzoyl ester stoichiometrically to the monoester using the separated benzoate as the growth substrate, before the monoester was further cleaved into benzoate and tartrate, which were both metabolized. The corresponding benzoyl esterase was purified from the culture supernatant and characterized as a monomeric glycosylated 86-kDa protein with an optimum pH of 7.5 and an optimum temperature of 45 degrees C. At 0 degrees C the esterase still exhibited 20% of the corresponding activity at 30 degrees C, which correlates it to psychrophilic enzymes. The esterase could hydrolyze short chain p-nitrophenyl-alkyl esters and several benzoyl esters like benzoyl-methyl ester, ethylene-glycol-dibenzoyl ester, phenyl-benzoyl ester, cocaine, and 1,5-anhydro-D: -fructose-tribenzoyl ester. However feruloyl-ethyl ester was not hydrolyzed. The activity characteristics let the enzyme appear as a promising tool for synthesis of benzoylated compounds for pharmaceutical, cosmetic, or fine chemical applications, even at low temperatures.

  15. Identification of 5'-adenylylimidodiphosphate-hydrolyzing enzyme activity in rabbit taste bud cells using X-ray microanalysis

    International Nuclear Information System (INIS)

    Asanuma, N.

    1990-01-01

    X-ray microanalysis has been used to characterize the enzyme activity hydrolyzing the ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP) in taste bud cells. Rabbit foliate papillae fixed with paraformaldehyde and glutaraldehyde were incubated cytochemically with AMP-PNP as the substrate and lead ion as capture agent. The reaction product which appeared on the microvilli of taste bud cells was examined using an energy dispersive X-ray microanalyzer connected to an analytical electron microscope. The X-ray spectrum thus obtained was compared with that obtained from the product obtained from the demonstration of ATPase activity. Comparison of the phosphorus/lead ratios in the two products showed that twice as much phosphorus was released from an AMP-PNP molecule by the activity in question compared with that released from an ATP molecule by ATPase activity. This indicates that the enzyme hydrolyzes AMP-PNP into AMP and imidodiphosphate and that the enzyme is adenylate cyclase or ATP pyrophosphohydrolase, which possesses a similar hydrolytic property, but not ATPase or alkaline phosphatase, which hydrolyzes AMP-PNP into ADP-NH2 and orthophosphate. This paper provides an example of the use of X-ray microanalysis as a tool for enzyme distinction. The method is applicable to a variety of enzymes and tissues

  16. Effect of Green Tea Catechins and Hydrolyzable Tannins on Benzo[a]pyrene-Induced DNA Adducts and Structure–Activity Relationship

    OpenAIRE

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C.

    2010-01-01

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)–DNA adducts and the possible structure–activity relationship. BP (1 μM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1–200 μM) or vehicle. The purified DNA was analyzed...

  17. Toxicity Assessment of Synthetic Pyrethroids (Lambda Cyhalothrin) on the Liver and Kidney Organs of Male Wistar Rats

    OpenAIRE

    O. O. Fadina; F. I. Oshoke; O. O. Fayinminnu

    2017-01-01

    Aims: Humans and animals are occasionally and unintentionally exposed to lethal and sub lethal doses of pesticides stemming from its various uses to control pests both in agriculture, homes, gardens and public health. The use of pyrethroid products has grown and continues to grow due to the suspension of some organophosphorus and organochloride products. This current study evaluated the toxic effects of lambda-cyhalothrin (LCT) on hematological and histopathological changes in the liver and k...

  18. Effective method of fermentation of Riga hydrolyzates of corn cobs and other vegetable waste products for butanol and acetone

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Kameneva, L; Kalnina, V

    1963-01-01

    A simplified method is described for the production of butanol and acetone. The acid mixture (H/sub 3/PO/sub 4/, 10 to 20%; H/sub 2/SO/sub 4/, 90 to 80%) used to hydrolyze corn cobs and other vegetable waste products served also to invert the sugar of molasses which was added in 3 parts to 1 part hydrolyzate on the basis of reducing sugar content. The mixture was then diluted and neutralized with NH/sub 4/OH to pH 6.3 to 6.8. In this way a suitable hydrolyzate medium containing the appropriate amounts of mineral salts as well as invert sugar was provided for fermentation by Clostridium butyricum Prazmowsky. Lignin which precipitated during hydrolysis served as a solid phase which helped to accelerate fermentation. Combined yields of butanol, acetone, and small amounts of ethanol amounted to 30 to 38% of the available sugar; approximately 67% consisted of butanol.

  19. Thermal characterization of partially hydrolyzed cassava (Manihot esculenta starch granules

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Lacerda

    2008-12-01

    Full Text Available Cassava starch, partially hydrolyzed by fungal á-amylase, was characterized using thermal analysis, light microscopy and X-ray diffraction. Thermal degradation was initiated at lower degradation temperatures after enzymatic treatment and the DSC (Differential scanning calorimetry analysis showed almost similar range of gelatinization temperature, but the enthalpies of gelatinization were quite increased for the partially hydrolyzed starch granules. The results suggested that the partial degradation of the starch granules was concentrated in the amorphous regions.Amilases fúngicas são comumente empregadas a amidos com o intuito de otimizar o rendimento de leveduras, modificar a textura de produtos panificados e prolongar a vida de prateleira do produto final. A hidrólise parcial enzimática pode auxiliar no entendimento da estrutura do amido ganular. Amido de mandioca parcialmente hidrolisado por á-amilase fúngica foi investigado utilizando-se técnicas termoanalíticas, microscopia ótica e difratometria por raios X. A degradação térmica iniciou-se a temperaturas menores após o tratamento enzimático e a análise por DSC mostrou uma próxima faixa de temperatura de gelatinização, porém, a entalpia necessária para o evento foi maior para os grânulos parcialmente hidrolisados. Os resultados sugerem que a degradação parcial do amido granular foi concentrada em regiões amorfas.

  20. Centrifuge-less dispersive liquid-liquid microextraction base on the solidification of switchable solvent for rapid on-site extraction of four pyrethroid insecticides in water samples.

    Science.gov (United States)

    Hu, Lu; Wang, Huazi; Qian, Heng; Liu, Chaoran; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang; Xu, Donghui

    2016-11-11

    An on-site dispersive liquid liquid microextraction base on the solidification of switchable solvent has been developed as a simple, rapid and eco-friendly sample extraction method for the fast determination of pyrethroid insecticides in aqueous samples using high-performance liquid chromatography with ultraviolet detection. In this extraction method, medium-chain saturated fatty acids (n≥10), which can rapidly solidify at low temperatures (centrifugation. The microextraction process was performed in a 10mL syringe and the pretreatment process could thus be finished in 5min. No external energy resources were required in this method, which makes it a potential method for on-site extraction. The optimal experimental parameters were as follows: 350μL of decanoic acid (1mol/L) was used as the extraction solvent, 150μL of sulfuric acid (2mol/L) was used to decrease the pH of the samples, no salt was added, and the temperature of the samples was in the range of 20-40°C. Finally, the sample was cooled in an ice bath for three minutes. Under these optimal conditions, good responses for four pyrethroid insecticides were obtained in the concentration ranges of 1-500μg/L, with coefficients of determination greater than 0.9993. The recoveries of the four pyrethroid insecticides ranged from 84.7 to 95.3%, with relative standard deviations ranging from 1.6 to 4.6%. The limits of detection based on a signal-to-noise ratio of 3 were in the range of 0.24-0.68μg/L, and the enrichment factors were in the range of 121-136. The results demonstrate that this method was successfully applied to determine pyrethroid insecticides in real water samples. No centrifugation or any special apparatus are required, make this a promising method for rapid field-sampling procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    Science.gov (United States)

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  2. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    Science.gov (United States)

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bioactive Properties of Phaseolus lunatus (Lima Bean) and Vigna unguiculata (Cowpea) Hydrolyzates Incorporated into Pasta. Residual Activity after Pasta Cooking.

    Science.gov (United States)

    Drago, Silvina R; Franco-Miranda, Hanai; Cian, Raúl E; Betancur-Ancona, David; Chel-Guerrero, Luis

    2016-09-01

    The aims of the study were to study the inclusion of P. lunatus (PLH) and V. unguiculata (VUH) protein hydrolyzates with bioactive properties into a pasta-extruded product and determine residual activity after extrusion or pasta cooking. Both protein hydrolyzates showed angiotensin-converting enzyme inhibition (ACEI) and antioxidant activity (TEAC). PLH showed higher ACEI but lower TEAC than VUH (97.19 ± 0.23 vs. 91.95 ± 0.29 % and 244.7 ± 3.4 vs. 293.7 ± 3.3 μmol Trolox/g, respectively). They were included at 5 or 10 % into wheat pasta. Control pasta had the lowest ACEI activity or TEAC (22.01 ± 0.76 % or 14.14 ± 1.28 μmol Trolox/g, respectively). Higher activity remained in pasta with PLH than VUH after extrusion, and higher the level of addition, higher the ACEI was. Pasta had practically the same ACEI activity after cooking, thus active compounds were not lost by temperature or lixiviation. Regarding TEAC, higher activity remained in pasta with 10 % VUH (31.84 ± 0.17 μmol Trolox/g). Other samples with hydrolyzates had the same activity. After cooking, pasta with hydrolyzates had higher TEAC values than control, but these were not modified by the level of incorporation. Moreover, the profile changed because pasta with PLH had the highest TEAC values (21.39 ± 0.01 and 20.34 ± 0.15 for 5 or 10 % hydrolyzates, respectively). Cooking decreased this activity (~ 20 %), for all samples. Although a certain loss of antioxidant activity was observed, pasta could be a good vehicle for bioactive compounds becoming a functional food.

  4. Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia.

    Science.gov (United States)

    Wuliandari, Juli Rochmijati; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret

    2015-07-23

    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.

  5. [Optimization of process of icraiin be hydrolyzed to Baohuoside I by cellulase based on Plackett-Burman design combined with CCD response surface methodology].

    Science.gov (United States)

    Song, Chuan-xia; Chen, Hong-mei; Dai, Yu; Kang, Min; Hu, Jia; Deng, Yun

    2014-11-01

    To optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase by Plackett-Burman design combined with Central Composite Design (CCD) response surface methodology. To select the main influencing factors by Plackett-Burman design, using CCD response surface methodology to optimize the process of Icraiin be hydrolyzed to Baohuoside I by cellulase. Taking substrate concentration, the pH of buffer and reaction time as independent variables, with conversion rate of icariin as dependent variable,using regression fitting of completely quadratic response surface between independent variable and dependent variable,the optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase was intuitively analyzed by 3D surface chart, and taking verification tests and predictive analysis. The best enzymatic hydrolytic process was as following: substrate concentration 8. 23 mg/mL, pH 5. 12 of buffer,reaction time 35. 34 h. The optimum process of Icraiin be hydrolyzed to Baohuoside I by cellulase is determined by Plackett-Burman design combined with CCD response surface methodology. The optimized enzymatic hydrolytic process is simple, convenient, accurate, reproducible and predictable.

