WorldWideScience

Sample records for pyramid pb-o bonds

  1. Bonding and M?ssbauer Isomer Shifts in (Tl,Pb) - 1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of (Tl,Pb) - 1223 was calculated.The results show that the Sr-O,Tl-O,and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent character.M?ssbauer isomer shifts of 57Fe and 119Sn doped in (Tl,Pb) -1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe,and 119Sn doped (Tl,Pb) -1223 superconductor.We conclude that all of the Fe atoms substitute the Cu at square planar Cu (1) site,whereas Sn prefers to substitute the square pyramidal Cu (2) site.

  2. New perovskite-based manganite Pb2Mn2O5

    International Nuclear Information System (INIS)

    Hadermann, Joke; Abakumov, Artem M.; Perkisas, Tyche; D'Hondt, Hans; Tan Haiyan; Verbeeck, Johan; Filonenko, Vladimir P.; Antipov, Evgeny V.; Van Tendeloo, Gustaaf

    2010-01-01

    A new perovskite based compound Pb 2 Mn 2 O 5 has been synthesized using a high pressure high temperature technique. The structure model of Pb 2 Mn 2 O 5 is proposed based on electron diffraction, high angle annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy. The compound crystallizes in an orthorhombic unit cell with parameters a=5.736(1) A∼√2a p , b=3.800(1) A∼a p , c=21.562(6) A∼4√2a p (a p -the parameter of the perovskite subcell) and space group Pnma. The Pb 2 Mn 2 O 5 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110] p (101) p crystallographic shear planes. The blocks are connected to each other by chains of edge-sharing MnO 5 distorted tetragonal pyramids. The chains of MnO 5 pyramids and the MnO 6 octahedra of the perovskite blocks delimit six-sided tunnels accommodating double chains of Pb atoms. The tunnels and pyramidal chains adopt two mirror-related configurations ('left' L and 'right' R) and layers consisting of chains and tunnels of the same configuration alternate in the structure according to an -L-R-L-R-sequence. The sequence is sometimes locally violated by the appearance of -L-L- or -R-R-fragments. A scheme is proposed with a Jahn-Teller distortion of the MnO 6 octahedra with two long and two short bonds lying in the a-c plane, along two perpendicular orientations within this plane, forming a d-type pattern. - Graphical abstract: Order of the Jahn-Teller distorted MnO 6 octahedra in Pb 2 Mn 2 O 5 . Two long and two short bonds lie in the a-c plane, along two perpendicular orientations within this plane, forming a d-type pattern.

  3. Syntheses and characterizations of secondary Pb-O bonding supported Pb(II)-sulfonate complexes

    Science.gov (United States)

    Huang, Guo-Zhen; Zou, Xin; Zhu, Zhi-Biao; Deng, Zhao-Peng; Huo, Li-Hua; Gao, Shan

    2018-06-01

    The reaction of Pb(II) salts and mono- or disulfonates leads to the formation of eight new Pb(II)-mono/disulfonate complexes, [Pb(L1)(H2O)]2 (1), [Pb4(L2)2(AcO)2]n·5nH2O (2), [Pb(L3)(H2O)]2 (3), [Pb(HL4)(H2O)2]n·nH2O (4), [Pb(HL5)(H2O)2]n·2nH2O (5), [Pb(H2L6)(H2O)]n·nDMF·2nH2O (6), [Pb2(H3L7)4(H2O)6]·2H2O (7) and [Pb(H2L7)(H2O)]n·nH2O (8) (H2L1= 2-hydroxy-5-methyl-benzenesulfonic acid, H3L2= 2-hydroxyl-5-methyl- 1,3-benzenedisulfonic acid, H2L3= 2-hydroxy-5-nitro-benzenesulfonic acid, H3L4= 2-hydroxyl-5-bromo-1,3- benzenedisulfonic acid, H3L5= 2-hydroxyl-5-carboxyl-benzenesulfonic acid, H4L6= 2,5-dihydroxyl-3-carboxyl- benzenesulfonic acid, H4L7= 2,4-dihydroxyl-5-carboxyl-benzenesulfonic acid, DMF = N,N'-dimethyl-formamide, AcO- = acetate), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. In view of the primary Pb-O bonds, these eight complexes exhibit diverse dinuclear (1, 3 and 7), helical chain (4), wave-like chain (5), linear chain (6), zigzag chain (8) and layer structure (2), in which the Pb(II) cations present different hemi-directed geometries. Taking the secondary Pb-O bonds into account, chain structure for complex 7, layer motifs for complexes 1 and 3-6, as well as 3-D framework for complex 8 are observed with Pb(II) cations showing more intricate holo-directed geometries. The various coordination modes of these seven different mono/disulfonate anions are responsible for the formation of these multiple structures. Furthermore, the introduction of hydroxyl and carboxyl groups increases the coordination ability of sulfonate to the p-block metal cation. Luminescent analyses indicate that complex 7 presents purple emission at 395 nm at room temperature.

  4. On the existence of PbBi3PO8

    International Nuclear Information System (INIS)

    Steinfink, H.; Dass, R.I.; Lynch, V.; Harlow, R.L.; Lee, P.L.

    2005-01-01

    The title compound crystallizes in the tetragonal system, a = 11.733(2) A, c = 15.587(3) A, I4 mm, Z = 10. Data were collected at the Argonne National Laboratory synchrotron source at λ = 0.15359 A. Least squares refinement on F 2 converged to R1 = 0.039. The oxygen coordination polyhedra around Bi and Pb display the distortions typical of 6s 2 lone-pair atoms. One Bi is disordered. Bi-O bonds vary from 2.08(2) to 2.96(1) A. One Pb is in cubic coordination to oxygen and the second Pb is bonded to six oxygen atoms that form a rectangular pyramid and a seventh oxygen is off one of the rectangular faces of the pyramid. Pb-O bonds vary from 2.303(6) to 2.804(17) A. Of the two crystallographically independent P one is in a single tetrahedral coordination while the second is at the center of two disordered tetrahedra. Units of OM 4 tetrahedra, M = Bi/Pb, articulate into a three-dimensional framework by corner and edge sharing that is strengthened by corner sharing with PO 4 moieties

  5. Bonding and Moessbauer Isomer Shifts in (Hg,Pb)—1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    高发明; 田永君; 谌岩; 李东春; 董海峰; 张思远

    2003-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of(Hg,Pb)-1223 were calculated.The results show that the(Ba,Sr)-O and Ca-0 types of bond have higher ionic character,while the Cu-O and(Hg,Pb)-0 types of bond have more covalent character.Moessbauer isomer shifts of 57Fe and 119Sn doped in(Hg,Pb)-1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped(Hg,Pb)-1223 superconductor.It can be concluded that all of the Fe atoms substitute the Cu at square planar Cu(1) site,Whereas Sn prefers to substitute the square pyramidal Cu(2) site.

  6. Ab initio hybrid DFT calculations of BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eglitis, Roberts I., E-mail: rieglitis@gmail.com

    2015-12-15

    Highlights: • Surface energies for AO{sub 3}-term (111) surfaces are larger than for Ti (Zr)-term surfaces. • A increase of Ti−O (Zr−O) bond covalency near the ABO{sub 3} (111) surface relative to the bulk is observed. • The ABO{sub 3} (111) surface energy is larger than the earlier calculated (001) surface energy. • Band gap for PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces becomes smaller, but for BaTiO{sub 3} (111) larger with respect to the bulk . - Abstract: The results of ab initio calculations for polar BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces using the CRYSTAL code are presented. By means of the hybrid B3LYP approach, the surface relaxation has been calculated for two possible B (B = Ti or Zr) or AO{sub 3} (A = Ba, Pb or Sr) BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surface terminations. According to performed B3LYP calculations, all atoms of the first surface layer, for both terminations, relax inwards. The only exception is a small outward relaxation of the PbO{sub 3}-terminated PbTiO{sub 3} (111) surface upper layer Pb atom. B3LYP calculated surface energies for BaO{sub 3}, PbO{sub 3}, SrO{sub 3} and PbO{sub 3}-terminated BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces are considerably larger than the surface energies for Ti (Zr)-terminated (111) surfaces. Performed B3LYP calculations indicate a considerable increase of Ti−O (Zr−O) chemical bond covalency near the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surface relative to the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} bulk. Calculated band gaps at the Γ-point near the PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} (111) surfaces are reduced, but near BaTiO{sub 3} (111) surfaces increased, with respect to the BaTiO{sub 3}, PbTiO{sub 3}, SrZrO{sub 3} and PbZrO{sub 3} bulk band gap at the Γ-point values.

  7. Study of the optical properties of TeO2-PbO-TiO2 glass system

    Directory of Open Access Journals (Sweden)

    Raul F. Cuevas

    1998-06-01

    Full Text Available We describe the preparation and some optical properties of high refractive index TeO2-PbO-TiO2 glass system. Highly homogeneous glasses were obtained by agitating the mixture during the melting process in an alumina crucible. The characterization was done by X-ray diffraction, Raman scattering, light absorption and linear refractive index measurements. The results show a change in the glass structure as the PbO content increases: the TeO4 trigonal bipyramids characteristics of TeO2 glasses transform into TeO3 trigonal pyramids. However, the measured refractive indices are almost independent of the glass composition. We show that third-order nonlinear optical susceptibilities calculated from the measured refractive indices using Lines' theoretical model are also independent of the glass composition.

  8. Multiferroic properties of Pb2Fe2O5 ceramics

    International Nuclear Information System (INIS)

    Wang, Min; Tan, Guolong

    2011-01-01

    Research highlights: → Simultaneous occurrence of ferromagnetism and ferroelectricity in Pb 2 Fe 2 O 5 ceramics. → The off-centers of shifted Pb 2+ ions as well as the FeO 6 octahedra in the 'Pb 2 Fe 2 O 5 ' lead to a ferroelectric polarization. → Pb 2 Fe 2 O 5 ceramic demonstrates ferromagnetic order state due to the spin arrangement in the double chains of FeO 5 tetrahedral pyramids. -- Abstract: Pb 2 Fe 2 O 5 (PFO) powders in monoclinic structure have been synthesized using lead acetate in glycerin and ferric acetylacetonate as the precursor. The powders were pressed into pellets, which were sintered into ceramics at 800 o C for 1 h. The morphology and structure have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Polarization was observed in Pb 2 Fe 2 O 5 ceramics at room temperature, exhibiting a clear ferroelectric hysteresis loop. The remanent polarization of Pb 2 Fe 2 O 5 ceramic is estimated to be Pr ∼ 0.22 μC/cm 2 . The origin of the polarization may be attributed to the off-centers of shifted Pb 2+ ions as well as the FeO 6 octahedra in the perovskite-based structure of Pb 2 Fe 2 O 5 . Magnetic hysteresis loop was also observed at room temperature. The Pb 2 Fe 2 O 5 ceramic shows coexistence of ferroelectricity and ferromagnetism. It provides a new field of research for complex oxides with multiferroic properties.

  9. Local structure and disorder in crystalline Pb9Al8O21

    International Nuclear Information System (INIS)

    Hannon, Alex C.; Barney, Emma R.; Holland, Diane; Knight, Kevin S.

    2008-01-01

    Crystalline Pb 9 Al 8 O 21 is a model compound for the structure of non-linear optical glasses containing lone-pair ions, and its structure has been investigated by neutron powder diffraction and total scattering, and 27 Al magic angle spinning NMR. Rietveld analysis (space group Pa3-bar (No. 205), a=13.25221(4) A) shows that some of the Pb and O sites have partial occupancies, due to lead volatilisation during sample preparation, and the non-stoichiometric sample composition is Pb 9-δ Al 8 O 21-δ with δ=0.54. The NMR measurements show evidence for a correlation between the chemical shift and the variance of the bond angles at the aluminium sites. The neutron total correlation function shows that the true average Al-O bond length is 0.8% longer than the apparent bond length determined by Rietveld refinement. The thermal variation in bond length is much smaller than the thermal variation in longer interatomic distances determined by Rietveld refinement. The total correlation function is consistent with an interpretation in which AlO 3 groups with an Al-O bond length of 1.651 A occur as a result of the oxygen vacancies in the structure. The width of the tetrahedral Al-O peak in the correlation function for the crystal is very similar to that for lead aluminate glass, indicating that the extent of static disorder is very similar in the two phases. - Graphical abstract: Combined neutron powder diffraction and total scattering, and 27 Al NMR on crystalline Pb 9 Al 8 O 21 shows it to be a non-stoichiometric compound with vacancies due to PbO volatilisation. A detailed consideration of the thermal and static disorder is given, showing that glass and crystal phases have very similar disorder at short range

  10. Two new octahedral/pyramidal frameworks containing both cation channels and lone-pair channels: syntheses and structures of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4

    International Nuclear Information System (INIS)

    Johnston, Magnus G.; Harrison, William T.A.

    2004-01-01

    The hydrothermal syntheses, single crystal structures, and some properties of Ba 2 Mn II Mn 2 III (SeO 3 ) 6 and PbFe 2 (SeO 3 ) 4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO 6 ) and vertex/edge linked (MnO 6 ) octahedra and SeO 3 pyramids. In each case, the MO 6 /SeO 3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the Se IV lone pairs. Crystal data: Ba 2 Mn 3 (SeO 3 ) 6 , M r =1201.22, monoclinic, P2 1 /c (No. 14), a=5.4717 (3)A, b=9.0636 (4)A, c=17.6586 (9)A, β=94.519 (1) o , V=873.03 (8)A 3 , Z=2, R(F)=0.031, wR(F 2 )=0.070; PbFe 2 (SeO 3 ) 4 , M r =826.73, triclinic, P1-bar (No. 2), a=5.2318 (5)A, b=6.7925 (6)A, c=7.6445 (7)A, α=94.300 (2) o , β=90.613 (2) o , γ=95.224 (2) o , V=269.73 (4)A 3 , Z=1, R(F)=0.051, wR(F 2 )=0.131

  11. Humidity-sensitive characteristics of PbCrO4-PbO thick film elements. PbCrO4-PbO kei atsumaku soshi no kanshitsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, F [Shonan Institute of Technology, Kanagawa (Japan); Nanba, N [Kantogakuin University, Tokyo (Japan)

    1992-12-20

    This paper describes humidity-sensitive characteristics, which depend on the host composition being PbCrO4 or Pb2CrO5, in the system PbCrO4 combined with various oxides, such as Al2O3, Fe2O3, ZrO2, SnO2, TiO2, ThO2, and Ta2O5. In order to confirm the predominant phase over elements in the system PbCrO4-PbO, the effect of composition and microstructure on the humidity-sensitive characteristics of thick film elements were examined. Consequently, it was found that the humidity-sensitivity in low humidity region increased as the host composition of elements changed from hydrophobic PbCrO4 to hydrophilic Pb2CrO5. It was also shown that these results can be interpreted by a humidity-sensitive mechanism proposed for hydrophilic Pb2CrO5. Furthermore, an absorption model of H2O molecules on to the surface of Pb2CrO5 in the PbCrO4-PbO system humidity sensor was provided. 4 refs., 12 figs.

  12. Anomalous perovskite PbRuO3 stabilized under high pressure

    Science.gov (United States)

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  13. Effect of PbO on the elastic behavior of ZnO–P2O5 glass systems

    Directory of Open Access Journals (Sweden)

    H.A.A. Sidek

    Full Text Available A series of ternary phosphate glasses in the form of 40(P2O5–(60 − xZnO–xPbO and 50(P2O5–(50 − xZnO–xPbO where x = 0–60 mol%, have been successfully prepared by conventional melt quenching technique. Both longitudinal and shear ultrasonic velocities were measured in different compositions of PbO using the MBS8000 ultrasonic data acquisition system at 10 MHz frequency and at room temperature. The ultrasonic velocity data, the density and the calculated elastic moduli are found to be composition dependent and discussed in terms of PbO modifiers. The correlation of elastic moduli with the atomic packing density of these glasses was discussed. To predict the compositional dependence of elastic moduli of this glass system, the interpretation of the variation in the experimental elastic behavior observed has been studied based on various of the bond compression and the Makishima–Mackenzie models. Keywords: Elastic moduli, Glasses, Zinc phosphate, Bond compression, Makishima–Mackenzie models

  14. Structure and properties of PbO2-CeO2 anodes on stainless steel

    International Nuclear Information System (INIS)

    Song, Yuehai; Wei, Gang; Xiong, Rongchun

    2007-01-01

    The lack of ideal anodes with excellent activity and stability is one of the critical problems in electrochemical oxidation for organic wastewater treatment. It is reported in this paper that the PbO 2 -CeO 2 films electrodeposited on stainless steel were used as catalytic electrodes for treating antibiotic wastewater. The PbO 2 -CeO 2 films on stainless steel were proved to be high stability, good activity and relatively low cost. Because of these properties, the films are more attractive than any other electrocatalytic materials among conventional dimensionally stable anodes (DSA). Experimental results showed that the PbO 2 -CeO 2 electrode has a service life of 1100 h in 3 M H 2 SO 4 solution under a current density of 1 A cm -2 at 35 o C, compared with 300 h for PbO 2 under the same conditions. The X-ray diffraction (XRD) patterns and SEM images indicated that the PbO 2 -CeO 2 films on stainless steel have a dense structure and the preferred crystalline orientation on the substrate surface was changed. Color and chemical oxygen demand (COD) of antibiotics wastewater were studied by electrolysis by using these electrodes as anode and stainless steel as cathode. The results indicated that the anodes have excellent activity in antibiotic wastewater treatment. The PbO 2 -CeO 2 electrodes have high chemical stability which contributed by the superstable nature of the electrode, dense microstructure, good conductivity and the improvement of bonding with the stainless steel during electrodeposition

  15. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    Science.gov (United States)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  16. Fine hierarchy of the V-O bonds by advanced solid state NMR: novel Pb4(VO2)(PO4)3 structure as a textbook case.

    Science.gov (United States)

    Tricot, Grégory; Mentré, Olivier; Cristol, Sylvain; Delevoye, Laurent

    2012-12-17

    We report here a complete structural characterization of a new lead Pb(4)(VO(2))(PO(4))(3) vanadophosphate compound by single crystal X-ray diffraction and (51)V and (31)P solid-state NMR spectroscopy. Although structural data are commonly used for the estimation of bond lengths and further delimitation of the true coordination number (e.g., octahedral: 6 versus 5 + 1 versus 4 + 2), we show here for the first time by solid-state NMR a more accurate appreciation of the V-O bonding scheme in this complex oxide which appears well adapted to the full series of vanado-phosphate materials. The direct characterization of V-O-P bridges through the J-mediated correlation (51)V{(31)P} heteronuclear multiple quantum coherence (J-HMQC) technique allows a contrasted hierarchy of the V-O electronic delocalization and indirectly supports the presence or not of the V-O bond. In the reported lead vanado-phosphate structure, the two vanadium polyhedra that have been assigned to octahedra from a bond length point of view have been finally reclassified as tetra- and penta-coordinated units on the basis of the solid-state NMR results. More generally, we believe that the improved characterization of interatomic bonds in various vanado-phosphate structures by solid-state NMR will contribute to a better understanding of the structure/property relationships in this important class of materials.

  17. Investigations of the physical and chemical properties of solid solutions Pb/Mnsub(1/2), Nbsub(1/2)/O3 - PbTiO3 - PbZrO3

    International Nuclear Information System (INIS)

    Szadkowska, A.; Majewska-Pilchowska, K.

    1981-01-01

    The preparation of the PMTZ materials on the basis of solid solutions Pb/Mnsub(1/2)/O 3 - PbTiO 3 - PbZrO 3 has been described. The X-ray analysis of the examined materials has been made, and porosity and grain size have been determined. Dielectric constant and mechanical quality factor as a function of PbZrO 3 content have been determined. The obtained results indicate that solid solutions Pb/Mnsub(1/2), Nbsub(1/2)/O 3 - PbTiO 3 - PbZrO 3 are useful piezoelectric materials. (author)

  18. X-ray spectroscopic study of amorphous and polycrystalline PbO films, α-PbO, and β-PbO for direct conversion imaging.

    Science.gov (United States)

    Qamar, A; LeBlanc, K; Semeniuk, O; Reznik, A; Lin, J; Pan, Y; Moewes, A

    2017-10-13

    We investigated the electronic structure of Lead Oxide (PbO) - one of the most promising photoconductor materials for direct conversion x-ray imaging detectors, using soft x-ray emission and absorption spectroscopy. Two structural configurations of thin PbO layers, namely the polycrystalline and the amorphous phase, were studied, and compared to the properties of powdered α-PbO and β-PbO samples. In addition, we performed calculations within the framework of density functional theory and found an excellent agreement between the calculated and the measured absorption and emission spectra, which indicates high accuracy of our structural models. Our work provides strong evidence that the electronic structure of PbO layers, specifically the width of the band gap and the presence of additional interband and intraband states in both conduction and valence band, depend on the deposition conditions. We tested several model structures using DFT simulations to understand what the origin of these states is. The presence of O vacancies is the most plausible explanation for these additional electronic states. Several other plausible models were ruled out including interstitial O, dislocated O and the presence of significant lattice stress in PbO.

  19. Spectroscopic Studies of a Three-dimensional, Five-coordinated Copper(Ⅱ) Complex via Hydrogen Bonds: [Cu(PDA)(H2O)2](H2PDA=Pyridine-2,6-dicarboxylic Acid)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new copper(Ⅱ) complex [Cu(PDA)(H2O)2] was synthesized and its structure was determined. Cu(Ⅱ) is five-coordinated in a tetragonal pyramid geometry. The two coordinating water molecules are different and the two Cu-O bond lengths differ by nearly 0.02 nm. The whole crystal is linked to form a three-dimensional network by means of hydrogen bonds. The X-band ESR spectrum shows three different g tensors with a well-resolved hyperfine structure in the gz signal, giving the ESR parameters gx=2.05, gy=2.065 and gz=2.29. The covalency of the coordinate bonds and the deviation from tetragonal pyramid geometry for the complex are discussed based on the ESR spectra.

  20. Synthesis and crystal structure of Bi6.4Pb0.6P2O15.2

    International Nuclear Information System (INIS)

    Arumugam, N.; Lynch, V.; Steinfink, H.

    2007-01-01

    Bi 6.4 Pb 0.6 P 2 O 15.2 is a polymorph of structures with the general stoichiometry Bi 6+x M 1-x P 2 O 15+y . However, unlike previously published structures that consist of layers formed by edge sharing OBi 4 tetrahedra bridged by PO 4 and TO 6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) A, b=11.3692(3) A, c=16.3809(5) A, β=101.167(1) o , Z=10. Single-crystal X-ray diffraction data were refined by least squares on F 2 converging to R 1 =0.0387, wR 2 =0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb) 4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) A. Pairs of such cubes share an edge to form a Pb 3 O 20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb) 4 units, and some oxygen ions of the polyhedra are also part of PO 4 tetrahedra. One, two, three and or four PO 4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ≤3.1 A vary from 2.090(12) to 3.07(3) A. The articulations of Pb cubes, Bi polyhedra and PO 4 tetrahedra link into the three-dimensional structure. - Graphical abstract: View of the structure of Bi 6.4 Pb 0.6 P 2 O 15.2 parallel to the b-axis

  1. Synthesis and Structures of Pb3O2(CH3COO)2 · 0.5H2O and Pb2O(HCOO)2: Two Corrosion Products Revisited

    International Nuclear Information System (INIS)

    Mauck, Catherine M.; van den Heuvel, Titus W.P.; Hull, Michaela M.; Zeller, Matthias; Oertel, Catherine M.

