WorldWideScience

Sample records for pyrethroid resistant culex

  1. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin

    NARCIS (Netherlands)

    N'Guessan, R.; Boko, P.; Odjo, A.; Knols, B.G.J.; Akogbeto, M.; Rowland, M.

    2009-01-01

    Objective To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Method Eight-week trial conducted in experimental

  2. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin

    NARCIS (Netherlands)

    N'Guessan, R.; Boko, P.; Odjo, A.; Knols, B.G.J.; Akogbeto, M.; Rowland, M.

    2009-01-01

    Objective To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Method Eight-week trial conducted in experimental

  3. Development of Resistance to Pyrethroid in Culex pipiens pallens Population under Different Insecticide Selection Pressures.

    Science.gov (United States)

    Shi, Linna; Hu, Hongxia; Ma, Kai; Zhou, Dan; Yu, Jing; Zhong, Daibin; Fang, Fujin; Chang, Xuelian; Hu, Shengli; Zou, Feifei; Wang, Weijie; Sun, Yan; Shen, Bo; Zhang, Donghui; Ma, Lei; Zhou, Guofa; Yan, Guiyun; Zhu, Changliang

    2015-01-01

    Current vector control programs are largely dependent on pyrethroids, which are the most commonly used and only insecticides recommended by the World Health Organization for insecticide-treated nets (ITNs). However, the rapid spread of pyrethroid resistance worldwide compromises the effectiveness of control programs and threatens public health. Since few new insecticide classes for vector control are anticipated, limiting the development of resistance is crucial for prolonging efficacy of pyrethroids. In this study, we exposed a field-collected population of Culex pipiens pallens to different insecticide selection intensities to dynamically monitor the development of resistance. Moreover, we detected kdr mutations and three detoxification enzyme activities in order to explore the evolutionary mechanism of pyrethroid resistance. Our results revealed that the level of pyrethroid resistance was proportional to the insecticide selection pressure. The kdr and metabolic resistance both contributed to pyrethroid resistance in the Cx. pipiens pallens populations, but they had different roles under different selection pressures. We have provided important evidence for better understanding of the development and mechanisms of pyrethroid resistance which may guide future insecticide use and vector management in order to avoid or delay resistance.

  4. Development of Resistance to Pyrethroid in Culex pipiens pallens Population under Different Insecticide Selection Pressures.

    Directory of Open Access Journals (Sweden)

    Linna Shi

    Full Text Available Current vector control programs are largely dependent on pyrethroids, which are the most commonly used and only insecticides recommended by the World Health Organization for insecticide-treated nets (ITNs. However, the rapid spread of pyrethroid resistance worldwide compromises the effectiveness of control programs and threatens public health. Since few new insecticide classes for vector control are anticipated, limiting the development of resistance is crucial for prolonging efficacy of pyrethroids. In this study, we exposed a field-collected population of Culex pipiens pallens to different insecticide selection intensities to dynamically monitor the development of resistance. Moreover, we detected kdr mutations and three detoxification enzyme activities in order to explore the evolutionary mechanism of pyrethroid resistance. Our results revealed that the level of pyrethroid resistance was proportional to the insecticide selection pressure. The kdr and metabolic resistance both contributed to pyrethroid resistance in the Cx. pipiens pallens populations, but they had different roles under different selection pressures. We have provided important evidence for better understanding of the development and mechanisms of pyrethroid resistance which may guide future insecticide use and vector management in order to avoid or delay resistance.

  5. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin.

    Science.gov (United States)

    N'Guessan, Raphael; Boko, Pelagie; Odjo, Abiba; Knols, Bart; Akogbeto, Martin; Rowland, Mark

    2009-04-01

    To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Eight-week trial conducted in experimental huts. Indoor residual spraying killed 82.9% of An. gambiae overall (mean mortality: 79.5%) compared to 53.5% overall (mean mortality: 61.7%) in the hut containing the lower dosed ITN. Analysis of data on a fortnightly basis showed high levels of mosquito mortality and blood-feeding inhibition during the first few weeks after treatment. Control of C. quinquefasciatus by the IRS and ITN interventions showed a similar trend to that of An. gambiae and though the average level of mortality was lower it was still much higher than with pyrethroid treatments against this population. Chlorfenapyr's reputation for being rather slow acting was evident particularly at lower dosages. The treatments showed no evidence of excito-repellent activity in this trial. Chlorfenapyr has the potential to control pyrethroid resistant populations of A. gambiae. There is a need to develop long-lasting formulations of chlorfenapyr to prolong its residual life on nets and sprayed surfaces. On nets it could be combined with a contact irritant pyrethroid to give improved protection against mosquito biting while killing pyrethroid-resistant mosquitoes that come into contact with the net.

  6. ITN mixtures of chlorfenapyr (Pyrrole) and alphacypermethrin (Pyrethroid) for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus.

    Science.gov (United States)

    Oxborough, Richard M; Kitau, Jovin; Matowo, Johnson; Feston, Emmanuel; Mndeme, Rajab; Mosha, Franklin W; Rowland, Mark W

    2013-01-01

    Pyrethroid resistant Anopheles gambiae malaria vectors are widespread throughout sub-Saharan Africa and continued efficacy of pyrethroid ITNs is under threat. Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action conferring no cross-resistance to existing public health insecticides. Mixtures of chlorfenapyr (CFP) and alphacypermethrin (alpha) may provide additional benefits over chlorfenapyr or alphacypermethrin used alone. An ITN mixture of CFP 100 mg/m(2)+alpha 25 mg/m(2) was compared with CFP 100 mg/m(2) and alpha 25 mg/m(2) in a small-scale experimental hut trial in an area of wild An. arabiensis. The same treatments were evaluated in tunnel tests against insectary-reared pyrethroid susceptible and resistant Culex quinquefasciatus. Performance was measured in terms of insecticide-induced mortality, and blood-feeding inhibition. Tunnel tests showed that mixtures of CFP 100+ alpha 25 were 1.2 and 1.5 times more effective at killing susceptible Cx. quinquefasciatus than either Alpha 25 (P = 0.001) or CFP 100 (P = 0.001) ITNs. Mixtures of CFP100+ alpha 25 were 2.2 and 1.2 times more effective against resistant Cx. quinquefasciatus than either alpha 25 (P = 0.001) or CFP100 (P = 0.003) ITNs. CFP 100+ alpha 25 produced higher levels of blood-feeding inhibition than CFP alone for susceptible (94 vs 46%, P = 0.001) and resistant (84 vs 53%, P = 0.001) strains. In experimental huts the mixture of CFP 100+ Alpha 25 killed 58% of An. arabiensis, compared with 50% for alpha and 49% for CFP, though the differences were not significant. Blood-feeding inhibition was highest in the mixture with a 76% reduction compared to the untreated net (P = 0.001). ITN mixtures of chlorfenapyr and alphacypermethrin should restore effective control of resistant populations of An. gambiae malaria vectors, provide protection from blood-feeding, and may have benefits for resistance management, particularly in areas with low or moderate

  7. ITN mixtures of chlorfenapyr (Pyrrole and alphacypermethrin (Pyrethroid for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Richard M Oxborough

    Full Text Available Pyrethroid resistant Anopheles gambiae malaria vectors are widespread throughout sub-Saharan Africa and continued efficacy of pyrethroid ITNs is under threat. Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action conferring no cross-resistance to existing public health insecticides. Mixtures of chlorfenapyr (CFP and alphacypermethrin (alpha may provide additional benefits over chlorfenapyr or alphacypermethrin used alone. An ITN mixture of CFP 100 mg/m(2+alpha 25 mg/m(2 was compared with CFP 100 mg/m(2 and alpha 25 mg/m(2 in a small-scale experimental hut trial in an area of wild An. arabiensis. The same treatments were evaluated in tunnel tests against insectary-reared pyrethroid susceptible and resistant Culex quinquefasciatus. Performance was measured in terms of insecticide-induced mortality, and blood-feeding inhibition. Tunnel tests showed that mixtures of CFP 100+ alpha 25 were 1.2 and 1.5 times more effective at killing susceptible Cx. quinquefasciatus than either Alpha 25 (P = 0.001 or CFP 100 (P = 0.001 ITNs. Mixtures of CFP100+ alpha 25 were 2.2 and 1.2 times more effective against resistant Cx. quinquefasciatus than either alpha 25 (P = 0.001 or CFP100 (P = 0.003 ITNs. CFP 100+ alpha 25 produced higher levels of blood-feeding inhibition than CFP alone for susceptible (94 vs 46%, P = 0.001 and resistant (84 vs 53%, P = 0.001 strains. In experimental huts the mixture of CFP 100+ Alpha 25 killed 58% of An. arabiensis, compared with 50% for alpha and 49% for CFP, though the differences were not significant. Blood-feeding inhibition was highest in the mixture with a 76% reduction compared to the untreated net (P = 0.001. ITN mixtures of chlorfenapyr and alphacypermethrin should restore effective control of resistant populations of An. gambiae malaria vectors, provide protection from blood-feeding, and may have benefits for resistance management, particularly in areas with low or

  8. Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance.

    Science.gov (United States)

    Hong, Shanchao; Guo, Qin; Wang, Weijie; Hu, Shengli; Fang, Fujin; Lv, Yuan; Yu, Jing; Zou, Feifei; Lei, Zhentao; Ma, Kai; Ma, Lei; Zhou, Dan; Sun, Yan; Zhang, Donghui; Shen, Bo; Zhu, Changliang

    2014-12-01

    Pyrethroids are the major class of insecticides used for mosquito control. Excessive and improper use of insecticides, however, has resulted in pyrethroid resistance, which has become a major obstacle for mosquito control. The development of pyrethroid resistance is a complex process involving many genes, and information on post-transcription regulation of pyrethroid resistance is lacking. In this study, we extracted RNA from mosquitoes in various life stages (fourth-instar larvae, pupae, male and female adult mosquitoes) from deltamethrin-sensitive (DS) and resistant (DR) strains. Using illumina sequencing, we obtained 13760296 and 12355472 reads for DS-strains and DR-strains, respectively. We identified 100 conserved miRNAs and 42 novel miRNAs derived from 21 miRNA precursors in Culex pipiens. After normalization, we identified 28 differentially expressed miRNAs between the two strains. Additionally, we found that cpp-miR-71 was significant down regulated in female adults from the DR-strain. Based on microinjection and CDC Bottle Bioassay data, we found that cpp-miR-71 may play a contributing role in deltamethrin resistance. The present study provides the firstly large-scale characterization of miRNAs in Cu. pipiens and provides evidence of post-transcription regulation. The differentially expressed miRNAs between the two strains are expected to contribute to the development of pyrethroid resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cloning and characterization of two glutathione S-transferases from pyrethroid resistant Culex pipiens

    Science.gov (United States)

    Samra, Aman I; Kamita, Shizuo G; Yao, Hong-Wei; Cornel, Anthony J; Hammock, Bruce D

    2013-01-01

    BACKGROUND The Marin strain of Culex pipiens Say is a pyrethroid-resistant population that was collected in Marin County, California, in 2001 and subsequently maintained in the laboratory under regular permethrin exposure. RESULTS In this study, two genes, CpGSTd1 and CpGSTd2, encoding glutathione S-transferase (GST) were cloned from Cx. pipiens Marin. Phylogenetic analysis of the deduced amino acid sequences, CpGSTD1 and CpGSTD2, of these genes indicated that they belong to the Delta class of insect GSTs. The nucleotide and deduced amino acid sequences of CpGSTd1 and CpGSTd2 were 59% and 48% identical, respectively. CpGSTD1 and CpGSTD2 were expressed in Escherichia coli and purified by affinity chromatography. The recombinant GSTs exhibited unique selectivity towards the general GST substrates CDNB and DCNB, and also differed in their sensitivity to known inhibitors of GSTs. CpGSTD1 exhibited peroxidase activity with cumene hydroperoxide, while CpGSTD2 appeared to lack this activity. CpGSTD1 was able to metabolize DDT, while DDT metabolism by CpGSTD2 was not detectable. CpGSTD1 and CpGSTD2 showed no detectable metabolism of permethrin. Gene expression of CpGSTd1 and CpGSTd2 in Marin mosquitoes was elevated by about 2-fold in comparison to that found in a pyrethroid-sensitive mosquito strain. CONCLUSION Our results indicated that CpGSTD1 and CpGSTD2 have unique biochemical characteristics but they did not appear to play major roles in permethrin resistance in Marin mosquitoes. PMID:22290868

  10. Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes.

    Science.gov (United States)

    Oxborough, R M; Kitau, J; Matowo, J; Mndeme, R; Feston, E; Boko, P; Odjo, A; Metonnou, C G; Irish, S; N'guessan, R; Mosha, F W; Rowland, M W

    2010-10-01

    Chlorfenapyr is a pyrrole insecticide with a unique non-neurological mode of action. Laboratory bioassays of chlorfenapyr comparing the mortality of pyrethroid-susceptible and -resistant Anopheles gambiae s.s. and Culex quinquefasciatus mosquitoes indicated that operational cross-resistance is unlikely to occur (resistance ratio ranged between 0 and 2.1). Three trials of chlorfenapyr indoor residual spraying were undertaken in experimental huts in an area of rice irrigation in northern Tanzania that supports breeding of A. arabiensis. Daily mosquito collections were undertaken to assess product performance primarily in terms of mortality. In the second trial, 250mg/m(2) and 500mg/m(2) chlorfenapyr were tested for residual efficacy over 6 months. Both dosages killed 54% of C. quinquefasciatus, whilst for A. arabiensis 250mg/m(2) killed 48% compared with 41% for 500mg/m(2); mortality was as high at the end of the trial as at the beginning. In the third trial, 250mg/m(2) chlorfenapyr was compared with the pyrethroid alpha-cypermethrin dosed at 30mg/m(2). Chlorfenapyr performance was equivalent to the pyrethroid against A. arabiensis, with both insecticides killing 50% of mosquitoes. Chlorfenapyr killed a significantly higher proportion of pyrethroid-resistant C. quinquefasciatus (56%) compared with alpha-cypermethrin (17%). Chlorfenapyr has the potential to be an important addition to the limited arsenal of public health insecticides for indoor residual control of A. arabiensis and pyrethroid-resistant species of mosquito. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  11. Olyset Duo® (a pyriproxyfen and permethrin mixture net: an experimental hut trial against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus in Southern Benin.

    Directory of Open Access Journals (Sweden)

    Corine Ngufor

    Full Text Available BACKGROUND: Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF, an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen. METHOD: The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone and a LN with pyriproxyfen alone (PPF LN. Laboratory tunnel tests were performed to substantiate the findings in the experimental huts. RESULTS: Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01. Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001. The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets. CONCLUSION: Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and

  12. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  13. Mosquito nets treated with a mixture of chlorfenapyr and alphacypermethrin control pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in West Africa.

    Science.gov (United States)

    N'Guessan, Raphael; Ngufor, Corine; Kudom, Andreas A; Boko, Pelagie; Odjo, Abibathou; Malone, David; Rowland, Mark

    2014-01-01

    The effectiveness of insecticide treated nets is under threat across Africa south of the Sahara from the selection of pyrethroid resistance in Anopheles gambiae mosquitoes. To maintain progress against malaria it is necessary to identify alternative residual insecticides for mosquito nets. Mixtures of pyrethroid and insecticides with novel mode of action provide scope for both improved control and management of resistance through concurrent exposure to unrelated insecticides. The pyrrole chlorfenapyr and the pyrethroid alphacypermethrin were tested individually and as a mixture on mosquito nets in an experimental hut trial in southern Benin against pyrethroid resistant An gambiae and Culex quinquefasciatus mosquitoes. The nets were deliberately holed to simulate the effect of wear and tear. The nets treated with the mixture of chlorfenapyr 200 mg/m² and alphacypermethrin 25 mg/m² killed a proportion of An gambiae (77%, 95%CI: 66-86%) significantly greater than nets treated with alphacypermethrin 25 mg/m(2) (30%, 95%CI: 21-41%) but not significantly different from nets treated with chlorfenapyr 200 mg/m² (69%, 95%CI: 57-78%). The nets treated with the mixtures procured personal protection against An gambiae biting(58-62%) by a greater margin than the alphacypermethrin treated net (39%), whereas the chlorfenapyr treated net was not protective. A similar trend in mortality and blood feeding inhibition between treatments was observed in Cx quinquefasciatus to that seen in An. gambiae, although the effects were lower. A mixture of alphacypermethrin with chlorfenapyr applied at 100 mg/m² had an effect similar to the mixture with chlorfenapyr at 200 mg/m². The effectiveness of ITNs against pyrethroid resistant mosquitoes was restored by the mixture: the alphacypermethrin component reduced human-vector contact while the chlorfenapyr controlled pyrethroid-resistant mosquitoes. The complementary action of these unrelated insecticides demonstrates that the combination on

  14. Mosquito nets treated with a mixture of chlorfenapyr and alphacypermethrin control pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in West Africa.

    Directory of Open Access Journals (Sweden)

    Raphael N'Guessan

    Full Text Available BACKGROUND: The effectiveness of insecticide treated nets is under threat across Africa south of the Sahara from the selection of pyrethroid resistance in Anopheles gambiae mosquitoes. To maintain progress against malaria it is necessary to identify alternative residual insecticides for mosquito nets. Mixtures of pyrethroid and insecticides with novel mode of action provide scope for both improved control and management of resistance through concurrent exposure to unrelated insecticides. METHODS: The pyrrole chlorfenapyr and the pyrethroid alphacypermethrin were tested individually and as a mixture on mosquito nets in an experimental hut trial in southern Benin against pyrethroid resistant An gambiae and Culex quinquefasciatus mosquitoes. The nets were deliberately holed to simulate the effect of wear and tear. RESULTS: The nets treated with the mixture of chlorfenapyr 200 mg/m² and alphacypermethrin 25 mg/m² killed a proportion of An gambiae (77%, 95%CI: 66-86% significantly greater than nets treated with alphacypermethrin 25 mg/m(2 (30%, 95%CI: 21-41% but not significantly different from nets treated with chlorfenapyr 200 mg/m² (69%, 95%CI: 57-78%. The nets treated with the mixtures procured personal protection against An gambiae biting(58-62% by a greater margin than the alphacypermethrin treated net (39%, whereas the chlorfenapyr treated net was not protective. A similar trend in mortality and blood feeding inhibition between treatments was observed in Cx quinquefasciatus to that seen in An. gambiae, although the effects were lower. A mixture of alphacypermethrin with chlorfenapyr applied at 100 mg/m² had an effect similar to the mixture with chlorfenapyr at 200 mg/m². CONCLUSION: The effectiveness of ITNs against pyrethroid resistant mosquitoes was restored by the mixture: the alphacypermethrin component reduced human-vector contact while the chlorfenapyr controlled pyrethroid-resistant mosquitoes. The complementary action of these

  15. Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallens.

    Science.gov (United States)

    Ma, Kai; Li, Xixi; Hu, Hongxia; Zhou, Dan; Sun, Yan; Ma, Lei; Zhu, Changliang; Shen, Bo

    2017-01-01

    The wide use of pyrethroids has resulted in the emergence and spread of resistance in mosquito populations, which represent a major obstacle in the struggle against vector-borne diseases. Resistance to pyrethroids is a complex genetic phenomenon attributed by polygenetic inheritance. We previously have sequenced and analyzed the miRNA profiles of Culex pipiens pallens. MiR-92a was found to be overexpressed in a deltamethrin-resistant (DR) strain. The association of miR-92a with pyrethroid-resistance was investigated by quantitative reverse transcription PCR (qRT-PCR). Expression levels of miR-92a were 2.72-fold higher in the DR strain than in the deltamethrin-susceptible (DS) strain. Bioinformatic analysis suggested that CpCPR4, a mosquito cuticle gene, is the target of miR-92a. Dual luciferase reporter assays further confirmed that CpCPR4 is modulated by miR-92a through binding to a specific target site in the 3' untranslated region (3' UTR). Microinjection of the miR-92a inhibitor upregulated CpCPR4 expression levels, leading to an increase in the susceptibility of the DR strain in the Centers for Disease Control and Prevention (CDC) bottle bioassay (a surveillance tool for detecting resistance to insecticides in vector populations). Taken together, our findings indicate that miR-92a regulates pyrethroid-resistance through its interaction with CpCPR4. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae).

    Science.gov (United States)

    Li, Chun-xiao; Guo, Xiao-xia; Zhang, Ying-mei; Dong, Yan-de; Xing, Dan; Yan, Ting; Wang, Gang; Zhang, Heng-duan; Zhao, Tong-yan

    2016-05-01

    Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes.

  17. Pyrethroid resistance in mosquitoes

    Institute of Scientific and Technical Information of China (English)

    NANNAN LIU; QIANG XU; FANG ZHU; LEE ZHANG

    2006-01-01

    Repeated blood feedings throughout their life span have made mosquitoes ideal transmitters of a wide variety of disease agents. Vector control is a very important part of the current global strategy for the control of mosquito-associated diseases and insecticide application is the most important component in this effort. Pyrethroids, which account for 25% of the world insecticide market, are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemical recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. However, mosquito-borne diseases are now resurgent, largely because of insecticide resistance that has developed in mosquito vectors and the anti-parasite drug resistance of parasites. This paper reviews our current knowledge of the molecular mechanisms governing metabolic detoxification and the development of target site insensitivity that leads to pyrethroid resistance in mosquitoes.

  18. Evaluation of PermaNet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: an experimental hut trial in Tanzania

    Directory of Open Access Journals (Sweden)

    Malima Robert

    2010-01-01

    Full Text Available Abstract Background Combination mosquito nets incorporating two unrelated insecticides or insecticide plus synergist are designed to control insecticide resistant mosquitoes. PermaNet 3.0 is a long-lasting combination net incorporating deltamethrin on the side panels and a mixture of deltamethrin and synergist piperonyl butoxide (PBO on the top panel. PBO is an inhibitor of mixed function oxidases implicated in pyrethroid resistance. Method An experimental hut trial comparing PermaNet 3.0, PermaNet 2.0 and a conventional deltamethrin-treated net was conducted in NE Tanzania using standard WHOPES procedures. The PermaNet arms included unwashed nets and nets washed 20 times. PermaNet 2.0 is a long-lasting insecticidal net incorporating deltamethrin as a single active. Results Against pyrethroid susceptible Anopheles gambiae the unwashed PermaNet 3.0 showed no difference to unwashed PermaNet 2.0 in terms of mortality (95% killed, but showed differences in blood-feeding rate (3% blood-fed with PermaNet 3.0 versus 10% with PermaNet 2.0. After 20 washes the two products showed no difference in feeding rate (10% with 3.0 and 9% with 2.0 but showed small differences in mortality (95% with 3.0 and 87% with 2.0. Against pyrethroid resistant Culex quinquefasciatus, mediated by elevated oxidase and kdr mechanisms, the unwashed PermaNet 3.0 killed 48% and PermaNet 2.0 killed 32% but after 20 washes there was no significant difference in mortality between the two products (32% killed by 3.0 and 30% by 2.0. For protecting against Culex PermaNet 3.0 showed no difference to PermaNet 2.0 when either unwashed or after 20 washes; both products were highly protective against biting. Laboratory tunnel bioassays confirmed the loss of biological activity of the PBO/deltamethrin-treated panel after washing. Conclusion Both PermaNet products were highly effective against susceptible Anopheles gambiae. As a long-lasting net to control or protect against pyrethroid

  19. Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl or a pyrethroid (lambdacyhalothrin alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2005-05-01

    Full Text Available Abstract Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM, an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L, a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1R. Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. Results and Conclusion All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1R and Ace.1S genes did not differ significantly from mosquitoes that carried only Ace.1S genes on any of the treated nets, indicating that the Ace.1R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut.

  20. Mosquito Nets Treated with a Mixture of Chlorfenapyr and Alphacypermethrin Control Pyrethroid Resistant Anopheles gambiae and Culex quinquefasciatus Mosquitoes in West Africa: e87710

    National Research Council Canada - National Science Library

    Corine Ngufor; Andreas A Kudom; Pelagie Boko; Abibathou Odjo; David Malone; Mark Rowland

    2014-01-01

    .... Methods The pyrrole chlorfenapyr and the pyrethroid alphacypermethrin were tested individually and as a mixture on mosquito nets in an experimental hut trial in southern Benin against pyrethroid...

  1. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin

    National Research Council Canada - National Science Library

    Ngufor, Corine; N'Guessan, Raphael; Boko, Pelagie; Odjo, Abibatou; Vigninou, Estelle; Asidi, Alex; Akogbeto, Martin; Rowland, Mark

    2011-01-01

    .... Chlorfenapyr IRS and a pyrethroid-impregnated polyester LLIN (WHO approved) were tested separately and together in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus...

  2. Evaluation of PermaNet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: an experimental hut trial in Tanzania

    OpenAIRE

    Malima Robert; Maxwell Caroline; Magesa Stephen; Tungu Patrick; Masue Dennis; Sudi Wema; Myamba Joseph; Pigeon Olivier; Rowland Mark

    2010-01-01

    Abstract Background Combination mosquito nets incorporating two unrelated insecticides or insecticide plus synergist are designed to control insecticide resistant mosquitoes. PermaNet 3.0 is a long-lasting combination net incorporating deltamethrin on the side panels and a mixture of deltamethrin and synergist piperonyl butoxide (PBO) on the top panel. PBO is an inhibitor of mixed function oxidases implicated in pyrethroid resistance. Method An experimental hut trial comparing PermaNet 3.0, P...

  3. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  4. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr), in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel. PMID:27809228

  5. Multiple resistance of Culex vishnui Theobald against four major classes of insecticides in an agricultural area in Sekinchan, Selangor, Malaysia.

    Science.gov (United States)

    Leong, C S; Chen, C D; Low, V L; Karen-Chia, H M; Azidah, A A; Sofian-Azirun, M

    2014-06-01

    The resistance status of riceland Culex vishnui against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Biochemical assays (ESTα, ESTβ, MFO and GST) were also conducted to detect the resistance levels. Throughout a 12-month study period, multiple insecticide resistance was observed in both larvae and adult Cx vishnui. Culex vishnui larvae exhibited low resistance against malathion, temephos and permethrin with resistance ratio (RR) values GST. Spearman rank-order analysis showed that ESTα, ESTβ and GST were involved in multiple resistances in Cx. vishnui. The findings of this study established a baseline of insecticide susceptibility and revealed the effects of agricultural insecticide pressure on the vectors of Japanese encephalitis in Malaysia.

  6. Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon

    Directory of Open Access Journals (Sweden)

    Osta Mike A

    2012-07-01

    Full Text Available Abstract Background Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. Methods C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. Results We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher’s exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the

  7. Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon

    Science.gov (United States)

    2012-01-01

    Background Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. Methods C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. Results We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester) and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher’s exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the Ester2 allele, which exhibits

  8. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies.

    Science.gov (United States)

    Itokawa, Kentaro; Komagata, Osamu; Kasai, Shinji; Ogawa, Kohei; Tomita, Takashi

    2016-04-20

    Recently-emerging genome editing technologies have enabled targeted gene knockout experiments even in non-model insect species. For studies on insecticide resistance, genome editing technologies offer some advantages over the conventional reverse genetic technique, RNA interference, for testing causal relationships between genes of detoxifying enzymes and resistance phenotypes. There were relatively abundant evidences indicating that the overexpression of a cytochrome P450 gene CYP9M10 confers strong pyrethroid resistance in larvae of the southern house mosquito Culex quinquefasciatus. However, reverse genetic verification has not yet been obtained because of the technical difficulty of microinjection into larvae. Here, we tested two genome editing technologies, transcription activator-like effector nucleases (TALEN)s and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), to disrupt CYP9M10 in a resistant strain of C. quinquefasciatus. Additionally, we developed a novel, effective approach to construct a TALE using the chemical cleavage of phosphorothioate inter-nucleotide linkages in the level 1 assembly. Both TALEN and CRISPR/Cas9 induced frame-shifting mutations in one or all copies of CYP9M10 in a pyrethroid-resistant strain. A line fixed with a completely disrupted CYP9M10 haplotype showed more than 100-fold reduction in pyrethroid resistance in the larval stage.

  9. Managing insecticide resistance in malaria vectors by combining carbamate-treated plastic wall sheeting and pyrethroid-treated bed nets

    Directory of Open Access Journals (Sweden)

    Pennetier Cédric

    2009-10-01

    Full Text Available Abstract Background Pyrethroid resistance is now widespread in Anopheles gambiae, the major vector for malaria in sub-Saharan Africa. This resistance may compromise malaria vector control strategies that are currently in use in endemic areas. In this context, a new tool for management of resistant mosquitoes based on the combination of a pyrethroid-treated bed net and carbamate-treated plastic sheeting was developed. Methods In the laboratory, the insecticidal activity and wash resistance of four carbamate-treated materials: a cotton/polyester blend, a polyvinyl chloride tarpaulin, a cotton/polyester blend covered on one side with polyurethane, and a mesh of polypropylene fibres was tested. These materials were treated with bendiocarb at 100 mg/m2 and 200 mg/m2 with and without a binding resin to find the best combination for field studies. Secondly, experimental hut trials were performed in southern Benin to test the efficacy of the combined use of a pyrethroid-treated bed net and the carbamate-treated material that was the most wash-resistant against wild populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus. Results Material made of polypropylene mesh (PPW provided the best wash resistance (up to 10 washes, regardless of the insecticide dose, the type of washing, or the presence or absence of the binding resin. The experimental hut trial showed that the combination of carbamate-treated PPW and a pyrethroid-treated bed net was extremely effective in terms of mortality and inhibition of blood feeding of pyrethroid-resistant An. gambiae. This efficacy was found to be proportional to the total surface of the walls. This combination showed a moderate effect against wild populations of Cx. quinquefasciatus, which were strongly resistant to pyrethroid. Conclusion These preliminary results should be confirmed, including evaluation of entomological, parasitological, and clinical parameters. Selective pressure on resistance

  10. [The effect of insecticide resistance on the demographic parameters of 3 strains of Culex quinquefasciatus (Diptera: Culicidae) under laboratory conditions].

    Science.gov (United States)

    Suárez, S; Montada, D; Fuentes, O; Castex, M; Leyva, M

    1998-01-01

    The life tables of 3 strains of Culex quinquefasciatus were studied under laboratory conditions: Slab, susceptible to reference; Old Havana, treated with cypermethrin until its fourth generation; and Cotorro, from the field. It was found that the different levels of resistance to organophosphate insecticides and pyrethroids present in the Cotorro and Old Havana strains did not influence either on the duration of the period of development of the immature stages or in the sexual proportion of the emerged adults, but they had a favorable and directly proportional effect on the survival and longevity of the adults. However, they exerted a negative and inversely proportional influence on the reproduction and population growth of these strains. Useful data for the use and management of insecticides within the strategies of control of Culex quinquefasciatus, an important vector of lymphatic filariasis, are provided.

  11. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance.

    Science.gov (United States)

    Xu, Qiang; Liu, Huqi; Zhang, Lee; Liu, Nannan

    2005-11-01

    Two mosquito strains of Culex quinquefasciatus (Say), MAmCq(G0) and HAmCq(G0), were collected from Mobile and Huntsville, Alabama, respectively. MAmCq(G0) and HAmCq(G0) were further selected in the laboratory with permethrin for one and three generations, respectively. The levels of resistance to permethrin in MAmCq(G1) (after one-generation selection) and HAmCq(G3) (after three-generation selection) increased rapidly. Resistance to permethrin in MAmCq(G1) and HAmCq(G3) was partially suppressed by piperonyl butoxide (PBO), S,S,S-tributylphosphorotrithioate (DEF) and diethyl maleate (DEM), inhibitors of cytochrome P450 monooxygenases, hydrolases and glutathione S-transferases (GST), respectively, suggesting these three enzyme families are important in conferring permethrin resistance in both strains. A substitution of leucine to phenylalanine (L to F) resulting from a single nucleotide polymorphism (SNP), termed the kdr mutation, in the para-homologous sodium channel gene has been reported as a very common mutation associated with pyrethroid resistance of insects. A 341-bp sodium channel gene fragment, where the kdr mutation resides, was generated by PCR from genomic DNAs of Cx. quinquefasciatus strains. We found that the kdr mutation was present in both permethrin-selected and unselected HAmCq and MAmCq mosquito populations, suggesting that the kdr mutation plays the role in permethrin resistance. There was no significant change in the frequency and heterozygosity of the A to T SNP for the kdr allele between permethrin-selected and unselected MAmCq and HAmCq mosquitoes, indicating that other mechanisms are involved in the evolution of resistance in mosquitoes selected by permethrin in the laboratory. Copyright 2005 Society of Chemical Industry.

  12. Molecular biology of insect sodium channels and pyrethroid resistance.

    Science.gov (United States)

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S

    2014-07-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.

  13. Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance

    Science.gov (United States)

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.

    2015-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279

  14. Effect of chlorfenapyr on cypermethrin-resistant Culex pipiens pallens Coq mosquitoes.

    Science.gov (United States)

    Yuan, J Z; Li, Q F; Huang, J B; Gao, J F

    2015-03-01

    Chlorfenapyr is a promising pyrrole insecticide with a unique mechanism of action that does not confer cross-resistance to neurotoxic insecticides. The effect of chlorfenapyr on pyrethorid-resistant Culex pipiens pallens Coq (Diptera: Culicidae) has not been fully investigated under laboratory conditions. In this study, cypermethrin-resistant C. p. pallens exhibited 376.79-fold and 395.40-fold increase in resistance to cypermethrin compared with susceptible strains after exposure for 24 and 48h, respectively. Larvae and adults were tested for susceptibility using dipping, topical, and impregnated paper methods as recommended by the WHO. No cross-resistance to chlorfenapyr was found. Increased mortality was apparent between 48 and 72h, indicating a slow rate of toxic activity. Synergism experiments with piperonyl butoxide (PBO) showed an antagonistic effect on chlorfenapyr toxicity. Mixtures of chlorfenapyr and cypermethrin could therefore provide additional benefits over either insecticide used alone. Mixtures of 5ng/ml chlorfenapyr and 500ng/ml cypermethrin exhibited a slight synergistic effect on cypermethrin-resistant mosquitoes (3.33, 6.84 and 2.34% after 24, 48 and 72h exposure, respectively. This activity was lost when the chlorfenapyr concentration was increased to 10 or 20ng/ml. Chlorfenapyr showed quite good results for pyrethroid-resistant C. p. pallens, and could improve public health by reducing the occurrence of mosquito bites and subsequently protecting against transmission of lymphatic filariasis and Japanese encephalitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya.

    Science.gov (United States)

    Wanjala, Christine L; Mbugi, Jernard P; Ototo, Edna; Gesuge, Maxwell; Afrane, Yaw A; Atieli, Harrysone E; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2015-12-01

    We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non-pyrethroid-based vector control tools may be preferable for malaria prevention in this region.

  16. Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens.

    Science.gov (United States)

    Taskin, Belgin Gocmen; Dogaroglu, Taylan; Kilic, Sercan; Dogac, Ersin; Taskin, Vatan

    2016-05-01

    Resistance to insecticides that impairs nervous transmission has been widely investigated in mosquito populations as insecticides are crucial to effective insect control. The development of insecticide resistance is also of special interest to evolutionary biologists since it represents the opportunity to observe the genetic consequences of a well-characterized alteration in the environment. Although the frequencies of resistance alleles in Culex pipiens populations against different groups of insecticides have been reported, no detailed information is available on the relative change in these allele frequencies over time. In this study, we collected mosquitoes of the Cx. pipiens complex from six locations in three seasons in the Aegean region of Turkey and examined the i) seasonal variations in resistance to four different chemical classes of insecticides, ii) seasonal fluctuations in frequencies of resistance-associated target-site mutations of the three genes (ace-1, kdr, and Rdl), and iii) potential seasonal variations in wing morphometric characters that may be modified in resistant mosquitoes. Our bioassay results indicated the presence of different levels of resistance to all tested insecticides for all three seasons in all locations. The results of the PCR-based molecular analysis revealed low frequencies of mutations in ace-1 and Rdl that are associated with resistance to malathion, bendiocarb, and dieldrin and no obvious seasonal changes. In contrast, we detected high frequencies and striking seasonal changes for two kdr mutations associated with resistance to DDT and pyrethroids. In addition, the evaluation of the field populations from all seasons in terms of the combinations of polymorphisms at four resistance-associated mutations did not reveal the presence of insects that are resistant to all pesticides. Results from the morphological analysis displayed a similar pattern for both wings and did not show a clear separation among the samples from the

  17. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  18. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides.

    Science.gov (United States)

    Zhu, Fang; Gujar, Hemant; Gordon, Jennifer R; Haynes, Kenneth F; Potter, Michael F; Palli, Subba R

    2013-01-01

    Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated genes functioning in diverse mechanisms are expressed in the epidermal layer of the integument, which could prevent or slow down the toxin from reaching the target sites on nerve cells, where an additional layer of resistance (kdr) is possible. This strategy evolved in bed bugs is based on their unique morphological, physiological and behavioral characteristics and has not been reported in any other insect species. RNA interference-aided knockdown of resistance associated genes showed the relative contribution of each mechanism towards overall resistance development. Understanding the complexity of adaptive strategies employed by bed bugs will help in designing the most effective and sustainable bed bug control methods.

  19. Pyrethroid resistance in an Anopheles funestus population from Uganda.

    Directory of Open Access Journals (Sweden)

    John C Morgan

    Full Text Available BACKGROUND: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved. METHODOLOGY/PRINCIPAL FINDINGS: A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin. Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate, malathion (organophosphate and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG. CONCLUSION: This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread

  20. Optimization and validation of molecular diagnosis of pyrethroid pesticide resistance in Brazilian populations of horn flies

    Science.gov (United States)

    Pyrethroid resistance is a serious problem to cattle producers in Brazil. There are specific resistance-associated mutations, known as kdr and super-kdr, in the region of DNA that codes for the target of pyrethroids, the sodium channel protein. The presence of these mutations in the sodium channel c...

  1. Dieldrin-resistance in Culex pipiens fatigans in Malaya

    Science.gov (United States)

    Wharton, R. H.

    1958-01-01

    Resistance to insecticides in Culex pipiens fatigans has already been reported from two areas in Malaya. In Penang two years' use of BHC as a larvicide resulted in the development of a strain which was found to have acquired a tenfold resistance to BHC, and also to dieldrin to which it had not been exposed. In Singapore, when larval control became unsatisfactory after 6 months' use of a dieldrin emulsion, laboratory experiments confirmed that active resistance to dieldrin had developed. The present observations report the finding of two further dieldrin-BHC resistant strains of C. p. fatigans in Malaya, but differ from the previous reports in that resistance, in one strain at least, was developed as a result of house-spraying with dieldrin against adult mosquitos. In this strain resistance to dieldrin was about 100 times in both adults and larvae, resistance to gamma-BHC in larvae was about 20 times, while resistance to DDT was slight. PMID:13536808

  2. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L).

    Science.gov (United States)

    Wei, Y; Appel, A G; Moar, W J; Liu, N

    2001-11-01

    A German cockroach (Blatella germanica (L)) strain, Apyr-R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr-R (97- and 480-fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr-R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43- and 48-fold increases in toxicity of permethrin in ACY and Apyr-R, respectively. Similarly, injection increased the toxicity of deltamethrin 27-fold in ACY and 28-fold in Apyr-R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr-R. Apyr-R showed cross-resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase-mediated detoxication is not the mechanism responsible for cross-resistance. Apyr-R showed no cross-resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi-resistance mechanisms in Apyr-R did not confer significant cross-resistance to this compound. Thus, we propose

  3. Assessment of anti mosquito measures in households and resistance status ofCulex species in urban areas in southern Ghana:Implications for the sustainability of ITN use

    Institute of Scientific and Technical Information of China (English)

    Andreas A Kudom; Ben A Mensah; Jacob Nunoo

    2013-01-01

    Objective:To determine resistance status ofCulex species to different class of insecticides and assess the major anti-mosquito strategies employed by urban households and their possible effects on malaria acquisition. Methods:Structured questionnaires were randomly administered to obtain information on demographic characteristics, measures that people use to prevent mosquito bites and their perception of where mosquitoes breed in their communities.Adult susceptibility assays were also carried out usingWHO discriminating dosages of four insecticides from different chemical classes againstCulex species.Results:Majority of respondents(54.75%) preferred the use of domestic insecticides in the form of aerosols and coils.Among households that used domestic insecticides, the use of coil was most frequent(62.9%) with a mean(95%CI) of9.18(8.99,9.37) coils per week.Strong level of pyrethroid-resistance and multiple insecticide resistance inCulex species were also detected in some of the study sites.Conclusions:The excessive use of domestic insecticides and high level of resistance inCulex species observed in the study area has implications for theITN component of the nation’s malaria control program in more subtle ways.People will lose interest in the use ofITN when it fails to protect users from bites of resistantCulex species.Excessive use of domestic insecticides may also select resistance in both malaria vectors andCulex species.On this account we recommend that nuisance mosquitoes must be controlled as part of malaria control programs to improve acceptance and utilization ofITN.

  4. Assessment of anti mosquito measures in households and resistance status of Culex species in urban areas in southern Ghana: implications for the sustainability of ITN use.

    Science.gov (United States)

    Kudom, Andreas A; Mensah, Ben A; Nunoo, Jacob

    2013-11-01

    To determine resistance status of Culex species to different class of insecticides and assess the major anti-mosquito strategies employed by urban households and their possible effects on malaria acquisition. Structured questionnaires were randomly administered to obtain information on demographic characteristics, measures that people use to prevent mosquito bites and their perception of where mosquitoes breed in their communities. Adult susceptibility assays were also carried out using WHO discriminating dosages of four insecticides from different chemical classes against Culex species. Majority of respondents (54.75%) preferred the use of domestic insecticides in the form of aerosols and coils. Among households that used domestic insecticides, the use of coil was most frequent (62.9%) with a mean (95% CI) of 9.18 (8.99, 9.37) coils per week. Strong level of pyrethroid-resistance and multiple insecticide resistance in Culex species were also detected in some of the study sites. The excessive use of domestic insecticides and high level of resistance in Culex species observed in the study area has implications for the ITN component of the nation's malaria control program in more subtle ways. People will lose interest in the use of ITN when it fails to protect users from bites of resistant Culex species. Excessive use of domestic insecticides may also select resistance in both malaria vectors and Culex species. On this account we recommend that nuisance mosquitoes must be controlled as part of malaria control programs to improve acceptance and utilization of ITN. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Multiple Insecticide Resistances in the Disease Vector Culex p. Quinquefasciatus from Western Indian Ocean

    Science.gov (United States)

    Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P.; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick

    2013-01-01

    Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations

  6. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases.

    Science.gov (United States)

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2016-10-01

    Aedes aegypti and A. albopictus mosquitoes are vectors of important human disease viruses, including dengue, yellow fever, chikungunya and Zika. Pyrethroid insecticides are widely used to control adult Aedes mosquitoes, especially during disease outbreaks. Herein, we review the status of pyrethroid resistance in A. aegypti and A. albopictus, mechanisms of resistance, fitness costs associated with resistance alleles and provide suggestions for future research. The widespread use of pyrethroids has given rise to many populations with varying levels of resistance worldwide, albeit with substantial geographical variation. In adult A. aegypti and A. albopictus, resistance levels are generally lower in Asia, Africa and the USA, and higher in Latin America, although there are exceptions. Susceptible populations still exist in several areas of the world, particularly in Asia and South America. Resistance to pyrethroids in larvae is also geographically widespread. The two major mechanisms of pyrethroid resistance are increased detoxification due to P450-monooxygenases, and mutations in the voltage sensitive sodium channel (Vssc) gene. Several P450s have been putatively associated with insecticide resistance, but the specific P450s involved are not fully elucidated. Pyrethroid resistance can be due to single mutations or combinations of mutations in Vssc. The presence of multiple Vssc mutations can lead to extremely high levels of resistance. Suggestions for future research needs are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preliminary assessment of the potential role of urbanization in the distribution of carbamate and organophosphate resistant populations of Culex species in Ghana.

    Science.gov (United States)

    Kudom, Andreas A; Mensah, Ben A; Froeschl, Guenter; Boakye, Daniel; Rinder, Heinz

    2015-01-08

    Besides its role as a pathogen vector, Culex species also indirectly promotes the transmission of malaria if the use of bed nets or indoor residual spraying is discontinued due to a lack of insecticide efficacy against it. A recent survey revealed widespread occurrence of pyrethroid resistance among urban populations of this mosquito in Ghana. In order to plan and implement insecticide-based resistance management strategies, this study was carried out to assess resistance status of Culex species to organophosphate and carbamate in urban areas in Ghana and the possible mechanisms involved as well as environmental factors associated with its distribution. Mosquito larvae were sampled from various land use and ecological settings and in different seasons. In adults, susceptibility to organophosphates (fenitrothion, malathion) and carbamates (propoxur, bendiocarb) were determined. Mixed function oxidase (MFO) and α- and β-esterase assays, as well as a PCR diagnostic assay to determine ace1 mutation were performed in individual mosquitoes. Culex quinquefasciatus as well as C. decens and other unidentified Culex species were found breeding in polluted water bodies in the study sites. Across all sites and seasons, carbamate induced mortality was 94.1% ± 15.4 whereas mortality caused by organophosphate was 99.5% ± 2.2. In addition, ace1 mutation and high levels of esterases were detected in some of the mosquito populations. There was a strong correlation between susceptibility status of the mosquitoes and the level of absorbance of β-esterase (Pearson r=- 0.841, p=0.004). The study found low prevalence of resistance to carbamate and organophosphate insecticides among Culex species from Ghana. However, there were populations with ace1 mutations and high levels of esterases, which can confer high resistance to these classes of insecticides. Thus, it is important to monitor activities or behaviour that has the potential to select for carbamate and organophosphate

  8. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin

    Directory of Open Access Journals (Sweden)

    Ngufor Corine

    2011-11-01

    Full Text Available Abstract Background Neither indoor residual spraying (IRS nor long-lasting insecticidal nets (LLINs are able to fully interrupt transmission in holoendemic Africa as single interventions. The combining of IRS and LLINs presents an opportunity for improved control and management of pyrethroid resistance through the simultaneous presentation of unrelated insecticides. Method Chlorfenapyr IRS and a pyrethroid-impregnated polyester LLIN (WHO approved were tested separately and together in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. The bed nets were deliberately holed with either six or 80 holes to examine the effect of increasing wear and tear on protectiveness. Anopheles gambiae were genotyped for the kdr gene to assess the combination's potential to prevent the selection of pyrethroid resistance. Results The frequency of kdr was 84%. The overall mortality rates of An. gambiae were 37% and 49% with the six-hole and 80-hole LLINs, respectively, and reached 57% with chlorfenapyr IRS. Overall mortality rates were significantly higher with the combination treatments (82-83% than with the LLIN or IRS individual treatments. Blood feeding (mosquito biting rates were lowest with the 6-hole LLIN (12%, intermediate with the 80-hole LLIN (32% and highest with untreated nets (56% with the 6-hole and 54% with the 80-hole nets. Blood feeding (biting rates and repellency of mosquitoes with the combination of LLIN and chlorfenapyr IRS showed significant improvement compared to the IRS treatment but did not differ from the LLIN treatments indicating that the LLINs were the primary agents of personal protection. The combination killed significantly higher proportions of Cx. quinquefasciatus (51%, 41% than the LLIN (15%, 13% or IRS (32% treatments. Conclusion The chlorfenapyr IRS component was largely responsible for controlling pyrethroid-resistant mosquitoes and the LLIN component was largely

  9. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin.

    Science.gov (United States)

    Ngufor, Corine; N'Guessan, Raphael; Boko, Pelagie; Odjo, Abibatou; Vigninou, Estelle; Asidi, Alex; Akogbeto, Martin; Rowland, Mark

    2011-11-16

    Neither indoor residual spraying (IRS) nor long-lasting insecticidal nets (LLINs) are able to fully interrupt transmission in holoendemic Africa as single interventions. The combining of IRS and LLINs presents an opportunity for improved control and management of pyrethroid resistance through the simultaneous presentation of unrelated insecticides. Chlorfenapyr IRS and a pyrethroid-impregnated polyester LLIN (WHO approved) were tested separately and together in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. The bed nets were deliberately holed with either six or 80 holes to examine the effect of increasing wear and tear on protectiveness. Anopheles gambiae were genotyped for the kdr gene to assess the combination's potential to prevent the selection of pyrethroid resistance. The frequency of kdr was 84%. The overall mortality rates of An. gambiae were 37% and 49% with the six-hole and 80-hole LLINs, respectively, and reached 57% with chlorfenapyr IRS. Overall mortality rates were significantly higher with the combination treatments (82-83%) than with the LLIN or IRS individual treatments. Blood feeding (mosquito biting) rates were lowest with the 6-hole LLIN (12%), intermediate with the 80-hole LLIN (32%) and highest with untreated nets (56% with the 6-hole and 54% with the 80-hole nets). Blood feeding (biting) rates and repellency of mosquitoes with the combination of LLIN and chlorfenapyr IRS showed significant improvement compared to the IRS treatment but did not differ from the LLIN treatments indicating that the LLINs were the primary agents of personal protection. The combination killed significantly higher proportions of Cx. quinquefasciatus (51%, 41%) than the LLIN (15%, 13%) or IRS (32%) treatments. The chlorfenapyr IRS component was largely responsible for controlling pyrethroid-resistant mosquitoes and the LLIN component was largely responsible for blood feeding inhibition and personal

  10. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Coetzee M

    2010-08-01

    Full Text Available Abstract Background Malaria in South Africa is primarily transmitted by Anopheles funestus Giles. Resistance to pyrethroid insecticides in An. funestus in northern Kwazulu/Natal, South Africa, and in neighbouring areas of southern Mozambique enabled populations of this species to increase their ranges into areas where pyrethroids were being exclusively used for malaria control. Pyrethroid resistance in southern African An. funestus is primarily conferred by monooxygenase enzyme metabolism. However, selection for this resistance mechanism is likely to have occurred in conjunction with other factors that improve production of the resistance phenotype. A strong candidate is cuticle thickening. This is because thicker cuticles lead to slower rates of insecticide absorption, which is likely to increase the efficiency of metabolic detoxification. Results Measures of mean cuticle thickness in laboratory samples of female An. funestus were obtained using scanning electron microscopy (SEM. These females were drawn from a laboratory colony carrying the pyrethroid resistance phenotype at a stable rate, but not fixed. Prior to cuticle thickness measurements, these samples were characterised as either more or less tolerant to permethrin exposure in one experiment, and either permethrin resistant or susceptible in another experiment. There was a significant and positive correlation between mean cuticle thickness and time to knock down during exposure to permethrin. Mean cuticle thickness was significantly greater in those samples characterised either as more tolerant or resistant to permethrin exposure compared to those characterised as either less tolerant or permethrin susceptible. Further, insecticide susceptible female An. funestus have thicker cuticles than their male counterparts. Conclusion Pyrethroid tolerant or resistant An. funestus females are likely to have thicker cuticles than less tolerant or susceptible females, and females generally have

  11. Energetic cost of insecticide resistance in Culex pipiens mosquitoes.

    Science.gov (United States)

    Rivero, A; Magaud, A; Nicot, A; Vézilier, J

    2011-05-01

    The extensive use of insecticides to control vector populations has lead to the widespread development of different mechanisms of insecticide resistance. Mutations that confer insecticide resistance are often associated to fitness costs that prevent them from spreading to fixation. In vectors, such fitness costs include reductions in preimaginal survival, adult size, longevity, and fecundity. The most commonly invoked explanation for the nature of such pleiotropic effects of insecticide resistance is the existence of resource-based trade-offs. According to this hypothesis, insecticide resistance would deplete the energetic stores of vectors, reducing the energy available for other biological functions and generating trade-offs between insecticide resistance and key life history traits. Here we test this hypothesis by quantifying the energetic resources (lipids, glycogen, and glucose) of larvae and adult females of the mosquito Culex pipiens L. resistant to insecticides through two different mechanisms: esterase overproduction and acetylcholinesterase modification. We find that, as expected from trade-off theory, insecticide resistant mosquitoes through the overproduction of esterases contain on average 30% less energetic reserves than their susceptible counterparts. Acetylcholinesterase-modified mosquitoes, however, also showed a significant reduction in energetic resources (20% less). We suggest that, in acetylcholinesterase-modified mosquitoes, resource depletion may not be the result of resource-based trade-offs but a consequence of the hyperactivation of the nervous system. We argue that these results not only provide a mechanistic explanation for the negative pleiotropic effects of insecticide resistance on mosquito life history traits but also can have a direct effect on the development of parasites that depend on the vector's energetic reserves to fulfil their own metabolic needs.

  12. Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Science.gov (United States)

    Stewart, Zachary P; Oxborough, Richard M; Tungu, Patrick K; Kirby, Matthew J; Rowland, Mark W; Irish, Seth R

    2013-01-01

    Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (pmosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the potential to serve as a strategy for managing insecticide resistance.

  13. Infestation by pyrethroids resistant bed bugs in the suburb of Paris, France

    Directory of Open Access Journals (Sweden)

    Durand R.

    2012-11-01

    Full Text Available Bed bugs are hematophagous insects responsible for a re-emerging and challenging indoor pest in many countries. Bed bugs infestations may have health consequences including nuisance biting, cutaneous and systemic reactions. This resurgence can probably be attributed to factors such as increased international travel and development of resistance against insecticides. Resistance against pyrethroids has been reported several times from the USA and rarely in Europe. In France, very few data on bed bugs are available. The present study aimed to assess the infestation by bed bugs of a complex of two high-rise apartment buildings in the suburb of Paris and to evaluate their susceptibility to pyrethroid insecticides. We inspected for bed bugs 192 out of 198 apartments units (97% and interviewed their residents. 76 (39.6% apartments were infested. Among the 97 residents living in infested apartments, 53 (54.6% reported bed bug bites. A total of 564 bed bugs were collected in the infested units. Bioassays showed that 54 out of 143 bed bugs were resistant to pyrethroids (37.8%; 95% confidence interval: 29.9-45.7%. DNA sequencing showed that all bed bugs tested (n = 124 had homozygous L925I kdr-like gene mutation. The level of pyrethroid resistance found indicates that this phenomenon was already established in the site and prompts the need to reevaluate the wide use of pyrethroids to control bed bugs.

  14. Infestation by pyrethroids resistant bed bugs in the suburb of Paris, France.

    Science.gov (United States)

    Durand, R; Cannet, A; Berdjane, Z; Bruel, C; Haouchine, D; Delaunay, P; Izri, A

    2012-11-01

    Bed bugs are hematophagous insects responsible for a re-emerging and challenging indoor pest in many countries. Bed bugs infestations may have health consequences including nuisance biting, cutaneous and systemic reactions. This resurgence can probably be attributed to factors such as increased international travel and development of resistance against insecticides. Resistance against pyrethroids has been reported several times from the USA and rarely in Europe. In France, very few data on bed bugs are available. The present study aimed to assess the infestation by bed bugs of a complex of two high-rise apartment buildings in the suburb of Paris and to evaluate their susceptibility to pyrethroid insecticides. We inspected for bed bugs 192 out of 198 apartments units (97%) and interviewed their residents. 76 (39.6%) apartments were infested. Among the 97 residents living in infested apartments, 53 (54.6%) reported bed bug bites. A total of 564 bed bugs were collected in the infested units. Bioassays showed that 54 out of 143 bed bugs were resistant to pyrethroids (37.8%; 95% confidence interval: 29.9-45.7%). DNA sequencing showed that all bed bugs tested (n=124) had homozygous L925I kdr-like gene mutation. The level of pyrethroid resistance found indicates that this phenomenon was already established in the site and prompts the need to reevaluate the wide use of pyrethroids to control bed bugs.

  15. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides.

    Science.gov (United States)

    Kasai, S; Sun, H; Scott, J G

    2017-02-01

    Insecticide use exerts a tremendous selection force on house fly populations, but the frequencies of the initial resistance mutations may not reach high levels if they have a significant fitness cost in the absence of insecticides. However, with the continued use of the same (or similar) insecticides, it is expected that new mutations (conferring equal or greater resistance, but less of a fitness cost) will evolve. Pyrethroid insecticides target the insect voltage sensitive sodium channel (VSSC) and have been widely used for control of house flies at animal production facilities for more than three decades. There are three Vssc mutations known that cause resistance to pyrethroids in house flies: knockdown resistance (kdr, L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Whether or not there are any new mutations in house fly populations has not been examined for decades. We collected house flies from a dairy in Kansas (USA) and selected this population for three generations. We discovered multiple new Vssc alleles, including two that give very high levels of resistance to most pyrethroids. The importance of these findings to understanding the evolution of insecticide resistance, designing appropriate resistance monitoring and management schemes, and the future of pyrethroids for house fly control are discussed. © 2016 The Royal Entomological Society.