  6. Purification and Characterization of a Ginsenoside Rb1-Hydrolyzing β-Glucosidase from Aspergillus niger KCCM 11239

    Directory of Open Access Journals (Sweden)

    Kyung Hoon Chang

    2012-09-01

    Full Text Available Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239 was studied to develop a bioconversion process for minor ginsenosides. The specific activity of the purified enzyme was 46.5 times greater than that of the crude enzyme. The molecular weight of the native enzyme was estimated to be approximately 123 kDa. The optimal pH of the purified enzyme was pH 4.0, and the enzyme proved highly stable over a pH range of 5.0–10.0. The optimal temperature was 70 °C, and the enzyme became unstable at temperatures above 60 °C. The enzyme was inhibited by Cu2+, Mg2+, Co2+, and acetic acid (10 mM. In the specificity tests, the enzyme was found to be active against ginsenoside Rb1, but showed very low levels of activity against Rb2, Rc, Rd, Re, and Rg1. The enzyme hydrolyzed the 20-C,β-(1→6-glucoside of ginsenoside Rb1 to generate ginsenoside Rd and Rg3, and hydrolyzed 3-C,β-(1→2-glucoside to generate F2. The properties of the enzyme indicate that it could be a useful tool in biotransformation applications in the ginseng industry, as well as in the development of novel drug compounds.

  7. Automated evaluation of pharmaceutically active ionic liquids’ (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri

    International Nuclear Information System (INIS)

    Costa, Susana P.F.; Justina, Vanessa D.; Bica, Katharina; Vasiloiu, Maria; Pinto, Paula C.A.G.; Saraiva, M. Lúcia M.F.S.

    2014-01-01

    Highlights: • IL-APIs toxicity on humans and aquatic environment was evaluated by inhibition assays. • The inhibition assays were implemented through automated screening bioassays. • Automation of bioassays enabled a rigorous control of the reaction conditions. • EC 50 obtained provide vital information on IL-APIs safety and potential use as drugs. -- Abstract: The toxicity of 16 pharmaceutical active ionic liquids (IL-APIs) was evaluated by automated approaches based on sequential injection analysis (SIA). The implemented bioassays were centered on the inhibition of human carboxylesterase 2 and Vibrio fischeri, in the presence of the tested compounds. The inhibitory effects were quantified by calculating the inhibitor concentration required to cause 50% of inhibition (EC 50 ). The EC 50 values demonstrated that the cetylpyridinium group was one of the most toxic cations and that the imidazolium group was the less toxic. The obtained results provide important information about the safety of the studied IL-APIs and their possible use as pharmaceutical drugs. The developed automated SIA methodologies are robust screening bioassays, and can be used as a generic tools to identify the (eco)toxicity of the structural elements of ILs, contributing to a sustainable development of drugs

  8. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  9. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions.

    Science.gov (United States)

    Forsgren, Kristy L; Riar, Navneet; Schlenk, Daniel

    2013-06-01

    The San Francisco Bay Estuary and Sacramento-San Joaquin Delta (Bay-Delta) is an important breeding and nursery ground for fish. Of particular interest are salmonids that migrate through fresh and saltwater areas polluted with various contaminants including bifenthrin, a widely used pyrethroid insecticide. Male steelhead (Oncorhynchus mykiss) exposed to bifenthrin (0.1 and 1.5μg/L) for two weeks had a lower gonadosomatic index (GSI) in freshwater but were not affected by concurrent bifenthrin exposure and saltwater acclimation. Plasma estradiol-17β (E2) levels and ovarian follicle diameter of fish exposed to bifenthrin (0.1 and 1.5μg/L) in freshwater significantly increased. Under hypersaline conditions, fish exposed to bifenthrin had significantly reduced E2 levels and smaller follicles, and unhealthy ovarian follicles were observed. Given the occurrence of bifenthrin in surface waters of the Bay Delta, understanding the impact of bifenthrin on wildlife is necessary for improving risk assessments of pyrethroids in this important ecosystem. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Extração em fase sólida (SPE e micro extração em fase sólida (SPME de piretróides em água Solid-phase extraction (SPE and solid-phase microextraction of pyrethroids in water

    Directory of Open Access Journals (Sweden)

    Wilma Regina Barrionuevo

    2001-04-01

    Full Text Available The pyrethroids bifenthrin, permethrin, cypermethrin and deltamethrin were extracted by solid phase extraction (SPE and solid phase microextraction (SPME. The analysis were performed on a gas chromatograph with electron capture detection (GC-ECD. Octadecil Silano-C18, Florisil and Silica stationary phases were studied for SPE. Better results were obtained for Florisil which gave recoveries from 80% to 108%. Pyrethroids extraction by SPME showed a linear response and a detection limit of 10 pg ml-1. Although the data showed that the two extraction methods were able to isolate the pesticide residues from water samples, the best results were obtained by using SPME which is more sensitive, faster, cheeper, being a more useful technique for the analysis of pyrethroids in drinking water.

  11. Topical treatment of calves with synthetic pyrethroids: effects on the non-target dung fly Neomyia cornicina (Diptera: Muscidae)

    DEFF Research Database (Denmark)

    Sommer, C.; Jensen, Karl-Martin Vagn; Jespersen, Jørgen B.

    2001-01-01

    from calves dosed with topical preparations of deltamethrin, flumethrin, cyfluthrin, and - cypermethrin. Larval mortality was significantly increased in dung collected up to at least seven days after treatment with deltamethrin, -cypermethrin and cyfluthrin. Alpha-cypermethrin caused significant......). Fluctuating asymmetry of a wing vein character did not reflect the anticipated levels of exposure. The study strongly indicated that the use of synthetic pyrethroids affected the insect dung fauna and that such use may reduce dung decomposition....

  12. Experimental and theoretical study of the influence of water on hydrolyzed product formation during the feruloylation of vegetable oil.

    Science.gov (United States)

    Compton, David L; Evans, Kervin O; Appell, Michael

    2017-07-01

    Feruloylated vegetable oil is a valuable green bioproduct that has several cosmeceutical applications associated with its inherent anti-oxidant and ultraviolet-absorption properties. Hydrolyzed vegetable oil by-products can influence product quality and consistency. The formation of by-products by residual water in the enzymatic synthesis of feruloylated vegetable oil was investigated using chemical theory and experimental studies by monitoring the reaction over a 22-day period. The hydrolysis of vegetable oil is thermodynamically favored over the hydrolysis of the ethyl ferulate starting material. These results suggest that hydrolyzed vegetable oil products will be experimentally observed in greater concentrations compared to hydrolyzed ethyl ferulate products. Quantum chemical studies identified several reaction mechanisms that explain the formation of side products by water, suggesting that residual water influences product quality. Efforts to reduce residual water can improve product consistency and reduce purification costs. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Investigation of the effect of base strength on the antifungal activity and chemical composition of the fish scales hydrolyzates

    International Nuclear Information System (INIS)

    Niaz, S.; Dil, S.

    2016-01-01

    The effect of base strength on the antifungal activity of the fish scale hydrolyzate was investigated for six types of samples prepared from the scales of Cyprinus carpio using sodium hydroxide in the range of 1-11 percent strength in the aqueous solution. Each of the sample was analyzed for its acid-base content using titration against HCl in addition to the spot test analysis for phenolic compounds. Each of these samples was analyzed using FTIR spectroscopy. Variation in chemical composition and functional group were observed with variation in the base strength. The in vitro antifungal activity of the fish scale hydrolyzates was tested against four pathogenic fungi including Acremonium, Pythium, Verticillium, and Alternaria. The antifungal assay was carried out using agar well diffusion methods. The sterilization was carried out using streptomycin while ketoconazole was used as the standard antifungal agent. Minimum inhibitory concentration was determined for the most active hydrolyzate which was obtained by 9 percent base solution. The cause of this antifungal activity was also discussed in this communication. (author)

  14. Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Antonio Trincone

    2018-04-01

    Full Text Available After generating much interest in the past as an aid in solving structural problems for complex molecules such as polysaccharides, carbohydrate-hydrolyzing enzymes of marine origin still appear as interesting biocatalysts for a range of useful applications in strong interdisciplinary fields such as green chemistry and similar domains. The multifaceted fields in which these enzymes are of interest and the scarce number of original articles in literature prompted us to provide the specialized analysis here reported. General considerations from modern (2016–2017 interval time review articles are at start of this manuscript; then it is subsequently organized in sections according to particular biopolymers and original research articles are discussed. Literature sources like the Science Direct database with an optimized W/in search, and the Espacenet patent database were used.

  15. UTILIZATION OF MEMBRANE MICROFILTRATION IN PREPARATION OF HYDROLYZED VEGETABLE PROTEIN FROM FERMENTED RED BEAN (Phaseolus vulgaris L. EXTRACT AS FORTIFICATION AGENT

    Directory of Open Access Journals (Sweden)

    Sri Moerniati

    2010-06-01

    Full Text Available Preparation of Hydrolyzed Vegetable Protein (HVP as savory flavor from fermented red bean broth through stirred membrane cell using micro filtration membrane with pore size of 0.45 µm was performed to get fortified agent utilized in preparation of beans sauce. The objective of this work was to study an effect of pressure and kind of red bean broth extract on content of total protein, soluble protein and dry solid in the retentate and permeate as hydrolyzed vegetable protein used for fortified agent of red bean sauces. Preparation process of hydrolyzed vegetable protein was done using fixed rotary speed of 400 rpm, pressure of 20, 25 and 30 psi at room temperature. To investigate the effect of pressure on this separation, the feed were red bean broth extract fermented for 6, 8, 10 and 12 weeks, respectively. Fermentation process were conducted using salt fermentation with inoculum of Rhizopus-C1, salt and red bean ratios of 30:10:60%. The analysis of flux and contents of total protein, dissolved protein and dry solid in the retentate and permeate was carried out, and the result of experiment showed that interaction of Red bean broth extract with 6, 8, 10 and 12 weeks of fermentation and operation condition of microfiltration membrane separation tends to affect on flux and content of total protein, dissolved protein and dry solid in retentate and permeate. Red bean broth extract for 6 weeks fermentation resulted higher protein content in permeate as hydrolyzed vegetable protein than in retentate. Permeate at pressure of 25 psi gives flux value of 0.0217 mL/cm2.minute and contents of total protein of 1.31 %, dissolved protein of 6.9 mg/g, and dry solid of 2.6%, while retentate as hydrolyzed vegetable protein or fortified agent indicate contents of total protein of 1.52%, dissolved protein of 4.15 mg/g, and dry solid of 3.64%. It was found that micro filtration process was able to increase dissolved protein content of about 3 times.   Keywords

  16. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury.