    2010-01-01

    Reactions of carboxylic acids with lead play an important role in the atmospheric corrosion of lead and lead-tin alloys. This is of particular concern for the preservation of lead-based cultural objects, including historic lead-tin alloy organ pipes. Two initial corrosion products, Pb 3 O 2 (CH 3 COO) 2 · 0.5H 2 O (1) and Pb 2 O(HCOO) 2 (2), had been identified through powder diffraction fingerprints in the Powder Diffraction File, but their structures had never been determined. We have crystallized both compounds using hydrothermal solution conditions, and structures were determined using laboratory and synchrotron single-crystal X-ray diffraction data. Compound 1 crystallizes in P t , and 2 in Cccm. These compounds may be viewed as inorganic-organic networks containing single and double chains of edge-sharing Pb 4 O tetrahedra and have structural similarities to inorganic basic lead compounds. Bond valence sum analysis has been applied to the hemidirected lead coordination environments in each compound. Atmospheric exposure experiments contribute to understanding of the potential for conversion of these short-term corrosion products to hydrocerussite, Pb 3 (CO 3 ) 2 (OH) 2 , previously identified as a long-term corrosion product on lead-rich objects. Each compound was also characterized by elemental analysis, thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), and Raman spectroscopy.

  2. A green preparation method of battery grade α-PbO based on Pb-O2 fuel cell

    Science.gov (United States)

    Wang, Pingyuan; Pan, Junqing; Gong, Shumin; Sun, Yanzhi

    2017-08-01

    In order to solve the problem of high pollution and high energy consumption of the current lead oxide (PbO) preparation processes, a new clean and energy saving preparation method for high purity α-PbO via discharge of a Pb-O2 fuel cell is reported. The fuel cell with metallic lead anode, oxygen cathode, and 30% NaOH electrolyte can provide a discharge voltage of 0.66-0.38 V corresponding to discharge current range of 5-50 mA cm-2. PbO is precipitated from the NaHPbO2-containing electrolyte through a cooling crystallization process after discharge process, and the XRD patterns indicate the structure is pure α-PbO. The mother liquid after crystallization can be recycled for the next batch. The obtained PbO mixed with 60% Shimadzu PbO is superior to the pure Shimadzu PbO in discharge capacity and cycle ability.

  3. PbTe mechanosynthesis from PbO and Te

    International Nuclear Information System (INIS)

    Rojas-Chavez, Hugo; Diaz-de la Torre, Sebastian; Jaramillo-Vigueras, David; Plascencia, Gabriel

    2009-01-01

    Experimental results concerning the mechanosynthesis (MSY), of PbTe from the PbO-Te powder system, at room temperature an atmospheric conditions are reported. XRD results for samples milled for and after 5.4 ks only show PbTe diffraction peaks; neither Te nor PbO or any other solid phase were detected. Particle size and morphology, was followed by SEM observations. Phase evolution and quantification was monitored by Rietveld refinements of the X-ray diffraction data. It was found that the use of lead oxide as a component of the mechanosynthesis system reduces milling time with respect to the Pb-Te metallic system with mechanical alloying.

  4. Electrochemical study and recovery of Pb using 1:2 choline chloride/urea deep eutectic solvent: A variety of Pb species PbSO4, PbO2, and PbO exhibits the analogous thermodynamic behavior

    International Nuclear Information System (INIS)

    Liao, Yu-Shun; Chen, Po-Yu; Sun, I-Wen

    2016-01-01

    Water-insoluble PbSO 4 , PbO 2 , and PbO are fairly soluble in choline chloride/urea deep eutectic solvent (ChCl/urea DES) in 1:2 molar ratio. Very interestingly, solution prepared from PbO 2 exhibits the almost identical electrochemical behavior as those from PbSO 4 and PbO, indicating that Pb(II) is formed in the DES regardless of what Pb compound is introduced. The electrochemical reduction of the Pb(II) species is determined as an irreversible process, and involves the three-dimensional (3D) instantaneous nucleation with diffusion-controlled growth. From the dependence of the diffusion coefficient on temperature, the activation energy for diffusion of PbSO 4 and PbO 2 is determined to be 33.7 and 34.1 kJ mol −1 , respectively. Electrodeposition of Pb was achieved potentiostatically and galvanostatically. The surface morphology of Pb deposits significantly depends on the applied potential and current. The coulombic efficiency of Pb electrodeposition is higher than 90%. Electrodeposition of Pb from a wet DES containing a mixture of three different Pb sources is also investigated. The XRD analysis confirmed that the electrodeposits consisted of metallic Pb.

  5. A quantum mechanical study of La-doped Pb(Zr,Ti)O3

    International Nuclear Information System (INIS)

    Stashans, Arvids; Maldonado, Frank

    2007-01-01

    Lanthanum-modified Pb(Zr,Ti)O 3 (PZT) crystals have been investigated applying a quantum-mechanical approach based on the Hartree-Fock theory. A morphotropic phase boundary (MPB), PbZr 0.53 Ti 0.47 O 3 , of the crystal was considered throughout the study. The obtained results show the outward atomic displacements with respect to the La impurity within the defective region and also the increase of covalent nature in the chemical bonding of the material. These outcomes are discussed and analyzed in light of the available experimental data. The occurrence of Jahn-Teller self-trapped electron polarons is predicted in the present report

  6. Structural and electronic investigations of PbTa4O11 and BiTa7O19 constructed from α-U3O8 types of layers

    Science.gov (United States)

    Boltersdorf, Jonathan; Maggard, Paul A.

    2015-09-01

    The PbTa4O11 and BiTa7O19 phases were prepared by ion-exchange and solid-state methods, respectively, and their structures were characterized by neutron time-of-flight diffraction and Rietveld refinement methods (PbTa4O11, R 3 (No. 146), a=6.23700(2) Å, c=36.8613(1) Å; BiTa7O19, P 6 bar c 2 (No. 188), a=6.2197(2) Å, c=20.02981(9) Å). Their structures are comprised of layers of TaO6 octahedra surrounded by three 7-coordinate Pb(II) cations or two 8-coordinate Bi(III) cations. These layers alternate down the c-axis with α-U3O8 types of single and double TaO7 pentagonal bipyramid layers. In contrast to earlier studies, both phases are found to crystallize in noncentrosymmetric structures. Symmetry-lowering structural distortions within PbTa4O11, i.e. R 3 bar c →R3, are found to be a result of the displacement of the Ta atoms within the TaO7 and TaO6 polyhedra, towards the apical and facial oxygen atoms, respectively. In BiTa7O19, relatively lower reaction temperatures leads to an ordering of the Bi/Ta cations within a lower-symmetry structure, i.e., P63/mcm→ P 6 bar c 2 . In the absence of Bi/Ta site disorder, the Ta-O-Ta bond angles decrease and the Ta-O bond distances increase within the TaO7 double layers. Scanning electron microscopy images reveal two particle morphologies for PbTa4O11, hexagonal rods and finer irregularly-shaped particles, while BiTa7O19 forms as aggregates of irregularly-shaped particles. Electronic-structure calculations confirm the highest-energy valence band states are comprised of O 2p-orbitals and the respective Pb 6s-orbital and Bi 6s-orbital contributions. The lowest-energy conduction band states are composed of Ta 5d-orbital contributions that are delocalized over the TaO6 octahedra and layers of TaO7 pentagonal bipyramids. The symmetry-lowering distortions in the PbTa4O11 structure, and the resulting effects on its electronic structure, lead to its relatively higher photocatalytic activity compared to similar structures without

  7. Two new 3-D cadmium bromoplumbates: the only example of heterometallic bromoplumbate based on crown [Cd(Pb4O4)Br2] clusters.

    Science.gov (United States)

    Xiao, Hong; Zhou, Jian; Liu, Xing

    2018-04-03

    Two new cadmium bromoplumbates [CdPb2Br2L2]n (1, L = ethylene glycol) and [CdPb6Br6L4]n (2) have been solvothermally synthesized and structurally characterized. 1 contains 1-D neutral heterometallic chains [CdPb2Br2L2]n, which are further connected via weak Pb-Br bonds, resulting in a 3-D network structure. The 3-D framework of 2 is constructed by the interconnection of a 2-D neutral layer [CdPb6Br6L4]nvia weak Pb-Br bonds. The [CdPb6Br6L4]n layer is based on the linkages of dimeric [Pb2Br4] units and heterometallic crown [Cd(Pb4O4)Br2] clusters containing a rare eight-membered [Pb4O4] ring. Although a few heterometallic bromoplumbate clusters have been reported, they usually exhibit molecular moieties. 2 represents the only example of 3-D heterometallic bromoplumbate based on the combination of heterometallic crown [Cd(Pb4O4)Br2] clusters and dimeric [Pb2Br4] units. Their optical properties are studied and density functional theory calculations for 1 and 2 have also been performed.

  8. Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes

    Directory of Open Access Journals (Sweden)

    Nasser Abu Ghalwa

    2016-09-01

    Full Text Available Two modified electrodes (Pb/PbO2 and C/PbO2 were prepared by electrodeposition and used as anodes for electrochemical degradation of linuron (phenylurea pesticide in aqueous solution. Different operating conditions and factors affecting the treatment process including current density, temperature, initial concentration of linuron, pH, conductive electrolyte and time of electrolysis were studied and optimized. The best degradation occurred in the presence of NaCl (1 gL−1 as conductive electrolyte. After 30 min, nearly complete degradation of linuron was achieved (92% and 84% using C/PbO2 and Pb/PO2 electrodes at pH 7 and 1.5, respectively. Higher degradation efficiency was obtained at low temperature (5–10 °C. The optimum current density for the degradation of linuron on both electrodes was (150 mAcm−2.

  9. [Raman spectroscopic study of binary PbO-TeO2 glasses].

    Science.gov (United States)

    Huang, Li; You, Jing-Lin; Chen, Hui; Jiang, Guo-Chang

    2008-07-01

    Raman spectra of lead tellurite glasses and their melts were measured. Results show that four coordinate tellurite units convert into three coordinate units with increasing the concentration of PbO, and the number of non-bridging oxygen bonds (NBO) increases accordingly in this system. Three spectral peaks in the high frequency range were assigned to stretching vibration of bridging oxygen in four coordinate tellurite units (Q(b)), stretching vibration of non-bridging oxygen in four coordinate tellurite units (Q(nb)) and in three coordinate tellurite units (T(nb)). The relative density of four coordinate structure units decreases and the three coordinate tellurite units considerably exist in tellurite glasses when the concentration of PbO > 50%. Besides, the Raman frequencies of the three species' peaks become blue-shifted because of the temperature induced crystallization at high temperature, and the peak intensities increase and the peaks sharpen. The peaks merge together and become much broader while the glass is heated above the melting point because of multiple microstructure units coexisting.

  10. A quantum mechanical study of La-doped Pb(Zr,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Grupo de Fisica de Cristales, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Maldonado, Frank [Grupo de Fisica de Cristales, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2007-04-15

    Lanthanum-modified Pb(Zr,Ti)O{sub 3} (PZT) crystals have been investigated applying a quantum-mechanical approach based on the Hartree-Fock theory. A morphotropic phase boundary (MPB), PbZr{sub 0.53}Ti{sub 0.47}O{sub 3}, of the crystal was considered throughout the study. The obtained results show the outward atomic displacements with respect to the La impurity within the defective region and also the increase of covalent nature in the chemical bonding of the material. These outcomes are discussed and analyzed in light of the available experimental data. The occurrence of Jahn-Teller self-trapped electron polarons is predicted in the present report.

  11. Synthesis and characterization of PbO-CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Nabil A.A. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Al-Gaashani, R. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha (Qatar); Abd-Shukor, R. [Universiti Kebangsaan Malaysia, School of Applied Physics, Bangi, Selangor (Malaysia)

    2017-03-15

    A PbO-CdO nanocomposite-added Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} ((Bi,Pb)-2223) superconductor has been prepared. The effect of the PbO-CdO nanocomposite addition on the transport critical current density (J{sub c}) of (Bi,Pb)-2223 superconductor was investigated. The transition temperature (T{sub c-onset}), zero electrical resistance temperature (T{sub c-R=0}), and J{sub c} of the samples were measured by the four-probe method. Phase formation, structure, and microstructure of samples were investigated. The distribution of nanoparticle size was determined. The results indicated that the PbO-CdO-added samples showed larger grain size and an increased volume fraction of high-T{sub c} phase (Bi-2223) compared to the non-added sample. A slight increase in T{sub c-R=0} of x = 0.15 wt% was observed. J{sub c} of the PbO-CdO nanocomposite-added samples was significantly higher than for the non-added sample. That could be explained by the possibility that the PbO-CdO nanocomposite acts as an effective flux pinning center in (Bi,Pb)-2223. At 77 K, J{sub c} of x = 0.15 wt% added sample was more than 20 times larger than J{sub c} of the non-added sample (x = 0 wt%). A combined effect of enhanced flux pinning, increased fraction of high-T{sub c} phase and improved grain size, which led to increase in the J{sub c} of added samples, is discussed. (orig.)

  12. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  13. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    International Nuclear Information System (INIS)

    Lee, T.K.; Zhang, Sam; Wong, C.C.; Tan, A.C.

    2005-01-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-μm-pitch flip-chip bond pads on a joint-in-via flex substrate architecture

  14. Ferroelectric self-assembled PbTiO{sub 3} perovskite nanostructures onto (100)SrTiO{sub 3} substrates from a novel microemulsion aided sol-gel preparation method

    Energy Technology Data Exchange (ETDEWEB)

    Calzada, M L [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain); Torres, M [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain); Fuentes-Cobas, L E [Centro de Investigacion en Materiales Avanzados, Chihuahua (Mexico); Mehta, A [Stanford Synchrotron Radiation Laboratory, Menlo Park, CA (United States); Ricote, J [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain); Pardo, L [Institucion Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid (Spain)

    2007-09-19

    A novel preparation method, which involves the use of microemulsions, sol-gel chemistry and chemical solution deposition, has been developed in this work for the preparation of layers of PbTiO{sub 3} nanostructures supported on SrTiO{sub 3} substrates. A transparent solution was first prepared by mixing a PbTiO{sub 3} precursor sol and a microemulsion formed by water, cyclohexane and the surfactant Brij 30 (polyoxyethylene(4) lauryl ether). The solution was deposited onto the SrTiO{sub 3} substrate by spin-coating and dried under controlled conditions (temperature, time and relative humidity) to favor the rearrangement of the micelles in the deposited coat. After a rapid thermal treatment of crystallization at 650 deg. C, nanostructures with uniform sizes of {approx}40 nm diameter and showing periodicity in some zones of the substrate are obtained. The analysis of these nanostructures by grazing-incidence x-ray synchrotron radiation indicates that they have a perovskite structure with a <100> preferred orientation and that they are under strained conditions. Thermal treatments at higher temperatures produce the collapse of the ordered nanoparticles' network and the formation of larger isolated particles of PbTiO{sub 3} with a truncated-pyramid morphology. Piezoresponse force microscopy studies demonstrate that the spontaneous polarization of these PbTiO{sub 3} nanostructures can be switched and that they have piezoelectric activity. These results support the fabrication strategy here proposed as a promising approach for the preparation of nanoferroelectrics onto substrates of possible interest in future nanoelectronic devices.

  15. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes

    International Nuclear Information System (INIS)

    Yao Yingwu; Zhao Chunmei; Zhu Jin

    2012-01-01

    PbO 2 –ZrO 2 nanocomposite electrodes were prepared by the anodic codeposition in the lead nitrate plating bath containing ZrO 2 nanoparticles. The influences of the ZrO 2 nanoparticles concentration, current density, temperature and stirring rate of the plating bath on the composition of the nanocomposite electrodes were investigated. The surface morphology and the structure of the nanocomposite electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The experimental results show that the addition of ZrO 2 nanoparticles in the electrodeposition process of lead dioxide significantly increases the lifetime of nanocomposite electrodes. The PbO 2 –ZrO 2 nanocomposite electrodes have a service life of 141 h which is almost four times longer than that of the pure PbO 2 electrodes. The morphology of PbO 2 –ZrO 2 nanocomposite electrodes is more compact and finer than that of PbO 2 electrodes. The relative surface area of the composite electrodes is approximately 2 times that of the pure PbO 2 electrodes. The structure test shows that the addition of ZrO 2 nanoparticles into the plating bath decreases the grain size of the PbO 2 –ZrO 2 nanocomposite electrodes. The anodic polarization curves show that the oxygen evolution overpotential of PbO 2 –ZrO 2 nanocomposite electrodes is higher than PbO 2 electrodes. The pollutant anodic oxidation experiment show that the PbO 2 –ZrO 2 nanocomposite electrode exhibited the better performance for the degradation of 4-chlorophenol than PbO 2 electrode, the removal ratio of COD reached 96.2%.

  16. 208Pb(16O,15O)209Pb reaction

    International Nuclear Information System (INIS)

    Becchetti, F.D.; Harvey, B.G.; Kovar, D.; Mahoney, J.; Maguire, C.; Scott, D.K.

    1975-01-01

    The neutron levels in 209 Pb have been studied with the 208 Pb( 16 O, 15 O) reaction at a bomdarding energy of 139 MeV. Spectroscopic factors (S) have been deduced using a finite-range distorted-wave Born approximation (DWBA) with recoil. The 2g 9 / 2 , 1i 11 / 2 , 2g 7 / 2 , and 3d 3 / 2 levels are found to have S approximately-greater-than 0.9 while S approx. = 0.7 for the 1j 15 / 2 level at 1.4 MeV excitation. Evidence is found for other 1j 15 / 2 fragments being at 3.05 MeV and approx. 3.8 MeV with S approx. = 0.08 and 0.26, respectively, which would place the centroid of the 1j 15 / 2 level at E/subx/ approx. = 2.2 MeV. DWBA predicts a shift in the maxima of the angular distributions as a function of Q value which is not observed experimentally. A comparison with the proton transfer reaction 208 Pb( 16 O, 15 N) 209 Bi has been used to deduce the geometrical parameters of a neutron shell model potential appropriate for nuclei with A approximately-greater-than 200. The parameters of this Wood-Saxon potential are: V/subR/=-50.5 MeV,r/subR/=1.19 fm, a/subR/=0.75 fm, V)=-5.5 MeV, r)=1.01 fm, and a)=0.75 fm

  17. Difficulty of carrier generation in orthorhombic PbO

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Min; Takemoto, Seiji; Toda, Yoshitake; Tada, Tomofumi [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Xiao, Zewen; Kamiya, Toshio; Hosono, Hideo, E-mail: hosono@msl.titech.ac.jp [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Quantum Beam Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-04-28

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ < 1.4 × 10{sup −7} S cm{sup −1}, regardless of the oxygen pressure. The density functional calculations revealed that native defects including Pb and O vacancies have deep transition levels and extremely high formation enthalpies, which indicates difficulty of carrier generation in β-PbO and explains the experimentally observed poor electrical conductivity. The analysis of the electronic structures showed that the interaction between Pb 6s and O 2p orbitals is weak due to the deep energy level of Pb 6s and does not raise the valence band maximum (VBM) level unlike that observed in SnO, which is also supported by ultraviolet photoemission spectroscopy measurements. The deep acceptor transition levels of the native defects are attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O{sub 3}) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 10{sup 2} S cm{sup −1}) but it is the result of the formation of an n-type PbO{sub 2} phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  18. Phase equilibria and interaction between the CsCl-PbCl{sub 2}-PbO system components

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, Pavel A.; Zakiryanova, Irina D. [Russian Academy of Sciences, Ekatherinburg (Russian Federation). Inst. of High Temperature Electrochemistry; Kholkina, Anna S.; Bausheva, Alexandra V.; Khudorozhkova, Anastasia O. [Russian Academy of Sciences, Ekatherinburg (Russian Federation). Inst. of High Temperature Electrochemistry; Ural Federal Univ., Ekatherinburg (Russian Federation)

    2015-07-01

    Thermal analysis was applied to determine liquidus temperatures in the CsCl-PbCl{sub 2}-PbO system, with the PbO concentration ranging from 0 to 20 mol%. The temperature dependence of the PbO solubility in the CsCl-PbCl{sub 2} eutectic melt was studied, and the thermodynamic parameters of the PbO dissolution were calculated. The type, morphology, and composition of oxychloride ionic groupings in the melt were determined in situ using Raman spectroscopy.

  19. Ti/β-PbO2 versus Ti/Pt/β-PbO2: Influence of the platinum interlayer on the electrodegradation of tetracyclines.

    Science.gov (United States)

    Nunes, Maria João; Monteiro, Nuno; Pacheco, Maria José; Lopes, Ana; Ciríaco, Lurdes

    2016-08-23

    The behaviors of the electrodes Ti/PbO2 and Ti/Pt/PbO2 as anodes in the electro-oxidation of two antibiotics-tetracycline and oxytetracycline-were evaluated at different applied current densities, to evaluate the influence of the Pt interlayer. In the preparation of the electrodes, the electrodeposited β-PbO2 phase was homogeneous; no Ti or Pt peaks were detected in the diffractograms. The β-PbO2 surface presented significant roughness when deposited over the Pt interlayer, which also conferred significant conductivity to the material. In the electro-oxidation assays, the COD, TOC and absorbance removals increased with the current density due to an increase in the concentration of hydroxyl radicals, for both electrode materials and antibiotics tested. Slightly better results were obtained with Ti/PbO2. The primary differences observed in the antibiotics concentration decay consisted of zero-order kinetics at the Ti/Pt/PbO2 anode and first-order kinetics at the Ti/PbO2 anode with a higher oxytetracycline concentration decay than the tetracycline concentration decay. A greater amount of total nitrogen was eliminated with the Ti/PbO2 electrode. At the Ti/Pt/PbO2 anode, the organic nitrogen primarily transformed into NH4(+) and the total nitrogen remained unchanged. The specific energy consumption with the Ti/Pt/PbO2 anode was significantly lower than the specific energy consumption with the Ti/PbO2 anode due to the higher electrical conductivity of the Ti/Pt/PbO2 anode. Both anode materials were also utilized in the electro-oxidation of a leachate sample collected at sanitary landfill and spiked with tetracycline, and the complete elimination of the antibiotic molecule was observed.

  20. Electrode processes during the electrorefiniment of lead in the KCl-PbCl2-PbO melt

    Directory of Open Access Journals (Sweden)

    P. S. Pershin

    2015-03-01

    Full Text Available The influence of PbO addition on current efficiency during the electrorefinement of lead in the KCl-PbCl2-PbO melt was investigated. It was shown that with PbO concentration in the KCl-PbCl2 eqiumolar mixture increasing, the current efficiency of lead decreases. Electrode processes mechanism is proposed.

  1. Propriedades eletrônicas e estruturais do PbTiO3: teoria do funcional de densidade aplicada a modelos periódicos Structural and electronic properties of PbTio3: density functional theory applied to periodic models

    Directory of Open Access Journals (Sweden)

    Sérgio Ricardo de Lázaro

    2005-02-01

    Full Text Available Calculations based on density functional theory at the B3LYP hybrid functional level applied to periodic models have been performed to characterize the structural and electronic properties of PbTiO3. Two different slab terminations (PbO and TiO2 have been considered to obtain and discuss the results of band structure, density of states, charge distribution on bulk and surface relaxation. It is observed that the relaxation processes are most prominent for the Ti and Pb surface atoms. The electron density maps confirm the partial covalent character of the Ti-O bonds. The calculated optical band gap and other results are in agreement with experimental data.