  16. An amino acid substitution (L925V associated with resistance to pyrethroids in Varroa destructor.

    Directory of Open Access Journals (Sweden)

    Joel González-Cabrera

    Full Text Available The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed.

  17. An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor.

    Science.gov (United States)

    González-Cabrera, Joel; Davies, T G Emyr; Field, Linda M; Kennedy, Peter J; Williamson, Martin S

    2013-01-01

    The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed.

  18. Alternative treatments for indoor residual spraying for malaria control in a village with pyrethroid- and DDT-resistant vectors in The Gambia

    NARCIS (Netherlands)

    Tangena, J.A.A.; Adiamoh, M.; Alessandro, D' U.; Jarju, L.; Jawara, M.; Jeffries, D.; Malik, N.; Nwakanma, D.; Kaur, H.; Takken, W.; Lindsay, S.W.; Pinder, M.

    2013-01-01

    Background: Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confe

  19. Evaluation of piperonyl butoxide as a deltamethrin synergist for pyrethroid-resistant bed bugs.

    Science.gov (United States)

    Romero, Alvaro; Potter, Michael F; Haynes, Kenneth F

    2009-12-01

    An understanding of the mechanisms of insecticide resistance in the bed bug, Cimex lectularius L., has the potential to lead to new approaches for the control of resistant populations. We used the cytochrome P450 monooxygenase (P450) inhibitor piperonyl butoxide (PBO) to assess the role of P450s in deltamethrin resistance in three field-collected bed bug strains, LA-1, CIN-1 and WOR-1. In addition, we exposed two highly resistant strains, CIN-1 and WOR-1 (resistance ratio [RR] >2,500-fold), to dry residues of piperonyl butoxide-synergized pyrethroid formulations to determine the utility of synergism by PBO. Piperonyl butoxide synergized deltamethrin in all three strains, but its impact was variable. The synergistic ratio varied from 40 in CIN-1 to 176 in WOR-1. Because the resistance ratio for each strain after piperonyl butoxide treatment was 174 and 39, respectively, our results suggest that P450s have some involvement in deltamethrin resistance, but other resistance mechanisms must be involved as well. No significant synergistic effect of formulated deltamethrin was observed with the addition of synergized pyrethrins or formulated piperonyl butoxide in the CIN-1 strain, but synergism occurred in the WOR-1 strain. Addition of PBO to pyrethroids is not a comprehensive solution to pyrethroid resistance because strains vary in both overall resistance level and the proportion of that resistance attributable to P450s.

  20. Cuticle Thickening in a Pyrethroid-Resistant Strain of the Common Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae).

    Science.gov (United States)

    Lilly, David G; Latham, Sharissa L; Webb, Cameron E; Doggett, Stephen L

    2016-01-01

    Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest's resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects.

  1. Bendiocarb, a potential alternative against pyrethroid resistant Anopheles gambiae in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Irish Seth

    2010-07-01

    Full Text Available Abstract Background Anopheles gambiae, the main malaria vector in Benin has developed high level of resistance to pyrethroid insecticides, which is a serious concern to the future use of long-lasting insecticidal nets (LLIN and indoor residual spraying (IRS. In this context, one of the pathways available for malaria vector control would be to investigate alternative classes of insecticides with different mode of action than that of pyrethroids. The goal of this study was to evaluate under field conditions the efficacy of a carbamate (bendiocarb and an organophosphate (fenitrothion against pyrethroid-resistant An. gambiae s.s. Methods Wild populations and females from laboratory colonies of five days old An. gambiae were bio-assayed during this study. Two pyrethroids (deltamethrin and alphacypermethrin, an organophosphate (fenitrothion, a carbamate (bendiocarb and a mixture of an organophosphate (chlorpyriphos + a pyrethroid deltamethrin were compared in experimental huts as IRS treatments. Insecticides were applied in the huts using a hand-operated compression sprayer. The deterrency, exophily, blood feeding rate and mortality induced by these insecticides against An. gambiae were compared to the untreated control huts. Results Deltamethrin, alphacypermethrin and bendiocarb treatment significantly reduced mosquito entry into the huts (p An. gambiae (in the first month and 77.8% (in the fourth month. Bendiocarb and the mixture chlorpyriphos/deltamethrin mortality rates ranged from 97.9 to 100% the first month and 77.7-88% the third month respectively. Conclusion After four months, fenitrothion, bendiocarb and the mixture chlorpyriphos/deltamethrin performed effectively against pyrethroid-resistant Anopheles. These results showed that bendiocarb could be recommended as an effective insecticide for use in IRS operations in Benin, particularly as the mixture chlorpyriphos/deltamethrin does not have WHOPES authorization and complaints were mentioned

  2. High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe District in Mozambique.

    Directory of Open Access Journals (Sweden)

    Nelson Cuamba

    Full Text Available BACKGROUND: Although Anopheles funestus is difficult to rear, it is crucial to analyse field populations of this malaria vector in order to successfully characterise mechanisms of insecticide resistance observed in this species in Africa. In this study we carried out a large-scale field collection and rearing of An. funestus from Mozambique in order to analyse its susceptibility status to insecticides and to broadly characterise the main resistance mechanisms involved in natural populations. METHODOLOGY/PRINCIPAL FINDINGS: 3,000 F(1 adults were obtained through larval rearing. WHO susceptibility assays indicated a very high resistance to pyrethroids with no mortality recorded after 1 h 30 min exposure and less than 50% mortality at 3 h 30 min. Resistance to the carbamate, bendiocarb was also noted, with 70% mortality after 1h exposure. In contrast, no DDT resistance was observed, indicating that no kdr-type resistance was involved. The sequencing of the acetylcholinesterase gene indicated the absence of the G119S and F455W mutations associated with carbamate and organophosphate resistance. This could explain the absence of malathion resistance in this population. Both biochemical assays and quantitative PCR implicated up-regulated P450 genes in pyrethroid resistance, with GSTs playing a secondary role. The carbamate resistance observed in this population is probably conferred by the observed altered AChE with esterases also involved. CONCLUSION/SIGNIFICANCE: The high level of pyrethroid resistance in this population despite the cessation of pyrethroid use for IRS in 1999 is a serious concern for resistance management strategies such as rotational use of insecticides. As DDT has now been re-introduced for IRS, susceptibility to DDT needs to be closely monitored to prevent the appearance and spread of resistance to this insecticide.

  3. Multiple insecticide resistance/susceptibility status of Culex quinquefasciatus, principal vector of bancroftian filariasis from filaria endemic areas of northern India

    Institute of Scientific and Technical Information of China (English)

    Kaushal Kumar; Abhay K Sharma; Sarita Kumar; Sunita Patel; Manas Sarkar; Chauhan LS

    2011-01-01

    Objective:To understand the insecticide resistance status of Culex quinquefasciatus Say (Diptera:Culicidae) (Cx. Quinquefasciatus) to deltamethrin, cyfluthrin, permethrin, lambdacyhalothrin, DDT and malathion in filarial endemic areas of Uttar Pradesh, India. Methods:Insecticide susceptibility assays were performed on wild-caught adult female Cx. quinquefasciatus mosquitoes to deltamethrin (0.05%), cyfluthrin (0.15%), permethrin (0.75%), lambdacyhalothrin (0.05%), malathion (5.0%) and DDT (4.0%), the discriminating doses recommended by the World Health Organisation (WHO). Results: The data showed that Cx. quinquefasciatus is highly resistant to DDT and malathion;the mortality was 28.33%and 27.5%, respectively and incipient resistance to synthetic pyrethroids (deltamethrin, cyfluthrin, permethrin, and lambdacyhalothrin), where mortality ranged from 95.83%in permethrin to 98.33%in cyfluthrin and lambdacyhalothrin. Knockdown times (KDT50) in response to synthetic pyrethroids varied significantly between different insecticides (P<0.01) from 31.480 min for permethrin to 21.650 for cyfluthrin. Conclusions:The results presents here provide the status report of the insecticide resistance/susceptibility of Cx. quinquefasciatus in major filaria endemic areas of northern India.

  4. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana

    Directory of Open Access Journals (Sweden)

    Donnelly Martin J

    2007-01-01

    Full Text Available Abstract Background Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification – though equally important – remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. Results Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD gene family. Conclusion These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance.

  5. Contact Bioassays with Phenoxybenzyl and Tetrafluorobenzyl Pyrethroids against Target-Site and Metabolic Resistant Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sebastian Horstmann

    Full Text Available Mosquito strains that exhibit increased tolerance to the chemical class of compounds with a sodium channel modulator mode of action (pyrethroids and pyrethrins are typically described as "pyrethroid resistant". Resistance to pyrethroids is an increasingly important challenge in the control of mosquito-borne diseases, such as malaria or dengue, because one of the main interventions (the distribution of large numbers of long-lasting insecticide-treated bed nets currently relies entirely on long-lasting pyrethroids. Increasing tolerance of target insects against this class of insecticides lowers their impact in vector control. The current study suggests that the level of metabolic resistance depends on the structure of the molecule and that structurally different compounds may still be effective because detoxifying enzymes are unable to bind to these uncommon structures.Treated surface contact bioassays were performed on susceptible Aedes aegypti, East African knockdown resistance (kdr Anopheles gambiae (strain RSP-H and metabolically resistant Anopheles funestus (strain FUMOZ-R with different pyrethroids, such as cypermethrin, ß-cyfluthrin, deltamethrin, permethrin and transfluthrin (alone and in combination with the synergist piperonyl butoxide. The nonfluorinated form of transfluthrin was also assessed as a single agent and in combination with piperonyl butoxide.Although the dosages for pyrethroids containing a phenoxybenzyl moiety have exhibited differences in terms of effectiveness among the three tested mosquito species, the structurally different transfluthrin with a polyfluorobenzyl moiety remained active in mosquitoes with upregulated P450 levels. In trials with transfluthrin mixed with piperonyl butoxide, the added synergist exhibited no efficacy-enhancing effect.The results of this study suggest that transfluthrin has the potential to control P450-mediated metabolically resistant mosquitoes because the structural formula of

  6. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow.

  7. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  8. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    OpenAIRE

    Srivastava Harish C; Bhatt Rajendra M; Sharma Poonam; Barik Tapan K; Raghavendra Kamaraju; Sreehari Uragayala; Dash Aditya P

    2011-01-01

    Abstract Background Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against Anopheles culicifacies and Anopheles stephensi for its possible use in vector control. Methods Efficacy of chlorfenapyr against An. culicifacies and An. ...

  9. Mechanisms of pyrethroid resistance in Haematobia irritans (Muscidae) from Mato Grosso do Sul state, Brazil

    OpenAIRE

    2013-01-01

    Horn fly resistance to pyrethroid insecticides occurs throughout Brazil, but knowledge about the involved mechanisms is still in an incipient stage. This survey was aimed to identify the mechanisms of horn fly resistance to cypermethrin in Mato Grosso do Sul state, Brazil. Impregnated filter paper bioassays using cypermethrin, synergized or not with piperonyl butoxide (PBO) and triphenyl phosphate (TPP), were conducted from March 2004 to June 2005 in horn fly populations (n = 33) from all ove...

  10. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso.

    Science.gov (United States)

    Mosqueira, Beatriz; Soma, Dieudonné D; Namountougou, Moussa; Poda, Serge; Diabaté, Abdoulaye; Ali, Ouari; Fournet, Florence; Baldet, Thierry; Carnevale, Pierre; Dabiré, Roch K; Mas-Coma, Santiago

    2015-08-01

    A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical

  11. Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica

    Directory of Open Access Journals (Sweden)

    Guang-zhou Guo

    2010-01-01

    Full Text Available German cockroaches have become a large problem in the Shenzhen area because of their pesticide resistance, especially to pyrethroid. A pyrethroid called “Jia Chong Qing” to prevent pests for a long time were found to be resistant to “Jia Chong Qing” with resistance index of 3.88 measured using RT-PCR and immunohistochemistry analysis showed that both CYP4G19 mRNA and CYP4G19 protein expression levels in the wild strain were substantially higher than that of a sensitive strain. dsRNA segments derived from the target gene CYP4G19 were prepared using in vitro transcription and were microinjected into abdomens of the wild strain. Two to eight days after injection, the result showed that CYP4G19 mRNA expressions were significantly reduced in the groups injected with dsRNAs.

  12. Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae).

    Science.gov (United States)

    Oliver, S V; Kaiser, M L; Wood, O R; Coetzee, M; Rowland, M; Brooke, B D

    2010-01-01

    To evaluate the pyrrole insecticide chlorfenapyr, which has a novel non-neurotoxic mode of action and is a promising alternative to conventional adulticides, against Anopheles funestus. The toxicity of a range of concentrations of chlorfenapyr against pyrethroid resistant and susceptible laboratory reared southern African An. funestus was assessed using standard WHO protocols and analysed using probit analysis. The pyrethroid resistant strain showed consistently higher LD50 and LD95 values compared to the susceptible strain, but these differences were not statistically significant and the magnitude was twofold at most. The LD50 values recorded for An. funestus are approximately three-fold higher than those reported elsewhere for other species of anopheline. Monooxygenase based pyrethroid resistance in An. funestus does not influence the toxic effect of chlorfenapyr. It is unlikely that such a small decrease in susceptibility of An. funestus to chlorfenapyr relative to other anophelines would have any operational implications. Chlorfenapyr is an important addition to insecticides available for malaria vector control, and could be used as a resistance management tool to either circumvent or slow the development of resistance.

  13. First report of pyrethroid resistance in Rhipicephalus (Boophilus) annulatus larvae (Say, 1821) from Iran.

    Science.gov (United States)

    Ziapour, Seyyed Payman; Kheiri, Sadegh; Asgarian, Fatemeh; Fazeli-Dinan, Mahmoud; Yazdi, Fariborz; Mohammadpour, Reza Ali; Aarabi, Mohsen; Enayati, Ahmadali

    2016-04-01

    Rhipicephalus (Boophilus) annulatus is one of the most important hard ticks parasitizing cattle in northern Iran. The aim of this study was to evaluate pyrethroid resistance levels of this species from Nur County, northern Iran. The hard ticks were collected through a multistage cluster randomized sampling method from the study area and fully engorged female R. (B.) annulatus were reared in a controlled insectary until they produced larvae for bioassay. Seventeen populations of the hard ticks were bioassayed with cypermethrin and 12 populations with lambda-cyhalothrin using a modified larval packet test (LPT). Biochemical assays to measure the contents/activity of different enzyme groups including mixed function oxidases (MFOs), glutathione S-transferases (GSTs) and general esterases were performed. Population 75 showed a resistance ratio of 4.05 with cypermethrin when compared with the most susceptible field population 66 at the LC50 level. With lambda-cyhalothrin the resistance ratio based on LC50 was 3.67 when compared with the susceptible population. The results of biochemical assays demonstrated significantly elevated levels of GSTs and esterases in populations tested compared with the heterozygous susceptible filed population and a correlation coefficient of these enzymes was found in association to lambda-cyhalothrin resistance. Based on the results, pyrethroid acaricides may operationally fail to control R. (B.) annulatus in North of Iran. This study is the first document of pyrethroid resistance in R. (B.) annulatus populations from Iran.

  14. Wide spread cross resistance to pyrethroids in Aedes aegypti (Diptera: Culicidae) from Veracruz state Mexico.

    Science.gov (United States)

    Flores, Adriana E; Ponce, Gustavo; Silva, Brenda G; Gutierrez, Selene M; Bobadilla, Cristina; Lopez, Beatriz; Mercado, Roberto; Black, William C

    2013-04-01

    Seven F1 strains of Aedes aegypti (L.) were evaluated by bottle bioassay for resistance to the pyrethroids d-phenothrin, permethrin, deltamethrin, lambda-cyalothrin, bifenthrin, cypermethrin, alpha-cypermethrin, and z-cypermethrin. The New Orleans strain was used as a susceptible control. Mortality rates after a 1 h exposure and after a 24 h recovery period were determined. The resistance ratio between the 50% knockdown values (RR(KC50)) of the F1 and New Orleans strains indicated high levels of knockdown resistance. The RR(KC50) with alpha-cypermethrin varied from 10 to 100 among strains indicating high levels of knockdown resistance. Most of the strains had moderate resistance to d-phenothrin. Significant but much lower levels of resistance were detected for lambda-cyalothrin, permethrin, and cypermethrin. For zeta-cypermethrin and bifenthrin, only one strain exhibited resistance with RR(KC50) values of 10- and 21-fold, respectively. None of the strains showed RR(KC50) >10 with deltamethrin, and moderate resistance was seen in three strains, while the rest were susceptible. Mosquitoes from all strains exhibited some recovery from all pyrethroids except d-phenothrin. Regression analysis was used to analyze the relationship between RR(LC50) and RR(KC50). Both were highly correlated (R2 = 0.84-0.97) so that the slope could be used to determine how much additional pyrethroid was needed to ensure lethality. Slopes ranged from 0.875 for d-phenothrin (RR(LC50) approximately equal to RR(KC50)) to 8.67 for lambda-cyalothrin (-8.5-fold more insecticide needed to kill). Both RR(LC50) and RR(KC50) values were highly correlated for all pyrethroids except bifenthrin indicating strong cross-resistance. Bifenthrin appears to be an alternative pyrethroid without strong cross-resistance that could be used as an alternative to the current widespread use of permethrin in Mexico.

  15. Indoor Application of Attractive Toxic Sugar Bait (ATSB) in Combination with Mosquito Nets for Control of Pyrethroid-Resistant Mosquitoes

    Science.gov (United States)

    Stewart, Zachary P.; Oxborough, Richard M.; Tungu, Patrick K.; Kirby, Matthew J.; Rowland, Mark W.; Irish, Seth R.

    2013-01-01

    Background Attractive toxic sugar bait (ATSB) sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. Methods Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. Results In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05). Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. Conclusions Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor use of ATSB has the

  16. Indoor application of attractive toxic sugar bait (ATSB in combination with mosquito nets for control of pyrethroid-resistant mosquitoes.

    Directory of Open Access Journals (Sweden)

    Zachary P Stewart

    Full Text Available BACKGROUND: Attractive toxic sugar bait (ATSB sprayed onto vegetation has been successful in controlling Anopheles mosquitoes outdoors. Indoor application of ATSB has yet to be explored. The purpose of this study was to determine whether ATSB stations positioned indoors have the potential to kill host-seeking mosquitoes and constitute a new approach to control of mosquito-borne diseases. METHODS: Insecticides were mixed with dyed sugar solution and tested as toxic baits against Anopheles arabiensis, An. Gambiae s.s. and Culex quinquefasciatus in feeding bioassay tests to identify suitable attractant-insecticide combinations. The most promising ATSB candidates were then trialed in experimental huts in Moshi, Tanzania. ATSB stations were hung in huts next to untreated mosquito nets occupied by human volunteers. The proportions of mosquitoes killed in huts with ATSB treatments relative to huts with non-insecticide control treatments huts were recorded, noting evidence of dye in mosquito abdomens. RESULTS: In feeding bioassays, chlorfenapyr 0.5% v/v, boric acid 2% w/v, and tolfenpyrad 1% v/v, mixed in a guava juice-based bait, each killed more than 90% of pyrethroid-susceptible An. Gambiae s.s. and pyrethroid-resistant An. arabiensis and Cx. quinquefasciatus. In the hut trial, mortality rates of the three ATSB treatments ranged from 41-48% against An. arabiensis and 36-43% against Cx. quinquefasciatus and all were significantly greater than the control mortalities: 18% for An. arabiensis, 7% for Cx. quinquefasciatus (p<0.05. Mortality rates with ATSB were comparable to those with long lasting insecticidal nets previously tested against the same species in this area. CONCLUSIONS: Indoor ATSB shows promise as a supplement to mosquito nets for controlling mosquitoes. Indoor ATSB constitute a novel application method for insecticide classes that act as stomach poisons and have not hitherto been exploited for mosquito control. Combined with LLIN, indoor

  17. Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    2011-06-01

    Full Text Available BACKGROUND: Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations. METHODOLOGY/PRINCIPAL FINDINGS: To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments. CONCLUSIONS/SIGNIFICANCE: This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.

  18. Laboratory development of permethrin resistance and cross-resistance pattern of Culex quinquefasciatus to other insecticides.

    Science.gov (United States)

    Ramkumar, Govindaraju; Shivakumar, Muthugoundar S

    2015-07-01

    Resistance of mosquitoes to insecticides is a growing concern in India. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programs mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. In the present study, we evaluate the permethrin resistance and cross-resistance pattern of several insecticides in Culex quinquefasciatus mosquitoes. After 10 generation of selection with permethrin, the LC50 value for both larvae and adult Cx. quinquefasciatus was increased by 17.3- and 17.1-folds compared with susceptible strain. Detoxification enzyme profiles and native PAGE electrophoresis of esterase isoenzyme further revealed that esterase and CytP450 may be involved in permethrin resistance (PerRes) strain compared with susceptible strain. In addition to cross-resistance, study revealed that high resistance to cypermethrin (RR = 6.3, 8.8-folds). This study provided important information for understanding permethrin resistance and facilitating a better strategy for the management of resistance. These studies conclude that a strong foundation for further study of permethrin resistance mechanisms observed in Cx. quinquefasciatus mosquitoes.

  19. Multiple mutations and mutation combinations in the sodium channel of permethrin resistant mosquitoes, Culex quinquefasciatus

    Science.gov (United States)

    Li, Ting; Zhang, Lee; Reid, William R.; Xu, Qiang; Dong, Ke; Liu, Nannan

    2012-10-01

    A previous study identified 3 nonsynonymous and 6 synonymous mutations in the entire mosquito sodium channel of Culex quinquefasciatus, the prevalence of which were strongly correlated with levels of resistance and increased dramatically following insecticide selection. However, it is unclear whether this is unique to this specific resistant population or is a common mechanism in field mosquito populations in response to insecticide pressure. The current study therefore further characterized these mutations and their combinations in other field and permethrin selected Culex mosquitoes, finding that the co-existence of all 9 mutations was indeed correlated with the high levels of permethrin resistance in mosquitoes. Comparison of mutation combinations revealed several common mutation combinations presented across different field and permethrin selected populations in response to high levels of insecticide resistance, demonstrating that the co-existence of multiple mutations is a common event in response to insecticide resistance across different Cx. quinquefasciatus mosquito populations.

  20. Target-site resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus F

    DEFF Research Database (Denmark)

    Nauen, Ralf; Zimmer, Christoph T; Andrews, Melanie

    2012-01-01

    by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We....... No super-kdr mutations (e.g. M918T) known to cause resistance to pyrethroids were detected. The implications of these results for resistance management strategies of pollen beetle populations in oilseed rape crops are discussed....

  1. Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca.

    Science.gov (United States)

    Weston, Donald P; Poynton, Helen C; Wellborn, Gary A; Lydy, Michael J; Blalock, Bonnie J; Sepulveda, Maria S; Colbourne, John K

    2013-10-08

    Use of pesticides can have substantial nonlethal impacts on nontarget species, including driving evolutionary change, often with unknown consequences for species, ecosystems, and society. Hyalella azteca, a species complex of North American freshwater amphipods, is widely used for toxicity testing of water and sediment and has frequently shown toxicity due to pyrethroid pesticides. We demonstrate that 10 populations, 3 from laboratory cultures and 7 from California water bodies, differed by at least 550-fold in sensitivity to pyrethroids. The populations sorted into four phylogenetic groups consistent with species-level divergence. By sequencing the primary pyrethroid target site, the voltage-gated sodium channel, we show that point mutations and their spread in natural populations were responsible for differences in pyrethroid sensitivity. At least one population had both mutant and WT alleles, suggesting ongoing evolution of resistance. Although nonresistant H. azteca were susceptible to the typical neurotoxic effects of pyrethroids, gene expression analysis suggests the mode of action in resistant H. azteca was not neurotoxicity but was oxidative stress sustained only at considerably higher pyrethroid concentrations. The finding that a nontarget aquatic species has acquired resistance to pesticides used only on terrestrial pests is troubling evidence of the impact of chronic pesticide transport from land-based applications into aquatic systems. Our findings have far-reaching implications for continued uncritical use of H. azteca as a principal species for monitoring and environmental policy decisions.

  2. Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae

    Science.gov (United States)

    Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.

    2015-01-01

    Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119

  3. Indication of pyrethroid resistance in the main malaria vectorAnopheles stephensi from Iran

    Institute of Scientific and Technical Information of China (English)

    Hassan Vatandoost; Ahmad Ali Hanafi-Bojd

    2012-01-01

    Objective:To investiagte insecticide resistance in target species for better insecticide resistance managemnet in malaria control programs.Methods:The status of insecticide resistance to different imagicides inAnopheles stephensi(An. stephensi) includingDDT4%, lambdacyhalothrin 0.50%, deltamethrin0.05%, permethrin0.75%, cyfluthrin0.15% and etofenprox0.50% was performed according toWHO standard method.Results:The mortality rate to lambdacyhalothrin, permethrin, cyfluthrin, deltamethrin, etofenprox andDDT was(88.0±3.2),(92.0±2.7),(52.0±5.0),(96.0±2.2),(90.0±3.0) and(41.0±5.7) percent, respectively at diagnostic dose for one hour exposure time followed by24 h recovery period.Conclusions:These results showed first indication of pyrethroid resistance inAn. stephensiin a malarious area, from southernIran.There is widespread, multiple resistances in the country inAn. stephensi to organochlorine and some report of tolerance to organophosphate insecticides and recently to pyrethroids.However, results of this paper will provide a clue for monitoring and mapping of insecticide resistance in the main malaria vector for implementation of any vector control.

  4. Pyrethroid resistance in Anopheles gambiae, in Bomi County, Liberia, compromises malaria vector control.

    Directory of Open Access Journals (Sweden)

    Emmanuel A Temu

    Full Text Available BACKGROUND: Long Lasting Insecticidal Nets (LLIN and Indoor Residual Spraying (IRS have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia. METHODS: Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n=2027 and cone (n=580 bioassays in houses treated with DL or IRS. A sample of mosquitoes (n=169 were identified to species/molecular form and screened for the presence of knock down resistance (kdr alleles associated with pyrethroid resistance. RESULTS: Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5% although this mutation alone cannot explain the resistance levels observed. CONCLUSION: High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors

  5. Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population.

    Science.gov (United States)

    Adelman, Zach N; Kilcullen, Kathleen A; Koganemaru, Reina; Anderson, Michelle A E; Anderson, Troy D; Miller, Dini M

    2011-01-01

    A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in U.S. bed bug populations, making it extremely difficult to develop intelligent strategies for their control. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. Using LD(50) bioassays, we determined that resistance ratios for Richmond strain bed bugs were ∼5200-fold to the insecticide deltamethrin. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxylesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance.

  6. Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in U.S. bed bug populations, making it extremely difficult to develop intelligent strategies for their control. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I and metabolic resistance to pyrethroid insecticides. Using LD(50 bioassays, we determined that resistance ratios for Richmond strain bed bugs were ∼5200-fold to the insecticide deltamethrin. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible and Richmond (resistant bed bugs revealed several candidate cytochrome P450 and carboxylesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance.

  7. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes.

    Science.gov (United States)

    N'Guessan, R; Boko, P; Odjo, A; Akogbéto, M; Yates, A; Rowland, M

    2007-04-01

    Owing to the development and spread of pyrethroid resistance in Anopheles gambiae in Africa there is an urgent need to develop alternative insecticides to supplement the pyrethroids. Chlorfenapyr is a pyrrole insecticide first commercialized for the control of agricultural pests and termites. Performance against An. gambiae bearing kdr (pyrethroid and DDT resistance) or Ace-1(R) insensitive acetylcholinesterase (organophosphate and carbamate resistance) mechanisms was studied using a variety of adult bioassay tests including a simulated-experimental hut system (tunnel tests) that allows uninhibited mosquito behaviour/insecticide interactions. Strains resistant to pyrethroids and organophosphates showed no cross resistance to chlorfenapyr. In cone bioassays on treated netting the mortality of adult mosquitoes showed an unexpected curvilinear response, with highest mortality occurring at intermediate dosages. Adults expressed irritability to chlorfenapyr at higher dosages, which might explain the dosage-mortality trend. Toxic activity of chlorfenapyr was slow compared to conventional neurotoxic insecticides and additional mortality occurred between 24h and 72 h. In tunnel tests, the dosage-mortality trend showed a more typical sigmoid response and most mortality occurred during the first 24h. Mosquito penetration through the holed, treated netting showed only limited inhibition and blood-feeding was not inhibited. Mortality rates in the kdr strain exposed to chlorfenapyr treated netting in tunnel tests were much higher than with permethrin treated netting over the same 100-500 mg/m(2) dosage range. Chlorfenapyr has potential for malaria control in treated-net or residual spraying applications in areas where mosquitoes are pyrethroid resistant. For treated-net applications chlorfenapyr might be combined with pyrethroid as a mixture to provide personal protection as well as to give control of resistant mosquitoes.

  8. Pyrethroid Resistance Alters the Blood-Feeding Behavior in Puerto Rican Aedes aegypti Mosquitoes Exposed to Treated Fabric

    Science.gov (United States)

    Emerging insecticide resistance is a major issue for vector control; it decreases effectiveness of insecticides, thereby requiring greater quantities for comparable control with a net increase in risk of disease resurgence, product cost, and damage risk to the ecosystem. Pyrethroid resistance has b...

  9. Pyrethroid resistance is widespread among Florida populations of Aedes aegypti

    Science.gov (United States)

    Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...

  10. Resistência a inseticidas organofosforados e carbamatos em população de Culex quinquefasciatus Organophosphorous and carbamate resistence in a population of Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    José Eduardo Bracco

    1997-04-01

    Full Text Available Relata-se a ocorrência, na população de Culex quinquefasciatus, de resistência a pelo menos dois organofosforados e a um carbamato (malathion, fenitrothion e propoxur, respectivamente, mostrando a necessidade de haver programa de manejo de inseticidas. A suscetibilidade dessa população ao piretróide permetrina indica essa classe como de escolha numa eventual necessidade de substituição dos organofosforados.The population of Culex quinquefasciatus breeding in the Pinheiros River (S. Paulo, Brazil has been controlled with organophosphates since 1980. However, the biting has constituted a continual nuisance to the human population who live in the vicinity of the river. The occurrence of insecticide resistance to at least two organophosphates and one carbamate (malathion, fenitrothion and propoxur, respectively to this insect population is reported. The results show the need to develop an insecticide management program. The suscetibility to permethrin (pyretroid suggests the possibility of using this class of insecticide shoul the need for replacement of the insecticide in use arise.

  11. Detection of the high risk pyrethroid resistant Varroa destructor mites in apiaries of the Warmia-Mazury province in Poland.

    Science.gov (United States)

    Lipiński, Zbigniew; Szubstarski, Jarosław; Szubstarska, Dagna

    2007-01-01

    The aim of our current study was to investigate the possible occurence of pyrethroid (taufluvalinate) resistant Varroa mites infestations in 24 randomly chosen apiaries of Warmia-Mazury province of northeast Poland. The methodology used for the analysis of resistant Varroa strains strictly followed the protocol described by Milani. We identified 3 apiaries that were infested with high risk pyrethroid resistance mites and a further 9 apiaries that were free from this resitance. The brood samples collected from the remaining apiaries did not contain sufficient numbers of parasites to enable us to properly perform the assay. Our finding that 25% of the tested brood samples showed a high risk of fully pyrethroid resistant Varroa mite contamination indicates that resistant Varroa may become wide spread in apiaries in Poland. Interestingly these high risk resistant mites were found in honeybee colonies with low levels of Varroa infestation, with an average rate of 2.16%. We also discuss the role of amitraz (amidine) in the phenomenon of Varroa resistance to pyrethroids.

  12. Impact of Insecticide Resistance on the Effectiveness of Pyrethroid-Based Malaria Vectors Control Tools in Benin: Decreased Toxicity and Repellent Effect.

    Directory of Open Access Journals (Sweden)

    Fiacre R Agossa

    Full Text Available Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS in semi-field conditions and long lasting insecticidal nets (LLINs in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46% but high for other predominant species such as Mansonia africana (93% to 97%. There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001. Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible "Kisumu", mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted.

  13. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius.

    Science.gov (United States)

    Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K

    2016-12-07

    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species. Copyright © 2016 Fountain et al.

  14. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius

    Directory of Open Access Journals (Sweden)

    Toby Fountain

    2016-12-01

    Full Text Available The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG, with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species.

  15. A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius

    Science.gov (United States)

    Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K.

    2016-01-01

    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species. PMID:27733453

  16. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis

    Science.gov (United States)

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Stott, Robert; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. PMID:26548743

  17. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Riveron, Jacob M; Stott, Robert; Irving, Helen; Wondji, Charles S

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools.

  18. Study of Different Effects of Nets Impregnated with Different Pyrethroids on Susceptible and Resistant Strains of Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    M.H. Hodjati

    2006-10-01

    Full Text Available Introduction & Objectives: A laboratory study was carried out to investigate the insecticidal, irritant and anti-feeding effects of nets treated with various pyrethroids against susceptible and highly pyrethroid resistant strains of An. stephensi. Materials & Methods: Tests were carried out inside a mosquito cage measuring 25×25×25 cm where mosquitoes were offered the opportunity to feed blood on an arm through the top face of the cage which had been pyrethroid treated.Results: With all the pyrethroids tested, the resistant strain spent a longer time in contact with a treated net, which was in contact with a human arm, than did the susceptible strain. With permethrin the resistant strain fed significantly more successfully through the treated netting than did the susceptible strain. With deltamethrin there was a non-significant tendency in the same direction in comparing the two strains. However, with alphacypermethrin there was a non-significant tendency in the reverse direction. After 15 min in the cage which tested for the ability to feed through a pyrethroid treated net, observed mortality was higher with the susceptible than the resistant strain. Conclusion: Thus there was no sign that the longer resting of the resistant strain on treated netting would compensate for the fact that a higher dose was needed to kill this strain. Such compensation had been suggested with the West African An. gambiae where treated nets continue to work well against a highly resistant wild population. However this does not seem to apply to our resistant An. stephens.

  19. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA

    Science.gov (United States)

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597

  20. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA.

    Directory of Open Access Journals (Sweden)

    Joel González-Cabrera

    Full Text Available The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

  1. Enzymatic characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus say (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Van Lun Low

    Full Text Available BACKGROUND: There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia. METHODOLOGY/PRINCIPAL FINDINGS: Culex quinquefasciatus from 14 residential areas across 13 states and one federal territory were subjected to esterases, mixed function oxidases, glutathione-S-transferase and insensitive acetylcholinesterase assays. Enzyme assays revealed that α-esterases and β-esterases were elevated in 13 populations and 12 populations, respectively. Nine populations demonstrated elevated levels of mixed function oxidases and glutathione-S-transferase. Acetylcholinesterase was insensitive to propoxur in all 14 populations. Activity of α-esterases associated with malathion resistance was found in the present study. In addition, an association between the activity of α-esterases and β-esterases was also demonstrated. CONCLUSIONS/SIGNIFICANCE: The present study has characterized the potential biochemical mechanisms in contributing towards insecticide resistance in Cx. quinquefasciatus field populations in Malaysia. Identification of mechanisms underlying the insecticide resistance will be beneficial in developing effective mosquito control programs in Malaysia.

  2. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia.

    Science.gov (United States)

    Al Nazawi, Ashwaq M; Aqili, Jabir; Alzahrani, Mohammed; McCall, Philip J; Weetman, David

    2017-03-27

    Pyrethroid resistance is a threat to effective vector control of Aedes aegypti, the vector of dengue, Zika and other arboviruses, but there are many major knowledge gaps on the mechanisms of resistance. In Jeddah and Makkah, the principal dengue-endemic areas of Saudi Arabia, pyrethroids are used widely for Ae. aegypti control but information about resistance remains sparse, and the underlying genetic basis is unknown. Findings from an ongoing study in this internationally significant area are reported here. Aedes aegypti collected from each city were raised to adults and assayed for resistance to permethrin, deltamethrin (with and without the synergist piperonyl butoxide, PBO), fenitrothion, and bendiocarb. Two fragments of the voltage-gated sodium channel (Vgsc), encompassing four previously identified mutation sites, were sequenced and subsequently genotyped to determine associations with resistance. Expression of five candidate genes (CYP9J10, CYP9J28, CYP9J32, CYP9M6, ABCB4) previously associated with pyrethroid resistance was compared between assay survivors and controls. Jeddah and Makkah populations exhibited resistance to multiple insecticides and a similarly high prevalence of resistance to deltamethrin compared to a resistant Cayman strain, with a significant influence of age and exposure duration on survival. PBO pre-exposure increased pyrethroid mortality significantly in the Jeddah, but not the Makkah strain. Three potentially interacting Vgsc mutations were detected: V1016G and S989P were in perfect linkage disequilibrium in each strain and strongly predicted survival, especially in the Makkah strain, but were in negative linkage disequilibrium with 1534C, though some females with the Vgsc triple mutation were detected. The candidate gene CYP9J28 was significantly over-expressed in Jeddah compared to two susceptible reference strains, but none of the candidate genes was consistently up-regulated to a significant level in the Makkah strain. Despite

  3. Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl

    Directory of Open Access Journals (Sweden)

    Chabi Joseph

    2010-02-01

    Full Text Available Abstract Background Scaling up of long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS with support from the Global Fund and President's Malaria Initiative is providing increased opportunities for malaria control in Africa. The most cost-effective and longest-lasting residual insecticide DDT is also the most environmentally persistent. Alternative residual insecticides exist, but are too short-lived or too expensive to sustain. Dow Agrosciences have developed a microencapsulated formulation (CS of the organophosphate chlorpyrifos methyl as a cost-effective, long-lasting alternative to DDT. Methods Chlorpyrifos methyl CS was tested as an IRS or ITN treatment in experimental huts in an area of Benin where Anopheles gambiae and Culex quinquefasiactus are resistant to pyrethroids, but susceptible to organophosphates. Efficacy and residual activity was compared to that of DDT and the pyrethroid lambdacyalothrin. Results IRS with chlorpyrifos methyl killed 95% of An. gambiae that entered the hut as compared to 31% with lambdacyhalothrin and 50% with DDT. Control of Cx. quinquefasciatus showed a similar trend; although the level of mortality with chlorpyrifos methyl was lower (66% it was still much higher than for DDT (14% or pyrethroid (15% treatments. Nets impregnated with lambdacyhalothrin were compromized by resistance, killing only 30% of An. gambiae and 8% of Cx. quinquefasciatus. Nets impregnated with chlorpyrifos methyl killed more (45% of An gambiae and 15% of Cx. quinquefasciatus, but its activity on netting was of short duration. Contact bioassays on the sprayed cement-sand walls over the nine months of monitoring showed no loss of activity of chlorpyrifos methyl, whereas lambdacyhalothrin and DDT lost activity within a few months of spraying. Conclusion As an IRS treatment against pyrethroid resistant mosquitoes chlorpyrifos methyl CS outperformed DDT and lambdacyhalothrin. In IRS campaigns, chlorpyrifos methyl CS should

  4. Mechanisms of pyrethroid resistance inHaematobia irritans (Muscidae from Mato Grosso do Sul state, Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Thadeu Medeiros Barros

    Full Text Available Horn fly resistance to pyrethroid insecticides occurs throughout Brazil, but knowledge about the involved mechanisms is still in an incipient stage. This survey was aimed to identify the mechanisms of horn fly resistance to cypermethrin in Mato Grosso do Sul state, Brazil. Impregnated filter paper bioassays using cypermethrin, synergized or not with piperonyl butoxide (PBO and triphenyl phosphate (TPP, were conducted from March 2004 to June 2005 in horn fly populations (n = 33 from all over the state. All populations were highly resistant to cypermethrin, with resistance factors (RF ranging from 89.4 to 1,020.6. Polymerase chain reaction (PCR assays to detect the knockdown resistance (kdr mutation also were performed in 16 samples. The kdr mutation was found in 75% of the tested populations, mostly with relatively low frequencies (<20%, and was absent in some highly resistant populations. Addition of TPP did not significantly reduce the LC50 in any population. However, PBO reduced LC50s above 40-fold in all tested populations, resulting in RFs ≤ 10 in most cases. Horn fly resistance to cypermethrin is widespread in the state, being primarily caused by an enhanced activity of P450 mono-oxygenases and secondarily by reduced target site sensitivity.

  5. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    Directory of Open Access Journals (Sweden)

    Srivastava Harish C

    2011-01-01

    Full Text Available Abstract Background Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against Anopheles culicifacies and Anopheles stephensi for its possible use in vector control. Methods Efficacy of chlorfenapyr against An. culicifacies and An. stephensi was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of An. culicifacies. Results A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of An. culicifacies species C showed higher LD50 and LD99 (0.67 and 2.39% respectively values than the DDT-malathion-deltamethrin susceptible An. culicifacies species A (0.41 and 2.0% respectively and An. stephensi strains (0.43 and 2.13% respectively and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05. Residual activity of chlorfenapyr a.i. of 400 mg/m2 on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against An. culicifacies and up to 34 weeks against An. stephensi. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of An. stephensi and field-caught An. culicifacies

  6. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors.

    Science.gov (United States)

    Raghavendra, Kamaraju; Barik, Tapan K; Sharma, Poonam; Bhatt, Rajendra M; Srivastava, Harish C; Sreehari, Uragayala; Dash, Aditya P

    2011-01-25

    Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against Anopheles culicifacies and Anopheles stephensi for its possible use in vector control. Efficacy of chlorfenapyr against An. culicifacies and An. stephensi was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of An. culicifacies. A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of An. culicifacies species C showed higher LD50 and LD99 (0.67 and 2.39% respectively) values than the DDT-malathion-deltamethrin susceptible An. culicifacies species A (0.41 and 2.0% respectively) and An. stephensi strains (0.43 and 2.13% respectively) and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05). Residual activity of chlorfenapyr a.i. of 400 mg/m2 on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against An. culicifacies and up to 34 weeks against An. stephensi. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of An. stephensi and field-caught An. culicifacies. Potentiation studies demonstrated the antagonistic

  7. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.

    Science.gov (United States)

    Carvalho, Renato A; Omoto, Celso; Field, Linda M; Williamson, Martin S; Bass, Chris

    2013-01-01

    The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide

  8. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.

    Directory of Open Access Journals (Sweden)

    Renato A Carvalho

    Full Text Available The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain or lambda-cyhalothrin (PYR strain were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE and pyrethroid (voltage-gated sodium channel, VGSC target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS. These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results

  9. Pinpointing P450s Associated with Pyrethroid Metabolism in the Dengue Vector, Aedes aegypti: Developing New Tools to Combat Insecticide Resistance

    OpenAIRE

    2012-01-01

    BACKGROUND: Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the role of CYP9J...

  10. Detection and evolution of resistance to the pyrethroid cypermethrin in Helicoverpa zea (Lepidoptera: Noctuidae) populations in Texas.

    Science.gov (United States)

    Pietrantonio, P V; Junek, T A; Parker, R; Mott, D; Siders, K; Troxclair, N; Vargas-Camplis, J; Westbrook, J K; Vassiliou, V A

    2007-10-01

    The bollworm, Helicoverpa zea (Boddie), is a key pest of cotton in Texas. Bollworm populations are widely controlled with pyrethroid insecticides in cotton and exposed to pyrethroids in other major crops such as grain sorghum, corn, and soybeans. A statewide program that evaluated cypermethrin resistance in male bollworm populations using an adult vial test was conducted from 2003 to 2006 in the major cotton production regions of Texas. Estimated parameters from the most susceptible field population currently available (Burleson County, September 2005) were used to calculate resistance ratios and their statistical significance. Populations from several counties had statistically significant (P Nueces County in 2004, and Williamson and Uvalde Counties in 2005. These findings explain the observed pyrethroid control failures in various counties in Texas. Based on the assumption that resistance is caused by a single gene, the Hardy-Weinberg equilibrium formula was used for estimation of frequencies for the putative resistant allele (q) using 3 and 10 microg/vial as discriminatory dosages for susceptible and heterozygote resistant insects, respectively. The influence of migration on local levels of resistance was estimated by analysis of wind trajectories, which partially clarifies the rapid evolution of resistance to cypermethrin in bollworm populations. This approach could be used in evaluating resistance evolution in other migratory pests.

  11. Relationship between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae.

    Science.gov (United States)

    Reimer, Lisa; Fondjo, Etienne; Patchoké, Salomon; Diallo, Brehima; Lee, Yoosook; Ng, Arash; Ndjemai, Hamadou M; Atangana, Jean; Traore, Sekou F; Lanzaro, Gregory; Cornel, Anthony J

    2008-03-01

    The spread of insecticide resistance genes in Anopheles gambiae Giles sensu stricto threatens to compromise vector-based malaria control programs. Two mutations at the same locus in the voltage-gated sodium channel gene are known to confer knockdown resistance (kdr) to pyrethroids and DDT. Kdr-e involves a leucine-serine substitution, and it was until recently thought to be restricted to East Africa, whereas kdr-w, which involves a leucine-phenylalanine substitution, is associated with resistance in West Africa. In this study, we analyze the frequency and relationship between the kdr genotypes and resistance to type I and type II pyrethroids and DDT by using WHO test kits in both the Forest-M and S molecular forms of An. gambiae in Cameroon. Both kdr-w and kdr-e polymorphisms were found in sympatric An. gambiae, and in many cases in the same mosquito. Kdr-e and kdr-w were detected in both forms, but they were predominant in the S form. Both kdr-e and kdr-w were closely associated with resistance to DDT and weakly associated with resistance to type II pyrethroids. Kdr-w conferred greater resistance to permethrin than kdr-e. We also describe a modified diagnostic designed to detect both resistant alleles simultaneously.

  12. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish.

    Science.gov (United States)

    Muggelberg, Leslie L; Huff Hartz, Kara E; Nutile, Samuel A; Harwood, Amanda D; Heim, Jennifer R; Derby, Andrew P; Weston, Donald P; Lydy, Michael J

    2017-01-01

    The recent discovery of pyrethroid-resistant Hyalella azteca populations in California, USA suggests there has been significant exposure of aquatic organisms to these terrestrially-applied insecticides. Since resistant organisms are able to survive in relatively contaminated habitats they may experience greater pyrethroid bioaccumulation, subsequently increasing the risk of those compounds transferring to predators. These issues were evaluated in the current study following toxicity tests in water with permethrin which showed the 96-h LC50 of resistant H. azteca (1670 ng L(-1)) was 53 times higher than that of non-resistant H. azteca (31.2 ng L(-1)). Bioaccumulation was compared between resistant and non-resistant H. azteca by exposing both populations to permethrin in water and then measuring the tissue concentrations attained. Our results indicate that resistant and non-resistant H. azteca have similar potential to bioaccumulate pyrethroids at the same exposure concentration. However, significantly greater bioaccumulation occurs in resistant H. azteca at exposure concentrations non-resistant organisms cannot survive. To assess the risk of pyrethroid trophic transfer, permethrin-dosed resistant H. azteca were fed to fathead minnows (Pimephales promelas) for four days, after which bioaccumulation of permethrin and its biotransformation products in fish tissues were measured. There were detectable concentrations of permethrin in fish tissues after they consumed dosed resistant H. azteca. These results show that bioaccumulation potential is greater in organisms with pyrethroid resistance and this increases the risk of trophic transfer when consumed by a predator. The implications of this study extend to individual fitness, populations and food webs.

  13. Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China.

    Science.gov (United States)

    Tong, Hong; Su, Qi; Zhou, Xiaomao; Bai, Lianyang

    2013-01-01

    The present studies were carried out to evaluate resistance in the populations of Spodoptera litura Fab. (Lepidoptera, Noctuidae) from five districts of Hunan Province in China to various insecticides from 2010 to 2012 using a standard leaf dip bioassay method. For organophosphates and pyrethroids, resistance ratios compared with a susceptible Lab-BJ strain were in the range of 14-229-fold for organophosphates and 12-227-fold for pyrethroids. Similarly, relative low levels of resistance to emamectin, indoxacarb, and chlorfenapyr were observed in all five populations. In contrast, the resistance to carbamates (thiodicarb or methomyl) was significantly higher than that of organophosphates, pyrethroids and newer chemistry insecticides. The pairwise correlation coefficients of LC50 values indicated that the newer chemistry insecticides and old generation insecticides were not significant except abamectin, which was negatively significantly correlated with methomyl. A significant correlation was observed between thiodicarb, methomyl, and deltamethrin, whereas resistance to bifenthrin showed no correlations with resistance to other insecticides except deltamethrin. The results are discussed in relation to integrated pest management for S. litura with special reference to management of field evolved resistance to insecticides.

  14. Alternative treatments for indoor residual spraying for malaria control in a village with pyrethroid- and DDT-resistant vectors in the Gambia.

    Directory of Open Access Journals (Sweden)

    Julie-Anne A Tangena

    Full Text Available BACKGROUND: Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed. METHODOLOGY/PRINCIPAL FINDINGS: Insecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively. The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1 bendiocarb, a carbamate, (2 DDT, an organochlorine, (3 microencapsulated pirimiphos methyl, an organophosphate, or (4 left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02. Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets. CONCLUSION/SIGNIFICANCE: Bendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance.

  15. Resistance differences between chlorpyrifos and synthetic pyrethroids in Cimex lectularius population from Denmark.

    Science.gov (United States)

    Kilpinen, Ole; Kristensen, Michael; Jensen, Karl-Martin Vagn

    2011-11-01

    Bed bug, Cimex lectularius L., populations were investigated for resistance against permethrin and chlorpyrifos in a topical application bioassay, after an initial establishment of a discriminating dose with a susceptible population. For both insecticides, ca. two times the lethal dose LD(99) was selected: 2,560 ng of permethrin and 200 ng of chlorpyrifos per bed bug, respectively. Bed bugs were collected from infested homes in Denmark at ten locations and bred in the laboratory. The frequency of permethrin-resistant individuals was high in Danish bed bug populations as susceptible individuals were only found in three of ten populations. In contrast, the frequency of chlorpyrifos-resistant individuals was low in Danish bed bug populations, but resistant individuals were found in five of ten populations. To test the significance of the observed resistance, we performed tarsal contact test with commercially available insecticides. The test indicated that both a permethrin and a deltamethrin product had very low efficacy against the field-collected bed bug populations. Despite the reduced sensitivity to synthetic pyrethroids, all populations tested in the tarsal test on the commercial product with micro-encapsulated chlorpyrifos resulted in close to 100% mortality.

  16. Multiple Resistances Against Formulated Organophosphates, Pyrethroids, and Newer-Chemistry Insecticides in Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan.

    Science.gov (United States)

    Qayyum, Mirza Abdul; Wakil, Waqas; Arif, Muhammad Jalal; Sahi, Shahbaz Talib; Saeed, Noor Abid; Russell, Derek Allan

    2015-02-01

    Field populations of Helicoverpa armigera Hübner from 15 localities across the Punjab, Pakistan, were assessed by the leaf dip method for resistance against formulated organophosphates, pyrethroids, and newer insecticide groups. Resistance levels in H. armigera have been incrementally increasing for organophosphate and pyrethroid insecticides after decades of use in Pakistan. Resistance ratios (RRs) documented for organophosphates were 24- to 116-fold for profenofos and 22- to 87-fold for chlorpyrifos. For pyrethroids, RRs were 3- to 69-fold for cypermethrin and 3- to 27-fold for deltamethrin. Resistance levels against newer chemistries were 2- to 24-fold for chlorfenapyr, 1- to 22-fold for spinosad, 1- to 20-fold for indoxacarb, 1- to 18-fold for abamectin, and 1- to 16-fold for emamectin benzoate. Resistant populations of H. armigera were mainly in the southern part of the Punjab, Pakistan. The most resistant populations were collected from Pakpattan, Multan, and Muzzafargarh. Of the nine insecticides tested, LC50 and LC90 values were lower for newer insecticide groups; resistance levels were moderate to very high against organophosphates, very low to high against pyrethroids, and very low to low against the newer-chemistry insecticides. These findings suggest that the newer-chemistry insecticides with different modes of action could be included in insecticide rotations or replace the older insecticides. Supplementing the use of synthetic insecticides with safer alternatives could help to successfully lower the farmer's reliance on insecticides and the incidence of resistance due to repeated use of insecticides against major insect pests. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Toxicity of pyrethroids and repellency of diethyltoluamide in two deltamethrin-resistant colonies of Triatoma infestans Klug, 1834 (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Valeria Sfara

    2006-02-01

    Full Text Available The aim of the currrent investigation was to evaluate (a the toxicity of three pyrethroids (deltamethrin, lambda-cyhalothrin, and tetramethrin; (b the effect of these insecticides on the locomotor activity; and (c the repellent effect of N,N-diethyl-m-toluamide (DEET on two deltamethrin-resistant strains of Triatoma infestans from Argentina (El Chorro and La Toma, and one susceptible strain. The resistance ratios (RRs obtained for the La Toma strain were: > 10,769, 50.7, and > 5.2 for deltamethrin, lambda-cyhalothrin, and tetramethrin respectively. The RRs for the El Chorro strain were: > 10,769, 85.8, and > 5.2 for deltamethrin, lambda-cyhalothrin, and tetramethrin respectively. The hyperactivity usually caused by the three pyrethroids was in both the deltamethrin-resistant strains compared to the susceptible reference strain. No differences were observed in the repellent effect of DEET between the three groups. These results indicate that the deltamethrin-resistant insects have a cross resistance to lambda-cyhalothrin and tetramethrin, and are also resistant to the first symptom of pyrethroid poisoning (hyperactivity. However, the sensorial process related to DEET repellency does not appear to be altered.

  18. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Charles Mulamba

    Full Text Available BACKGROUND: Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin and II (deltamethrin pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. CONCLUSION: The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management.

  19. Evidence of Tolerance to Silica-Based Desiccant Dusts in a Pyrethroid-Resistant Strain of Cimex lectularius (Hemiptera: Cimicidae).

    Science.gov (United States)

    Lilly, David G; Webb, Cameron E; Doggett, Stephen L

    2016-12-09

    Insecticide resistance in bed bugs (Cimex lectularius and Cimex hemipterus) has become widespread, which has necessitated the development of new IPM (Integrated Pest Management) strategies and products for the eradication of infestations. Two promising options are the diatomaceous earth and silica gel-based desiccant dusts, both of which induce dehydration and eventual death upon bed bugs exposed to these products. However, the impact of underlying mechanisms that confer resistance to insecticides, such as cuticle thickening, on the performance of these dusts has yet to be determined. In the present study, two desiccant dusts, CimeXa Insecticide Dust (silica gel) and Bed Bug Killer Powder (diatomaceous earth) were evaluated against two strains of C. lectularius; one highly pyrethroid-resistant and one insecticide-susceptible. Label-rate doses of both products produced 100% mortality in both strains, albeit over dissimilar time-frames (3-4 days with CimeXa vs. 14 days with Bed Bug Killer). Sub-label rate exposure to CimeXa indicated that the pyrethroid-resistant strain possessed a degree of tolerance to this product, surviving 50% longer than the susceptible strain. This is the first study to suggest that mechanisms conferring resistance to pyrethroids, such as cuticular thickening, may have potential secondary impacts on non-synthetic insecticides, including desiccant dusts, which target the bed bug's cuticle.

  20. Evidence of Tolerance to Silica-Based Desiccant Dusts in a Pyrethroid-Resistant Strain of Cimex lectularius (Hemiptera: Cimicidae

    Directory of Open Access Journals (Sweden)

    David G. Lilly

    2016-12-01

    Full Text Available Insecticide resistance in bed bugs (Cimex lectularius and Cimex hemipterus has become widespread, which has necessitated the development of new IPM (Integrated Pest Management strategies and products for the eradication of infestations. Two promising options are the diatomaceous earth and silica gel-based desiccant dusts, both of which induce dehydration and eventual death upon bed bugs exposed to these products. However, the impact of underlying mechanisms that confer resistance to insecticides, such as cuticle thickening, on the performance of these dusts has yet to be determined. In the present study, two desiccant dusts, CimeXa Insecticide Dust (silica gel and Bed Bug Killer Powder (diatomaceous earth were evaluated against two strains of C. lectularius; one highly pyrethroid-resistant and one insecticide-susceptible. Label-rate doses of both products produced 100% mortality in both strains, albeit over dissimilar time-frames (3–4 days with CimeXa vs. 14 days with Bed Bug Killer. Sub-label rate exposure to CimeXa indicated that the pyrethroid-resistant strain possessed a degree of tolerance to this product, surviving 50% longer than the susceptible strain. This is the first study to suggest that mechanisms conferring resistance to pyrethroids, such as cuticular thickening, may have potential secondary impacts on non-synthetic insecticides, including desiccant dusts, which target the bed bug’s cuticle.