    Science.gov (United States)

    Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao

    2016-04-14

    The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.

  17. A crystallographically isolated dimeric hydrolyzed chlorophosphazene dianion

    Directory of Open Access Journals (Sweden)

    Matthew J. Panzner

    2009-01-01

    Full Text Available Single crystals of the title compound bis[bis(1-ethyl-3-methyl-imidazol-2-ylidenesilver(I] 1,5,5,7,11,11-hexachloro-2,8-dioxa-4,6,10,12,13,14-hexaaza-1λ5,3,5λ5,7λ5,9,11λ5-hexaphosphatricyclo[7.3.1.13,7]tetradeca-1(13,4,7(14,10-tetraene-6,12-diide 3,9-dioxide, [Ag(C6H10N22](Cl6N6O4P60.5, were isolated from the reaction of the silver N-heteocyclic carbene complex [Ag(C6H10N22]Cl and hexachlorocyclotriphosphazene [NPCl2]3 in the presence of water. The asymmetric unit contains one silver carbene cation with the carbene ligands bound to the Ag(I in an almost linear arrangement and one half of a hydrolyzed phosphazene dianion. The second cation and additional half of the anion are generated by an inversion center.

  18. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sichilongo, Kwenga

    2004-12-01

    Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.

  19. Tolerance of a standard intact protein formula versus a partially hydrolyzed formula in healthy, term infants

    Directory of Open Access Journals (Sweden)

    Marunycz John D

    2009-06-01

    Full Text Available Abstract Background Parents who perceive common infant behaviors as formula intolerance-related often switch formulas without consulting a health professional. Up to one-half of formula-fed infants experience a formula change during the first six months of life. Methods The objective of this study was to assess discontinuance due to study physician-assessed formula intolerance in healthy, term infants. Infants (335 were randomized to receive either a standard intact cow milk protein formula (INTACT or a partially hydrolyzed cow milk protein formula (PH in a 60 day non-inferiority trial. Discontinuance due to study physician-assessed formula intolerance was the primary outcome. Secondary outcomes included number of infants who discontinued for any reason, including parent-assessed. Results Formula intolerance between groups (INTACT, 12.3% vs. PH, 13.7% was similar for infants who completed the study or discontinued due to study physician-assessed formula intolerance. Overall study discontinuance based on parent- vs. study physician-assessed intolerance for all infants (14.4 vs.11.1% was significantly different (P = 0.001. Conclusion This study demonstrated no difference in infant tolerance of intact vs. partially hydrolyzed cow milk protein formulas for healthy, term infants over a 60-day feeding trial, suggesting nonstandard partially hydrolyzed formulas are not necessary as a first-choice for healthy infants. Parents frequently perceived infant behavior as formula intolerance, paralleling previous reports of unnecessary formula changes. Trial Registration clinicaltrials.gov: NCT00666120

  20. Yeast production from cellulase hydrolyzed furfural industrial waste. II. Conditions for the cultivation of yeast

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Three yeast strains, Candida AS 2-121, C. utilis AS 2-1180, and C. tropicalis AS 2-637 were selected as being capable of growing on cellulase-hydrolyzed furfural industrial waste. Cell mass yields with respect to C source were approximately 50%. Fermentation conditions are given.

  1. [Gradient elevation of temperature startup experiment of thermophilic ASBR treating thermal-hydrolyzed sewage sludge].

    Science.gov (United States)

    Ouyang, Er-Ming; Wang, Wei; Long, Neng; Li, Huai

    2009-04-15

    Startup experiment was conducted for thermophilic anaerobic sequencing batch reactor (ASBR) treating thermal-hydrolyzed sewage sludge using the strategy of the step-wise temperature increment: 35 degrees C-->40 degrees C-->47 degrees C-->53 degrees C. The results showed that the first step-increase (from 35 degrees C to 40 degrees C) and final step-increase (from 47 degrees C to 53 degrees C) had only a slight effect on the digestion process. The second step-increase (from 40 degrees C to 47 degrees C) resulted in a severe disturbance: the biogas production, methane content, CODeffluent and microorganism all have strong disturbance. At the steady stage of thermophilic ASBR treating thermal-hydrolyzed sewage sludge, the average daily gas production, methane content, specific methane production (CH4/CODinfluent), TCOD removal rate and SCOD removal rate were 2.038 L/d, 72.0%, 188.8 mL/g, 63.8%, 83.3% respectively. The results of SEM and DGGE indicated that the dominant species are obviously different at early stage and steady stage.

  2. Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2017-11-01

    Effect of partially hydrolyzed guar gum (PHGG) level (1-5%), culture level (1.5-3.5%) and incubation time (4-8 h) on texture profile of yogurt was studied using response surface methodology. The fortification of partially hydrolyzed guar gum in yogurt decreased the firmness and gumminess while it increased the adhesiveness, cohesiveness and springiness of yogurt significantly at p  < 0.01. The culture level did not affect the textural properties of yogurt significantly except gumminess whereas textural properties of yogurt were negatively correlated with incubation time. The coefficient of determination for hardness/hardness, adhesiveness, cohesiveness, springiness and gumminess were 0.9216, 0.9397, 0.8914, 0.8971 and 0.9156, respectively, which revealed that the models obtained were significant as coefficient of determination value was close to one. The optimum conditions obtained were PHGG level 3.37%, culture level 1.96% and incubation time 5.96 h which leads to preparation of yogurt with desired textural characteristics.

  3. Hydrolyzable tannins with the hexahydroxydiphenoyl unit and the m-depsidic link: HPLC-DAD-MS identification and model synthesis.

    Science.gov (United States)

    Arapitsas, Panagiotis; Menichetti, Stefano; Vincieri, Franco F; Romani, Annalisa

    2007-01-10

    This study was designed to develop efficient analytical tools for the difficult HPLC-DAD-MS identification of hydrolyzable tannins in natural tissue extracts. Throughout the study of the spectroscopic characteristics of properly synthesized stereodefined standards, it was observed that the UV-vis spectra of compounds with the m-depsidic link showed a characteristic shoulder at 300 nm, consistent with the simple glucogalloyl esters, whereas compounds with the hexahydroxydiphenoyl (HHDP) unit gave a diagnostic fragmentation pattern, caused by a spontaneous lactonization in the mass spectrometer. These observations were confirmed by HPLC-DAD-MS analyses of tannic acid and raspberry extracts, which are rich in hydrolyzable tannins with the m-depsidic link and the HHDP unit, respectively.

  4. Regulation of hydantoin-hydrolyzing enzyme expression in Agrobacterium tumefaciens strain RU-AE01.

    Science.gov (United States)

    Jiwaji, Meesbah; Dorrington, Rosemary Ann

    2009-10-01

    Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.

  5. A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti.

    Science.gov (United States)

    Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya

    2017-10-10

    Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.

  6. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  7. Biological effects of hydrolyzed quinoa extract from seeds of Chenopodium quinoa Willd.

    Science.gov (United States)

    Meneguetti, Quele Adriana; Brenzan, Mislaine Adriana; Batista, Marcia Regina; Bazotte, Roberto Barbosa; Silva, Daniel Rodrigues; Garcia Cortez, Diógenes Aparício

    2011-06-01

    An extract from seeds of Chenopodium quinoa Willd. (quinoa), termed hydrolyzed quinoa (HQ), was obtained by enzymatic hydrolysis from seeds of the quinoa variety BRS-Piabiru. Analysis of the physical and chemical properties of quinoa and HQ showed that the hydrolyzed extract is rich in essential amino acids, particularly those with branched chains (leucine, isoleucine, and valine). In addition, we evaluated the biological effects of HQ, particularly the toxicological potential. For this purpose, male Wistar rats were assigned randomly to four groups: (1) sedentary supplemented group, which received HQ (2,000 mg/kg); (2) sedentary control group, non-supplemented; (3) exercised supplemented group (i.e., rats subjected to aerobic physical exercise that received HQ [2,000 mg/kg]); and (4) exercised control group (i.e., rats subjected to aerobic physical exercise, non-supplemented). After 30 days, all groups were analyzed for levels of serum glucose, cholesterol, triacylglycerol, total protein, albumin, uric acid, and urea and activities of the enzymes alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase. Body weight gain, dietary intake, and lipid deposition were also analyzed. The results showed no hepatic and renal toxicity of HQ. Moreover, decreased food intake, body weight, fat deposition, and blood triacylglycerol level were observed in the supplemented groups (sedentary and exercised supplemented groups). These results suggest a potential use of HQ in human nutrition.

  8. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants.

    Science.gov (United States)

    Yang, Zhifan; Zhang, Futie; He, Qing; He, Guangcun

    2005-06-01

    To investigate the molecular response of brown planthopper, Nilaparvata lugens (BPH) to BPH-resistant rice plants, we isolated cDNA fragments of the genes encoding for carboxylesterase (CAR), trypsin (TRY), cytochrome P450 monooxygenase (P450), NADH-quinone oxidoreductase (NQO), acetylcholinesterase (ACE), and Glutathione S-transferase (GST). Expression profiles of the genes were monitored on fourth instar nymphs feeding on rice varieties with different resistance levels. Northern blot hybridization showed that, compared with BPH reared on susceptible rice TN1, expression of the genes for P450 and CAR was apparently up-regulated and TRY mRNA decreased in BPH feeding on a highly resistant rice line B5 and a moderately resistant rice variety MH63, respectively. Two transcripts of GST increased in BPH feeding on B5; but in BPH feeding on MH63, this gene was inducible and its expression reached a maximum level at 24 h, and then decreased slightly. The expression of NQO gene was enhanced in BPH on B5 plants but showed a constant expression in BPH on MH63 plants. No difference in ACE gene expression among BPH on different rice plants was detected by the RT-PCR method. The results suggest these genes may play important roles in the defense response of BPH to resistant rice.

  9. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel Gene of Aedes aegypti in Mexico.

    Directory of Open Access Journals (Sweden)

    Farah Z Vera-Maloof

    2015-12-01

    ,534 haplotype was rarely detected; it reached a frequency of only 0.09 in one collection and subsequently declined.Pyrethroid resistance in the vgsc gene requires the sequential evolution of two mutations. The Ile1,016/Phe1,534 haplotype appears to have low fitness suggesting that Ile1,016 was unlikely to have evolved independently. Instead the Cys1,534 mutation evolved first but conferred only a low level of resistance. Ile1,016 in S6 of domain II then arose from the Val1,016/Cys1,534 haplotype and was rapidly selected because double mutants confer higher pyrethroid resistance. This pattern suggests that knowledge of the frequencies of mutations in both S6 in domains II and III are important to predict the potential of a population to evolve kdr. Susceptible populations with high Val1,016/Cys1,534 frequencies are at high risk for kdr evolution, whereas susceptible populations without either mutation are less likely to evolve high levels of kdr, at least over a 10 year period.