  2. Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes

    International Nuclear Information System (INIS)

    Martinez-Huitle, Carlos A.; Quiroz, Marco Antonio; Comninellis, Christos; Ferro, Sergio; Battisti, Achille De

    2004-01-01

    The electrochemical oxidation of chloranilic acid (CAA) has been studied in acidic media at Pb/PbO 2 , boron-doped diamond (Si/BDD) and Ti/IrO 2 electrodes by bulk electrolysis experiments under galvanostatic control. The obtained results have clearly shown that the electrode material is an important parameter for the optimization of such processes, deciding of their mechanism and of the oxidation products. It has been observed that the oxidation of CAA generates several intermediates eventually leading to its complete mineralization. Different current efficiencies were obtained at Pb/PbO 2 and BDD, depending on the applied current density in the range from 6.3 to 50 mA cm -2 . Also the effect of the temperature on Pb/PbO 2 and BDD electrodes was studied. UV spectrometric measurements were carried out at all anodic materials, with applied current density of 25 and 50 mA cm -2 . These results showed a faster CAA elimination at the BDD electrode. Finally, a mechanism for the electrochemical oxidation of CAA has been proposed according to the results obtained with the HPLC technique

  3. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    Science.gov (United States)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  4. Effects of Hydroxylation on PbS Quantum Dot Sensitized TiO2 Nanotube Array Photoelectrodes

    International Nuclear Information System (INIS)

    Liu, Zhongqing; Wang, Bin; Wu, Jianchun; Dong, Qiang; Zhang, Xiaoming; Xu, He

    2016-01-01

    ABSTRACT: The contact state at the heterojunction interfaces greatly influences the interfacial kinetics of the photoinduced charge carriers. In this study, we used a facile NaOH pretreatment to replenish the hydroxyl groups lost during the heat treatment for crystallization of TiO 2 nanotube arrays (TNAs) prepared via anodic oxidization. By reacting the carboxylic acid groups of thioglycolic acid (TGA) with the TiO 2 surface hydroxyl groups, TGA molecules were covalently linked to the TiO 2 surface and then PbS quantum dots (QDs) were anchored onto the TNAs via the successive ionic layer adsorption and reaction (SILAR) method. The sample microstructure and photoelectrochemical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM),current–voltage characteristics (J–V), electrochemical impedance spectroscopy (EIS), transient photovoltage plots and Mott-Schottky curves. The contact state and electrostatic potential distribution between TiO 2 {1 0 1} and PbS {1 1 1} planes were estimated by using first principle simulation. It was found that the NaOH pretreatment could enhance the crystallization degree of PbS QDs, decrease the crystal face mismatch, dangling bond density and the interfacial resistance between PbS QDs and TiO 2 , and accelerate the interfacial separation and transfer of photoinduced charge carriers. The first principle calculations demonstrated that the PbS QDs and TiO 2 interfacial contact was strengthened, and the built-in electric field was induced from TiO 2 {1 0 1} towards PbS {1 1 1}. These combined effects apparently improved the device photoelectrochemical performance. Compared to the sample without pretreatment, the specimen pretreated with NaOH demonstrated 19.96% and 29.93% increases in peak photoconversion efficiency after five and ten cycles of SILAR deposition, respectively.

  5. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  6. Preparation of PbS and PbO nanopowders from new Pb(II)(saccharine) coordination polymers

    International Nuclear Information System (INIS)

    Aslani, Alireza; Musevi, Seyid Javad; Şahin, Ertan; Yilmaz, Veysel T.

    2014-01-01

    Highlights: • The complex of compounds “[Pb(H 2 O)(μ-OAc)(μ-sac)] n ” are synthesized at nano and bulk size structurally diverse and show interesting three-dimensional coordination polymers. • Reduction of the particle size of the coordination polymers to a few dozen nanometers results in lower thermal stability when compared to the single crystalline samples. • This study demonstrates that the metal–organic framework may be suitable precursors for the preparation of nanoscale materials with interesting morphologies. - Abstract: Nanopowders and single crystal of new Pb(II) three-dimensional coordination polymer, [Pb(H 2 O)(μ-OAc)(μ-sac)] n “PASAC” were synthesized by a sonochemical and branched tube methods (Yılmaz et al., Z. Anorg. Allg. Chem. 629 (2003) 172). The new nano-structures of Pb(II) coordination polymer were characterized by X-ray crystallography analysis, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), surface analysis (BET), and IR spectroscopy. The crystal structure of these compounds consists of three-dimensional polymeric units. The thermal stability of compounds was studied by thermal gravimetric analysis (TGA) and differential thermal analyses (DTA). PbS and PbO nano-structures were obtained by calcinations of the nano-structures of this coordination polymer at 600 °C

  7. Structure and some physical properties of PbO-P2O5 glasses

    International Nuclear Information System (INIS)

    El-Egili, K.; Doweidar, H.; Moustafa, Y.M.; Abbas, I.

    2003-01-01

    Glasses in the system xPbO·(100-x)P 2 O 5 (x=25-60 mol%) have been investigated using IR spectroscopy and by means of density and electrical-resistivity measurements. The infrared spectra revealed that for PbO 50 mol% PbO also plays the role of a network former. The greater rate of density increase for PbO>50 mol% is due to the formation of PbO 4 units. The conductivity of these glasses depends mainly on the mobility of Pb 2+ ions. The variation of the electrical conductivity parameters upon changing the composition have been correlated with the structural changes in the glass matrix

  8. Co_3V_2O_8 Hexagonal Pyramid with Tunable Inner Structure as High Performance Anode Materials for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Zhang, Qiang; Pei, Jian; Chen, Gang; Bie, Changfeng; Chen, Dahong; Jiao, Yang; Rao, Jiancun

    2017-01-01

    Co_3V_2O_8 hexagonal pyramid was successfully fabricated via a simple hydrothermal process and subsequent heat treatment. The inner structure of the hexagonal pyramid was further adjusted by controlling the size of Co_7V_4O_1_6(OH)_2(H_2O) precursors. Hierarchical Co_3V_2O_8 hexagonal pyramid with height of 1 μm were orderly constructed from 60–80 nm inter-connected particles, showing numerous interval voids. Benefiting from its unique structure, the as-prepared sample showed higher electrochemical performance as an anode material for lithium-ion batteries than that of another bulk sample with height of 5 μm and adhesive inner structure. When tested at a current density of 500 mA g"−"1, the hierarchical Co_3V_2O_8 hexagonal pyramid exhibited good rate capacity, high cycling stability, and excellent discharge capacity up to 712 mA h g"−"1, making it promising electrode materials for lithium-ion batteries.

  9. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses

    International Nuclear Information System (INIS)

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K

    2015-01-01

    Highlights: • Structural units/linkages variation of TeO 2 -ZnO and TeO 2 -ZnO-PbO glasses was studied. • Structural arrangements of TeO 2 -ZnO glasses are rich in Te-O-Te network. • A mixture of Te-O-Te and Te-O-Pb networks is identified in TeO 2 -ZnO-PbO glasses. • Changes in thermal parameters T g and T o are correlated with the structural variations. • 15PbO and 20PbO samples of TeO 2 -ZnO-PbO glasses show large thermal stability. - Abstract: Two series of glasses, (100 − x)TeO 2 -xZnO (x = 20, 25, 30, 35) and 70TeO 2 -(30 − y)ZnO-yPbO (y = 5, 10, 15, 20), referred as TZ and TZP, respectively, were prepared by a melt quenching technique and characterized by X-ray diffraction (XRD), density, refractive index, Raman scattering and differential scanning calorimetry (DSC) to observe the changes in their properties as a function of ZnO and PbO/ZnO. Variations in individual structural units/linkages in these glasses are derived from the de-convoluted Raman spectra. The glass transition (T g ) and onset of crystallization (T o ) temperatures are determined from DSC isothermal scans. It is observed that the thermal stability (ΔT = T o − T g ) decreases for TZ glasses with increase in x, while it increases for TZP glasses with increase in y. Changes in thermal parameters of these glasses are correlated with the structural variation as a function of ZnO and PbO/ZnO ratio to determine the effect of substitution/addition of metal oxide, ZnO and PbO, to TeO 2 and TeO 2 -ZnO glasses

  10. Shear induced phase transition in PbO under high pressure

    International Nuclear Information System (INIS)

    Giefers, Hubertus; Porsch, Felix

    2007-01-01

    We have studied the structural behavior of lead monoxide (PbO) as a function of pressure via angular dispersive X-ray diffraction employing two different pressure transmitting media that were quasi-hydrostatic (N 2 ) and non-hydrostatic (MgO), respectively. Besides litharge (α-PbO) and massicot (β-PbO), which are both stable at ambient pressure, there is an orthorhombic γ-PbO phase which appears upon application of pressure to α-PbO. We have found that the orthorhombic γ-PbO phase is favored by shear stress under non-hydrostatic conditions. α-PbO shows strong anisotropy in compressibility. The a-axis is rather incompressible with a linear stiffness coefficient of K a0 =540(30) GPa whereas the c-axis stiffness is K c0 =25(1) GPa. The bulk modulus of α-PbO is K 0 =23.1(3) GPa and its derivative K 0 ' =7.0(3)

  11. Perovskite LaPbMSbO6 (M=Co, Ni): Structural distortion, magnetic and dielectric properties

    International Nuclear Information System (INIS)

    Bai, Yijia; Han, Lin; Liu, Xiaojuan; Deng, Xiaolong; Wu, Xiaojie; Yao, Chuangang; Liang, Qingshuang; Meng, Junling; Meng, Jian

    2014-01-01

    The B-site ordered double perovskite oxides LaPbMSbO 6 (M=Co, Ni) have been synthesized via the modified Sol–Gel precursor two-step route. Rietveld refinements reveal strong abnormal structural distortion and BO 6 octahedral deformation appearing along the ab plane. Owing to the cooperative Jahn–Teller effect of Co 2+ and Pb 2+ ions, the Co-related compound exhibits almost complete Co 2+ –Sb 5+ order. For magnetic properties, spin-canted antiferromagnetic state with high extent of magnetic frustration is confirmed. The Ni-related compound presents heavier magnetic frustration for introducing tiny disorder on site occupation accompanied with valence state and further enhancing the complexity of magnetic competition. Dielectric measurements present a considerable temperature dependent dielectric relaxation with great dc-like loss feature in the LaPbCoSbO 6 . For LaPbNiSbO 6 , however, the permittivity with low dielectric loss is shown to be insensitive to either temperature or frequency. The corresponding electronic active energy manifests that the weakly bounded 3d-electron is prone to hop in a more distorted Co–Sb sublattice. - Graphical abstract: XRD Rietveld refinement result of LaPbCoSbO 6 presented a large BO 6 octahedral distortion along the ab plane. Based upon the variations from Co–O–Sb bond angles, a fierce competition from many extended magnetic coupling routes (M–O–O–M) would induce a considerably large magnetic frustration and electron hopping restriction. - Highlights: • Highly ordered LaPbMSbO 6 (M=Co, Ni) were synthesized. • Abnormal structural distortion appeared in the ab plane. • Strong magnetic frustration was confirmed via M 2+ –O–O–M 2+ route. • Dielectric measurements presented a large difference between Co and Ni samples. • 3d-electronic structure determines lattice distortion and physical properties

  12. Ab initio calculations of PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Eglitis, R.I.; Piskunov, S.; Zhukovskii, Yu.F. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., 1063 Riga (Latvia)

    2016-12-15

    We performed ab initio calculations for the PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructures. For both PbO and TiO{sub 2}-terminations of the PbTiO{sub 3} (001) thin film, augmented on the SrTiO{sub 3} (001) substrate, the magnitudes of atomic relaxations Δz increases as a function of the number of augmented monolayers. For both terminations of the augmented PbTiO{sub 3} (001) nanothin film, all upper, third and fifth monolayers are displaced inwards (Δz is negative), whereas all second, fourth and sixth monolayers are displaced outwards (Δz is positive). The B3PW calculated PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructure band gaps, independently from the number of augmented layers, are always smaller than the PbTiO{sub 3} and SrTiO{sub 3} bulk band gaps. For both PbO and TiO{sub 2}-terminated PbTiO{sub 3}/SrTiO{sub 3}(001) heterostructures, their band gaps are reduced due to the increased number of PbTiO{sub 3} (001) monolayers. The band gaps of PbO-terminated augmented PbTiO{sub 3} (001) films are always larger than those for TiO{sub 2}-terminated PbTiO{sub 3} (001) thin films. The only exception is the case of 7-layer PbO-terminated and 8-layer TiO{sub 2}-terminated augmented PbTiO{sub 3} (001) thin films, where their band gaps both are equal to 2.99 eV. For each monolayer of the SrTiO{sub 3} (001) substrate, charge magnitudes always are more than several times larger, than for each monolayer in the augmented PbTiO{sub 3} (001) thin film. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effects of PbO-B2O3 Glass Doping on the Sintering Temperature and Piezoelectric Properties of 0.35Pb (Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 Ceramics

    Science.gov (United States)

    Yi, Jinqiao; Shen, Meng; Liu, Sisi; Jiang, Shenglin

    2015-12-01

    0.35Pb(Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 (PNN-PZT) ceramics doped with 0.5PbO-0.5B2O3 glass have been synthesized by the conventional solid-state sintering technique. The effects of 0.5PbO-0.5B2O3 glass on the sintering temperature and piezoelectric properties of PNN-PZT ceramics were studied. The results indicated that the sintering temperature of PNN-PZT was significantly reduced due to the incorporation of 0.5PbO-0.5B2O3 glass dopant. When the content of 0.5PbO-0.5B2O3 glass was 0.5 wt.%, the sintering temperature of PNN-PZT was observed to reduce from above 1200°C to 920°C while the samples maintained high density (7.91 g/cm3), excellent piezoelectric constant ( d 33 = 479 pC/N), large electromechanical coupling coefficient ( K p = 0.55), and relatively low electromechanical quality factor ( Q m = 79). Moreover, large dielectric constant ( ɛ 33 T / ɛ 0 = 2904) and low dielectric loss (tan δ = 0.0166) were obtained in this work.

  14. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr2O3 at the interface in low partial oxygen (PO2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility of Co++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.

  15. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure.

    Science.gov (United States)

    Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin

    2016-02-07

    A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices.

  16. Covalent-bond stabilization of the Si(111)-(3 1 -1 1)-Pb structure

    DEFF Research Database (Denmark)

    Kumpf, C.; Nielsen, M.; Feidenhans'l, R.

    2001-01-01

    by codeposition of Pb and Sn. Our surface X-ray diffraction measurements prove that the alloy structure is closely related to the low-temperature reconstruction. The interatomic distances reveal the nature of the chemical bonding in the surface layer and provide insight into the mechanism stabilizing...

  17. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  18. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO{sub 2}-host by Pb-implantation: XPS-and-DFT characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Zatsepin, A.F. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Shur, V.Ya.; Esin, A.A. [Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, 620000 Yekaterinburg (Russian Federation); Kim, S.S. [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation)

    2017-04-01

    Highlights: • Experiment and theory demonstrate significant difference between patterns of Pb-ion implantation in TiO{sub 2}. • In bulk TiO{sub 2} Pb-impurities leads formation of PbO phase. • On the surface of TiO{sub 2}:Pb occur formation of PbxOy configurations. • In both bulk and surface TiO{sub 2}:Pb occur decreasing of the bandgap by shift of valence band about 1 eV up. - Abstract: The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO{sub 2}-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO{sub 2} host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO{sub 2}:Pb, whereas in thin-film morphology the PbO{sub 2}-like structure becomes dominating, essentially contributing weak O/Pb bonding (Pb{sub x}O{sub y} defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity “insertion” into the structure of bulk TiO{sub 2} was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO{sub 2} because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up.

  19. Thermal oxidation of InP surfaces modified with NiO + PbO mixtures

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Tomina, E.V.; Samsonov, A.A.; Lukin, A.N.; Simonov, S.P.

    2005-01-01

    The oxidation kinetics of (NiO + PbO)/InP, NiO/InP and PbO/InP structures in an oxygen flow is studied in the temperature range of 400-550 deg C. It is shown by IR spectroscopy that the thermal oxidation of (NiO + PbO)/InP structures leads to the formation of nickel and lead polyphosphates and indium ortho- and metaphosphates. The nickel phosphates may then gradually transform into diphosphates, depending on the oxidation temperature, whereas the lead phosphates undergo no changes [ru

  20. Electric conductivity and lattice disorder of PbMoO4 crystals

    International Nuclear Information System (INIS)

    Bollmann, W.

    1980-01-01

    From differential thermal analysis (DTA), thermal etching, perfectly reversable redox treatments and electric conductivity it is concluded that the Pb/Mo ratio of the PbMoO 4 crystals is always 1 and that phase transitions do not occur. Pb 3+ ions detectable by an absorption band at 435 nm cause a p-conductivity due to the reaction Pb 3+ reversible Pb ++ + e + . At elevated temperatures the p-conductivity increases with increasing oxygen partial pressure of the surrouding atmosphere. The influence of foreign ions on the concentration of ionic and electronic defects in PbMoO 4 , CaMoO 4 , PbO, and PbTiO 3 can be explained by an anti-Frenkel disorder of the oxygen ion sublattice. For PbMoO 4 crystals the mobility O -- ion vacancies and the free formation enthalpy of anti-Frenkel defects are found to be vsub(v) = 9160/T exp (-1.15 eV/kT) cm 2 K/Vs and gsub(AF) = 3.6 kT - 2.2 eV, respectively. (author)

  1. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    Science.gov (United States)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  2. Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2012-08-01

    Corrosion behavior and degradation mechanisms of alloy 625 under a 47.288 PbSO4-12.776 Pb3O4-6.844PbCl2-23.108ZnO-10CdO (wt pct) molten salt mixture under air atmosphere were studied at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) measurements, and potentiodynamic polarization techniques were used to evaluate the degradation mechanisms and characterize the corrosion behavior of the alloy. Morphology, chemical composition, and phase structure of the corrosion products and surface layers of the corroded specimens were studied by scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray map analyses. Results confirmed that during the exposure of alloy 625 to the molten salt, chromium was mainly dissolved through an active oxidation process as CrO3, Cr2O3, and CrNbO4, while nickel dissolved only as NiO in the system. Formation of a porous and nonprotective oxide layer with low resistance is responsible for the weak protective properties of the barrier layer at high temperatures of 973 K and 1073 K (700 °C and 800 °C). There were two kinds of attack for INCONEL 625, including general surface corrosion and pitting. Pitting corrosion occurred due to the breakdown of the initial oxide layer by molten salt dissolution of the oxide or oxide cracking.

  3. Reinvestigation of the crystal structure of kasolite, Pb[(UO{sub 2})(SiO{sub 4})](H{sub 2}O), an important alteration product of uraninite, UO{sub 2+x}

    Energy Technology Data Exchange (ETDEWEB)

    Fejfarová, Karla; Dušek, Michal [Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221 Praha (Czech Republic); Plášil, Jakub, E-mail: jakub_plasil@nm.cz [Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, 115 79-CZ (Czech Republic); Institute of Geological Science, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno (Czech Republic); Čejka, Jiří; Sejkora, Jiří [Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, 115 79-CZ (Czech Republic); Škoda, Radek [Institute of Geological Science, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno (Czech Republic)

    2013-03-15

    The crystal structure of kasolite, Pb[(UO{sub 2})(SiO{sub 4})](H{sub 2}O), Z = 4, monoclinic, with a = 6.7050(3), b = 6.9257(2), c = 13.2857(5) Å, β = 105.064(4)°, V = 595.74(3) Å{sup 3}, the space group P2{sub 1}/c, has been solved by charge-flipping method and refined by the full-matrix least-squares techniques to an agreement factor (R{sub obs}) of 2.2% and, a goodness-of-fit (GOF) of 1.26 using 1243 unique observed diffraction maxima (I{sub obs} > 3σ(I)) collected with MoKα X-radiation and a 4 K CCD area detector. The crystal structure of kasolite contains 1 unique U{sup 6+} position that is part of a nearly linear uranyl ion (UO{sub 2}){sup 2+}, coordinated in the equatorial plane by five O ligands, forming pentagonal bipyramid. The uranyl pentagonal bipyramids share edges to form chains parallel to [0 1 0]. The additional edge of uranyl polyhedra is shared by silicate tetrahedra to form sheets parallel to (1 0 0). There is one unique position of Pb{sup 2+} in the interlayer. O ligands and 1 (H{sub 2}O) non-transformer group coordinate Pb{sup 2+} exhibiting [2 + 6] coordination. A network of H-bonds provides an additional linkage of an interlayer to the sheets besides Pb–O bonds. Chemical composition of the studied crystals, obtained by the electron microprobe, is reported and is in agreement with the crystal structure refinement.

  4. New silicate-germanate Cs2Pb2[(Si0.6Ge0.4)2O7] from the series A2Pb2[B2O7], A = K, Cs, B = Si, Ge with the umbrella-like [PbO3]4- group

    Science.gov (United States)

    Belokoneva, Elena L.; Morozov, Ivan A.; Volkov, Anatoly S.; Dimitrova, Olga V.; Stefanovich, Sergey Yu.

    2018-04-01

    New silicate-germanate Cs2Pb2[(Si0.6Ge0.4)2O7] was synthesized in multi-components hydrothermal solution with 20 w.% concentration of Cs2CO3 mineralizer, pH = 10. Novel mixed compound belongs to the structure type A2Pb2[B2O7] previously indicated for powders with A = K, B=Si or Ge. Singe crystal structure determination of Cs2Pb2[(Si0.6Ge0.4)2O7] revealed the need for the correction of the space group of the earlier suggested structural model from P-3 to P-3m1, as well as for the splitting of the Pb-atom position. Umbrella-like groups [PbO3]4- are located between [(Si,Ge)O4]4- tetrahedra in mica-like honeycomb layers and play the role of tetrahedra with the Pb-lone-pair as the forth apex. Crystal chemical comparison revealed similarities and differences with the classical structure type of α-celsian Ba[Al2Si2O8] with the tetrahedral double layer. Recently investigated nonlinear optical acentric borates Pb2(BO3)(NO3) and Pb2(BO3)Cl are both related to this structural type, possessing umbrella-like groups [PbO3]4- and honeycomb layers [Pb2(BO3)]+ with the BO3-triangles on the tetrahedral positions.

  5. New Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 Quaternary Ceramics: Morphotropic Phase Boundary Design and Electrical Properties.

    Science.gov (United States)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Xu, Chao; Yang, Zhanlue; Yan, Qingfeng; Zhang, Yiling; Shrout, Thomas R

    2016-06-22

    Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.

  6. Synthesis and Characterization of Pb(Zr., Ti.)O-Pb(Nb/, Zn/)O Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.

    2012-01-18

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  7. Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures

    Science.gov (United States)

    Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-03-01

    Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.

  8. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties

    International Nuclear Information System (INIS)

    Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P.

    2011-01-01

    Research highlights: → We change Bi 2 O 3 , PbO and BaO concentration in silicate glasses. → The densities of Bi 2 O 3 glasses more than PbO glasses and BaO glasses. → The Um of Bi 2 O 3 glasses and PbO glasses are comparable and more than BaO glasses. → This suggests that Bi 2 O 3 can replace PbO in radiation shielding glasses. - Abstract: The radiation shielding and optical properties of xBi 2 O 3 :(100-x)SiO 2 , xPbO:(100-x)SiO 2 and xBaO:(100-x)SiO 2 glass systems (where 30 ≤ x ≤ 70 is the composition by weight%) have been investigated. Total mass attenuation coefficients (μ m ) of glasses at 662 keV were improved by increasing their Bi 2 O 3 and PbO content, which raised the photoelectric absorption in glass matrices. Raising the BaO content to the same fraction range, however, brought no significant change to μ m . These results indicate that photon is strongly attenuated in Bi 2 O 3 and PbO containing glasses, and but not in BaO containing glass. The results from the optical absorption spectra show an edge that was not sharply defined; clearly indicating the amorphous nature of glass samples. It is observed that the cutoff wavelength for Bi 2 O 3 containing glass was longer than PbO and BaO containing glasses.