  1. Bioefficacy of long-lasting insecticidal nets against pyrethroid-resistant populations of Anopheles gambiae s.s. from different malaria transmission zones in Uganda

    OpenAIRE

    Okia, Michael; Ndyomugyenyi, Richard; Kirunda, James; Byaruhanga, Anatol; Adibaku, Seraphine; Lwamafa, Denis K; Kironde, Fred

    2013-01-01

    Background There are major concerns over sustaining the efficacy of current malaria vector control interventions given the rapid spread of resistance, particularly to pyrethroids. This study assessed the bioefficacy of five WHO-recommended long-lasting insecticidal nets (LLINs) against pyrethroid-resistant Anopheles gambiae field populations from Uganda. Methods Adult An. gambiae from Lira, Tororo, Wakiso and Kanungu districts were exposed to permethrin (0.75%) or deltamethrin (0.05%) in stan...

  2. Establishment of quantitative sequencing and filter contact vial bioassay for monitoring pyrethroid resistance in the common bed bug, Cimex lectularius.

    Science.gov (United States)

    Seong, Keon Mook; Lee, Da-Young; Yoon, Kyong Sup; Kwon, Deok Ho; Kim, Heung Chul; Klein, Terry A; Clark, J Marshall; Lee, Si Hyeock

    2010-07-01

    Two point mutations (V419L and L925I) in the voltage-sensitive sodium channel alpha-subunit gene have been identified in deltamethrin-resistant bed bugs. A quantitative sequencing (QS) protocol was developed to establish a population-based genotyping method as a molecular resistance-monitoring tool based on the frequency of the two mutations. The nucleotide signal ratio at each mutation site was generated from sequencing chromatograms and plotted against the corresponding resistance allele frequency. Frequency prediction equations were generated from the plots by linear regression, and the signal ratios were shown to highly correlate with resistance allele frequencies (r2 > 0.9928). As determined by QS, neither mutation was found in a bed bug population collected in 1993. Populations collected in recent years (2007-2009), however, exhibited completely or nearly saturating L925I mutation frequencies and highly variable frequencies of the V419L mutation. In addition to QS, the filter contact vial bioassay (FCVB) method was established and used to determine the baseline susceptibility and resistance of bed bugs to deltamethrin and lambda-cyhalothrin. A pyrethroid-resistant strain showed >9,375- and 6,990-fold resistance to deltamethrin and lambda-cyhalothrin, respectively. Resistance allele frequencies in different bed bug populations predicted by QS correlated well with the FCVB results, confirming the roles of the two mutations in pyrethroid resistance. Taken together, employment of QS in conjunction with FCVB should greatly facilitate the detection and monitoring of pyrethroid-resistant bed bugs in the field. The advantages of FCVB as an on-site resistance-monitoring tool are discussed.

  3. Emergence of resistance and resistance management in field populations of tropical Culex quinquefasciatus to the microbial control agent Bacillus sphaericus.

    Science.gov (United States)

    Mulla, Mir S; Thavara, Usavadee; Tawatsin, Apiwat; Chomposri, Jakkrawarn; Su, Tianyun

    2003-03-01

    In recent years, highly potent mosquitocidal strains of the microbial agent Bacillus sphaericus (Bsph) have been isolated and developed for the control of mosquito larvae around the world. Laboratory selection experiments with the most active strains and their use in large-scale operational mosquito control programs resulted in the emergence of resistance in larvae of the Culex pipiens complex. This generated great concern among vector control agencies around the world, who feared reduced efficacy of this highly active larvicidal agent. To address this issue, the current studies were started to find practical strategies for controlling resistant mosquitoes and more importantly to develop resistance management strategies that would prevent or delay development of resistance. We initiated field studies in 3 low-income communities in Nonthaburi Province, Thailand. In 1 of the communities, larvae of Culex quinquefasciatus that were highly resistant (>125,000-fold) to Bsph strain 2362 were successfully controlled with applications of Bacillus thuringiensis var. israelensis (Bti) alone or in combination with Bsph. To prevent or delay resistance to Bsph, 2 other sites were selected, 1 treated with Bsph 2362 alone and the other treated with a mixture of Bsph 2362 and Bti. Mosquitoes treated with Bsph 2362 alone showed some resistance by the 9th treatment and almost complete failure of control occurred by the 17th treatment. After 9 treatments with the mixture over a 9-month period at another site, no noticeable change in susceptibility to Bsph was detected. During this period, the site treated with Bsph alone required 19 treatments, whereas the site treated with mixtures took only 9 treatments because of slower resurgence of larvae at the site treated with the mixture than at the site treated with Bsph alone. This is the 1st field evidence for delay or prevention of resistance to microbial agents in larval Cx. quinquefasciatus by using mixtures of Bti and Bsph. Further

  4. Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Bradley J Stevenson

    Full Text Available BACKGROUND: Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the role of CYP9J32 and other P450s in insecticide metabolism in order to identify potential diagnostic resistance markers. METHODOLOGY/PRINCIPAL FINDINGS: We have expressed CYP9J32 in Escherichia coli and show that the enzyme can metabolize the pyrethroids permethrin and deltamethrin. In addition, three other Ae. aegypti P450s (CYP9J24, CYP9J26, CYP9J28 were found capable of pyrethroid metabolism, albeit with lower activity. Both Ae. aegypti and Anopheles gambiae P450s (CYP's 6M2, 6Z2, 6P3 were screened against fluorogenic and luminescent substrates to identify potential diagnostic probes for P450 activity. Luciferin-PPXE was preferentially metabolised by the three major pyrethroid metabolisers (CYP9J32, CYP6M2 and CYP6P3, identifying a potential diagnostic substrate for these P450s. CONCLUSIONS/SIGNIFICANCE: P450s have been identified with the potential to confer pyrethroid resistance in Ae.aegypti. It is recommended that over expression of these enzymes should be monitored as indicators of resistance where pyrethroids are used.

  5. Lambda-Cyhalothrin Resistance in the Lady Beetle Eriopis connexa (Coleoptera: Coccinellidae) Confers Tolerance to Other Pyrethroids.

    Science.gov (United States)

    Torres, J B; Rodrigues, A R S; Barros, E M; Santos, D S

    2015-02-01

    Pyrethroid insecticides are widely recommended to control insect defoliators but lack efficacy against most aphid species. Thus, conserving aphid predators such as the lady beetle Eriopis connexa (Germar) is important to pest management in crop ecosystems that require pyrethroid sprays. In a greenhouse, early fourth-instar larvae and 5-day-old adults from susceptible (S) and resistant (R) E. connexa populations were caged on lambda-cyhalothrin-treated cotton plants, after which survival and egg production (for those caged at adult stage) were assessed. In the laboratory, similar groups were subjected to dried residues and topical treatment with one of eight pyrethroids (alpha-cypermethrin, bifenthrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, zeta-cypermethrin, and lambda-cyhalothrin), the organophosphate methidathion, or water and wetting agent. After caging on treated cotton terminals, 66% of the R-population larvae survived to adulthood, compared with 2% of those from the S-population. At 12 d after caging at adult stage under the same conditions, 64% of the females from the R-population survived and laid eggs, compared with 100% mortality and no oviposition for the S-females. In trials involving dried insecticide residues, gain in survival based on the survival difference (percentage for R-population minus percentage for S-population) across all tested pyrethroids varied from 3 to 63% for larvae and from 3 to 70% for adults. In trials involving topical sprays of the tested pyrethroids, survival differences ranged from 36 to 96% for larvae and from 21 to 82% for adults. Fenpropathrin and bifenthrin were the least and most toxic, respectively. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Pyrethroid resistance in southern African Anopheles funestus extends to Likoma Island in Lake Malawi

    Directory of Open Access Journals (Sweden)

    Edwardes M

    2010-12-01

    Full Text Available Abstract Background A mosquito survey was carried out on the island of Likoma in Lake Malawi with a view to collecting baseline data to determine the feasibility of implementing an integrated malaria vector control programme. No vector control interventions are currently being applied on the island apart from the sporadic use of treated and untreated bed nets. Results Large numbers of Anopheles funestus were found resting inside houses. WHO susceptibility tests were carried out on wild caught females and 1-5 day old F-1 female progeny. Wild caught females were tested on deltamethrin (77.8% mortality and bendiocarb (56.4% mortality. Female progeny were tested on deltamethrin (41.4% mortality, permethrin (40.4%, bendiocarb (52.5%, propoxur (7.4%, malathion, fenitrothion, DDT, dieldrin (all 100% and pirimiphos-methyl (98.9%. The malaria parasite rate was 4.9%. A small number of Anopheles arabiensis were also collected. Conclusion This locality is 1,500 km north of the currently known distribution of pyrethroid resistant An. funestus in southern Africa. The susceptibility results mirror those found in southern Mozambique and South African populations, but are markedly different to An. funestus populations in Uganda, indicating that the Malawi resistance has spread from the south.

  7. Impact of insecticide-treated nets on wild pyrethroid resistant Anopheles epiroticus population from southern Vietnam tested in experimental huts

    Directory of Open Access Journals (Sweden)

    Trung Ho

    2009-10-01

    Full Text Available Abstract Background In this study, the efficacy of insecticide-treated nets was evaluated in terms of deterrence, blood-feeding inhibition, induced exophily and mortality on a wild resistant population of Anopheles epiroticus in southern Vietnam, in order to gain insight into the operational consequences of the insecticide resistance observed in this malaria vector in the Mekong delta. Method An experimental station, based on the model of West Africa and adapted to the behaviour of the target species, was built in southern Vietnam. The study design was adapted from the WHO phase 2 guidelines. The study arms included a conventionally treated polyester net (CTN with deltamethrin washed just before exhaustion, the WHO recommended long-lasting insecticidal net (LLIN PermaNet 2.0® unwashed and 20 times washed and PermaNet 3.0®, designed for the control of pyrethroid resistant vectors, unwashed and 20 times washed. Results The nets still provided personal protection against the resistant An. epiroticus population. The personal protection ranged from 67% for deltamethrin CTN to 85% for unwashed PermaNet 3.0. Insecticide resistance in the An. epiroticus mosquitoes did not seem to alter the deterrent effect of pyrethroids. A significant higher mortality was still observed among the treatment arms despite the fact that the An. epiroticus population is resistant against the tested insecticides. Conclusion This study shows that CTN and LLINs still protect individuals against a pyrethroid resistant malaria vector from the Mekong region, where insecticide resistance is caused by a metabolic mechanism. In the light of a possible elimination of malaria from the Mekong region these insights in operational consequences of the insecticide resistance on control tools is of upmost importance.

  8. Nationwide investigation of the pyrethroid susceptibility of mosquito larvae collected from used tires in Vietnam.

    Science.gov (United States)

    Kawada, Hitoshi; Higa, Yukiko; Nguyen, Yen T; Tran, Son H; Nguyen, Hoa T; Takagi, Masahiro

    2009-01-01

    Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998-2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus.

  9. Multiple-Insecticide Resistance and Classic Gene Mutations to Japanese Encephalitis Vector Culex tritaeniorhynchus from China.

    Science.gov (United States)

    Wu, Zhi-Ming; Chu, Hong-Liang; Wang, Gang; Zhu, Xiao-Juan; Guo, Xiao-Xia; Zhang, Ying-Mei; Xing, Dan; Yan, Ting; Zhao, Ming-Hui; Dong, Yan-De; Li, Chun-Xiao; Zhao, Tong-Yan

    2016-06-01

    Widespread resistance of insect pests to insecticides has been widely reported in China and there is consequently an urgent need to adjust pest management strategies appropriately. This requires detailed information on the extent and causes of resistance. The aim of the present study was to investigate levels of resistance to 5 insecticides among 12 strains of Culex tritaeniorhynchus, a major vector of Japanese encephalitis in China. Resistance to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur were measured using larval bioassays. The allelic frequency of knockdown resistance (kdr) and acetylcholinesterase (AChE) mutations were determined in all strains. Larval bioassay results indicated that the field strains collected from different sites were resistant to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur, with resistance ratio values ranging from 1.70- to 71.98-fold, 7.83- to 43.07-fold, 3.54- to 40.03-fold, 291.85- to 530.89-fold, and 51.32- to 108.83-fold, respectively. A polymerase chain reaction amplification of specific alleles method for individual was developed to detect genotypes of the AChE gene mutation F455W in Cx. tritaeniorhynchus. The frequency of the AChE gene mutation F455W was 100.00% in all strains, making this mutation of no value as a marker of resistance to organophosphorous and carbamate pesticides in Cx. tritaeniorhynchus in China. The kdr allele was present in all strains at frequencies of 10.00-29.55%. Regression analysis indicated a significant correlation between kdr allele frequencies and levels of resistance to deltamethrin, beta-cypermethrin, and permethrin. These results highlight the need to monitor and map insecticide resistance in Cx. tritaeniorhynchus and to adjust pesticide use to minimize the development of resistance in these mosquitoes.

  10. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  11. Distribution of Voltage-Gated Sodium Channel (Nav Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    Directory of Open Access Journals (Sweden)

    Sayono Sayono

    Full Text Available The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C and one synonymous polymorphism (codon 982 were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF and allele 7 (PGF represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively. This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  12. High Insecticides Resistance in Culex pipiens (Diptera: Culicidae from Tehran, Capital of Iran

    Directory of Open Access Journals (Sweden)

    Yaser Salim-Abadi

    2016-10-01

    Full Text Available Background: During recent years transmission of Dirofilaria immitis (dog heart worm by Culex pipiens and West Nile virus have been reported from Iran. The present study was preformed for evaluating the susceptibility status of Cx. pipiens collected from capital city of Tehran, Iran.Methods: Four Insecticides including: DDT 4%, Lambdacyhalothrin 0.05%, Deltamethrin 0.05% and Cyfluthrin 0.15 % according to WHO standard  methods were used for evaluating the susceptibility status of Cx. pipiens from Tehran moreover  For comparison susceptibility status a Laboratory strain also was used.  Bioassay data were ana­lyzed using Probit program. The lethal time for 50% and 90% mortality (LT50 and LT90 values were calculated from regression line.Results: The susceptibility status of lab strain of Cx. pipiens revealed that it is susceptible to Lambdacyhalothrin, Deltamethrin, Cyfluthrin and resistant to DDT. Moreover cyfluthrin with LT50=36 seconds and DDT with LT50=3005 seconds had the least and most LT50s. Field population was resistance to all tested insecticides and DDT yielded no mortality.Conclusion: Highly resistance level against all WHO recommended imagicides were detected in field populations. We suggest more biochemical and molecular investigations to detect resistance mechanisms in the field population for further decision of vector control.

  13. Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Innocent Djegbe

    Full Text Available BACKGROUND: The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R allele is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. METHODS AND RESULTS: An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R resistance allele or not (wild type. Four salivary proteins were differentially expressed (>2 fold, P<0.05 in susceptible (SLAB and resistant (SR mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase were significantly over-expressed in the salivary gland of ace-1(R resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. CONCLUSION: The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further

  14. Antimosquito property of Petroselinum crispum (Umbellifereae) against the pyrethroid resistant and susceptible strains of Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Intirach, J; Junkum, A; Lumjuan, N; Chaithong, U; Jitpakdi, A; Riyong, D; Wannasan, A; Champakaew, D; Muangmoon, R; Chansang, A; Pitasawat, B

    2016-12-01

    The increasing and widespread resistance to conventional synthetic insecticides in vector populations has underscored the urgent need to establish alternatives in the mosquito management system. This study was carried out with the aim to investigate the antimosquito property, larvicidal and adulticidal potential, of plant products against both the pyrethroid-susceptible and resistant strains of Aedes aegypti. Seventeen plant products, including essential oils and ethanolic extracts, were obtained by steam distillation and extraction with 95 % ethanol, respectively. Their larvicidal activity was screened, using World Health Organization (WHO) procedures against A. aegypti, Muang Chiang Mai-susceptible (MCM-S) strain. The most effective product was a candidate for investigating larvicidal and adulticidal potential against three laboratory strains of A. aegypti, comprising MCM-S, Pang Mai Dang-resistant (PMD-R), and Upakut-resistant (UPK-R). Potential toxicity of the plant candidate was compared with that of synthetic temephos, permethrin, and deltamethrin. Chemical constituents of the most effective plant product also were analyzed by gas chromatography-mass spectrometry (GC-MS). Results obtained from the preliminary screening revealed the varying larvicidal efficacy of plant-derived products against MCM-S A. aegypti, with mortality ranging from 0 to 100 %. The larvicidal activity of seven effective plant products was found to be dose dependent, with the highest efficacy established from Petroselinum crispum fruit oil, followed by oils of Foeniculum vulgare, Myristica fragrans, Limnophila aromatica, Piper sarmentosum, Curcuma longa, and M. fragrans ethanolic extract (LC50 values of 43.22, 44.84, 47.42, 47.94, 49.19, 65.51, and 75.45 ppm, respectively). Essential oil of P. crispum was then investigated further and proved to be a promising larvicide and adulticide against all strains of A. aegypti. The pyrethroid-resistant strains of both PMD-R and UPK-R A. aegypti

  15. Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus.

    Science.gov (United States)

    Djegbe, Innocent; Cornelie, Sylvie; Rossignol, Marie; Demettre, Edith; Seveno, Martial; Remoue, Franck; Corbel, Vincent

    2011-03-23

    The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R) allele) is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R) resistance allele or not (wild type). Four salivary proteins were differentially expressed (>2 fold, Pmosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase) were significantly over-expressed in the salivary gland of ace-1(R) resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further investigation. All proteomic data will be deposited at PRIDE (http://www.ebi.ac.uk/pride/).

  16. Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Vassiliki Bariami

    Full Text Available BACKGROUND: Pyrethroid insecticides are widely utilized in dengue control. However, the major vector, Aedes aegypti, is becoming increasingly resistant to these insecticides and this is impacting on the efficacy of control measures. The near complete transcriptome of two pyrethroid resistant populations from the Caribbean was examined to explore the molecular basis of this resistance. PRINCIPAL FINDINGS: Two previously described target site mutations, 1016I and 1534C were detected in pyrethroid resistant populations from Grand Cayman and Cuba. In addition between two and five per cent of the Ae. aegypti transcriptome was differentially expressed in the resistant populations compared to a laboratory susceptible population. Approximately 20 per cent of the genes over-expressed in resistant mosquitoes were up-regulated in both Caribbean populations (107 genes. Genes with putative monooxygenase activity were significantly over represented in the up-regulated subset, including five CYP9 P450 genes. Quantitative PCR was used to confirm the higher transcript levels of multiple cytochrome P450 genes from the CYP9J family and an ATP binding cassette transporter. Over expression of two genes, CYP9J26 and ABCB4, is due, at least in part, to gene amplification. SIGNIFICANCE: These results, and those from other studies, strongly suggest that increases in the amount of the CYP9J cytochrome P450s are an important mechanism of pyrethroid resistance in Ae. aegypti. The genetic redundancy resulting from the expansion of this gene family makes it unlikely that a single gene or mutation responsible for pyrethroid resistance will be identified in this mosquito species. However, the results from this study do pave the way for the development of new pyrethroid synergists and improved resistance diagnostics. The role of copy number polymorphisms in detoxification and transporter genes in providing protection against insecticide exposure requires further investigation.

  17. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides.

    Science.gov (United States)

    Lumjuan, Nongkran; Rajatileka, Shavanthi; Changsom, Donch; Wicheer, Jureeporn; Leelapat, Posri; Prapanthadara, La-aied; Somboon, Pradya; Lycett, Gareth; Ranson, Hilary

    2011-03-01

    The Epsilon glutathione transferase (GST) class in the dengue vector Aedes aegypti consists of eight sequentially arranged genes spanning 53,645 bp on super contig 1.291, which maps to chromosome 2. One Epsilon GST, GSTE2, has previously been implicated in conferring resistance to DDT. The amino acid sequence of GSTE2 in an insecticide susceptible and a DDT resistant strain differs at five residues two of which occur in the putative DDT binding site. Characterization of the respective recombinant enzymes revealed that both variants have comparable DDT dehydrochlorinase activity although the isoform from the resistant strain has higher affinity for the insecticide. GSTe2 and two additional Epsilon GST genes, GSTe5 and GSTe7, are expressed at elevated levels in the resistant population and the recombinant homodimer GSTE5-5 also exhibits low levels of DDT dehydrochlorinase activity. Partial silencing of either GSTe7 or GSTe2 by RNA interference resulted in an increased susceptibility to the pyrethroid, deltamethrin suggesting that these GST enzymes may also play a role in resistance to pyrethroid insecticides.

  18. Syntetiske pyrethroider i private hjem

    DEFF Research Database (Denmark)

    Jensen, Karl-Martin Vagn; Fomsgaard, Inge S.; Kilpinen, Ole Østerlund;

    2015-01-01

    A number of different methods are tested to elucidate the accumulation of synthetic pyrethroids in private homes. When the target pest is resistant, there is a potential risk that persistent synthetic pyrethroids accumulate because of repeated treatments. The highest residue found was 8260 µg...

  19. Resistência a inseticidas organofosforados e carbamatos em população de Culex quinquefasciatus

    OpenAIRE

    Bracco José Eduardo; Dalbon Moacyr; Marinotti Osvaldo; Barata José Maria Soares

    1997-01-01

    Relata-se a ocorrência, na população de Culex quinquefasciatus, de resistência a pelo menos dois organofosforados e a um carbamato (malathion, fenitrothion e propoxur, respectivamente), mostrando a necessidade de haver programa de manejo de inseticidas. A suscetibilidade dessa população ao piretróide permetrina indica essa classe como de escolha numa eventual necessidade de substituição dos organofosforados.

  20. Resistência a inseticidas organofosforados e carbamatos em população de Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Bracco José Eduardo

    1997-01-01

    Full Text Available Relata-se a ocorrência, na população de Culex quinquefasciatus, de resistência a pelo menos dois organofosforados e a um carbamato (malathion, fenitrothion e propoxur, respectivamente, mostrando a necessidade de haver programa de manejo de inseticidas. A suscetibilidade dessa população ao piretróide permetrina indica essa classe como de escolha numa eventual necessidade de substituição dos organofosforados.

  1. Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian Helicoverpa armigera.

    Science.gov (United States)

    Grubor, Vladimir D; Heckel, David G

    2007-02-01

    The AN02 strain of Helicoverpa armigera from eastern Australia exhibits 50-fold, PBO-suppressible resistance to the pyrethroid insecticide fenvalerate. The semidominant resistance gene RFen1 was previously mapped to AFLP Linkage Group 13. In evaluating the cytochrome P450 genes CYP6B7, CYP6B6, and CYP6B2 as candidates for RFen1, we found that they occur in a tandem array in the genome, next to the gene encoding the para-type sodium channel; the target of pyrethroid insecticides. We mapped these genes to AFLP Linkage Group 14, thus rejecting mutations within the P450 cluster or para as candidates for RFen1. RFen1 genotypes produced slightly different mRNA levels of the three P450s, but the differences were too small to convincingly account for resistance. We conclude that even if one or more of these P450s metabolize fenvalerate, they are unlikely to be responsible for the resistance in AN02.

  2. Incidence, Spread and Mechanisms of Pyrethroid Resistance in European Populations of the Cabbage Stem Flea Beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae.

    Directory of Open Access Journals (Sweden)

    Dorte H Højland

    Full Text Available Cabbage stem flea beetle (CSFB, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae is a major early season pest of oilseed rape throughout Europe. Pyrethroids have been used for controlling this pest by foliar application, but in recent years control failures have occurred, particularly in Germany due to the evolution of knock-down resistance (kdr. The purpose of this study was to investigate the incidence and spread of pyrethroid resistance in CSFB collected in Germany, Denmark and the United Kingdom during 2014. The level of pyrethroid resistance was measured in adult vial tests and linked to the presence of kdr genotypes.Although kdr (L1014F genotypes are present in all three countries, marked differences in pyrethroid efficacy were found in adult vial tests. Whereas Danish CSFB samples were in general susceptible to recommended label rates, those collected in the UK mostly resist such rates to some extent. Moderately resistant and susceptible samples were found in Germany. Interestingly, some of the resistant samples from the UK did not carry the kdr allele, which is in contrast to German CSFB. Pre-treatment with PBO, prior to exposure to λ-cyhalothrin suggested involvement of metabolic resistance in UK samples.Danish samples were mostly susceptible with very low resistance ratios, while most other samples showed reduced sensitivity in varying degrees. Likewise, there was a clear difference in the presence of the kdr mutation between the three countries. In the UK, the presence of kdr genotypes did not always correlate well with resistant phenotypes. This appears to be primarily conferred by a yet undisclosed, metabolic-based mechanism. Nevertheless our survey disclosed an alarming trend concerning the incidence and spread of CSFB resistance to pyrethroids, which is likely to have negative impacts on oilseed production in affected regions due to the lack of alternative modes of action for resistance management purposes.

  3. Mtx toxins from Lysinibacillus sphaericus enhance mosquitocidal cry-toxin activity and suppress cry-resistance in Culex quinquefasciatus.

    Science.gov (United States)

    Wirth, Margaret C; Berry, Colin; Walton, William E; Federici, Brian A

    2014-01-01

    The interaction of Mtx toxins from Lysinibacillus sphaericus (formerly Bacillus sphaericus) with Bacillus thuringiensis subsp. israelensis Cry toxins and the influence of such interactions on Cry-resistance were evaluated in susceptible and Cry-resistant Culex quinquefasciatus larvae. Mtx-1 and Mtx-2 were observed to be active against both susceptible and resistant mosquitoes; however varying levels of cross-resistance toward Mtx toxins were observed in the resistant mosquitoes. A 1:1 mixture of either Mtx-1 or Mtx-2 with different Cry toxins generally showed moderate synergism, but some combinations were highly toxic to resistant larvae and suppressed resistance. Toxin synergy has been demonstrated to be a powerful tool for enhancing activity and managing Cry-resistance in mosquitoes, thus Mtx toxins may be useful as components of engineered bacterial larvicides. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin

    Directory of Open Access Journals (Sweden)

    Yadouleton Anges

    2011-04-01

    Full Text Available Abstract Background Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in Anopheles gambiae s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing areas, and their direct impact on larval populations of An. gambiae in surrounding breeding sites. Methods The protocol was based on the collection of agro-sociological data where farmers were subjected to semi-structured questionnaires based on the strategies used for crop protection. This was complemented by bioassay tests to assess the susceptibility of malaria vectors to various insecticides. Molecular analysis was performed to characterize the resistance genes and the molecular forms of An. gambiae. Insecticide residues in soil samples from breeding sites were investigated to determine major factors that can inhibit the normal growth of mosquito larvae by exposing susceptible and resistant laboratory strains. Results There is a common use by local farmers of mineral fertilizer NPK at 200 kg/ha and urea at 50 kg/hectare following insecticide treatments in both the Calendar Control Program (CCP and the Targeted Intermittent Control Program (TICP. By contrast, no chemicals are involved in Biological Program (BP where farmers use organic and natural fertilizers which include animal excreta. Susceptibility test results confirmed a high resistance to DDT. Mean mortality of An. gambiae collected from the farms practicing CCP, TICP and BP methods were 33%, 42% and 65% respectively. An. gambiae populations from areas using the CCP and TICP programs showed resistance to permethrin with mortality of 50% and 58% respectively. By contrast, bioassay test results of

  5. Role of kdr and esterase-mediated metabolism in pyrethroid-resistant populations of Haematobia irritans irritans (Diptera: Muscidae) in Brazil.

    Science.gov (United States)

    Guerrero, Felix D; Barros, A Thadeu M

    2006-09-01

    The horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae), has become a problem for Brazilian cattle producers even though its introduction into Brazil is relatively recent. Failure to control this cattle pest is becoming a concern, and horn fly populations from several ranches from the state of Mato Grosso do Sul were surveyed for pyrethroid resistance. Susceptibility bioassays revealed that cypermethrin resistance was widespread and reached high levels in horn fly populations throughout the state, with resistance factors (RFs) ranging from 50.4 to 704.8. Synergist bioassays failed to detect a major role for esterases as a pyrethroid resistance mechanism in these populations, except for the highly pyrethroid-resistant Estrela do Oeste population (RF = 704.8). The kdr sodium channel gene mutation was not detected in eight of the 13 populations, but Oeste exhibited this mutation. Neither the superkdr sodium channel gene mutation nor a resistance-associated gene mutation in the HialphaE7 carboxylesterase were found in any of the fly populations. Although target site insensitivity (kdr) and esterase-mediated metabolism occur in horn fly populations from Mato Grosso do Sul state, it seems that they are not the major mechanism causing pyrethroid resistance in most of these populations.

  6. Report on the surveillance of insecticidal resistance of Culex pipiens pallens in Hanzhuang%微山湖区韩庄镇淡色库蚊抗药性现状监测报告

    Institute of Scientific and Technical Information of China (English)

    赵方明; 杨秋兰

    2011-01-01

    Culex pipiens pallens was collected from the Weishan Lake district and its insecticidal resistance was measured using a standard WHO bioassay. Cx. Pipiens pallens of Hanzhuang was resistant to five insecticides to some degree. The LC50 of Cx. Pipiens pallens to propoxur, DDVP, acetofenate, deltamethrin, and cypermethrin was 0. 474 1, 1. 401 2, 0. 242 0, 0. 003 4, and 0. 004 1 mg · L-1 , respectively. Cx. Pipiens pallens was most resistant to synthetic py-rethroid pesticides.%采用WHO生物测试法,测定了微山湖区韩庄镇淡色库蚊幼虫对常用杀虫剂的抗性水平.结果 显示韩庄镇淡色库蚊幼虫对残杀威、DDVP、三氯杀虫酯、溴氰菊酯、氯氰菊酯等5种常用杀虫剂的LC5.分别为0.474 1、1.401 2、0.242 0、0.003 4和0.004 1 mg· L-1,以菊酯类杀虫剂抗性最高.

  7. Phenotypic and genotypic profile of pyrethroid resistance in populations of the mosquito Aedes aegypti from Goiânia, Central West Brazil

    Directory of Open Access Journals (Sweden)

    Francesca Guaracyaba Garcia Chapadense

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:The mosquito Aedes aegypti has evolved resistance to pyrethroid insecticides. The present study evaluated Ae. aegypti from Goiânia for the resistant phenotype and for mutations associated with resistance.METHODS:Insecticide dose-response bioassays were conducted on mosquitoes descended from field-collected eggs, and polymerase chain reaction (PCR was used to genotype 90 individuals at sites implicated in pyrethroid resistance.RESULTS:All mosquito populations displayed high levels of resistance to deltamethrin, as well as high frequencies of the 1016Ile kdr and 1534Cys kdrmutations.CONCLUSIONS:Aedes aegypti populations in the Goiânia area are highly resistant to deltamethrin, presumably due to high frequencies of kdr(knockdown-resistance mutations.

  8. Determination of metabolic resistance mechanisms in pyrethroid-resistant and fipronil-tolerant brown dog ticks.

    Science.gov (United States)

    Eiden, A L; Kaufman, P E; Oi, F M; Dark, M J; Bloomquist, J R; Miller, R J

    2017-09-01

    Rhipicephalus sanguineus (Latreille) (Ixodida: Ixodidae) is a three-host dog tick found worldwide that is able to complete its' entire lifecycle indoors. Options for the management of R. sanguineus are limited and its' control relies largely on only a few acaricidal active ingredients. Previous studies have confirmed permethrin resistance and fipronil tolerance in R. sanguineus populations, commonly conferred by metabolic detoxification or target site mutations. Herein, five strains of permethrin-resistant and three strains of fipronil-tolerant ticks were evaluated for metabolic resistance using synergists to block metabolic enzymes. Synergist studies were completed with triphenyl phosphate (TPP) for esterase inhibition, piperonyl butoxide (PBO) for cytochrome P450 inhibition, and diethyl maleate (DEM) for glutathione-S-transferase inhibition. Additionally, increased esterase activity was confirmed using gel electrophoresis. The most important metabolic detoxification mechanism in permethrin-resistant ticks was increased esterase activity, followed by increased cytochrome P450 activity. The inhibition of metabolic enzymes did not have a marked impact on fipronil-tolerant tick strains. © 2017 The Royal Entomological Society.

  9. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides

    Science.gov (United States)

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%–15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97–7.8 and OR = 7.37, CI: 2.4–22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring. PMID:26939002

  10. Is imidacloprid an effective alternative for controlling pyrethroid-resistant populations of Triatoma infestans (Hemiptera: Reduviidae) in the Gran Chaco ecoregion?

    Science.gov (United States)

    Carvajal, Guillermo; Picollo, María Inés; Toloza, Ariel Ceferino

    2014-09-01

    The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug) using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level.

  11. Is imidacloprid an effective alternative for controlling pyrethroid-resistant populations of Triatoma infestans (Hemiptera: Reduviidae in the Gran Chaco ecoregion?

    Directory of Open Access Journals (Sweden)

    Guillermo Carvajal

    2014-09-01

    Full Text Available The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p < 0.01. A spot-on formulation of imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level.

  12. L925I mutation in the Para-type sodium channel is associated with pyrethroid resistance in Triatoma infestans from the Gran Chaco region.

    Directory of Open Access Journals (Sweden)

    Natalia Capriotti

    Full Text Available BACKGROUND: Chagas' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil. The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species. METHODS AND FINDINGS: In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field. CONCLUSIONS AND SIGNIFICANCE: The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas' disease transmission.

  13. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides

    OpenAIRE

    Sayono Sayono; Anggie Puspa Nur Hidayati; Sukmal Fahri; Didik Sumanto; Edi Dharmana; Suharyo Hadisaputro; Puji Budi Setia Asih; Din Syafruddin

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNa V gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide...

  14. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism.

    Directory of Open Access Journals (Sweden)

    Shinji Kasai

    2014-06-01

    Full Text Available Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains.

  15. Investigation of organophosphate and pyrethroid resistance in vector mosquitoes in China%中国媒介蚊虫对有机磷类和拟除虫菊酯类杀虫剂的抗性调查

    Institute of Scientific and Technical Information of China (English)

    刘斯璐; 崔峰; 燕帅国; 乔传令

    2011-01-01

    蚊虫由于其特殊的行为、生理以及与人类生活关系紧密而成为传播人类疾病的重要媒介,自20世纪化学杀虫剂广泛使用后,蚊虫就与这种环境变化协同进化,即通过生理生化多种机制产生抗药性.该文综述了自90年代以来,我国7种媒介蚊虫尖音库蚊复组、中华按蚊、三带喙库蚊、微小按蚊、雷氏按蚊、白纹伊蚊和埃及伊蚊对有机磷类和拟除虫菊酯类杀虫剂的抗性调查结果.这些媒介蚊虫对两类杀虫剂均产生了一定程度的抗药性.对有机磷类杀虫剂进行抗性检测比较多的农药是马拉硫磷和敌敌畏,只有少数地区表现为敏感,大部分地区的蚊虫对其表现出不同程度的抗性.拟除虫菊酯类杀虫剂是近年使用最广泛的杀虫剂,大部分检测地区的蚊虫对该类杀虫剂也表现出不同程度的抗性.%Mosquitoes, due to their special behavior, physiology and close relationship with human beings, act as important vectors of some human diseases. The resistance of mosquitoes to insecticides is considered to be a recent evolutionary adaptation to environmental changes in response to the use of chemical insecticides. In this review we summarize the resistance monitor data on organophosphate and pyrethroid resistance in seven mosquito species in China (Culex pipiens complex, Anopheles sinensis, Cx. tritaeniorhynchus, An. minimus, An. lesteri, Aedes albopictus and Ae. aegypti) since 1990s. The documents showed that these mosquitoes in most regions of China have evolved to be resistant at various levels to organophosphate and pyrethroid insecticides, even though some of them still keep sensitive to the two kinds of insecticides.

  16. Target-site resistance to pyrethroid insecticides in German populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Zimmer, Christoph T; Müller, Andreas; Heimbach, Udo; Nauen, Ralf

    2014-01-01

    Cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is a major pest of winter oilseed rape in several European countries particularly attacking young emerging plants in autumn. Over the last several decades, pyrethroid insecticides have been foliarly applied to control flea beetle outbreaks. Recent control failures in northern Germany suggested pyrethroid resistance development in cabbage stem flea beetles, which were confirmed by resistance monitoring bioassays using lambda-cyhalothrin in an adult vial test. The purpose of this study was to investigate the presence of polymorphisms in the para-type voltage-gated sodium channel gene of P. chrysocephala known to be involved in knock-down resistance (kdr). By using a degenerate primer approach we PCR amplified part of the para-type sodium channel gene and identified in resistant flea beetles a single nucleotide polymorphism resulting in an L1014F (kdr) mutation within domain IIS6 of the channel protein, known as one of the chief pyrethroid target-site resistance mechanisms in several other pest insects. Twenty populations including four archived museum samples collected between 1945 and 1958 were analyzed using a newly developed pyrosequencing diagnostic assay. The assay revealed a kdr allele frequency of 90-100% in those flea beetle populations expressing high-level cross-resistance in discriminating dose bioassays against different pyrethroids such as lambda-cyhalothrin, tau-fluvalinate, etofenprox and bifenthrin. The presence of target-site resistance to pyrethroids in cabbage stem flea beetle is extremely worrying considering the lack of effective alternative modes of action to control this pest in Germany and other European countries, and is likely to result in major control problems once it expands to other geographies. The striking fact that cabbage stem flea beetle is next to pollen beetle, Meligethes aeneus the second coleopteran pest in European winter oilseed rape resisting

  17. In vitro acaricidal activity of Murraya koenigii (L.) Spreng (Rutaceae) extracts against synthetic pyrethroid-resistant Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Singh, Nirbhay Kumar; Jyoti; Vemu, Bhaskar; Singh, Harkirat; Prerna, Mranalini; Daundkar, Prashant S; Sharma, S K; Dumka, V K

    2015-04-01

    Larval packet test was used for detection of resistance status against cypermethrin and deltamethrin, the most commonly used synthetic pyrethroids in Rhipicephalus (Boophilus) microplus collected from Faridkot district, Punjab (India). The slope of mortality, lethal concentration for 50 % (LC50) and resistance levels were determined from the regression graphs of probit mortality of ticks plotted against log values of increasing concentrations of cypermethrin and deltamethrin. Results indicated presence of resistance of levels I and II against cypermethrin (resistance factor (RF) = 2.82) and deltamethrin (RF = 8.44), respectively. Adult immersion test was used to assess the acaricidal activity of aqueous (MLAq), ethanol (MLE), chloroform (MLC), acetone (MLA) and hexane (MLH) extracts of leaves of Murraya koenigii against these synthetic pyrethroid (SP)-resistant engorged adult females of R. (B.) microplus by determination of per cent adult mortality, reproductive index (RI), per cent inhibition of oviposition (%IO) and hatching rate. The per cent mortality caused by various extracts at concentrations ranging from 0.625 to 10.0% varied from 0.0 to 100.0% with maximum per cent mortality of 10.0, 100.0, 70.0, 40.0 and 10.0 recorded against MLAq, MLE, MLC, MLA and MLH, respectively. Among all extracts, the highest acaricidal property against SP-resistant R. (B.) microplus was exhibited by the MLE as it showed the minimum LC50 [95% confidence limit (CL)] values of 2.97% (2.82-3.12%), followed by MLC as 10.26% (8.84-11.91 %) and MLA as 18.22% (16.18-20.52%). The average egg mass weight recorded in live ticks treated with various concentrations of different extracts was lower than the respective control group ticks and was significantly (p < 0.01) lower in ticks treated with MLH extract. However, no significant effect on hatchability of eggs of treated groups when compared to control was recorded. A significant (p < 0.05) decrease in the RI was recorded in

  18. In vitro acaricidal activity of ethanolic and aqueous floral extracts of Calendula officinalis against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Godara, R; Katoch, R; Yadav, A; Ahanger, R R; Bhutyal, A D S; Verma, P K; Katoch, M; Dutta, S; Nisa, F; Singh, N K

    2015-09-01

    Detection of resistance levels against deltamethrin and cypermethrin in Rhipicephalus (Boophilus) microplus collected from Jammu (India) was carried out using larval packet test (LPT). The results showed the presence of resistance level II and I against deltamethrin and cypermethrin, respectively. Adult immersion test (AIT) and LPT were used to evaluate the in vitro efficacy of ethanolic and aqueous floral extracts of Calendula officinalis against synthetic pyrethroid resistant adults and larvae of R. (B.) microplus. Four concentrations (1.25, 2.5, 5 and 10 %) of each extract with four replications for each concentration were used in both the bioassays. A concentration dependent mortality was observed and it was more marked with ethanolic extract. In AIT, the LC50 values for ethanolic and aqueous extracts were calculated as 9.9 and 12.9 %, respectively. The egg weight of the live ticks treated with different concentrations of the ethanolic and aqueous extracts was significantly lower than that of control ticks; consequently, the reproductive index and the percent inhibition of oviposition values of the treated ticks were reduced. The complete inhibition of hatching was recorded at 10 % of ethanolic extract. The 10 % extracts caused 100 % mortality of larvae after 24 h. In LPT, the LC50 values for ethanolic and aqueous extracts were determined to be 2.6 and 3.2 %, respectively. It can be concluded that the ethanolic extract of C. officinalis had better acaricidal properties against adults and larvae of R. (B.) microplus than the aqueous extract.

  19. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Directory of Open Access Journals (Sweden)

    Hitoshi Kawada

    Full Text Available BACKGROUND: Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. METHODOLOGY/PRINCIPAL FINDINGS: We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively. By contrast, we were unable to detect I1011M (or I1011V or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%. High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%. Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9% and homozygous V1016G/F1534C/S989P mutations (0.98% were detected in the present study. CONCLUSIONS/SIGNIFICANCE: Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  20. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar.

    Science.gov (United States)

    Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru

    2014-01-01

    Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.

  1. Impact of long-lasting insecticidal nets on prevalence of subclinical malaria among children in the presence of pyrethroid resistance in Anopheles culicifacies in Central India.

    Science.gov (United States)

    Chourasia, Mehul Kumar; Kamaraju, Raghavendra; Kleinschmidt, Immo; Bhatt, Rajendra M; Swain, Dipak Kumar; Knox, Tessa Bellamy; Valecha, Neena

    2017-04-01

    Subclinical (asymptomatic) cases of malaria could be a major barrier to the success of malaria elimination programs. This study has evaluated the impact of long-lasting insecticidal nets (LLINs) on the prevalence of subclinical malaria in the presence of pyrethroid resistance in the main malaria vector Anopheles culicifacies on malaria transmission among a cohort of children in villages of the Keshkal sub-district in Chhattisgarh state. A cohort of 6582 children ages less than 14 years was enrolled from 80 study clusters. Post monsoon survey was carried out at baseline before LLIN distribution, and 5862 children were followed up in the subsequent year. Study outcomes included assessment of subclinical malarial infections and use of LLINs among the study cohort in the presence of varied levels of pyrethroid resistance. In the baseline survey, the proportion of subclinical malaria was 6·1%. LLIN use during the previous night was 94·8%. Overall, prevalence of subclinical malaria was significantly reduced to 1% (pmalaria (OR: 0·25, 95% CI=0·12-0·52, pmalaria (OR: 0·25, 95% CI=0·11-0·58, p=0·001) despite the presence of pyrethroid resistance in the study area. In this low transmission area, sleeping under LLINs significantly reduced the burden of malaria among children. In the presence of pyrethroid resistant malaria vector, a high LLIN use of 94·5% was observed to have significantly brought down the proportion of subclinical malaria among the cohort children. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Larvicidal efficacy of various formulations of Bacillus sphaericus against the resistant strain of Culex quinquefasciatus (Diptera: Culicidae) from southern India.

    Science.gov (United States)

    Subbiah, P; Ramesh, N; Sundaravadivelu, K; Samuel, P; Tyagi, B K

    2009-04-01

    Use of Bacillus sphaericus Neide (Bs) as potential biolarvicide in developing countries is limited due to development of resistance by target mosquitoes. Efforts are taken to look for appropriate formulations or combination of Bs to prevent or delay resistance problem. Here, we report the efficacy of a formulated Bs product to kill Bs resistant Culex quinquefasciatus Say larvae. The laboratory reared resistance colony was maintained by subjecting selection pressure with Bs (2362) toxin. Bioassays were conducted with lyophilized, standard formulated and Bs formulated by us (all belong to strain 2362, serotype H5a5b) against Bs resistant and susceptible colonies. The Bs resistant larvae showed a high level of resistance against lyophilized toxin with resistance ratio (RR) of 8375.2, 1055.6 and 11422.3 folds at LC(50), LC(90) and LC(95) levels, respectively, when compared with Bs susceptible larvae. With formulation of standard powder, the RR between Bs resistant and susceptible larvae were 1.01, 1.13 and 1.19 folds only at LC(50), LC(90) and LC(95) levels, respectively. This observation was comparable with our formulation prepared by a ground mixture of lyophilized Bs and a placebo (plaster of Paris). It is evident from our study, that the placebo present in our Bs 2362 formulation was responsible for increasing the efficacy of Bs lyophilized toxin against resistant larvae. The putative mechanism behind this toxicity phenomenon remains to be investigated to evolve new mosquito control strategies. A cross resistance to indigenous strain of Bs B42 (H5a5b) against Bs resistant larvae was also reported in this study.

  3. The role of miR-2∼13∼71 cluster in resistance to deltamethrin in Culex pipiens pallens.

    Science.gov (United States)

    Guo, Qin; Huang, Yun; Zou, Feifei; Liu, Bingqian; Tian, Mengmeng; Ye, Wenyun; Guo, Juxin; Sun, Xueli; Zhou, Dan; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang

    2017-05-01

    Excessive and continuous application of deltamethrin has resulted in the development of deltamethrin resistance among mosquitoes, which becomes a major obstacle for mosquito control. In a previous study, differentially expressed miRNAs between deltamethrin-susceptible (DS) strain and deltamethrin-resistant (DR) strain using illumina sequencing in Culex pipiens pallens were identified. In this study, we applied RNAi and the Centers for Disease Control and Prevention (CDC) bottle bioassay to investigate the relationship between miR-2∼13∼71 cluster (miR-2, miR-13 and miR-71) and deltamethrin resistance. We used quantitative real-time PCR (qRT-PCR) to measure expression levels of miR-2∼13∼71 clusters. MiR-2∼13∼71 cluster was down regulated in adult female mosquitoes from the DR strain and played important roles in deltamethrin resistance through regulating target genes, CYP9J35 and CYP325BG3. Knocking down CYP9J35 and CYP325BG3 resulted in decreased mortality of DR mosquitoes. This study provides the first evidence that miRNA clusters are associated with deltamethrin resistance in mosquitoes. Moreover, we investigated the regulatory networks formed between miR-2∼13∼71 cluster and its target genes, which provide a better understanding of the mechanism involved in deltamethrin resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Directory of Open Access Journals (Sweden)

    Kerah-Hinzoumbé Clément

    2009-09-01

    Full Text Available Abstract Background Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance

  5. Experimental hut evaluation of the pyrrole insecticide chlorfenapyr on bed nets for the control of Anopheles arabiensis and Culex quinquefasciatus.

    Science.gov (United States)

    Mosha, F W; Lyimo, I N; Oxborough, R M; Malima, R; Tenu, F; Matowo, J; Feston, E; Mndeme, R; Magesa, S M; Rowland, M

    2008-05-01

    To determine the efficacy of chlorfenapyr against Anopheles arabiensis and Culex quinquefasciatus in East Africa and to identify effective dosages for net treatment in comparison with the commonly used pyrethroid deltamethrin. Chlorfenapyr was evaluated on bed nets in experimental huts against A. arabiensis and C. quinquefasciatus in Northern Tanzania, at application rates of 100-500 mg/m(2). In experimental huts, mortality rates in A. arabiensis were high (46.0-63.9%) for all dosages of chlorfenapyr and were similar to that of deltamethrin-treated nets. Mortality rates in C. quinquefasciatus were higher for chlorfenapyr than for deltamethrin. Despite a reputation for being slow acting, >90% of insecticide-induced mortality in laboratory tunnel tests and experimental huts occurred within 24 h, and the speed of killing was no slower than for deltamethrin-treated nets. Chlorfenapyr induced low irritability and knockdown, which explains the relatively small reduction in blood-feeding rate. Combining chlorfenapyr with a more excito-repellent pyrethroid on bed nets for improved personal protection, control of pyrethroid-resistant mosquitoes and pyrethroid resistance management would be advantageous.

  6. A simplified high-throughput method for pyrethroid knock-down resistance (kdr detection in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Walker Edward D

    2005-03-01

    Full Text Available Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles

  7. Selection, Realized Heritability, and Fitness Cost Associated With Dimethoate Resistance in a Field Population of Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Alam, Mehboob; Waqas Sumra, Muhammad; Ahmad, Daniyal; Shah, Rizwan Mustafa; Binyameen, Muhammad; Ali Shad, Sarfraz

    2017-06-01

    Mosquitoes are known to be vectors of numerous diseases leading to human morbidity and mortality at large scale in the world. Insecticide resistance has become a serious concern in controlling the insect vectors of public health importance. Dimethoate is an organophosphate insecticide used to control different insect pests including mosquitoes. Biological parameters of susceptible, unselected, and dimethoate-selected strains of Culex quinquefasciatus Say were studied in the laboratory to recognize resistance development potential and associated fitness cost. The dimethoate-selected strain showed 66.48-fold resistance to dimethoate compared with the susceptible strain after three continuous selections of generations. Realized heritability estimates of dimethoate resistance in Cx. quinquefasciatus yielded a value of 0.19. In dimethoate-selected strain, the biological traits including larval weight, survival from first instar to pupae, fecundity, number of next-generation larvae, relative fitness, net reproductive rate, intrinsic rate of natural increase, and biotic potential were significantly reduced as compared with the unselected strain. However, adult longevity, mean relative growth rate, weight of egg raft, female ratio, pupal duration, and emergence rate of the dimethoate-selected strain did not differ significantly compared with that of the unselected strain. This study provides useful information to devise retrospective management strategy for dimethoate resistance in Cx. quinquefasciatus. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae.

    Science.gov (United States)

    Wirth, Margaret C; Yang, Yangkun; Walton, William E; Federici, Brian A; Berry, Colin

    2007-10-01

    Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC(50)) of Mtx-1 and Mtx-2 of 0.246 and 4.13 microg/ml, respectively. The LC(50)s were 0.406 to 0.430 microg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.

  9. Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Brooke Basil D

    2008-11-01

    Full Text Available Abstract Background Insecticide resistance can present a major obstacle to malaria control programmes. Following the recent detection of DDT resistance in Anopheles arabiensis in Gokwe, Zimbabwe, the underlying resistance mechanisms in this population were studied. Methods Standard WHO bioassays, using 0.75% permethrin, 4% DDT, 5% malathion, 0.1% bendiocarb and 4% dieldrin were performed on wild-collected adult anopheline mosquitoes and F1 progeny of An. arabiensis reared from wild-caught females. Molecular techniques were used for species identification as well as to identify knockdown resistance (kdr and ace-1 mutations in individual mosquitoes. Biochemical assays were used to determine the relative levels of detoxifying enzyme systems including non-specific esterases, monooxygenases and glutathione-S-transferases as well as to detect the presence of an altered acetylcholine esterase (AChE. Results Anopheles arabiensis was the predominant member of the Anopheles gambiae complex. Of the 436 An. arabiensis females, 0.5% were positive for Plasmodium falciparum infection. WHO diagnostic tests on wild populations showed resistance to the pyrethroid insecticide permethrin at a mean mortality of 47% during February 2006 and a mean mortality of 68.2% in January 2008. DDT resistance (68.4% mean mortality was present in February 2006; however, two years later the mean mortality was 96%. Insecticide susceptibility tests on F1 An. arabiensis families reared from material from two separate collections showed an average mean mortality of 87% (n = 758 after exposure to 4% DDT and 65% (n = 587 after exposure to 0.75% permethrin. Eight families were resistant to both DDT and permethrin. Biochemical analysis of F1 families reared from collections done in 2006 revealed high activity levels of monooxygenase (48.5% of families tested, n = 33, p An. arabiensis colony. Knockdown resistance (kdr and ace-IR mutations were not detected. Conclusion This study confirmed

  10. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Minghui Zhao

    Full Text Available Acetylcholinesterase resistance has been well documented in many insects, including several mosquito species. We tested the resistance of five wild, Chinese strains of the mosquito Culex pipiens quinquefasciatus to two kinds of pesticides, dichlorvos and propoxur. An acetylcholinesterase gene (ace1 was cloned and sequenced from a pooled sample of mosquitoes from these five strains and the amino acids of five positions were found to vary (V185M, G247S, A328S, A391T, and T682A. Analysis of the correlation between mutation frequencies and resistance levels (LC50 suggests that two point mutations, G247S (r2 = 0.732, P = 0.065 and A328S (r2 = 0.891, P = 0.016, are associated with resistance to propoxur but not to dichlorvos. Although the V185M mutation was not associated with either dichlorvos or propoxur resistance, its RS genotype frequency was correlated with propoxur resistance (r2 = 0.815, P = 0.036. And the HWE test showed the A328S mutation is linked with V185M, also with G247S mutation. This suggested that these three mutations may contribute synergistically to propoxur resistance. The T682A mutation was negatively correlated with propoxur (r2 = 0.788, P = 0.045 resistance. Knowledge of these mutations may help design strategies for managing pesticide resistance in wild mosquito populations.

  11. Point mutations associated with organophosphate and carbamate resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Zhao, Minghui; Dong, Yande; Ran, Xin; Wu, Zhiming; Guo, Xiaoxia; Zhang, Yingmei; Xing, Dan; Yan, Ting; Wang, Gang; Zhu, Xiaojuan; Zhang, Hengduan; Li, Chunxiao; Zhao, Tongyan

    2014-01-01

    Acetylcholinesterase resistance has been well documented in many insects, including several mosquito species. We tested the resistance of five wild, Chinese strains of the mosquito Culex pipiens quinquefasciatus to two kinds of pesticides, dichlorvos and propoxur. An acetylcholinesterase gene (ace1) was cloned and sequenced from a pooled sample of mosquitoes from these five strains and the amino acids of five positions were found to vary (V185M, G247S, A328S, A391T, and T682A). Analysis of the correlation between mutation frequencies and resistance levels (LC50) suggests that two point mutations, G247S (r2 = 0.732, P = 0.065) and A328S (r2 = 0.891, P = 0.016), are associated with resistance to propoxur but not to dichlorvos. Although the V185M mutation was not associated with either dichlorvos or propoxur resistance, its RS genotype frequency was correlated with propoxur resistance (r2 = 0.815, P = 0.036). And the HWE test showed the A328S mutation is linked with V185M, also with G247S mutation. This suggested that these three mutations may contribute synergistically to propoxur resistance. The T682A mutation was negatively correlated with propoxur (r2 = 0.788, P = 0.045) resistance. Knowledge of these mutations may help design strategies for managing pesticide resistance in wild mosquito populations.