  10. Copper clean-up procedure for ultrasonic extraction and analysis of pyrethroid and phenylpyrazole pesticides in sediments by gas chromatography-electron capture detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jun; Lin Youjian; Lu Jian; Wilson, Chris, E-mail: pcwilson@ufl.edu

    2011-08-15

    A rapid ultrasonic extraction method coupled with a heated-copper clean-up procedure for removing interfering constituents was developed for analyzing pyrethroid and phenylpyrazole pesticides in sediments. Incubation of the 60 mL extract with 12 g copper granules at 60 {sup o}C for 2 h was determined to be the optimal conditions for removing the interfering constituents. Eleven pyrethroid and phenylpyrazole pesticides were spiked into sediment samples to determine the effectiveness of the ultrasonic extraction method. The average recoveries of pyrethroids and phenylpyrazoles in sediment at 4 {sup o}C storage on day 0, 1, 7, 14, and 21 ranged from 98.6 to 120.0%, 79.2 to 116.0%, 85.0 to 119.7%, 93.6 to 118.7%, and 92.1 to 118.2%, respectively, with all percent relative standard deviations less than 10% (most < 6%). This illustrated the stability of pyrethroids and phenylpyrazoles in sediment during sediment aging at 4 {sup o}C. Recoveries of the pesticides ranged from 98.6% to 120.0% for lowest fortification level (2-16 {mu}g kg{sup -1}), from 97.8% to 117.9% for middle fortification level (10-80 {mu}g kg{sup -1}), and from 94.3% to 118.1% for highest fortification level (20-160 {mu}g kg{sup -1}). Relative standard deviations of pesticide recoveries were usually less than 7%. Method detection limits of target pesticides ranged from 0.22 {mu}g kg{sup -1} to 3.72 {mu}g kg{sup -1}. Furthermore, field sediment samples collected from four residential lakes during a three-month monitoring period were analyzed to evaluate the effectiveness of this method. Bifenthrin was detected in all of sediment samples (highest concentration 260.33 {+-} 41.71 {mu}g kg{sup -1}, lowest concentration 5.68 {+-} 0.38 {mu}g kg{sup -1}), and fipronil sulfone was detected at least once in sediment samples collected from three sites with concentrations ranging from 1.73 {+-} 0.53 to 7.53 {+-} 0.01 {mu}g kg{sup -1}. - Highlights: {yields} A rapid extraction and copper-based clean-up method was

  11. Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.

    Science.gov (United States)

    Sanchez-Hernandez, Juan C; Sandoval, Marco

    2017-08-01

    The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk assessments of OP-polluted soils should consider the fractionation of soil in aggregates of different size to measure

  12. Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides.

    Science.gov (United States)

    Chino-Flores, Concepción; Dantán-González, Edgar; Vázquez-Ramos, Alejandra; Tinoco-Valencia, Raunel; Díaz-Méndez, Rafael; Sánchez-Salinas, Enrique; Castrejón-Godínez, Maria Luisa; Ramos-Quintana, Fernando; Ortiz-Hernández, Maria Laura

    2012-06-01

    Microbial enzymes that can hydrolyze organophosphorus compounds have been isolated, identified and characterized from different microbial species in order to use them in biodegradation of organophosphorus compounds. We isolated a bacterial strain Cons002 from an agricultural soil bacterial consortium, which can hydrolyze methyl-parathion (MP) and other organophosphate pesticides. HPLC analysis showed that strain Cons002 is capable of degrading pesticides MP, parathion and phorate. Pulsed-field gel electrophoresis and 16S rRNA amplification were performed for strain characterization and identification, respectively, showing that the strain Cons002 is related to the genus Enterobacter sp. which has a single chromosome of 4.6 Mb and has no plasmids. Genomic library was constructed from DNA of Enterobacter sp. Cons002. A gene called opdE (Organophosphate Degradation from Enterobacter) consists of 753 bp and encodes a protein of 25 kDa, which was isolated using activity methods. This gene opdE had no similarity to any genes reported to degrade organophosphates. When kanamycin-resistance cassette was placed in the gene opdE, hydrolase activity was suppressed and Enterobacter sp. Cons002 had no growth with MP as a nutrients source.

  13. Synergism between demethylation inhibitor fungicides or gibberellin inhibitor plant growth regulators and bifenthrin in a pyrethroid-resistant population of Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Ramoutar, D; Cowles, R S; Requintina, E; Alm, S R

    2010-10-01

    In 2007-2008, the "annual bluegrass weevil," Listronotus maculicollis Kirby (Coleoptera: Curculionidae), a serious pest of Poa annua L. (Poales: Poaceae) on U.S. golf courses, was shown to be resistant to two pyrethroids, bifenthrin and lambda-cyhalothrin. In 2008, we showed that bifenthrin resistance was principally mediated by oxidase detoxification (cytochrome P450 [P450]). P450s can be inhibited by demethylation inhibitor fungicides and gibberellin inhibitor plant growth regulators, both of which are commonly used on golf courses. We tested these compounds for synergistic activity with bifenthin against a pyrethroid-resistant population of L. maculicollis. The LD50 value for bifenthrin was significantly reduced from 87 ng per insect (without synergists) to 9.6-40 ng per insect after exposure to the fungicides fenarimol, fenpropimorph, prochloraz, propiconazole, and pyrifenox and the plant growth regulators flurprimidol, paclobutrazol, and trinexapac-ethyl. Simulated field exposure with formulated products registered for use on turf revealed enhanced mortality when adult weevils were exposed to bifenthrin (25% mortality, presented alone) combined with field dosages of propiconizole, fenarimol, flurprimidol, or trinexapac-ethyl (range, 49-70% mortality).

  14. Editor's Highlight: Mode of Action Analysis for Rat Hepatocellular Tumors Produced by the Synthetic Pyrethroid Momfluorothrin: Evidence for Activation of the Constitutive Androstane Receptor and Mitogenicity in Rat Hepatocytes.

    Science.gov (United States)

    Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Nagahori, Hirohisa; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Lake, Brian G; Cohen, Samuel M; Yamada, Tomoya

    2017-08-01

    High dietary levels of momfluorothrin, a nongenotoxic synthetic pyrethroid, induced hepatocellular tumors in male and female Wistar rats in a 2-year bioassay. The mode of action (MOA) for rat hepatocellular tumors was postulated to occur via activation of the constitutive androstane receptor (CAR), as momfluorothrin is a close structural analogue of the pyrethroid metofluthrin, which is known to produce rat liver tumors through a CAR-mediated MOA. To elucidate the MOA for rat hepatocellular tumor formation by momfluorothrin, this study was conducted to examine effects on key and associative events of the CAR-mediated MOA for phenobarbital based on the International Programme on Chemical Safety framework. A 2-week in vivo study in Wistar rats revealed that momfluorothrin induced CYP2B activities, increased liver weights, produced hepatocyte hypertrophy and increased hepatocyte replicative DNA synthesis. These effects correlated with the dose-response relationship for liver tumor formation and also showed reversibility upon cessation of treatment. Moreover, momfluorothrin did not increase CYP2B1/2 mRNA expression and hepatocyte replicative DNA synthesis in CAR knockout rats. Using cultured Wistar rat hepatocytes and the RNA interference technique, knockdown of CAR resulted in a suppression of induction of CYP2B1/2 mRNA levels by momfluorothrin. Alternative MOAs for liver tumor formation were excluded. A global gene expression profile analysis of the liver of male Wistar rats treated with momfluorothrin for 2 weeks also showed similarity to the prototypic CAR activator phenobarbital. Overall, these data strongly support that the postulated MOA for momfluorothrin-induced rat hepatocellular tumors as being mediated by CAR activation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    International Nuclear Information System (INIS)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-01-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP 3 ) was explored. When neutrophil phosphoinositides were labeled with 32 P, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP 2 ) over 2 h. Treatment of [ 3 H]inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP 2 . Following fMLP stimulation, the fractional reduction in PIP 2 and the fractional increase in IP 3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP 3 was reduced by ACP pre-treatment. The reduction in IP 3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP 2 available for hydrolysis. However, some loss of IP 3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP 2 , the prognitor of IP 3 , and by hydrolyzing IP 3 itself

  16. ENGINEERING APPLIED TO FOOD PRODUCTION FORMULATED BY HYDROLYZED BAGASSE. A CASE OF STUDY

    Directory of Open Access Journals (Sweden)

    Raúl Costales Sotelo

    2015-01-01

    Full Text Available Some aspects of the engineering applied to the production of formulated food by hydrolyzed bagasse are showed, as an alternative in which fibrous component with increased digestibility constitutes 77% of the portion together with molasses at 15.9%, for almost 93% the total foodstuff potentially possible to be provided for a traditional sugar industry. The others ingredients such as urea, salts and minerals are common in animal diet and also in animal health and physiology. Local agriculture can contribute significantly to this program but is not taken into account in this exercise. This alternative, possible and feasible under Cuban economy conditions is magnified by the argument of operating periods of production facilities during and exceed normal sugar mill campaign for animals confinement periods of 180 days or longer, avoiding not only animals mortality but gaining weight at a rate of 500 g/day in a dry season by the input of 12 kg of formulated product per day. We have a first hydrolyzed plant which represents the beginning of an investment program that covers four more replicates, scattered throughout the national territory and it will significantly reduce food deficits needed by cattle as the main element of care, obtained by dual purpose: milk and meat production.

  17. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata.

    Science.gov (United States)

    Liu, Jia-Bao; Ding, Ya-Si; Zhang, Ying; Chen, Jia-Bao; Cui, Bao-Song; Bai, Jin-Ye; Lin, Ming-Bao; Hou, Qi; Zhang, Pei-Cheng; Li, Shuai

    2015-05-22

    Twelve hydrolyzable tannins were obtained from the twigs of Myricaria bracteata, including two new hellinoyl-type dimers, bracteatinins D1 (1) and D2 (2); a new hellinoyl-type trimer, bracteatinin T1 (3); two known monomers, nilotinin M4 (4) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (5); six known dimers, tamarixinin A (6), nilotinin D8 (7), hirtellins A (10), B (9), and E (8), and isohirtellin C (11); and a known trimer, hirtellin T3 (12). The structures of the tannins were elucidated by spectroscopic data analysis and comparisons to known tannins. All compounds were evaluated as free radical scavengers using 1,1-diphenyl-2-picrylhydrazyl and hydroxy radicals and compared to the activity of BHT and Trolox. Compound 6 showed a significant anti-inflammatory effect on croton oil-induced ear edema in mice (200 mg/kg, inhibition rate 69.8%) and on collagen-induced arthritis in DBA/1 mice (20 mg/kg, inhibition rate 46.0% at day 57).