  9. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko

    2013-07-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  10. Isolation and X-ray structures of four Rh(PCP) complexes including a Rh(I) dioxygen complex with a short O-O bond

    KAUST Repository

    Hayashi, Yukiko; Szalda, David J.; Grills, David C.; Hanson, Jonathan C.; Huang, Kuo-Wei; Muckerman, James T.; Fujita, Etsuko

    2013-01-01

    The reaction of RhCl3·H2O with tBu2P(CH2)5PtBu 2 afforded several complexes including [RhIII(H)Cl{ tBu2- P(CH2)2CH(CH2) 2PtBu2}] (1), [RhIIIHCl 2{tBu2P(CH2)5P tBu2}]2 (2), [RhICl{ tBu2P(CH2)2CH=CHCH2P tBu2}] (3) and [RhICl{tBu 2PCH2C(O)CH=CHCH2PtBu2}] (4). X-ray crystal structures of 3 and 4 showed that the C=C bond on the C 5 unit of tBu2P(CH2) 5PtBu2 is bound to Rh(I) in a η2 configuration. In 4, the Rh atom has a trigonal pyramidal coordination geometry. The X-ray crystal structure of 2 consists of two rhodium( III) centers bridged by two tBu2P(CH2)5P tBu2 ligands with two phosphorus atoms, one from each ligand, trans to one another. The crystal structure of the rhodium oxygen adduct with 1,3-bis(di-t-butylphosphinomethyl) benzene [RhO2{ tBu2PCH2(C6H3)CH 2PtBu2}] (5) was also investigated. In this species the O2 is η2 coordinated to the Rh(I) center with asymmetric Rh-O bond lengths (2.087(7) and 1.998(8) Å). The O-O bond distance is short (1.337(11) Å) with νO-O of 990.5 cm -1. DFT calculations on complex 5 yielded two η2- O2 structures that differed in energy by only 0.76 kcal/mol. The lower energy one (5a) had near C2 symmetry, and had nearly equal Rh-O bond lengths, while the higher energy structure (5b) had near Cs symmetry and generally good agreement with the experimental structure. The calculated UV-Vis and IR spectra of complex 5 are in excellent agreement with experiment. © 2012 Elsevier Ltd. All rights reserved.

  11. Coupling thermoelectricity and electrocatalysis for hydrogen production via PbTesbnd PbS/TiO2 heterojunction

    Science.gov (United States)

    Liu, Zhongqing; Cao, Xiaohao; Wang, Bin; Xia, Min; Lin, Sidney; Guo, Zhanhu; Zhang, Xiaoming; Gao, Shiyuan

    2017-02-01

    PbTesbnd PbS/TiO2 electrodes are produced via wet chemical routes for splitting water into hydrogen at the ambient temperatures. PbTe nano-crystals are firstly deposited via the successive ionic layer adsorption and reaction (SILAR) treatment onto TiO2 nanotube arrays (TNAs) prepared by anodic oxidation of Ti substrates. Subsequently, linear sweep voltammetry (LSV) is employed to convert the outer PbTe into PbS, producing PbTesbnd PbS/TiO2 electrodes with a gradient p-n-n band configuration. With the external electric field, the vector charge transfer effect of the TNAs and the gradient energy band structure of PbTesbnd PbS/TNAs, the two electrode system in which PbTesbnd PbS/TNAs functions as the anode illustrates excellent hydrogen production activities. The whole electrochemical system consisted of anode, cathode, electrolyte serves as a hot side while the endothermic electrochemical reactions in hydrogen production as an in situ cold side. At 70 °C and 1.0 V bath voltage, the system registers 6.1 mL cm-2 h-1 rate of hydrogen generation, consuming electric power of 26.2 kW h kg-1 H2, with an energy efficiency of 88.5% and a heat efficiency of 49.9%. This method demonstrates a novel pathway to produce chemical energy from low quality waste heat, benefitting from thermoelectric and electrocatalytic coupling.

  12. Crystal structure of dilead(II oxochromate(VI oxotellurate(IV

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2017-06-01

    Full Text Available Reaction of chromium(III precursors with TeO2 in PbF2/PbO melts in air led to oxidation of chromium(III to chromium(VI, whereas tellurium remained its oxidation state of IV. In the resulting title compound, Pb2(CrO4(TeO3, the two types of anions are isolated from each other, hence a double salt is formed. The two independent Pb2+ cations exhibit coordination number nine under formation of very distorted coordination polyhedra [bond-length range = 2.363 (6–3.276 (7 Å]. The oxochromate(VI and oxotellurate(IV anions have tetrahedral and trigonal–pyramidal configurations, respectively. In the crystal structure, (001 layers of metal cations alternate with layers of TeO32− and CrO42− anions along [001], forming a three-dimensional framework structure. Pb2(CrO4(TeO3 is isotypic with its sulfate analogue Pb2(SO4(TeO3 and is comparatively discussed.

  13. Perovskite LaPbMSbO{sub 6} (M=Co, Ni): Structural distortion, magnetic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yijia [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Chemical Engineering College, Inner Mongolia University of Technology, 49 Aimin Street, Hohhot 010051 (China); Han, Lin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Liu, Xiaojuan, E-mail: lxjuan@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Deng, Xiaolong [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Wu, Xiaojie [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yao, Chuangang; Liang, Qingshuang; Meng, Junling [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2014-09-15

    The B-site ordered double perovskite oxides LaPbMSbO{sub 6} (M=Co, Ni) have been synthesized via the modified Sol–Gel precursor two-step route. Rietveld refinements reveal strong abnormal structural distortion and BO{sub 6} octahedral deformation appearing along the ab plane. Owing to the cooperative Jahn–Teller effect of Co{sup 2+} and Pb{sup 2+} ions, the Co-related compound exhibits almost complete Co{sup 2+}–Sb{sup 5+} order. For magnetic properties, spin-canted antiferromagnetic state with high extent of magnetic frustration is confirmed. The Ni-related compound presents heavier magnetic frustration for introducing tiny disorder on site occupation accompanied with valence state and further enhancing the complexity of magnetic competition. Dielectric measurements present a considerable temperature dependent dielectric relaxation with great dc-like loss feature in the LaPbCoSbO{sub 6}. For LaPbNiSbO{sub 6}, however, the permittivity with low dielectric loss is shown to be insensitive to either temperature or frequency. The corresponding electronic active energy manifests that the weakly bounded 3d-electron is prone to hop in a more distorted Co–Sb sublattice. - Graphical abstract: XRD Rietveld refinement result of LaPbCoSbO{sub 6} presented a large BO{sub 6} octahedral distortion along the ab plane. Based upon the variations from Co–O–Sb bond angles, a fierce competition from many extended magnetic coupling routes (M–O–O–M) would induce a considerably large magnetic frustration and electron hopping restriction. - Highlights: • Highly ordered LaPbMSbO{sub 6} (M=Co, Ni) were synthesized. • Abnormal structural distortion appeared in the ab plane. • Strong magnetic frustration was confirmed via M{sup 2+}–O–O–M{sup 2+} route. • Dielectric measurements presented a large difference between Co and Ni samples. • 3d-electronic structure determines lattice distortion and physical properties.

  14. Sonochemical synthesis of solar-light-driven Ago-PbMoO4 photocatalyst

    International Nuclear Information System (INIS)

    Gyawali, Gobinda; Adhikari, Rajesh; Joshi, Bhupendra; Kim, Tae Ho; Rodríguez-González, Vicente; Lee, Soo Wohn

    2013-01-01

    Highlights: • Solar light responsive Ag o -PbMoO 4 photocatalyst synthesized by sonochemical method. • UV–vis DRS reveals the strong absorption band due to SPR effect of Ag nanoparticles. • Ag o -PbMoO 4 possess higher photocatalytic activity over PbMoO 4 . • Enhanced photo-activity is explained on the basis of SPR effect of Ag nanoparticle. -- Abstract: Ag o -PbMoO 4 photocatalysts were synthesized by facile sonochemical method with different mol.% of Ag nanoparticles dispersed on the surface of PbMoO 4 . The synthesized powders were characterized by X-ray Diffraction (XRD) Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and Diffuse Reflectance Spectroscopy (UV–vis DRS) to investigate the crystal structure, morphology, chemical composition, and optical properties of the photocatalyst. Photocatalytic activities of the Ag o -PbMoO 4 samples were evaluated by the degradation of Indigo Carmine (IC) dye under simulated solar light irradiation. It has been observed that the sample containing 0.3 mol.% of Ag showed the best photocatalytic activity as compared to other samples. The results suggest that the dispersion of Ag nanoparticles on the surface of PbMoO 4 significantly enhances the photocatalytic activity of PbMoO 4 . Increase in photocatalytic activity of Ag o -PbMoO 4 photocatalyst has been explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the photocatalyst

  15. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  16. Molecular beam epitaxy of three-dimensional Dirac material Sr3PbO

    Science.gov (United States)

    Samal, D.; Nakamura, H.; Takagi, H.

    2016-07-01

    A series of anti-perovskites including Sr3PbO are recently predicted to be a three-dimensional Dirac material with a small mass gap, which may be a topological crystalline insulator. Here, we report the epitaxial growth of Sr3PbO thin films on LaAlO3 using molecular beam epitaxy. X-ray diffraction indicates (001) growth of Sr3PbO, where [110] of Sr3PbO matches [100] of LaAlO3. Measurements of the Sr3PbO films with parylene/Al capping layers reveal a metallic conduction with p-type carrier density of ˜1020 cm-3. The successful growth of high quality Sr3PbO film is an important step for the exploration of its unique topological properties.

  17. NMR study of glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system

    Energy Technology Data Exchange (ETDEWEB)

    Vopilov, V.A.; Bogdanov, V.L.; Buznik, V.M.; Karapetyan, A.K.; Matsulev, A.N.

    1986-01-01

    The NMR method has been successfully used in the study of the structure of oxide glasses and in lithium glasses. Using steady-state and pulse methods of B-11 and F-19 NMR, the authors have studied borate glasses in the PbO-B/sub 2/O/sub 3/-PbF/sub 2/-AlF/sub 3/ system. Lead fluoride was added to the composition of the experimental glasses. A small amount of PbF2 has a weak effect on the electrical conductivity, and it is only in the specimen with the maximum values of the PbF/sub 2/ concentration that conductivity becomes significant. In glasses of the PbO X B/sub 2/O/sub 3/ X AlF/sub 3/ compositions, there is an exchange of the oxygen and fluoride modifier anions and as a result the F ions are incorporated into the first coordination sphere of the lead cations.

  18. Ferroelectric BaPbO3/PbZr0.53Ti0.47/BaPbO3 heterostructures

    International Nuclear Information System (INIS)

    Liang Chunsheng; Wu Jennming; Chang Mingchu

    2002-01-01

    BaPbO 3 (BPO)/PbZr 0.53 Ti 0.47 (PZT)/BPO heterostructures were fabricated by combining the sol-gel and rf-magnetron sputtering techniques. Experimental results indicate that the BPO bottom electrodes effectively prevent the formation of the rosette structure of PZT, producing smooth surfaces. Additionally, ferroelectric, fatigue, and leakage current properties were markedly improved when both the top and the bottom electrodes were changed from Pt to BPO. These improvements are due to a superior electrode/ferroelectric interface. BPO is better than Pt and other oxide electrodes for use in PZT ferroelectric capacitors due to its remarkably improved properties and quite low growth temperature

  19. Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses

    International Nuclear Information System (INIS)

    Sudarsan, V.; Kulshreshtha, S.K.; Shrikhande, V.K.; Kothiyal, G.P.

    2002-01-01

    Lead borosilicate glasses having general formulae (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 ) x with 0.0≤x≤0.4 and (PbO) 0.5 (SiO 2 ) 0.5-y (B 2 O 3 ) y with 0.0≤y≤0.5 have been prepared by a conventional melt-quench method and characterized by 29 Si, 11 B magic angle spinning (MAS) NMR techniques and infrared spectroscopy, as regards their structural features. From 29 Si NMR results, it has been inferred that with increasing concentration of boron oxide, (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 )x glasses exhibit a systematic increase in the number of Q 4 structural units of Si at the expense of Q 2 structural units, along with the formation of Si-O-B linkages. On the other hand, for (PbO) 0.5 (SiO 2 ) 0.5-y (B 2 O 3 ) y glasses, there is no direct interaction between SiO 2 and B 2 O 3 in the glass network, as revealed by the 29 Si MAS NMR studies. Boron exists in both trigonal and tetrahedral configurations for these two series of glasses and for the (PbO) 0.5 (SiO 2 ) 0.5-y (B 2 O 3 ) y series of glasses; the relative concentration of these two structural units remains almost constant with increasing B 2 O 3 concentration. In contrast, for (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 ) x glasses, there is a slight increase in the number of BO 3 structural units above x = 0.2, as there is a competition between SiO 2 and B 2 O 3 for interaction with Pb 2+ , thereby leading to the formation of BO 3 structural units. For both series of glasses, the thermal expansion coefficient is found to decrease with increasing B 2 O 3 concentration, the effect being more pronounced for the (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 ) x series of glasses due to the increased concentration of Q 4 structural units of silicon and better cross-linking as a result of the formation of Si-O-B-type linkages. (author)

  20. Beam-Mode Piezoelectric Properties of Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals for Medical Linear Array Applications

    Science.gov (United States)

    Wang, Wei; Wang, Sheng; Zhang, Yaoyao; Zhao, Xiangyong; Luo, Haosu

    2011-11-01

    In this work, the dielectric and beam-mode piezoelectric properties of ternary 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PIMNT35/35/30) piezoelectric single crystals were investigated. The Curie temperature ( T C) and rhombohedral-to-tetragonal phase-transition temperature ( T rt) are 187°C and 127°C, about 30°C higher than those of PMNT crystals. The beam-mode coupling coefficient k {33/ w } was found to be 90.3%. Furthermore, 3.5-MHz linear arrays based on PIMNT35/35/30 crystals and Pb(Zr1- x Ti x )O3 ceramic (PZT-5H) were simulated using PiezoCAD software. The results indicate that the sensitivity and -6 dB bandwidth of a PIMNT35/35/30 transducer would be approximately 4 dB and 20% higher, respectively, compared with a traditional PZT transducer.

  1. Structural phase transition and dynamical properties of PbTiO3 simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Costa, S C; Pizani, P S; Rino, J P; Borges, D S

    2005-01-01

    The temperature- and pressure-induced structural phase transition in PbTiO 3 is studied with the isoenthalpic-isobaric molecular-dynamics method, using an effective two-body interaction potential. The tetragonal to cubic transformation is successfully reproduced with both temperature and pressure. The behaviour of lattice parameters, vibrational density of states, and phonon anharmonicity with temperature and pressure are in very good agreement with experimental data. Two- and three-body correlations were analysed through pair distribution functions, coordination numbers and bond-angle distributions

  2. Tetrakis(6-methyl-2,2′-bipyridine-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetranitrato-1κ4O,O′;4κ2O,O′-tetralead(II

    Directory of Open Access Journals (Sweden)

    Roya Ahmadi

    2009-10-01

    Full Text Available In the tetranuclear centrosymmetric title compound, [Pb4(NO38(C11H10N24], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The heptacoordinated lead(II ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy ligand. The six-coordinate lead(II ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H...O hydrogen bonds may stabilize the structure.

  3. Investigations into the PbO-TeO2-B2O3 glass system

    International Nuclear Information System (INIS)

    Basariya, F.P.; Gugushvili, G.M.

    1975-01-01

    Based on the results of investigations of the system A-TeO 2 -B 2 O 3 and from the ternary phase diagram a region is determined of stable nonorganic glasses of the system PbO-TeO 2 -B 2 O 3 noncrystallizable at a temperature of 300 0 C and showing satisfactory chemical stability, as well as satisfactory isolation properties up to 300 0 C. On addition of an optimum amount of tellurium oxide one can obtain low-melting glasses with a temperature interval of 250-300 0 C. It is established that the substitution of PbO by TeO 2 or B 2 O 3 , or TeO 2 by B 2 O 3 leads to a decrease in the glass density. (author)

  4. The Formation and Characterization of GaN Hexagonal Pyramids

    Science.gov (United States)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  5. Damped soft phonons and diffuse scattering in 40%Pb(Mg1/3Nb2/3)O3-60%PbTiO3

    International Nuclear Information System (INIS)

    Stock, C.; Ellis, D.; Swainson, I. P.; Xu, Guangyong; Hiraka, H.; Shirane, G.; Zhong, Z.; Luo, H.; Zhao, X.; Viehland, D.; Birgeneau, R. J.

    2006-01-01

    Using neutron elastic and inelastic scattering and high-energy x-ray diffraction, we present a comparison of 40% Pb(Mg 1/3 Nb 2/3 )O 3 -60% PbTiO 3 (PMN-60PT) with pure Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) and PbTiO 3 (PT). We measure the structural properties of PMN-60PT to be identical to pure PT, however, the lattice dynamics are exactly that previously found in relaxors PMN and Pb(Zn 1/3 Nb 2/3 )O 3 (PZN). PMN-60PT displays a well-defined macroscopic structural transition from a cubic to tetragonal unit cell at 550 K. The diffuse scattering is shown to be weak indicating that the structural distortion is long-range in PMN-60PT and short-range polar correlations (polar nanoregions) are not present. Even though polar nanoregions are absent, the soft optic mode is short-lived for wave vectors near the zone center. Therefore PMN-60PT displays the same waterfall effect as prototypical relaxors PMN and PZN. We conclude that it is random fields resulting from the intrinsic chemical disorder which is the reason for the broad transverse optic mode observed in PMN and PMN-60PT near the zone center and not due to the formation of short-ranged polar correlations. Through our comparison of PMN, PMN-60PT, and pure PT, we interpret the dynamic and static properties of the PMN-xPT system in terms of a random field model in which the cubic anisotropy term dominates with increasing doping of PbTiO 3

  6. Electrochemical degradation of waters containing O-Toluidine on PbO2 and BDD anodes

    International Nuclear Information System (INIS)

    Hmani, Emna; Chaabane Elaoud, Sourour; Samet, Youssef; Abdelhedi, Ridha

    2009-01-01

    Electrochemical oxidation of O-Toluidine (OT) was studied by galvanostatic electrolysis using lead dioxide (PbO 2 ) and boron-doped diamond (BDD) as anodes. The influence of operating parameters, such as current density, initial concentration of OT and temperature was investigated. Measurements of chemical oxygen demand were used to follow the oxidation. The experimental data indicated that on PbO 2 and BDD anodes, OT oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high temperature. Furthermore, BDD anodes offer significant advantages over PbO 2 in terms of current efficiency and oxidation rate.

  7. Note: High-power piezoelectric transformer fabricated with ternary relaxor ferroelectric Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3 single crystal.

    Science.gov (United States)

    Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou

    2016-03-01

    A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm(3). This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density.

  8. EDTA assisted phytorremediation of a Pb contamined soil: metal leaching and uptake by jack beans Lixiviação e absorção de Pb pelo feijão-de-porco assistido pela aplicação de EDTA no solo

    Directory of Open Access Journals (Sweden)

    Mariana Bassetto Gabos

    2009-08-01

    Full Text Available Lead (Pb is one of the main soil contaminants. It is also of difficult phytoremediation due to its low solubility and high retention on soil particles. EDTA application to soil is a strategy to increase heavy metal phytoextraction, but such chelants usually cause phytotoxicity and metal leaching side effects. Therefore, these research work objectives were to evaluate the effects of single (0.5 g kg-1 and split (0.25 + 0.25 g kg-1 EDTA application on Pb uptake by jack beans (Canavalia ensiformis L. as well as on Pb vertical movement in a Pb contaminated soil material. Two sets of experiments were carried out under greenhouse conditions: in the first one, plants were grown in 3L-pots filled with a Pb-contaminated soil to evaluate Pb uptake by plants; for the second experiment, PVC-columns (42 cm height were used to evaluate soil Pb leaching: the upper half-column (20 cm was filled up with Pb-contaminated soil (1800 mg kg-1 whereas the lower half-column (20 cm was filled with clean soil. Ten 60 mm-rainfalls with a duration of five hours were simulated by dropping distilled water on the top of columns, and leachates were collected for chemical analysis. Plants did not show any visual Pb toxicity symptoms or reduction in dry matter yield. Nevertheless, Pb uptake by jack beans regarded as total plant Pb accumulation was higher in EDTA-treated plants. Vertical Pb movement was observed mostly for the single EDTA application. EDTA addition to the soil favor Pb-phytoextraction by jack beans and the split EDTA application decrease the metal leaching, indicating less risk of environmental contamination.O chumbo (Pb é um dos principais contaminantes de solo. Os processos de remediaçãoo dificultados devido à alta retenção do elemento às partículas do solo. A utilização do EDTA para aumentar a fitoextração dos metais do solo tem apresentado bons resultados. Contudo, os quelantes podem causar efeitos indesejáveis como a fitotoxidez e a lixiviação

  9. Phase diagram study for the PbO-ZnO-CaO-SiO_2 -“Fe_2O_3 ” system in air with CaO/SiO_2 in 1.1 and PbO/(CaO+SiO_2) in 2.4 weight ratios

    International Nuclear Information System (INIS)

    Lopez-Rodriguez, Josue; Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Cruz-Ramirez, Alejandro; Almaguer-Guzman, Isaias; Benavides-Perez, Ricardo; Flores-Favela, Manuel

    2017-01-01

    An experimental study on the phase equilibrium and the liquidus isotherms for the PbO-ZnO-CaO-SiO_2 -“Fe_2O_3 ” system with CaO/SiO_2 in 1.1 and PbO/(CaO+SiO_2) in 2.4 weight ratios, respectively, was carried out in the temperature range 1100-1300 deg C (1373-1573 K). High temperature phases were determined by the equilibrium-quenching method. Results are presented in the form of pseudo-ternary sections “Fe_2O_3 ”-ZnO-(PbO+CaO+SiO_2). X-Ray diffraction (XRD) and SEM-EDS results showed that the phase equilibria in this system are dominated by the high melting temperature spinel and zincite phases. It was observed that if the system is at a temperature below 1300 deg C and the total (Fe_2O_3 + ZnO) is greater than 20 wt%, spinel and/or zincite will be present in the slag system. As an application of the phase diagram, the liquid phase compositions below the liquidus surface were estimated, then their viscosities were calculated using FACTSage software. (author)

  10. PbO-SiO_2-CuO及びPbO-SiO_2-K_2O-Na_2O-CuO系ガラス中のCu^<2+>イオンの光吸収スペクトル及びガラスの屈折率

    OpenAIRE

    小山田, 了三; 古賀, 秀人; 星野, 朝則

    1984-01-01

    PbO-SiO2-CuO及びPbO-SiO2-K2O-Na2O-CuO系ガラス中のCu2+イオンの光吸収スペクトルを測定し、ガラス組成と吸収ピーク波数との関係を調べた。その結果、PbO-SiO2-CuO系ガラス中のCu2+の吸収ピーク波数は[PbO]/[SiO2]比の増加とともに高波数側へシフトすることが分かった。PbO-SiO2-K2O-Na2O-CuO系ガラス中のCu2+の吸収ピーク波数の混合アルカリ効果は[PbO]/[SiO2]比により現れ方が異なる。[PbO]/[SiO2]=0.64の場合、ピーク波数は[K2O]/[K2O+Na2O]比の増加とともに低波数側へシフトする。[PbO]/[SiO2]=1.0の場合もピーク波数は[K2O]/[K2O+Na2O]比の増加とともに低波数側へシフトし、[K2O]/[K2O+Na2O]=0.7付近に極小が存在する。[PbO]/[SiO2]=1.5の場合、極小が[K2O]/[K2O+Na2O]=0.35付近に存在し、このとき混合アルカリ効果が最も顕著に現れる。次に、PbO-SiO2-K2O-Na2O-CuO系ガラスの組成と屈折率の関係を調...