  12. Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s. in southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    T.S. Awolola, A.O. Oduola, I.O. Oyewole, J.B. Obansa, C.N. Amajoh

    2007-09-01

    Full Text Available Background & objectives: Pyrethroid insecticide resistance in the malaria vector Anopheles gambiaeGiles is mainly associated with reduced target site sensitivity arising from a single point mutation inthe sodium channel gene, often referred to as knockdown resistance (kdr. This resistance mechanismis widespread in West Africa and was reported for the first time in Nigeria in 2002. Here we presentchanges in the susceptibility/resistance status of the molecular ‘M’ and ‘S’ forms of An. gambiae andthe frequency of the kdr alleles from 2002–05.Methods: Adult anophelines were sampled quarterly inside human dwellings from January 2002 toDecember 2005 and adults reared from wild larvae were identified using morphological keys. Samplesbelonging to the An. gambiae complex were subjected to PCR assays for species identification anddetection of molecular ‘M’ and ‘S’ forms. Insecticide susceptibility tests were carried out usingstandard WHO procedures and test kits only on 2–3 days old adult An. gambiae s.s. reared fromlarval collections. The kdr genotypes were determined in both live and dead specimens of An. gambiaes.s. using alleles-specific polymerase chain reaction diagnostic tests.Results: The overall collection showed that the molecular ‘S’ form was predominant (>60% but theproportions of both forms in the mosquito populations from 2002–05 were not statistically different.Both forms also occurred throughout the period without apparent relationship to wet or dry season.Insecticide susceptibility tests did not show any significant increase in the resistance status recordedfor either Permethrin or DDT from 2002–05, rather, an improvement in the susceptibility status ofthe mosquitoes to these insecticides was observed from 2004–05 relative to the tests performed in2002–03.Conclusion: The proportion of the molecular ‘M’ and ‘S’ form of An. gambiae and the kdr frequencieshave not increased significantly from 2002

  13. Acaricidal activity of Cymbopogon winterianus, Vitex negundo and Withania somnifera against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Singh, Nirbhay Kumar; Jyoti; Vemu, Bhaskar; Nandi, Abhijit; Singh, Harkirat; Kumar, Rajender; Dumka, V K

    2014-01-01

    Detection of resistance levels against cypermethrin and deltamethrin, the most commonly used synthetic pyrethroids (SPs) against Rhipicephalus (Boophilus) microplus collected from Moga, Punjab (India) was carried out using larval packet test. Results indicated the presence of resistance of level I and III against cypermethrin (resistance factors (RF) = 4.67) and deltamethrin (RF = 34.2), respectively. Adult immersion test was used to assess the acaricidal activity of aqueous and ethanolic extracts of leaves of Cymbopogon winterianus, Vitex negundo, and Withania somnifera along with roots of V. negundo against the SP resistant engorged females of R. (B.) microplus. The efficacy of various extracts was assessed by estimation of percent adult mortality, reproductive index (RI), percent inhibition of oviposition (%IO), and hatching rate. A concentration dependent increase in tick mortality was recorded which was more marked with various ethanolic extracts, and highest mortality was recorded in ticks treated with ethanolic extract of leaves of C. winterianus. The LC50 values were determined by applying regression equation analysis to the probit transformed data of mortality for various aqueous and ethanolic extracts. Acaricidal property was recorded to be higher in ethanolic extracts, and high activity was found with the ethanolic extract of leaves of C. winterianus with LC50 (95% CL) values of 0.46% (0.35-0.59%), followed by W. somnifera as 5.21% (4.45-6.09%) and V. negundo as 7.02% (4.58-10.74%). The egg mass weight of the live ticks treated with different concentrations of the various extract was significantly (p < 0.01) lower than that of control ticks; consequently, the RI and the %IO value of the treated ticks were reduced. Further, complete inhibition of hatching was recorded in eggs laid by ticks treated with ethanolic extracts of leaves of V. negundo and aqueous extracts of leaves of W. somnifera. The results of the current study indicate that extracts of C

  14. Synergism between permethrin and propoxur against Culex quinquefasciatus mosquito larvae.

    Science.gov (United States)

    Corbel, V; Chandre, F; Darriet, F; Lardeux, F; Hougard, J-M

    2003-06-01

    To see if synergism occurs between carbamate and pyrethroid insecticides, we tested permethrin and propoxur as representatives of these two classes of compounds used for mosquito control. Larvicidal activity of both insecticides was assessed separately and together on a susceptible strain of the mosquito Culex quinquefasciatus (Diptera: Culicidae) by two methods. When mixed at a constant ratio (permethrin : propoxur 1 : 60 based on LC50) and tested at serial concentrations to plot dose/mortality regression, significant synergy occurred between them (co-toxicity coefficient = 2.2), not just an additive effect. For example, when the mixture gave 50% mortality, the same concentrations of permethrin and propoxur alone would have given merely 2 x 1% mortality. When a sublethal dose (LC0) of permethrin or propoxur was added to the other (range LC10-LC95), synergism occurred up to the LC80 level. Synergistic effects were attributed to the complementary modes of action by these two insecticide classes acting on different components of nerve impulse transmission. Apart from raising new possibilities for Culex control, it seems appropriate to consider using such mixtures or combinations for insecticide-treated mosquito nets in situations with insecticide-resistant Anopheles malaria vectors.

  15. Midgut barrier imparts selective resistance to filarial worm infection in Culex pipiens pipiens.

    Directory of Open Access Journals (Sweden)

    Michelle L Michalski

    Full Text Available Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies

  16. Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Ghosh, Srikanta; Tiwari, Shashi Shankar; Srivastava, Sharad; Sharma, Anil Kumar; Kumar, Sachin; Ray, D D; Rawat, A K S

    2013-02-18

    Indian cattle ticks have developed resistance to commonly used acaricides and an attempt has been made to formulate an ecofriendly herbal preparation for the control of acaricide resistant ticks. A 95% ethanolic extract of Ricinus communis was used to test the efficacy against reference acaricide resistant lines by in vitro assay. In in vitro assay, the extract significantly affects the mortality rate of ticks in dose-dependent manner ranging from 35.0 ± 5.0 to 95.0 ± 5.0% with an additional effect on reproductive physiology of ticks by inhibiting 36.4-63.1% of oviposition. The leaf extract was found effective in killing 48.0, 56.7 and 60.0% diazinon, deltamethrin and multi-acaricide resistant ticks, respectively. However, the cidal and oviposition limiting properties of the extract were separated when the extract was fractionated with hexane, chloroform, n-butanol and water. The HPTLC finger printing profile of R. communis leaf extract under λ(max.) - 254 showed presence of quercetin, gallic acid, flavone and kaempferol which seemed to have synergistic acaricidal action. In vivo experiment resulted in 59.9% efficacy on Ist challenge, however, following 2nd challenge the efficacy was reduced to 48.5%. The results indicated that the 95% ethanolic leaf extract of R. communis can be used effectively in integrated format for the control of acaricide resistant ticks.

  17. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Pavlidi, N.; Monastirioti, M.; Daborn, P.; Van Leeuwen, T.; Vontas, J.

    2012-01-01

    The emergence and spread of insecticide resistance in mosquitoes, such as the major vector of dengue and yellow fever Aedes aegypti, is a major public health problem. A number of studies have been conducted to-date aiming to identify specific molecular changes that are associated with the phenotype,

  18. Monitoring for resistance to organophosphorus and pyrethroid insecticides in varroa mite populations

    Science.gov (United States)

    The occurrence of resistance in Varroa mite populations is a serious threat to the beekeeping industry and crops that rely on the honey bee for pollination. Integrated pest management strategies for control of this pest include the judicious use of insecticides. To monitor field populations of Varro...

  19. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Pavlidi, N.; Monastirioti, M.; Daborn, P.; Van Leeuwen, T.; Vontas, J.

    2012-01-01

    The emergence and spread of insecticide resistance in mosquitoes, such as the major vector of dengue and yellow fever Aedes aegypti, is a major public health problem. A number of studies have been conducted to-date aiming to identify specific molecular changes that are associated with the phenotype,

  20. Proteolysis on the body surface of pyrethroid-sensitive and resistant Varroa destructor.

    Science.gov (United States)

    Strachecka, Aneta; Borsuk, Grzegorz; Olszewski, Krzysztof; Paleolog, Jerzy; Lipiński, Zbigniew

    2013-03-01

    The aim of this work was to determine the activity of proteases and protease inhibitors sampled from the body surface of tau-fluvalinate-sensitive and resistant V. destructor. Proteins were isolated from the tau-fluvalinate-sensitive and resistant mites, while mites untreated with tau-fluvalinate constituted the control. Subsequently, the following methodology was applied: protein concentration assay by the Lowry method - as modified by Schacterle and Pollack; assay of proteolytic activity in relation to various substrates (gelatine, haemoglobin, ovoalbumin, albumin, cytochrome C, casein) by the modified Anson method; identification of proteolytic activity in relation to diagnostic inhibitors of proteolytic enzymes (pepstatin A, PMSF, iodoacetamide, o-phenantrolin), using the Lee and Lin method; identification of acidic, neutral and basic protease activities by means of the modified Anson method; electrophoretic analysis of proteins in a polyacrylamide gel for protease detection with the Laemmli method and for protease inhibitor detection with the Felicioli method. The highest value of protein concentration was found in the tau-fluvalinate-sensitive V. destructor, while the highest activity levels of acidic, neutral and alkaline proteases were observed in the tau-fluvalinate-resistant mites. Aspartic, serine, thiolic and metallic proteases were found in the drug-resistant and drug-sensitive Varroa mites. The control samples were found to contain aspartic and serine proteases. In an acidic and alkaline environment, the results revealed a complete loss of inhibitor activities in the in vitro analyses and electrophoresis. Serine protease inhibitor activities (at pH 7.0) were high, especially in the group of tau-fluvalinate-resistant mites.

  1. Synergism between demethylation inhibitor fungicides or gibberellin inhibitor plant growth regulators and bifenthrin in a pyrethroid-resistant population of Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Ramoutar, D; Cowles, R S; Requintina, E; Alm, S R

    2010-10-01

    In 2007-2008, the "annual bluegrass weevil," Listronotus maculicollis Kirby (Coleoptera: Curculionidae), a serious pest of Poa annua L. (Poales: Poaceae) on U.S. golf courses, was shown to be resistant to two pyrethroids, bifenthrin and lambda-cyhalothrin. In 2008, we showed that bifenthrin resistance was principally mediated by oxidase detoxification (cytochrome P450 [P450]). P450s can be inhibited by demethylation inhibitor fungicides and gibberellin inhibitor plant growth regulators, both of which are commonly used on golf courses. We tested these compounds for synergistic activity with bifenthin against a pyrethroid-resistant population of L. maculicollis. The LD50 value for bifenthrin was significantly reduced from 87 ng per insect (without synergists) to 9.6-40 ng per insect after exposure to the fungicides fenarimol, fenpropimorph, prochloraz, propiconazole, and pyrifenox and the plant growth regulators flurprimidol, paclobutrazol, and trinexapac-ethyl. Simulated field exposure with formulated products registered for use on turf revealed enhanced mortality when adult weevils were exposed to bifenthrin (25% mortality, presented alone) combined with field dosages of propiconizole, fenarimol, flurprimidol, or trinexapac-ethyl (range, 49-70% mortality).

  2. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展%Mechanism of insect metabolic resistance to pyrethroid insecticides

    Institute of Scientific and Technical Information of China (English)

    陈澄宇; 史雪岩; 髙希武

    2016-01-01

    随着拟除虫菊酯类杀虫剂在卫生和农业害虫防治中的广泛应用,昆虫对此类杀虫剂产生抗性的报道越来越多。目前已明确昆虫对拟除虫菊酯类杀虫剂的抗性机制包括表皮穿透率下降、靶标抗性以及代谢抗性,其中代谢抗性机制较为普遍,而且其与昆虫对多种杀虫剂的交互抗性关系密切。目前,随着基因组、转录组以及蛋白质组学等新技术的发展及应用,昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究也取得了很多新进展。昆虫体内细胞色素 P450酶(P450s)、羧酸酯酶(CarE)及谷胱甘肽S-转移酶(GSTs)等重要解毒酶系的改变均与昆虫对拟除虫菊酯类杀虫剂的代谢抗性有关,其中这3类解毒酶的活性及相关基因表达量的变化是昆虫对此类杀虫剂产生代谢抗性的主要原因。明确昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制,对合理使用此类杀虫剂及延缓抗药性的产生均具有重要意义。本文在总结拟除虫菊酯类杀虫剂代谢路径及相关生物酶研究概况的基础上,综述了近年来有关昆虫对此类杀虫剂代谢抗性机制研究的主要进展。%With indiscriminate use of pyrethroid insecticides on agricultural and urban settings insect pests, the pyrethroid resistance in insects has occurred widely. The resistance mechanisms of insects to pyrethroid insecticides include the resistance caused by the decline of insect cuticular penetration rate, insensitive target resistance and metabolic resistance. Among those mechanisms, the metabolic resistance of insects to pyrethroids is more commonly existed and closely related to insects cross resistance to a variety of insecticides. Recently, many new achievements on the mechanisms of insect metabolic resistance to pyrethroids insecticides have been obtained, with the application of new techniques such as proteomics, transcriptome and genomic techniques. The changes of

  3. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet (R) 3.0) against pyrethroid-resistant malaria vectors : a multi centre study in Western and Central Africa

    OpenAIRE

    Corbel, Vincent; Chabi, Joseph; Dabiré, R. K.; Etang, J.; Nwane, P.; Pigeon, O.; Akogbeto, M.; Hougard, Jean-Marc

    2010-01-01

    Background: Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet (R) 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. Methods: A multi centre experimental hut trial was conducted in Malanville (Benin), Vallee du Kou (Burkina Fas...

  4. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa

    OpenAIRE

    Pigeon Olivier; Nwane Philippe; Etang Josiane; Dabiré Roch K; Chabi Joseph; Corbel Vincent; Akogbeto Martin; Hougard Jean-Marc

    2010-01-01

    Abstract Background Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet® 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. Methods A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina...

  5. Two Novel Bioassays to Assess the Effects of Pyrethroid-Treated Netting on Knockdown-Susceptible Versus Resistant Strains of Aedes aegypti.

    Science.gov (United States)

    Denham, Steven; Eisen, Lars; Beaty, Meaghan; Beaty, Barry J; Black, William C; Saavedra-Rodriguez, Karla

    2015-03-01

    We describe 2 new mosquito bioassays for use with insecticide-treated netting or other textiles. The 1st is a cylinder bioassay in which a mosquito is forced to contact treated material regardless of where it lands within the bioassay construct. The 2nd is a repellency/irritancy and biting-inhibition bioassay (RIBB) in which human arms and breath are used as attractants. Mosquitoes have the choice to pass through holes cut in untreated or treated netting to move from a center release chamber into side chambers to reach arms and potentially bite. Trials were conducted with pyrethroid-susceptible (New Orleans), moderately resistant (Hunucmá), and highly resistant (Vergel) strains of Aedes aegypti. Tests with netting treated with different pyrethroids demonstrated the utility of the cylinder bioassay to quantify knockdown and mortality following exposure to treated netting, and of the RIBB to quantify spatial repellency/contact irritancy of the treated netting and biting inhibition after females land on and then pass through holes in the treated netting. Both tested brands of pyrethroid-treated mosquitocidal netting (DuraNet® and NetProtect®) were effective against New Orleans but ineffective against Vergel strains. Mortality in the cylinder bioassay was 100% for New Orleans for all tested brands of treated netting, but only 10-14% for Vergel. Rates of passage through treated netting to reach a human arm in the RIBB were 10-15% for New Orleans versus 24-37% for Vergel. The reduction in biting after passage through treated netting, compared with untreated netting in the same trial replicates, was 12-39% for New Orleans versus ≤9% for Vergel.

  6. Personal protection of long lasting insecticide-treated nets in areas of Anopheles gambiae s.s. resistance to pyrethroids

    Directory of Open Access Journals (Sweden)

    Paré-Toé Léa

    2006-02-01

    Full Text Available Abstract Background The development of mosquito nets pre-treated with insecticide, Long Lasting Impregnated Nets (LLINs that last the life span of the net, is a solution to the difficulty of the re-impregnation of conventional nets. Even if they showed a good efficacy in control conditions, their efficacy in the field, particularly in areas with resistance of Anopheles gambiae to pyrethroids, is not well documented. This study compares wide (Olyset® and small (Permanet® mesh LLINs in field conditions, using entomological parameters. Methods The two LLINs were tested in a rice-growing area of south-western Burkina Faso (West Africa with year around high density of the main malaria vector An. gambiae s.s. In the study village (VK6, there is a mixed population of two molecular forms of An. gambiae, the S-form which dominates during the rainy season and the M-form which dominates the rest of the year. The two LLINs Olyset® and Permanet® were distributed in the village and 20 matched houses were selected for comparison with four houses without treated nets. Results Mosquito entrance rate was ten fold higher in control houses than in houses with LLINs and there was no difference between the two net types. Among mosquitoes found in the houses, 36 % were dead in LLIN houses compared to 0% in control houses. Blood feeding rate was 80 % in control houses compared to 43 % in LLIN houses. The type of net did not significantly impact any of these parameters. No mosquitoes were found inside Permanet®, whereas dead or dying mosquitoes were collected inside the Olyset®. More than 60% of mosquitoes found on top or inside the nets had had blood meals from cattle, as shown by ELISA analysis. Conclusion The percentage of blood-fed mosquitoes in a bed net study does not necessarily determine net success. The efficacy of the two types of LLINs was comparable, during a period when the S-form of An. gambiae was carrying the kdr gene. Significantly higher numbers

  7. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs.

    Science.gov (United States)

    Bonizzoni, Mariangela; Ochomo, Eric; Dunn, William Augustine; Britton, Monica; Afrane, Yaw; Zhou, Guofa; Hartsel, Joshua; Lee, Ming-Chieh; Xu, Jiabao; Githeko, Andrew; Fass, Joseph; Yan, Guiyun

    2015-09-17

    The extensive use of pyrethroids for control of malaria vectors, driven by their cost, efficacy and safety, has led to widespread resistance. To favor their sustainable use, the World Health Organization (WHO) formulated an insecticide resistance management plan, which includes the identification of the mechanisms of resistance and resistance surveillance. Recognized physiological mechanisms of resistance include target site mutations in the para voltage-gated sodium channel, metabolic detoxification and penetration resistance. Such understanding of resistance mechanisms has allowed the development of resistance monitoring tools, including genotyping of the kdr mutation L1014F/S in the para gene. The sequence-based technique RNA-seq was applied to study changes in the transcriptome of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from the Western Province of Kenya. The resulting gene expression profiles were compared to data in the most recent literature to derive a list of candidate resistance genes. RNA-seq data were analyzed also to identify sequence polymorphisms linked to resistance. A total of five candidate-resistance genes (AGAP04177, AGAP004572, AGAP008840, AGAP007530 and AGAP013036) were identified with altered expression between resistant and susceptible mosquitoes from West and East Africa. A change from G to C at position 36043997 of chromosome 3R resulting in A101G of the sulfotransferase gene AGAP009551 was significantly associated with the resistance phenotype (odds ratio: 5.10). The kdr L1014S mutation was detected at similar frequencies in both phenotypically resistant and susceptible mosquitoes, suggesting it is no longer fully predictive of the resistant phenotype. Overall, these results support the conclusion that resistance to pyrethroids is a complex and evolving phenotype, dependent on multiple gene functions including, but not limited to, metabolic detoxification. Functional convergence among metabolic detoxification

  8. Involvement of metabolic resistance and F1534C kdr mutation in the pyrethroid resistance mechanisms of Aedes aegypti in India.

    Science.gov (United States)

    Muthusamy, R; Shivakumar, M S

    2015-08-01

    Pesticide resistance poses a serious problem for worldwide mosquito control programs. Resistance to insecticides can be caused by an increased metabolic detoxification of the insecticide and/or by target site insensitivity. In the present study, we estimated the tolerance of Indian Aedes aegypti populations using adult bioassays that revealed high resistance levels of the field populations to permethrin (RR-6, 5.8 and 5.1 folds) compared to our susceptible population. Enzymatic assays revealed increased activities of glutathione S-transferase and carboxylesterase enzymes in the field populations comparatively to the susceptible population. PBO synergist assays did not confirm that cytochrome P450 monooxygenase metabolic detoxification acted as a major cause of resistance. Hence the role of target site resistance was therefore investigated. A single substitution Phe1534Cys in the voltage gated sodium channel was found in domain III, segment 6 (III-S6) of the resistance populations (allele frequency=0.59, 0.51 and 0.47) suggesting its potential role in permethrin resistance in A. aegypti.

  9. Avaliação da sensibilidade de adultos de Culex quinquefasciatus Say a inseticidas químicos de contato Evaluation of the sensitivity of the adult Culex quinquefasciatus Say to chemical insecticides

    Directory of Open Access Journals (Sweden)

    Carlos Fernando S. de Andrade

    1990-08-01

    Full Text Available A sensibilidade de adultos do pernilongo doméstico Culex quinquefasciatus a 5 inseticidas químicos foi avaliada sob condições de laboratório pelo critério de Tempo Letal Mediano (TL50. Foram utilizados o organofosforado Malathion e quatro piretróides: Bifenthrin, Deltamethrin, Esfenvalerate e Alfamethrin. Foi sugerida uma técnica simples e eficiente para se avaliar adultos de um dia de idade incluindo 5 repetições para cada tratamento. Os resultados obtidos mostraram ser o método bastante adequado para avaliações rotineiras. Não ocorreu resistência a esses 5 princípios ativos, na população natural de Culex quinquefasciatus estudada.The sensitivity of the adult house mosquito Culex quinquefasciatus to 5 chemical insecticides was evaluated under laboratory condictions, based on the Median Lethal Time (LT50 criterion. The organophosphorous Malathion and four pyrethroids: Bifenthrin, Deltamethrin, Esfenvalerate and Alfamethrin were utilized. An easy and efficient technique was suggested for the testing of one-day-old adults, including five repetitions for each treatment. The results revealed the full adequacy of this method for routine use. Further, no resistance to the 5 chemical compounds was detected among this natural population of Cx. quinquefasciatus.

  10. Chlorfenapyr (A Pyrrole Insecticide) Applied Alone or as a Mixture with Alpha-Cypermethrin for Indoor Residual Spraying against Pyrethroid Resistant Anopheles gambiae sl: An Experimental Hut Study in Cove, Benin

    OpenAIRE

    Ngufor, C; Critchley, J; Fagbohoun, J; N'Guessan, R.; Todjinou, D; Rowland, M

    2016-01-01

    Background Indoor spraying of walls and ceilings with residual insecticide remains a primary method of malaria control. Insecticide resistance in malaria vectors is a growing problem. Novel insecticides for indoor residual spraying (IRS) which can improve the control of pyrethroid resistant malaria vectors are urgently needed. Insecticide mixtures have the potential to improve efficacy or even to manage resistance in some situations but this possibility remains underexplored experimentally. C...

  11. In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach.

    Science.gov (United States)

    Faucon, Frederic; Gaude, Thierry; Dusfour, Isabelle; Navratil, Vincent; Corbel, Vincent; Juntarajumnong, Waraporn; Girod, Romain; Poupardin, Rodolphe; Boyer, Frederic; Reynaud, Stephane; David, Jean-Philippe

    2017-04-01

    The capacity of Aedes mosquitoes to resist chemical insecticides threatens the control of major arbovirus diseases worldwide. Until alternative control tools are widely deployed, monitoring insecticide resistance levels and identifying resistance mechanisms in field mosquito populations is crucial for implementing appropriate management strategies. Metabolic resistance to pyrethroids is common in Aedes aegypti but the monitoring of the dynamics of resistant alleles is impeded by the lack of robust genomic markers. In an attempt to identify the genomic bases of metabolic resistance to deltamethrin, multiple resistant and susceptible populations originating from various continents were compared using both RNA-seq and a targeted DNA-seq approach focused on the upstream regions of detoxification genes. Multiple detoxification enzymes were over transcribed in resistant populations, frequently associated with an increase in their gene copy number. Targeted sequencing identified potential promoter variations associated with their over transcription. Non-synonymous variations affecting detoxification enzymes were also identified in resistant populations. This study not only confirmed the role of gene copy number variations as a frequent cause of the over expression of detoxification enzymes associated with insecticide resistance in Aedes aegypti but also identified novel genomic resistance markers potentially associated with their cis-regulation and modifications of their protein structure conformation. As for gene transcription data, polymorphism patterns were frequently conserved within regions but differed among continents confirming the selection of different resistance factors worldwide. Overall, this study paves the way of the identification of a comprehensive set of genomic markers for monitoring the spatio-temporal dynamics of the variety of insecticide resistance mechanisms in Aedes aegypti.

  12. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0 against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa

    Directory of Open Access Journals (Sweden)

    Pigeon Olivier

    2010-04-01

    Full Text Available Abstract Background Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN, i.e. PermaNet® 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. Methods A multi centre experimental hut trial was conducted in Malanville (Benin, Vallée du Kou (Burkina Faso and Pitoa (Cameroon to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet® 3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof comparatively to the WHO recommended PermaNet® 2.0 (unwashed and washed 20-times and a conventionally deltamethrin-treated net (CTN. Results The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet® 2.0 were excellent (>80% in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance and Vallée du Kou (presence of the L1014F kdr mutation, PermaNet® 3.0 showed equal or better performances than PermaNet® 2.0. It should be noted however that the deltamethrin content on PermaNet® 3.0 was up to twice higher than that of PermaNet® 2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet® 3.0 still fulfilled the WHO requirement for LLIN. Conclusion The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet® 3.0 for the control of pyrethroid resistant mosquito populations in Africa.

  13. New Introductions, Spread of Existing Matrilines, and High Rates of Pyrethroid Resistance Result in Chronic Infestations of Bed Bugs (Cimex lectularius L. in Lower-Income Housing.

    Directory of Open Access Journals (Sweden)

    Ronald W Raab

    Full Text Available Infestations of the common bed bug (Cimex lectularius L. have increased substantially in the United States in the past 10-15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4-6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a 16/21 (73% infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr, from valine to leucine (V419L and leucine to isoleucine (L925I that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40% bed bugs were homozygous for both kdr mutations (L419/I925, and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug

  14. Reconsideration of Anopheles rivulorum as a vector of Plasmodium falciparum in western Kenya: some evidence from biting time, blood preference, sporozoite positive rate, and pyrethroid resistance

    Directory of Open Access Journals (Sweden)

    Kawada Hitoshi

    2012-10-01

    Full Text Available Abstract Background Anopheles gambiae, An. arabiensis, and An. funestus are widespread malaria vectors in Africa. Anopheles rivulorum is the next most widespread species in the An. funestus group. The role of An. rivulorum as a malaria vector has not been fully studied, although it has been found to be a minor or opportunistic transmitter of Plasmodium falciparum. Methods Mosquitoes were collected indoors over a 12-hour period using a light source attached to a rotating bottle collector in order to determine peak activity times and to provide DNA for meal source identification. Gravid female mosquitoes were collected indoors via an aspirator to generate F1 progeny for testing insecticidal susceptibility. Blood meal sources were identified using a multiplexed PCR assay for human and bovine cytochrome-B, and by matching sequences generated with primers targeting vertebrate and mammalian cytochrome-B segments to the Genbank database. Results Anopheles rivulorum fed on human blood in the early evening between 18:00 and 20:00, when insecticide-treated bed nets are not in use, and the presence of Plasmodium falciparum sporozoites in 0.70% of the An. rivulorum individuals tested was demonstrated. Susceptibility to permethrin, deltamethrin, and DDT is higher in An. rivulorum (84.8%, 91.4%, and 100%, respectively than in An. funestus s.s. (36.8%, 36.4%, and 70%, respectively, whereas mortality rates for propoxur and fenitrothion were 100% for both species. Resistance to pyrethroids was very high in An. funestus s.s. and the potential of the development of high resistance was suspected in An. rivulorum. Conclusion Given the tendency for An. rivulorum to be active early in the evening, the presence of P. falciparum in the species, and the potential for the development of pyrethroid resistance, we strongly advocate reconsideration of the latent ability of this species as an epidemiologically important malaria vector.

  15. New Introductions, Spread of Existing Matrilines, and High Rates of Pyrethroid Resistance Result in Chronic Infestations of Bed Bugs (Cimex lectularius L.) in Lower-Income Housing.

    Science.gov (United States)

    Raab, Ronald W; Moore, Julia E; Vargo, Edward L; Rose, Lucy; Raab, Julie; Culbreth, Madeline; Burzumato, Gracie; Koyee, Aurvan; McCarthy, Brittany; Raffaele, Jennifer; Schal, Coby; Vaidyanathan, Rajeev

    2016-01-01

    Infestations of the common bed bug (Cimex lectularius L.) have increased substantially in the United States in the past 10-15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4-6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a) 16/21 (73%) infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b) up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr), from valine to leucine (V419L) and leucine to isoleucine (L925I) that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40%) bed bugs were homozygous for both kdr mutations (L419/I925), and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug

  16. Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available Here we report a study of the 204 P450 genes in the whole genome sequence of larvae and adult Culex quinquefasciatus mosquitoes. The expression profiles of the P450 genes were compared for susceptible (S-Lab and resistant mosquito populations, two different field populations of mosquitoes (HAmCq and MAmCq, and field parental mosquitoes (HAmCq(G0 and MAmCq(G0 and their permethrin selected offspring (HAmCq(G8 and MAmCq(G6. While the majority of the P450 genes were expressed at a similar level between the field parental strains and their permethrin selected offspring, an up- or down-regulation feature in the P450 gene expression was observed following permethrin selection. Compared to their parental strains and the susceptible S-Lab strain, HAmCq(G8 and MAmCq(G6 were found to up-regulate 11 and 6% of total P450 genes in larvae and 7 and 4% in adults, respectively, while 5 and 11% were down-regulated in larvae and 4 and 2% in adults. Although the majority of these up- and down-regulated P450 genes appeared to be developmentally controlled, a few were either up- or down-regulated in both the larvae and adult stages. Interestingly, a different gene set was found to be up- or down-regulated in the HAmCq(G8 and MAmCq(G6 mosquito populations in response to insecticide selection. Several genes were identified as being up- or down-regulated in either the larvae or adults for both HAmCq(G8 and MAmCq(G6; of these, CYP6AA7 and CYP4C52v1 were up-regulated and CYP6BY3 was down-regulated across the life stages and populations of mosquitoes, suggesting a link with the permethrin selection in these mosquitoes. Taken together, the findings from this study indicate that not only are multiple P450 genes involved in insecticide resistance but up- or down-regulation of P450 genes may also be co-responsible for detoxification of insecticides, insecticide selection, and the homeostatic response of mosquitoes to changes in cellular environment.

  17. Mitochondrial genomes and comparative analyses of Culex camposi, Culex coronator, Culex usquatus and Culex usquatissimus (Diptera:Culicidae), members of the coronator group

    National Research Council Canada - National Science Library

    Demari-Silva, Bruna; Foster, Peter G; de Oliveira, Tatiane M P; Bergo, Eduardo S; Sanabani, Sabri S; Pessôa, Rodrigo; Sallum, Maria Anice M

    2015-01-01

    The Coronator Group currently encompasses six morphologically similar species (Culex camposi Dyar, Culex coronator Dyar and Knab, Culex covagarciai Forattini, Culex usquatus Dyar, Culex usquatissimus Dyar, and Culex ousqua Dyar...

  18. Knockdown resistance in pyrethroid-resistant horn fly (Diptera: Muscidae populations in Brazil Resistência Knockdown em populações de mosca-dos-chifres do Brasil resistentes aos piretróides

    Directory of Open Access Journals (Sweden)

    Gustavo A. Sabatini

    2009-09-01

    Full Text Available To investigate the kdr (knockdown resistance resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South were molecular screened through polymerase chain reaction (PCR. The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population. This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.Com o objetivo de verificar a ocorrência e determinar a frequência da mutação kdr (knock down resistance em populações de Haematobia irritans (mosca-dos-chifres resistentes aos piretróides, foram analisados 1.804 indivíduos de 37 populações de todas as Regiões do Brasil. Com exceção da Região Nordeste, o kdr (knock down resistance gene foi encontrado em populações de todas as regiões. A mutação não foi detectada em 87,08% dos indivíduos. Entretanto, o gene foi amplificado de 12,92% das moscas, das quais 11,70% se mostraram heterozigotas resistentes e 1

  19. Susceptibilidade larval de populações de Aedes aegypti e Culex quinquefasciatus a inseticidas químicos Larval susceptibility of Aedes aegypti and Culex quinquefasciatus populations to chemical insecticides

    Directory of Open Access Journals (Sweden)

    Jairo Campos

    2003-08-01

    Full Text Available OBJETIVO: Avaliar a susceptibilidade a inseticidas químicos de larvas de Culex quinquefasciatus e Aedes aegypti, provenientes de áreas sujeitas ou não a tratamentos de controle. MÉTODOS: Foram coletadas larvas de mosquitos em uma área não sujeita a tratamentos com inseticidas (Campinas, SP e em áreas sujeitas a esses tratamentos (Campo Grande, MS e Cuiabá, MT. Foram usados bioensaios com concentrações diagnóstico e concentrações múltipla de inseticidas organofosforados e piretróides, segundo padrão da Organização Mundial de Saúde, para avaliar a susceptibilidade dessas larvas. RESULTADOS: Ensaios com larvas de Culex quinquefasciatus de Campinas, SP, permitiram a suspeita de resistência à cipermetrina e evidenciaram resistência à ciflutrina. Larvas dessa espécie coletadas em Campo Grande, MS, e Campinas, SP, apresentaram resistência ao temephos. Para a colônia campineira desta espécie, foram estabelecidas as razões de resistência: RR50=6,36 e RR95=4,94, com base em linhagem susceptível padrão. Adicionalmente, os testes com Aedes aegypti mostraram susceptibilidade similar ao temephos em uma população de campo (Cuiabá, MT e uma de laboratório. CONCLUSÕES: Os resultados indicam resistência a organofosforado e piretróides em Culex quinquefasciatus, evidenciando a necessidade de avaliações e monitoramento da efetividade dos inseticidas a serem usados nos programas de controle de mosquitos.OBJECTIVE: To evaluate the susceptibility to chemical insecticides of Culex quinquefasciatus and Aedes aegypt larvae from areas subjected to control treatments or not. METHODS: Bioassays for diagnostic concentration and multiple concentration were performed for organophosphate and pyrethroid insecticides according to World Health Organization parameters. The susceptibility was assessed for mosquito larvae collected from an area not subjected to chemical control (Campinas, State of São Paulo, SP and from other areas (Campo

  20. Evaluation of Insecticide Resistance and Biochemical Mechanisms in a Population of Culex quinquefasciatus (Diptera: Culicidae from São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Bracco José Eduardo

    1999-01-01

    Full Text Available To establish an insecticidal resistance surveillance program, Culex quinquefasciatus mosquitoes from São Paulo, Brazil, were colonized (PIN95 strain and analyzed for levels of resistance. The PIN95 strain showed low levels of resistance to organophosphates [malathion (3.3-fold, fenitrothion (11.2-fold] and a carbamate [propoxur (3.0-fold]. We also observed an increase of 7.4 and 9.9 in a and b esterase activities, respectively, when compared with the reference IAL strain. An alteration in the sensitivity of acetylcholinesterase to insecticide inhibition was also found in the PIN95 mosquitoes. The resistant allele (Ace.1R, however, was found at low frequencies (0.12 and does not play an important role in the described insecticide resistance. One year later, Cx. quinquefasciatus mosquitoes were collected (PIN96 strain at the same site and compared to the PIN95 strain. The esterase activity patterns observed for the PIN96 strain were similar to those of the PIN95 mosquitoes. However the occurrence of the Ace.1R allele was statistically higher in the PIN96 strain. The results show that esterase-based insecticide resistance was established in the PIN95 Cx. quinquefasciatus population and that an acethylcholinesterase based resistant mechanism has been selected for. A continuous monitoring of this phenomenon is fundamental for rational mosquito control and insecticide application programs.

  1. Resistance of Culex tritaeniorhynchus to commonly used pesticides in Suzhou%苏州市三带喙库蚊对常用杀虫剂的抗药性调查

    Institute of Scientific and Technical Information of China (English)

    杨维芳; 褚宏亮; 刘大鹏; 刘慧; 马桢红; 杨波

    2011-01-01

    目的 了解江苏省苏州市流行性乙型脑炎(乙脑)媒介三带喙库蚊对常用杀虫剂的抗药性现状.方法 采用浸渍法测定苏州市三带喙库蚊现场种群对溴氰菊酯、高效氯氰菊酯、氯菊酯、生物烯丙菊酯、敌敌畏和残杀威的半数致死浓度(LC50),以判定抗性等级.结果 苏州市三带喙库蚊对敌敌畏、残杀威、溴氰菊酯、高效氯氰菊酯、氯菊酯和生物烯丙菊酯的LC50分别为2.4691、7.7017、0.0424、0.1137、0.2659和0.6698mg/L;三带喙库蚊除对生物烯丙菊酯中抗外,对其他5种杀虫剂均为高抗,且对3种拟除虫菊酯类抗性倍数均超过50倍,甚至达100倍.结论 针对各地三带喙库蚊对多种杀虫剂均产生低等或更高程度抗药性的现状,三带喙库蚊的防治应采取以环境治理和生物防治为主,化学防治为辅的综合治理措施,注重统筹用药和农业合理规划;当三带喙库蚊密度高或有乙脑疫情时,应加强化学防治,做到科学合理用药.%Objective To determine the current resistance of Culex tritaeniorhynchus, vector of Japanese encephalitis (JE),to commonly used pesticides in Suzhou city, Jiangsu province. Methods Using the dipping method, the median lethal concentration (LC50) values of deltamethrin, betacypermethrin, permethrin, biothrin, dichlorovos and propoxur were measured for the field population of Cx. tritaeniorhynchus in Suzhou city. Results The LC50 values of deltamethrin, betacypermethrin,permethrin, biothrin, dichlorovos and propoxur for Cx. tritaeniorhynchus were 0.0424, 0.1137, 0.2659, 0.6698, 2.4691 and 7.7017 mg/L, respectively. Intermediately resistant to biothrin, the strain was highly resistant to the other five agents with resistance ratios of more than 50, even 100, to the three pyrethroids. Conclusion In view of the low or higher resistance of Cx. tritaeniorhynchus to multiple pesticides, environmental and biological strategies in conjunction with auxiliary chemical

  2. Comparative efficacies of permethrin-, deltamethrin- and alpha-cypermethrin-treated nets, against Anopheles arabiensis and Culex quinquefasciatus in northern Tanzania.

    Science.gov (United States)

    Mosha, F W; Lyimo, I N; Oxborough, R M; Matowo, J; Malima, R; Feston, E; Mndeme, R; Tenu, F; Kulkarni, M; Maxwell, C A; Magesa, S M; Rowland, M W

    2008-06-01

    Mosquito nets treated with permethrin, deltamethrin or alpha-cypermethrin at 25 mg/m(2) were evaluated in experimental huts in an area of rice irrigation near Moshi, in northern Tanzania. The nets were deliberately holed to resemble worn nets. The nets treated with permethrin offered the highest personal protection against Anopheles arabiensis (61.6% reduction in fed mosquitoes) and Culex quinquefasciatus (25.0%). Deltamethrin and alpha-cypermethrin provided lower personal protection against An. arabiensis (46.4% and 45.6%, respectively) and no such protection against Cx. quinquefasciatus. Permethrin performed poorly in terms of mosquito mortality, however, killing only 15.2% of the An. arabiensis and 9.2% of the Cx. quinquefasciatus exposed to the nets treated with this pyrethroid (after correcting for control mortality). The alpha-cypermethrin and deltamethrin performed marginally better, with respective mortalities of 32.8% and 33.0% for An. arabiensis and 19.4% and 18.9% for Cx quinquefasciatus. The poor killing effect of permethrin was confirmed in a second trial where a commercial, long-lasting insecticidal net based on this pyrethroid (Olyset) produced low mortalities in both An. arabiensis (11.8%) and Cx. quinquefasciatus (3.6%). Anopheles arabiensis survivors collected from the verandahs of the experimental huts and tested on 0.75%-permethrin and 0.05%-deltamethrin papers, in World Health Organization susceptibility kits, showed mortalities of 96% and 100%, respectively. The continued use of permethrin-treated nets is recommended for personal protection against An. arabiensis. In control programmes that aim to interrupt transmission of pathogens by mosquitoes and/or manage pyrethroid resistance in such vectors, a combination of a pyrethroid and another insecticide with greater killing effect should be considered.

  3. [Resistance of Anopheles gambiae s.l. to pyrethroids and DDT at Tiassalékro, an irrigated rice-growing village in the southern forest of Ivory Coast].

    Science.gov (United States)

    Konan, K G; Koné, A B; Konan, Y L; Fofana, D; Konan, K L; Diallo, A; Ziogba, J C; Touré, M; Kouassi, K P; Doannio, J M C

    2011-10-01

    An assessment of the sensitivity of Anopheles gambiae s.l.to three pyrethroids (alphacypermethrin, permethrin, deltamethrin) and DDT has been carried out with a laboratory strain (Kisumu reference sensitive strain) and a wild strain (Tiassalékro strain) using larvae from an irrigated rice-growing area of Tiassalékro, located in the southern forest of Ivory Coast. The sensitivity tests were performed according to the standard WHO cylinder tests with adult female A. gambiae s.l. aged 2 to 4 days. The results showed that the strain of Tiassalékro is resistant to the three tested pyrethroids and DDT. The molecular forms M and S were identified, with a predominance of M form. The resistance mechanism involved is the Kdr mutation. In this region, control measures against malaria vectors by using bed nets impregnated with these insecticides or household sprays could be compromised.

  4. Frequencies of pyrethroid resistance-associated mutations of Vssc1 and CYP6D1 in field populations of Musca domestica L. in Turkey.

    Science.gov (United States)

    Taşkın, Vatan; Başkurt, Sibel; Doğaç, Ersin; Taşkin, Belgin Göçmen

    2011-12-01

    House flies were collected from 16 different provinces in the Aegean and Mediterranean regions of Turkey, and the frequencies of pyrethroid resistance-associated mutations in Vssc1 and CYP6D1 in these field-collected populations were studied. Although there is no organized resistance management program for house fly control in Turkey, it is known that different groups of insecticides, including pyrethroids, are used. The frequencies of both Vssc1 and CYP6D1 alleles were weighted toward the susceptibles, with Vssc1-susceptible alleles having higher frequencies in both regions (0.75 in Aegean and 0.69 in Mediterranean populations) than CYP6D1-susceptible alleles (0.65 in Aegean and 0.56 in Mediterranean populations). The frequencies of kdr-his alleles were higher than the frequencies of kdr alleles in these populations. While the frequencies of kdr-his alleles were close to each other in the Aegean (0.23) and Mediterranean (0.17) populations, the frequencies of kdr alleles remarkably differed in these two regions, with values of 0.02 and 0.14, respectively. In contrast to Europe, Asia, and the U.S.A., no super-kdr allele was detected in the samples from both regions. We identified six and eight different Vssc1+CYP6D1 genotype classes in the Aegean and Mediterranean regions, respectively. The three most common genotype classes in the regions were susceptible Vssc1 with heterozygous CYP6D1v1 (29%), sus/kdr-his1 with heterozygous CYP6D1v1 (23%), and susceptible Vssc1 with CYP6D1 (22%). The total frequencies of these three most common genotype classes (approximately 75%) obtained in our study were very close to the value obtained in Florida in a previous study, which was related by the similarity of temperature patterns between Florida and the corresponding regions of Turkey. This may reflect the lack of overwintering fitness cost associated with resistance alleles in both climates.

  5. Chlorfenapyr (A Pyrrole Insecticide) Applied Alone or as a Mixture with Alpha-Cypermethrin for Indoor Residual Spraying against Pyrethroid Resistant Anopheles gambiae sl: An Experimental Hut Study in Cove, Benin.

    Science.gov (United States)

    Ngufor, Corine; Critchley, Jessica; Fagbohoun, Josias; N'Guessan, Raphael; Todjinou, Damien; Rowland, Mark

    2016-01-01

    Indoor spraying of walls and ceilings with residual insecticide remains a primary method of malaria control. Insecticide resistance in malaria vectors is a growing problem. Novel insecticides for indoor residual spraying (IRS) which can improve the control of pyrethroid resistant malaria vectors are urgently needed. Insecticide mixtures have the potential to improve efficacy or even to manage resistance in some situations but this possibility remains underexplored experimentally. Chlorfenapyr is a novel pyrrole insecticide which has shown potential to improve the control of mosquitoes which are resistant to current WHO-approved insecticides. The efficacy of IRS with chlorfenapyr applied alone or as a mixture with alpha-cypermeththrin (a pyrethroid) was evaluated in experimental huts in Cove, Southern Benin against wild free flying pyrethroid resistant Anopheles gambiae sl. Comparison was made with IRS with alpha-cypermethrin alone. Fortnightly 30-minute in situ cone bioassays were performed to assess the residual efficacy of the insecticides on the treated hut walls. Survival rates of wild An gambiae from the Cove hut site in WHO resistance bioassays performed during the trial were >90% with permethrin and deltamethrin treated papers. Mortality of free-flying mosquitoes entering the experimental huts was 4% in the control hut. Mortality with alpha-cypermethrin IRS did not differ from the control (5%, P>0.656). The highest mortality was achieved with chlorfenapyr alone (63%). The alpha-cypermethrin + chlorfenapyr mixture killed fewer mosquitoes than chlorfenapyr alone (43% vs. 63%, P<0.001). While the cone bioassays showed a more rapid decline in residual mortality with chlorfenapyr IRS to <30% after only 2 weeks, fortnightly mortality rates of wild free-flying An gambiae entering the chlorfenapyr IRS huts were consistently high (50-70%) and prolonged, lasting over 4 months. IRS with chlorfenapyr shows potential to significantly improve the control of malaria

  6. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    Science.gov (United States)

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  7. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    Science.gov (United States)

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  8. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Clare Strode

    2014-03-01

    Full Text Available Pyrethroid insecticide-treated bed nets (ITNs help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes.We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization-recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut, deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs using the risk difference (RD. Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD 0.86 (95% CI 0.72 to 1.01; moderate resistance, RD 0.71 (95% CI 0.53 to 0.88; high resistance, RD 0.56 (95% CI 0.17 to 0.95. For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87; moderate resistance, RD 0.50 (95% CI 0.40 to 0.60; high resistance, RD 0.39 (95% CI 0.24 to 0.54. For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68; moderate resistance, RD 0.39 (95% CI 0.16 to 0.61; high resistance, RD 0

  9. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and -resistant strains of Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Sutthanont, Nataya; Choochote, Wej; Tuetun, Benjawan; Junkum, Anuluck; Jitpakdi, Atchariya; Chaithong, Udom; Riyong, Doungrat; Pitasawat, Benjawan

    2010-06-01

    The chemical compositions and larvicidal potential against mosquito vectors of selected essential oils obtained from five edible plants were investigated in this study. Using a GC/MS, 24, 17, 20, 21, and 12 compounds were determined from essential oils of Citrus hystrix, Citrus reticulata, Zingiber zerumbet, Kaempferia galanga, and Syzygium aromaticum, respectively. The principal constituents found in peel oil of C. hystrix were beta-pinene (22.54%) and d-limonene (22.03%), followed by terpinene-4-ol (17.37%). Compounds in C. reticulata peel oil consisted mostly of d-limonene (62.39%) and gamma-terpinene (14.06%). The oils obtained from Z. zerumbet rhizome had alpha-humulene (31.93%) and zerumbone (31.67%) as major components. The most abundant compounds in K. galanga rhizome oil were 2-propeonic acid (35.54%), pentadecane (26.08%), and ethyl-p-methoxycinnamate (25.96%). The main component of S. aromaticum bud oil was eugenol (77.37%), with minor amounts of trans-caryophyllene (13.66%). Assessment of larvicidal efficacy demonstrated that all essential oils were toxic against both pyrethroid-susceptible and resistant Ae. aegypti laboratory strains at LC50, LC95, and LC99 levels. In conclusion, we have documented the promising larvicidal potential of essential oils from edible herbs, which could be considered as a potentially alternative source for developing novel larvicides to be used in controlling vectors of mosquito-borne disease.

  10. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Howard, A.F.V.; Koenraadt, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W.

    2010-01-01

    BACKGROUND: Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have

  11. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Howard, A.F.V.; Koenraadt, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background: Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have

  12. Detection of target site resistance to pyrethroids and organophosphates in the horn fly using multiplex polymerase chain reaction

    Science.gov (United States)

    The horn fly, Haematobia irritans L., is an obligate blood-feeding fly and the primary insect pest parasitizing cattle in the United States. Pesticide resistance has become a huge problem for cattle producers and although several mechanisms of resistance are possible, target site resistance is the m...

  13. Cloning and Overexpression of CYP6F1, a Cytochrome P450 Gene,from Deltamethrin-resistant Culex pipiens pallens

    Institute of Scientific and Technical Information of China (English)

    Mao-Qing GONG; Chang-Liang ZHU; Yan GU; Xiao-Bang HU; Yan SUN; Lei MA; Xiu-Lan LI; Li-Xin SUN; Jing SUN; Jin QIAN

    2005-01-01

    CYP6F1 (GenBank/EMBL accession No. AY662654), a novel gene with a complete encoding sequence in the cytochrome P450 family 6, was cloned and sequenced from deltamethrin-resistant 4th instar larvae of Culex pipiens pallens. The cDNA sequence of CYP6F1 has an open reading frame of 1527bp, which encodes a putative protein of 508 amino acid residues. The deduced amino acid sequence of CYP6F1 indicated that the encoded P450 has conserved domains of a putative membrane-anchoring signal,putative reductase-binding sites, a typical heme-binding site, an ETLR motif and substrate recognition sites.Semi-quantitative RT-PCR analysis indicated that the CYP6F1 gene was expressed to a greater extent in the deltamethrin-resistant strain than in the susceptible strain of Cx. pipiens pallens. The expression levels of the CYP6F1 gene in the deltamethrin-resistant 1 st, 2nd, 3rd, 4th instar larvae and adult female mosquitoes differed, with highest expression levels in the 4th instar larvae. In addition, the CYP6F1 gene was stably expressed in mosquito C6/36 cells, and the expected 61.2 kDa band was identified by Western blotting. The cells transfected with CYP6F1 had an increased resistance to deltamethrin as compared with control cells.These results indicate that CYP6F1 is expressed at higher levels in the deltamethrin-resistant strain, and may confer some insecticide resistance in Cx. pipiens pallens.

  14. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa

    Science.gov (United States)

    Hien, Aristide Sawdetuo; Soma, Dieudonné Diloma; Hema, Omer; Bayili, Bazoma; Namountougou, Moussa; Gnankiné, Olivier; Baldet, Thierry; Diabaté, Abdoulaye; Dabiré, Kounbobr Roch

    2017-01-01

    Many studies have shown the role of agriculture in the selection and spread of resistance of Anopheles gambiae s.l. to insecticides. However, no study has directly demonstrated the presence of insecticides in breeding sources as a source of selection for this resistance. It is in this context that we investigated the presence of pesticide residues in breeding habitats and their formal involvement in vector resistance to insecticides in areas of West Africa with intensive farming. This study was carried out from June to November 2013 in Dano, southwest Burkina Faso in areas of conventional (CC) and biological cotton (BC) growing. Water and sediment samples collected from breeding sites located near BC and CC fields were submitted for chromatographic analysis to research and titrate the residual insecticide content found there. Larvae were also collected in these breeding sites and used in toxicity tests to compare their mortality to those of the susceptible strain, Anopheles gambiae Kisumu. All tested mosquitoes (living and dead) were analyzed by PCR for species identification and characterization of resistance genes. The toxicity analysis of water from breeding sites showed significantly lower mortality rates in breeding site water from biological cotton (WBC) growing sites compared to that from conventional cotton (WCC) sites respective to both An. gambiae Kisumu (WBC: 80.75% vs WCC: 92.75%) and a wild-type strain (49.75% vs 66.5%). The allele frequencies L1014F, L1014S kdr, and G116S ace -1R mutations conferring resistance, respectively, to pyrethroids and carbamates / organophosphates were 0.95, 0.4 and 0.12. Deltamethrin and lambda-cyhalothrin were identified in the water samples taken in October/November from mosquitoes breeding in the CC growing area. The concentrations obtained were respectively 0.0147ug/L and 1.49 ug/L to deltamethrin and lambdacyhalothrin. Our results provided evidence by direct analysis (biological and chromatographic tests) of the role

  15. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Howard, A.F.V.; Koenraadt, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W.

    2010-01-01

    BACKGROUND: Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have pr

  16. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Howard, A.F.V.; Koenraadt, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background: Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have pr

  17. Impact of insecticide-treated nets on wild pyrethroid resistant Anopheles epiroticus population from southern Vietnam tested in experimental huts

    OpenAIRE

    Trung Ho; Speybroeck Niko; Berkvens Dirk; Chinh Vu; Van Bortel Wim; Coosemans Marc

    2009-01-01

    Abstract Background In this study, the efficacy of insecticide-treated nets was evaluated in terms of deterrence, blood-feeding inhibition, induced exophily and mortality on a wild resistant population of Anopheles epiroticus in southern Vietnam, in order to gain insight into the operational consequences of the insecticide resistance observed in this malaria vector in the Mekong delta. Method An experimental station, based on the model of West Africa and adapted to the behaviour of the target...

  18. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-06-01

    Full Text Available Abstract Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER and insecticide-susceptible (SKK strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide-resistant

  19. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids.

    Science.gov (United States)

    Plernsub, Suriya; Saingamsook, Jassada; Yanola, Jintana; Lumjuan, Nongkran; Tippawangkosol, Pongsri; Walton, Catherine; Somboon, Pradya

    2016-10-01

    In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection

  20. Simultaneous detection of Pyrethroid, Organophosphate and Cyclodiene target site resistance in Haematobia irritans (Diptera: Muscidae) by multiplex Polymerase chain reaction

    Science.gov (United States)

    The horn fly, Haematobia irritans irritans (Linnaeus, 1758), is an important pest that causes significant economic losses to the livestock industry, but insecticide resistance in horn fly populations has made horn fly control increasingly difficult to achieve. In this study, we developed a multiplex...

  1. Efficacy of Olyset® Duo, a permethrin and pyriproxyfen mixture net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d'Ivoire: an experimental hut trial.

    Science.gov (United States)

    Koffi, Alphonsine A; Ahoua Alou, Ludovic P; Djenontin, Armel; Kabran, Jean-Paul K; Dosso, Youssouf; Kone, Aboubacar; Moiroux, Nicolas; Pennetier, Cedric

    2015-01-01

    Pyrethroid resistance in malaria vectors has spread across sub-Saharan Africa. Alternative tools and molecules are urgently needed for effective vector control. One of the most promising strategies to prevent or delay the development of resistance is to use at least two molecules having unrelated modes of action in combination in the same bed net. We evaluated in experimental huts in Côte d'Ivoire, a new polyethylene long-lasting insecticidal net (LN) product, Olyset® Duo, incorporating permethrin (PER) and pyriproxyfen (PPF), an insect growth regulator (IGR). PPF alone or in combination with permethrin had a significant impact on fertility (7-12% reduction relative to control) and no effect on fecundity of wild multi-resistant An. gambiae s.s. These results triggered crucial research questions on the behaviour of targeted mosquitoes around the LN. To maximize the sterilizing effect of PPF in the combination, there would be a need for a trade-off between the necessary contact time of the insect with PPF and the surface content of the pyrethroid insecticide that is bioavailable and induces excito-repellency. © A.A. Koffi et al., published by EDP Sciences, 2015.

  2. Efficacy of Olyset® Duo, a permethrin and pyriproxyfen mixture net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d’Ivoire: an experimental hut trial

    Directory of Open Access Journals (Sweden)

    Koffi Alphonsine A.

    2015-01-01

    Full Text Available Pyrethroid resistance in malaria vectors has spread across sub-Saharan Africa. Alternative tools and molecules are urgently needed for effective vector control. One of the most promising strategies to prevent or delay the development of resistance is to use at least two molecules having unrelated modes of action in combination in the same bed net. We evaluated in experimental huts in Côte d’Ivoire, a new polyethylene long-lasting insecticidal net (LN product, Olyset® Duo, incorporating permethrin (PER and pyriproxyfen (PPF, an insect growth regulator (IGR. PPF alone or in combination with permethrin had a significant impact on fertility (7–12% reduction relative to control and no effect on fecundity of wild multi-resistant An. gambiae s.s. These results triggered crucial research questions on the behaviour of targeted mosquitoes around the LN. To maximize the sterilizing effect of PPF in the combination, there would be a need for a trade-off between the necessary contact time of the insect with PPF and the surface content of the pyrethroid insecticide that is bioavailable and induces excito-repellency.

  3. Synthesis and insecticidal activities of new pyrethroid acid oxime ester derivatives

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of compounds containing oxime-ester linkage in place of the ester linkage in pyrethroid ester are designed and prepared. Bioassay data of insecticidal activities of these compounds on Ostrinia nubilalis (H.) and Culex pipines (L.) are presented. Among them 4-dimethyaminobenzaldehyde oxime ester of 2,2,3,3-tetramethylcyclopropanecarboxylic acid and 4-dimethyamino benzaldehyde oxime ester of cyclopropanecarboxylic acid are found to be potent insecticide against Ostrinia nubilalis (H.). Structure-activity relationship of the compounds is discussed.