  18. Hydrolyzable tannins from Balanophora polyandra

    Directory of Open Access Journals (Sweden)

    Yangai Wang

    2013-02-01

    Full Text Available This study reports an investigation of the chemical constituents of Balanophora polyandra Griff. Fifteen compounds were isolated by column chromatography on silica gel, Toyo-pearl HW-40C, Sephadex LH-20 and by HPLC. Their structures were elucidated as 1,4-di-O-galloyl-2-O-[(E-p-coumaroyl]-β-D-glucopyranose (1, 1-O-galloyl-β-D-pyranglucose (2, 1-p-coumaryl-β-D-pyranglucose (3, 1-O-(E-caffeoyl-β-D-pyranglucose (4, 1,3-di-O-galloyl-β-D-pyranglucose (5, 1,6-di-O-galloyl-β-D-pyranglucose (6, 1-O-(E-caffeoyl-4-O-galloyl-β-D-pyranglucose (7, 1-O-(E-caffeoyl-6-O-galloyl-β-D-pyranglucose (8, 1-O-(E-caffeoyl-4,6-di-O-galloyl-β-D-pyranglucose (9, 1-O-(E-caffeoyl-4,6-(S-HHDP-β-D-pyranglucose (10, 1,2,3,6-tetra-O-galloyl-β-D-pyranglucose (11, 4,6-(S-hexahydroxydiphenoyl-(α/β-D-glucose (12, 1-O-(E-caffeoyl-4,6-[1′,1″-(3′,3″,4′,4″-tetrahydroxydibenzofurandicarboxyl]-β-D-glucopyranose (13, flavogallonic acid (14, and phloretin-4′-O-β-D-glucoside (15 on the basis of spectral analysis. Compound 1 was a new hydrolyzable tannin, 9 was obtained from this genus for the first time, and compounds 5, 6 and 11–14 were isolated from this plant for the first time.

  19. Acetone-butyl alcohol fermentation of the cornstalk hydrolyzates prepared by the method of Riga

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, N A; Shcheblykina, N A; Kalnina, V; Pelsis, D

    1960-01-01

    The possibility of use of waste instead of food products in the acetone-butyl alcohol fermentation was investigated. Crushed cornstalks hydrolyzed by the method of Riga were inverted at varying conditions. The hydrolyzate containing about 50% of reducing substances (RS), based on dry weight of cornstalks, was neutralized to pH 6.3-6.5, diluted with water to the final concentration 5.0-5.1% of RS filtered, and the filtrate sterilized. The resulting liquor (I) was mixed with the wheat meal mash containing 5% of sugar (starch calculated as glucose) and fermented. The utilization of I depended upon the regime of inversion; the optimal being 20 minutes at 115/sup 0/, hydrocoefficient 1:4. In this case the use of 40% of mash sugar in form of I did not impair the yield of fermentation. The use of corn instead of wheat meal decreased the yield of butanol and increased that of ethanol. The fermentation of the mixture of I (final concentration 3% RS) and corn gluten (final concentration 2%), mineral salts added, gave higher yields than did the fermentation of the wheat meal mash.

  20. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Mars, Astrid E.; Veuskens, Teun; Budde, Miriam A.W.; van Doeveren, Patrick F.N.M.; Lips, Steef J.; Bakker, Robert R.; de Vrije, Truus; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-08-15

    Production of hydrogen by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana was studied in serum flasks and in pH-controlled bioreactors with glucose, and hydrolyzed and untreated potato steam peels (PSP) as carbon sources. Two types of PSP hydrolysates were used: one in which the starch in the PSP was liquefied with alpha-amylase, and one in which the liquefied starch was further hydrolyzed to glucose by amyloglucosidase. When the PSP hydrolysates or untreated PSP were added at circa 10-14 g/L of glucose units, both strains grew well and produced hydrogen with reasonable to high molar yields (2.4-3.8 moles H{sub 2}/mole glucose units), and no significant production of lactate. The hydrogen production rates and yields were similar with untreated PSP, hydrolyzed PSP, and pure glucose, showing that C. saccharolyticus and T. neapolitana are well equipped for the utilization of starch. When the concentrations of the substrates were increased, growth and hydrogen production of both strains were hampered. At substrate concentrations of circa 30-40 g/L of glucose units, the molar hydrogen yield of C. saccharolyticus was severely reduced due to the formation of high amounts of lactate, while T. neapolitana was unable to grow at all. The results showed that PSP and PSP hydrolysates are very suitable substrates for efficient fermentative hydrogen production at moderate substrate loadings. (author)

  1. Evaluation of additive effects of hydrolyzed jojoba (Simmondsia chinensis) esters and glycerol: a preliminary study.

    Science.gov (United States)

    Meyer, Jaimi; Marshall, Brooke; Gacula, Maximo; Rheins, Lawrence

    2008-12-01

    Glycerol has long served the topical prescriptive and personal care industry as a versatile and functional active and inactive ingredient. In skin care products, it acts primarily as an emollient, softening the skin through robust humectant hydration action. Hydrolyzed Jojoba Esters K-20W (K-20W) have been shown to increase skin hydration and improve sensory skin "feel" when included in a variety of skin, hair, and nail care cosmetic/personal care formulations. The addition of glycerol and hydrolyzed jojoba esters provides a substantial long-acting 24 h (moisturizing) skin hydration effect for topical products. A small pilot study was conducted to support the "proof of concept" that an enhanced, additive role exists between these two ingredients resulting in a long-term (24 h) skin moisturization effect. Topical treatments were applied to the skin (lower leg) of subjects, and evaluations were made at baseline and 8- to 24-h post-application. Skin hydration data were obtained via bio-instrumental transepidermal water loss (TEWL) measurements and expert clinical skin grading, including standardized digital clinical photography. Clinical skin grading evaluations and TEWL measurements found that significantly lower evaporative (P jojoba esters) than with glycerol alone in a standard base skin care lotion at 8 and 24 h posttreatment. This preliminary data "proof of concept" supports the position that glycerol and hydrolyzed jojoba esters work in tandem to enhance skin moisturization for at least 24 h. This unique moisturizing potential may prove valuable in the future development of cosmetic and over-the-counter/prescriptive topical products, including new medicaments containing botanicals. This fact is further reinforced with the recent greater commercial use and demand for defined safe botanicals in cosmetic as well as pharmaceutical topical formulations. Additional mechanistic studies are underway.

  2. [A novel ship-borne positive pressure solid phase extraction device to enrich organo chlorinated and pyrethroid pesticides in seawater].

    Science.gov (United States)

    Ye, Jianglei

    2017-09-08

    A novel solid phase extraction (SPE) device driven by positive pressure was developed instead of negative pressure from a vacuum pump, in order to enrich organo chlorinated and pyrethroid pesticides in seawater. The water sampling bottles and the pipelines which touch water samples were made of plastic material without chlorine. In order to ensure the sealing and firmness, the whole device were tightened with nut and bolt. The inner pressure (0.1-0.3 MPa) in the water sampling bottle was provided by the small air pump (powered by 12 V cell) controlled by a microprogrammed control unit (MCU) and pressure sensor to keep the water flow rate (4.0-6.0 mL/min). The pre-conditioned SPE column can be used for the enrichment of pesticides within four weeks, and the loaded SPE column can be eluted for detection within six weeks with recoveries greater than 80%. The linearity of the method was good with the correlation coefficient more than 0.9. The limits of quantification (LOQs) were 0.8-6 ng/L. The recoveries of the pesticides at three spiked levels (3 parallel samples) were 86.1%-95.5% with the relative standard deviations less than 10%. The benzene hexachlorides (BHCs) and dichloro-diphenyl-trichloroethanes (DDTs) were detected in seawater samples. The device has good application in enriching organo chlorinated and pyrethroid pesticides in seawater.

  3. Enzymatic hydrolysis (pepsin assisted by ultrasound in the functional Properties of hydrolyzates from different collagens

    Directory of Open Access Journals (Sweden)

    Alessandra Roseline Vidal

    2018-03-01

    Full Text Available ABSTRACT: Enzymatic hydrolysis (pepsin assisted with or without ultrasound in the functional properties of hydrolyzates from different collagens were analyzed. Degree of hydrolysis, antioxidant activity (DPPH and antimicrobial activity (MIC were assessed. The treatment that resulted in greater antioxidant activity for the fiber sample was with the use of 4% of enzyme and concomitant ultrasound (40.7%, leading to a degree of hydrolysis of 21.7%. For the powdered fiber sample the hydrolysis treatment with use of 4% of enzyme resulted in lower protein content (6.97mg/mL, higher degree of hydrolysis (19.9% and greater antioxidant activity (38.6%. The hydrolyzates showed inhibitory capacity against gram-negative bacteria Salmonella choleraesuis and gram-positive bacteria Staphylococcus aureus. It can be concluded that enzymatic hydrolysis concomitant or not with the use of ultrasound increased the functionality of the fiber and powdered fiber samples, for the other samples its use as supplementary treatment was not productive, due to the worse results of antioxidant activity (DPPH reported. However, it provided greater hydrolysis degree.

  4. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    Science.gov (United States)

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Micronuclei induction in Rana catesbeiana tadpoles by the pyrethroid insecticide lambda-cyhalothrin

    Directory of Open Access Journals (Sweden)

    Marcela Alejandra Campana

    2003-01-01

    Full Text Available Pyrethroid lambda-cyhalothrin genotoxicity was evaluated using the micronucleus test in Rana catesbeiana tadpoles. The effects of concentration and exposure time on the micronuclei frequency were studied in blood smears obtained from tadpoles exposed to four concentrations (0.02, 0.1, 0.2 and 0.4 mg/L of the compound for 24, 48, 72 and 96 h and 8, 15, 20 and 30 days. As a positive control, tadpoles were exposed to cyclophosphamide (5 mg/L. The micronucleated cell frequency was expressed per 1,000 cells. R. catesbeiana tadpoles exposed to increasing concentrations of lambda-cyhalothrin showed an increase in the micronuclei frequency in peripheral blood. Tadpoles exposed to cyclophosphamide (CP also showed a significant increase in micronucleated erythrocytes which peaked after 15 days. These results suggest that R. catesbeiana tadpoles may provide a useful model for monitoring water pollution.

  6. Basis for the optimum process parameters in the fermentation of hydrolyzates and spent sulfite liquors

    Energy Technology Data Exchange (ETDEWEB)

    Raitseva, M K

    1964-01-01

    Data are presented on technical processes used in hydrolysis plants, and on the carbohydrate compound of the most typical samples of softwood hydrolyzates. The operation of the fermentation equipment and the product quality depend on the dilution factor. Data are also given on the continuous fermentation of sugar into alcohol and on its dependence on the dilution factor.