  11. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses

    International Nuclear Information System (INIS)

    Kumar, Ashok

    2017-01-01

    The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li 2 O-0.40 B 2 O 3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb 3 B 4 O 9 has been found to be the most effective shield. - Highlights: • Shielding efficiencies of PbO-B 2 O 3 -Li 2 O glasses have been compared. • Measurements have been done for 356, 662, 1173 and 1332 keV photon energies. • Experimental values have been found to be within 3% of their theoretical ones. • Pb 3 B 4 O 9 has been found to be the most effective shield.

  12. Evolution of electrical properties and domain configuration of Mn modified Pb(In1/2Nb1/2)O3-PbTiO3 single crystals

    Science.gov (United States)

    Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa

    2018-04-01

    The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.

  13. Current and potential distributions on positive plates with conductive Pb{sub 3}O{sub 4} and BaPbO{sub 3} in their formation and discharge

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yonglang; Liu, Huan [College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108 (China)

    2008-08-15

    The positive plates with conductive materials, Pb{sub 3}O{sub 4} and BaPbO{sub 3}, in automotive lead-acid batteries were investigated by measuring their current and potential distributions in the course of formation and discharge. It is found that these two conductive materials, especially Pb{sub 3}O{sub 4}, enhance the formation in the initial stage greatly and that they make the current and potential distributions more uniform. In the discharge, the addition of Pb{sub 3}O{sub 4} increases the capacity of the positive plate, but it is unfavorable to the paste curing and causes poor contact between active mass (AM) particles so that the polarization increases greatly at 3 C discharge rate. The BaPbO{sub 3} additive improves not only the formation but also the discharge performance because of its stability in acidic media and at high polarization. The violent charge at high polarization around the plates in the initial formation can lead to poor AM contact and high polarization resistance. (author)

  14. Ab initio study for the IR spectroscopy of PbTiO3 and PbZrO3, primary blocks of PbZr1‑x Ti x O3

    Science.gov (United States)

    Peperstraete, Yoann; Amzallag, Emilie; Tétot, Robert; Roy, Pascale

    2018-05-01

    PbTiO3 (PT) and PbZrO3 (PZ) are the two primary blocks of the solid solution PbZr1‑x Ti x O3 (PZT). They can be modelled in different ways; but, in order to do comparable DFT calculations on PZT, with different values of x, one must find a unique method that can be used for both PT and PZ. In particular, we want to evaluate their vibrational properties to compare them with experimental data. Density functional theory (DFT) is used to perform structure geometry optimizations and electronic structure calculations, both on low- and high-temperature phase. Then, harmonic vibrational frequencies of their low-temperature phase are determined for transverse and longitudinal optical (TO & LO) phonons. Moreover, a detailed study of the eigenvectors shows that accurate calculations are necessary to correctly interpret and understand the IR spectra. In the end, the comparison of our theoretical results with previous experimental and theoretical data confirm the strong potential of the SOGGA (second-order generalized gradient approximation) functional to correctly describe PT, PZ and, hopefully, PZT; especially their structural and vibrational properties.

  15. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    Science.gov (United States)

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-03-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.

  16. Using Pyramids Effects as a method of nuclear and radiation protection

    International Nuclear Information System (INIS)

    Abdullayev, I.E.

    2011-01-01

    Results most of experiments fixed that When radioactive waste is placed inside the pyramids, there is a decrease in their level of radioactivity Based on result of these experiments we suggest - Using Pyramids Effects as a method of nuclear and radiation protection. Explanation of this method based on 3 factors. (2 of them - internal factors, 1 of them - external factor) Factor I. Based o the Theory of the Pyramids Effects we know, that Pyramid construction separate the normal geomagnetic field of the Earth to 2 parts, which have difference vise verse physical characteristics. Cause of the energetic barrier of side of Pyramid, internal space of the Pyramid isolate from the influence of the external normal geomagnetic field of Earth. Therefore, internal space of the Pyramid is fulfilling only by the attractive power of the Earth (pic.1)

  17. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    Science.gov (United States)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  18. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics

    Science.gov (United States)

    Yan, Yongke; Wang, Yu. U.; Priya, Shashank

    2012-05-01

    [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics were synthesized by using templated grain growth method. Significantly high [001] texture degree corresponding to 0.98 Lotgering factor was achieved at 1 vol. % BaTiO3 template. Electromechanical properties for [001]-textured PMN-PT ceramics with 1 vol. % BaTiO3 were found to be d33 = 1000 pC/N, d31 = 371 pC/N, ɛr = 2591, and tanδ = ˜0.6%. Elastoelectric composite based modeling results showed that higher volume fraction of template reduces the overall dielectric constant and thus has adverse effect on the piezoelectric response. Clamping effect was modeled by deriving the changes in free energy as a function of applied electric field and microstructural boundary condition.

  19. Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications.

    Science.gov (United States)

    Zhang, Qingmeng; Luo, Jun; Tang, Qun; Han, Dongfang; Zhou, Yi; Du, Jun

    2012-11-01

    Nanocomposite dielectrics in 6PbO-4BaO-20Na2O-40Nb2O5-30SiO2 system were prepared via melt-quenching followed by controlled crystallization. X-ray diffraction studies reveal that Pb2Nb2O7, Ba,NaNb5O15, NaNbO3 and PbNb2O6 phases are formed from the as-quenched glass annealed in temperature range from 700 degrees C to 850 degrees C. Ba2NaNb5O15, Pb2Nb2O7 crystallizes at 700 degrees C and then Pb2Nb2O7 disappears at 850 degrees C, while PbNb2O6 and NaNbO3 are formed at 850 degrees C. Microstructural observation shows that the crystallized particles are nanometer-sized and randomly distributed with glass matrix being often found at grain boundaries. The dielectric constant of the nanocomposites formed at different crystallization temperatures shows good frequency and electric field stability. The breakdown strength is slightly decreased when the glass-ceramics thickness is varied from 1 mm to 4 mm. The corresponding energy density could reach 2.96 J/cm3 with a breakdown strength of 58 kV/mm for thickness of 1 mm.

  20. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3

    OpenAIRE

    Lee, Paul David; Bristowe, Nicholas C; Bristowe, Paul D; Cheetham, Anthony Kevin

    2015-01-01

    First principles calculations on the hybrid perovskite CH3NH3PbI3 predict strong hydrogen-bonding which influences the structure and dynamics of the methylammonium cation and reveal its interaction with the tilting of the PbI6 octahedra. The calculated atomic coordinates are in excellent agreement with neutron diffraction results. [Image - see article] Funding from the Winton Programme for the Physics of Sustainability at the University of Cambridge is gratefully acknowledged. NCB acknowle...

  1. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    Science.gov (United States)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  2. A note on structural and dielectric properties of BiFeO3- PbTiO3 and BiFeO3- PbZrO3 composites

    International Nuclear Information System (INIS)

    Satpathy, S. K.; Mohanty, N. K.; Behera, A. K.; Behera, B.; Nayak, P.

    2015-01-01

    The composites of BiFeO 3 -PbTiO 3 (BF-PT) and BiFeO 3 -PbZrO 3 (BF-PZ) were prepared by mixed oxide method. Room temperature X-ray diffraction data confirms the rhombohedral and tetragonal crystal structure respectively. Dielectric constant of BF-PZ is found to give high value compared to BF-PT and hence, there is an increase value of ac conductivity for the former. Both the composites show negative temperature coefficient of resistance (NTCR) behavior. The activation energies of BF-PT and BF-PZ are found to be 0.35 eV and 0.53 eV respectively. The d 33 coefficients are found to be 2.0 and 2.1 pC/N for BF-PT and BF-PZ respectively

  3. Crystal structure and magnetic properties of the Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14 langasites

    DEFF Research Database (Denmark)

    Krizan, J.W.; de la Cruz, C.; Andersen, Niels Hessel

    2013-01-01

    We report the structural and magnetic characterizations of Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14, compounds that are based on the mineral dugganite, which is isostructural to langasites. The magnetic part of the structure consists of layers of Co2+ triangles. Nuclear and magnetic...... structures were determined through a co-refinement of synchrotron and neutron powder diffraction data. In contrast to the undistorted P321 langasite structure of Ba3TeCo3P2O14, a complex structural distortion yielding a large supercell is found for both Pb3TeCo3P2O14 and Pb3TeCo3V2O14. Comparison...... of the three compounds studied along with the zinc analog Pb3TeZn3P2O14, also characterized here, suggests that the distortion is driven by Pb2+ lone pairs; as such, the Pb compounds crystallize in a pyroelectric space group, P2. Magnetic susceptibility, magnetization, and heat capacity measurements were...

  4. Binuclear Pt-Tl bonded complex with square pyramidal coordination around Pt: a combined multinuclear NMR, EXAFS, UV-Vis, and DFT/TDDFT study in dimethylsulfoxide solution.

    Science.gov (United States)

    Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre

    2011-07-04

    the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system. © 2011 American Chemical Society

  5. Lead Oxide- PbO Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize nanocrystalline PbO at a low temperature of 75 oC using lead acetate. The synthesized PbO (P75 was annealed in the temperatures ranging from 200-500 oC for 2 h to study the effect of crystal structure and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. The dc resistance measurements were carried out in the relative humidity (RH range 5-98 %. Among the different prepared, P75 possessed the highest humidity sensitivity of 6250, while the heat treated sample P500 have a low sensitivity of 330. The response and recovery characteristics of the maximum sensitivity sample P75 were 170 s and 40 s respectively.

  6. Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi,Pb)2Ba2O4+/-ω]0.5CoO2

    Science.gov (United States)

    Sakai, K.; Karppinen, M.; Chen, J. M.; Liu, R. S.; Sugihara, S.; Yamauchi, H.

    2006-06-01

    We report strongly enhanced thermoelectric characteristics for a misfit-layered oxide, [Bi2Ba2O4±ω]0.5CoO2, in a wide temperature range, as achieved through substituting up to 20% of Bi by Pb. The Pb substitution kept the thermal conductivity (κ) unchanged but decreased the electrical resistivity (ρ) and increased the Seebeck coefficient (S) simultaneously, such that a three-fold enhancement in the thermoelectric figure of merit, Z (≡S2/ρκ), was realized. At the same time x-ray absorption near-edge structure data indicated that the valence and spin states of Co are not affected by the Pb-for-Bi substitution.

  7. μ-Oxalato-κ4O1,O2:O1′,O2′-bis[aqua(2,2′-bipyridine-κN(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    Gang-Hong Pan

    2012-10-01

    Full Text Available The title compound, [Pb2(C2O4(NO32(C10H8N22(H2O2], was synthesized hydrothermally. The binuclear complex molecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is heptacoordinated by the O atom of one water molecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Intermolecular O—H...O hydrogen bonds between water molecules and oxalate and nitrate ions result in the formation of layers parallel to (010. π–π interactions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2 Å, stabilize the structural set-up.

  8. Dimensionally stable PbO{sub 2} electrodes for lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Devos, B.; Groult, H. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C-Electrochimie

    2007-07-15

    Dimensionally stable anodes (DSAs) are regularly used in industrial electrolytic cells. The titanium substrate in these electrodes is covered by an electrocatalytic layer containing a precious metal oxide. The concept of PbO{sub 2}-dimensionally stable electrodes with a light metal substrate may also be applied to generators, particularly for bipolar lead acid batteries. However, one of the issues with bipolar lead-acid batteries is the stability of the bipolar electrode substrate, particularly on the side onto which the positive active mass is deposited. This article presented the results of a study that characterized the performance of different electrode substrates onto which PbO{sub 2} was electrodeposited using cyclic voltammetry performed with PbO{sub 2} in sulphuric acid. The article discussed the experiment with reference to the titanium substrates; modification of the substrates; x-ray diffraction; and cyclic voltammetry experiments with PbO{sub 2} electrodes. It also presented a discussion of the results. The study concluded that titanium covered by the mixed oxides layer titanium dioxide (TiO{sub 2})-tin dioxide (SnO{sub 2})-antimony oxide (Sb{sub 2}O{sub 3}) constitutes a suitable substrate for PbO{sub 2} electrodes. It can be used in lead acid batteries and allows the preparation of compact bipolar batteries. 36 refs., 1 tab., 5 figs.

  9. Thick-film processing of Pb5Ge3O11-based ferroelectric glass-ceramics

    International Nuclear Information System (INIS)

    Cornejo, I.A.; Haun, M.J.

    1996-01-01

    Processing techniques were investigated to produce c-axis orientation, or texture, of ferroelectric Pb 5 Ge 3 O 11 -based glass-ceramic compositions during crystallization of amorphous thick-film printed samples from the Pb 5 Ge 3 O 11 -PbTiO 3 (PG-PT) and Pb 5 Ge 3 O 11 -Pb(Zr 1/2 Ti 1/2 )O 3 (PG-PZT) systems. In these systems the PG crystallized into a ferroelectric phase, producing a multiple ferroelectric phase composite at low temperatures, PG-PT or PG-PZT. In this way the non-ferroelectric component of traditional ferroelectric glass-ceramics was eliminated

  10. Phase relations in the pseudobinary BaO-PbO2 system. Part 1: synthesis and characterization of compounds

    International Nuclear Information System (INIS)

    Rama Rao, G.V.; Suganthi, S.; Asokamani, R.; Azad, A.M.; Sreedharan, O.M.

    1993-01-01

    The compounds BaPbO 3 and Ba 2 PbO 4 are among the important basic materials for the copper less ceramic superconductors. Hence it was necessary to identify the best process of synthesis with optimum process temperature. For this purpose preparation of BaPbO 3 and Ba 2 PbO 4 was carried out by solid-state, solid-solution and sol-gel processes. Products so synthesised were characterized by x-ray diffraction, infra red spectroscopy and thermal analyses. Particle size measurements were carried out by He-Ne laser light scattering technique for a possible correlation with sintering behaviour. Merits and limitations of the different processes were compared. The reaction process was studied by thermal analysis (TG and DTA) and infra red spectroscopy. The solid solution process has reduced the formation temperature by a margin of 200-300 deg to a value of 773K compared to other methods. The sol-gel processing approach did not favour the formation of Ba 2 PbO 4 . While solid solution route appears to be the best for synthesis of pure B 2 PbO 4 , sol-gel processes are most appropriate for synthesizing BaPbO 3 with very fine particle size distribution. (author). 24 refs., 3 figs., 4 tabs

  11. Local strain heterogeneity and elastic relaxation dynamics associated with relaxor behavior in the single-crystal perovskite Pb (I n1 /2N b1 /2 ) O3-PbZr O3-Pb (M g1 /3N b2 /3 ) O3-PbTi O3

    Science.gov (United States)

    He, Wenhui; Carpenter, Michael A.; Lampronti, Giulio I.; Li, Qiang; Yan, Qingfeng

    2017-10-01

    Recently, Pb (In1/2Nb1/2 ) O3-PbZr O3-Pb (Mg1/3Nb2/3 ) O3-PbTiO3 (PIN-PZ-PMN-PT) relaxor single crystals were demonstrated to possess improved temperature-insensitive properties, which would be desirable for high-power device applications. The relaxor character associated with the development of local random fields (RFs) and a high rhombohedral-tetragonal (R-T) ferroelectric transition temperature (TR-T>120°C) would be critical for the excellent properties. A significant effect of the chemical substitution of In3+ and Zr4+ in PMN-PT to give PIN-PZ-PMN-PT is the development of local strain heterogeneity, which acts to suppress the development of macroscopic shear strains without suppressing the development of local ferroelectric moments and contribute substantially to the RFs in PIN-PZ-PMN-PT. Measurements of elastic and anelastic properties by resonant ultrasound spectroscopy show that PIN-PZ-PMN-PT crystal has a quite different form of elastic anomaly due to Vogel-Fulcher freezing, rather than the a discrete cubic-T transition seen in a single crystal of PMN-28PT. It also has high acoustic loss of the relaxor phase down to TR-T. Analysis of piezoresponse force microscopy phase images at different temperatures provides a quantitative insight into the extent to which the RFs influence the microdomain structure and the short-range order correlation length 〈ξ 〉 .

  12. The Crystal Structure of Cu4Bi4Se9

    DEFF Research Database (Denmark)

    Makovicky, E.; Søtofte, Inger; Karup-Møller, S.

    2002-01-01

    contains three square pyramidal Bi sites, an octahedrally coordinated Bi site as well as two tetrahedrally and two irregularly coordinated Cu sites. The structure is an intergrowth of PbS-like slabs with irregularly configured slabs of Bi pyramids and Cu tetrahedra. It contains covalently bonded Se-2...

  13. Pb(Zn1/3Nb2/3O3–PbTiO3 single crystal and device development

    Directory of Open Access Journals (Sweden)

    L. C. Lim

    2014-01-01

    Full Text Available This paper describes recent device developments with relaxor ferroelectric Pb(Zn1/3Nb2/3O3–PbTiO3 (PZN–PT single crystals carried out at Microfine Materials Technologies Pte. Ltd, Singapore. Promising [011]-poled transverse cuts of PZN–PT single crystals and the results on the effect of electric field and axial compressive stress on the rhombohedral-to-orthorhombic (R–O phase transformation behavior of such cuts are presented and discussed. The single crystal devices described include a compact low-frequency broadband power-efficient underwater tonpilz projector, high sensitivity shear accelerometers and acoustic vector sensors (AVS. The unique characteristics offered by these PZN–PT single crystal devices are highlighted, which serve as examples of new-generation piezoelectric devices and systems for a wide range of demanding applications.

  14. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    Science.gov (United States)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  15. μ-Adipato-κ2O1:O4-bis{[2,6-bis(1H-benzimidazol-2-yl-κN3pyridine-κN](nitrato-κOlead(II}

    Directory of Open Access Journals (Sweden)

    Lian-Qiang Wei

    2010-01-01

    Full Text Available The dinuclear title compound, [Pb2(C6H8O4(NO32(C19H13N52], lies with the mid-point of the butyl chain of the bridging adipate unit on a center of inversion. The PbII ion is covalently bonded to the nitrate anion and is bonded to a carboxylate group of the adipate unit by another covalent bond. The N-heterocycle functions in a chelating tridentate mode. The metal atom exists in a Ψ-octahedral coordination environment. When weaker Pb...O interactions are also considered, the geometry is a Ψ-tricapped trigonal prism in which the lone-pair electrons occupy one face of the trigonal prism. Adjacent molecules are linked into a layer structure by N—H...O hydrogen bonds.

  16. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    Science.gov (United States)

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  17. Optical evidences for an intermediate phase in relaxor ferroelectric Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 single crystals

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhang

    2016-02-01

    Full Text Available The mechanism of low-temperature structural transformation and evolution of polar nano-structures in relaxor ferroelectric Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-xPbTiO3 (x = 0.33, 0.35, and 0.42 single crystals have been investigated with the aid of temperature dependent low-wavenumber Raman scattering (LWRS and photoluminescence (PL spectra. The E(TO1 phonon mode reveals the characteristic relaxational polarization fluctuations associated with the reorientation of either polar nano-regions or polar nano-domains. It was found that these mechanisms are not independent and they can be ascribed to the phonon localization. In addition, a short-range monoclinic phase (Mc can be found below 250 K in the tetragonal phase region by LWRS, which is always associated with the morphotropic phase boundary (MPB and excellent electromechanical properties. It is interesting that PL spectra confirm these results. The present work indicates that external field modulation and change of composition can result in the monoclinic phase and co-existence of multi-phase.

  18. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbO-B2O3-SiO2 system.

    Science.gov (United States)

    Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M

    2013-07-15

    The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Piezoelectric ceramic material, containing PbNb2O6, K2Nb2O6

    International Nuclear Information System (INIS)

    Fesenko, E.G.; Filip'ev, V.S.; Razumovskaya, O.N.; Cherner, Ya.E.; Rudkovskaya, L.M.; Zav'yalov, V.P.; Molchanova, R.A.; Kryshtop, V.G.; Panich, A.E.; Servuli, V.A.

    1984-01-01

    A new piezoelectric ceramic material including PbNb 2 O 6 , K 2 Nb 2 O 6 is prepared. Above the new material contains Nb 2 O 5 . The invention relates to piezotechnique. The principal advantage of this material for acoustic converters is high anisotropy of piezoelectric properties as well as high Curie temperature (T C =539-553 deg C). The composition containing 93.96 mole% PbNb 2 O 6 ; 2.48 mole% K 2 Nb 2 O 6 and 3.56 mole% Nb 2 O 5 has optimum content of parameters

  20. Modulation-free bismuth-lead cuprate superconductors: BiPbSr1+xL1-xCuO6 and BiPbSr2Y1-xCaxCu2O8

    International Nuclear Information System (INIS)

    Manivannan, V.; Gopalakrishnan, J.; Rao, C.N.R.

    1991-01-01

    Modulation-free BiPbSrLCuO 6 (L=La, Pr, Nd) and BiPbSr 2 YCu 2 O 8 , which are isotypic with the n=1 and 2 members of the Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 family, have been prepared and characterized. These parent compounds are nonsuperconducting, but when doped with holes by substitution chemistry give modulation-free superconducting cuprates of the general formulas BiPbSr 1+xL1-x CuO 6 and BiPbSr 2 Y 1-x Ca x Cu 2 O 8 , exhibiting maximum T c 's of 24 and 85 K, respectively. Significantly, the hole concentration at the maximum T c is 0.12 in the cuprate family with a single Cu-O layer and 0.22 in that with two Cu-O layers

  1. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  2. Combinatorial processing libraries for bulk BiFeO3-PbTiO3 piezoelectric ceramics

    International Nuclear Information System (INIS)

    Hu, W.; Tan, X.; Rajan, K.

    2010-01-01

    A high throughput approach for generating combinatorial libraries with varying processing conditions for bulk ceramics has been developed. This approach utilized the linear temperature gradient in a tube furnace to screen a whole temperature range for optimized preparation. With this approach, the processing of 0.98[0.6BiFeO 3 -0.4PbTiO 3 ]-0.02Pb(Mg 1/3 Nb 2/3 )O 3 ceramic powders and pellets for high-temperature piezoelectric applications was demonstrated to identify the best synthesis conditions for phase purity. The dielectric property measurement on the as-processed solid solution ceramics confirmed the high Curie temperature and the improved loss tangent with the Pb(Mg 1/3 Nb 2/3 )O 3 doping. (orig.)

  3. ZnO-PbO-B2O3 glasses as gamma-ray shielding materials

    DEFF Research Database (Denmark)

    Singh, H.; Singh, K.; Gerward, Leif

    2003-01-01

    Values of the gamma-ray mass-attenuation coefficient, the photon mean free path (MFP), the effective atomic number and the effective electron density have been determined experimentally for xZnO.2xPbO.(1-3x)B2O3 (x = 0.1-0.26) glasses at photon energies 511, 662, 1173 and 1332 keV and compared wi...... with theoretical data. The specific volume of the glasses has been derived from density measurements and studied as a function of composition. It is pointed out that these glasses have potential applications in radiation shielding.......Values of the gamma-ray mass-attenuation coefficient, the photon mean free path (MFP), the effective atomic number and the effective electron density have been determined experimentally for xZnO.2xPbO.(1-3x)B2O3 (x = 0.1-0.26) glasses at photon energies 511, 662, 1173 and 1332 keV and compared...