  4. STUDY ON THE ROLE OF NON-SPECIFIC ESTERASE OF CULEX PIPIENS PALLENS IN RESISTANCE AGAINST DIFFERENT INSECTICIDES%非特异性酯酶在淡色库蚊对不同杀虫剂抗性中的作用研究

    Institute of Scientific and Technical Information of China (English)

    李士根; 张昕; 甄天民; 郭永和; 刘永春; 刘凤梅

    2001-01-01

    Objective To explore the role of non-specific esterase (NSE) of Culex pipiens pallens in resistance against insecticides. Methods Laboratory detection of NSE was performed for 5 strains of the mosquito using β-Naphthyl acetate as the substrate and fast blue B salt solution as the color agent. Results NSE level was highest in anti-DDVP strain, followed by anti-DDVP degenerated strain and anti-propoxur strain, while the level of NSE of anti-cypermethrin was similar to that of susceptible strain. Conclusion NSE was showed to play important role in the mosquito resistance against organophosphorus insecticides and was one of important mechanism for the development of resistance towards carbamates, while it has little relation with the resistance against pyrethroids.%目的 探讨非特异性酯酶(Non-specific esterase,NSE)在淡色库蚊对不同杀虫剂抗性中的作用。 方法 以β-乙酸萘酯为底物,坚固蓝B盐为显色剂,测定室内5个品系淡色库蚊的NSE活力。 结果 5个品系淡色库蚊中以抗DDVP品系NSE活力水平最高,其次为抗DDVP降解品系和抗残杀威品系。抗氯氰菊酯品系较低,与敏感品系相近。 结论 NSE在淡色库蚊对有机磷类杀虫剂的抗性中起重要作用,也是对氨基甲酸酯类杀虫剂产生抗性的机制之一,与对拟除虫菊酯类杀虫剂的抗性关系不大。

  5. Molecular cloning and preliminary function study of iron responsive element binding protein 1 gene from cypermethrin-resistant Culex pipiens pallens

    Directory of Open Access Journals (Sweden)

    Tan Wenbin

    2011-11-01

    Full Text Available Abstract Background Insecticide resistance jeopardizes the control of mosquito populations and mosquito-borne disease control, which creates a major public health concern. Two-dimensional electrophoresis identified one protein segment with high sequence homology to part of Aedes aegypti iron-responsive element binding protein (IRE-BP. Method RT-PCR and RACE (rapid amplification of cDNA end were used to clone a cDNA encoding full length IRE-BP 1. Real-time quantitative RT-PCR was used to evaluate the transcriptional level changes in the Cr-IRE strain Aedes aegypti compared to the susceptible strain of Cx. pipiens pallens. The expression profile of the gene was established in the mosquito life cycle. Methyl tritiated thymidine (3H-TdR was used to observe the cypermethrin resistance changes in C6/36 cells containing the stably transfected IRE-BP 1 gene of Cx. pipiens pallens. Results The complete sequence of iron responsive element binding protein 1 (IRE-BP 1 has been cloned from the cypermethrin-resistant strain of Culex pipiens pallens (Cr-IRE strain. Quantitative RT-PCR analysis indicated that the IRE-BP 1 transcription level was 6.7 times higher in the Cr-IRE strain than in the susceptible strain of 4th instar larvae. The IRE-BP 1 expression was also found to be consistently higher throughout the life cycle of the Cr-IRE strain. A protein of predicted size 109.4 kDa has been detected by Western blotting in IRE-BP 1-transfected mosquito C6/36 cells. These IRE-BP 1-transfected cells also showed enhanced cypermethrin resistance compared to null-transfected or plasmid vector-transfected cells as determined by 3H-TdR incorporation. Conclusion IRE-BP 1 is expressed at higher levels in the Cr-IRE strain, and may confer some insecticide resistance in Cx. pipiens pallens.

  6. The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection

    OpenAIRE

    Robert L Glaser; Meola, Mark A

    2010-01-01

    BACKGROUND: The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosquito host system. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated Wolbachia-induced r...

  7. Mechanisms of pyrethroid resistance in Haematobia irritans (Muscidae from Mato Grosso do Sul state, Brazil Mecanismos de resistência da Haematobia irritans (Muscidae a piretróides em Mato Grosso do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Antonio Thadeu Medeiros Barros

    Full Text Available Horn fly resistance to pyrethroid insecticides occurs throughout Brazil, but knowledge about the involved mechanisms is still in an incipient stage. This survey was aimed to identify the mechanisms of horn fly resistance to cypermethrin in Mato Grosso do Sul state, Brazil. Impregnated filter paper bioassays using cypermethrin, synergized or not with piperonyl butoxide (PBO and triphenyl phosphate (TPP, were conducted from March 2004 to June 2005 in horn fly populations (n = 33 from all over the state. All populations were highly resistant to cypermethrin, with resistance factors (RF ranging from 89.4 to 1,020.6. Polymerase chain reaction (PCR assays to detect the knockdown resistance (kdr mutation also were performed in 16 samples. The kdr mutation was found in 75% of the tested populations, mostly with relatively low frequencies (Resistência da mosca-dos-chifres a inseticidas piretróides ocorre em todo o país, entretanto, o conhecimento sobre os mecanismos envolvidos é ainda incipiente. Este estudo objetivou identificar os mecanismos de resistência desta mosca à cipermetrina em Mato Grosso do Sul. Bioensaios utilizando papéis impregnados com cipermetrina, isoladamente ou sinergizada por butóxido de piperonila (PBO ou trifenil fosfato (TPP, foram realizados de março∕2004 a junho∕2005 em 33 populações. Todas as populações apresentaram elevada resistência à cipermetrina, com fatores de resistência (FR variando de 89,4 a 1.020,6. Ensaios de reação em cadeia da polimerase (PCR visando a detecção de kdr (“knockdown resistance” foram realizados em 16 amostras. A mutação kdr foi detectada em 75% das populações, geralmente em baixas frequências (<20% e ausente em algumas populações resistentes. A adição de TPP não reduziu significativamente a CL50 em nenhuma população. Entretanto, o PBO reduziu em mais de 40 vezes a CL50 de todas as populações testadas, resultando em FR ≤ 10 na maioria dos casos. Resist

  8. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Koffi Alphonsine A

    2011-06-01

    Full Text Available Abstract Background Pyrethroid resistance in vectors could limit the efficacy of long-lasting insecticidal nets (LLINs because all LLINs are currently treated with pyrethroids. The goal of this study was to evaluate the efficacy and wash resistance of PermaNet® 3.0 compared to PermaNet® 2.0 in an area of high pyrethroid in Côte d'Ivoire. PermaNet® 3.0 is impregnated with deltamethrin at 85 mg/m2 on the sides of the net and with deltamethrin and piperonyl butoxide on the roof. PermaNet® 2.0 is impregnated with deltamethrin at 55 mg/m2 across the entire net. Methods The study was conducted in the station of Yaokoffikro, in central Côte d'Ivoire. The efficacy of intact unwashed and washed LLINs was compared over a 12-week period with a conventionally-treated net (CTN washed to just before exhaustion. WHO cone bioassays were performed on sub-sections of the nets, using wild-resistant An. gambiae and Kisumu strains. Mosquitoes were collected five days per week and were identified to genus and species level and classified as dead or alive, then unfed or blood-fed. Results Mortality rates of over 80% from cone bioassays with wild-caught pyrethroid-resistant An. gambiae s.s were recorded only with unwashed PermaNet® 3.0. Over 12 weeks, a total of 7,291 mosquitoes were collected. There were significantly more An. gambiae s.s. and Culex spp. caught in control huts than with other treatments (P An. gambiae s.s and Culex spp, were lower for the control than for other treatments (P 0.05 except for unwashed PermaNet® 3.0 (P Conclusions This study showed that unwashed PermaNet® 3.0 caused significantly higher mortality against pyrethroid resistant An. gambiae s.s and Culex spp than PermaNet® 2.0 and the CTN. The increased efficacy with unwashed PermaNet® 3.0 over PermaNet® 2.0 and the CTN was also demonstrated by higher KD and mortality rates (KD > 95% and mortality rate > 80% in cone bioassays performed with wild pyrethroid-resistant An. gambiae s

  9. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Howard Annabel FV

    2010-09-01

    Full Text Available Abstract Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. Methods The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. Results In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. Conclusions This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new

  10. Insecticide Susceptibility of Field-Collected Populations of Culex tritaeniorhynchus in the Republic of Korea

    Science.gov (United States)

    Yoo, Dae-Hyun; Shin, E-Hyun; Lee, Dong-Kyu; Ahn, Young Joon; Kim, Hyun-Kyung; Kim, Seong-Yoon; Park, Chan

    2013-01-01

    The toxicities of 10 insecticides were examined against late third instar Culex tritaeniorhynchus Giles (Diptera: Culicidae) using the direct-contact mortality bioassay. Six geospatially-distant field mosquitoes were collected from Chuncheon-si, Hwaseong, Seosan. Jeonju, Daegu, and Busan in the Republic of Korea. Marked regional variations of insecticide susceptibility were observed. Field populations of Seosan, Jeonju, and Daegu from agricultural areas showed higher to extremely higher insecticide susceptibility to pyrethroids than those of Chuncheon-si, Hwaseong, and Busan strains from non-agricultural areas. Extremely high to low levels of susceptibility were measured: bifenthrin, susceptible ratio (SR) = 2.7–896.3; β-cyfluthrin, SR = 1.8–633.3; α-cypermethrin, SR = 1.2–1,051.9; deltamethrin, SR = 1.3–711.1; permethrin, SR = 1.5–1,053.4; etofenprox, SR = 2.2–29.3; chlorfenapyr, SR = 5.1–103.6; chlorpyrifos, SR = 2.3– 337.0; fenitrothion, SR = 2.0–142.3; and fenthion, SR = 1.4–186.2. Cx. tritaeniorhynchus populations from rice paddies had been under heavy selection pressure due to the agricultural insecticides, and that's why the mosquito species demonstrated high resistance to pyrethroids, which were used for a long time to control agricultural pests in the localities. These results indicate that careful selection and rotational use of these insecticides may result in continued satisfactory control against field populations of Japanese encephalitis vector mosquitoes. PMID:23879898

  11. Susceptibility of Cimex lectularius (Hemiptera: Cimicidae) to pyrethroid insecticides and to insecticidal dusts with or without pyrethroid insecticides.

    Science.gov (United States)

    Anderson, John F; Cowles, Richard S

    2012-10-01

    Relative increases of bed bug, Cimex lectularius L., populations are probably due in large measure to their resistance to pyrethroids, which have been used extensively against urban pests. A Connecticut population of bed bugs was assessed for sensitivity to pyrethroids and exposed to commonly-used commercial insecticides applied to various substrates on which the residues were allowed to age for 0-24 wk. Type I and type II pyrethroids differed in toxicity when applied at a high dosage (1 microg) per bed bug. Some type II pyrethroids (cyfluthrin, lambda-cyhalothrin, cis-cypermethrin, and deltamethrin) caused > 80% mortality, whereas exposure to type I pyrethroids caused 0.95) an exponential rise to a maximum model from which the survival half-life (S1/2) was calculated directly. Tempo Dust (Bayer Environmental Science, Montvale, NJ) killed bed bugs relatively quickly, as did Syloid 244 (Grace Davison, Columbia, MD) and Drione (Bayer Environmental Science, Montvale, NJ) on hardboard and mattress fabric substrates (S1/2 Companies, Waterbury, CT), displayed reduced residual toxicity as they aged; the mortality was < 50% on some substrates after 4 d. Desiccant dusts, with their physical mode of action and long residual activity, appear to be superior to sprayable pyrethroid products for killing bed bugs.

  12. Monitoring the resistance of Culex quinquefasciatus to five pesticides in Beihai city%北海市致倦库蚊对5种杀虫剂的抗药性监测

    Institute of Scientific and Technical Information of China (English)

    林寿远; 孔庆鑫; 沈智勇; 邱丽华; 韦凌娅; 倪晓平

    2011-01-01

    Objective To investigate the resistance level of Culex quinquefasciatus to 5 pesticides in Beihai city, and provide scientific basis for chemistry kill of mosquitoes. Method Immersion method of pesticide used to assay the medium lethal concentration ( LC50) of the fourth - instar larvae. Results The resistance ratio of Culex quinquefasciatus in field species to dichlorvos, plife nate, propoxur, beta - cypermethrin and deltamethrin were 6. 14, 0. 07. 1. 54, 0. 52, and 5. 00 respectively. Conclusions The present study showed that Culex quinquefasciatus in Beihai city had high resistance level to dichlorvos and deltamethrin%目的 调查广西北海市致倦库蚊对5种杀虫剂的抗性水平,为化学杀虫剂灭蚊工作提供科学依据.方法 采用浸渍法测定Ⅳ龄期幼虫的半数致死浓度(LC50).结果 现场品系的致倦库蚊对敌敌畏、三氯杀虫酯、残杀威、高效氯氰菊酯、溴氰菊酯的抗性倍数依次为6.14、0.07、1.54、0.52、5.00.结论 北海市致倦库蚊对敌敌畏、溴氰菊酯已产生一定程度的抗性.

  13. Culex pipiens pallens resistance to eight insecticides in Shaanxi province%陕西省淡色库蚊抗药性研究

    Institute of Scientific and Technical Information of China (English)

    孙养信; 吕文; 佘建军; 霍丽霞

    2011-01-01

    目的 了解陕西省不同地区淡色库蚊对常用杀虫剂的抗性水平.方法 采用区分剂量法测定淡色库蚊幼虫对4种杀虫剂的24h死亡率;采用半数致死浓度(LC50)法测定淡色库蚊幼虫对8种杀虫剂的LC50.结果 区分剂量法测定结果显示,除榆林市淡色库蚊对氯菊酯属初步抗性群体外,其余均为抗性群体;LC50测定结果显示,5个市的淡色库蚊对高效氯氰菊酯、氯菊酯、溴氰菊酯、氯氰菊酯、DDT、DDVP、双硫磷、残杀威的LC5o分别为0.001 82~0.012 24、0.008 16~0.094 19、0.000 58~0.005 59、0.002 76~0.020 17、0.100 96~1.296 86、0.144 11~0.512 40、0.001 47~0.007 06、0.234 60~1.182 37 mg/L.宝鸡市淡色库蚊的抗药性普遍较高,除溴氰菊酯、氯氰菊酯、双硫磷3种药剂外,其余抗性倍数均在全省最高,而榆林市淡色库蚊的抗药性则普遍较低,除双硫磷和残杀威外,其余各药抗性倍数均为全省最低.结论 蚊虫抗药性的产生与杀虫剂的使用密切相关,在创建卫生城市、卫生县城工作中要科学合理用药,开展抗药性监测,以减缓蚊虫抗药性的产生.%Objective To evaluate the resistance in Culex pipiens pollens to commonly used insecticides in different areas of Shaanxi province. Methods Larval mortality for 4 insecticides and LC? Of 8 insecticides determined via the dosing method and median lethal dose method, respectively. Results The resistance level of Cx. Pipiens pollens in all five areas was high except the population in Yulin city, which had elementary resistance to permethrin. The LC? Values for larvae to p - cypermethrin, permethrin, deltamethrin, cypermethrin, DDT, DDVP, parathion and propoxur were 0.001 82-0.012 24, 0.008 16-0.094 19, 0.000 58-0.005 59, 0.002 76-0.020 17, 0.100 96-1.296 86, 0.144 11-0.512 40, 0.001 47-0.007 06, and 0.234 60-1.182 37 mg/L, respectively. The highest resistance level to all pesticides was found in Baoji city, except for

  14. Identification and characterisation of Aedes aegypti aldehyde dehydrogenases involved in pyrethroid metabolism.

    Directory of Open Access Journals (Sweden)

    Nongkran Lumjuan

    Full Text Available Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald, to phenoxybenzoic acid (PBacid.ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.

  15. LINKAGE OF KNOCKDOWN RESISTANCE AND THE SODIUM CHANNEL GENE MUTATION IN CULEX PIPIENS PALLENS *%淡色库蚊(Culex pipiens Pallens)与击倒抗性(kdr)相关的钠通道基因突变

    Institute of Scientific and Technical Information of China (English)

    宋锋林; 赵彤言; 董言德; 曹晓梅; 张晓龙

    2005-01-01

    本研究采用RT-PCR技术,使用简并引物分别从淡色库蚊(Culex pipiens pallens)敏感品系和抗溴氰菊酯品系中扩增出钠通道ⅡS4~ⅡS6区域的基因片段,长度为359bp.该基因片段所编码的氨基酸与黑尾果蝇(Drosophila melanogaster)、家蝇(Musca domestica)、埃及伊蚊(Aedes aegypti)、冈比亚按蚊(Anopheles gambiae)及德国小蠊(Blattella germanica)等昆虫相应区域的氨基酸序列具有较高的同源性,其同源性分别为95.8%,95.0%,100.0%,98.3%和95.0%.经序列比对,确认抗溴氰菊酯品系淡色库蚊钠通道基因在1014位点发生了突变:该位点的碱基"A"突变为"T",其对应氨基酸由亮氨酸(L)变为苯丙氨酸(F),该突变(L1014F型)在多种昆虫中较为常见.

  16. 浙江省淡色库蚊和白纹伊蚊对常用化学杀虫剂的抗性调查%Resistance investigation of Culex pipiens pallens and Aedes albopictus to eight pesticides and resistance control strategy in Zhejiang province

    Institute of Scientific and Technical Information of China (English)

    龚震宇; 侯娟; 任樟尧; 凌锋; 郭颂

    2012-01-01

    目的 了解浙江省淡色库蚊和白纹伊蚊不同地理株对敌敌畏等8种常用杀虫剂的抗性动态,为指导灭蚊工作的深入开展提供科学依据.方法 采用浸渍法,测定4龄期幼虫的半数致死浓度(LC50).结果 金华市淡色库蚊对氯菊酯的抗性处于中抗水平,抗性倍数为11.5倍;绍兴市淡色库蚊对高效氯氰菊酯的抗性处于中抗水平,抗性倍数为11.2倍;各调查点淡色库蚊对其他一些化学杀虫剂均处于低抗水平;金华市白纹伊蚊对敌敌畏已产生高度抗性,抗性倍数为22.8倍,对氯菊酯和胺菊酯的抗性处于中抗水平,抗性倍数分别为13.4和11.4倍;宁波市白纹伊蚊对溴氰菊酯、高效氯氰菊酯的抗性处于中抗水平,抗性倍数分别为17.2和11.8倍;义乌市白纹伊蚊对高效氯氰菊酯已产生高度抗性,抗性倍数为28.8倍,对溴氰菊酯和氯菊酯的抗性处于中抗水平,抗性倍数分别为19.7和18.4倍;各调查点白纹伊蚊对其他一些化学杀虫剂均处于低抗水平.结论 淡色库蚊和白纹伊蚊各地理株对8种常用杀虫剂均产生了不同程度的抗性,以菊酯类最高,应加强对菊酯类杀虫剂的抗性监测及科学合理使用.%Objective To investigate the resistances of Culex pipiens pallens and Aedes albopictus to eight insecticides for making the dynamic mosquitoe control strategy in Zhejiang. Methods Immersion method of pesticide was used to assay the medium lethal concentration (LC50) for the fourth instar larvae of mosquitoes. Results The resistances of Cx. pipiens pallens in Jinhua city to permethrin was at medium level, the RR 11.5. The resistances of Cx. pipiens pallens in Shaoxing city to beta-cypermethrin was at medium level, the RR 11.2. The Cx. pipiens pallens showed low resistance to other types of insecticides in all cities. In Jinhua city, the resistances of Ae. albopictus to dichlorvos was at high level, the RR 22.8. The resistances of Ae. albopictus to

  17. The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa.

    Science.gov (United States)

    Riveron, Jacob M; Ibrahim, Sulaiman S; Chanda, Emmanuel; Mzilahowa, Themba; Cuamba, Nelson; Irving, Helen; Barnes, Kayla G; Ndula, Miranda; Wondji, Charles S

    2014-09-27

    Pyrethroid resistance in the major malaria vector Anopheles funestus is rapidly expanding across Southern Africa. It remains unknown whether this resistance has a unique origin with the same molecular basis or is multifactorial. Knowledge of the origin, mechanisms and evolution of resistance are crucial to designing successful resistance management strategies. Here, we established the resistance profile of a Zambian An. funestus population at the northern range of the resistance front. Similar to other Southern African populations, Zambian An. funestus mosquitoes are resistant to pyrethroids and carbamate, but in contrast to populations in Mozambique and Malawi, these insects are also DDT resistant. Genome-wide microarray-based transcriptional profiling and qRT-PCR revealed that the cytochrome P450 gene CYP6M7 is responsible for extending pyrethroid resistance northwards. Indeed, CYP6M7 is more over-expressed in Zambia [fold-change (FC) 37.7; 13.2 for qRT-PCR] than CYP6P9a (FC15.6; 8.9 for qRT-PCR) and CYP6P9b (FC11.9; 6.5 for qRT-PCR), whereas CYP6P9a and CYP6P9b are more highly over-expressed in Malawi and Mozambique. Transgenic expression of CYP6M7 in Drosophila melanogaster coupled with in vitro assays using recombinant enzymes and assessments of kinetic properties demonstrated that CYP6M7 is as efficient as CYP6P9a and CYP6P9b in conferring pyrethroid resistance. Polymorphism patterns demonstrate that these genes are under contrasting selection forces: the exceptionally diverse CYP6M7 likely evolves neutrally, whereas CYP6P9a and CYP6P9b are directionally selected. The higher variability of CYP6P9a and CYP6P9b observed in Zambia supports their lesser role in resistance in this country. Pyrethroid resistance in Southern Africa probably has multiple origins under different evolutionary forces, which may necessitate the design of different resistance management strategies.

  18. Using a near-infrared spectrometer to estimate the age of anopheles mosquitoes exposed to pyrethroids.

    Science.gov (United States)

    Sikulu, Maggy T; Majambere, Silas; Khatib, Bakar O; Ali, Abdullah S; Hugo, Leon E; Dowell, Floyd E

    2014-01-01

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as 8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.

  19. Immune disorders induced by exposure to pyrethroid insecticides.

    Science.gov (United States)

    Skolarczyk, Justyna; Pekar, Joanna; Nieradko-Iwanicka, Barbara

    2017-06-08

    Pyrethroids are biocides, which belong to the third generation of insecticides. They are used as biocides, insecticides and medicines. These agents react selectively, because they are less harmful to birds and mammals (due to poor intestinal absorption and rapid detoxification in the body of homeothermic organisms) and they are poisonous for fish and insects. The aim of the article is to present the current state of knowledge on the effects of pyrethroids on the immune system based on the latest scientific research. The mechanism of action of pyrethroids include the delaying closure of voltage- sensitive sodium and chloride channels (including GABA- dependent channels). These compounds are neurotoxic. Studies have shown that they cause numerous immune disorders contributing to lowering of immunity in humans and animals. Exposure to pyrethroids can cause inhibition of proliferation of peripheral blood leukocytes and reducing the concentration of IgG immunolgobulines. They also cause reduced macrophages and decrease in interleukin 2 (IL-2), interleukin 8 (IL-8), interleukin 12p70 (IL-12p70), and interferon γ (IFN-γ). Some of these compounds cause increase of liver weight and increase of bone marrow cellularity, and may induce apoptosis of the thymus. Pyrethroids can cause allergies and asthma. Their immunosuppressive effects can impair host resistance against infections. Exposure to these compounds can also contribute to induction of the cancer, especially in patients with impaired immune function.

  20. Advances in the study of molecular mechanisms of resistance to pyrethroids in Anopheles mosquitoes%按蚊拟除虫菊酯类杀虫剂抗性相关分子机理的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐铁龙

    2012-01-01

    In response to selection pressure from pesticides, Anopheles mosquitoes have evolved resistance to those pesticides. These mosquitoes have different mechanisms of resistance to different types of pesticides since those pesticides have different mechanisms of action. This paper summarizes recent advances in the study of factors such as esterases, P45O monooxygenases, glutathione S-transferases, and insensitive sodium channels that may relate to resistance to pyrethroids in Anopheles mosquitoes,%在杀虫剂的选择压力下蚊虫形成抗药性,不同类型的杀虫剂,由于其作用机制不同,其抗性分子机制也会有所不同.本文对按蚊拟除虫菊酯类杀虫剂抗药性相关因素酯酶、细胞色素P450单加氧酶、谷胱甘肽S-转移酶及神经轴突钠离子通道等的研究进展进行了综述.

  1. Profiles of Amino Acids and Acylcarnitines Related with Insecticide Exposure in Culex quinquefasciatus (Say)

    Science.gov (United States)

    Martin-Park, Abdiel; Gomez-Govea, Mayra A.; Lopez-Monroy, Beatriz; Treviño-Alvarado, Víctor Manuel; Torres-Sepúlveda, María del Rosario; López-Uriarte, Graciela Arelí; Villanueva-Segura, Olga Karina; Ruiz-Herrera, María del Consuelo; Martinez-Fierro, Margarita de la Luz; Delgado-Enciso, Ivan; Flores-Suárez, Adriana E.; White, Gregory S.; Martínez de Villarreal, Laura E.; Ponce-Garcia, Gustavo; Black, William C.; Rodríguez-Sanchez, Irám Pablo

    2017-01-01

    Culex quinquefasciatus Say is a vector of many pathogens of humans, and both domestic and wild animals. Personal protection, reduction of larval habitats, and chemical control are the best ways to reduce mosquito bites and, therefore, the transmission of mosquito-borne pathogens. Currently, to reduce the risk of transmission, the pyrethroids, and other insecticide groups have been extensively used to control both larvae and adult mosquitoes. In this context, amino acids and acylcarnitines have never been associated with insecticide exposure and or insecticide resistance. It has been suggested that changes in acylcarnitines and amino acids profiles could be a powerful diagnostic tool for metabolic alterations. Monitoring these changes could help to better understand the mechanisms involved in insecticide resistance, complementing the strategies for managing this phenomenon in the integrated resistance management. The purpose of the study was to determine the amino acids and acylcarnitines profiles in larvae of Cx. quinquefasciatus after the exposure to different insecticides. Bioassays were performed on Cx. quinquefasciatus larvae exposed to the diagnostic doses (DD) of the insecticides chlorpyrifos (0.001 μg/mL), temephos (0.002 μg/mL) and permethrin (0.01 μg/mL). In each sample, we analyzed the profile of 12 amino acids and 31 acylcarnitines by LC-MS/MS. A t-test was used to determine statistically significant differences between groups and corrections of q-values. Results indicates three changes, the amino acids arginine (ARG), free carnitine (C0) and acetyl-carnitine (C2) that could be involved in energy production and insecticide detoxification. We confirmed that concentrations of amino acids and acylcarnitines in Cx. quinquefasciatus vary with respect to different insecticides. The information generated contributes to understand the possible mechanisms and metabolic changes occurring during insecticide exposure. PMID:28085898

  2. A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids.

    Science.gov (United States)

    Hu, Zhaonong; Du, Yuzhe; Nomura, Yoshiko; Dong, Ke

    2011-01-01

    Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Numerous point mutations in sodium channel genes have been identified in pyrethroid-resistant insect species, and many have been confirmed to reduce or abolish sensitivity of channels expressed in Xenopus oocytes to pyrethroids. Recently, several novel mutations were reported in sodium channel genes of pyrethroid-resistant Aedes mosquito populations. One of the mutations is a phenylalanine (F) to cysteine (C) change in segment 6 of domain III (IIIS6) of the Aedes mosquito sodium channel. Curiously, a previous study showed that alanine substitution of this F did not alter the action of deltamethrin, a type II pyrethroid, on a cockroach sodium channel. In this study, we changed this F to C in a pyrethroid-sensitive cockroach sodium channel and examined mutant channel sensitivity to permethrin as well as five other type I or type II pyrethroids in Xenopus oocytes. Interestingly, the F to C mutation drastically reduced channel sensitivity to three type I pyrethroids, permethrin, NRDC 157 (a deltamethrin analogue lacking the α-cyano group) and bioresemthrin, but not to three type II pyrethroids, cypermethrin, deltamethrin and cyhalothrin. These results confirm the involvement of the F to C mutation in permethrin resistance, and raise the possibility that rotation of type I and type II pyrethroids might be considered in the control of insect pest populations where this particular mutation is present.

  3. Ecotoxicology of synthetic pyrethroids.

    Science.gov (United States)

    Maund, S J; Campbell, P J; Giddings, J M; Hamer, M J; Henry, K; Pilling, E D; Warinton, J S; Wheeler, J R

    2012-01-01

    In this chapter we review the ecotoxicology of the synthetic pyrethroids (SPs). SPs are potent, broad-spectrum insecticides. Their effects on a wide range of nontarget species have been broadly studied, and there is an extensive database available to evaluate their effects. SPs are highly toxic to fish and aquatic invertebrates in the laboratory, but effects in the field are mitigated by rapid dissipation and degradation. Due to their highly lipophilic nature, SPs partition extensively into sediments. Recent studies have shown that toxicity in sediment can be predicted on the basis of equilibrium partitioning, and whilst other factors can influence this, organic carbon content is a key determining variable. At present for SPs, there is no clear evidence for adverse population-relevant effects with an underlying endocrine mode of action. SPs have been studied intensively in aquatic field studies, and their effects under field conditions are mitigated from those measured in the laboratory by their rapid dissipation and degradation. Studies with a range of test systems have shown consistent aquatic field endpoints across a variety of geographies and trophic states. SPs are also highly toxic to bees and other nontarget arthropods in the laboratory. These effects are mitigated in the field through repellency and dissipation of residues, and recovery from any adverse effects tends to be rapid.

  4. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    Science.gov (United States)

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance.

  5. Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission.

    Science.gov (United States)

    Fotakis, Emmanouil A; Chaskopoulou, Alexandra; Grigoraki, Linda; Tsiamantas, Alexandros; Kounadi, Stella; Georgiou, Loukas; Vontas, John

    2017-10-01

    Greece has been recently affected by several mosquito borne diseases with the West Nile Virus (WNV) outbreak in 2010 being one of the largest reported in Europe. Currently at the epicenter of an economic and refugee crisis and visited by over 16 million tourists a year the integrated management of diseases transmitted by mosquitoes is a public health and economic priority. Vector control programs rely mainly on insecticides, however data on insecticide resistance and the mosquito fauna is essential for successful applications. We determined the mosquito species composition and population dynamics in areas of increased vulnerability to vector borne disease transmission, as well as investigated the resistance status of major nuisance and disease vectors to insecticides. High mosquito densities were recorded in Thessaloniki and Evros, with Aedes caspius, a nuisance species, Culex pipiens, a known vector of WNV and Anopheles hyrcanus a potential vector of malaria being among the most prevalent species. Both vector species populations reached their peak in late summer. Aedes albopictus was recorded at high densities in Thessaloniki, but not in Evros. Notably, Cx. pipiens hybrids, which show an opportunistic biting behavior and are suspected to be involved in the transmission of the WNV, were recorded in considerable numbers in Thessaloniki and Attica. Culex pipiens and An. hyrcanus, but not Ae. caspius mosquitoes, showed moderate levels of resistance to deltamethrin. The presence of resistance in areas not exposed to vector control indicates that other factors could be selecting for resistance, i.e. pesticide applications for agriculture. Both L1014F and L101C kdr mutations were detected in Cx. pipiens populations. Anopheles hyrcanus resistance was not associated with mutations at the L1014 site. The Ace-1 mutations conferring insensitivity to organophosphates and carbamates were detected at low frequencies in all Cx. pipiens populations. Increased activity of P450s and

  6. Evaluation of efficacy of Interceptor(®) G2, a long-lasting insecticide net coated with a mixture of chlorfenapyr and alpha-cypermethrin, against pyrethroid resistant Anopheles gambiae s.l. in Burkina Faso.

    Science.gov (United States)

    Bayili, Koama; N'do, Severin; Namountougou, Moussa; Sanou, Roger; Ouattara, Abdoulaye; Dabiré, Roch K; Ouédraogo, Anicet G; Malone, David; Diabaté, Abdoulaye

    2017-05-08

    Malaria vectors have acquired widespread resistance throughout sub-Saharan Africa to many of the currently used insecticides. Hence, there is an urgent need to develop alternative strategies including the development of new insecticides for effective management of insecticide resistance. To maintain progress against malaria, it is necessary to identify other residual insecticides for mosquito nets. In the present WHOPES phase II analogue study, the utility of chlorfenapyr, a pyrrole class insecticide mixed with alpha-cypermethrin on a long-lasting mosquito bed net was evaluated against Anopheles gambiae s.l. Bed nets treated with chlorfenapyr and alpha-cypermethrin and mixture of both compounds were tested for their efficacy on mosquitoes. Washed (20 times) and unwashed of each type of treated nets and were tested according to WHOPES guidelines. Efficacy of nets were expressed in terms of blood-feeding inhibition rate, deterrence, induced exophily and mortality rate. The evaluation was conducted in experimental huts of Vallée du Kou seven (VK7) in Burkina Faso (West Africa) following WHOPES phase II guidelines. In addition, a WHOPES phase I evaluation was also performed. Mixture treated nets killed significantly (P  0.05) different from nets treated with chlorfenapyr 200 mg/m(2) unwashed (86%). The washed and unwashed nets treated with the mixtures resulted in personal protection against An. gambiae s.l. biting 34 and 44%. In contrast the personal protection observed for washed and unwashed alpha-cypermethrin treated nets generated (14 and 24%), and chlorfenapyr solo treated net was rather low (22%). Among all nets trialled, the combination of chlorfenapyr and alpha-cypermethrin on bed nets provided better mortality in phase II after 20 washes. Results suggest that this combination could be a potential insecticide resistance management tool for preventing malaria transmission in areas compromised by the spread of pyrethroid resistance.

  7. Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus.

    Science.gov (United States)

    Wirth, Margaret C; Walton, William E; Federici, Brian A

    2015-09-01

    Fourth instars of Culex quinquefasciatus (Say) (Diptera: Culicidae) were selected with a recombinant bacterial strain synthesizing the mosquitocidal proteins from Lysinibacillus sphaericus (Bin) and Cry11Ba and Cyt1Aa from Bacillus thuringiensis. Selection was initiated in Generation 1 with a concentration of 0.04 μg/ml, which rose to a maximum selection concentration of 8.0 μg/ml in Generation 14, followed by an unexpected, rapid increase in mortality in Generation 15. Subsequently, a selection concentration of 0.8 μg/ml was determined to be survivable. During this same period, resistance rose to nearly 1,000-fold (by Generation 12) and declined to 18.8-fold in Generation 19. Resistance remained low and fluctuated between 5.3 and 7.3 up to Generation 66. The cross-resistance patterns and interactions among the component proteins were analyzed to identify possible causes of this unusual pattern of evolution. Poor activity in the mid-range concentrations and lower-than-expected synergistic interactions were identified as potential sources of the early resistance. These findings should be considered in the development of genetically engineered strains intended to control nuisance and vector mosquitoes.

  8. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases.

    Science.gov (United States)

    Johnson, Reed M; Wen, Zhimou; Schuler, Mary A; Berenbaum, May R

    2006-08-01

    Honey bees, Apis mellifera L., often thought to be extremely susceptible to insecticides in general, exhibit considerable variation in tolerance to pyrethroid insecticides. Although some pyrethroids, such as cyfluthrin and lambda-cyhalothrin, are highly toxic to honey bees, the toxicity of tau-fluvalinate is low enough to warrant its use to control parasitic mites inside honey bee colonies. Metabolic insecticide resistance in other insects is mediated by three major groups of detoxifying enzymes: the cytochrome P450 monooxygenases (P450s), the carboxylesterases (COEs), and the glutathione S-transferases (GSTs). To test the role of metabolic detoxification in mediating the relatively low toxicity of tau-fluvalinate compared with more toxic pyrethroid insecticides, we examined the effects of piperonyl butoxide (PBO), S,S,S-tributylphosphorotrithioate (DEF), and diethyl maleate (DEM) on the toxicity of these pyrethroids. The toxicity of the three pyrethroids to bees was greatly synergized by the P450 inhibitor PBO and synergized at low levels by the carboxylesterase inhibitor DEF. Little synergism was observed with DEM. These results suggest that metabolic detoxification, especially that mediated by P450s, contributes significantly to honey bee tolerance of pyrethroid insecticides. The potent synergism between tau-fluvalinate and PBO suggests that P450s are especially important in the detoxification of this pyrethroid and explains the ability of honey bees to tolerate its presence.

  9. 淡色库蚊对3种化学杀虫剂交互抗性的实验研究%Experimental study on cross-resistance of Culex pipiens pallens to 3 kinds of chemical pesticides

    Institute of Scientific and Technical Information of China (English)

    蒋滨; 李士根; 全芯; 薛庆节; 谭文彬; 刘永春; 王新国; 王怀位

    2014-01-01

    目的:了解淡色库蚊对常用化学杀虫剂的交互抗性,为合理使用化学杀虫剂提供依据。方法采用WHO生物测定方法,检测淡色库蚊敏感品系和抗敌敌畏、抗残杀威、抗氯氰菊酯3种抗性品系IV龄幼虫分别对敌敌畏、残杀威和氯氰菊酯3种化学杀虫剂的抗性。结果淡色库蚊抗敌敌畏品系对敌敌畏、残杀威和氯氰菊酯3种化学杀虫剂的抗性系数分别为14.47、8.96和207.27,抗残杀威品系对上述3种杀虫剂的抗性系数分别为3.27、6.93和8.65,抗氯氰菊酯品系对3种杀虫剂的抗性系数分别为2.93、1.61和501.11。结论长期使用一种化学杀虫剂易产生抗性,并对其他化学杀虫剂产生不同程度的交互抗性。使用杀虫剂时应注意选择药物品种和剂量,以避免和延缓蚊虫抗药性的产生。%Objective To understand the cross-resistance of Culex pipiens pallens to common pesticides,so as to provide the evidence for improving the application of chemical pesticides. Methods The IV instar larvae of DDVP-resistant,propoxur-resistant and cypermethrin-resistant strains as well as the sensitive strain of Culex pipiens pallens were collected to detect the re-sistance to DDVP,propoxur and cypermethrin based on the WHO bioassay method. Results The resistance coefficients of DDVP-resistant strain to DDVP,propoxur and cypermethrin were 14.47,8.96 and 207.27 respectively. The resistance coeffi-cients of propoxur-resistant strain to DDVP,propoxur and cypermethrin were 3.27,6.93 and 8.65 respectively. The resistance coefficients of cypermethrin-resistant strain to DDVP,propoxur and cypermethrin were 2.93,1.61 and 501.11 respectively. Con-clusion The resistance and cross-resistance could be generated during the long-term application of a single kind of chemical pesticide,and we should pay more attention to the varieties and dosages of them.

  10. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species

    Directory of Open Access Journals (Sweden)

    Montada Dorta Domingo

    1993-01-01

    Full Text Available Three organophosphorus compounds- malathion, folithion and temephos- and two synthetic pyrethroids- alphamethrin and deltamethrin- were used for monitoring the susceptibility status of larvae and adults of six vector mosquitoe species: Culex quinquefasciatus (Filariasis and Aedes albopictus (Dengue (both laboratory and field strains; laboratory strains of Aedes aegypti (Dengue, Anopheles slephensi and Anopheles culicifacies (Malaria, and Culex tritaeniorhynchus (Japanese encephalitis in India. From the LC50 values obtained for these insecticides, it was found that all mosquito species including the field strains of Cx. quinquefasciatus and Ae. albopictus were highly susceptible Except for Cx. quinquefasciatus (field strain against malathion, 100% mortality was observed at the discriminating dosages recommended by World Health Organization. The residual effect of alphamethrin, deltamethrin, malathion and folithion at 25 mg (ai/m² on different surfaces against six species of vector mosquitoes showed that alphamethrin was the most effective on all four treated surfaces (mud, plywood, cement and thatch. Nevertheless, residual efficacy lasted longer on thatch than on the other surfaces. Therefore, synthetic pyrethroids such as alphamethrin can be effectively employed in integrated vector control operations.

  11. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species

    Directory of Open Access Journals (Sweden)

    Domingo Montada Dorta

    1993-12-01

    Full Text Available Three organophosphorus compounds- malathion, folithion and temephos- and two synthetic pyrethroids- alphamethrin and deltamethrin- were used for monitoring the susceptibility status of larvae and adults of six vector mosquitoe species: Culex quinquefasciatus (Filariasis and Aedes albopictus (Dengue (both laboratory and field strains; laboratory strains of Aedes aegypti (Dengue, Anopheles slephensi and Anopheles culicifacies (Malaria, and Culex tritaeniorhynchus (Japanese encephalitis in India. From the LC50 values obtained for these insecticides, it was found that all mosquito species including the field strains of Cx. quinquefasciatus and Ae. albopictus were highly susceptible Except for Cx. quinquefasciatus (field strain against malathion, 100% mortality was observed at the discriminating dosages recommended by World Health Organization. The residual effect of alphamethrin, deltamethrin, malathion and folithion at 25 mg (ai/m² on different surfaces against six species of vector mosquitoes showed that alphamethrin was the most effective on all four treated surfaces (mud, plywood, cement and thatch. Nevertheless, residual efficacy lasted longer on thatch than on the other surfaces. Therefore, synthetic pyrethroids such as alphamethrin can be effectively employed in integrated vector control operations.

  12. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.;

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  13. Properties and applications of pyrethroids.

    Science.gov (United States)

    Elliott, M

    1976-04-01

    Improved understanding of the factors determining the insecticidal activity, the mammalian toxicity, and the stability in air and light of natural and synthetic pyrethroids has led to a series of new compounds with a very favorable combination of properties. Their characteristics include outstanding potency to insects, low toxicity to mammals associated with rapid metabolic breakdown and, in appropriate cases, adequate stability on plant surfaces even in bright sunlight. Initial tests indicate that even the more stable compounds are degraded rapidly in soil, so if the trials at present in progress reveal no toxicological or environmental hazards, within a few years synthetic pyrethroids should be available to control a wide range of domestic, veterinary, horticultural, agricultural, and forest pests at low rates of application.

  14. Knockdown and lethal effects of eight commercial nonconventional and two pyrethroid insecticides against moderately permethrin-resistant adult bed bugs, Cimex lectularius (L.) (Hemiptera: Cimicidae)

    Science.gov (United States)

    The common bed bug, Cimex lectularius (L.) (Hemiptera: Cimicidae) is undergoing a rapid resurgence in the United States during the last decade which has created a notable pest management challenge largely because the pest has developed resistance against DDT, organophosphates, carbamates, and pyreth...

  15. Multiple mutations in the para-sodium channel gene are associated with pyrethroid resistance in Rhipicephalus microplus from the United States and Mexico

    Science.gov (United States)

    Rhipicephalus microplus is an invasive tick vector that transmits the protozoan parasites Babesia bovis and B. bigemina, the causative agents of bovine babesiosis (cattle fever). Acaricide resistant R. microplus populations have become a major problem for many cattle producing areas of the world. Py...

  16. Resmethrin, the first modern pyrethroid insecticide.

    Science.gov (United States)

    Soderlund, David M

    2015-06-01

    The discovery of resmethrin almost five decades ago was the seminal event in the development of pyrethroid insecticides as important pest management tools, the value of which endures to this day. This brief review considers the development of pyrethroids from the perspective of the discovery of resmethrin. I describe the pathway to the discovery of resmethrin and the unique properties that differentiated it from the pyrethrins and earlier synthetic pyrethroids is described. I also summarize information on metabolic fate and mechanisms of selective toxicity, first elucidated with resmethrin, that have shaped our understanding of pyrethroid toxicology since that time. Finally, I review the discovery pathway that led from resmethrin to the development of the first photostable, agriculturally useful pyrethroids that established the importance of this insecticide class.

  17. 天津市2010年蚊蝇抗药性监测%Surveillance of the resistance of Culex pipiens pallens and Musca domestica to insecticides in Tianjin in 2010

    Institute of Scientific and Technical Information of China (English)

    吴彤宇; 张咏梅; 张静; 秦娜; 王伟; 李培羽; 李今越; 郝连义

    2012-01-01

    目的 了解天津市蚊、蝇对常用杀虫剂的抗药性,为科学合理使用杀虫剂提供依据.方法 选择6个区(县)作为监测点,分别用浸渍法和点滴法测定淡色库蚊和家蝇的抗药性.结果 天津市蚊、蝇对常用杀虫剂均产生了一定的抗性,淡色库蚊对DDVP、溴氰菊酯、高效氯氰菊酯、双硫磷和仲丁威的平均相对抗性分别为61.49、13.08、3.72、5.03和17.84倍;家蝇对DDVP、高效氯氰菊酯、溴氰菊酯、残杀威、氯菊酯的平均抗性分别为9.49、58.44、11.24、2.66和2.95倍.结论 各地应根据抗药性监测结果,合理应用杀虫剂,积极提倡综合防制,有效开展灭蚊、蝇工作.%Objective To study the resistance of Culex pipiens pollens and Musca domestica to insecticides in Tianjin in order to provide the basis for better use of insecticides. Methods Six districts(counties) of Tianjin were selected as the surveillance sites. The resistance of mosquitoes to insecticides was evaluated by dipping method, with the topical application method used for the detection of the resistance of houseflies. Results It was found that Cx. Pipiens pattens and M. Domestica in Tianjin were resistant to insecticides to a certain extent. The mean relative resistance of Cx. Pipiens pallens to DDVP, deltaMethri, (3 -Cypermethrin, parathion and fenobucarb were 61.49, 13.08, 3.72, 5.03 and 17.84, respectively, and that of M. Domestica to DDVP, (3-Cypermethrin, deltamethri, propoxur and permethin were 9.49, 58.44, 11.24, 2.66 and 2.95, respectively. Conclusion The resistance of Cx. Pipiens pallens and M. Domestica to different insecticides varies and the surveillance results should be a guidance for the reasonable use of the insecticides for better control of the insects.

  18. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    NARCIS (Netherlands)

    Howard, A.F.V.; N'Guessan, R.; Koenraadt, C.J.M.; Asidi, A.; Farenhorst, M.; Akogbéto, M.; Thomas, M.B.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that

  19. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    NARCIS (Netherlands)

    Howard, A.F.V.; N'Guessan, R.; Koenraadt, C.J.M.; Asidi, A.; Farenhorst, M.; Akogbeto, M.; Thomas, M.B.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background: Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show tha

  20. Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations

    Science.gov (United States)

    OCHOMO, E.; BAYOH, M. N.; BROGDON, W. G.; GIMNIG, J. E.; OUMA, C.; VULULE, J. M.; WALKER, E. D.

    2016-01-01

    Field and laboratory investigations revealed phenotypic, target site and metabolic resistance to permethrin in an Anopheles gambiae s.s. (Diptera: Culicidae) population in Bungoma District, a region in western Kenya in which malaria is endemic and rates of ownership of insecticide-treated bednets are high. The sensitivity of individual An. gambiae s.l. females as indicated in assays using World Health Organization (WHO) test kits demonstrated reduced mortality in response to permethrin, deltamethrin and bendiocarb. Estimated time to knock-down of 50% (KDT50) of the test population in Centers for Disease Control (CDC) bottle bioassays was significantly lengthened for the three insecticides compared with that in a susceptible control strain. Anopheles arabiensis from all three sites showed higher mortality to all three insecticides in the WHO susceptibility assays compared with the CDC bottle assays, in which they showed less sensitivity and longer KDT50 than the reference strain for permethrin and deltamethrin. Microplate assays revealed elevated activity of β-esterases and oxidases, but not glutathione-S-transferase, in An. gambiae s.s. survivors exposed to permethrin in bottle bioassays compared with knocked down and unexposed individuals. No An. arabiensis showed elevated enzyme activity. The 1014S kdr allele was fixed in the Bungoma An. gambiae s.s. population and absent from An. arabiensis, whereas the 1014F kdr allele was absent from all samples of both species. Insecticide resistance could compromise vector control in Bungoma and could spread to other areas as coverage with longlasting insecticide-treated bednets increases. PMID:22861380

  1. Redescription of the pupa of Culex salinarius Coquillett and comparison with Culex nigripalpus Theobald.

    Science.gov (United States)

    Darsie, Richard F; Day, Jonathan F

    2006-09-01

    The pupa of Culex salinarius is redescribed with updated chaetotaxal nomenclature and a full illustration. The pupal chaetotaxy of Cx. salinarius and the similar species Culex nigripalpus is compared.

  2. 淡色库蚊幼虫对7种杀虫剂的敏感性和抗性调查%Survey on the sensitivity and resistance of Culex pipiens pallens larva to seven kinds of insecticide

    Institute of Scientific and Technical Information of China (English)

    陈志龙; 陈东亚; 刘慧; 杨维芳; 褚宏亮; 刘大鹏; 张爱军; 徐燕; 孙俊

    2011-01-01

    Objective To investigate the resistance of Culex pipiens pallens larva to insecticides in Jiangsu Province and provide scientific evidence for control. Methods Larva immersion method. Results The lab population was the most susceptive with LC50 of 0.001 3 mg/L to deltamethrin, 0.003 8 mg/L to beta -cypermethrin, 0.027 7 mg/L to permethrin, 0. 181 3 mg/L to esbiothrin,0. 018 3 mg/L to DDVP, 0.096 8 mg/L to propoxur and 0. 000 4 mg/L to temephos. The highest resistance ratio of insecticide was 200 in Nanjing, Xuzhou, Lianyungang and Wuxi. Conclusion In Jiangsu Province C. pipens pallens have developed different resistance to DDVP, temephos, deltamethrin, beta - cypermethrin and propoxur. It is necessary to use the result of survey to prevent the resistance from developing.%目的 为了解江苏省淡色库蚊幼虫对卫生杀虫剂的敏感性和抗药性发生发展状况进行生物学抗性调查.方法 幼虫浸渍法.结果 实验室淡色库蚊幼虫对溴氰菊酯、高效氯氰菊酯、氯菊酯、生物丙烯菊酯、敌敌畏、残杀威和双硫磷幼虫敏感性LC50分别为0.001 3、0.003 8、0.027 7,0.181 3、0.018 3、0.096 8、0.000 4 mg/L.南京、徐州、连云港和无锡等地蚊虫幼虫抗性分别是敏感品系的数倍到200倍不等.结论 江苏省淡色库蚊幼虫对敌敌畏、双硫磷、溴氰菊酯、高效氯氰菊酯和残杀威等杀虫剂均产生不同程度的抗性.抗性调查的结果为指导江苏省蚊虫防治以及合理使用卫生杀虫剂提供科学依据.

  3. Culex (Culex) declarator, a mosquito species new to Florida.

    Science.gov (United States)

    Darsie, Richard F; Shroyer, Donald A

    2004-09-01

    One specimen of a mosquito new to Florida, Culex declarator, was first found in 1998 in Indian River County. A 2nd specimen was collected in 2002. Beginning in September 2003, Cx. declarator adults were regularly encountered in routine mosquito surveillance sampling, with more than 300 specimens appearing in 45 collections. Prior to our find, the U.S. distrubution was thought to be restricted to south Texas. The full extent of this species' distribution in Florida has yet to be determined.

  4. Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides.

    Science.gov (United States)

    Coppin, Chris W; Jackson, Colin J; Sutherland, Tara; Hart, Peter J; Devonshire, Alan L; Russell, Robyn J; Oakeshott, John G

    2012-05-01

    Esterases have been implicated in metabolic resistance to synthetic pyrethroids in several insect species but little is yet known of the molecular basis for these effects. In this work modern directed evolution technology was used to test to what extent it is possible to genetically enhance the pyrethroid hydrolytic activity of the E3 carboxylesterase from the blowfly Lucilia cuprina. High throughput screening of a random mutant library with individual stereoisomers of fluorogenic analogues of two type II pyrethroids identified 17 promising variants that were then also tested with the commercial pyrethroid deltamethrin. Between them, these variants displayed significantly improved activities for all the substrates tested. Amino acid substitutions at ten different residues were clearly implicated in the improvements, although most only enhanced activity for a subset of the stereoisomers. Several new combinations of the most promising amino acid substitutions were then made, and negative epistatic effects were found in most of the combinations, but significant improvements were also found in a minority of them. The best mutant recovered contained three amino acid changes and hydrolysed deltamethrin at more than 100 times the rate of wild-type E3. Structural analysis shows that nine of the ten mutated residues improving pyrethroid or analogue activities cluster in putative substrate binding pockets in the active site, with the three mutations of largest effect all increasing the volume of the acyl pocket.

  5. Pyrethroid toxicity in silver catfish, Rhamdia quelen

    Directory of Open Access Journals (Sweden)

    Francisco P. Montanha

    2012-12-01

    . Concerning the sublethal and lethal concentrations, Silver Catfish was sensitive to the tested concentrations of Cypermethrin, showing symptoms of poisoning, such as loss of balance, swimming alteration, dyspnea (they kept their mouths and opercula open, upright swimming and sudden spiral swimming movements. The intensity of such symptoms varied in proportion to the concentration used. The concentrations above 3.0mg/L were considered lethal to the species, since every animal exposed to concentrations between 3.0 and 20.0mg/L had died, while concentrations between 1.0 and 2.5mg/L were considered sublethal. Lethal concentration of Cypermethrin to Silver catfish, in 96 hours, was 1.71 milligram per liter of water. Concerning the sublethal concentration of Cypermethrin and Deltamethrin during the initial embryonic development, the results show that both pyrethroids had significantly decreased the analyzed parameters when comparing them with the control group. It was concluded that, even with the fish being more resistant to pyrethroids in comparison with other species, both the young animals and the ones in stage of embryonic development were susceptible to the effects of these pesticides.

  6. The cross-resistance of DDVP-resistant and cypermethrin-resistant strains of Culex pipiens pallens to the common chemical pesticides%淡色库蚊敌敌畏抗性和氯氰菊酯抗性品系对常用化学杀虫剂的交互抗性

    Institute of Scientific and Technical Information of China (English)

    李向东; 李士根; 章洪华; 刘永春; 王新国; 王怀位

    2015-01-01

    Objective To investigate the cross-resistance of Culex pipiens pallens to common pesticidesso as to provide a basis for the rational use of chemical pesticides.Methods The sensitivity of sensitive,dichlorvos (DDVP)-resistant and cypermethrin-resistant strains of Culex pipiens pallens Ⅳ instar larvae to six common chemical pesticides (acetofenate,DDVP,malathion,propoxur,cypermethrin and deltamethrin) was detected based on WHO bioassay method.Seven concentrations were set up for each experiment.Two groups were set up for each concentration and each group had 25 larvae.The dead larvae were detected after 24 h exposure.The median lethal concentration (LC50),regression equations and resistance indices were then calculated.Results The LC50 of DDVP-resistant strain of Culex pipiens pallens to acetofenate,DDVP,malathion,propoxur,eypermethrin and deltamethrin were 1.962 3 mg/L,1.160 7 mg/L 0.735 9 mg/L,0.900 2 mg/L,0.022 0 mg/L and 0.000 1 mg/L respectively.And the regression equations for them were Y=3.528 7+ 5.025 4X,Y=4.696 2+4.693 7X,Y=5.505 1+3.853 6X,Y=5.235 0+5.147 6X,Y=10.499 5+3.318 4X and Y=13.297 7+2.168 3Xrespectively.The resistance indices for them were 9.25,12.17,9.14,7.93,183.47 and 0.71respectively.The LC50 of cypermethrin-resistant strain of Culex pipiens pallens to acetofenate,DDVP,malathion,propoxur,cypermethrin and deltamethrin were 5.572 8 mg/L,0.246 4 mg/L,0.089 2 mg/L,0.202 7 mg/L,0.064 1 mg/L and 0.008 5 mg/Lrespectively.The regression equations for them were Y=2.772 8+2.985 2X,Y=7.205 4+3.626 0X,Y=9.475 1+4.263 5X,Y=6.810 6+2.612 5X,Y=8.740 4+3.135 2X and Y=14.695 1+4.685 3X respectively.The resistance indices for them were 26.27,2.58,1.10,1.79,534.31 and 40.60 respectively.Conclusion Mosquito will generate resistance when using one kind of chemical pesticide in a long time.It will also generate different levels of cross-resistance to other pesticides.So when using chemical pesticides,we should take measures such as rationally selecting chemical

  7. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2008-12-01

    Full Text Available Abstract Background Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes and developing various biotechnological applications. Results The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45–49%. The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3

  8. Synergy between repellents and non-pyrethroid insecticides strongly extends the efficacy of treated nets against Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    N'Guessan Raphaël

    2007-03-01

    Full Text Available Abstract Background To manage the kdr pyrethroid-resistance in Anopheline malaria vectors, new compounds or new strategies are urgently needed. Recently, mixing repellents (DEET and a non-pyrethroid insecticide (propoxur was shown to be as effective as deltamethrin, a standard pyrethroid, under laboratory conditions, because of a strong synergy between the two compounds. In the present study, the interactions between two repellents (DEET and KBR 3023 and a non-pyrethroid insecticide (pyrimiphos methyl or PM on netting were investigated. The residual efficacy and the inhibition of blood feeding conferred by these mixtures were assessed against Anopheles gambiae mosquitoes. Methods DEET and KBR 3023 were mixed with pyrimiphos methyl (PM, a organophosphate (OP insecticide. The performance of mono- and bi-impregnated nets against adult mosquitoes was assessed using a miniaturized, experimental hut system (laboratory tunnel tests that allows expression of behavioural responses to insecticide, particularly the mortality and blood feeding effects. Results Both mixtures (PM+DEET and PM+KBR3023 induced 95% mortality for more than two months compared with less than one week for each compound used alone, then reflecting a strong synergy between the repellents and PM. A similar trend was observed with the blood feeding rates, which were significantly lower for the mixtures than for each component alone. Conclusion Synergistic interactions between organophosphates and repellents may be of great interest for vector control as they may contribute to increase the residual life of impregnated materials and improve the control of pyrethroid-resistance mosquitoes. These results prompt the need to evaluate the efficacy of repellent/non-pyrethroid insecticide mixtures against field populations of An. gambiae showing high level of resistance to Ops and pyrethroids.