  7. New Introductions, Spread of Existing Matrilines, and High Rates of Pyrethroid Resistance Result in Chronic Infestations of Bed Bugs (Cimex lectularius L. in Lower-Income Housing.

    Directory of Open Access Journals (Sweden)

    Ronald W Raab

    Full Text Available Infestations of the common bed bug (Cimex lectularius L. have increased substantially in the United States in the past 10-15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4-6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a 16/21 (73% infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr, from valine to leucine (V419L and leucine to isoleucine (L925I that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40% bed bugs were homozygous for both kdr mutations (L419/I925, and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug

  8. In situ identification of keratin-hydrolyzing organisms in swine manure inoculated anaerobic digesters.

    Science.gov (United States)

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Talbot, Guylaine; Kong, Yunhong; Seviour, Robert

    2011-12-01

    Feathers, a poultry byproduct, are composed of > 90% keratin which is resistant to degradation during anaerobic digestion. In this study, four 42-L anaerobic digesters inoculated with adapted swine manure were used to investigate feather digestion. Ground feathers were added into two anaerobic digesters for biogas production, whereas another two without feathers were used as negative control. Feather degradation and enhanced methane production were recorded. Keratin-hydrolyzing organisms (KHOs) were visualized in the feather bag fluids after boron-dipyrromethene (BODIPY) fluorescence casein staining. Their abundances correlated (R(2)  = 0.96) to feather digestion rates. A 16S rRNA clone library was constructed for the bacterial populations attached to the feather particles. Ninety-three clones (> 1300 bp) were retrieved and 57 (61%) belonged to class Clostridia in the phylum Firmicutes, while 34 (37%) belonged to class Bacteroidia in the phylum Bacteroidetes. Four oligonucleotide FISH probes were designed for the major Clostridia clusters and used with other FISH probes to identify the KHOs. Probe FIMs1029 hybridized with most (> 80%) of the KHOs. Its targeted sequence perfectly matches that possessed by 10 Clostridia 16S rRNA gene clones belonging to a previously uncharacterized new genus closely related to Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. © 2011 Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Published by Blackwell Publishing Ltd.

  9. Digestibility and nitrogen balance of lambs fed sugarcane hydrolyzed under different conditions as roughage in the diet

    Directory of Open Access Journals (Sweden)

    Viviane Endo

    2015-02-01

    Full Text Available This study aimed to evaluate the digestibility and nitrogen balance (NB of lambs fed sugarcane hydrolyzed under different conditions. Fifteen Ile de France lambs at, on average, 23.5kg of body weight were evaluated. Treatments were: in natura sugarcane (IN, sugarcane hydrolyzed using 0.6% calcium oxide (CaO under aerobic condition (AER, and sugarcane hydrolyzed using 0.6% CaO under anaerobic condition (ANA. Therefore, a completely randomized design was constituted with five replicates per treatment. Treatments were supplied to animals along with concentrate. Both hydrolysis conditions aimed to alter the sugarcane fermentation pattern, therefore improving fiber digestibility. Lambs were housed in individual pens and fed with diet allowing 10% of refusals. Refusals, feces and urine were sampled daily during five days. They were collected to determine the digestibility and NB. A higher digestibility of neutral detergent fiber corrected for ash and protein (57.05%, organic matter (85.39%, hemicellulose (72.09%, NB (29.46g day-1 and 2.78g kg-0.75 day-1 and rate of nitrogen absorbed (3.00g kg-0.75 day-1 were observed for lambs fed with ANA than for those fed IN (41.17%, 73.76%, 53.80%, 21.39g day-1, 2.00g kg-0.75 day-1 and 2.22g kg-0.75 day-1, respectively. As roughage, ANA in the lamb diet, optimizes the nitrogen balance and is more efficient to improve the digestibility of some nutrients compared to IN. Whereas AER was as efficient as ANA and IN

  10. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    International Nuclear Information System (INIS)

    Neufeld, E.; Goren, H.J.; Boland, D.

    1989-01-01

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. 32 P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose

  11. Acute toxicity and gene responses induced by endosulfan in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Young-Sun Moon

    2016-10-01

    Full Text Available Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L−1, whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L−1 of endosulfan. Comparative gene expression using real-time quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.

  12. Extensively Hydrolyzed Formula (MA-mi Induced Exacerbation of Food Protein-Induced Enterocolitis Syndrome (FPIES in a Male Infant

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kabuki

    2007-01-01

    Discussion: MA-mi is likely to be used increasingly for allergic infants, but it is not necessarily a substitute for other hydrolyzed milk formulae in all cases, and care should be taken regarding its use and possible misuse.

  13. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  14. Molecular characterisation of two α-esterase genes involving chlorpyrifos detoxification in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Xie, Miao; Ren, Na-Na; You, Yan-Chun; Chen, Wei-Jun; Song, Qi-Sheng; You, Min-Sheng

    2017-06-01

    Carboxylesterases (CarEs) are involved in metabolic detoxification of dietary and environmental xenobiotics in insects. However, owing to the complexity of the protein family, the involvement of CarEs in insecticide metabolism in Plutella xylostella has not been fully elucidated. This study aimed to characterise two CarE genes and assess their potential roles in response to chlorpyrifos in P. xylostella. Synergistic tests showed that triphenyl phosphate decreased the resistance of the third-instar larvae to chlorpyrifos. The treatment of the third-instar larvae with chlorpyrifos at the LC 30 dose led to a significant increase in CarE activity. Two CarE cDNAs (Pxae18 and Pxae28) were subsequently sequenced and characterised. Both genes were expressed predominantly in the larval midgut. Most importantly, two CarE genes showed significantly higher expression in the chlorpyrifos-resistant strain than in the susceptible strain. RNAi knockdown of Pxae18 and Pxae28 significantly increased the mortality to chlorpyrifos from 40% in the control to 73.8 and 63.3% respectively. RNAi knockdown of Pxae18 and Pxae28 significantly inhibited detoxification ability and increased the mortality in P. xylostella. The results indicate that these two CarE genes play important roles in the detoxification of chlorpyrifos in P. xylostella. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda).

    Science.gov (United States)

    Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge

    2018-02-01

    Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.

  16. The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance.

    Science.gov (United States)

    Gudeta, Dereje Dadi; Bortolaia, Valeria; Amos, Greg; Wellington, Elizabeth M H; Brandt, Kristian K; Poirel, Laurent; Nielsen, Jesper Boye; Westh, Henrik; Guardabassi, Luca

    2016-01-01

    The origin of carbapenem-hydrolyzing metallo-β-lactamases (MBLs) acquired by clinical bacteria is largely unknown. We investigated the frequency, host range, diversity, and functionality of MBLs in the soil microbiota. Twenty-five soil samples of different types and geographical origins were analyzed by antimicrobial selective culture, followed by phenotypic testing and expression of MBL-encoding genes in Escherichia coli, and whole-genome sequencing of MBL-producing strains was performed. Carbapenemase activity was detected in 29 bacterial isolates from 13 soil samples, leading to identification of seven new MBLs in presumptive Pedobacter roseus (PEDO-1), Pedobacter borealis (PEDO-2), Pedobacter kyungheensis (PEDO-3), Chryseobacterium piscium (CPS-1), Epilithonimonas tenax (ESP-1), Massilia oculi (MSI-1), and Sphingomonas sp. (SPG-1). Carbapenemase production was likely an intrinsic feature in Chryseobacterium and Epilithonimonas, as it occurred in reference strains of different species within these genera. The amino acid identity to MBLs described in clinical bacteria ranged between 40 and 69%. Remarkable features of the new MBLs included prophage integration of the encoding gene (PEDO-1), an unusual amino acid residue at a key position for MBL structure and catalysis (CPS-1), and overlap with a putative OXA β-lactamase (MSI-1). Heterologous expression of PEDO-1, CPS-1, and ESP-1in E. coli significantly increased the MICs of ampicillin, ceftazidime, cefpodoxime, cefoxitin, and meropenem. Our study shows that MBL producers are widespread in soil and include four genera that were previously not known to produce MBLs. The MBLs produced by these bacteria are distantly related to MBLs identified in clinical samples but constitute resistance determinants of clinical relevance if acquired by pathogenic bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Mathias, Leah; Baraka, Vito; Philbert, Anitha; Innocent, Ester; Francis, Filbert; Nkwengulila, Gamba; Kweka, Eliningaya J

    2017-06-09

    Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector's habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT 50 and KDT 95 ). The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0

  18. Carboxylesterase-involved metabolism of di-n-butyl phthalate in pumpkin (Cucurbita moschata) seedlings.

    Science.gov (United States)

    Lin, Qingqi; Chen, Siyuan; Chao, Yuanqing; Huang, Xiongfei; Wang, Shizhong; Qiu, Rongliang

    2017-01-01

    Uptake and accumulation by plants is a significant pathway in the migration and transformation of phthalate esters (PAEs) in the environment. However, limited information is available on the mechanisms of PAE metabolism in plants. Here, we investigated the metabolism of di-n-butyl phthalate (DnBP), one of the most frequently detected PAEs, in pumpkin (Cucurbita moschata) seedlings via a series of hydroponic experiments with an initial concentration of 10 mg L -1 . DnBP hydrolysis occurred primarily in the root, and two of its metabolites, mono-n-butyl phthalate (MnBP) and phthalic acid (PA), were detected in all plant tissues. The MnBP concentration was an order of magnitude higher than that of PA in shoots, which indicated MnBP was more readily transported to the shoot than was PA because of the former's dual hydrophilic and lipophilic characteristics. More than 80% of MnBP and PA were located in the cell water-soluble component except that 96% of MnBP was distributed into the two solid cellular fractions (i.e., cell wall and organelles) at 96 h. A 13-20% and 29-54% increase of carboxylesterase (CXE) activity shown in time-dependent and concentration-dependent experiments, respectively, indicated the involvement of CXEs in plant metabolism of DnBP. The level of CXE activity in root subcellular fractions was in the order: the cell water-soluble component (88-94%) > cell wall (3-7%) > cell organelles (3-4%), suggesting that the cell water-soluble component is the dominant locus of CXE activity and also the domain of CXE-catalyzed hydrolysis of DnBP. The addition of triphenyl phosphate, a CXE inhibitor, led to 43-56% inhibition of CXE activity and 16-25% increase of DnBP content, which demonstrated the involvement of CXEs in plant metabolism of DnBP. This study contributes to our understanding of enzymitic mechanisms of PAE transformation in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Identification and functional analysis of the gene cluster for fructan utilization in Prevotella intermedia.