  4. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    Science.gov (United States)

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  5. Thermodynamic optimization of the PbO-ZrO2-TiO2 (PZT) system and its application to the processing of composites of PZT ceramics and copper

    International Nuclear Information System (INIS)

    Cancarevic, Marija

    2007-01-01

    The aim of this thesis was to obtain a consistent set of thermodynamic data for the Cu-Pb-Zr-Ti-O system, by means of the CALPHAD method, and then to calculate phase equilibria and chemical potential diagrams. The thermodynamic properties were described using the compound energy formalism (CEF) as well as the substitutional solution model for various solid phases and the associate model for the liquid phase, while the Redlich-Kister series were used to account for the interactions between species. Associate solution model adopted for the description of the liquid phase in the multicomponent Cu-Pb-Zr-Ti-O system was found to be superior for calculating the relevant phase equilibria in comparison with the twosublattice ionic model, although both models can be successfully applied to the binary systems (Zr-O, Ti-O, Cu-O, Pb-O). The ternary compound Cu 2 PbO 2 was modelled as a stoichiometric compound. Its thermodynamic properties were estimated by experiments. In the modelling of the ternary Cu-Ti-O system the three ternary compounds, Cu 3 Ti 3 O, Cu 2 Ti 4 O and Cu 3 TiO 4 were taken as stoichiometric compounds. PbTiO 3 (tetragonal and cubic forms) and PbZrO 3 (cubic form) were considered as stoichiometric compounds in the PbO-TiO 2 and PbO-ZrO 2 systems, while the tetragonal and orthorhombic PbO solid solutions were described by a substitutional model. The perovskite solid solution series, PbZr x Ti 1-x O 3 was modelled as high temperature cubic form using the substitutional model. Calculated phase diagrams, i.e., predicted phase relations in the multicomponent Cu-Pb-Zr-Ti-O system (isobaric-isothermal sections and chemical potential diagrams) were checked experimentally. (orig.)

  6. Nanomagnets La0.8Pb0.2(Fe0.8Co0.2)O3 assembled with a bonded surface graphene oxide: sensitive for sensing small gas molecules.

    Science.gov (United States)

    Bhargav, K K; Ram, S; Majumder, S B

    2012-04-01

    Nanocrystallites La0.8Pb0.2(Fe0.8Co0.2)O3 (LPFC) when bonded through a surface layer (carbon) in small ensembles display surface sensitive magnetism useful for biological probes, electrodes, and toxic gas sensors. A simple dispersion and hydrolysis of the salts in ethylene glycol (EG) in water is explored to form ensembles of the nanocrystallites (NCs) by combustion of a liquid precursor gel slowly in microwave at 70-80 dgrees C (apparent) in a closed container in air. In a dilute sample, the EG molecules mediate hydrolyzed species to configure in small groups in process to form a gel. Proposed models describe how a residual carbon bridges a stable bonded layer of a graphene-oxide-like hybrid structure on the LPFC-NCs in attenuating the magnetic structure. SEM images, measured from a pelletized sample which was used to study the gas sensing features in terms of the electrical resistance, describe plate shaped NCs, typically 30-60 nm widths, 60-180 nm lengths and -50 m2/g surface area (after heating at -750 degrees C). These NCs are arranged in ensembles (200-900 nm size). As per the X-ray diffraction, the plates (a Pnma orthorhombic structure) bear only small strain -0.0023 N/m2 and oxygen vacancies. The phonon and electronic bands from a bonded surface layer disappear when it is etched out slowly by heating above 550 degrees C in air. The surface layer actively promotes selective H2 gas sensor properties.

  7. Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material

    International Nuclear Information System (INIS)

    Dan Yuanyuan; Lin Haibo; Liu Xiaolei; Lu Haiyan; Zhao Jingzhe; Shi Zhan; Guo Yupeng

    2012-01-01

    Highlights: ► We prepare nano-PbO 2 + Mn 3 O 4 composite material by composite deposition method. ► The nano-PbO 2 + Mn 3 O 4 composite has porous quasi three-dimensional structure. ► Maximum electrochemically effective area (R F ) of the composite is 72. ► The composite shows high specific capacitance up to ∼340 F g −1 . ► A general knowledge of the pesudocapacitance behavior of the composite is acquired. - Abstract: Nano-Mn 3 O 4 + PbO 2 composite electrode materials with different compositions are prepared by anodic composite electrodeposition in Pb 2+ plating solution containing suspended nano-Mn 3 O 4 particles (40–60 nm). The particles are synthesized via one-step homogeneous precipitation at low temperature. The composite materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) analyses. The results indicate that the composite composed of γ-Mn 3 O 4 and β-PbO 2 is porous and quasi three-dimensional (3D), and its maximum electrochemically effective area ratio (R F ) is 72. The capacitance performance of the composite is determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge–discharge test. The composite shows a high specific capacitance up to 338 F g −1 .

  8. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  9. Microstructural, structural and optical properties of nanoparticles of PbO-CrO3 pigment synthesized by a soft route

    Directory of Open Access Journals (Sweden)

    V. D. Araújo

    2015-03-01

    Full Text Available PbCrO4 and Pb2CrO5 particles were synthesized by the polymeric precursor method. Structural and microstructural properties of the particles were characterized by scanning electron microscopy with field emission gun, X-ray diffraction, and Raman spectroscopy techniques. The diffuse reflectance technique was employed to study the optical properties in the 400-700 nm range. The optical bandgap of the samples was obtained indirectly. Colorimetric coordinates L*, a*, b* were calculated for the pigment powders as a function of the heat treatment (400-700 ºC. The powders displayed colors ranging from green to red. X-ray diffraction patterns showed the presence of monoclinic PbCrO4 phase in green samples, while red powders had a monoclinic Pb2CrO5 phase structure. The Raman spectra of the PbCrO4 and Pb2CrO5 powders were in good agreement with those reported in the literature. The synthesized compounds can be used as green and red pigments with high thermal stability.

  10. Understanding the two neutron transfer reaction mechanism in {sup 206}Pb({sup 18}O,{sup 16}O){sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, A.; Sonika [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Roy, B.J., E-mail: bjroy@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Jha, V.; Pal, U.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Sinha, T. [High Energy Nuclear and Particle Physics Division, Saha Institute of Nuclear Physics, Kolkata - 700 064 (India); Pandit, S.K.; Parkar, V.V.; Ramachandran, K.; Mahata, K.; Santra, S.; Mohanty, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India)

    2015-08-15

    The absolute cross sections for elastic scattering and two-neutron transfer reaction for {sup 18}O + {sup 206}Pb system have been measured at an incident energy near the Coulomb barrier. Detailed coupled reaction channel calculations have been carried out for description of the measured angular distributions for the elastic scattering and transfer reactions simultaneously. The two-neutron transfer reaction {sup 206}Pb({sup 18}O, {sup 16}O){sup 208}Pb in the g.s. → g.s. transition is analyzed in (i) extreme cluster model assuming a di-neutron transfer, (ii) two-step successive transfer, and (iii) microscopic approach (independent coordinate scheme) of simultaneous transfer of two neutrons. The relative importance of one step simultaneous transfer versus two-step successive transfer has been studied. Present analysis suggests dominance of cluster transfer of a di-neutron. The contribution from the two-step sequential processes is less significant, however, the combined “two-step plus simultaneous (microscopic)” calculations give a reasonably good agreement with the measurement. The possibility of multi-step route via projectile and target excitations and contribution from such indirect transfer paths to the present two-neutron transfer cross section has been investigated.

  11. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  12. Removal of aqueous Pb(II) by adsorption on Al{sub 2}O{sub 3}-pillared layered MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haipeng; Gu, Liqin; Zhang, Ling; Zheng, Shourong; Wan, Haiqin; Sun, Jingya [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhu, Dongqiang [School of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2017-06-01

    Highlights: • Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was prepared from δ-MnO{sub 2} precursor. • p-MnO{sub 2} showed markedly higher Pb(II) adsorption capacity than pristine δ-MnO{sub 2.}. • Pillaring of Al{sub 2}O{sub 3} into the layer of δ-MnO{sub 2} enhanced the Pb(II) adsorption. - Abstract: In the present study, Al{sub 2}O{sub 3}-pillared layered MnO{sub 2} (p-MnO{sub 2}) was synthesized using δ-MnO{sub 2} as precursor and Pb(II) adsorption on p-MnO{sub 2} and δ-MnO{sub 2} was investigated. To clarify the adsorption mechanism, Al{sub 2}O{sub 3} was also prepared as an additional sorbent. The adsorbents were characterized by X-ray fluorescence analysis, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and N{sub 2} adsorption-desorption. Results showed that in comparison with pristine δ-MnO{sub 2}, Al{sub 2}O{sub 3} pillaring led to increased BET surface area of 166.3 m{sup 2} g{sup −1} and enlarged basal spacing of 0.85 nm. Accordingly, p-MnO{sub 2} exhibited a higher adsorption capacity of Pb(II) than δ-MnO{sub 2}. The adsorption isotherms of Pb(II) on δ-MnO{sub 2} and Al{sub 2}O{sub 3} pillar fitted well to the Freundlich model, while the adsorption isotherm of Pb(II) on p-MnO{sub 2} could be well described using a dual-adsorption model, attributed to Pb(II) adsorption on both δ-MnO{sub 2} and Al{sub 2}O{sub 3}. Additionally, Pb(II) adsorption on δ-MnO{sub 2} and p-MnO{sub 2} followed the pseudo second-order kinetics, and a lower adsorption rate was observed on p-MnO{sub 2} than δ-MnO{sub 2}. The Pb(II) adsorption capacity of p-MnO{sub 2} increased with solution pH and co-existing cation concentration, and the presence of dissolved humic acid (10.2 mg L{sup −1}) did not markedly impact Pb(II) adsorption. p-MnO{sub 2} also displayed good adsorption capacities for aqueous Cu(II) and Cd(II). Findings in this study indicate that p-MnO{sub 2} could be used as a highly effective

  13. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  14. Fatigue properties of piezoelectric-electrostrictive Pb(Mg1/3,Nb2/3)O3-PbTiO3 monolithic bilayer composites

    Science.gov (United States)

    Hall, A.; Akdogan, E. K.; Safari, A.

    2006-11-01

    The fatigue response of monolithic piezoelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3-electrostrictive 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 bilayer composites was investigated experimentally. The monomorph bilayers were cosintered at 1150°C, and the polarization hysteresis, relative permittivity, displacement, and cyclic fatigue (107cycles) were measured as a function of piezoelectric-electrostrictive volume fraction (PEVF) ratio. The highest tip displacement of bilayers was found in the 3:1 PEVF monolith, reaching 40μm at 5kV/cm applied field strength. By minimizing the electrostrictive layer thickness, tip displacement substantially increased, while maintaining a lower hysteresis than the purely piezoelectric counterpart. Fatigue measurements indicated a 31% decrease in displacement after 107cycles in 3:1 monoliths, whereas the 1:3 PEVF only showed a 12% decrease under the same conditions. There is a 30% increase in polarization after 107cycles for 1:1 PEVF bilayers, which is attributed to self-poling due to a diffuse transition layer in the vicinity of the interface. It was found that partial 90° domain switching occurred prior to poling because of the residual stresses in the composite, imposed by the electrostrictive layer and the spontaneous strain associated with the cubic-tetragonal transition in the ferroelectric layer. The results indicate that the electrostrictive layer, which is electrically in series with the piezoelectric one, enhances the fatigue resistance of the monolithic bilayer composites in addition to the increase in tip displacement.

  15. Simultaneous efficient adsorption of Pb2+ and MnO4− ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    International Nuclear Information System (INIS)

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-01-01

    Highlights: • MCM-41 was successfully modified with amine and nitrilotriacetic acid anhydride. • The adsorbent can simultaneously remove Pb 2+ and MnO 4 − by adjusting pH of the system. • The maximum adsorption capacities of Pb 2+ and MnO 4 − are 147 mg/g and 156 mg/g. • The absorbent exhibits good regeneration and reusability for 5 cycles use. - Abstract: A novel adsorbent NH 2 /MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption–desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH 2 /MCM-41/NTAA were used to adsorb Pb 2+ and MnO 4 − in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH 2 /MCM-41/NTAA exhibit preferable removal of Pb 2+ through electrostatic interactions and chelation, whereas it captures MnO 4 − by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb 2+ and of 156 mg/g for MnO 4 − . The adsorption rates of both Pb 2+ and MnO 4 − are found to follow the pseudo-second order kinetics. Furthermore, the NH 2 /MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH 2 /MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  16. Fabrication and characterization of Pb(Zr 0.53,Ti 0.47)O 3-Pb(Nb 1/3,Zn 2/3)O 3 thin films on cantilever stacks

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2010-11-18

    0.9Pb(Zr 0.53,Ti 0.47)O 3-0.1Pb(Zn 1/3,Nb 2/3)O 3 (PZT-PZN) thin films and integrated cantilevers have been fabricated. The PZT-PZN films were deposited on SiO 2/Si or SiO 2/Si 3N 4/SiO 2/poly-Si/Si membranes capped with a sol-gel-derived ZrO 2 buffer layer. It is found that the membrane layer stack, lead content, existence of a template layer of PbTiO 3 (PT), and ramp rate during film crystallization are critical for obtaining large-grained, single-phase PZT-PZN films on the ZrO 2 surface. By controlling these parameters, the electrical properties of the PZT-PZN films, their microstructure, and phase purity were significantly improved. PZT-PZN films with a dielectric constant of 700 to 920 were obtained, depending on the underlying stack structure. © 2010 TMS.

  17. Phase diagram study for the PbO-ZnO-CaO-SiO{sub 2} -“Fe{sub 2}O{sub 3} ” system in air with CaO/SiO{sub 2} in 1.1 and PbO/(CaO+SiO{sub 2}) in 2.4 weight ratios

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodriguez, Josue; Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Cruz-Ramirez, Alejandro, E-mail: romeroipn@hotmail.com [Instituto Politecnico Nacional-ESIQIE, Zacatenco, Mexico City (Mexico); Almaguer-Guzman, Isaias; Benavides-Perez, Ricardo; Flores-Favela, Manuel [Servicios Administrativos Penoles S.A de C.V., Torreon, Coahuila (Mexico)

    2017-07-15

    An experimental study on the phase equilibrium and the liquidus isotherms for the PbO-ZnO-CaO-SiO{sub 2} -“Fe{sub 2}O{sub 3} ” system with CaO/SiO{sub 2} in 1.1 and PbO/(CaO+SiO{sub 2}) in 2.4 weight ratios, respectively, was carried out in the temperature range 1100-1300 deg C (1373-1573 K). High temperature phases were determined by the equilibrium-quenching method. Results are presented in the form of pseudo-ternary sections “Fe{sub 2}O{sub 3} ”-ZnO-(PbO+CaO+SiO{sub 2}). X-Ray diffraction (XRD) and SEM-EDS results showed that the phase equilibria in this system are dominated by the high melting temperature spinel and zincite phases. It was observed that if the system is at a temperature below 1300 deg C and the total (Fe{sub 2}O{sub 3} + ZnO) is greater than 20 wt%, spinel and/or zincite will be present in the slag system. As an application of the phase diagram, the liquid phase compositions below the liquidus surface were estimated, then their viscosities were calculated using FACTSage software. (author)

  18. Oxidation and Reduction of Liquid SnPb (60/40) under Ambient and Vacuum Conditions

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Maly, K.; Preuss, A.

    1998-01-01

    One of the most straightforward approaches to fluxless solder bonding is using vacuum conditions to prevent further oxidation and, where needed, to reduce solder oxides by the use of molecular hydrogen (H-2).(1-3) This study On oxidation and reduction of solder oxides on SnPb (60/40) is aimed...... to provide a better understanding for fluxless solder bonding applications under controlled atmospheric conditions; By means of scanning Auger spectroscopy it is shown, that growth of oxide films on metallic SnPb above the eutectic temperature can be significantly reduced by decreasing the O-2 partial...

  19. Effect of lead salts on phase, morphologies and photoluminescence of nanocrystalline PbMoO4 and PbWO4 synthesized by microwave radiation

    Directory of Open Access Journals (Sweden)

    Phuruangrat Anukorn

    2016-09-01

    Full Text Available PbMoO4 and PbWO4 were successfully synthesized by microwave radiation using different lead salts (acetate, chloride, nitrate and sulfate and Na2MO4 (M = Mo, W in propylene glycol. The products were characterized by X-ray diffraction (XRD, scanning and transmission electron microscopy (SEM, TEM, Fourier transform infrared (FT-IR, Raman spectroscopy and photoluminescence (PL spectroscopy. In this research, morphologies, crystallization and photoluminescence of the products were influenced by the kinetics of anions, including the detection of M–O (M = Mo, W stretching modes in the (MO42− tetrahedrons. Photoluminescence of PbMoO4 synthesized from Pb(NO32 and of PbWO4 synthesized from PbCl2 showed the strongest blue emission due to the electronic diffusion in tetrahedrons at room temperature.

  20. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  1. Copper(II hydrogenphosphate, CuHPO4

    Directory of Open Access Journals (Sweden)

    Dörte Stachel

    2009-12-01

    Full Text Available The title compound, CuHPO4, has been synthesized from a mixture of phosphoric acid and copper oxide. It has the same composition as MHPO4 (M = Ca, Ba, Pb, Sr or Sn, but adopts a rhombohedral structure with all atoms on general positions. The structure features distorted PO4 tetrahedra linked by copper, forming 12-membered rings. The CuII atom is coordinated by five O atoms in a distorted square-pyramidal manner. O—H...O hydrogen bonding leads to an additional stabilization of the structure.

  2. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Joshua P. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Kajbafvala, Amir, E-mail: amir.kajbafvala@gmail.com [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Koolivand, Amir [Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.

  3. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    International Nuclear Information System (INIS)

    Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction

  4. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The results of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.

  5. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    Science.gov (United States)

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  6. Influência da adição de carga inorgânica aos sistemas adesivos dentinários na microinfiltração marginal = Influence of inorganic filler addition to dentin bonding systemson marginal microleakage

    Directory of Open Access Journals (Sweden)

    Yoshida, Kellyn Roberta Ayumi

    2005-01-01

    Full Text Available O objetivo deste estudo foi avaliar os efeitos da adição de carga inorgânica aos adesivos dentinários sobre a microinfiltração marginal. Para tal, oitenta incisivos bovinos receberam preparos classe V na junção amelo-cementária e foram divididos em oito grupos, cada qual recebendo versões com e sem carga de diferentes sistemas adesivos, segundo as recomendações dos fabricantes. Os seguintes Grupos foram avaliados: OS – One Step (Sem Carga – SC, OSP – One Step Plus (Com Carga – CC, PB – Prime & Bond 2. 1 (SC, PBNT – Prime & Bond NT (CC, ST – Stae (SC, STM – Stae + 10% de partículas SiO2 com tamanho de 0,01 µm (CC, SB – Single Bond (SC, SBC – Single Bond 10% de partículas SiO2 com tamanho de 0,01 µm (CC. As cavidades foram restauradas com dois incrementos de Z250. Os dentes foram imersos em água destilada a 37ºC por 24 horas e submetidos a 500 ciclos térmicos (5 e 55ºC. A microinfiltração foi avaliada quantitativamente pelo método do nitrato de prata seguido pela diafanização. Os dados foram submetidos à ANOVA paramétrica a um fator e ao teste de Tukey (a = 5%, obtendo-se um valor de p = 0,00. As médias (± desvio padrão observadas para cada Grupo foram: SB: 1,07 (± 0,20a; OS: 1,25 (± 0,49ab; OSP: 1,64 (± 0,59ab; SBC: 1,69 (± 1,07ab; PBNT: 2,21 (± 0,98ab; PB: 2,60 (± 1,45bc; ST: 3,70 (± 1,29c; STC: 3,86 (± 1,11c. Os Grupos acompanhados das mesmas letras não apresentam diferenças significantes. Podemos concluir que a adição de partículas de carga não influenciou de forma significativa a microinfiltração marginal. Foram constatadas diferenças significativas entre os sistemas adesivos de diferentes marcas

  7. Enhancement of dielectric and ferroelectric properties of PbZrO3/PbTiO3 artificial superlattices

    International Nuclear Information System (INIS)

    Choi, Taekjib; Lee, Jaichan

    2005-01-01

    PbZrO 3 (PZO)/PbTiO 3 (PTO) artificial superlattices have been grown on La 0.5 Sr 0.5 CoO 3 (LSCO) (100)/MgO (100) substrate by pulsed laser deposition with various stacking periods from 1 to 100 unit cells. The PZO/PTO artificial lattice exhibited a diffraction pattern characteristic of a superlattice structure, i.e., a main diffraction peak with satellite peaks. The electrical properties of the superlattices were investigated as a function of the stacking period. The dielectric constant and remnant polarization improved on decreasing the stacking periodicity. The dielectric constant of the superlattice reached 800 at a stacking period of 1unit cell/1unit cell (PZO 1 /PTO 1 ), which is larger than that of the single PZT solid-solution film. Moreover, the remnant polarization reached a maximum, 2Pr = 38.7 μC/cm 2 , at a 2-unit-cell stacking period. Progressive enhancement of dielectric constant and remnant polarization in artificial PZO/PTO superlattice was accompanied by expansion of the (100)-plane spacing on decreasing the stacking periodicity. These results suggest that the lattice strain developed in the PZO/PTO superlattice may have influence on dielectric constant and ferroelectric behavior.

  8. On the rutile alpha-PbO"2-type phase boundary of TiO"2

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong

    1999-01-01

    The high-pressure, high-temperature phase quilibria of TiO"2 have been studied with special emphasis on the rutile and alpha-PbO"2-type phases. It is found that the phase boundary, when plotted in a pressure-temperature diagram, changes from having a negative to having a positive slope...... with increasing temperature at about 6GPa and 850^oC. For nanophase material, the phase boundary is shifted towards lower pressure. The room-temperature bulk moduli are 210(120)GPa, 258(8)GPa and 290(20)GPa for rutile, the alpha-PbO"2-type phase and the baddeleyite-type phase, respectively....

  9. Growth and Characterization of PbO Nano rods Grown using Facile Oxidation of Lead Sheet

    International Nuclear Information System (INIS)

    Yousefi, R.; Sheini, F.J.; Saaedi, A.; Cheraghizade, M.