  9. Pyrethroid susceptibility of malaria vectors in four Districts of western Kenya.

    Science.gov (United States)

    Ochomo, Eric; Bayoh, Nabie M; Kamau, Luna; Atieli, Francis; Vulule, John; Ouma, Collins; Ombok, Maurice; Njagi, Kiambo; Soti, David; Mathenge, Evan; Muthami, Lawrence; Kinyari, Teresa; Subramaniam, Krishanthi; Kleinschmidt, Immo; Donnelly, Martin James; Mbogo, Charles

    2014-07-04

    Increasing pyrethroid resistance in malaria vectors has been reported in western Kenya where long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the mainstays of vector control. To ensure the sustainability of insecticide-based malaria vector control, monitoring programs need to be implemented. This study was designed to investigate the extent and distribution of pyrethroid resistance in 4 Districts of western Kenya (Nyando, Rachuonyo, Bondo and Teso). All four Districts have received LLINs while Nyando and Rachuonyo Districts have had IRS campaigns for 3-5 years using pyrethroids. This study is part of a programme aimed at determining the impact of insecticide resistance on malaria epidemiology. Three day old adult mosquitoes from larval samples collected in the field, were used for bioassays using the WHO tube bioassay, and mortality recorded 24 hours post exposure. Resistance level was assigned based on the 2013 WHO guidelines where populations with Kenya. This resistance does not seem to be associated with either species or location. Insecticide resistance can vary within small geographical areas and such heterogeneity may make it possible to evaluate the impact of resistance on malaria and mosquito parameters within similar eco-epidemiological zones.

  10. Potential use of Piper nigrum ethanol extract against pyrethroid-resistant Aedes aegypti larvae Utilização em potencial do extrato alcoólico de Piper nigrum como larvicida em Aedes aegypti resistente a piretróides

    Directory of Open Access Journals (Sweden)

    Naomi Kato Simas

    2007-08-01

    Full Text Available Fractionation of Piper nigrum ethanol extract, biomonitored by assays on pyrethroid-resistant Aedes aegypti larvae yielded isolation of the larvicidal amides piperolein-A and piperine. Comparing LC50 values, the ethanol extract (0. 98 ppm was the most toxic, followed by piperolein-A (1. 46ppm and piperine (1. 53ppm.O fracionamento do extrato etanólico de Piper nigrum biomonitorado por ensaios em larvas de Aedes aegypti resistentes a piretróides resultou no isolamento das amidas larvicidas piperoleína-A e piperina. Comparando-se os valores de CL50, o extrato etanólico (0. 98ppm foi o mais tóxico, seguido pela piperoleína-A (1. 46ppm e piperina (1. 53ppm.

  11. Study on the biological characteristics of Culex pipiens pallens resistance to cypermethrin and susceptibility of the species at different temperatures%温度对抗氯氰菊酯和敏感品系淡色库蚊生物学特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘贵献; 代玉华; 杨秋兰; 程鹏; 王海防; 刘丽娟; 赵玉强; 王怀位; 公茂庆

    2011-01-01

    Objective To compare the biological characteristics of Culex pipiens pallens resistance to cypermethrin and susceptibility of the species at different temperatures in the laboratory.Methods The growth, reproduction, and life expectancy of two mosquito populations were observed under laboratory conditions at different temperatures (17 ℃, 25 ℃, and 28 ℃ ).Results Culex pipiens pallens had a longer life span at 17 ℃ than at 28 ℃.At the same temperature,adult mosquitoes that were resistant to cypermethrin had a shorter lifespan and quicker development of eggs, larvae, and pupae than did mosquitoes that were susceptible to cypermethrin; differences between resistant and susceptible populations were significant.Mosquito larvae that were susceptible to cypermethrin had a higher mortality rate; differences between resistant and susceptible populations were significant.Conclusion Culex pipiens pallens resistance to cypermethrin results in diminished ability to adapt to environments with different temperatures.%目的 比较实验室内不同温度下淡色库蚊氯氰菊酯抗性品系和敏感品系的生物学特性变化.方法 在17、25和28℃3个不同温度条件下饲养两品系蚊幼虫,观察蚊虫的繁殖、发育及平均寿命等生物学特性.结果 淡色库蚊在17℃条件下发育慢,历期长;在28℃条件下发育快,历期短.同一温度下抗性品系蚊卵、幼虫和蛹的发育历期及成虫寿命均低于敏感品系,卵期死亡率高于敏感品系.结论 淡色库蚊抗氯氰菊酯品系在不同温度下与敏感品系比较均表现出环境适应能力下降.

  12. Isotherapic of Culex on the biological cycle of the mosquito Culex sp

    OpenAIRE

    Bruno Reis; Cintia Miranda dos Santos; Patrícia Aparecida Mançano Cavalca; Carlos Moacir Bonato

    2011-01-01

    Introduction: Culex is an insect of the family Culicidae. It occurs in tropical and subtropical regions. It is known as the domestic mosquito. Their larvae develop in stagnant and dirty water, with plenty of organic matter. Some species of the insect such as Culex quinquefasciatus transmit the worms (helminths) called Wuchereria bancrofti filariasis or Elephantiasis. Aims: Thus, the objective of this work was to evaluate the effect of isotherapic of Culex on the biological cycle of...

  13. Laboratory evaluation of selected larvicides and insect growth regulators against field-collected Culex quinquefasciatus larvae from urban Dhaka, Bangladesh.

    Science.gov (United States)

    Ali, A; Chowdhury, M A; Hossain, M I; Mahmud-Ul-Ameen; Habiba, D B; Aslam, A F

    1999-03-01

    Five organophosphates (OPs) (chlorpyrifos, chlorpyrifos methyl, fenthion, malathion, and temephos), 3 pyrethroids (bifenthrin, cypermethrin, and permethrin), 1 phenyl pyrazole (fipronil), 2 microbial pesticides (Bacillus thuringiensis serovar. israelensis [B.t.i.] and Bacillus sphaericus), and 3 insect growth regulators (IGRs) (diflubenzuron, methoprene, and pyriproxyfen) were evaluated against field-collected Culex quinquefasciatus larvae from urban Dhaka, Bangladesh. The LC90 values of all OPs, except for temephos (LC90 = 0.0096 ppm), were high, ranging from 0.13 ppm (fenthion) to 2.882 ppm (chlorpyrifos methyl). Pyrethroid LC90 values were 0.021 ppm (bifenthrin), 0.00061 (cypermethrin), and 0.017 ppm (permethrin). Fipronil exhibited a superior activity with LC90 value of 0.000896 ppm. Technical powders of B.t.i. and B. sphaericus (VectoBac TP and VectoLex TP) were considered highly effective against the Cx. quinquefasciatus larvae. The IGRs also were effective with pyriproxyfen (LC90 = 0.0011 ppm), being 3 times and 47 times more active than diflubenzuron (LC90 = 0.0034 ppm) and methoprene (LC90 = 0.052 ppm), respectively. In general, toxicity ranking of chemicals and microbials tested was phenyl pyrazole > IGRs > pyrethroids > microbials > OPs.

  14. Recent advances of pyrethroids for household use.

    Science.gov (United States)

    Ujihara, Kazuya; Mori, Tatsuya; Matsuo, Noritada

    2012-01-01

    Development of pyrethroids for household use and recent advances in the syntheses of (1R)-trans-chrysanthemic acid, the acid moiety of most of the household pyrethroids, are reviewed. As another important acid moiety, we discovered norchrysanthemic acid to have a significant vapor action at room temperature when esterified with fluorobenzyl alcohols. In particular, 2,3,5,6-tetrafluoro-4-methoxymethylbenzyl (1R)-trans-norchrysanthemate (metofluthrin) exhibits the highest potency in mosquito coil formulations as well as the vapor action at room temperature against various mosquitoes. Structure-activity relationships of norchrysanthemic acid esters and synthetic studies of norchrysanthemic acid are discussed.

  15. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin.

    Science.gov (United States)

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  16. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    Science.gov (United States)

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  17. Culex Species Mosquitoes and Zika Virus.

    Science.gov (United States)

    Huang, Yan-Jang S; Ayers, Victoria B; Lyons, Amy C; Unlu, Isik; Alto, Barry W; Cohnstaedt, Lee W; Higgs, Stephen; Vanlandingham, Dana L

    2016-10-01

    Recent reports of Zika virus (ZIKV) isolates from Culex species mosquitoes have resulted in concern regarding a lack of knowledge on the number of competent vector species for ZIKV transmission in the new world. Although observations in the field have demonstrated that ZIKV isolation can be made from Culex species mosquitoes, the detection of ZIKV in these mosquitoes is not proof of their involvement in a ZIKV transmission cycle. Detection may be due to recent feeding on a viremic vertebrate, and is not indicative of replication in the mosquito. In this study, susceptibility of recently colonized Culex species mosquitoes was investigated. The results showed a high degree of refractoriness among members of Culex pipiens complex to ZIKV even when exposed to high-titer bloodmeals. Our finding suggests that the likelihood of Culex species mosquitoes serving as secondary vectors for ZIKV is very low, therefore vector control strategies for ZIKV should remain focused on Aedes species mosquitoes. Our demonstration that Culex quinquefasciatus from Vero Beach, FL, is refractory to infection with ZIKV is especially important and timely. Based on our data, we would conclude that the autochthonous cases of Zika in Florida are not due to transmission by C. quinquefasciatus, and so control efforts should focus on other species, logically Aedes aegypti and Aedes albopictus.

  18. Physical conditions affecting pyrethroid toxicity in arthropods.

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.A.J.M.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect model. In

  19. Is cumulated pyrethroid exposure associated with prediabetes?

    DEFF Research Database (Denmark)

    Hansen, Martin Rune; Jørs, Erik; Lander, Flemming;

    2014-01-01

    , cumulative exposure) was assessed from questionnaire data. Participants were asked about symptoms of diabetes. Blood samples were analyzed for glycosylated hemoglobin (HbA1c), a measure of glucose regulation. No association was found between pyrethroid exposure and diabetes symptoms. The prevalence...

  20. Biannual monitoring of pyrethroid and neonicotinoid susceptibility in Danish pollen beetle (Meligethes aeneus F.) populations

    DEFF Research Database (Denmark)

    Kaiser, Caroline; Kristensen, Michael; Jensen, Karl-Martin Vagn

    2015-01-01

    The pollen beetle (Meligethes aeneus F.) is a serious pest in the northern countries in oilseed rape. To determine the present level of pyrethroid and neonicotinoid susceptibility of Danish pollen beetle populations, standardized methods recommended by IRAC (Insecticide Resistance Action Committee......) were used. Pollen beetle populations were collected from 47 locations of Denmark with the help of the consultants and the farmers of the various regions in 2014. Further six populations were tested from Sweden and one from Germany. In the following year 2015, the monitoring continued to find out......, if the resistance level which was determined in 2014 was stable in selected regions. Therefore pollen beetle populations from 14 locations in Denmark and five locations in Germany have been tested. For all tests the standardised methods for pyrethroids, the Adult-vial-test No. 11 and the Adult-vials-test No. 21...

  1. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

    Directory of Open Access Journals (Sweden)

    Fan Xinjiong

    2012-03-01

    Full Text Available Abstract Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3 in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg. The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most

  2. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments.

  3. Spectroscopic studies on the photochemical decarboxylation mechanisms of synthetic pyrethroids.

    Science.gov (United States)

    Suzuki, Yusuke; Ishizaka, Shoji; Kitamura, Noboru

    2012-12-01

    A novel radical trapping technique combined with a fluorescence spectroscopic analysis has been employed to investigate the radical intermediates produced by photodecarboxylation of four synthetic pyrethroids: fenvalerate (SMD), fenpropathrin (DTL), cyphenothrin (GKL), and cypermethrin (AGT). Under photoirradiation at >290 nm, all pyrethroids underwent direct photolysis via homolytic cleavage of the carbon-oxygen bonds in the ester groups. The consumed amount of a nitroxide free radical, as a trapping agent for the intermediate radical of a pyrethroid, was determined by ESR, which was the measure of the reaction yield of a photochemically generated α-cyano-3-phenoxybenzyl radical common to all pyrethroids. The reactivities of the pyrethroids studied was in the sequence of SMD > DTL > GKL > AGT. Furthermore, nanosecond transient absorption spectroscopy demonstrated that geminate recombination of the radical pair within a solvent cage is the main deactivation route of the photochemically generated α-cyano-3-phenoxybenzyl radical common for all pyrethroids studied.

  4. Using a near-infrared spectrometer to estimate the age of anopheles mosquitoes exposed to pyrethroids.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu

    Full Text Available We report on the accuracy of using near-infrared spectroscopy (NIRS to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210. Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.

  5. Which intervention is better for malaria vector control: insecticide mixture long-lasting insecticidal nets or standard pyrethroid nets combined with indoor residual spraying?

    Science.gov (United States)

    Ngufor, Corine; Fagbohoun, Josias; Critchley, Jessica; N'Guessan, Raphael; Todjinou, Damien; Malone, David; Akogbeto, Martin; Rowland, Mark

    2017-08-16

    Malaria control today is threatened by widespread insecticide resistance in vector populations. The World Health Organization (WHO) recommends the use of a mixture of unrelated insecticides for indoor residual spraying (IRS) and long-lasting insecticidal nets (LNs) or as a combination of interventions for improved vector control and insecticide resistance management. Studies investigating the efficacy of these different strategies are necessary. The efficacy of Interceptor(®) G2 LN, a newly developed LN treated with a mixture of chlorfenapyr (a pyrrole) and alpha-cypermethrin (a pyrethroid), was compared to a combined chlorfenapyr IRS and Interceptor(®) LN (a standard alpha-cypermethrin LN) intervention in experimental huts in Cove Southern Benin, against wild, free-flying, pyrethroid-resistant Anopheles gambiae s.l. A direct comparison was also made with a pyrethroid-only net (Interceptor(®) LN) alone and chorfenapyr IRS alone. WHO resistance bioassays performed during the trial demonstrated a pyrethroid resistance frequency of >90% in the wild An. gambiae s.l. from the Cove hut site. Mortality in the control (untreated net) hut was 5%. Mortality with Interceptor(®) LN (24%) was lower than with chlorfenapyr IRS alone (59%, P chlorfenapyr IRS intervention and the mixture net (Interceptor(®) G2 LN) provided significantly higher mortality rates (73 and 76%, respectively) and these did not differ significantly between both treatments (P = 0.15). Interceptor LN induced 46% blood-feeding inhibition compared to the control untreated net, while chlorfenapyr IRS alone provided none. Both mixture/combination strategies also induced substantial levels of blood-feeding inhibition (38% with combined interventions and 30% with Interceptor(®) G2 LN). A similar trend of improved mortality of pyrethroid-resistant An. gambiae s.l. from Cove was observed with Interceptor(®) G2 LN (79%) compared to Interceptor LN (42%, P chlorfenapyr and alpha-cypermethrin together as a

  6. Biological control of Culex (Culex) saltanensis Dyar, (Diptera, Culicidae) through Bacillus thuringiensis israelensis in laboratory and field conditions

    National Research Council Canada - National Science Library

    João A. C. Zequi; José Lopes

    2007-01-01

    .... thuringiensis israelensis is highly efficient in the control of this mosquito in natural environment with a high level of polluants using the concentration of 2 liters/hectare, with applications every 15 days. Culex (Culex...

  7. Pyrethroid as a Substance of Abuse

    Directory of Open Access Journals (Sweden)

    Pravesh Sharma

    2014-01-01

    Full Text Available This is a case of a 22-year-old Hispanic male with a history of bipolar disorder and methamphetamine dependence who was admitted after presenting with suicidal ideations by slashing his throat with a machete. The patient had been smoking and inhaling “processed” pyrethroid for about eight weeks as an inexpensive methamphetamine substitute. He reported experiencing a “rush” similar to methamphetamine after using pyrethroid from liquid insecticide that had been heated (electrocuted or sprayed on hot metal sheets until it crystallized. The patient presented with no significant physical markings or findings but claimed to have his suicidal ideations precipitated by concerns of ill effects of pyrethroid on his health. He also had positive urine drug screen for methamphetamine, which he admitted to using on the day of admission. We conclude that it is important for physicians to maintain a high level of suspicion for alternate and uncommon substances of abuse as well as risks for suicidal tendencies in these patients.

  8. Discriminating lethal concentrations and efficacy of six pyrethroids for control of Aedes aegypti in Thailand.

    Science.gov (United States)

    Juntarajumnong, Waraporn; Pimnon, Sunthorn; Bangs, Michael J; Thanispong, Kanutcharee; Chareonviriyaphap, Theeraphap

    2012-03-01

    Establishing baseline insecticide discriminating doses is crucial in accurately determining susceptibility status and changing temporal patterns of physiological response in mosquito populations. Pyrethroids are the predominant chemicals used for controlling adult Aedes aegypti and Ae. albopictus, both vectors of dengue viruses, in Thailand. Presently, only 2 pyrethroids, permethrin and lambda-cyhalothrin, have published diagnostic dose rates for monitoring Ae. aegypti. This study established the diagnostic lethal concentrations for 6 different pyrethroids available in Thailand for dengue vector control. United States Department of Agriculture insecticide-susceptible strain of Ae. aegypti was used to establish the baseline concentrations for subsequent susceptibility testing of field populations. Our findings showed lower discriminating concentrations for lambda-cyhalothrin and permethrin than those recommended by the World Health Organization (WHO), at 2.5- and 1.7-fold lower dosing, respectively. The susceptibility status of 3 different geographical populations of field-collected Ae. aegypti were tested using the standard WHO procedures. All 3 field strains demonstrated varying levels of physiological resistance to each compound. We conclude that establishing the baseline diagnostic concentration of an insecticide is of paramount importance in accurately determining the susceptibility status in field-collected mosquitoes. If possible, discriminating doses should be established for all insecticides and test assays run concurrently with a known susceptible strain for more accurate monitoring of resistance in mosquito populations in Thailand.

  9. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    Science.gov (United States)

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  10. Studies of the genus Culex in Florida II. Redescription of the fourth instar of Culex nigripalpus.

    Science.gov (United States)

    Darsie, Richard F; Day, Jonathan F

    2004-06-01

    The fourth instar of Culex nigripalpus is described in detail and completely illustrated for the 1st time as compared with previous descriptions of the larva of Cx. nigripalpus. Certain important features are shown in the figure.

  11. Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into differences in substrate selectivity

    Directory of Open Access Journals (Sweden)

    Rongnoparut Pornpimol

    2011-09-01

    Full Text Available Abstract Background Cytochrome P450 enzymes (P450s have been implicated in insecticide resistance. Anopheles minumus mosquito P450 isoforms CYP6AA3 and CYP6P7 are capable of metabolizing pyrethroid insecticides, however CYP6P8 lacks activity against this class of compounds. Findings Homology models of the three An. minimus P450 enzymes were constructed using the multiple template alignment method. The predicted enzyme model structures were compared and used for molecular docking with insecticides and compared with results of in vitro enzymatic assays. The three model structures comprise common P450 folds but differences in geometry of their active-site cavities and substrate access channels are prominent. The CYP6AA3 model has a large active site allowing it to accommodate multiple conformations of pyrethroids. The predicted CYP6P7 active site is more constrained and less accessible to binding of pyrethroids. Moreover the predicted hydrophobic interface in the active-site cavities of CYP6AA3 and CYP6P7 may contribute to their substrate selectivity. The absence of CYP6P8 activity toward pyrethroids appears to be due to its small substrate access channel and the presence of R114 and R216 that may prevent access of pyrethroids to the enzyme heme center. Conclusions Differences in active site topologies among CYPAA3, CYP6P7, and CYP6P8 enzymes may impact substrate binding and selectivity. Information obtained using homology models has the potential to enhance the understanding of pyrethroid metabolism and detoxification mediated by P450 enzymes.

  12. Unexpected Failures to Control Chagas Disease Vectors With Pyrethroid Spraying in Northern Argentina

    Science.gov (United States)

    Gurevitz, J. M.; Gaspe, M. S.; Enríquez, G. F.; Vassena, C. V.; Alvarado-Otegui, J. A.; Provecho, Y. M.; Mougabure Cueto, G. A; Picollo, M. I.; Kitron, U.; Gürtler, R. E.

    2013-01-01

    Effectiveness of the elimination efforts against Triatoma infestans (Klug) in South America through residual application of pyrethroid insecticides has been highly variable in the Gran Chaco region. We investigated apparent vector control failures after a standard community-wide spraying with deltamethrin SC in a rural area of northeastern Argentina encompassing 353 houses. Insecticide spraying reduced house infestation less than expected: from 49.5% at baseline to 12.3 and 6.7% at 4 and 8 mo postspraying, respectively. Persistent infestations were detected in 28.4% of houses, and numerous colonies with late-stage bugs were recorded after the interventions. Laboratory bioassays showed reduced susceptibility to pyrethroids in the local bug populations. Eleven of 14 bug populations showed reduced mortality in diagnostic dose assays (range, 35 ± 5% to 97 ± 8%) whereas the remainder had 100% mortality. A fully enclosed residual bug population in a large chicken coop survived four pyrethroid sprays, including two double-dose applications, and was finally suppressed with malathion. The estimated resistance ratio of this bug population was 7.17 (range, 4.47–11.50). Our field data combined with laboratory bioassays and a residual foci experiment demonstrate that the initial failure to suppress T. infestans was mainly because of the unexpected occurrence of reduced susceptibility to deltamethrin in an area last treated with pyrethroid insecticides 12 yr earlier. Our results underline the need for close monitoring of the impact of insecticide spraying to provide early warning of possible problems due to enhanced resistance or tolerance and determine appropriate responses. PMID:23270166

  13. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae)

    Science.gov (United States)

    El-Akhal, Fouad; Guemmouh, Raja; Ez Zoubi, Yassine; El Ouali Lalami, Abdelhakim

    2015-01-01

    Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens. PMID:26640701

  14. Larvicidal Activity of Nerium oleander against Larvae West Nile Vector Mosquito Culex pipiens (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Fouad El-Akhal

    2015-01-01

    Full Text Available Background. Outbreaks of the West Nile virus infection were reported in Morocco in 1996, 2003, and 2010. Culex pipiens was strongly suspected as the vector responsible for transmission. In the North center of Morocco, this species has developed resistance to synthetic insecticides. There is an urgent need to find alternatives to the insecticides as natural biocides. Objective. In this work, the insecticidal activity of the extract of the local plant Nerium oleander, which has never been tested before in the North center of Morocco, was studied on larval stages 3 and 4 of Culex pipiens. Methods. Biological tests were realized according to a methodology inspired from standard World Health Organization protocol. The mortality values were determined after 24 h of exposure and LC50 and LC90 values were calculated. Results. The extract had toxic effects on the larvae of culicid mosquitoes. The ethanolic extract of Nerium oleander applied against the larvae of Culex pipiens has given the lethal concentrations LC50 and LC90 in the order of 57.57 mg/mL and 166.35 mg/mL, respectively. Conclusion. This investigation indicates that N. oleander could serve as a potential larvicidal, effective natural biocide against mosquito larvae, particularly Culex pipiens.

  15. EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.

    Science.gov (United States)

    Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...

  16. Towards an identification of the pyrethroid pharmacophore. A molecular modelling study of some pyrethroid esters

    DEFF Research Database (Denmark)

    Byberg, J R; Jørgensen, Flemming Steen; Klemmensen, P D

    1987-01-01

    . These pharmacophores are based on the relationship between molecular structure and biological activity for a number of pyrethroid esters. The pharmacophores, which describe the relative location in space of the unsaturated systems, the dimethyl groups and the ester moiety, may be useful in the design of novel...

  17. Behavioral responses of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus against various synthetic and natural repellent compounds.

    Science.gov (United States)

    Sathantriphop, Sunaiyana; White, Sabrina A; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2014-12-01

    The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito-repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65-98% escape for contact, 21.4-94.4% escape for non-contact) compared to Ae. aegypti (3.7-72.2% escape (contact), 0-31.7% (non-contact)) and Ae. albopictus (3.5-94.4% escape (contact), 11.2-63.7% (non-contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65-97.8% escape) than non-contact repellents (0-50.8% escape for non-contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes. © 2014 The Society for Vector Ecology.

  18. Resistance of Culex tritaeniorhynchus in Huangzhou district,Huanggang city,Hubei province,China to commonly used insecticides and the potential effect of Romanomermis wuchangensis infection on its insecticide resistance%湖北省黄州区三带喙库蚊抗药性调查及武昌罗索线虫感染对其影响研究

    Institute of Scientific and Technical Information of China (English)

    董循; 潘海; 雷桂兰; 吴中华; 崔峰; 乔传令

    2012-01-01

    目的 了解湖北省黄冈市黄州区近郊三带喙库蚊对常用化学杀虫剂的抗性现状,研究武昌罗索线虫的寄生对其抗性的影响,为蚊虫治理和疾病预防提供技术支撑.方法 采用生物测定法测定湖北省黄州区一中(QYZ)感染了武昌罗索线虫的三带喙库蚊种群和东方广场(DFGC)未感染的三带喙库蚊种群对常用杀虫剂半数致死浓度(LC50),以判定抗性等级.结果 DFGC种群对对硫磷、毒死蜱、敌敌畏、残杀威、巴沙、氯菊酯、高效氯氰菊酯、溴氰菊酯和胺菊酯9种杀虫剂的LC50分别为1.854 74、0.295 74、24.865 10、2.179 81、6.137 24、0.040 87、0.016 69、0.009 60和2.071 32 mg/L;DFGC种群的LC50均高于QYZ种群,比率为1~7倍.与敏感品系相比,黄州区三带喙库蚊对敌敌畏、残杀威、氯菊酯、高效氯氰菊酯和溴氰菊酯的抗性比率分别为388、9、11、8和24倍.结论 黄州区近郊三带喙库蚊对常用化学杀虫剂抗性较高,而武昌罗索线虫的寄生可能是显著降低其对杀虫剂抵抗性的原因.%Objective To investigate the resistance of Culex tritaeniorhynchus in the suburbs of Huangzhou district, Huanggang city, Hubei province, China to commonly used insecticides and the effect of Romanomermis wuchangensis infection on its insecticide resistance, and to provide technical support for mosquito control and disease prevention. Methods The LC50 values of commonly used insecticides for Cx. Tritaeniorhynchus infected with R. Wuchangensis from the First Middle School of Huangzhou (QYZ) and the uninfected Cx. Tritaeniorhynchus from the Dongfang Square (DFGC) were measured by bioassay to evaluate their insecticide resistance levels. Results The LC50 values of parathion, chlorpyrifos, dichlorvos, propoxur, fenobucarb, permethrin, beta-cypermethrin, deltamethrin, and tetramethrin for the uninfected Cx. Tritaeniorhynchus in DFGC were 1.854 74, 0.295 74, 24.865 10, 2.179 81, 6.137 24, 0.040 87, 0.016 69

  19. Redescription of the pupa of Culex (Culex) declarator Dyar and Knab (Diptera, Culicidae), with amendments to key to the Culex pupae of the eastern United States.

    Science.gov (United States)

    Darsie, Richard F; Day, Jonathan F

    2005-06-01

    The pupa of Culex declarator was partially described and illustrated by Lane. This species was recently discovered in Florida for the first time and a series of individual rearings have resulted in a number of pupae and an opportunity to redescribe it fully, with a complete illustration. Amendment to the key to the Culex pupae of the eastern United States is provided.

  20. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P., E-mail: dweston@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Asbell, A.M., E-mail: aasbell@berkeley.edu [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg., Berkeley, CA 94720-3140 (United States); Hecht, S.A., E-mail: scott.hecht@noaa.gov [NOAA Fisheries, Office of Protected Resources, 510 Desmond Drive S.E., Lacey, WA 98503 (United States); Scholz, N.L., E-mail: nathaniel.scholz@noaa.gov [NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112 (United States); Lydy, M.J., E-mail: mlydy@siu.edu [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)

    2011-10-15

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: > Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. > Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. > Two creeks contained concentrations acutely lethal to sensitive invertebrates. > Bifenthrin was of greatest concern, though less than in prior studies. > Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  1. Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids.

    Science.gov (United States)

    Chen, Liangbi; Chen, Wenfeng; Ma, Chunhua; Du, Dan; Chen, Xi

    2011-03-15

    A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes/polypyrrole (MWCNTs/Ppy) was prepared with an electrochemical method and used for the extraction of pyrethroids in natural water samples. The results showed that the MWCNTs/Ppy coated fiber had high organic stability, and remarkable acid and alkali resistance. In addition, the MWCNTs/Ppy coated fiber was more effective and superior to commercial PDMS and PDMS/DVD fibers in extracting pyrethroids in natural water samples. Under optimized conditions, the calibration curves were found to be linear from 0.001 to 10 μg mL(-1) for five of the six pyrethroids studied, the exception being fenvalerate (which was from 0.005 to 10 μg mL(-1)), and detection limits were within the range 0.12-0.43 ng mL(-1). The recoveries of the pyrethroids spiked in water samples at 10 ng mL(-1) ranged from 83 to 112%.

  2. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change.

    Science.gov (United States)

    Cui, Feng; Li, Mei-Xia; Chang, Hai-Jing; Mao, Yun; Zhang, Han-Ying; Lu, Li-Xia; Yan, Shuai-Guo; Lang, Ming-Lin; Liu, Li; Qiao, Chuan-Ling

    2015-06-01

    Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Development of the immature stages of Culex (Culex saltanensis Dyar (Diptera, Culicidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    João Antonio C. Zequi

    2012-03-01

    Full Text Available Development of the immature stages of Culex (Culex saltanensis Dyar (Diptera, Culicidae under laboratory conditions. Culex (Culex saltanensis Dyar, 1928 is becoming frequent and abundant in natural and artificial breeding sites in urban and rural areas of Brazil. This study contributes to the knowledge of the biology of a Brazilian strain of C. saltanensis. The development of specimens reared individually or grouped was observed. The study was conducted at a constant temperature of 27 ± 2°C, 14L:10D photoperiod and 80 ± 5% relative humidity. The immature stages were observed every 6 hours until adult emergence, which occurred in 12.29 days among individually reared specimens and in 13.12 days among group-reared specimens. Egg rafts for the experiment were obtained from the laboratory and field. Eggs hatched at a rate of 97.48 ± 2.32%. More eggs per egg raft were obtained from the field than from the laboratory. Males from individually reared specimens emerged in 12.29 ± 1.11 days and females in 13.12 ± 1.58 days. The male-female ratio was 1:1. Larval survival rate was higher than 85% for larvae reared isolated and higher than 95% for group-reared larvae. The Culex saltanensis life cycle was completed within 12 to 14 days, where larval instars I and IV took the most time to develop and the pupae, the shortest.

  4. Culex mosquitoes are experimentally unable to transmit Zika virus

    Science.gov (United States)

    Amraoui, Fadila; Atyame-Nten, Célestine; Vega-Rúa, Anubis; Lourenço-de-Oliveira, Ricardo; Vazeille, Marie; Failloux, Anna Bella

    2016-01-01

    We report that two laboratory colonies of Culex quinquefasciatus and Culex pipiens mosquitoes were experimentally unable to transmit ZIKV either up to 21 days post an infectious blood meal or up to 14 days post intrathoracic inoculation. Infectious viral particles were detected in bodies, heads or saliva by a plaque forming unit assay on Vero cells. We therefore consider it unlikely that Culex mosquitoes are involved in the rapid spread of ZIKV. PMID:27605159

  5. Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region

    Directory of Open Access Journals (Sweden)

    Sochantha Tho

    2009-04-01

    Full Text Available Abstract Background As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, Anopheles epiroticus, was highly pyrethroid-resistant in the Mekong delta, whereas Anopheles minimus sensu lato was pyrethroid-resistant in northern Vietnam. Anopheles dirus sensu stricto showed possible resistance to type II pyrethroids in central Vietnam. Anopheles subpictus was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved. Methods By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region. Results Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of Anopheles populations from the Mekong region for the presence of knockdown resistance (kdr, but no kdr mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in An. epiroticus and An. subpictus of the Mekong delta. The DDT resistance in An. subpictus might be conferred to a high GST activity. The pyrethroid resistance in An. minimus s.l. is possibly associated with increased detoxification by esterases and P450 monooxygenases. Conclusion As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region.

  6. Relative potencies of Type I and Type II pyrethroids for inhibition of spontaneous firing in neuronal networks.

    Science.gov (United States)

    Pyrethroids insecticides commonly used in pest control disrupt the normal function of voltage-sensitive sodium channels. We have previously demonstrated that permethrin (a Type I pyrethroid) and deltamethrin (a Type II pyrethroid) inhibit sodium channel-dependent spontaneous netw...

  7. Determination of seven pyrethroids and six pyrethrins in water by liquid chromatography/mass spectrometry

    Science.gov (United States)

    ccanccapa, alexander; Masia, Ana; Pico, Yolanda

    2016-04-01

    Pyrethroids are the synthetic analogues of pyrethrins which were developed as pesticides from the extracts of dried and powdered flower heads of Chrysanthemum cinerariaefolium. They are increasingly used in agriculture due to their broad biological activity and slow development of pest resistance. Contamination of fresh-water ecosystems appears either because of the direct discharge of industrial and agricultural effluents or as a result of effluents from sewage treatment works; residues can thus accumulate in the surrounding biosphere [1, 2]. These substances, mostly determined by gas chromatography mass spectrometry (GC-MS) can be difficult to analyse due to their volatility and degradability. The purpose of this study is, as an alternative, to develop a fast and sensitive multi-residue method for the target analysis of 7 pyrethroids and the 6 natural pyrethrins currently used in water samples by liquid chromatography tandem mass spectrometry (LC-MS/MS). The compounds included in the study were acrinathrin, etofenprox, cyfluthrin, esfenvalerate, cyhalothrin, cypermethrin and flumethrin as pyrethroids and a commercial mix of pyrethrins containing Cinerin I, Jasmolin I, pyrethrin I, cinerin II, jasmolin II, pyrethrins II in different percentages. As a preliminary step, the ionization and fragmentation of the compounds were optimized injecting individual solutions of each analyte at 10 ppm in the system, using a gradient elution profile of water-methanol both with 10 mM ammonium formate. The ESI conditions were: capillary voltage 4000 V, nebulizer15 psi, source temperature 300◦C and gas flow 10 L min-1. [M+H]+, [M+Na]+ ,[M+NH3]+ ,[M+NH4+]+ were tested as precursor ions. The most intense signal was for ammonium adduct for all compounds. The optimal fragmentor range for product ions were between 20 to 80 ev and the collision energy ranged between 5 to 86 ev. The efficiency of the method was tested in water samples from Turia River without any known exposure to

  8. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say.

    Science.gov (United States)

    Shah, Rizwan Mustafa; Alam, Mahbob; Ahmad, Daniyal; Waqas, Muhammad; Ali, Qasim; Binyamin, Muhammad; Shad, Sarfraz Ali

    2016-11-01

    The Culex quinquefaciatus Say, commonly known as the southern house mosquito, is well known for biting nuisance and vectoring of some fatal diseases. Synthetic chemicals have been relied upon as the major control measure to control mosquitoes. Therefore, we have evaluated 21 insecticides belonging to different chemical classes for their toxicity to C. quinquefaciatus females. Chlorfenapyr was the most toxic adulticide among all the tested insecticides. Among pyrethroids, deltamethrin was the least toxic adulticide, and all other have same toxicity. In case of organophosphates, the chlorpyrifos was the most toxic insecticide. Neonicotinoids such as acetamiprid, nitenpyram, and clothianidin have similar toxicity based on overlapping of 95 % confidence intervals (CI) and were more toxic when compared with the imidacloprid. The spinetoram was more toxic as compared with the spinosad (based on non-overlapping 95 % Cl). In case of ketoenoles, spirotetrament was more toxic as compared with the spiromesifen. Emamectin benzoate was the most toxic insecticide when compared with fipronil and indoxacarb. We also have tested four insect growth regulators (IGRS) including lufenuron, methoxyfenozide, pyriproxyfen, and cyromazine as larvicides. The lufenuron and pyriproxyfen have similar toxicity based upon their overlapping 95 % CI and were more toxic as compared with the methoxyfenozide and cyromazine. The methoxyfenozide was the moderately toxic among all the tested IGRS, and cyromazine was the least toxic among all the tested IGRS. These results will prove helpful in effectuating an effective integrated vector management program for C. quinquefaciatus.

  9. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides.

    Science.gov (United States)

    Alves, Stênio Nunes; Serrão, José Eduardo; Melo, Alan Lane

    2010-08-01

    This study describes morphological alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. To this end, both third and fourth instars of C. quinquefasciatus larvae were exposed for 30 and 60 min to organophosphate (50 ppb), pyrethroids (20 and 30 ppb), and avermectin derivates (1.5 and 54 ppb). Following incubation, pH measurements of the larvae gut were recorded. The fat body and midgut were also analyzed by light and transmission electron microscopy. These studies demonstrate a decrease in the pH of the larvae anterior midgut following exposure to all of the tested insecticides. Histochemical tests revealed a strong reaction for neutral lipids in the control group and a marked decrease in the group exposed to cypermethrin. Furthermore, a weak reaction with acidic lipids in larvae exposed to deltamethrin, temephos, ivermectin and abamectin was also observed. Insecticide-exposed larvae also exhibited cytoplasm granule differences, relative to control larvae. Finally, we noted a small reduction in microvilli size in the apex of digestive cells, although vesicles were found to be present. The destructive changes in the larvae were very similar regardless of the type of insecticide analyzed. These data suggest that alterations in the fat body and midgut are a common response to cellular intoxication.

  10. Current susceptibility status of Malaysian Culex quinquefasciatus (Diptera: Culicidae) against DDT, propoxur, malathion, and permethrin.

    Science.gov (United States)

    Low, V L; Chen, C D; Lee, H L; Lim, P E; Leong, C S; Sofian-Azirun, M

    2013-01-01

    A nationwide investigation was carried out to determine the current susceptibility status of Culex quinquefasciatus Say populations against four active ingredients representing four major insecticide classes: DDT, propoxur, malathion, and permethrin. Across 14 study sites, both larval and adult bioassays exhibited dissimilar trends in susceptibility. A correlation between propoxur and malathion resistance and between propoxur and permethrin resistance in larval bioassays was found. The results obtained from this study provide baseline information for vector control programs conducted by local authorities. The susceptibility status of this mosquito should be monitored from time to time to ensure the effectiveness of current vector control operations in Malaysia.

  11. Redescription of the pupa of Culex restuans and a comparison with Culex nigripalpus.

    Science.gov (United States)

    Darsie, Richard F; Day, Jonathan F

    2007-06-01

    The pupa of Culex restuans is redescribed in detail with a chaetotaxal table and a full illustration. The chaetotaxy of the pupa of Cx. restuans is compared with that of Cx. nigripalpus, the primary vector of St. Louis encephalitis and West Nile virus in Florida.

  12. The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae, in Mexico City

    Directory of Open Access Journals (Sweden)

    Diaz-Perez Alfonso

    2011-05-01

    Full Text Available Abstract Background Culex spp. mosquitoes are considered to be the most important vectors of West Nile virus (WNV detected in at least 34 species of mosquitoes in the United States. In North America, Culex pipiens pipiens, Culex pipiens quinquefasciatus, and Culex tarsalis are all competent vectors of WNV, which is considered to be enzootic in the United States and has also been detected in equines and birds in many states of Mexico and in humans in Nuevo Leon. There is potential for WNV to be introduced into Mexico City by various means including infected mosquitoes on airplanes, migrating birds, ground transportation and infected humans. Little is known of the geographic distribution of Culex pipiens complex mosquitoes and hybrids in Mexico City. Culex pipiens pipiens preferentially feed on avian hosts; Culex pipiens quinquefasciatus have historically been considered to prefer mammalian hosts; and hybrids of these two species could theoretically serve as bridge vectors to transmit WNV from avian hosts to humans and other mammalian hosts. In order to address the potential of WNV being introduced into Mexico City, we have determined the identity and spatial distribution of Culex pipiens complex mosquitoes and their hybrids. Results Mosquito larvae collected from 103 sites throughout Mexico City during 2004-2005 were identified as Culex, Culiseta or Ochlerotatus by morphological analysis. Within the genus Culex, specimens were further identified as Culex tarsalis or as belonging to the Culex pipiens complex. Members of the Culex pipiens complex were separated by measuring the ratio of the dorsal and ventral arms (DV/D ratio of the male genitalia and also by using diagnostic primers designed for the Ace.2 gene. Culex pipiens quinquefasciatus was the most abundant form collected. Conclusions Important WNV vectors species, Cx. p. pipiens, Cx. p. quinquefasciatus and Cx. tarsalis, are all present in Mexico City. Hybrids of Cx. p. pipiens and Cx. p

  13. ANCAMAN DARI NYAMUK Culex sp YANG TERABAIKAN

    Directory of Open Access Journals (Sweden)

    Zumrotus Sholichah

    2012-11-01

    Full Text Available Nyamuk Culex sp lebih menyukai meletakkan telurnya pada genangan air berpolutan tinggi, berkembang biak di air keruh dan lebih menyukai genangan air yang sudah lama daripada genangan air yang baru. Aktif menggigit pada malam hari. Tempat yang gelap, sejuk dan lembab merupakan tempat yang disukai untuk beristirahat. Nyamuk betina dewasa menggigit dengan abdomen terletak sejajar dengan permukaan induk semang yang sedang digigit.Gangguan yang ditimbulkan oleh nyamuk selain dapat menularkan penyakit juga dapat sangat mengganggu dengan dengungan dan gigitannya sehingga bagi orang-orang tertentu dapat menimbulkan phobi (entomopobhia serta dapat menyebabkan dermatitis dan urticaria.

  14. Pyrethroid pesticide effects on behavioral responses of aquatic isopods to danger cues.

    Science.gov (United States)

    Huynh, Carolyn K; Poquette, Signe R; Whitlow, W Lindsay

    2014-04-01

    The present study sought to evaluate the behavioral responses of non-target organisms in order to determine whether phototactic responses of isopods to danger cues are altered as a function of exposure to the pyrethroid pesticides λ-cyhalothrin and bifenthrin. Experiments conducted on Gnorimosphaeroma oregonensis identified sublethal behavioral responses to pyrethroids, λ-cyhalothrin and bifenthrin at concentrations 0.15 ng/mL, 0.025 ng/mL, and 0.005 ng/mL. Experimental setup tested isopod phototactic responses across six treatments: control, pyrethroid, hemolymph, predator, hemolymph + pyrethroid, and predator + pyrethroid. Isopods exhibited no preference for phototactic responses in the control and pyrethroid treatments. When exposed to danger cues (hemolymph or predator), isopods exhibited significant negative phototaxis, as expected. When exposure to danger cues was combined with pyrethroids, isopods again exhibited no preference for phototactic response. Experiments indicate that pyrethroids diminish isopod's negatively phototactic response to danger cues.

  15. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  16. 咸阳市淡色库蚊对5种杀虫剂的抗药性研究及防制对策%Resistance of Culex pipiens pallens to five insecticides in Xianyang city and the corresponding control strategies

    Institute of Scientific and Technical Information of China (English)

    孙亮; 吕文; 孙养信

    2012-01-01

    Objective To identify the resistance of Culex pipiens pattens to five commonly used insecticides in Xianyang city so as to provide evidence for control strategy development. Methods The mortality of larvae exposed to five insecticides was determined by the distinguishing dosage method. Results The resistance level of Cx. Pipwns pattens was high under the diagnosis dose to DDT, DDVP, permethrin, and deltamethrin, and the mortality in 24 hours was 23.45%, 14.02%, 28.77%, 25.00%, respectively. The resistance to cypermethrin was moderate and the mortality was 58.63%. Conclusion The resistance of Cx. Pipiens pallens to five commonly used insecticides in Xianyang has reached middle to high levels. Different kinds of insecticides should be used for control of mosquitoes.%目的 了解咸阳市淡色库蚊对5种杀虫剂的抗药性现状,为制定防制对策提供科学依据.方法 采用区分剂量法测定淡色库蚊幼虫对5种杀虫剂的24 h死亡率.结果 咸阳市淡色库蚊对DDT、敌敌畏、氯菊酯和溴氰菊酯的抗性均达到高抗以上,24 h死亡率分别为23.45%、14.02%、28.77%和25.00%;对氯氰菊酯的抗性达到中抗以上,24 h死亡率为58.63%.结论 咸阳市淡色库蚊对5种杀虫剂均产生了不同程度的抗药性,今后在这些地区进行蚊虫防治时应考虑换用其他种类的杀虫剂.

  17. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species Avaliação de inseticidas organofosforados e piretroides sintéticos contra seis mosquitos vetores

    Directory of Open Access Journals (Sweden)

    Domingo Montada Dorta

    1993-12-01

    Full Text Available Three organophosphorus compounds- malathion, folithion and temephos- and two synthetic pyrethroids- alphamethrin and deltamethrin- were used for monitoring the susceptibility status of larvae and adults of six vector mosquitoe species: Culex quinquefasciatus (Filariasis and Aedes albopictus (Dengue (both laboratory and field strains; laboratory strains of Aedes aegypti (Dengue, Anopheles slephensi and Anopheles culicifacies (Malaria, and Culex tritaeniorhynchus (Japanese encephalitis in India. From the LC50 values obtained for these insecticides, it was found that all mosquito species including the field strains of Cx. quinquefasciatus and Ae. albopictus were highly susceptible Except for Cx. quinquefasciatus (field strain against malathion, 100% mortality was observed at the discriminating dosages recommended by World Health Organization. The residual effect of alphamethrin, deltamethrin, malathion and folithion at 25 mg (ai/m² on different surfaces against six species of vector mosquitoes showed that alphamethrin was the most effective on all four treated surfaces (mud, plywood, cement and thatch. Nevertheless, residual efficacy lasted longer on thatch than on the other surfaces. Therefore, synthetic pyrethroids such as alphamethrin can be effectively employed in integrated vector control operations.Três compostos organo-fosforados - malation, folition e temefos -e dois piretroides sintéticos - alfametrina e deltametrina - foram usados para controlar o estado da susceptibilidade das larvas e adultos de seis mosquitos vetores na Índia. Foram utilizadas cepas de laboratório e área de Culex quinquefasciatus (filariasis e Aedes albopictus (Dengue e cepas de laboratório de Aedes aegypti (Dengue, Anopheles stephensi e Anopheles culicifacies (Malária e Culex tritaenorhynchus (encefalite japonesa. Os valores de C1(50 obtidos para esses inseticidas mostram que todas as espécies incluindo as cepas de área foram muito susceptíveis. Nos

  18. IDENTIFIKASI MUTASI NOKTAH PADA” GEN VOLTAGE GATED SODIUM CHANNEL” Aedes aegypti RESISTEN TERHADAP INSEKTISIDA PYRETHROID DI SEMARANG JAWA TENGAH

    Directory of Open Access Journals (Sweden)

    Widiarti Widiarti

    2012-11-01

    Full Text Available Abstract The identification of a point mutation in voltage-gated sodium channel gene was conducted on the major of dengue vector Aedes aegypti from Simongan Village, Semarang Municypality Central Java, which occurred to be resistant toward malathion and cypermethrin base on WHO methodology standard (impregnated paper.  The objectives of this studi was to identify the point mutation on the codon 1014  of voltage gated sodium channel gene of Ae. aegypti mosquitoes which was associated  with the vector resistance of pyrethroid group. The detection of a point mutation of  voltage-gated sodium channel was conducted using DNA extraction and semi nested polymerase chain reaction (PCR amplification of the mosquitoes resistant strain. The susceptibility test (as a screening resistant phenotype showed that few samples of Ae. aegypti from Simongan Village, Semarang Municypality Central Java resistant to malathion 0,8 % ( organophosphate group and cypermethrin 0,25 % (pyrethroid group. The sequencing result showed that there has been a mutation from the leucine (TTA which turned to be phenylalanin (TTT (kdr-w type on the codon 1014 at the voltage gated sodium channel gene of Ae. aegypti mosquitoes from  Simongan Village, Semarang Municypality Central Java, which was associated with the pyrethroid insecticide resistance. There were 78 % mosquitoes which brought  mutation alel kdr-w type on the codon 1014 F. Therefore dengue vector control activities should not use any pyrethroid insecticide group. Key  Words :  Resistance,  Aedes   aegypti,  Voltage   Gated   Sodium  Channel    (VGSC,  Point  Mutation. Abstrak Identifikasi mutasi noktah pada  gen Voltage Gated Sodium Channel (VGSC telah dilakukan pada nyamuk Aedes aegypti dari Kelurahan Simongan Kota Semarang, yang telah resisten terhadap insektisida Malathion dan Cypermethrin pada screening susceptibility test (Standar WHO Impregnated paper. Tujuan penelitian adalah untuk mendeteksi

  19. Estimation of pyrethroid pesticide intake using regression ...

    Science.gov (United States)

    Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression modeling performed on measurements of selected pesticides in composited duplicate diet samples allowed (1) estimation of pesticide intakes for a defined demographic community, and (2) comparison of dietary pesticide intakes between the composite and individual samples. Extant databases were useful for assigning individual samples to composites, but they could not provide the breadth of information needed to facilitate measurable levels in every composite. Composite sample measurements were found to be good predictors of pyrethroid pesticide levels in their individual sample constituents where sufficient measurements are available above the method detection limit. Statistical inference shows little evidence of differences between individual and composite measurements and suggests that regression modeling of food groups based on composite dietary samples may provide an effective tool for estimating dietary pesticide intake for a defined population. The research presented in the journal article will improve community's ability to determine exposures through the dietary route with a less burdensome and costly method.

  20. Multiple insecticide resistances and kdr mutation of Culex pipiens pallens in north-central Anhui Province%安徽省中北部淡色库蚊对多种杀虫剂抗性及其kdr基因突变研究

    Institute of Scientific and Technical Information of China (English)

    魏星; 杨小迪; 王小莉; 李江艳; 王媛媛; 夏惠; 常雪莲; 方强

    2016-01-01

    Objective To understand the status of resistance to multiple insecticides and the frequencies of kdr mutations in Culex pipiens pallens from north⁃central Anhui Province. Methods From July to September,2014,the C. pipiens pallens mosquito larvae were collected in Huaibei,Bengbu and Chuzhou cities of the north⁃central Anhui Province and reared to adults. The female adult mosquitoes at 3-5 days post emergence were tested for susceptibility to the four insecticides,namely 0.05%deltamethrin,5%malathion,0.1%bendiocarb and 4%DDT,by using the standard WHO resistance tube bioassay. The detec⁃tion of the point mutations of the kdr gene at codon 1014 was conducted by PCR and DNA sequencing in the deltamethrin⁃resis⁃tant and⁃susceptible mosquitoes. Results High levels of resistance to all the four insecticides were found in all the three tested populations,although mosquito mortality varied among populations and test insecticides. Among the test insecticides,DDT showed lowest mortality with no significant difference(F=1.027,P>0.05)in all test populations,whereas significantly differ⁃ent mortalities were observed among populations for the remained three insecticides tested(deltamethrin,malathion,and ben⁃diocarb)(F = 23.823,33.955,128.841;all P 0.05);但接触溴氰菊酯、马拉硫磷、噁虫威后的死亡率差异均有统计学意义(F=23.823、33.955、128.841,P均<0.01)。3地淡色库蚊种群的kdr基因1014位点均存在L1014F、L1014S这2种非同义突变;L1014F突变频率与溴氰菊酯抗性水平呈正相关(r2=0.718,P<0.01)。结论安徽省中北部地区淡色库蚊对溴氰菊酯、马拉硫磷、噁虫威、DDT均产生了较强的抗性,kdr基因L1014F突变频率与溴氰菊酯抗性水平呈正相关;各地区卫生部门需加强对媒介蚊虫抗性的动态监测。

  1. Decreased Flight Activity in Culex pipiens (Diptera: Culicidae) Naturally Infected With Culex flavivirus.

    Science.gov (United States)

    Newman, Christina M; Anderson, Tavis K; Goldberg, Tony L

    2016-01-01

    Insect-specific flaviviruses (ISFVs) commonly infect vectors of mosquito-borne arboviruses. To investigate whether infection with an ISFV might affect mosquito flight behavior, we quantified flight behavior in Culex pipiens L. naturally infected with Culex flavivirus (CxFV). We observed a significant reduction in the scotophase (dark hours) flight activity of CxFV-positive mosquitoes relative to CxFV-negative mosquitoes, but only a marginal reduction in photophase (light hours) flight activity, and no change in the circadian pattern of flight activity. These results suggest that CxFV infection alters the flight activity of naturally infected Cx. pipiens most dramatically when these vectors are likely to be host seeking and may therefore affect the transmission of medically important arboviruses.

  2. First report of Culex (Culex) tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) in the Cape Verde Islands

    OpenAIRE

    Alves, Joana; Pina, Adilson de; Diallo, Mawlouth; Dia, Ibrahima

    2015-01-01

    During an entomological survey in Santiago Island, Cape Verde Islands, in November-December 2011 in order to study the bio-ecology and susceptibility to insecticides of Anopheles arabiensis Patton, 1905, Culex tritaeniorhynchus Giles, 1901 was found to be present in the Santa Cruz District. Both adult and immature specimens were collected and a description of both is given. Further confirmation of the taxonomic identity of the specimens was obtained from studying the male genitalia. This is t...

  3. Oviposition responses of gravid Culex quinquefasciatus and Culex tarsalis to bulrush (Schoenoplectus acutus) infusions.

    Science.gov (United States)

    Du, Y; Millar, J G

    1999-12-01

    Laboratory bioassays demonstrated that fermented infusions of dried bulrushes (Schoenoplectus acutus) strongly attracted and stimulated oviposition by gravid female Culex quinquefasciatus and Culex tarsalis. The responses of the 2 species varied with the concentration and method of preparation of the infusions, with responses generally increasing with increasing concentration. No major differences were found in the responses of either species to infusions prepared with bulrushes alone, or with bulrushes plus lactalbumin hydrolysate and brewer's yeast. Infusions remained more attractive than distilled water controls to both species for up to 8 wk. Field tests corroborated the results from the laboratory bioassays. Culex quinquefasciatus, Cx. tarsalis, and Cx. stigmatosoma egg rafts were collected from water pan traps baited with bulrush infusions. A few Culiseta incidens eggs also were collected. In multiple-choice tests using gravid female or egg traps, Cx. quinquefasciatus preferred the most concentrated bulrush infusions, whereas Cx. tarsalis preferred intermediate concentrations. Female Cx. stigmatosoma and Culiseta incidens also were attracted. Overall, these results may provide new leads towards developing synthetic chemical baits to attract bloodfed mosquitoes.

  4. Studies on mid gut microbiota of wild caught Culex (Culex quinquefasciatus mosquitoes from Barasat (North 24 Parganas of West Bengal.

    Directory of Open Access Journals (Sweden)

    Abhishek Pal

    2014-06-01

    Full Text Available Mosquitoes are haematophagous insects that serve as obligate intermediate host for numerous diseases like Filaria, Malaria, Dengue, etc. Mosquitoes can be considered as a holobiont units in which host (mosquitoes and its gut microbiota are involved in a complex reciprocal interaction. The naturally acquired microbiota can modulate mosquitos’ vectorial capacity by inhibiting the development of pathogens. But, enough care has not been taken in West Bengal to investigate on the midgut microbiota of Culex mosquitoes. Therefore, a preliminary attempt has been undertaken to study the morphology, growth pattern and antibiotic susceptibility of midgut microbiota of Culex (Culex quinquefasciatus mosquitoes collected from Barasat areas (North 24 Parganas of West Bengal..