    Science.gov (United States)

    Fuse, Haruka; Fukamachi, Haruka; Inoue, Mitsuko; Igarashi, Takeshi

    2013-02-25

    Fructanase enzymes hydrolyze the β-2,6 and β-2,1 linkages of levan and inulin fructans, respectively. We analyzed the influence of fructan on the growth of Prevotella intermedia. The growth of P. intermedia was enhanced by addition of inulin, implying that P. intermedia could also use inulin. Based on this finding, we identified and analyzed the genes encoding a putative fructanase (FruA), sugar transporter (FruB), and fructokinase (FruK) in the genome of strain ATCC25611. Transcript analysis by RT-PCR showed that the fruABK genes were co-transcribed as a single mRNA and semi-quantitative analysis confirmed that the fruA gene was induced in response to fructose and inulin. Recombinant FruA and FruK were purified and characterized biochemically. FruA strongly hydrolyzed inulin, with slight degradation of levan via an exo-type mechanism, revealing that FruA is an exo-β-d-fructanase. FruK converted fructose to fructose-6-phosphate in the presence of ATP, confirming that FruK is an ATP-dependent fructokinase. These results suggest that P. intermedia can utilize fructan as a carbon source for growth, and that the fructanase, sugar transporter, and fructokinase proteins we identified are involved in this fructan utilization. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Qiangqiang Wang

    2016-01-01

    Full Text Available Since excessive reactive oxygen species (ROS is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps, which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.

  1. Stability and Wash Resistance of Local Made Mosquito Bednets and Detergents Treated with Pyrethroids against Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    H Vatandoost

    2009-06-01

    Full Text Available Background: We aimed to evaluate different fibres of bednets impregnated with various pyrethroids. The stability of insecticide on the bednet was measured using different methods of washings as well as local made detergents.Methods: The entire test was carried out according to the WHO-recommended methods. In addition, the impact of the numbers of washes on the stability of the insecticides was determined. Permethrin 10% (EC, deltamethrin 10% (SC, lambdacyhalothrin 2.5% (CS and cyfluthrin 5% (EW were used at the recommended dosages. Three different lo­cal detergents were used. Two kinds of washing methods (shaking, no shaking were used and in each method four kinds of washings, i.e. no wash, one wash, two washes and three washes was done. The main malaria vectors, Anophe­les stephensi, which is susceptible to all insecticides (BEECH strain, was tested with impregnated bednets in 3 minutes exposure time and the mortality was measured after 24 hours recovery period. Knock-down was measured as well using appropriate statistical methods.Results: Lambdacyhalothrin has saved its insecticidal impact after being washed, whereas, deltamethrin has lost its activ­ity faster than other insecticides. Tow other insecticides had moderate effect. Golnar soap detergent has least ef­fect on the durability of insecticides, but the Shoma had the most. Whit increasing  the times of washing, insecticidal ef­fects was decreased , but shaking had no influence on the decreasing  of the quality of insecticidal impact.Conclusion: Results will be useful for local people who wish to use pyrethroid-impregnated bednets with their own lo­cal made detergent and bednets. 

  2. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella.

    Science.gov (United States)

    Bautista, Ma Anita M; Bhandary, Binny; Wijeratne, Asela J; Michel, Andrew P; Hoy, Casey W; Mittapalli, Omprakash

    2015-03-01

    Detoxification genes have been associated with insecticide adaptation in the diamondback moth, Plutella xylostella. The link between chemosensation genes and adaptation, however, remains unexplored. To gain a better understanding of the involvement of these genes in insecticide adaptation, the authors exposed lines of P. xylostella to either high uniform (HU) or low heterogeneous (LH) concentrations of permethrin, expecting primarily physiological or behavioral selection respectively. Initially, 454 pyrosequencing was applied, followed by an examination of expression profiles of candidate genes that responded to selection [cytochrome P450 (CYP), glutathione S-transferase (GST), carboxylesterase (CarE), chemosensory protein (CSP) and odorant-binding protein (OBP)] by quantitative PCR in the larvae. Toxicity and behavioral assays were also conducted to document the effects of the two forms of exposure. Pyrosequencing of the P. xylostella transcriptome from adult heads and third instars produced 198,753 reads with 52,752,486 bases. Quantitative PCR revealed overexpression of CYP4M14, CYP305B1 and CSP8 in HU larvae. OBP13, however, was highest in LH. Larvae from LH and HU lines had up to five- and 752-fold resistance levels respectively, which could be due to overexpression of P450s. However, the behavioral responses of all lines to a series of permethrin concentrations did not vary significantly in any of the generations examined, in spite of the observed upregulation of CSP8 and OBP13. Expression patterns from the target genes provide insights into behavioral and physiological responses to permethrin and suggest a new avenue of research on the role of chemosensation genes in insect adaptation to toxins. © 2014 Society of Chemical Industry.

  3. Bone mineral content (BMC) and serum vitamin D concentrations of infants fed partially hydrolyzed infant formulas

    Science.gov (United States)

    The purpose of the study was to compare the bone status of healthy, term infants fed partially hydrolyzed whey formulas during the first 3 mo of life. Between 0 and 8 d of age, 89 infants were randomized to Good Start Supreme (GSS) or an experimental whey-based formula (EF) to 84 d of age. BMC was a...

  4. Repeated Gestational Exposure of Mice to Chlorpyrifos Oxon Is Associated with Paraoxonase 1 (PON1) Modulated Effects in Maternal and Fetal Tissues

    Science.gov (United States)

    Co, Aila L.; Hay, Ariel M.; MacDonald, James W.; Bammler, Theo K.; Farin, Federico M.; Costa, Lucio G.; Furlong, Clement E.

    2014-01-01

    Chlorpyrifos oxon (CPO), the toxic metabolite of the organophosphorus (OP) insecticide chlorpyrifos, causes developmental neurotoxicity in humans and rodents. CPO is hydrolyzed by paraoxonase-1 (PON1), with protection determined by PON1 levels and the human Q192R polymorphism. To examine how the Q192R polymorphism influences fetal toxicity associated with gestational CPO exposure, we measured enzyme inhibition and fetal-brain gene expression in wild-type (PON1+/+), PON1-knockout (PON1−/−), and tgHuPON1R192 and tgHuPON1Q192 transgenic mice. Pregnant mice exposed dermally to 0, 0.50, 0.75, or 0.85 mg/kg/d CPO from gestational day (GD) 6 through 17 were sacrificed on GD18. Biomarkers of CPO exposure inhibited in maternal tissues included brain acetylcholinesterase (AChE), red blood cell acylpeptide hydrolase (APH), and plasma butyrylcholinesterase (BChE) and carboxylesterase (CES). Fetal plasma BChE was inhibited in PON1−/− and tgHuPON1Q192, but not PON1+/+ or tgHuPON1R192 mice. Fetal brain AChE and plasma CES were inhibited in PON1−/− mice, but not in other genotypes. Weighted gene co-expression network analysis identified five gene modules based on clustering of the correlations among their fetal-brain expression values, allowing for correlation of module membership with the phenotypic data on enzyme inhibition. One module that correlated highly with maternal brain AChE activity had a large representation of homeobox genes. Gene set enrichment analysis revealed multiple gene sets affected by gestational CPO exposure in tgHuPON1Q192 but not tgHuPON1R192 mice, including gene sets involved in protein export, lipid metabolism, and neurotransmission. These data indicate that maternal PON1 status modulates the effects of repeated gestational CPO exposure on fetal-brain gene expression and on inhibition of both maternal and fetal biomarker enzymes. PMID:25070982

  5. Influence of the molecular structure on hydrolyzability of epoxy resins

    International Nuclear Information System (INIS)

    Pays, M.F.

    1996-01-01

    EDF has decided to use glass reinforced composites for certain pipework in Pressurized Water Reactors (service water, emergency-supplied service water, fine pipe works, etc...) as a replacement for traditional materials. In practice, steel is prone to rapid corrosion in these circuits; introducing composites could prove economically viable if their long term behaviour can be demonstrated. However, composite materials can undergo deterioration in service through hydrolysis of the resin or the fibre-matrix interface. Different resins can be chosen depending on the programmed use. A first study has covered the hydrolyzability of polyester and vinyl ester resins. The present document undertakes the resistance to hydrolysis of epoxy resins, concentrating on those reputed to withstand high temperatures. This research uses model monomer, linking the molecular structure of the materials to their resistance to hydrolysis. (author)

  6. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  7. Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehaia, M A [King Saud Univ., Buriedah (Saudi Arabia). Dairy Technology Lab.; Cheryan, M [Illinois Univ., Urbana, IL (USA). Agricultural Bioprocess Lab.

    1990-02-13

    A diauxic fermentation was observed during batch fermentation of enzyme-hydrolyzed whey permeate to ethanol by Saccharomyces cerevisiae. Glucose was consumed before and much faster than galactose. In the continuous membrane recycle bioreactor (MRB), sugar utilization was a function of dilution rate and concentration of sugars. At a cell concentration of 160 kg/m{sup 3}, optimum productivity was 31 kg/(m{sup 3}.h) at ethanol concentration of 65 kg/m{sup 3}. Low levels of acetate (0.05-0.1 M) reduced cell growth during continuous fermentation, but also reduced galactose utilization. (orig.).

  8. Effect of Cellular Location of Human Carboxylesterase 2 on CPT-11 Hydrolysis and Anticancer Activity.

    Directory of Open Access Journals (Sweden)

    Yuan-Ting Hsieh

    Full Text Available CPT-11 is an anticancer prodrug that is clinically used for the treatment of metastatic colorectal cancer. Hydrolysis of CPT-11 by human carboxylesterase 2 (CE2 generates SN-38, a topoisomerase I inhibitor that is the active anti-tumor agent. Expression of CE2 in cancer cells is under investigation for the tumor-localized activation of CPT-11. CE2 is normally expressed in the endoplasmic reticulum of cells but can be engineered to direct expression of active enzyme on the plasma membrane or as a secreted form. Although previous studies have investigated different locations of CE2 expression in cancer cells, it remains unclear if CE2 cellular location affects CPT-11 anticancer activity. In the present study, we directly compared the influence of CE2 cellular location on substrate hydrolysis and CPT-11 cytotoxicity. We linked expression of CE2 and enhanced green fluorescence protein (eGFP via a foot-and-mouth disease virus 2A (F2A peptide to facilitate fluorescence-activated cell sorting to achieve similar expression levels of ER-located, secreted or membrane-anchored CE2. Soluble CE2 was detected in the medium of cells that expressed secreted and membrane-anchored CE2, but not in cells that expressed ER-retained CE2. Cancer cells that expressed all three forms of CE2 were more sensitive to CPT-11 as compared to unmodified cancer cells, but the membrane-anchored and ER-retained forms of CE2 were consistently more effective than secreted CE2. We conclude that expression of CE2 in the ER or on the membrane of cancer cells is suitable for enhancing CPT-11 anticancer activity.