    2015-01-01

    PbO nano rods were synthesized by oxidation of lead sheets under an oxygen ambience with different temperatures at 330, 400, 450 and 550 degree Celsius in a tube furnace. Scanning electron microscope (SEM) results showed that the nano rods started growing on the sheet that was placed at 330 degree Celsius. On the other hand, by increasing of the temperature to 550 degree Celsius more nano rods appeared on the Pb sheet, which were lied on the lead sheet. X-ray diffraction pattern (XRD) indicated that the nano rods had α-PbO structures. However, a few β-PbO phases also appeared for the nano rods. Raman measurements confirmed the XRD results and indicated two Raman active modes that belonged to α-PbO phase for the nano rods. In addition, the Raman spectrum of the nano rods showed a weak peak of the β-PbO structure. The optical properties of the products were characterized using a room temperature photoluminescence (PL) technique. The PL result indicated a band gap for the PbO nano rods in the visible region. (author)

  10. Chemical bath deposited PbS thin films on ZnO nanowires for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gertman, Ronen [Dept of Chemistry, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Osherov, Anna; Golan, Yuval [Dept of Materials Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Visoly-Fisher, Iris, E-mail: irisvf@bgu.ac.il [Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus 84990 (Israel)

    2014-01-01

    Photovoltaic devices usually exploit mid-range band-gap semiconductors which absorb in the visible range of the solar spectrum. However, much energy is lost in the IR and near-IR range. We combined the advantages of small band-gap, bulk-like PbS deposited by facile, cheap and direct chemical bath deposition (CBD), with the good electronic properties of ZnO and the large surface area of nanowires, towards low cost photovoltaic devices utilizing IR and near-IR light. Surprisingly, CBD of PbS on ZnO, and particularly on ZnO nanowires, was not studied hitherto. Therefore, the mechanism of PbS growth by chemical bath deposition on ZnO nanowires was studied in details. A visible proof is shown for a growth mechanism starting from amorphous Pb(OH){sub 2} layer, that evolved into the ‘ion-by-ion’ growth mechanism. The growth mechanism and the resulting morphology at low temperatures were controlled by the thiourea concentration. The grain size affected the magnitude of the band-gap and was controlled by the deposition temperatures. Deposition above 40 °C resulted in bulk-like PbS with an optical band-gap of 0.4 eV. Methods were demonstrated for achieving complete PbS coverage of the complex ZnO NW architecture, a crucial requirement in optoelectronic devices to prevent shorts. Measurements of photocurrents under white and near-IR (784 nm) illumination showed that despite a 200 meV barrier for electron transfer at the PbS/ZnO interface, extraction of photo-electrons from PbS to the ZnO was feasible. The ability to harvest electrons from a narrow band-gap semiconductor deposited on a large surface-area electrode can advance the field towards high efficiency, low cost IR and near-IR sensors and third generation solar cells. - Highlights: • PbS was deposited on ZnO nanowires using chemical bath deposition. • At 50 °C the growth mechanism starts from an amorphous Pb(OH){sub 2} layer. • At 5 °C the growth mechanism of PbS can be controlled by thiourea concentrations

  11. Thermodynamic optimization of the PbO-ZrO{sub 2}-TiO{sub 2} (PZT) system and its application to the processing of composites of PZT ceramics and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cancarevic, Marija

    2007-03-23

    The aim of this thesis was to obtain a consistent set of thermodynamic data for the Cu-Pb-Zr-Ti-O system, by means of the CALPHAD method, and then to calculate phase equilibria and chemical potential diagrams. The thermodynamic properties were described using the compound energy formalism (CEF) as well as the substitutional solution model for various solid phases and the associate model for the liquid phase, while the Redlich-Kister series were used to account for the interactions between species. Associate solution model adopted for the description of the liquid phase in the multicomponent Cu-Pb-Zr-Ti-O system was found to be superior for calculating the relevant phase equilibria in comparison with the twosublattice ionic model, although both models can be successfully applied to the binary systems (Zr-O, Ti-O, Cu-O, Pb-O). The ternary compound Cu{sub 2}PbO{sub 2} was modelled as a stoichiometric compound. Its thermodynamic properties were estimated by experiments. In the modelling of the ternary Cu-Ti-O system the three ternary compounds, Cu{sub 3}Ti{sub 3}O, Cu{sub 2}Ti{sub 4}O and Cu{sub 3}TiO{sub 4} were taken as stoichiometric compounds. PbTiO{sub 3} (tetragonal and cubic forms) and PbZrO{sub 3} (cubic form) were considered as stoichiometric compounds in the PbO-TiO{sub 2} and PbO-ZrO{sub 2} systems, while the tetragonal and orthorhombic PbO solid solutions were described by a substitutional model. The perovskite solid solution series, PbZr{sub x}Ti{sub 1-x}O{sub 3} was modelled as high temperature cubic form using the substitutional model. Calculated phase diagrams, i.e., predicted phase relations in the multicomponent Cu-Pb-Zr-Ti-O system (isobaric-isothermal sections and chemical potential diagrams) were checked experimentally. (orig.)

  12. Poly[aqua-μ-bromido-(μ2-5-methylpyrazine-2-carboxylato-κ4N1,O2:O2,O2′lead(II

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2012-09-01

    Full Text Available In the title coordination polymer, [PbBr(C6H5N2O2(H2O]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001; the layers are linked by O—H...N and O—H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodecahedral coordination environment for PbII.

  13. Thermal behavior of GeO{sub 2} doped PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: hnxiao@hnu.cn; Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2006-05-15

    PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass is a representative system for vacuum and electronic sealing. Effects of GeO{sub 2} on thermal properties of the glass have been investigated in this paper. Activation energy for crystallization, glass structure, the type of crystals were characterized by differential scanning calorimetry, infrared spectroscopy, X-ray diffraction and optical microscopy. Results indicate that the addition of GeO{sub 2} (0.4-2 wt.%) to PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass can suppress crystallization of the glass and decrease the sealing temperature. With the increase of GeO{sub 2} content, germanate crystals were revealed, resulting in a slight increase of sealing temperature. When the content of GeO{sub 2} is 0.7 wt.%, the glass possesses the highest stability and lowest sealing temperature (400 deg. C), which is desirable for low-temperature sealing. The coefficient of thermal expansion of PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass was measured by dilatometry. The result shows that the coefficient of thermal expansion of the glass increases with the content of GeO{sub 2}. The adjustability of the coefficient of thermal expansion would expand the applications of PbO-B{sub 2}O{sub 3}-ZnO-Bi{sub 2}O{sub 3} glass. A flexural strength of 28.3 MPa was obtained at the GeO{sub 2} content of 0.7 wt.%, showing good mechanical property for sealing process.

  14. Effect of deposition temperature of TiO2 on the piezoelectric property of PbTiO3 film grown by PbO gas phase reaction sputtering

    International Nuclear Information System (INIS)

    Kim, Jiyoon; Kim, Yunseok; Park, Moonkyu; No, Kwangsoo; Hong, Seungbum; Buehlmann, Simon; Kim, Yong Kwan

    2010-01-01

    A 17 nm thick PbTiO 3 (PTO) films were fabricated via PbO gas phase reaction with TiO 2 starting layer in a sputtering chamber. The influence of deposition temperature of TiO 2 on the piezoelectric properties of PTO thin films was investigated. The remnant piezoresponse of PTO films nonlinearly increased as a function of TiO 2 deposition temperature, which is correlated with the increase in average grain diameter of PTO film. As grain size increases, the restriction on remnant piezoresponse imposed by the grain boundary via coupling between local strain and polarization becomes less pronounced, which results in the increase in remnant piezoresponse. Furthermore, we found that the vertical shift in piezoresponse hysteresis loops is closely related to the residual stress state. A strong correlation between the negative vertical shift and the residual tensile stress reveals that residual stress on the resulting PTO film contributed to the asymmetric piezoelectric property.

  15. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  16. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol

    International Nuclear Information System (INIS)

    Duan, Xiaoyue; Zhao, Cuimei; Liu, Wei; Zhao, Xuesong; Chang, Limin

    2017-01-01

    Highlights: • A novel PbO 2 electrode with a GNS interlayer (GSN-PbO 2 ) was prepared. • The GNS interlayer reduced grain size of β-PbO 2 crystals. • The GNS interlayer enhanced electrochemical activity of PbO 2 electrode. • The lifetime of GSN-PbO 2 electrode was 1.93 times that of PbO 2 electrode. • An electrochemical mineralization mechanism of 2-chlorophenol was proposed. - Abstract: A novel PbO 2 electrode with a graphene nanosheet interlayer (marked as GNS-PbO 2 ) was prepared combining electrophoretic deposition and electro-deposition technologies. The micro morphology, crystal structure and surface chemical states of GNS-PbO 2 electrodes were characterized using scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their electrochemical properties and stability were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ·OH radicals test and accelerated life test, and compared with traditional PbO 2 electrodes. Besides, their potential application in the electrochemical degradation of 2-chlorophenol (2-CP) was investigated. The GNS-PbO 2 electrode possessed perfect octahedral β-PbO 2 microcrystals, and its grain size was much smaller than that of traditional PbO 2 electrode. It exhibited higher electrochemical activity than traditional PbO 2 electrode due to its larger electrochemical active surface area and stronger ·OH radicals generation ability. The service lifetime of GNS-PbO 2 electrode (107.9 h) was 1.93 times longer than that of traditional PbO 2 electrode (55.9 h). The electrochemical degradation rate constant of 2-CP on GNS-PbO 2 electrode (k app = 2.75 × 10 −2 min −1 ) is much higher than for PbO 2 electrode (k app = 1.76 × 10 −2 min −1 ). 2-CP oxidation yielded intermediates including aromatic compounds (catechol, phenol and ortho-benzoquinone) and organic acids (oxalic acid, maleic acid and

  17. catena-Poly[[aquabis[N-(pyridin-3-ylisonicotinamide-κN1]copper(II]-μ-fumarato-κ2O1:O4

    Directory of Open Access Journals (Sweden)

    Sultan H. Qiblawi

    2012-12-01

    Full Text Available In the title compound, [Cu(C4H2O4(C11H9N3O2(H2O]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumarate(3-pina2(H2O]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100 by O—H...O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H...O(=C hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H...N and C—H...O hydrogen bonds, affording a three-dimensional network.

  18. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    Science.gov (United States)

    Kamruzzaman, M.; Zapien, J. A.

    2017-04-01

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core-shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J sc = 20.60 mA/cm2, V oc = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  19. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kamruzzaman, M, E-mail: kzaman.phy11@gmail.com; Zapien, J A, E-mail: apjazs@cityu.edu.hk [City University of Hong Kong, Department of Physics and Materials Science and Center Of Super-Diamond and Advanced Films (COSDAF) (China)

    2017-04-15

    The capture of solar energy has gained the attention for the next generation solar cell. ZnO/ZnSe NW arrays were synthesized on an FTO glass substrate using a simple and facile hydrothermal and ion-exchange approaches. The lead sulfide (PbS) QDs was infiltrated into ZnO/ZnSe NWs via SILAR method for making inorganic quantum dot sensitized ZnO/ZnSe/PbS QDs solar cell. The surface morphology, structural, optical, and J-V characteristics have been investigated. The ZnO/ZnSe NW is a core–shell like structure, and the absorption edge shifted from the UV region (ZnO NWs) to the near infrared region for ZnO/ZnSe NWs/PbS QDs. For PbS QDs-sensitized solar cell, the obtained value of η = 1.1%, J{sub sc} = 20.60 mA/cm{sup 2}, V{sub oc} = 155 mV, and FF = 34.7%, respectively. The photovoltaic performance of the device in this study is still inferior. However, it is the first report regarding to ZnO/ZnZe NWs/PbS QDs solar cell. The achieving high absorption and large short circuit current density may interest in further improvement of the device performance by suppressing surface defects, optimizing the quality of ZnO/ZnSe NWs and PbS QDs.

  20. Preparation and characterization of a PbO protective glass; Elaboration et caracterisation d un verre protecteur a base de PbO

    Energy Technology Data Exchange (ETDEWEB)

    Ayadi, Azzedine; Stiti, Nacera; Benaissa, Abdelazeze [Laboratoire des materiaux mineraux et composites, Faculte des sciences de l ingenieur - Universite de Boumerdes - 35000 Boumerdes - (Algeria); Palou, Martin [Departement ceramique et verre, Faculte de chimie, Universite de Bratislava - (Slovakia)

    2006-07-01

    The study of the binary system of lead silicate glass PbO-SiO{sub 2}, and particularly the glasses having more than 80% of PbO and no alkaline oxides allows to answer to some preoccupations and requirements towards these glasses, in particular their transparencies and their attenuation power, on account of the high values of the refractive index and the density of these glasses. Radiation protection is a field which concerns all the countries of the world including Algeria; this country is then concerned by the import of this product used in hospitals for instance. On account of the importance of this glass and of its wide application domain, it is interesting to study it in order to be able to manufacture it in Algeria and to improve its properties. The aim of this work is then to prepare different lead silicate glasses allowing a maximal absorption of the ionizing radiations. (O.M.)

  1. Effects of Bi(Zn2/3Nb1/3)O3 Modification on the Relaxor Behavior and Piezoelectricity of Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics.

    Science.gov (United States)

    Liu, Zenghui; Wu, Hua; Paterson, Alisa; Ren, Wei; Ye, Zuo-Guang

    2017-10-01

    Relaxor lead magnesium niobate (PMN)-based materials exhibit complex structures and unusual properties that have been puzzling researchers for decades. In this paper, a new ternary solid solution of Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 -Bi(Zn 2/3 Nb 1/3 )O 3 (PMN-PT-BZN) is prepared in the form of ceramics, and the effects of the incorporation of BZN into the PMN-PT binary system are investigated. The crystal structure favors a pseudocubic symmetry and the relaxor properties are enhanced as the concentration of BZN increases. The relaxor behavior and the related phase transformations are studied by dielectric spectroscopy. A phase diagram mapping out the characteristic temperatures and various states is established. Interestingly, the piezoelectricity of the PMN-PT ceramics is significantly enhanced by the BZN substitution, with an optimal value of d 33 reaching 826 pC/N for 0.96[0.7Pb(Mg 1/3 Nb 2/3 )O 3 -0.3PbTiO 3 ]-0.04Bi(Zn 2/3 Nb 1/3 )O 3 . This paper provides a better understanding of the relaxor ferroelectric behavior, and unveils a new relaxor-based ternary system as piezoelectric materials potentially useful for electromechanical transducer applications.

  2. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  3. XPS-and-DFT analyses of the Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University,Mira Street 19, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Zatsepin, A.F. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Cui, L. [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Shur, V. Ya.; Esin, A.A. [Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, 620000 Yekaterinburg (Russian Federation)

    2017-05-31

    Highlights: • Two modes of ZnO:Pb in the bulk and surface morphologies were established: the high- and low-interaction. • It was shown the ambiguity contribution of Pb 4f − Zn 3s and Pb 5d − O 2s states into final electronic structure. • The main type of defects is PbO-like with some PbO{sub 2}-like contributions. • An applied wurzite-like structural model well agrees with experimental data obtained for zincite. - Abstract: The electronic structures of zincite Pb-modulated bulk and thin-films were studied via X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) techniques. Both XPS data and DFT-calculations allowed the derivation of two different Pb-embedding scenarios into the ZnO-hosts. These included the high-interaction mode of Pb-impurity with initial zinc-oxygen host-lattice for the bulk morphology, accompanied with low Pb-metal losses; and the low-interaction mode for thin-films, where there was intake of Pb-impurities into the hollows of the surface. Despite dissimilar mechanisms of Pb-impurity accumulation and distribution in the bulk and thin-films zincite host-matrices, the strong Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contribution to the appropriate core-level structure and valence bands was established by XPS analysis and reproduced with the help of DFT-calculations. It was shown that the microscopic structure of the embedded lead-impurity played a crucial role in the Pb ion-beam stimulated synthesis of secondary lead-oxygen phases via large-area defect fabrication, and the difference among zincite and wurzite polymorphs played almost no role in this case.

  4. Outer Sphere Adsorption of Pb(II)EDTA on Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Bargar, John R

    1999-07-16

    FTIR and EXAFS spectroscopic measurements were performed on Pb(II)EDTA adsorbed on goethite as functions of pH (4-6), Pb(II)EDTA concentration (0.11 {micro}M - 72 {micro}M), and ionic strength (16 {micro}M - 0.5M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA{sup 2{minus}}. Since substantial uptake of PbEDTA(II){sup 2{minus}} occurred in the samples, we infer that Pb(II)EDTA{sup 2{minus}} adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term ''hydration-sphere'' for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups, and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The similarity of Pb(II) uptake isotherms to those of other divalent metal ions complexed by EDTA suggests that they too adsorb by these mechanisms. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal-ligand - promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.

  5. Photoluminescence in Pb{sup 2+} activated SrB{sub 4}O{sub 7} and SrB{sub 2}O{sub 4} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gawande, A.B., E-mail: gawandeab@gmail.com [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India); Ingle, J.T. [J. D. Institute of Engineering and Technology, Yavatmal, Maharashtra (India); Sonekar, R.P., E-mail: sonekar_rp@yahoo.com [Department of Physics, G.S. College, Khamgaon District, Buldhana, Maharashtra (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati-444602, Maharashtra (India)

    2014-05-01

    The powder samples of SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were prepared by solution combustion synthesis method. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The synthesized materials were characterized using TG–DTA, powder XRD, SEM and the photoluminescence properties were studied using a Hitachi F-7000 spectrophotometer at room temperature. Both the samples SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} show broad emission of Pb{sup 2+} respectively at 307 nm and 360 nm (corresponds to {sup 3}P{sub 1} to {sup 1}S{sub 0} transition). The optimum concentrations of Pb{sup 2+} in both the phosphors SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} were found to be 3 mol% (relative to Sr) and for this concentration the critical transfer distance R{sub 0} were calculated to be 10.21 Å and 12.22 Å respectively. The Stokes shifts were calculated to be respectively 4464 cm{sup −1} and 8454 cm{sup −1}. The emission bands of both the phosphors are in the UV region and the phosphors can be potential candidates for application in UV lamps. - Highlights: • SrB{sub 4}O{sub 7}:Pb{sup 2+} and SrB{sub 2}O{sub 4}:Pb{sup 2+} have been synthesized by Novel solution combustion synthesis technique. • The synthesized materials were characterized using TG–DTA, powder XRD and SEM. • Photoluminescence spectra of synthesized materials showed the characteristic transition in Pb{sup 2+}. • Stokes shift, optimum concentration and critical transfer distance R{sub 0} were determined.

  6. Study of SrBi4Ti4O15 (SBTi) dielectric properties of doped PbO

    International Nuclear Information System (INIS)

    Rodrigues Junior, C.A.; Silva Filho, J.M.; Freitas, D.B.; Oliveira, R.G.M.; Sombra, B.; Sales, J.C.

    2012-01-01

    The ceramic SrBi 4 Ti 4 O 15 (SBTI), cation-deficient perovskite A 5 B 4 O 15 , was prepared by the method of solid state reaction and then doped with PbO (in the range 2-10% by weight). The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy at room temperature. The X-ray analysis was performed by the Rietveld refinement. The micrographs of the samples show globular-shaped grains (doped PbO). The dielectric properties: dielectric constant (Κ' or έ) and dielectric loss tangent (tan δ), were measured at room temperature in the frequency range 100 Hz - 1 MHz dielectric properties of these 1 MHz sample doped with 10 % PbO showed the dielectric constant Κ'= 168.34 and dielectric loss tangent tanδ, = 7,1.10 -2 . These results show a good possibility of miniaturization of electronic devices such as capacitors. (author)

  7. Growth and characterization of Pb(Lu{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} ternary piezo-/ferroelectric crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117 (China); He, Chao [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Yang, Xiaoming [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117 (China); Li, Xiuzhi; Wang, Zujian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Zhigao; Lai, Fachun [College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117 (China); Long, Xifa, E-mail: lxf@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-08-05

    Piezo-/ferroelectric crystals of Pb(Lu{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} ternary solid solution system with high Curie temperature, in the vicinity of morphotropic phase boundary (MPB) region, are grown by the top-seeded solution growth (TSSG) method for the first time. The compositions and structures of the crystals are analyzed, all the structures are found to have pure perovskite structure using X-ray diffraction analysis. Di-/piezo-/ferroelectric properties of the crystals are also characterized systematically. The Curie temperature T{sub c} and coercive field E{sub c}, increase gradually with increasing PbTiO{sub 3} content. In particular, the crystal with composition 0.34PLN-0.31PMN-0.35PT possesses excellent electric properties including the Curie temperature, the rhombohedral–tetragonal phase transition temperature, the piezoelectric coefficient, the remnant polarization and the coercive field, which are T{sub c} = 228 °C, T{sub RT} = 156 °C, d{sub 33} = 2092 pC N{sup −1}, Pr = 35.5 μC cm{sup −2} and E{sub c} = 8.1 kV cm{sup −1}, respectively, making it a promising material for transducers or detectors in a wide temperature range. - Highlights: • PLN-PMN-PT Piezo-/ferroelectric crystals are grown by TSSG method. • The Curie temperature and coercive field increase gradually with increasing PT. • The crystal of 0.34PLN-0.31PMN-0.35PT possesses excellent electric properties.

  8. Enhanced photoelectrochemical performance of PbS sensitized Sb–SnO{sub 2}/TiO{sub 2} nanotube arrays electrode under visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jia; Tang, Chengli [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Hao, E-mail: xuhao@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Wei, E-mail: yanwei@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-06-05

    Highlights: • Sb–SnO{sub 2} is used to modify TiO{sub 2} NTAs by microwave method. • PbS is employed to sensitive Sb–SnO{sub 2}/TiO{sub 2} NTAs by S-SILAR method. • Sb–SnO{sub 2} improves electrons transfer and PbS enhances visible light absorption. • The composite electrode shows enhanced photoelectrochemical properties. • The composite electrode exhibits high hydrogen evolution and high QE. - Abstract: The novel PbS sensitized Sb–SnO{sub 2}/TiO{sub 2} nanotube arrays (NTAs) composite electrode (PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs) was fabricated by microwave combined with sonication-assisted successive ionic layer adsorption and reaction technique (S-SILAR). The obtained electrodes were characterized by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–Vis diffuse reflectance absorption spectra techniques. Enhanced photocurrent (15.52 mA/cm{sup 2}) of the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode was observed and can be attributed to the facile photo-generated electrons transfer and enhanced charge separation efficiency. Furthermore, the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs composite electrode shows a higher H{sub 2} production rate than the Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode and PbS/TiO{sub 2} NTAs electrode. The results indicate that the PbS/Sb–SnO{sub 2}/TiO{sub 2} NTAs electrode is a promising photoanode in visible photocatalytic water splitting.

  9. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; SHEN Ming-Rong; CAO Wen-Wu

    2012-01-01

    Pyroelectric measurements are conducted during zero-Geld heating in [001], [110] and [111] poled 0.69Pb(Mg1/3 Nb2/3)O3-0.31PbTiO3 single crystals. Compared to the room-temperature-poled samples, the crystals poled by using the Rield cooling method show broad but well recognizable pyroelectric current peaks near 190℃, which is much higher than the Curie point (126℃) of the crystal. We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.%Pyroelectric measurements are conducted during zero-field heating in [001],[110] and [111] poled 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystals.Compared to the room-temperature-poled samples,the crystals poled by using the field cooling method show broad but well recognizable pyroelectric current peaks near 190℃,which is much higher than the Curie point (126℃) of the crystal.We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.