  5. Pond dyes are Culex mosquito oviposition attractants

    Directory of Open Access Journals (Sweden)

    Natali Ortiz Perea

    2017-05-01

    Full Text Available Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more

  6. Residual pyrethroids in fresh horticultural products in Sonora, Mexico.

    Science.gov (United States)

    Aldana-Madrid, Maria L; Valenzuela-Quintanar, Ana I; Silveira-Gramont, Maria I; Rodríguez-Olibarría, Guillermo; Grajeda-Cota, Patricia; Zuno-Floriano, Fabiola G; Miller, Marion G

    2011-10-01

    This study was conducted to evaluate the presence of cyhialothrin, cyfluthrin, cypermethrin, fenvalerate, and deltamethrin in vegetables produced and consumed in Sonora, Mexico. A total of 345 samples were collected from cluster sampling of markets and fields. Approximately 9% of the samples tested positive for pyrethroids (residue range 0.004-0.573 mg kg(-1)). Based on the results, the potential toxicological risk of human exposure to the pyrethroid insecticides measured in vegetables appears to be minimal, with the estimated exposure being 1,000 times lower than admissible levels.

  7. Common Culex Mosquitoes Don't Transmit Zika Virus

    Science.gov (United States)

    ... 161186.html Common Culex Mosquitoes Don't Transmit Zika Virus: Study These widespread insects do spread West Nile ... t appear to be able to transmit the Zika virus to people, researchers report. The researchers at Kansas ...

  8. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides.

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Luo, Ningguang; Liu, Zhiqi; Lee, Jung-Eun; Khambay, Bhupinder; Dong, Ke

    2009-01-15

    Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an alpha-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report the identification of a residue G(1111) and two positively charged lysines immediately downstream of G(1111) in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G(1111), a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G(1111) had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.

  9. Protective efficacy of Anopheles minimus CYP6P7 and CYP6AA3 against cytotoxicity of pyrethroid insecticides in Spodoptera frugiperda (Sf9) insect cells.

    Science.gov (United States)

    Duangkaew, P; Kaewpa, D; Rongnoparut, P

    2011-08-01

    Cytochrome P450 monooxygenases (P450s) are enzymes known to metabolize a wide variety of compounds including insecticides. Their overexpression leading to enhanced insecticide detoxification could result in insecticide resistance in insects. The increased mRNA expression of two P450 genes, CYP6P7 and CYP6AA3, has been previously observed in laboratory-selected deltamethrin-resistant Anopheles minimus, a major malaria vector in Southeast Asia, suggesting their role in detoxification of pyrethroids. In this study CYP6P7 and CYP6AA3 were expressed in insect Spodoptera frugiperda (Sf9) cells via baculovirusdirected expression system. Insecticide detoxification capabilities of Sf9 cells with and without expression of CYP6P7 or CYP6AA3 were evaluated using 3-(4,5-dimethyl-thiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The results revealed that CYP6P7- or CYP6AA3-expressing cells showed significantly higher cytoprotective capability than parental Sf9 cells against cytotoxicity of pyrethroids including permethrin, cypermethrin and deltamethrin. Such cytoprotective effect was not observed for bioallethrin (pyrethroid), chlorpyrifos (organophosphate) and propoxur (carbamate). Moreover, expression of CYP6AA3, but not CYP6P7, could protect cells against λ-cyhalothrin cytotoxicity. In MTT assays upon co-incubation with piperonyl butoxide (P450 inhibitor), cytoprotective ability of CYP6P7 and CYP6AA3 against deltamethrin was diminished, implying that pyrethroid detoxification was due to activities of P450 enzymes. Insecticide detoxification capabilities of CYP6P7 and CYP6AA3 observed from MTT assays were correlated to their pyrethroid metabolizing activities observed from in vitro reconstitution enzymatic assays. Thus MTT assays using cells expressing P450 enzymes of interest could be primarily used to determine detoxification activities of enzymes against cytotoxic insecticides.

  10. Description of immature stages of Culex ocossa Dyar & Knab, Culex delpontei Duret and Culex pereyrai Duret of the Melanoconion subgenus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Maria Anice Mureb Sallum

    2001-10-01

    Full Text Available The larva and pupa of Culex (Melanoconion ocossa Dyar & Knab are redescribed and those of Culex (Melanoconion delpontei Duret and Culex (Melanoconion pereyrai Duret are described from specimens collected in the states of São Paulo and Paraná, Brazil. The pupa of Cx. ocossa differs from those of the other two species in having seta 5-IV-VI dark with strongly aciculated branches, and caudolateral angle of segment VIII produced into sharp point, and seta 1-P present; Cx. delpontei can be distinguished from Cx. pereyrai in possessing paddle lightly tanned, trumpet flared, and wing and leg cases lightly tanned, without pattern of dark spots; Cx. pereyrai can be recognized by having wing case with pattern of dark, discontinuously pigmented, longitudinal lines, and trumpet cylindrical, not flared. The larvae of the three species share the presence of seta 2-C placed medially to seta 1-C.

  11. Neurotoxicological effects and the mode of action of pyrethroid insecticides

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Bercken, Joep van den

    1990-01-01

    Neuroexcitatory symptoms of acute poisoning of vertebrates by pyrethroids are related to the ability of these insecticides to modify electrical activity in various parts of the nervous system. Repetitive nerve activity, particularly in the sensory nervous system, membrane depolarization, and enhance

  12. In vivo dermal absorption of pyrethroid pesticides in the rat.

    Science.gov (United States)

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  13. Immunotoxicity of the pyrethroid insecticides deltametrin and alpha-cypermetrin

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard; Claesson, M. H.; Ropke, C.

    1996-01-01

    The synthetic pyrethroids deltametrin and alpha-cypermetrin were studied for effects on the immune system in 28-day studies in F344 male rats. Sixteen rats per group were dosed with either deltametrin 0, 1, 5, or 10 mg/kg body wt./day or alpha-cypermetrin 0, 4, 8, or 12 mg/kg body wt./day in soy ...

  14. Studies on mosquitoes (Diptera: Culicidae and anthropic environment: 10- survey of adult behaviour of Culex nigripalpus and other species of Culex (Culex in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1995-08-01

    Full Text Available A survey of adult behaviour of Culex (Culex species was carried out from August 1992 through December 1993 in a human modified (anthropic environment in the Ribeira Valley, S.Paulo State, Brazil. Culex nigripalpus dominated the catches at several sites and it's tendency to increase in the anthropic environment became quite clear. Nevertheless no high level of synanthropy was demonstrated. So it seems that the mosquito may have a restricted role in natural arbovirus cycles. Nonetheless, Cx. nigripalpus must be considered a potential vector of arboviruses, especially St. Louis encephalitis virus outside dwellings.São relatados os resultados obtidos mediante coletas regulares de adultos de Culex (Culex em ambientes antrópico do Vale do Ribeira, SP, Brasil, no período de agosto de 1992 a dezembro de 1993. Pôde-se evidenciar a dominancia de Culex nigripalpus nas várias coletas efetuadas. Revelou-se claramente a preferência por parte desse mosquito em aumentar sua densidade no ambiente antrópico. Todavia, sua freqüência ao domicílio mostrou-se baixa, revelando fraco grau de sinantropia. Assim sendo, seu papel vetor de arbovirus parece restringir-se à participação no ciclo natural desses agentes infecciosos. Contudo, pode-se considerá-lo como vetor potencial no meio extradomiciliar. Nesse particular, seu papel pode não ser negligenciável, especialmente no que tange à possibilidade de transmissão de encefalite de S.Luís, cujo agente já foi assinalado na região.

  15. Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Su, T; Mulla, M S

    1998-06-01

    Bioactive compounds contained in the seed kernel and other parts of the neem tree (Azadirachta indica A. Juss) have been found to show insecticidal activities and other effects in many species of insects. These activities include antifeedancy, growth regulation, fecundity suppression, male sterility, oviposition repellency, changes in biological fitness such as loss of flying ability, immunodepression, enzyme inhibition, splitting of biological rhythms, and so forth. We investigated the ovicidal effects of various formulations of azadrirachtin (AZ) against the mosquitoes Culex tarsalis Coquillett and Culex quinquefasciatus Say. The formulations tested were wettable powder Azad WP10, emulsifiable concentrate Azad EC4.5, and technically pure AZ. The ovicidal activity of the test neem products was influenced by concentration of AZ, age of the egg rafts, and age of the neem preparations. Other factors such as formulation and mosquito species were also involved in the degree of ovicidal activity. When the egg rafts were deposited directly in fresh neem suspension and left there for 4 h before transfer to untreated water, 1 ppm of AZ produced almost 100% mortality in eggs. When egg rafts aged for 0, 4, 8, 12, and 24 h were exposed to 10 ppm neem suspensions for 36 h, the ovicidal activity was only attained in the egg rafts deposited directly (0 h old) in the neem suspension, not in those with ages of 4-24 h. On aging, depending on the formulations and mosquito species, the neem suspensions at 1 ppm completely lost ovicidal activity within 7-20 days. The egg rafts of Cx. quinquefasciatus were more susceptible to the test neem products than those of Cx. tarsalis. The formulated neem products were more persistent and effective than the technical AZ. The wettable powder (WP) formulation was slightly more persistent and effective than the emulsifiable concentrate (EC). The ovicidal activity of the neem products against mosquitoes from the current research clearly demonstrated

  16. The arbovirus vector Culex torrentium is more prevalent than Culex pipiens in northern and central Europe.

    Science.gov (United States)

    Hesson, J C; Rettich, F; Merdić, E; Vignjević, G; Ostman, O; Schäfer, M; Schaffner, F; Foussadier, R; Besnard, G; Medlock, J; Scholte, E-J; Lundström, J O

    2014-06-01

    Two species of arbovirus vector, Culex torrentium and Culex pipiens (Diptera: Culicidae), occur in several European countries, but difficulties in their accurate identification and discrimination have hampered both detailed and large-scale distribution and abundance studies. Using a molecular identification method, we identified to species 2559 larvae of Cx. pipiens/torrentium collected from 138 sites in 13 European countries ranging from Scandinavia to the Mediterranean coast. In addition, samples of 1712 males of Cx. pipiens/torrentium collected at several sites in the Czech Republic were identified to species based on the morphology of their hypopygia. We found that the two species occur together in large areas of Europe, and that Cx. torrentium dominates in northern Europe and Cx. pipiens dominates south of the Alps. The transition in dominance occurs in central Europe, where both species are roughly equally common. There was a strong correlation between the length of the growing season at different sites and occurrences of the two species. As the growing season increases, the proportion and detection of Cx. torrentium decrease, whereas those of Cx. pipiens increase. The present findings have important consequences for the interpretation of the results of studies on major enzootic and link-vectors of mosquito-borne bird-associated viruses (i.e. Sindbis, West Nile and Usutu viruses), especially in central Europe and Scandinavia.

  17. Mom Matters: Diapause Characteristics of Culex pipiens-Culex quinquefasciatus (Diptera: Culicidae) Hybrid Mosquitoes.

    Science.gov (United States)

    Meuti, Megan E; Short, Clancy A; Denlinger, David L

    2015-03-01

    Females of the northern house mosquito, Culex pipiens L., are capable of entering an adult overwintering diapause characterized by arrested ovarian development, enhanced stress tolerance, and elevated lipid stores. In contrast, the southern house mosquito, Culex quinquefasciatus Say, lacks this capacity and is therefore unable to survive the harsh winters found in northern regions of North America. These two species are capable of forming fertile hybrids in the United States, yet the diapause characteristics of these hybrids have not been extensively investigated. We crossed Cx. pipiens from Columbus, OH, with Cx. quinquefasciatus from Vero Beach, FL, and reared F1 hybrids from all mothers separately under diapause-inducing, short-day conditions (a photoperiod of 8:16 [L:D] h) at 18°C. Egg follicle length and lipid content were used to assess the diapause status of hybrids. Diapause incidence of hybrids varied widely for progeny from different mothers of the same species, but hybrids with Cx. pipiens mothers were consistently more prone to enter diapause than hybrids that had Cx. quinquefasciatus mothers. Our results suggest a strong maternal influence on the diapause phenotype and that a high percentage (45-75%) of Cx. pipiens-Cx. quinquefasciatus hybrids are capable of entering diapause. This implies that many hybrids can successfully overwinter, leading to a possible widening of the hybrid zone of these two species in North America.

  18. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  19. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  20. Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca

    Science.gov (United States)

    Wheelock, Craig E.; Miller, Jeff L.; Miller, Mike J.; Phillips, Bryn M.; Gee, Shirley J.; Tjeerdema, Ronald S.; Hammock, Bruce D.

    2006-01-01

    Pyrethroid insecticides are known for their potential toxicity to aquatic invertebrates and many fish species. A significant problem in the study of pyrethroid toxicity is their extreme hydrophobicity. They can adsorb to test container surfaces and many studies, therefore, report pyrethroid levels as nominal water concentrations. In this study, pyrethroid adsorption to sampling and test containers was measured and several container treatments were examined for their ability to decrease pyrethroid adsorption. None of the chemical treatments were successful at preventing pyrethroid loss from aqueous samples, but vortexing of containers served to resuspend pyrethroids. The effects of the observed adsorption on Ceriodaphnia dubia and Hyalella azteca permethrin toxicity were examined. Species-specific results showed a time-dependent decrease in toxicity following pyrethroid adsorption to test containers for C. dubia, but not for H. azteca. These results demonstrate that pyrethroid adsorption to containers can significantly affect the observed outcome in toxicity-testing and serves as a caution for researchers and testing laboratories. PMID:15951033

  1. Pyrethroid-Induced Reproductive Toxico-Pathology in Non-Target Species

    Directory of Open Access Journals (Sweden)

    Latif Ahmad§, Ahrar Khan* and Muhammad Zargham Khan

    2012-01-01

    Full Text Available Pesticides used against agricultural pests and ecto-parasite infestation in animals may also induce injurious effects in humans, pets and farm animals. The pyrethroid pesticides are rapidly replacing other insecticides due to relatively lower toxicity for mammals. However, they have now become an environmental issue due to excessive use in agriculture, livestock production, leather industry and shampoos etc. In addition to various clinical, hemato-biochemical, immunosuppressive and neuro-toxicological effects of pyrethroids, more danger has been suspected with respect to reproductive toxicity. The fetal resorption and early fetal mortality rate were found to be significantly increased in female animals allowed mating with males exposed to pyrethroids. The testicular and epididymal sperm counts and serum testosterone concentrations in pyrethroid treated animals were decreased. Moreover, abnormal spermatozoa, degenerated spermatozoa, arrested spermatogenesis and connective tissue proliferation in testes, and tailless spermatozoa in epididymis were reported with pyrethroid exposure. A decrease in pregnancy rate, number of implantation sites and total number of recovered fetuses have also been reported in female animals receiving pyrethroid treatment during gestation and allowed mating with untreated male rabbits. The progeny of pyrethroid exposed parents also showed toxic effects. Disruption of certain steroidogenic enzymes and nuclear receptors in has been reported in pyrethroid exposed animals. This review concludes that pyrethroid exposure is responsible for endocrine disruption and decreases fertility in both sexes of various non-target species and produces fetal mortality, which may be prevented by vitamin E supplementation due to its anti-oxidant potential.

  2. Susceptibilidade larval de populações de Aedes aegypti e Culex quinquefasciatus a inseticidas químicos

    Directory of Open Access Journals (Sweden)

    Campos Jairo

    2003-01-01

    Full Text Available OBJETIVO: Avaliar a susceptibilidade a inseticidas químicos de larvas de Culex quinquefasciatus e Aedes aegypti, provenientes de áreas sujeitas ou não a tratamentos de controle. MÉTODOS: Foram coletadas larvas de mosquitos em uma área não sujeita a tratamentos com inseticidas (Campinas, SP e em áreas sujeitas a esses tratamentos (Campo Grande, MS e Cuiabá, MT. Foram usados bioensaios com concentrações diagnóstico e concentrações múltipla de inseticidas organofosforados e piretróides, segundo padrão da Organização Mundial de Saúde, para avaliar a susceptibilidade dessas larvas. RESULTADOS: Ensaios com larvas de Culex quinquefasciatus de Campinas, SP, permitiram a suspeita de resistência à cipermetrina e evidenciaram resistência à ciflutrina. Larvas dessa espécie coletadas em Campo Grande, MS, e Campinas, SP, apresentaram resistência ao temephos. Para a colônia campineira desta espécie, foram estabelecidas as razões de resistência: RR50=6,36 e RR95=4,94, com base em linhagem susceptível padrão. Adicionalmente, os testes com Aedes aegypti mostraram susceptibilidade similar ao temephos em uma população de campo (Cuiabá, MT e uma de laboratório. CONCLUSÕES: Os resultados indicam resistência a organofosforado e piretróides em Culex quinquefasciatus, evidenciando a necessidade de avaliações e monitoramento da efetividade dos inseticidas a serem usados nos programas de controle de mosquitos.

  3. The association between environmental exposure to pyrethroids and sperm aneuploidy.

    Science.gov (United States)

    Radwan, Michał; Jurewicz, Joanna; Wielgomas, Bartosz; Piskunowicz, Marta; Sobala, Wojciech; Radwan, Paweł; Jakubowski, Lucjusz; Hawuła, Wanda; Hanke, Wojciech

    2015-06-01

    The aim of the present study is to determine whether the environmental exposure to pyrethroids was associated with males sperm chromosome disomy. The study population consisted of 195 men who attended the infertility clinic for diagnostic purposes and who had normal semen concentration of 20-300×10(6) mL(-1) or slight oligozoospermia (semen concentration of 15-20×10(6) mL(-1)) (WHO, 1999). Participants were interviewed and provided a semen sample. The pyrethroids metabolites: 3-phenoxybenzoic acid (3PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (CDCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (TDCCA) and cis-2,2-dibromovinyl-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA) were analysed in the urine using a validated gas chromatography ion-tap mass spectrometry method. Sperm aneuploidy was assessed using multicolor FISH (DNA probes specific for chromosomes X, Y, 18, 13, 21). Our results showed that CDCCA >50th percentile was associated with disomy of chromosome 18 (p=0.05) whereas the level of TDCCA in urine >50th percentile was related to XY disomy (p=0.04) and disomy of chromosome 21 (p=0.05). Urinary 3PBA level ⩽50 and >50 percentile was related to disomy of sex chromosomes: XY disomy (p=0.05 and p=0.02 respectively), Y disomy (p=0.04 and 0.02 respectively), disomy of chromosome 21 (p=0.04 and p=0.04 respectively) and total disomy (p=0.03 and p=0.04 respectively). Additionally disomy of chromosome 18 was positively associated with urinary level of 3PBA >50 percentile (p=0.03). The results reported here are found that pyrethroids may be a sperm aneugens. These findings may be of concern due to increased pyrethroid use and prevalent human exposure.

  4. The contrasting bionomics of Culex mosquitoes in western North America.

    Science.gov (United States)

    Reisen, William K

    2012-12-01

    Mosquitoes in the genus Culex are the primary enzootic maintenance and bridge vectors of the North American encephalitides, now including West Nile virus. This review briefly summarizes the biology of three key vector species in western North America, Culex tarsalis, Cx. pipiens complex and Cx. stigmatosoma, focusing on the long history of research done in California. Topics reviewed include population genetic structure, larval ecology, autogeny, mating behavior, host-seeking behavior, host-selection patterns, and overwintering strategies. These attributes collectively have allowed the successful exploitation of anthropogenically altered ecosystems and enabled the role of these species as maintenance and bridge vectors of arboviruses.

  5. Synthesis and Insecticidal Activity of an Oxabicyclolactone and Novel Pyrethroids

    Directory of Open Access Journals (Sweden)

    Elson S. de Alvarenga

    2012-11-01

    Full Text Available Deltamethrin, a member of the pyrethroids, one of the safest classes of pesticides, is among some of the most popular and widely used insecticides in the World. Our objective was to synthesize an oxabicyclolactone 6 and five novel pyrethroids 8–12 from readily available furfural and D-mannitol, respectively, and evaluate their biological activity against four insect species of economic importance namely A. obtectus, S. zeamais, A. monuste orseis, and P. americana. A concise and novel synthesis of 6,6-dimethyl-3-oxabicyclo[3.1.0]hexan-2-one (6 from furfural is described. Photochemical addition of isopropyl alcohol to furan-2(5H-one afforded 4-(1'-hydroxy-1'-methylethyltetrahydro-furan-2-one (3. The alcohol 3 was directly converted into 4-(1'-bromo-1'-methylethyl-tetrahydrofuran-2-one (5 in 50% yield by reaction with PBr3 and SiO2. The final step was performed by cyclization of 5 with potassium tert-butoxide in 40% yield. The novel pyrethroids 8–12 were prepared from methyl (1S,3S-3-formyl-2,2-dimethylcyclopropane-1-carboxylate (7a by reaction with five different aromatic phosphorous ylides. Compounds 6–12 presented high insecticidal activity, with 6 and 11 being the most active. Compound 6 killed 90% of S. zeamais and 100% of all the other insects evaluated. Compound 11 killed 100% of all insects tested.

  6. Wolbachia infection and mitochondrial DNA comparisons among Culex mosquitoes in South West Iran.

    Science.gov (United States)

    Behbahani, A

    2012-01-01

    The control of mosquito borne diseases needs new methods given widespread insecticide resistance in many mosquito species. The inherited endosymbiont Wolbachia, found in many arthropods, provides a biological system to reduce the transmission of these diseases and replace the population of vectors with non-vectors using cytoplasmic incompatibility. The aim of this study was to understand the rate of Wolbachia infection among Culex species in the region and to see the effect of Wolbachia infection on mitochondrial genome. In this study three species of Culex mosquitoes were collected from Shoushtar in south west of Iran and examined for Wolbachia infection by Polymerase Chain Reaction (PCR). All of the C. quinquefasciatus specimens were infected with Wolbachia, while C. tritaeniorynchus and C. theileri showed no infection with Wolbachia. The 340 bp of AT rich of mtDNA was sequenced from 30 individuals, 10 individuals of each species. Three sequence haplotypes were found in C. tritaeniorynchus and C. theileri while there was only one haplotype in C. quinquefasciatus. The reduction of haplotypes diversity may be result of a sweep of Wolbachia in this species.

  7. In vitro metabolic clearance of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms

    Science.gov (United States)

    Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...

  8. Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus.

    Science.gov (United States)

    Karthik, L; Gaurav, K; Rao, K V Bhaskara; Rajakumar, G; Rahuman, A Abdul

    2011-06-01

    The purpose of the present study was to assess the effect of crude extracts of marine actinobacteria on larvicidal, repellent, and ovicidal activities against Culex tritaeniorhynchus and Culex gelidus (Diptera: Culicidae). The early fourth instar larvae of C. tritaeniorhynchus and C. gelidus, reared in the laboratory, were used for larvicidal, ovicidal, and repellent assay with crude extracts of actinobacteria. Saccharomonospora spp. (LK-1), Streptomyces roseiscleroticus (LK-2), and Streptomyces gedanensis (LK-3) were identified as potential biocide producers. Based on the antimicrobial activity, three strains were chosen for larvicidal activity. The marine actinobacterial extracts showed moderate to high larvicidal effects after 24 h of exposure at 1,000 ppm and the highest larval mortality was found in extract of LK-3 (LC(50) = 108.08 ppm and LC(90) = 609.15 ppm) against the larvae of C. gelidus and (LC(50) = 146.24 ppm and LC(90) = 762.69 ppm) against the larvae of C. tritaeniorhynchus. Complete protections for 240 min were found in crude extract of LK-2 and LK-3 at 1,000 ppm, against mosquito bites of C. tritaeniorhynchus and C. gelidus, respectively. After 24-h treatment, mean percent hatchability of the ovicidal activity was observed. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Crude extracts of LK-1 and LK-3 showed no hatchability at 1,000 ppm against C. tritaeniorhynchus and C. gelidus, respectively. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. tritaeniorhynchus and C. gelidus.

  9. Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal.

    Directory of Open Access Journals (Sweden)

    Rebekah J Kent

    Full Text Available BACKGROUND: The natural history and potential impact of mosquito-specific flaviviruses on the transmission efficiency of West Nile virus (WNV is unknown. The objective of this study was to determine whether or not prior infection with Culex flavivirus (CxFV Izabal altered the vector competence of Cx. quinquefasciatus Say for transmission of a co-circulating strain of West Nile virus (WNV from Guatemala. METHODS AND FINDINGS: CxFV-negative Culex quinquefasciatus and those infected with CxFV Izabal by intrathoracic inoculation were administered WNV-infectious blood meals. Infection, dissemination, and transmission of WNV were measured by plaque titration on Vero cells of individual mosquito bodies, legs, or saliva, respectively, two weeks following WNV exposure. Additional groups of Cx. quinquefasciatus were intrathoracically inoculated with WNV alone or WNV+CxFV Izabal simultaneously, and saliva collected nine days post inoculation. Growth of WNV in Aedes albopictus C6/36 cells or Cx. quinquefasciatus was not inhibited by prior infection with CxFV Izabal. There was no significant difference in the vector competence of Cx. quinquefasciatus for WNV between mosquitoes uninfected or infected with CxFV Izabal across multiple WNV blood meal titers and two colonies of Cx. quinquefasciatus (p>0.05. However, significantly more Cx. quinquefasciatus from Honduras that were co-inoculated simultaneously with both viruses transmitted WNV than those inoculated with WNV alone (p = 0.0014. Co-inoculated mosquitoes that transmitted WNV also contained CxFV in their saliva, whereas mosquitoes inoculated with CxFV alone did not contain virus in their saliva. CONCLUSIONS: In the sequential infection experiments, prior infection with CxFV Izabal had no significant impact on WNV replication, infection, dissemination, or transmission by Cx. quinquefasciatus, however WNV transmission was enhanced in the Honduras colony when mosquitoes were inoculated simultaneously with

  10. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    Directory of Open Access Journals (Sweden)

    Brittany L. Dodson

    2017-03-01

    Full Text Available Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  11. Vector competence of Anopheles and Culex mosquitoes for Zika virus

    Science.gov (United States)

    Dodson, Brittany L.

    2017-01-01

    Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus. PMID:28316896

  12. Repellent activity of five essential oils against Culex pipiens.

    Science.gov (United States)

    Erler, F; Ulug, I; Yalcinkaya, B

    2006-12-01

    Essential oils extracted from the seeds of anise (Pimpinella anisum), dried fruits of eucalyptus (Eucalyptus camaldulensis), dried foliage of mint (Mentha piperita) and basil (Ocimum basilicum) and fresh foliage of laurel (Laurus nobilis) were tested for their repellency against the adult females of Culex pipiens. All essential oils showed repellency in varying degrees, eucalyptus, basil and anise being the most active.

  13. Discovery of Culex (Neoculex) arizonensis in Texas (Diptera, Culicidae).

    Science.gov (United States)

    Reeves, Will K; Darsie, Richard F

    2003-03-01

    A population of Culex arizonensis was found in Guadalupe Mountains National Park, Culberson County, TX. A new state record, this extends the range of this species eastward by 828 km. The essential diagnostic characters of the 4th-stage larva are given.

  14. Vector competence of Anopheles and Culex mosquitoes for Zika virus.

    Science.gov (United States)

    Dodson, Brittany L; Rasgon, Jason L

    2017-01-01

    Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. Although Aedes mosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, including Culex and Anopheles species, and we lack a thorough understanding of which mosquito species to target for vector control. We exposed Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint, Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes were refractory to Zika virus infection. We conclude that Anopheles gambiae, Anopheles stephensi, and Culex quinquefasciatus mosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.

  15. "SUSCEPTIBILITY AND IRRITABILITY LEVELS OF MAIN MALARIA VECTORS TO SYNTHETIC PYRETHROIDS IN THE ENDEMIC AREAS OF IRAN"

    Directory of Open Access Journals (Sweden)

    H. Vatandosst N. Borhani

    2004-09-01

    Full Text Available The rational use of insecticides largely depends on a broad knowledge of the susceptibility and irritability levels of malaria vectors to currently used insecticides especially pyrethroids. In this study the susceptibility and irritability levels of Anopheles stephensi and An.culicifacies to DDT 4%,malathion 5%, propoxur 0.1%, deltamethrin 0.025%, lambdacyhalothrin 0.1%, cyfluthrin 0.1% and permethrin 0.25% were determined. Susceptibility and irritability tests on adult mosquitoes were carried out according to WHO methods. The results showed that An.stephensi was resistant to DDT 4% and mortality rates to this insecticide in Gavdary and Abtar areas were 64.2%±3.9 and 61.8%±4.36, respectively. An.stephensi was assumed susceptible to other insecticides. An.culicifacies was found susceptible to all the tested insecticides. The irritability tests carried out with pyrethroids exhibited that permethrin 0.25% had the highest irritancy effect against both species. Lambdacyhalothrin 0.1% and deltamethrin 0.025% had the least irritancy effect against An.stephensi and An.culicifacies, respectively. Average numbers of take offs/females/minute of An.stephensi to permethrin, deltamethrin, cyfluthrin and lambdacyhalothrin were 6.64±1.04, 3.11±0.67, 2.73±0.61 and 2.57±0.67, respectively. These figures for An.culicifacies were 2.24±0.37, 1.44±0.38, 1.59±0.35 and 1.46±0.5, respectively. Irritancy effect of pyrethroids should come in consideration while they are used for control of malaria vectors.

  16. Efficacy of imidacloprid and fipronil gels over synthetic pyrethroid and propoxur aerosols in control of German cockroaches (Dictyoptera: Blatellidae).

    Science.gov (United States)

    Agrawal, V K; Agarwal, Ashok; Choudhary, Varsha; Singh, Rajiv; Ahmed, Nadeem; Sharma, Mahender; Narula, Kusum; Agrawal, Pooja

    2010-03-01

    Resistance amongst cockroaches has been reported to most of the spray insecticides apart from the problem of food contamination and inconvenience. Gel baits which can be selectively applied have been found effective in control of cockroaches in laboratory studies but very few field studies are available. This trial was planned to evaluate the efficacy of fipronil (0.01%) and imidacloprid (2.15%) gels over synthetic pyrethroid (0.02% deltamethrin + 0.13% allethrin) and propoxur (2%) aerosols in control of cockroaches in the field. Survey was done to find out pre-treatment density in catering establishments and houses by visual count and sticky trap methods. A total of 10 catering establishments and 10 houses having high cockroach infestation were selected by sampling (two catering establishments and houses for each insecticidal treatment and two for control). Propoxur and synthetic pyrethroid aerosols were used for spraying the infested sites once only. Single application of fipronil and imidacloprid gels was used as crack and crevice treatment. Visual count method gave better indications of cockroach infestation as compared to sticky trap method, hence, the same was followed for post-treatment evaluation every week up to 12 weeks. Synthetic pyrethroid could not bring about the desired reduction in cockroach infestation in the present study. Single application of fipronil gel was able to reduce cockroach infestation up to 96.8% at the end of 12 weeks whereas imidacloprid application resulted in 90.9% reduction and propoxur resulted in 77.5%. However, propoxur was more effective in reducing the cockroach density by first week in comparison to imidacloprid and fipronil gels but its efficacy started declining after 8th week. Difference was found statistically significant by Kruskal-Wallis H-test. The study reports the efficacy of propoxur aerosol, imidacloprid gel and fipronil gel baits for control of cockroaches.

  17. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    Science.gov (United States)

    Santo-Orihuela, Pablo Luis; Carvajal, Guillermo; Picollo, María Inés; Vassena, Claudia Viviana

    2013-01-01

    The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia) and from domiciliary areas, including El Palmar (Bolivia) and La Pista (Argentina). Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL) were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR) value (44.90) compared to the susceptible reference strain (NFS), whereas the Veinte de Octubre samples had the lowest value (0.50). Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP) on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein) and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively). The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP). PMID:24402155

  18. Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States

    Science.gov (United States)

    Hladik, Michelle; Kuivila, Kathryn

    2012-01-01

    Pyrethroid insecticides are hydrophobic compounds that partition to streambed sediments and have been shown to cause toxicity to non-target organisms; their occurrence is well documented in parts of California, but there have been limited studies in other urban and agricultural areas across the United States. To broaden geographic understanding of pyrethroid distributions, bed sediment samples were collected and analyzed from 36 streams in 25 states, with about 2/3 of the sites in urban areas and 1/3 in agricultural areas. At least one pyrethroid (of the 14 included in the analysis) was detected in 78% of samples. Seven pyrethroids were detected in one or more samples. Bifenthrin was the most frequently detected (58% of samples), followed by permethrin (31%), resmethrin (17%), and cyfluthrin (14%). The other three detected pyrethroids (cyhalothrin, cypermethrin and delta/tralomethrin) were found in two or fewer of the samples. Concentrations ranged from 0.3 to 180 ng g-1 dry weight. The number of pyrethroids detected were higher in the urban samples than in the agricultural samples, but the highest concentrations of individual pyrethroids were split between urban and agricultural sites. The pyrethroids detected in the agricultural areas generally followed use patterns. Predicted toxicity was greater for urban areas and attributed to bifenthrin, cyfluthrin and cypermethrin, while in agricultural areas the toxicity was mainly attributed to bifenthrin.

  19. Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the log EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.

  20. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  1. Increase of sodium current after pyrethroid insecticides in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Ruigt, G.S.F.; Neyt, H.C.; Zalm, J.M. van der; Bercken, J. van der

    1987-01-01

    The effects of 4 different pyrethroid insecticides on sodium channel gating in internally perfused, cultured mouse neuroblastoma cells (N1E-115) were studied using the suction pipette, voltage clamp technique. Pyrethroids increased the amplitude of the sodium current, sometimes by more than 200%. Ac

  2. Assessing Dietary Exposure to Pyrethroid Insecticides by LC/MS/MS of Food Composites

    Science.gov (United States)

    Introduction Pyrethroid insecticides are widely used to control household pests such as cockroaches, for public works control of mosquitoes, and on crops and livestock. Though more toxic to insects than to mammals, some pyrethroids are highly toxic to fish, bees, and cats. Perme...

  3. TIME COURSE OF THE TRANSCRIPTIONAL RESPONSE OF RAT CEREBROCORTICAL TISSUE AFTER ACUTE IN VIVO PYRETHROID EXPOSURE.

    Science.gov (United States)

    Pyrethroid insecticides disrupt neuronal function by interfering with the function of voltage-sensitive Na+ channels (VSSCs). Distinct differences in the pharmacological actions of pyrethroid sub-types (Type I or Type II) on VSSCs have been observed. The impact of these pharmac...

  4. The joint toxicity of type I, II, and nonester pyrethroid insecticides.

    Science.gov (United States)

    Schleier, Jerome J; Peterson, Robert K D

    2012-02-01

    Evidence suggests that there are separate binding domains for type I and II pyrethroid insecticides on the voltage gated sodium channel of the nerve cell axon, but there are no studies that have examined the mixture toxicity of nonester pyrethroids and type I and II pyrethroids. Therefore, we examined the effect of nonester pyrethroid (etofenprox), type I (permethrin), and type II (cypermethrin) pyrethroid insecticides alone and in all combinations to Drosophila melanogaster Meigen. The combination of permethrin + etofenprox and permethrin + cypermethrin demonstrated antagonistic toxicity, while the combination of cypermethrin + etofenprox demonstrated synergistic toxicity. The mixture ofpermethrin + cypermethrin + etofenprox demonstrated additive toxicity. The toxicity of permethrin + cypermethrin was significantly lower than the toxicity of cypermethrin alone, but the combination was not significantly different from permethrin alone. The toxicity of permethrin + cypermethrin + etofenprox was significantly greater than the toxicity of both permethrin and etofenprox alone, but it was significantly lower than cypermethrin alone. The mixture of permethrin and etofenprox was significantly less toxic than permethrin. The explanation for the decreased toxicity observed is most likely because of the competitive binding at the voltage-gated sodium channel, which is supported by physiological and biochemical studies of pyrethroids. Our results demonstrate that the assumption that the mixture toxicity of pyrethroids would be additive is not adequate for modeling the mixture toxicity of pyrethroids to insects.

  5. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  6. OXIDATIVE AND HYDROLYTIC METABOLISM OF TYPE I PYRETHROIDS IN RAT HEPATIC MICROSOMES

    Science.gov (United States)

    Pyrethroids are a class of neurotoxic insecticides used in a variety of agricultural and household activities. Increased potential for human exposure to pyrethroids has prompted pharmacokinetic research. To that end, our lab has determined the in vitro clearance of the Type I p...

  7. OXIDATIVE AND HYDROLYTIC METABOLISM OF TYPE I PYRETHROIDS IN RAT AND HUMAN HEPATIC MICROSOMES

    Science.gov (United States)

    Pyrethroids are a class of neurotoxic insecticides used in a variety of agricultural and household activities. Increased potential for human exposure to pyrethroids has prompted pharmacokinetic research. To that end, our laboratory has determined the in vitro clearance of the T...

  8. 76 FR 82296 - Pyrethrins/Pyrethroid Cumulative Risk Assessment; Extension of Comment Period

    Science.gov (United States)

    2011-12-30

    ... AGENCY Pyrethrins/Pyrethroid Cumulative Risk Assessment; Extension of Comment Period AGENCY: Environmental Protection Agency (EPA). ACTION: Notice; extension of comment period. SUMMARY: EPA issued a notice... called ``the pyrethroids'') and opened a public comment period on this document and other supporting...

  9. ACTIONS OF PYRETHROID INSECTICIDES ON THE SPONTANEOUS RELEASE OF GLUTAMATE FROM CULTURED HIPPOCAMPAL NEURONS.

    Science.gov (United States)

    Pyrethroid insecticides increase the excitability of the central and peripheral nervous systems. Modulation of voltage-gated sodium channels is likely to play a primary role in this effect, but recent studies have suggested that pyrethroid effects on other ion channels may contri...

  10. Pyrethroid effects on freshwater invertebrates: A meta-analysis of pulse exposures

    DEFF Research Database (Denmark)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Kristensen, Esben Astrup

    2013-01-01

    Pyrethroids are widely used insecticides that may seriously harm aquatic organisms. Being strongly hydrophobic, pyrethroids in solution occur only in short pulses but may be retained in sediments for longer periods. Consequently, most studies consider the chronic exposure of sediment dwelling org...

  11. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Directory of Open Access Journals (Sweden)

    Sulaiman S Ibrahim

    2015-10-01

    Full Text Available Scale up of Long Lasting Insecticide Nets (LLINs has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  12. Efficacy of three formulations of diflubenzuron, an insect growth regulator, against Culex quinquefasciatus Say, the vector of Bancroftian filariasis in India

    OpenAIRE

    C Sadanandane; Doss, P. S. Boopathi; Jambulingam, P.

    2012-01-01

    Background & objectives: Insect growth regulators (IGRs) offer alternatives to conventional chemical larvicides that pose problem of resistance and environmental safety. However, only a limited number of IGRs have been approved for use in mosquito control. In the present study, two new formulations of the IGR diflubenzuron, 2 per cent granular (GR) and 2 per cent tablet (DT) were tested for its efficacy against Culex quinquefasciatus, in comparison to its 25 per cent wettable powder (WP) form...

  13. Larvicidal activity of Lawsonia inermis and Murraya exotica leaves extract on filarial vector, Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    K. Dass

    2014-06-01

    Full Text Available Extensive use of synthetic and chemical insecticides to control mosquitoes result in environment hazards and development of resistance in vector species. This research work is about an alternative mosquito control method that is considered as safe to environment and non-target species and also bio-degradable. Hence an attempt was made to study the larvicidal effect of the extract of Lawsonia inermis and Murraya exotica leaves on III and IV instar larva and pupa of Culex quinquefasciatus. The LC50 value of Murraya exotica for III and IV instar larvae and pupae is 135.539 ppm, 154.361 ppm and 178.571 ppm respectively. Likewise for Lawsonia inermis it is 139.057 for III instar, 163.630 for IV instar and 188.151 for the pupa. Of these, two plants Murraya exotica plant extract is more effective than the Lawsonia inermis.

  14. The biological activity of a novel pyrethroid: metofluthrin.

    Science.gov (United States)

    Sugano, Masayo; Ishiwatari, Takao

    2012-01-01

    Metofluthrin (commercial name: SumiOne(®), Eminence(®)) is a novel pyrethroid insecticide developed by Sumitomo Chemical Co., Ltd. Metofluthrin has extremely high insecticidal activity to various pest insects, especially to mosquitoes. In addition, Metofluthrin has relatively high volatility and low mammalian toxicity. Metofluthrin is therefore suitable for use not only in conventional mosquito control formulations such as coils and liquid vaporizers, but also in a variety of novel devices that do not require heating, such as fan vaporizers and paper and resin emanators. Here we describe the insecticidal activity of Metofluthrin mainly against mosquitoes in various formulations in both laboratory and field trials.

  15. Anopheles darlingi and Anopheles marajoara (Diptera: Culicidae susceptibility to pyrethroids in an endemic area of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2015-12-01

    Full Text Available Abstract: INTRODUCTION: This study aimed to evaluate the susceptibility of Anopheles darlingi Root (1926 and Anopheles marajoara Galvão & Damasceno (1942 to pyrethroids used by the National Malaria Control Program in Brazil. METHODS: Mosquitoes from Amapá, Brazilian Amazon, were assessed for resistance to cypermethrin, deltamethrin, and alpha-cypermethrin. Insecticide-impregnated bottles were used as suggested by the CDC/Atlanta. RESULTS: Diagnostic dose for Anopheles darlingi was 12.5µg/bottle during 30 min of exposure. Concentrations for Anopheles marajoara were 20µg/bottle of cypermethrin and deltamethrin and 12.5µg/bottle of alpha-cypermethrin. CONCLUSIONS : No resistance was recorded for Anopheles darlingi , but Anopheles marajoara requires attention.

  16. Activity of increased specific and non-specific esterases and glutathione transferases associated with resistance to permethrin in pediculus humanus capitis (phthiraptera: pediculidae) from Argentina.

    Science.gov (United States)

    Barrios, Silvia; Zerba, Eduardo; Picollo, Maria I; Audino, Paola Gonzalez

    2010-01-01

    Enhanced metabolism by oxidative enzymes is a major cause of pyrethroid resistance in insects. In this work, we evaluated the role of specific and non-specific esterases in head louse populations from Buenos Aires with different levels of resistance to permethrin. As esterase activity is substrate-dependent, four different esters were used as unspecific substrates in order to obtain a better characterization of the possible role of these enzymes in the resistance phenomenon. The unspecific substrates were phenylthioacetate, 1- and 2-naphtyl-acetate, and p-nitrophenyl acetate. A 7-coumaryl permethrate was synthesized and used as a specific substrate to measure pyrethroid esterases by a very sensitive microfluorometric method. The results on pyrethroid esterase activity obtained with this substrate showed that these enzymes contribute to the detoxifying activity in resistant populations, although no correlation was found between pyrethroid esterase activity and resistance ratios. In this study, we established that the activity of esterase against specific and non-specific substrates is increased in pyrethroid-resistant populations of head lice from Buenos Aires. Also, dichlorodiphenyltrichloroethane (DDT) resistance values demonstrated that there is a DDT cross-resistance phenomenon in pyrethroid-resistant head louse populations and suggested that an alteration in the receptor of the nervous system (kdr gen) is a key factor of the resistance phenomena in these head louse populations.

  17. Oviposition Preferences for Infusion-Baited Traps and Seasonal Abundance of Culex Mosquitoes in Southwestern Virginia

    OpenAIRE

    Jackson, Bryan Tyler

    2004-01-01

    Field studies were conducted in southwestern Virginia to determine the bionomics and ovipositional preferences of Culex restuans Theobald and Culex pipiens Linnaeus using ovitraps and gravid traps. Both species have been implicated as enzootic and epizootic vectors of West Nile virus (WNV) and these studies provide information on the relative abundance of gravid mosquitoes. Ovitraps were used in the summers of 2002 and 2003 to measure the oviposition activity of Culex mosquitoes, main...

  18. Vector competence of Kenyan Culex zombaensis and Culex quinquefasciatus mosquitoes for Rift Valley fever virus.

    Science.gov (United States)

    Turell, M J; Lee, J S; Richardson, J H; Sang, R C; Kioko, E N; Agawo, M O; Pecor, J; O'Guinn, M L

    2007-12-01

    Rift Valley fever (RVF) continues to be a significant problem in Kenya as well as in Egypt, Yemen, and Saudi Arabia. In order to determine the ability of Kenyan mosquitoes to transmit RVF virus (RVFV), we collected mosquitoes in the Lake Naivasha region of Kenya and evaluated them for their potential to transmit RVFV under laboratory conditions. After feeding on a hamster (Mesocricetus auratus) with a viremia of 10(9.7) plaque-forming units of virus/ml of blood, Culex zombaensis were highly susceptible to infection with RVFV, with 89% becoming infected. In contrast, Cx. quinquefasciatus that were fed on the same hamsters were marginally susceptible, with only 20% becoming infected. Differences in percentages of mosquitoes that developed a disseminated infection were equally disparate, with 55% and 8%, for Cx. zombaensis and Cx. quinquefasciatus, respectively. Forty-eight percent of the Cx. zombaensis with a disseminated infection that fed on a susceptible hamster transmitted virus by bite, indicating a moderate salivary gland barrier. However, the presence of a salivary gland barrier could not be determined for Cx. quinquefasciatus because none of the 18 mosquitoes that took a 2nd blood meal had a disseminated infection. These studies illustrate the need to identify the ability of individual mosquito species to transmit RVFV so that correct decisions can be made concerning the application of appropriate control measures during an outbreak.

  19. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa.

    Science.gov (United States)

    Muturi, Ephantus J; Kim, Chang-Hyun; Bara, Jeffrey; Bach, Elizabeth M; Siddappaji, Madhura H

    2016-01-13

    Mosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control. MiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of Culex pipiens L. and Cx. restuans Theobald collected from nine study sites in central Illinois. Out of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to Cx. pipiens and Cx. restuans, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with Cx. restuans hosting a more diverse bacterial community compared to Cx. pipiens. Wolbachia (OTU836919) was the dominant bacterial species in Cx. pipiens accounting for 91% of total microbiota while Sphingomonas (OTU817982) was the dominant bacterial species in Cx. restuans accounting for 31% of total microbiota. Only 3 and 6 OTUs occurred in over 60% of individuals in Cx. pipiens and Cx. restuans, respectively. There was little effect of study site on bacterial community structure of either mosquito species. These results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.

  20. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  1. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory

    Institute of Scientific and Technical Information of China (English)

    Kitvatanachai S; Apiwathnasorn C; Leemingsawat S; Wongwit W; Overgaard HJ

    2011-01-01

    Objective: To determine lead level primarily in Culex quinquefasciatus (Cx. quinquefasciatus), and Culex gelidus (Cx. gelidus) larvae inhabiting lead consuming factories, and to putatively estimate eco-toxicological impact of effluents from the firms. Methods: Third instars larvae were sampled by standard dipping method and lead concentrations in the larvae and their respective surrounding factory aquatic environments were determined through standard atomic absorption spectrophotometry (AAS). Results: Cx. quinquefasciatus was the most abundant species followed by Cx. gelidus. The levels of lead were higher in the Cx. quinquefasciatus (1.08-47.47 μg/g), than in the wastewaters surface (0.01-0.78 μg/mL) from the factories or closer areas around factories. Other species were not reaching the criteria for lead determination. Conclusions: The Cx.quinquefasciatus larvae can bio-accumulate the metal and can potentially serve as a biomarker of lead contamination, to complemente conventional techniques.

  2. Synergistic insecticidal and repellent effects of combined pyrethroid and repellent-impregnated bed nets using a novel long-lasting polymer-coating multi-layer technique.

    Science.gov (United States)

    Faulde, Michael K; Nehring, Oliver

    2012-08-01

    effects of multi-layer polymer-coating LLIRNs may overcome LLIN-triggered selection pressure for development of new kdr- and metabolic pyrethroid resistances while simultaneously increasing protective efficacy also against kdr- and metabolic pyrethroid-resistant mosquitoes substantially due to the repellent-induced effects of LLIRNs thus indicating that this approach is a promising new candidate for future bed net, curtain, and window screen impregnation aiming at optimized prevention from mosquito-borne diseases.

  3. Culex coronator Dyar and Knab: a new Florida species record.

    Science.gov (United States)

    Smith, John P; Walsh, Jimmy D; Cope, Eric H; Tennant, Richard A; Kozak, John A; Darsie, Richard F

    2006-06-01

    We report the first finding of Culex coronator Dyar and Knab in Florida, based on multiple adult collections from several locations in the western panhandle of Florida. GPS coordinates and habitat descriptions are given and disease implications are discussed. These records extend the known distribution of Cx. coronator from six other states (Arizona, Louisiana, Mississippi, New Mexico, Oklahoma, and Texas), and from Mexico to Argentina.

  4. Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Yoshida, Toshiaki

    2009-06-26

    An analytical method was developed for the simultaneous measurement of 18 pyrethroids (allethrin, bifenthrin, cyfluthrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, fenpropathrin, furamethrin, imiprothrin, metofluthrin, permethrin, phenothrin, prallethrin, profluthrin, resmethrin, tetramethrin and transfluthrin) in indoor air. The pyrethroids were collected for 24 h using a combination of adsorbents (quartz fiber filter disk and Empore C18 disk), with protection from light, and then extracted with acetone, concentrated, and analyzed by GC/MS. They could be determined accurately and precisely (detection limits: ca. 1 ng/m(3)). The collected pyrethroid samples could be stored for up to one month at 4 degrees C in a refrigerator.

  5. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus.

    Science.gov (United States)

    Guo, Xiao-Xia; Li, Chun-Xiao; Deng, Yong-Qiang; Xing, Dan; Liu, Qin-Mei; Wu, Qun; Sun, Ai-Juan; Dong, Yan-de; Cao, Wu-Chun; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-07

    Zika virus (ZIKV) has become a threat to global health since the outbreak in Brazil in 2015. Although ZIKV is generally considered an Aedes-transmitted pathogen, new evidence has shown that parts of the virus closely resemble Culex-transmitted viruses. Therefore, it is important to evaluate the competence of Culex species for ZIKV to understand their potential as vectors. In this study, female Culex pipiens quinquefasciatus were orally exposed to ZIKV. Mosquito midguts, salivary glands and ovaries were tested for ZIKV to measure infection and dissemination at 2, 4, 6, 8, 12, 16 and 18 days post exposure (pe). In addition, saliva was collected from mosquitoes after infection and infant mice were bitten by infected mosquitoes to measure the transmission ability of Cx. p. quinquefasciatus. The results showed that the peak time of virus appearance in the salivary glands was day 8 pe, with 90% infection rate and an estimated virus titer of 3.92±0.49 lg RNA copies/mL. Eight of the nine infant mice had positive brains after being bitten by infected mosquitoes, which meant that Cx. p. quinquefasciatus could be infected with and transmit ZIKV following oral infection. These laboratory results clearly demonstrate the potential role of Cx. p. quinquefasciatus as a vector of ZIKV in China. Because there are quite different vector management strategies required to control Aedes (Stegomyia) species and Cx. p. quinquefasciatus, an integrated approach may be required should a Zika epidemic occur.

  6. Observações sobre os mosquitos Culex da cidade de São Paulo, Brasil Observations on Culex mosquitoes of S. Paulo City, Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1973-12-01

    Full Text Available São apresentados os resultados obtidos na coleta de mosquitos do gênero Culex na área urbana da cidade de São Paulo, Brasil. Foram empregadas armadilhas luminosas automáticas tipo "New Jersey 50". Os resultados revelaram a presença de outras populações representadas principalmente por Culex chidesteri, C. dolosus e C. bidens as quais, em conjunto, chegaram algumas vezes a sobrepujar a de Culex pipiens fatigans. O maior rendimento foi obtido em áreas com abastecimento de água mas sem rede de esgotos. As coletas intradomiciliares revelaram franca predominância de C. pipiens fatigans.With the use of New Jersey-50 light traps, a survey of Culex mosquitoes was made in the urban área of São Paulo City, Brazil. Beside Culex pipiens fatigans several other species were found, mainly represented by Culex chidesteri, C. dolosus and C. bidens. The combined incidence of these three populations follows nearly the fatigans one and frequently exceeding it. The most high levels of density were found at areas with water treatment but without sewage disposal. Domiciliary collections showed great Culex pipiens fatigans predominancy.

  7. Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes - Part 1: Laboratory evaluation

    Directory of Open Access Journals (Sweden)

    Carnevale Pierre

    2010-11-01

    Full Text Available Abstract Background The main malaria vector Anopheles gambiae and the urban pest nuisance Culex quinquefasciatus are increasingly resistant to pyrethroids in many African countries. There is a need for new products and strategies. Insecticide paint Inesfly 5A IGR™, containing two organophosphates (OPs, chlorpyrifos and diazinon, and insect growth regulator (IGR, pyriproxyfen, was tested under laboratory conditions for 12 months following WHOPES Phase I procedures. Methods Mosquitoes used were laboratory strains of Cx. quinquefasciatus susceptible and resistant to OPs. The paint was applied at two different doses (1 kg/6 m2 and 1 kg/12 m2 on different commonly used surfaces: porous (cement and stucco and non-porous (softwood and hard plastic. Insecticide efficacy was studied in terms of delayed mortality using 30-minute WHO bioassay cones. IGR efficacy on fecundity, fertility and larval development was studied on OP-resistant females exposed for 30 minutes to cement treated and control surfaces. Results After treatment, delayed mortality was high (87-100% even against OP-resistant females on all surfaces except cement treated at 1 kg/12 m2. Remarkably, one year after treatment delayed mortality was 93-100% against OP-resistant females on non-porous surfaces at both doses. On cement, death rates were low 12 months after treatment regardless of the dose and the resistance status. Fecundity, fertility and adult emergence were reduced after treatment even at the lower dose (p -3. A reduction in fecundity was still observed nine months after treatment at both doses (p -3 and adult emergence was reduced at the higher dose (p -3. Conclusions High mortality rates were observed against laboratory strains of the pest mosquito Cx. quinquefasciatus susceptible and resistant to insecticides. Long-term killing remained equally important on non-porous surfaces regardless the resistance status for over 12 months. The paint's effect on fecundity, fertility and

  8. Molecular identification of two Culex (Culex) species of the neotropical region (Diptera: Culicidae)

    Science.gov (United States)

    Almirón, Walter R.; Gardenal, Cristina N.

    2017-01-01

    Culex bidens and C. interfor, implicated in arbovirus transmission in Argentina, are sister species, only distinguishable by feature of the male genitalia; however, intermediate specimens of the species in sympatry have been found. Fourth-instar larvae and females of both species share apomorphic features, and this lack of clear distinction creates problems for specific identification. Geometric morphometric traits of these life stages also do not distinguish the species. The aim of the present study was to assess the taxonomic status of C. bidens and C. interfor using two mitochondrial genes and to determine the degree of their reproductive isolation using microsatellite loci. Sequences of the ND4 and COI genes were concatenated in a matrix of 993 nucleotides and used for phylogenetic and distance analyses. Bayesian and maximum parsimony inferences showed a well resolved and supported topology, enclosing sequences of individuals of C. bidens (0.83 BPP, 73 BSV) and C. interfor (0.98 BPP, 97 BSV) in a strong sister relationship. The mean K2P distance within C. bidens and C. interfor was 0.3% and 0.2%, respectively, and the interspecific variation was 2.3%. Bayesian clustering also showed two distinct mitochondrial lineages. All sequenced mosquitoes were successfully identified in accordance with the best close match algorithm. The low genetic distance values obtained indicate that the species diverged quite recently. Most morphologically intermediate specimens of C. bidens from Córdoba were heterozygous for the microsatellite locus GT51; the significant heterozygote excess observed suggests incomplete reproductive isolation. However, C. bidens and C. interfor should be considered good species: the ventral arm of the phallosome of the male genitalia and the ND4 and COI sequences are diagnostic characters. PMID:28235083

  9. Variation in Mitochondrial Cytochrome c Oxidase I DNA Can Successfully Identify Culex (Melanoconion) pedroi (Diptera: Culicidae) and Culex (Melanoconion) ribeirensis (Diptera: Culicidae).

    Science.gov (United States)

    Araki, A S; Maia, D A; Gil-Santana, H R; de Mello, C F; Martins, A de J; Alencar, J

    2016-12-22

    Culex (Melanoconion) pedroi Sirivanakarn & Belkin 1980 and Culex (Melanoconion) ribeirensis Forattini & Sallum 1985 are two morphologically very similar species of the Pedroi subgroup of mosquitoes in the Spissipes section of the subgenus Melanoconion of the genus Culex L. 1758. We carried out an analysis of the mitochondrial cytochrome c oxidase I (COI) DNA variation between these two species. The recent observation of sympatric coexistence in a forested area of Rio de Janeiro State (Brazil) triggered the need to validate these two species previously identified based on morphology. We concluded that the COI is a useful tool for identification of Cx. pedroi and Cx. ribeirensis.