  9. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    Directory of Open Access Journals (Sweden)

    Chouaibou Mouhamadou

    2006-09-01

    Full Text Available Abstract Background Recent field studies indicated that insecticide-treated bednets (ITNs maintain their efficacy despite a high frequency of the knock-down resistance (kdr gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. Methods Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m2, a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m2, a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. Results Bifenthrin at 50 mg/m2 significantly reduced anophelines' entry rate (>80%. This was not observed at 5 mg/m2. Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. Conclusion Bifenthrin-impregnated bednets at 50 mg/m2 were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations.

  10. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    Science.gov (United States)

    Chouaibou, Mouhamadou; Simard, Frédéric; Chandre, Fabrice; Etang, Josiane; Darriet, Frédéric; Hougard, Jean-Marc

    2006-01-01

    Background Recent field studies indicated that insecticide-treated bednets (ITNs) maintain their efficacy despite a high frequency of the knock-down resistance (kdr) gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. Methods Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m2, a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m2, a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. Results Bifenthrin at 50 mg/m2 significantly reduced anophelines' entry rate (>80%). This was not observed at 5 mg/m2. Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. Conclusion Bifenthrin-impregnated bednets at 50 mg/m2 were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations. PMID:16961938

  11. SME-3, a Novel Member of the Serratia marcescens SME Family of Carbapenem-Hydrolyzing β-Lactamases

    Science.gov (United States)

    Queenan, Anne Marie; Shang, Wenchi; Schreckenberger, Paul; Lolans, Karen; Bush, Karen; Quinn, John

    2006-01-01

    Imipenem-resistant Serratia marcescens isolates were cultured from a lung transplant patient given multiple antibiotics over several months. The strains expressed SME-3, a β-lactamase of the rare SME carbapenem-hydrolyzing family. SME-3 differed from SME-1 by a single amino acid substitution of tyrosine for histidine at position 105, but the two β-lactamases displayed similar hydrolytic profiles. PMID:17005839

  12. SME-3, a novel member of the Serratia marcescens SME family of carbapenem-hydrolyzing beta-lactamases.

    Science.gov (United States)

    Queenan, Anne Marie; Shang, Wenchi; Schreckenberger, Paul; Lolans, Karen; Bush, Karen; Quinn, John

    2006-10-01

    Imipenem-resistant Serratia marcescens isolates were cultured from a lung transplant patient given multiple antibiotics over several months. The strains expressed SME-3, a beta-lactamase of the rare SME carbapenem-hydrolyzing family. SME-3 differed from SME-1 by a single amino acid substitution of tyrosine for histidine at position 105, but the two beta-lactamases displayed similar hydrolytic profiles.

  13. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, Geneva, NY 14456 (United States)

    2016-01-15

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin

  14. Competition of a parathion-hydrolyzing Flavobacterium with bacteria from ditch water in carbon-, nitrate- and phosphate-limited continuous cultures

    NARCIS (Netherlands)

    Sprenger, W.; Dijkstra, A.; Zwart, G.; Van Agterveld, M.P.; Van Noort, P.C.M.; Parsons, J.R.

    2003-01-01

    The effect of competition for macroelements with bacteria from ditch water on the parathion-hydrolyzing Flavobacterium sp. ATCC 27551 (FB) was investigated within mixed continuous cultures under carbon-, nitrate- or phosphate-limited conditions. The high initial rate of parathion hydrolysis

  15. Kinetic Modeling of Ethanol Batch Fermentation by Escherichia Coli FBWHR Using Hot-Water Sugar Maple Wood Extract Hydrolyzate as Substrate

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-12-01

    Full Text Available A recombinant strain of Escherichia coli FBWHR was used for ethanol fermentation from hot-water sugar maple wood extract hydrolyzate in batch experiments. Kinetic studies of cell growth, sugar utilization and ethanol production were investigated at different initial total sugar concentrations of wood extract hydrolyzate. The highest ethanol concentration of 24.05 g/L was obtained using an initial total sugar concentration of 70.30 g/L. Unstructured models were developed to describe cell growth, sugar utilization and ethanol production and validated by comparing the predictions of model and experimental data. The results from this study could be expected to provide insights into the process performance, optimize the process and aid in the design of processes for large-scale production of ethanol fermentation from woody biomass.

  16. Incoordination, Paralysis and Recovery after Pyrethroid Treatment on Nymphs III of Triatoma infestans (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Raúl A Alzogaray

    1997-05-01

    Full Text Available Symptoms of poisoning for deltamethrin and cis-permethrin on nymphs III of Triatoma infestans were described. The time required for incoordination and paralysis were determined. Deltamethrin was equal or more rapid in the onset of the first effect (accordingly to dose, and cis-permethrin in the onset of the second one. There were no significant differences between incoordination doses 50% (IncD50s at different times for the two pyrethroids. They showed equivalent incoordination power, but the nymphs treated with deltamethrin recovered slightly more rapid and in greater amount than the nymphs treated with cis-permethrin. The recovery was inhibited by the simultaneus application of piperonyl butoxide. This result suggests that biotransformation by mixed-function microsomal oxidases are involved in the process of recovery

  17. Copper clean-up procedure for ultrasonic extraction and analysis of pyrethroid and phenylpyrazole pesticides in sediments by gas chromatography-electron capture detection

    International Nuclear Information System (INIS)

    Wu Jun; Lin Youjian; Lu Jian; Wilson, Chris

    2011-01-01

    A rapid ultrasonic extraction method coupled with a heated-copper clean-up procedure for removing interfering constituents was developed for analyzing pyrethroid and phenylpyrazole pesticides in sediments. Incubation of the 60 mL extract with 12 g copper granules at 60 o C for 2 h was determined to be the optimal conditions for removing the interfering constituents. Eleven pyrethroid and phenylpyrazole pesticides were spiked into sediment samples to determine the effectiveness of the ultrasonic extraction method. The average recoveries of pyrethroids and phenylpyrazoles in sediment at 4 o C storage on day 0, 1, 7, 14, and 21 ranged from 98.6 to 120.0%, 79.2 to 116.0%, 85.0 to 119.7%, 93.6 to 118.7%, and 92.1 to 118.2%, respectively, with all percent relative standard deviations less than 10% (most o C. Recoveries of the pesticides ranged from 98.6% to 120.0% for lowest fortification level (2-16 μg kg -1 ), from 97.8% to 117.9% for middle fortification level (10-80 μg kg -1 ), and from 94.3% to 118.1% for highest fortification level (20-160 μg kg -1 ). Relative standard deviations of pesticide recoveries were usually less than 7%. Method detection limits of target pesticides ranged from 0.22 μg kg -1 to 3.72 μg kg -1 . Furthermore, field sediment samples collected from four residential lakes during a three-month monitoring period were analyzed to evaluate the effectiveness of this method. Bifenthrin was detected in all of sediment samples (highest concentration 260.33 ± 41.71 μg kg -1 , lowest concentration 5.68 ± 0.38 μg kg -1 ), and fipronil sulfone was detected at least once in sediment samples collected from three sites with concentrations ranging from 1.73 ± 0.53 to 7.53 ± 0.01 μg kg -1 . - Highlights: → A rapid extraction and copper-based clean-up method was developed. → Recoveries after storage at 4 o C for 21 d ranged from 79.2 to 120.0%. → Percent relative standard deviations less than 10% (most -1 to 3.72 μg kg -1 .

  18. The detox strategy in smoking comprising nutraceutical formulas of non-hydrolyzed carnosine or carcinine used to protect human health.

    Science.gov (United States)

    Babizhayev, Mark A

    2014-03-01

    The increased oxidative stress in patients with smoking-associated disease, such as chronic obstructive pulmonary disease, is the result of an increased burden of inhaled oxidants as well as increased amounts of reactive oxygen species generated by various inflammatory, immune and epithelial cells of the airways. Nicotine sustains tobacco addiction, a major cause of disability and premature death. In addition to the neurochemical effects of nicotine, behavioural factors also affect the severity of nicotine withdrawal symptoms. For some people, the feel, smell and sight of a cigarette and the ritual of obtaining, handling, lighting and smoking a cigarette are all associated with the pleasurable effects of smoking. For individuals who are motivated to quit smoking, a combination of pharmacotherapy and behavioural therapy has been shown to be most effective in controlling the symptoms of nicotine withdrawal. In the previous studies, we proposed the viability and versatility of the imidazole-containing dipeptide-based compounds in the nutritional compositions as the telomere protection targeted therapeutic system for smokers in combination with in vitro cellular culture techniques being an investigative tool to study telomere attrition in cells induced by cigarette smoke (CS) and smoke constituents. Our working therapeutic concept is that imidazole-containing dipeptide-based compounds (non-hydrolyzed carnosine and carcinine) can modulate the telomerase activity in the normal cells and can provide the redox regulation of the cellular function under the terms of environmental and oxidative stress and in this way protect the length and the structure of telomeres from attrition. The detoxifying system of non-hydrolyzed carnosine or carcinine can be applied in the therapeutic nutrition formulations or installed in the cigarette filter. Patented specific oral formulations of non-hydrolyzed carnosine and carcinine provide a powerful manipulation tool for targeted therapeutic

  19. Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA.

    OpenAIRE

    Frothingham, R; Meeker-O'Connell, W A; Talbot, E A; George, J W; Kreuzer, K N

    1996-01-01

    Pyrazinamide (PZA) is one of the three most important drugs for treatment of Mycobacterium tuberculosis infections. The antibacterial activity of PZA requires a bacterial enzyme, pyrazinamidase (PZAase), which hydrolyzes PZA to form pyrazinoic acid and ammonia. Most PZA-resistant clinical M. tuberculosis isolates lack PZAase activity. With the goal of eventually identifying and characterizing the M.tuberculosis PZAase gene, we began with the more tractable organism, Escherichia coli, which al...

  20. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2016-12-01

    Partially hydrolyzed guar gum was prepared using enzymatic hydrolysis of native guar gum that can be utilized as soluble fiber source. The effect of partially hydrolyzed guar gum (PHGG) on pasting, thermo-mechanical and rheological properties of wheat flour was investigated using rapid visco-analyzer, Mixolab and Microdoughlab. Wheat flour was replaced with 1-5g PHGG per 100g of wheat flour on weight basis. PHGG addition decreased the peak, trough, breakdown, setback and final viscosity of wheat flour. Water absorption and amylase activity of wheat dough were increased whereas starch gelatinization and protein weakening of wheat dough were reduced as a result of PHGG addition to wheat flour. PHGG addition also increased the peak dough height, arrival time, dough development time, dough stability and peak energy of wheat dough system. However, dough softening was decreased after PHGG addition to wheat flour dough. Overall, it can be assumed that PHGG has influenced the properties of wheat flour dough system by decreasing the RVA viscosities and increasing the water absorption and starch gelatinization of wheat dough system. Copyright © 2016 Elsevier B.V. All rights reserved.