  10. Immunoassays and Biosensors for Monitoring Environmental and Human Exposure to Pyrethroid Insecticides

    Science.gov (United States)

    Ahn, Ki Chang; Kim, Hee-Joo; Mccoy, Mark R.; Gee, Shirley J.; Hammock, Bruce D.

    2010-01-01

    This manuscript describes some of the early work on pyrethroid insecticides in the Casida laboratory and briefly reviews the development and application of immunochemical approaches for the detection of pyrethroid insecticides and their metabolites for monitoring environmental and human exposure. Multiple technologies can be combined to enhance the sensitivity and speed of immunochemical analysis. The pyrethroid assays are used to illustrate the use of some of these immunoreagents such as antibodies, competitive mimics, and novel binding agents such as phage-displayed peptides. We also illustrate reporters such as fluorescent dyes, chemiluminescent compounds, and luminescent lanthanide nanoparticles, as well as the application of magnetic separation, and automatic instrumental systems, biosensor and novel immunological technologies. These new technologies alone and in combination result in an improved ability to determine both if effective levels of pyrethroids are being used in the field as well as evaluate possible contamination. PMID:21105656

  11. Determination of pyrethroid residues in tobacco and cigarette smoke by capillary gas chromatography.

    Science.gov (United States)

    Cai, Jibao; Liu, Baizhan; Zhu, Xiaolan; Su, Qingde

    2002-07-26

    The extraction of fenpropathrin, cyhalothrin, cypermethrin, fenvalerate and deltamethrin from tobacco (Nicotina tobaccum) and cigarette smoke condensate with acetone, followed by partition of resulting acetone mixture with petroleum ether, was investigated and found suitable for capillary gas chromatography (GC) residue analysis. Florisil column clean-up was found to provide clean-up procedure for tobacco and cigarette smoke condensate permitting analysis to < or = 0.01 microgram.g-1 for most of the pyrethroids by GC with a 63Ni electron capture detector (GC-ECD). Quantitative determination was obtained by the method of external standards. Cigarettes made from flue-cured tobacco spiked with different amounts of pyrethroids were used and the pyrethroid levels in mainstream smoke were determined. For all the pyrethroid residues, 1.51-15.50% were transferred from tobacco into cigarette smoke.

  12. Pyrethroid insecticide exposure and reproductive hormone levels in healthy Japanese male subjects

    DEFF Research Database (Denmark)

    Yoshinaga, J; Imai, K; Shiraishi, H

    2014-01-01

    The associations between serum levels of reproductive hormones (follicle-stimulating hormone, luteinizing hormone, testosterone, sex hormone-binding globulin, inhibin B and calculated free testosterone) and urinary metabolite concentration of pyrethroid insecticides [3-phenoxybenzoic acid (3-PBA)...

  13. Assessing the occurrence and distribution of pyrethroids in water and suspended sediments

    Science.gov (United States)

    Hladik, M.L.; Kuivila, K.M.

    2009-01-01

    The distribution of pyrethroid insecticides in the environment was assessed by separately measuring concentrations in the dissolved and suspended sediment phases of surface water samples. Filtered water was extracted by HLB solid-phase extraction cartridges, while the sediment on the filter was sonicated and cleaned up using carbon and aluminum cartridges. Detection limits for the 13 pyrethroids analyzed by gas chromatography-tandem mass spectrometry were 0.5 to 1 ng L-1 for water and 2 to 6 ng g for the suspended sediments. Seven pyrethroids were detected in six water samples collected from either urban or agricultural creeks, with bifenthrin detected the most frequently and at the highest concentrations. In spiked water samples and field samples, the majority of the pyrethroids were associated with the suspended sediments.

  14. Passive dosing of pyrethroid insecticides to Daphnia magna: Expressing excess toxicity by chemical activity

    DEFF Research Database (Denmark)

    Nørgaard Schmidt, Stine; Gan, Jay; Kretschmann, A. C.

    2015-01-01

    Pyrethroid insecticides are nerve poisons and used as active ingredients in pesticide mixtures available for household and agriculture. The compounds are hydrophobic, and their strong sorption to organic material may result in decreasing exposure levels during toxicity tests and consequent...

  15. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus.

    OpenAIRE

    Maloney, S E; Maule, A; Smith, A. R.

    1993-01-01

    Bacillus cereus SM3 was isolated on a mineral salts medium with Tween 80 as the primary carbon source. It was able to hydrolyze second- and third-generation pyrethroids, thereby generating noninsecticidal products. The enzyme responsible for this hydrolytic reaction was named permethrinase for this study. This is the first instance in which pyrethroid detoxification has been achieved with a cell-free microbial enzyme system. Permethrinase was purified by ion-exchange chromatography and gel fi...

  16. Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces

    OpenAIRE

    2010-01-01

    Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product f...

  17. Distribuição sazonal de Culex (Culex eduardoi Casal & Garcia (Diptera, Culicidae em criadouros antrópicos introduzidos em mata residual degradada, área urbana de Curitiba, Paraná,Brasil Seazonal distribution of Culex (Culex eduardoi Casal & Garcia (Diptera, Culicidae in artificial receptacles in disturbed patch of forest degraded inurban area of Curitiba, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Magda Clara Vieira da Costa Ribeiro

    2002-07-01

    Full Text Available The utilization of artificial receptacles to oviposition by mosquitoes in forest environment may indicate a sinantropic tendency or behaviour. Our data revealed that tires were as the most acceptable breeding for Culex (Culex eduardoi Casal & Garcia 1968.The population density of this species was higher and summer seasons.

  18. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide.

    Science.gov (United States)

    Tao, Xiao-Yuan; Xue, Xue-Yi; Huang, Yong-Ping; Chen, Xiao-Ya; Mao, Ying-Bo

    2012-09-01

    Cotton plants accumulate phytotoxins, including gossypol and related sesquiterpene aldehydes, to resist insect herbivores and pathogens. To counteract these defensive plant secondary metabolites, cotton bollworms (Helicoverpa armigera) elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases (P450s). Besides their tolerance to phytotoxin, cotton bollworms have quickly developed resistance to deltamethrin, a widely used pyrethroid insecticide in cotton field. However, the relationship between host plant secondary metabolites and bollworm insecticide resistance is poorly understood. Here, we show that exogenously expressed CYP6AE14, a gossypol-inducible P450 of cotton bollworm, has epoxidation activity towards aldrin, an organochlorine insecticide, indicating that gossypol-induced P450s participate in insecticide metabolism. Gossypol-ingested cotton bollworm larvae showed higher midgut P450 enzyme activities and exhibited enhanced tolerance to deltamethrin. The midgut transcripts of bollworm larvae administrated with different phytochemicals and deltamethrin were then compared by microarray analysis, which showed that gossypol and deltamethrin induced the most similar P450 expression profiles. Gossypol-induced P450s exhibited high divergence and at least five of them (CYP321A1, CYP9A12, CYP9A14, CYP6AE11 and CYP6B7) contributed to cotton bollworm tolerance to deltamethrin. Knocking down one of them, CYP9A14, by plant-mediated RNA interference (RNAi) rendered the larvae more sensitive to the insecticide. These data demonstrate that generalist insects can take advantage of secondary metabolites from their major host plants to elaborate defence systems against other toxic chemicals, and impairing this defence pathway by RNAi holds a potential for reducing the required dosages of agrochemicals in pest control.

  19. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  20. Effect of temperature on the development time and survival of preimaginal Culex hepperi (Diptera: Culicidae Efecto de la temperatura sobre el tiempo de desarrollo y la supervivencia preimaginal de Culex hepperi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    María Verónica Loetti

    2008-12-01

    Full Text Available The aim of this research was to evaluate the effect of temperature on the development time and survival of Culex (Culex hepperi Casal and García, 1967. Individuals were reared in the laboratory, from the first larval stage to adult emergence, at five constant temperatures: 15, 20, 25, 30, and 33°C. The total development time was inversely related to temperature between 15 and 25°C. No differences were observed in the development time between sexes and no adults emerged at 33°C. In the larval stages III and IV, the time required for molting to the next stage increased at 30°C. The highest survival was recorded at 20°C. The more developed stages were less resistant to temperatures above and below 20°C. According to the nonlinear model of Briére, the lower and upper development thresholds were 2.6 and 33°C, respectively. Our results suggest that the effect of temperature depends upon the stage of development of C. hepperi.El objetivo de este trabajo fue analizar el efecto de la temperatura sobre el tiempo de desarrollo y la supervivencia preimaginal de Culex (Culex hepperi Casal y García, 1967. Los individuos fueron criados en laboratorio, desde el primer estadio larval hasta la emergencia del adulto, a cinco temperaturas constantes: 15, 20, 25, 30 y 33°C. El tiempo total de desarrollo se relacionó de manera inversa con la temperatura entre 15 y 25°C. No se detectaron diferencias entre sexos en el tiempo de desarrollo y ningún individuo alcanzó el estado adulto a 33°C. En los estadios larvales III y IV, el tiempo requerido para mudar al siguiente estadio fue mayor a 30°C. La supervivencia más alta se registró a 20°C. Los estadios más avanzados fueron menos resistentes a las temperaturas por encima y por debajo de los 20°C. De acuerdo con el modelo no lineal de Briére, los umbrales de desarrollo inferior y superior fueron 2.6 y 33°C, respectivamente. Nuestros resultados sugieren que el efecto de la temperatura depende del

  1. Original article. Biting behavior of Malaysian mosquitoes, Aedes albopictus Skuse, Armigeres kesseli Ramalingam, Culex quinquefasciatus Say, and Culex vishnui Theobald obtained from urban residential areas in Kuala Lumpur

    National Research Council Canada - National Science Library

    Chee Dhang Chen; Han Lim Lee; Koon Weng Lau; Abdul Ghani Abdullah; Swee Beng Tan; Ibrahim Sa’diyah; Yusoff Norma-Rashid; Pei Fen Oh; Chi Kian Chan; Mohd Sofian-Azirun

    2014-01-01

    .... The mosquitoes of major concern in Malaysia belong to the genera Culex, Aedes, and Armigeres. Objective: To study the host-seeking behavior of four Malaysian mosquitoes commonly found in urban residential areas in Kuala Lumpur...

  2. Isolation and Biochemical Characterizations of Mid Gut Microbiota of Culex (Culex quinquefasciatus Mosquitoes in Some Urban Sub Urban & Rural Areas of West Bengal.

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2013-06-01

    Full Text Available Mosquitoes, in general are medically important vectors of many diseases like Malaria, Dengue and Filariasis, which are a great challenge for public health in many countries. All animals and plants establish symbiotic relationship with microbes. Mosquitoes can be considered as an holobiont units in which the host (mosquito and its microbiota are involved in complex reciprocal multipartite interaction such as host reproduction and survival, protection against natural enemies. This naturally acquired microbial flora can modulate the mosquitos’ vectorial capacity by inhibiting the development of pathogen. But enough care has not been under taken regarding the biochemical characterization of Culex mosquitoes (Culex quinquefasciatus in West Bengal. Therefore a preliminary investigation have been undertaken for the determination of biochemical characterization such as gram staining, pattern of growth, detection of economically important enzyme as well as antibiotic susceptibility assay of midgut bacterial isolates of Culex (Culex quinquefasciatus in some urban, sub-urban and rural areas of West Bengal.

  3. Larvicidal potentiality, longevity and fecundity inhibitory activities of Bacillus sphaericus (Bs G3-IV on vector mosquitoes, Aedes aegypti and Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Arjunan Nareshkumar

    2012-12-01

    Full Text Available Intervention measures to control the transmission of vector-borne diseases include control of the vector population. In mosquito control, synthetic insecticides used against both the larvae (larvicides and adults (adulticides create numerous problems, such as environmental pollution, insecticide resistance and toxic hazards to humans. In the present study, a bacterial pesticide, Bacillus sphaericus (Bs G3-IV, was used to control the dengue and filarial vectors, Aedes aegypti and Culex quinquefasciatus. Bacillus sphaericus (Bs G3-IV was very effective against Aedes aegypti and Culex quinquefasciatus, showing significant larval mortality. Evaluated lethal concentrations (LC50 and LC90 were age-dependent, with early instars requiring a lower concentration compared with later stages of mosquitoes. Culex quinquefasciatus was more susceptible to Bacillus sphaericus (Bs G3-IV than was Aedes aegypti. Fecundity rate was highly reduced after treatment with different concentrations of Bacillus sphaericus (Bs G3-IV. Larval and pupal longevity both decreased after treatment with Bacillus sphaericus (Bs G3-IV, total number of days was lower in the B. sphaericus treatments compared with the control. Our results show the bacterial pesticide Bacillus sphaericus (Bs G3-IV to be an effective mosquito control agent that can be used for more integrated pest management programs.

  4. Catepsinas B vitelolíticas de Culex quinquefasciatus.

    OpenAIRE

    Alexandre Santos de Moura

    2014-01-01

    Apesar de Culex quinquefasciatus ser um eficiente vetor de doenças tais como a filariose linfática, febre do Nilo Ocidental e outras várias neuroviroses, poucas pesquisas sobre sua fisiologia têm sido conduzidas. Como em todos os animais ovíparos, o desenvolvimento embrionário dos mosquitos depende da degradação dos nutrientes armazenados no ovo, sendo a catepsina B uma protease que tem sido identificada e caracterizada em vários insetos como envolvida nesta função. Neste trabalho identificam...

  5. Evaluation of the pyrrole insecticide chlorfenapyr for the control of Culex quinquefasciatus Say.

    Science.gov (United States)

    Raghavendra, K; Barik, T K; Bhatt, R M; Srivastava, H C; Sreehari, U; Dash, A P

    2011-04-01

    Culex quinquefasciatus Say (Diptera: Culicidae) is a widely distributed mosquito vector species in India and also in other tropical regions of the world. This species is implicated in the transmission of lymphatic filariasis in many countries. This species is reported to be widely resistant to insecticides of different classes in current use. In the present study, bio-efficacy of chlorfenapyr, an insecticide of pyrrole class with a novel mode of action was tested for the control of Cx. quinquefasciatus. Studies were performed to determine the diagnostic dosage; residual efficacy on different artificially fabricated substrates, namely wood, mud, mud+lime, cement and cement+distemper; to assess cross-resistance with different insecticides; and synergism/antagonism using piperonyl butoxide (PBO). A dosage of 5.0% chlorfenapyr was determined as diagnostic dosage with 2 h exposure and 48 h holding period for assessing the susceptibility of mosquitoes. The residual efficacy was observed up to 34 weeks on wood and mud+lime substrates while on other substrates, it was about 15 weeks at a dosage of 400mg a.i./m(2). Laboratory-reared strains of Cx. quinquefasciatus showed cross-resistance, whereas field-collected mosquitoes showed absence of cross-resistance to chlorfenapyr. Potentiation bioassays showed antagonistic effect of PBO to chlorfenapyr toxicity owing to the involvement of oxidases in the initial step of a conversion of pro-insecticide chlorfenapyr to toxic form CL 303268. The present study results have shown that chlorfenapyr can be a potential insecticide for the control of multiple insecticide resistant strains of Cx. quinquefasciatus. However, in countries where indoor residual spray (IRS) is not targeted for the control of this species, like in India, chlorfenapyr used in IRS for the control of malaria vectors in rural and peri-urban areas can additionally provide control of Cx. quinquefasciatus also. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and anthropogenic factors.

    Science.gov (United States)

    Asgharian, Hosseinali; Chang, Peter L; Lysenkov, Sergey; Scobeyeva, Victoria A; Reisen, William K; Nuzhdin, Sergey V

    2015-07-07

    We present the first genome-wide study of recent evolution in Culex pipiens species complex focusing on the genomic extent, functional targets and likely causes of global and local adaptations. We resequenced pooled samples of six populations of C. pipiens and two populations of the outgroup Culex torrentium. We used principal component analysis to systematically study differential natural selection across populations and developed a phylogenetic scanning method to analyse admixture without haplotype data. We found evidence for the prominent role of geographical distribution in shaping population structure and specifying patterns of genomic selection. Multiple adaptive events, involving genes implicated with autogeny, diapause and insecticide resistance were limited to specific populations. We estimate that about 5-20% of the genes (including several histone genes) and almost half of the annotated pathways were undergoing selective sweeps in each population. The high occurrence of sweeps in non-genic regions and in chromatin remodelling genes indicated the adaptive importance of gene expression changes. We hypothesize that global adaptive processes in the C. pipiens complex are potentially associated with South to North range expansion, requiring adjustments in chromatin conformation. Strong local signature of adaptation and emergence of hybrid bridge vectors necessitate genomic assessment of populations before specifying control agents.

  7. Cytonuclear Epistasis Controls the Density of Symbiont Wolbachia pipientis in Nongonadal Tissues of Mosquito Culex quinquefasciatus.

    Science.gov (United States)

    Emerson, Kevin J; Glaser, Robert L

    2017-08-07

    Wolbachia pipientis, a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia-mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens, and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus, we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia-mediated phenotypes such as viral pathogen resistance. Copyright © 2017 Emerson, Glaser.

  8. Larvicidal activity of essential extract of Rosmarinus officinalis against Culex quinquefasciatus.

    Science.gov (United States)

    Yu, Jing; Liu, Xiang-Yi; Yang, Bin; Wang, Jie; Zhang, Fu-Qiang; Feng, Zi-Liang; Wang, Chen-Zhu; Fan, Quan-Shui

    2013-03-01

    Constituents in rosemary (Rosmarinus officinalis) have been shown to have larvicidal activity against invertebrates. In order to explore the properties of crude extract of rosemary further, we studied the chemical composition and its activity against dichlorodiphenyltrichloroethane (DDT)-susceptible, DDT-resistant, and field strains of Culex quinquefasciatus larvae. The major components of R. officinalis were found to be eucalyptol and camphor, with relative percentages of 10.93% and 5.51%, respectively. Minor constituents included limonene, (+)-4-carene, isoborneol, 1-methyl-4-(1-methylethylidene)-cyclohexene, and pinene. The median lethal concentration (LC50) values of the essential oil of R. officinalis against DDT-susceptible, DDT-resistant, and field strains of larvae of Cx. quinquefasciatus were 30.6, 26.4, and 38.3 mg/liter, respectively. The single median lethal dose (LD50) in Kunming mice was 4752 mg/kg. Essential oils from R. officinalis may, therefore, provide an effective natural plant product for use in mosquito prevention and control.

  9. Culex mosquitoes in temporary urban rain pools: seasonal dynamics and relation to environmental variables.

    Science.gov (United States)

    Fischer, Sylvia; Schweigmann, Nicolás

    2004-12-01

    The study was conducted in a park of Buenos Aires City, where a total of 89 rain pools were sampled weekly for mosquito immature stages over a one-year period. The aim of the present paper was to investigate the seasonal dynamics of three Culex species breeding in temporary rain pools and to analyze the relationships of the presence of these species to pool dimensions, pool age, vegetation, and insolation degree. The three species showed differences in their seasonal patterns, Culex dolosus being present during the whole year, Culex pipiens mainly in the summer season, and Culex maxi almost exclusively during the fall. The variable explaining most of the variation among sampling dates in species composition was weekly mean temperature. A significant positive association was detected among mosquito species, as they were recorded together more frequently than expected by chance. The statistical analyses performed revealed significant positive relationships of all three mosquito species to increasing surface area, whereas no relationship to insolation degree was detected in the studied pools. Culex pipiens and Culex dolosus showed positive relationships to increasing vegetation cover, whereas the presence of Culex dolosus was also related to pool age.

  10. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Côte d'Ivoire

    OpenAIRE

    Koffi Alphonsine A; Koudou Benjamin G; Malone David; Hemingway Janet

    2011-01-01

    Abstract Background Pyrethroid resistance in vectors could limit the efficacy of long-lasting insecticidal nets (LLINs) because all LLINs are currently treated with pyrethroids. The goal of this study was to evaluate the efficacy and wash resistance of PermaNet® 3.0 compared to PermaNet® 2.0 in an area of high pyrethroid in Côte d'Ivoire. PermaNet® 3.0 is impregnated with deltamethrin at 85 mg/m2 on the sides of the net and with deltamethrin and piperonyl butoxide on the roof. PermaNet® 2.0 i...

  11. Lectin Activity in Gut Extract of Culex pipiens.

    Directory of Open Access Journals (Sweden)

    Mona Koosha

    2013-06-01

    Full Text Available The role of lectins is important in interaction between pathogens and mosquito vectors. This study was performed to identify agglutinin activities of protein molecules on the midgut of Culex pipiens.Culex pipiens was reared in insectray condition and the midguts of males and females (blood fed and unfed were dissected separately in Tris-HCl buffer. The extracts of midguts were applied for hemagglutinin assay against red blood cells of rabbit, mouse, rat, dog, horse, sheep, guinea pig, cow, human (A, B, AB, O groups. Then, the RBCs with relatively high agglutinin activity were chosen for carbohydrate inhibition assay. D (+ glucose, D (+ galactose, D (+ mannose, D (- fructose, D (- arabinose, L (- fucose, lactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, sialic acid were used to specify carbohydrate binding lectin.The highest agglutinin activities were found against sheep and rabbits RBCs. Sexual diversity of agglutinin activities was observed among midgut extraction of males and females. In addition, variation in agglutinin activity of blood fed and unfed female mosquitoes were detected. The lectin activity was inhibited highly with glucose, galactose, fucose and fructose but less inhibitor activities was observed by arabinose, N-acetyl-D-galactosamine, n-acetyl-d-glucosamine, lactose and mannose.The secretion of hemagglutinins (lectins or lectin-like molecules in the digestive system depends on the type of food in the gut. This suggests that emptying of the gut in preparation for protein rich food probably starts the secretion of hemagglutinins.

  12. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    Science.gov (United States)

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  13. Lectin Activity in Gut Extract of Culex pipiens

    Science.gov (United States)

    Koosha, Mona; Abai, Mohammad Reza; Abolhasani, Mandan; Charedar, Soroor; Basseri, Hamid Reza

    2013-01-01

    Background: The role of lectins is important in interaction between pathogens and mosquito vectors. This study was performed to identify agglutinin activities of protein molecules on the midgut of Culex pipiens. Methods: Culex pipiens was reared in insectray condition and the midguts of males and females (blood fed and unfed) were dissected separately in Tris-HCl buffer. The extracts of midguts were applied for hemagglutinin assay against red blood cells of rabbit, mouse, rat, dog, horse, sheep, guinea pig, cow, human (A, B, AB, O groups). Then, the RBCs with relatively high agglutinin activity were chosen for carbohydrate inhibition assay. D (+) glucose, D (+) galactose, D (+) mannose, D (−) fructose, D (−) arabinose, L (−) fucose, lactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, sialic acid were used to specify carbohydrate binding lectin. Results: The highest agglutinin activities were found against sheep and rabbits RBCs. Sexual diversity of agglutinin activities was observed among midgut extraction of males and females. In addition, variation in agglutinin activity of blood fed and unfed female mosquitoes were detected. The lectin activity was inhibited highly with glucose, galactose, fucose and fructose but less inhibitor activities was observed by arabinose, N-acetyl-D-galactosamine, n-acetyl-d-glucosamine, lactose and mannose. Conclusion: The secretion of hemagglutinins (lectins or lectin-like molecules) in the digestive system depends on the type of food in the gut. This suggests that emptying of the gut in preparation for protein rich food probably starts the secretion of hemagglutinins. PMID:23785692

  14. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory

    Institute of Scientific and Technical Information of China (English)

    Kitvatanachai; S; Apiwathnasorn; C; Leemingsawat; S; Wongwit; W; Overgaard; HJ

    2011-01-01

    Objective:To determine lead level primarily in Culex quinquefasciatus(Cx.quinquefasciatus), and Culex gelidus(Cx.gelidus) larvae inhabiting lead consuming factories,and to putatively estimate eco-toxicological impact of effluents from the firms.Methods:Third instars larvae were sampled by standard dipping method and lead concentrations in the larvae and their respective surrounding factory aquatic environments were determined through standard atomic absorption spectrophotometry(AAS).Results:Cx.quinquefasciatus was the most abundant species followed by Cx.gelidus.The levels of lead were higher in the Cx.quinquefasciatus(1.08-47.47μg/g),than in the wastewaters surface(0.01-0.78 μg/mL) from the factories or closer areas around factories. Other species were not reaching the.criteria for lead determination.Conclusions:The Cx. quinquefasciatus larvae can bio-accumulate the metal and can potentially serve as a biomarker of lead contamination,to complemente conventional techniques.

  15. West Nile virus vector Culex modestus established in southern England

    Directory of Open Access Journals (Sweden)

    Golding Nick

    2012-02-01

    Full Text Available Abstract Background The risk posed to the United Kingdom by West Nile virus (WNV has previously been considered low, due to the absence or scarcity of the main Culex sp. bridge vectors. The mosquito Culex modestus is widespread in southern Europe, where it acts as the principle bridge vector of WNV. This species was not previously thought to be present in the United Kingdom. Findings Mosquito larval surveys carried out in 2010 identified substantial populations of Cx. modestus at two sites in marshland in southeast England. Host-seeking-adult traps placed at a third site indicate that the relative seasonal abundance of Cx. modestus peaks in early August. DNA barcoding of these specimens from the United Kingdom and material from southern France confirmed the morphological identification. Conclusions Cx. modestus appears to be established in the North Kent Marshes, possibly as the result of a recent introduction. The addition of this species to the United Kingdom's mosquito fauna may increase the risk posed to the United Kingdom by WNV.

  16. Validated TLC-densitometry method for the simultaneous analysis of pyrethroid insecticides in agricultural and domestic products

    Directory of Open Access Journals (Sweden)

    Musharraf Syed

    2012-08-01

    Full Text Available Abstract Background Pyrethroids are widely used for the control of pests and insects, as pyrethroids are believed to pose little risk to human health and environment. However, exposure to the pyrethroids exceeding the label directions might adversely affect human health and environment. Hence a careful selection of environment friendly household product is required that must contain exactly the label claimed pyrethroids amount. Results A sensitive and robust TLC-densitometric method for simultaneous quantification of commonly used synthetic pyrethroids including esbiothrin, alpha-cypermethrin and cis/trans permethrin in agricultural and domestic products has been developed and validated. TLC aluminum sheets, precoated with 0.2 mm thick layer of silica gel 60 F-254, were used for chromatographic process. Densitometric analysis of chromatoplates was carried out in absorbance mode at corresponding λmax of each pyrethroid. Equally valid common mobile phase for all pyrethroids consisted of hexane-dichloromethane-ethylacetate-formic acid (8:1.5:0.4:0.1 v/v/v/v which provided sharp and symmetrical peaks of esbiothrin, alpha-cypermethrin, trans-permethrin and cis-permethrin, at Rf 0.31, 0.53, 0.6 and 0.65, respectively. Linear regression data for respective calibration curves showed a good linearity for all pyrethroids with r = 0.991-0.996. Limits of detection (LOD and limits of quantification (LOQ for all pyrethroids were found in the range of 1.6-2.8 and 4.9-8.5 ng/spot, respectively. Conclusions The developed method is applicable for separating the mixture of pyrethroids and at the same time, it is also valid for separating their isomers. The method is reproducible, precise and accurate for the quantitative determination of pyrethroids in agricultural and domestic products.

  17. Efficacy of imidacloprid and fipronil gels over synthetic pyrethroid and propoxur aerosols in control of German cockroaches (Dictyoptera: Blatellidae

    Directory of Open Access Journals (Sweden)

    V.K. Agrawal

    2010-03-01

    Full Text Available Background & objectives: Resistance amongst cockroaches has been reported to most of the sprayinsecticides apart from the problem of food contamination and inconvenience. Gel baits which canbe selectively applied have been found effective in control of cockroaches in laboratory studies butvery few field studies are available. This trial was planned to evaluate the efficacy of fipronil(0.01% and imidacloprid (2.15% gels over synthetic pyrethroid (0.02% deltamethrin + 0.13%allethrin and propoxur (2% aerosols in control of cockroaches in the field.Methods: Survey was done to find out pre-treatment density in catering establishments and housesby visual count and sticky trap methods. A total of 10 catering establishments and 10 houseshaving high cockroach infestation were selected by sampling (two catering establishments andhouses for each insecticidal treatment and two for control. Propoxur and synthetic pyrethroidaerosols were used for spraying the infested sites once only. Single application of fipronil andimidacloprid gels was used as crack and crevice treatment. Visual count method gave betterindications of cockroach infestation as compared to sticky trap method, hence, the same was followedfor post-treatment evaluation every week up to 12 weeks.Results: Synthetic pyrethroid could not bring about the desired reduction in cockroach infestationin the present study. Single application of fipronil gel was able to reduce cockroach infestation upto 96.8% at the end of 12 weeks whereas imidacloprid application resulted in 90.9% reduction andpropoxur resulted in 77.5%. However, propoxur was more effective in reducing the cockroachdensity by first week in comparison to imidacloprid and fipronil gels but its efficacy started decliningafter 8th week. Difference was found statistically significant by Kruskal-Wallis H-test.Conclusion: The study reports the efficacy of propoxur aerosol, imidacloprid gel and fipronil gelbaits for control of cockroaches.

  18. Environmentally Relevant Mixing Ratios in Cumulative Assessments: A Study of the Kinetics of Pyrethroids and Their Ester Cleavage Metabolites in Blood and Brain; and the Effect of a Pyrethroid Mixture on the Motor Activity of Rats

    Science.gov (United States)

    National surveys of United States households and child care centers have demonstrated that pyrethroids are widely distributed in indoor habited dwellings and this suggests that co-exposure to multiple pyrethroids occurs in nonoccupational settings. The purpose of this research wa...

  19. ANALYSIS OF THE MOTOR NEUROTOXICITY INDUCED BY ACUTE ORAL EXPOSURE TO MULTIPLE PYRETHROID COMPOUNDS IN THE RAT USING AN ADDITIVITY MODEL.

    Science.gov (United States)

    Use of pyrethroids has increased in the last decade, and co-exposure to multiple pyrethroids has been reported in humans. Pyrethroids produce neurotoxicity in mammals at dosages far below those producing lethality. The Food Quality Protection Act requires the EPA to consider cumu...

  20. Structure-related effects of pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis

    NARCIS (Netherlands)

    Vijverberg, H.P.M.; Ruigt, GeS. F.; Bercken, J. van den

    1982-01-01

    The effects of seven different pyrethroid insecticides on the lateral-line sense organ and on peripheral nerves of the clawed frog, Xenopus laevis, were investigated by means of electrophysiological methods. The results show that two classes of pyrethroid can be clearly distinguished. (i) Pyrethroid

  1. The impact of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance: a case study in Peel Region.

    Science.gov (United States)

    Wang, Jiafeng; Ogden, Nick H; Zhu, Huaiping

    2011-03-01

    Mosquito populations are sensitive to long-term variations in climate and short-term variations in weather. Mosquito abundance is a key determinant of outbreaks of mosquito-borne diseases, such as West Nile virus (WNV). In this work, the short-term impact of weather conditions (temperature and precipitation) on Culex pipiens L.-Culex restuans Theobald mosquito abundance in Peel Region, Ontario, Canada, was investigated using the 2002-2009 mosquito data collected from the WNV surveillance program managed by Ontario Ministry of Health and Long-Term Care and a gamma-generalized linear model. There was a clear association between weather conditions (temperature and precipitation) and mosquito abundance, which allowed the definition of threshold criteria for temperature and precipitation conditions for mosquito population growth. A predictive statistical model for mosquito population based on weather conditions was calibrated using real weather and mosquito surveillance data, and validated using a subset of surveillance data. Results showed that WNV vector abundance on any one day could be predicted with reasonable accuracy from relationships with mean degree-days >9 degrees C over the 11 preceding days, and precipitation 35 d previously. This finding provides optimism for the development of weather-generated forecasting for WNV risk that could be used in decision support systems for interventions such as mosquito control.

  2. Optimization of pyrethroid and repellent on fabrics against Stegomyia albopicta (=Aedes albopictus) using a microencapsulation technique.

    Science.gov (United States)

    Yao, T-T; Wang, L-K; Cheng, J-L; Hu, Y-Z; Zhao, J-H; Zhu, G-N

    2015-03-01

    A new approach employing a combination of pyrethroid and repellent is proposed to improve the protective efficacy of conventional pyrethroid-treated fabrics against mosquito vectors. In this context, the insecticidal and repellent efficacies of commonly used pyrethroids and repellents were evaluated by cone tests and arm-in-cage tests against Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae). At concentrations of LD50 (estimated for pyrethroid) or ED50 (estimated for repellent), respectively, the knock-down effects of the pyrethroids or repellents were further compared. The results obtained indicated that deltamethrin and DEET were relatively more effective and thus these were selected for further study. Synergistic interaction was observed between deltamethrin and DEET at the ratios of 5 : 1, 2 : 1, 1 : 1 and 1 : 2 (but not 1 : 5). An optimal mixing ratio of 7 : 5 was then microencapsulated and adhered to fabrics using a fixing agent. Fabrics impregnated by microencapsulated mixtures gained extended washing durability compared with those treated with a conventional dipping method. Results indicated that this approach represents a promising method for the future impregnation of bednet, curtain and combat uniform materials.

  3. Urinary concentrations of metabolites of pyrethroid insecticides in textile workers, Eastern China.

    Science.gov (United States)

    Lu, Dasheng; Wang, Dongli; Feng, Chao; Jin, Yu'e; Zhou, Zhijun; Wu, Chunhua; Lin, Yuanjie; Wang, Guoquan

    2013-10-01

    Pyrethroid insecticides have been applied in the production of cotton, wool and textile. In order to examine whether textile workers are exposed to pyrethroid insecticides, we recruited 50 textile workers in two textile plants in Eastern China. Their urine samples were collected for the measurement of pyrethroid metabolites: cis- and trans-isomers of 2,2-dichlorovinyl-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Cl2CA and trans-Cl2CA) and 3-phenoxybenzoic acid (3-PBA). Our results showed that textile workers were exposed to high levels of pyrethroid insecticides. cis-Cl2CA and 3-PBA were dominant metabolites with concentrations of 0.17-261μg/L, while concentrations of trans-Cl2CA were in the range of 0.26-11μg/L. Levels of three metabolites were in a descending order: cis-Cl2CA, 3-PBA, and trans-Cl2CA. Levels of the metabolites were associated with ages and job responsibilities of textile workers. Sewing workers, cutting workers, machine operators, reorganizers, and older workers were more likely in contact with pyrethroid insecticides in the textile production. trans- to cis-Cl2CA ratios might indicate that exposure of textile workers was via dermal absorption and inhalation.

  4. Factors contributing to the off-target transport of pyrethroid insecticides from urban surfaces.

    Science.gov (United States)

    Jorgenson, Brant C; Wissel-Tyson, Christopher; Young, Thomas M

    2012-08-01

    Pyrethroid insecticides used in urban and suburban contexts have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9 to 0.011% of pyrethroid mass applied, and 10 L nominal mass losses ranged from 3970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and, to a lesser degree, on set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted.

  5. Comparative toxicity of pyrethroid insecticides to two estuarine crustacean species, Americamysis bahia and Palaemonetes pugio.

    Science.gov (United States)

    DeLorenzo, Marie E; Key, Peter B; Chung, Katy W; Sapozhnikova, Yelena; Fulton, Michael H

    2014-10-01

    Pyrethroid insecticides are widely used on agricultural crops, as well as for nurseries, golf courses, urban structural and landscaping sites, residential home and garden pest control, and mosquito abatement. Evaluation of sensitive marine and estuarine species is essential for the development of toxicity testing and risk-assessment protocols. Two estuarine crustacean species, Americamysis bahia (mysids) and Palaemonetes pugio (grass shrimp), were tested with the commonly used pyrethroid compounds, lambda-cyhalothrin, permethrin, cypermethrin, deltamethrin, and phenothrin. Sensitivities of adult and larval grass shrimp and 7-day-old mysids were compared using standard 96-h LC50 bioassay protocols. Adult and larval grass shrimp were more sensitive than the mysids to all the pyrethroids tested. Larval grass shrimp were approximately 18-fold more sensitive to lambda-cyhalothrin than the mysids. Larval grass shrimp were similar in sensitivity to adult grass shrimp for cypermethrin, deltamethrin, and phenothrin, but larvae were approximately twice as sensitive to lambda-cyhalothrin and permethrin as adult shrimp. Acute toxicity to estuarine crustaceans occurred at low nanogram per liter concentrations of some pyrethroids, illustrating the need for careful regulation of the use of pyrethroid compounds in the coastal zone. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  6. Biological monitoring of pyrethroid exposure of pest control workers in Japan.

    Science.gov (United States)

    Wang, Dong; Kamijima, Michihiro; Imai, Ryota; Suzuki, Takayoshi; Kameda, Yohei; Asai, Kazumi; Okamura, Ai; Naito, Hisao; Ueyama, Jun; Saito, Isao; Nakajima, Tamie; Goto, Masahiro; Shibata, Eiji; Kondo, Takaaki; Takagi, Kenji; Takagi, Kenzo; Wakusawa, Shinya

    2007-11-01

    Synthetic pyrethroids such as cypermethrin, deltamethrin and permethrin, which are usually used in pest control operations, are metabolized to 3-phenoxybenzoic acid (3-PBA) and excreted in urine. Though 3-PBA can be used to assess exposure to pyrethroids, there are few reports describing urinary 3-PBA levels in Japan. This study aimed to investigate the seasonal variation of the exposure levels of pyrethroids and the concentration of urinary 3-PBA among pest control operators (PCOs) in Japan. The study subjects were 78 and 66 PCOs who underwent a health examination in December 2004 and in August 2005, respectively. 3-PBA was determined using gas chromatography-mass spectrometry. The geometric mean concentration of urinary 3-PBA in winter (3.9 microg/g creatinine) was significantly lower than in summer (12.2 microg/g creatinine) (p0.05), respectively. A significant association of 3-PBA levels and pyrethroid spraying was thus observed only in winter. In conclusion, the results of the present study show that the exposure level of pyrethroids among PCOs in Japan assessed by monitoring urinary 3-PBA was higher than that reported in the UK but comparable to that in Germany. Further research should be accumulated to establish an occupational reference value in Japan.

  7. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure.

    Science.gov (United States)

    Hossain, Muhammad M; DiCicco-Bloom, Emanuel; Richardson, Jason R

    2015-01-01

    Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits.

  8. Field evaluation of the bio-efficacy of three pyrethroid based coils against wild populations of anthropophilic mosquitoes in Northern Tanzania

    Directory of Open Access Journals (Sweden)

    Shandala Msangi

    2010-01-01

    Full Text Available Aims: This study aims to assess the feeding inhibition and repellency effect of three brands of mosquito coils in experimental huts (East African design. Evaluated products were all pyrethroid-based mosquito coils - Kiboko; , Total; and Risasi; . Mosfly (0.1% D-allethrin was a positive control. Indoor resting behavior, feeding inhibition and induced exophily were measured as responses of burnt coil smoke in huts. Materials and methods: Resting mosquitoes were collected inside the huts, in window traps and verandah traps using mechanical aspirators. Identified to species level and sex. Results: A total of 1460 mosquitoes were collected, 58.9% (n=860 were Anopheles gambiae s.l while 41.1% (n=600 Culex quinquefasciatus. Indoor resting mosquitoes in all treated huts were significantly reduced than in negative control (DF=4, F=18.6, P < 0.001. Species found to rest indoors were not statistical different between the positive control (Mosfly coil and other three treated huts (DF=3, F=1.068, P=0.408. Cx.quinquefasciatus had significantly higher induced exophily in all treatments comparing to An.gambiae s.l (DF=1, F=5.34, P=0.050. Comparison between species (An.gambiae s.l and Cx. quinquefasciatus for the feeding inhibition among treated huts was not statistically significant (DF=1, F=0.062, P=0.810. Conclusion: Introduction of several personal protection measures will be ideal to supplement the existing gap in reducing the man vector contacts hence lowering the disease transmission.

  9. [Progress in studies of the male reproductive toxicity of pyrethroid insecticides].

    Science.gov (United States)

    Yao, Ke-Wen; Wang, Jie-Dong

    2008-03-01

    As a new type of pesticides and because of their high performance and low toxicity, pyrethroid insecticides are widely used in place of organochlorine insecticides both in agriculture and in the home. In the recent years, more and more evidence indicates that pyrethroid insecticides can reduce sperm count and motility, cause deformity of the sperm head, increase the count of abnormal sperm, damage sperm DNA and induce its aneuploidy rate, as well as affect sex hormone levels and produce reproductive toxicity. The present article reviews the advances in the studies of male reproductive toxicity of pyrethroid pesticides by experiment in animals and human population, discusses the mechanism of male reproductive toxicity of pesticides and raises some problems concerning the evaluation of human reproductive hazards.

  10. Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector

    Science.gov (United States)

    Dhanasekaran, Dharumadurai; Thangaraj, Ramasamy

    2013-01-01

    Objective To evaluate the larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Methods The synthesized AgNPs were characterized by UV-vis. spectrum, Fourier transform infrared and X-ray diffraction. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 10 min. The different concentrations of 5, 2.5, 1.25, 0.625 and 0.312 mg/L silver nanoparticles were tested against the Culex larvae. Results The mortality rate of Agaricus bisporus biogenic nanoparticles against Culex larvae are 5 mg/L (100%), 2.5 mg/L (81%), 1.25 mg/L (62%), 0.625 mg/L (28%) and 0.312 mg/L (11%). Conclusions These results suggest that the synthesized biogenic AgNPs have the potential to be used as an ideal eco-friendly approach for controlling Culex larvae.

  11. Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector

    Directory of Open Access Journals (Sweden)

    Dharumadurai Dhanasekaran

    2013-06-01

    Full Text Available Objective: To evaluate the larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Methods: The synthesized AgNPs were characterized by UVvis. spectrum, Fourier transform infrared and X-ray diffraction. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 10 min. The different concentrations of 5, 2.5, 1.25, 0.625 and 0.312 mg/L silver nanoparticles were tested against the Culex larvae. Results: The mortality rate of Agaricus bisporus biogenic nanoparticles against Culex larvae are 5 mg/L (100%, 2.5 mg/L (81%, 1.25 mg/L (62%, 0.625 mg/L (28% and 0.312 mg/L (11%. Conclusions: These results suggest that the synthesized biogenic AgNPs have the potential to be used as an ideal eco-friendly approach for controlling Culex larvae.

  12. Climate-based models for West Nile Culex mosquito vectors in the Northeastern US

    Science.gov (United States)

    Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

    2011-05-01

    Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

  13. Larvicidal activity of extracts of Ginkgo biloba exocarp for three different strains of Culex pipiens pallens.

    Science.gov (United States)

    Sun, Lixin; Dong, Huiqin; Guo, Chongxia; Qian, Jin; Sun, Jing; Ma, Lei; Zhu, Changliang

    2006-03-01

    Ethanolic extracts from the Ginkgo biloba L. exocarp from the Chinese ginkgo were assayed against larvae of three strains of Culex pipiens pallens Coquillett. The chemical compositions were detected using a Hewlett-Packard 6890/5973 mass spectrometric detector. The larvicidal bioassay was carried out according to the recommendations of the World Health Organization. The analysis of the essential oil of ginkgo exocarp showed that its major components are ginkgo acid (85.3%) and ginkgo phenolic (5.69%). The larvicidal bioassay showed that extracts of ginkgo exocarp have LC50 of 18.6, 12.7, and 25.0 mg/liter for deltamethrin-susceptible, deltamethrin-resistant, and field strains, respectively. The acute toxicity concentrations of the ginkgo extracts that killed 50% (LD50) of Wistar rats within 2 wk and young carp within 96 h were 4947.2 mg/kg and 557.9 mg/liter, respectively. These results are promising in creating new, effective, and affordable approaches to mosquito control.

  14. The effect of environmental exposure to pyrethroids and DNA damage in human sperm.

    Science.gov (United States)

    Jurewicz, Joanna; Radwan, Michał; Wielgomas, Bartosz; Sobala, Wojciech; Piskunowicz, Marta; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2015-01-01

    The present study was designed to investigate whether environmental exposure to pyrethroids was associated with sperm DNA damage. Between January 2008 and April 2011 286 men under 45 years of age with a normal sperm concentration of 15-300 10(6)/ml [WHO 2010] were recruited from an infertility clinic in Lodz, Poland. Participants were interviewed and provided urine, saliva, and semen samples. The pyrethroids metabolites: 3-phenoxybenzoic acid (3PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (CDCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (TDCCA), and cis-2,2-dibromovinyl-2,2-dimethylcyclopropane-carboxylic acid (DBCA) were analyzed in the urine using a validated gas chromatography ion-tap mass spectrometry method. Sperm DNA damage was assessed using a flow cytometry based on sperm chromatin structure assay (SCSA). A positive association was observed between CDCCA >50th percentile and the percentage of medium DNA fragmentation index (M DFI) and percentage of immature sperms (HDS) (p = 0.04, p = 0.04 respectively). The level of 3PBA >50th percentile in urine was positively related to the percentage of high DNA fragmentation index (H DFI) (p = 0.03). The TDCCA, DBCA levels, and the sum of pyrethroid metabolites were not associated with any sperm DNA damage measures. Our results suggest that environmental pyrethroid exposure may affect sperm DNA damage measures index indicated the reproductive effects of pyrethroid exposure on adult men. In view of the importance of human reproductive health and the widespread usage of pyrethroids, it is important to further investigate these correlations.

  15. Pyrethroids differentially alter voltage-gated sodium channels from the honeybee central olfactory neurons.

    Directory of Open Access Journals (Sweden)

    Aklesso Kadala

    Full Text Available The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central 'antennal lobe neurons' (ALNs in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1 an acceleration of cumulative inactivation, and (2 a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and

  16. Lysinibacillus sphaericus S-layer protein toxicity against Culex quinquefasciatus.

    Science.gov (United States)

    Lozano, Lucía C; Ayala, Juan A; Dussán, Jenny

    2011-10-01

    The main toxicity mechanism of Lysinibacillus sphaericus, which is used in the control of mosquitoes, is its binary toxin produced during sporulation; additionally the Mtx1, Mtx2 and Mtx 3 toxins are expressed in vegetative cells. Mosquito larvicidal potency of the S-layer protein that is expressed in vegetative cells has been determined. The protein is similar to other S-layer proteins of mosquitocidal L. sphaericus strains. The LC50 values of the S-layer protein of the L. sphaericus OT4b25, OT4b26, and III(3)7 strains against third-instar larvae of Culex quinquefasciatus were 8.7, 24 and 0.68 μg/ml, respectively. To our knowledge this is the first study showing the mosquito larvicidal potency of the S-layer protein from Lysinibacillus sphaericus.

  17. Evaluation of different formulations of IGRs against Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae)

    OpenAIRE

    Gul Zamin Khan; Inamullah Khan; Imtiaz Ali Khan; Alamzeb; Muhammad Salman; Kalim Ullah

    2016-01-01

    Objective: To test the relative efficacy of pyriproxyfen and methoprene on mortality, deformity, inhibition and emergence to adult stages of Culex quinquefasciatus and Aedes albopictus. Methods: Serial dilutions (0.01–0.05 mg/L) of methoprene, pyriproxyfen 0.5 water dispersible granules (WDG) and pyriproxyfen 1.0 WDG were used to assess mortality and inhibition of 3rd instar larvae of Aedes albopictus and Culex quinquefasciatus. Each concentration and control was replicated four times in c...

  18. The Genus Culex, Subgenus Eumelanomyia Theobald in Southeast Asia and Adjacent Areas

    Science.gov (United States)

    1972-01-01

    Bore1 1930, Mon. Coil. Sot. Path. exot. 3: 365 (d*, ?, L*). Culex macropus Blanchard 1905, Les Moustiques :327. New name for Culex Zongifies Theobald...Spec. Pub. 111, 147 pp. BOREL, E. 1926. Les Moustiques de la Cochinchine et du Sud-Annam. (I), Arch. Inst. Pasteur d’Indochine. 47 pp. 1930. Les... Moustiques de la Cochinchine et du Sud-Annam. Mon. Coll. Sot. Pat. exot. 3, 423 pp. BRAM, R A. 1967. Contributions to the mosquitoes of Southeast Asia

  19. Acute toxicity of furazolidone on Artemia salina, Daphnia magna, and Culex pipiens molestus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Macri, A.; Stazi, A.V.; Dojmi di Delupis, G.

    1988-10-01

    As a result of evidence of the ecotoxicity of nitrofurans, the acute toxicity of furazolidone was tested in vivo on two aquatic organisms, Artemia salina and Daphnia magna, which are both crustaceans. Toxicity studies were also performed on larvae of Culex pipiens molestus. Results indicated a significant toxicity of the compound on Culex pipiens and Daphnia magna, while Artemia salina proved to be the least sensitive.

  20. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes▿†

    OpenAIRE

    KUWATA, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-01-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for...

  1. Biological control of Culex (Culex) saltanensis Dyar, (Diptera, Culicidae) through Bacillus thuringiensis israelensis in laboratory and field conditions Controle biológico de Culex (Culex) saltanensis Dyar, (Diptera, Culicidae) através de Bacillus thuringiensis israelensis em condições de laboratório e campo

    OpenAIRE

    Zequi,João A. C.; José Lopes

    2007-01-01

    Culex (Culex) saltanensis Dyar, 1928 can become a problem in urban centers because they reproduce abundantly in ponds organically enriched. It is vector of the Plasmodium spp. and Crithidia ricadoi Sibajev et al. 1993. This research verifies the efficacy of Bacillus thuringiensis israelensis on C. saltanensis in two temperature situations, both in laboratory and field conditions. LC50 for C. saltanensis immatures fourth instar, was 0.154 ppm and the LC95 was 0.248 ppm an average temperature o...

  2. Lectin Activity in Gut Extract of Culex Pipiens

    Directory of Open Access Journals (Sweden)

    Mona Koosha

    2013-03-01

    Full Text Available Background: The role of lectins is important in interaction between pathogens and mosquito vectors. This study was performed to identify agglutinin activities of protein molecules on the midgut of Culex pipiens. Methods: Culex pipiens was reared in insectray condition and the midguts of males and females (blood fed and un­fed were dissected separately in Tris-HCl buffer. The extracts of midguts were applied for hemagglutinin assay against red blood cells of rabbit, mouse, rat, dog, horse, sheep, guinea pig, cow, human (A, B, AB, O groups. Then, the RBCs with relatively high agglutinin activity were chosen for carbohydrate inhibition assay. D (+ glucose, D (+ galactose, D (+ mannose, D (- fructose, D (- arabinose, L (- fucose, lactose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, sialic acid were used to specify carbohydrate binding lectin.Results: The highest agglutinin activities were found against sheep and rabbits RBCs. Sexual diversity of agglutinin activities was observed among midgut extraction of males and females. In addition, variation in agglutinin activity of blood fed and unfed female mosquitoes were detected. The lectin activity was inhibited highly with glucose, galactose, fucose and fructose but less inhibitor activities was observed by arabinose, N-acetyl-D-galactosamine, n-acetyl-d-glucosamine, lactose and mannose.Conclusion: The secretion of hemagglutinins (lectins or lectin-like molecules in the digestive system depends on the type of food in the gut. This suggests that emptying of the gut in preparation for protein rich food probably starts the secretion of hemagglutinins.

  3. Differential effects of pyrethroid insecticides on extracellular dopamine in the striatum of freely moving rats.

    Science.gov (United States)

    Mubarak Hossain, Muhammad; Suzuki, Tadahiko; Sato, Norio; Sato, Itaru; Takewaki, Tadashi; Suzuki, Koichi; Tachikawa, Eiichi; Kobayashi, Haruo

    2006-11-15

    In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peak effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 microM tetrodotoxin, a Na(+) blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 microM nimodipine, an L-type Ca(++) channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I

  4. Survey of Susceptibility of Cockroaches To Pyrethroids Insecticides in sari Hospital in 1383

    Directory of Open Access Journals (Sweden)

    A.A. Enayati, Ph.D

    Full Text Available Abstract Background and purpose: The medical importance of cockroaches is much greater than what has generally been realized. They are known to carry pathogenic viruses and bacteria such as escherichia coli, Staphylococcus aureus and salmonella species including S.typhi and S.typhimurium. As a result, their eradication is very important.Materials and Methods: One of the best and effective ways of controlling cockoaches is thought to be the chemical method, which is performed by insecticides. It should be stated that the chemical treatment must be combined with enviromental sanitation, otherwise, the results will not be satisfactory. This study was carried out by using four different insecticides like: Permethrin 0.92% Deltamethrin 0.98% and Supermithrin 0.92% to evaluate their susceptibility and resistance.In this study, the cockroaches were collected from Imam Khomeini and Boo Ali Hospitals in Sari and were tested by different cocentrations of above -mentioned insecticides. Susecptibility of cockroaches was performed according to the standards of World Health Organization (W.H.O.Results: In this study, all the strains of cockroaches were exposed to the concentration of the above-mentioned insecticides through surface contact method. Imam Khomeini strain showed the LT50 of 20/24, 19/30, 19/64 minutes and Boo Ali hospitals 19/87, 17/6, 18/66 minutes. For susceptible strain, 8/89, 8/8, 8/64 minutes were obtained to Permethrin, Deltamethrin and Sumithrin respectively. On the other hand, LT90 for Imam Khomeini strain were 42/91, 41/21, 37/38 minutes and Boo Ali hospitals 42/59, 40/88, 34/05 minutes. For susceptible strain, 17/58, 18/43, 17/28 minutes were obtained to Permethrin, Deltamethrin and Supermithrin respectively. In surface contact, the resistance ratio (RR to pyrethroids insecticides (Permethrin, Deltamethrin and Supermithrin of BoAli hospitals strain was 2/23, 2 and 2/15 respectively, while this ratio for Imam Khomeini strain was 2/2, 2

  5. Comparative toxicities of organophosphate and pyrethroid insecticides to aquatic macroarthropods.

    Science.gov (United States)

    Halstead, Neal T; Civitello, David J; Rohr, Jason R

    2015-09-01

    As agricultural expansion and intensification increase to meet the growing global food demand, so too will insecticide use and thus the risk of non-target effects. Insecticide pollution poses a particular threat to aquatic macroarthropods, which play important functional roles in freshwater ecosystems. Thus, understanding the relative toxicities of insecticides to non-target functional groups is critical for predicting effects on ecosystem functions. We exposed two common macroarthropod predators, the crayfish Procambarus alleni and the water bug Belostoma flumineum, to three insecticides in each of two insecticide classes (three organophosphates: chlorpyrifos, malathion, and terbufos; and three pyrethroids: esfenvalerate, λ-cyhalothrin, and permethrin) to assess their toxicities. We generated 150 simulated environmental exposures using the US EPA Surface Water Contamination Calculator to determine the proportion of estimated peak environmental concentrations (EECs) that exceeded the US EPA level of concern (0.5×LC50) for non-endangered aquatic invertebrates. Organophosphate insecticides generated consistently low-risk exposure scenarios (EECs0.5×LC50) to P. alleni, but not to B. flumineum, where only λ-cyhalothrin produced consistently high-risk exposures. Survival analyses demonstrated that insecticide class accounted for 55.7% and 91.1% of explained variance in P. alleni and B. flumineum survival, respectively. Thus, risk to non-target organisms is well predicted by pesticide class. Identifying insecticides that pose low risk to aquatic macroarthropods might help meet increased demands for food while mitigating against potential negative effects on ecosystem functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Phytochemical composition, mosquito larvicidal, ovicidal and repellent activity of Calotropis procera against Culex tritaeniorhynchus and Culex gelidus

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2012-03-01

    Full Text Available Focus of this study was to determine the phytochemical composition and mosquito controlling potential of aqueous extract of Calotropis procera (Ait. R.Br. leaves using in vitro methods. Preliminary phytochemical analysis of the extract showed the presence of phenolic compounds, flavonoids, alkaloids, tannins, saponins, glycosides and phytosterols as major phytochemical groups. Aqueous extract of C. procera leaves (1,000 ppm exhibited 100% larvicidal activity against fourth instar larvae of Culex tritaeniorhynchus and Cx. gelidus. Extract treatment (1,000 ppm of both mosquitoes’ eggs resulted in to 100% ovicidal activity. At 1,000 ppm, extract provided complete protection from mosquito bite for 240 min against both mosquitoes; however at lower doses the protection time was less. T