  10. Tuning structure in epitaxial Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} thin films by using miscut substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mietschke, M., E-mail: m.mietschke@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Oswald, S.; Fähler, S. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schultz, L. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Hühne, R. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-08-31

    Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (PMN–PT) is one of the most promising ferroelectric material for actuator, dielectric and electrocaloric applications. However, oriented and phase pure thin films are essential to use the outstanding properties of these compounds. In this work it is demonstrated that the use of miscut substrates influences the growth mechanism leading to a significantly broader deposition window to achieve the required film quality. Therefore, epitaxial 0.68Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.32PbTiO{sub 3} films were grown by pulsed laser deposition on (001)-oriented single crystalline SrTiO{sub 3} (STO) substrates with a miscut angle between 0 and 15° towards the [100] direction using a conducting La{sub 0.7}Sr{sub 0.3}CoO{sub 3} buffer layer. The influence of the vicinal angle on the PMN–PT structure was studied by high resolution X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. A nearly pure perovskite phase growth with a cube-on-cube epitaxial relationship was obtained on all miscut STO substrates, whereas a significant volume fraction of the pyrochlore phase was present on the standard substrate. Reciprocal space measurements revealed a peak split of the perovskite reflections indicating structural variants of PMN–PT with different c/a ratios. An additional tilting of the PMN–PT planes with respect to the buffer layer was observed on some samples, which might be explained with the incorporation of dislocations according to the Nagai model. Polarization loops were measured in a temperature range between room temperature and 150 °C showing a sharp drop of the remanent polarization above 65 °C on vicinal substrates. - Highlights: • Epitaxial growth of pure perovskite Pb (Mg{sub 1}/{sub 3}Nb{sub 2}/{sub 3})O{sub 3}–PbTiO{sub 3} on miscut SrTiO{sub 3}. • Significant broadening of the deposition window for pyrochlore-free films. • Dependence of the structural parameters

  11. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3

    International Nuclear Information System (INIS)

    Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong

    2012-01-01

    The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO 3 (PP-PTO) and is constructed with TiO 6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are −0.5 GPa and −1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite. (condensed matter: structural, mechanical, and thermal properties)

  12. Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution

    Science.gov (United States)

    Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun

    2018-05-01

    The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.

  13. The lateral In2O3 nanowires and pyramid networks manipulation by controlled substrate surface energy in annealing evolution

    Science.gov (United States)

    Shariati, Mohsen; Darjani, Mojtaba

    2016-02-01

    The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.

  14. In-situ observation of domain wall motion in Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dabin; Cai, Changlong [Laboratory of Thin Film Techniques and Optical Test, Xi' an Technological University, Xi' an 710032 (China); Li, Zhenrong, E-mail: zhrli@mail.xjtu.edu.cn; Li, Fei; Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Education Ministry and International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shujun, E-mail: soz1@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Cheng, Yaojin [Science and Technology on Low-Light-Level Night Vision Laboratory, Xi' an 710065 (China)

    2014-07-21

    Various domain structures, including wave-like domains, mixed needle-like and laminar domains, typical embedded 90° and 180° domains, have been observed in unpoled rhombohedral, monoclinic, and tetragonal Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} (PIN-PMN-PT) crystals by polarizing light microscope; while in poled tetragonal crystals, the parallel 180° domains were reversed and only vertical 90° domain walls were observed. For 0.24PIN-0.42PMN-0.34PT crystals with morphotropic phase boundary composition, the domain wall motion was in-situ observed as a function of applied electric field along crystallographic [100] direction. With increasing the electric field from 0 to 12 kV/cm, the rhombohedral (R) domains were found to change to monoclinic (M) domains and then to tetragonal (T) domains. The electric field-induced phase transition was also confirmed by X-ray diffraction and the temperature-dependent dielectric behavior.

  15. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode

    International Nuclear Information System (INIS)

    Zhao, Jun; Zhu, Chengzhu; Lu, Jun; Hu, Caiju; Peng, Shuchuan; Chen, Tianhu

    2014-01-01

    Graphical abstract: - Highlights: • Co 3 O 4 /β-PbO 2 electrode was prepared and an excellent electrocatalytic property. • Co 3 O 4 /β-PbO 2 electrode had good corrosion resistance characterization and lifetime. • BPA electrocatalytic degradation followed pseudo-first-order reaction process. - Abstract: Ti-base Co 3 O 4 /β-PbO 2 composite electrodes were prepared using electro-deposition and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry and the accelerated life testing, it indicated that the self-made electrode had high activity in electrolysis as well as excellent corrosion resistance and excellent catalytic performance. The results showed that the removal efficiency of COD Cr could be reached up to 92.2% after 1.5 h electrolysis at NaCl concentration of 0.020 mol·L −1 , bisphenol A initial concentration of 20 mg·L −1 , applied voltage of 20 V, electrode spacing of 7 cm and electrolyte pH of 5. The reaction mechanism and kinetics of Co 3 O 4 /β-PbO 2 /Ti composite electrodes electro-catalytic degradation bisphenol A mainly caused by the OH radical attacking parent molecules and the degradation followed pseudo-first-order kinetics

  16. Thermoluminescence of pyramid stones

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Eid, A.M.

    1982-01-01

    It is the aim of the present study to investigate some thermoluminescence properties of pyramid stones. Using a few grammes of pyramid stones from Pyramids I and II, the TL glow peaks were observed at 250 and 310 0 C, respectively. The TL glow peaks of samples annealed at 600 0 C, then exposed to 60 Co γ-rays were observed at 120, 190 and 310 0 C, respectively. The accumulated dose of natural samples is estimated to be around 310 Gray (31 krad). By assuming an annual dose is 1 mGy, the estimated age of pyramid stones is 0.31 M year. (author)

  17. Thermoluminescence of pyramid stones

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A; Eid, A M [Atomic Energy Establishment, Cairo (Egypt)

    1982-01-01

    It is the aim of the present study to investigate some thermoluminescence properties of pyramid stones. Using a few grammes of pyramid stones from Pyramids I and II, the TL glow peaks were observed at 250 and 310/sup 0/C, respectively. The TL glow peaks of samples annealed at 600/sup 0/C, then exposed to /sup 60/Co ..gamma..-rays were observed at 120, 190 and 310/sup 0/C, respectively. The accumulated dose of natural samples is estimated to be around 310 Gray (31 krad). By assuming an annual dose is 1 mGy, the estimated age of pyramid stones is 0.31 M year.

  18. Investigation of Gamma and Neutron Shielding Parameters for Borate Glasses Containing NiO and PbO

    OpenAIRE

    Singh, Vishwanath P.; Badiger, N. M.

    2014-01-01

    The mass attenuation coefficients, μ/ρ, half-value layer, HVL, tenth-value layer, TVL, effective atomic numbers, ZPIeff, and effective electron densities, Ne,eff, of borate glass sample systems of (100-x-y) Na2B4O7 : xPbO : yNiO (where x and y=0, 2, 4, 6, 8, and 10 weight percentage) containing PbO and NiO, with potential gamma ray and neutron shielding applications, have been investigated. The gamma ray interaction parameters, μ/ρ, HVL, TVL, ZPIeff, and Ne,eff, were computed for photon energ...

  19. Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate

    International Nuclear Information System (INIS)

    Li Shengying; Yang Wu; Chen Miao; Gao Jinzhang; Kang Jingwan; Youli, Q.

    2005-01-01

    Nanosized lead oxide particles were prepared by thermal decomposition of lead hydroxycarbonate synthesized under microwave irradiation. Urea and lead nitrate were used as the starting materials. Microstructure and morphology of the products were investigated by means of XRD, AFM, TEM, and IR absorption spectra. The results indicated that well crystallized, finely dispersed and spherical α-PbO nanoparticles with a size of ca. 30 nm were obtained. Meanwhile, an orthogonal phase β-PbO with a size of ca. 38 nm was also obtained when the calcinations temperature was up to 600 deg. C. In addition, a Pb(II)-selective electrode based on cellulose acetate was prepared using nanosized α-PbO powders synthesized. The electrode exhibited a Nernstian slope of 29±1 mV per decade in a linear range of 2.5x10 -5 mol L -1 to 1.0x10 -1 mol L -1 for Pb 2+ ion. The detection limit of this electrode is down to 8.0x10 -6 mol L -1 . This sensor has a short response time of about 10 s and could be used in a pH range of 2.0-8.0. High selectivity was obtained over a wide variety of metal ions

  20. Structure and bonding in compounds containing the NpO2+ and NpO22+ ions

    International Nuclear Information System (INIS)

    Musikas, C.; Burns, J.H.

    1975-01-01

    Studies of oxo cations of Np(V) and Np(VI) were made on single crystals using X-ray diffraction and spectroscopic methods. Quantitative measurements of the geometry of the triatomic ion and its uranyl(VI) analog made it possible to assess the effects on bond lengths of the nature of equatorial secondary bonds, the change in valence from V to VI, and the actinide contraction. Absorption spectra showed marked changes in the solid state compared to the same ion in solution, especially anisotropy with crystal orientation (dichroism). The compounds analyzed were Na 4 NpO 2 (O 2 ) 3 .9H 2 O, Na 4 UO 2 (O 2 ) 3 .9H 2 O, K 4 NpO 2 (CO 3 ) 3 , and BaNpO 2 (H 3 C 2 O 2 ).2H 2 O. All actinyl ions were found to be linear. The largest difference in M=O bond lengths is between 1.776 in the compound having the relatively weak secondary linkage to carbonate, and 1.843 A in which the peroxide forms much stronger covalent bonds. Between compounds identical except for change of U to Np the M=O bond length contracts by only about 0.01 A. However an elongation of about 0.11A is observed when neptunium(VI) is reduced to neptunium(V) without change in the equatorial ligand. (U.S.)

  1. Local and average structures of 0.7Pb(Mg1/3Nb2/3)O3 - 0.3PbZrO3

    International Nuclear Information System (INIS)

    Krishna, P.S.R.; Shinde, A.B.; Narasimhan, S.L.; Tiwari, V.S.; Singh, G.

    2005-01-01

    The local and average structure of 0.7Pb(Mg 1/3 Nb 2/3 )O 3 - 0.3PbZrO 3 (PMN-PZ) was studied by neutron diffraction. The Rietveld refinement was carried out to determine the average, long-range crystallographic structure, while the pair density function (PDF) analysis was used in studying the local atomic structure. The local atomic structure determined by the PDF analysis, was found to be significantly different from the average crystallographic structure determined by the Rietveld analysis. These results show that the conflict between the local structural preference and the average structure is not limited to relax or ferroelectric oxides, but may be widely prevalent in mixed-ion ferroelectrics. (author)

  2. Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO)

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A.A., E-mail: aaadarwish@gmail.com [Department of Physics, Faculty of Education at Al-Mahweet, Sana’a University, Al-Mahwit (Yemen); Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); El-Zaidia, E.F.M.; El-Nahass, M.M. [Department of Physics, Faculty of Education, Ain Shams University, Rorxy, Cairo 11757 (Egypt); Hanafy, T.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia); Department of Physics, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt); Al-Zubaidi, A.A. [Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Tabuk (Saudi Arabia)

    2014-03-15

    Highlights: • The AC measurements of PbO were measured at temperature range 313–523 K. • The dielectric constants increased with temperature. • The mechanism responsible for AC conduction is electronic hopping. -- Abstract: The dielectric properties, the impedance spectroscopy and AC conductivity of bulk PbO have been investigated as a function of frequency and temperature. The measurements were carried out in the frequency range from 40 to 5 × 10{sup 6} Hz and in temperature range from 313 to 523 K. The frequency response of dielectric constant, ε{sub 1}, and dielectric loss index, ε{sub 2}, as a function of temperature were studied. The values of ε{sub 1} and ε{sub 2} were found to decrease with the increase in frequency. However, they increase with the increase in temperature. The presence of a single arc in the complex modulus spectrum at different temperatures confirms the single-phase character of the PbO. The AC conductivity exhibited a universal dynamic response: σ{sub AC} = Aω{sup s}. The AC conductivity was also found to increase with increasing temperature and frequency. The correlation barrier hopping (CBH) model was found to apply to the AC conductivity data. The calculated values of s were decreased with temperature. This behavior reveals that the conduction mechanism for PbO samples is CBH. The activation energy for AC conductivity decreases with increasing frequency. This confirms that the hopping conduction to the dominant mechanism for PbO samples.

  3. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  4. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    Science.gov (United States)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  5. Characterization of highly (110)- and (111)-oriented Pb(Zr,Ti)O3 films on BaPbO3 electrode using Ru conducting barrier

    International Nuclear Information System (INIS)

    Liang, C.-S.; Wu, J.-M.

    2005-01-01

    Highly non-(001)-oriented Pb(Zr,Ti)O 3 (PZT) films have been fabricated by rf-magnetron sputtering. The preferential (110)-oriented BaPbO 3 (BPO) deposited on Ru buffer layer induces the growth of (110)-oriented PZT film. With the aid of self-organized growth of PZT, the orientation of the film deposited on random-oriented BPO/Pt(111)/Ru(002) is (111)-preferred. The insertion of Pt layer between BPO and Ru changes the orientation of PZT from (110) to (111) and prevents the oxygen diffusion. These non-(001)-oriented PZT films possess more superior ferroelectric, fatigue, and retention properties than those of (001)-oriented PZT films

  6. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...

  7. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  8. Pb(Zr,Ti)O3-Pb(Mn1/3Nb2/3)O3 piezoelectric thick films by aerosol deposition

    International Nuclear Information System (INIS)

    Ryu, Jungho; Choi, Jong-Jin; Hahn, Byung-Dong; Yoon, Woon-Ha; Lee, Byoung-Kuk; Choi, Joon Hwan; Park, Dong-Soo

    2010-01-01

    Piezoelectric thick films of Pb(Zr,Ti)O 3 -Pb(Mn 1/3 Nb 2/3 )O 3 (PZT-PMnN) with Zr:Ti ratios ranging from 0.45:0.55 to 0.60:0.40 were fabricated on a platinized silicon wafer by aerosol deposition (AD). All the films were deposited with a thickness of 10 μm with high density. By adding PMnN to 57:43 PZT, a dielectric constant as low as ∼660 was achieved while the effective piezoelectric constant was over 140 pC/N. PZT-PMnN with a Zr:Ti ratio of 57:43 thus showed a maximum piezoelectric voltage constant (g 33 ) of 23.8 x 10 -3 Vm/N and is a good candidate for high quality thick films for application to high-energy density or high sensitivity, piezoelectric energy harvesters and sensors.

  9. Preparation and Characteristics of Ultrasonic Transducers for High Temperature Using PbNb2O6

    Science.gov (United States)

    Soejima, Junichiro; Sato, Kokichi; Nagata, Kunihiro

    2000-05-01

    The substance PZT(Pb(Zr, Ti)O3) is chiefly used for piezoceramic transducers in many ultrasonic flow meters. It is difficult to use PZT transducers for flow meters for automobile exhaust gas at high temperatures over 350°C. Lead niobate (PbNb2O6) has a high Curie temperature of 540°C and a low mechanical quality factor, and is the most suitable as the sensor element in flow meters for automobile exhaust gas. However, it is difficult to fabricate dense PbNb2O6 ceramics that have good piezoelectric properties. In this study, ceramics with high density and a high piezoelectric effect were fabricated by adding various elements such as Mn and Ca to PbNb2O6 and by examining the sintering process. A Langevin transducer with a resonance frequency of 80 kHz was made for measuring automobile exhaust gas flow using PbNb2O6 ceramics.

  10. Preparation, structural, dielectric and magnetic properties of LaFeO3–PbTiO3 solid solutions

    International Nuclear Information System (INIS)

    Ivanov, S.A.; Tellgren, R.; Porcher, F.; Ericsson, T.; Mosunov, A.; Beran, P.; Korchagina, S.K.; Kumar, P. Anil; Mathieu, R.; Nordblad, P.

    2012-01-01

    Highlights: ► Solid-solutions of (1−x)LaFeO 3 –(x)PbTiO 3 were synthesized by solid-state reaction. ► XRPD and NPD evidence orthorhombic (x 0.8) crystal structures. ► LaFeO 3 -rich compositions order antiferromagnetically (x 3 -rich compositions exhibit ferroelectric order (x larger than 0.8). ► Magnetic and dielectric (relaxor) ordering coexist near room-temperature around x = 0.4. -- Abstract: Solid solutions of (1−x)LaFeO 3 –(x)PbTiO 3 (0 3+ cations in the B-site with propagation vector k = (0,0,0). Based on the obtained experimental data, a combined structural and magnetic phase diagram has been constructed. The factors governing the structural, dielectric and magnetic properties of (1−x)LaFeO 3 –(x)PbTiO 3 solid solutions are discussed, as well as their possible multiferroicity.

  11. A study of PbTiO sub 3 crystallization in pure and composite nanopowders prepared by the sol-gel technique

    CERN Document Server

    Cernansky, M; Kral, K; Krupkova, R

    2002-01-01

    In this investigation the crystallization of PbTiO sub 3 upon annealing of pure nanopowders and PbTiO sub 3 -SiO sub 2 (1:1 v/v) nanocomposite powders prepared by the sol-gel technique was studied. Using x-ray diffraction phase analysis, the start of PbTiO sub 3 crystallization in pure PbTiO sub 3 powders was detected at 400 sup o C. Distinct crystallization of PbTiO sub 3 in PbTiO sub 3 -SiO sub 2 nanocomposites starts at 700 sup o C, whereas SiO sub 2 remains amorphous. There are indications that an interface interaction between the PbTiO sub 3 and the SiO sub 2 phase plays an important role in hindering the crystallization of PbTiO sub 3. The particle size (size of coherently scattering regions) was estimated from the broadening of the x-ray diffraction line profiles. The average size of PbTiO sub 3 nanocrystallites increases with temperature and time of annealing, the influence of temperature being more significant than that of the annealing time. Differential scanning calorimetry confirmed the results of...

  12. [Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

    Science.gov (United States)

    Charkin, Dmitri O.; Plokhikh, Igor V.; Zadoya, Anastasiya I.; Kazakov, Sergey M.; Zaloga, Alexander N.; Kozin, Michael S.; Depmeier, Wulf; Siidra, Oleg I.

    2018-01-01

    Co-precipitation of PbF2 and PbSeO4 in weakly acidic media results in the formation of [Pb2F2](SeO4), the selenate analogue of the naturally occurring mineral grandreefite, [Pb2F2](SO4). The new compound is monoclinic, C2/ c, a = 14.0784(2) Å, b = 4.6267(1) Å, c = 8.8628(1) Å, β = 108.98(1)°, V = 545.93(1) Å3. Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 °C, after which it gradually converts into a single phase with composition [Pb2O](SeO4), space group C2/ m, and lattice parameters a = 14.0332(1) Å, b = 5.7532(1) Å, c = 7.2113(1) Å, β = 115.07(1)°, V = 527.37(1) Å3. It is the selenate analogue of lanarkite, [Pb2O](SO4), and phoenicochroite, [Pb2O](CrO4), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb2F2SeO4 + H2O (vapor) → Pb2OSeO4 + 2HF↑. This relatively low-temperature process involves complete rearrangement of the crystal structure—from a 2D architecture featuring slabs [Pb2F2]2+ formed by fluorine-centered tetrahedra into a structure characterized by 1D motifs based on [OPb2]2+ chains of oxocentered tetrahedra. The comparative crystal chemistry of the obtained anion-centered structural architectures is discussed.

  13. Impact of SiO2 on Al–Al thermocompression wafer bonding

    International Nuclear Information System (INIS)

    Malik, Nishant; Finstad, Terje G; Schjølberg-Henriksen, Kari; Poppe, Erik U; Taklo, Maaike M V

    2015-01-01

    Al–Al thermocompression bonding suitable for wafer level sealing of MEMS devices has been investigated. This paper presents a comparison of thermocompression bonding of Al films deposited on Si with and without a thermal oxide (SiO 2 film). Laminates of diameter 150 mm containing device sealing frames of width 200 µm were realized. The wafers were bonded by applying a bond force of 36 or 60 kN at bonding temperatures ranging from 300–550 °C for bonding times of 15, 30 or 60 min. The effects of these process variations on the quality of the bonded laminates have been studied. The bond quality was estimated by measurements of dicing yield, tensile strength, amount of cohesive fracture in Si and interfacial characterization. The mean bond strength of the tested structures ranged from 18–61 MPa. The laminates with an SiO 2 film had higher dicing yield and bond strength than the laminates without SiO 2 for a 400 °C bonding temperature. The bond strength increased with increasing bonding temperature and bond force. The laminates bonded for 30 and 60 min at 400 °C and 60 kN had similar bond strength and amount of cohesive fracture in the bulk silicon, while the laminates bonded for 15 min had significantly lower bond strength and amount of cohesive fracture in the bulk silicon. (paper)

  14. Growth of large PbTiO[sub 3] crystals by a self-flux technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, B.N. (Dept. of Materials Science and Engineering, Materials Research Lab., and Beckman Inst., Univ. of Illinois, Urbana-Champaign (United States)); Huang, Y. (Dept. of Materials Science and Engineering, Materials Research Lab., and Beckman Inst., Univ. of Illinois, Urbana-Champaign (United States)); Payne, D.A. (Dept. of Materials Science and Engineering, Materials Research Lab., and Beckman Inst., Univ. of Illinois, Urbana-Champaign (United States))

    1993-03-01

    Pure lead titanate (PbTiO[sub 3]) crystals (5x5x5 mm[sup 3]) were grown from high-temperature solutions by a slow cooling technique using PbO as a self-flux. The optimum growth conditions were determined to be: (1) (1-x) TiO[sub 2]+x PbO with x (in mol%) varying from 0.78 to 0.82 for the starting compositions, (2) 930-1050 C as the growth temperature range and (3) 0.4-1.5 C/h as the cooling rates. Evaporation of PbO was significantly reduced by use of a double-crucible technique. The grown crystals were characterized by X-ray diffraction, chemical analysis and optical microscopy. The transformation temperatures (onset) of 492.5 C (on heating) and 491.3 C (on cooling) were determined by differential scanning calorimetry. The transformation process had a thermal hysteresis of 1.2 C from onset data. (orig.)

  15. Prediction on electronic structure of CH3NH3PbI3/Fe3O4 interfaces

    Science.gov (United States)

    Hou, Xueyao; Wang, Xiaocha; Mi, Wenbo; Du, Zunfeng

    2018-01-01

    The interfacial electronic structures of CH3NH3PbI3(MAPbI3)/Fe3O4 heterostructures are predicted by density functional theory. Four models (MAI/FeBO, PbI2/FeBO, MAI/FeA and PbI2/FeA) are included. Especially, a half-metal to semiconductor transition of Fe3O4 appears in PbI2/FeA model. A series of electric field is added to PbI2/FeA model, and a direct-indirect bandgap transition of Fe3O4 appears at a 500-kV/cm field. The electric field can control the bandgap of Fe3O4 in PbI2/FeA model by modulating the hybridization. The prediction of spin-related bandgap characteristic in MAPbI3/Fe3O4 is meaningful for further study.

  16. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    Science.gov (United States)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  17. Orientación de láminas delgadas de (Pb, CaTiO3

    Directory of Open Access Journals (Sweden)

    Mendiola, J.

    1999-06-01

    Full Text Available Calcium modified PbTiO3 thin films have been prepared on platinized Si, MgO and SrTiO3 substrates. The films were deposited from a sol-gel solution with a concentration of 0.3 M and with a 10% excess of PbO. Two deposits of this solution on the substrates were made by spin-coating, crystallizing each of them by a Rapid Thermal Processing. The resulting films present a single (Pb,CaTiO3 perovskite phase. All the films are textured, but the films deposited on MgO and SrTiO3 show a preferred orientation in the polar direction of the perovskite. As a result of this orientation, pyroelectric coefficients were measured, without any poling, for the films on MgO and SrTiO3. Pyroelectric measurements indicate the application of these films in infrarred sensors.Se han preparado láminas delgadas de PbTiO3 modificado con calcio sobre substratos de Si, MgO y SrTiO3 electrodados con Pt. Las películas se depositaron a partir de una solución sintetizada por sol-gel, con concentración 0.3 M y con un 10 % en exceso de PbO. En cada lámina se hicieron dos depósitos de la solución sobre el substrato mediante la técnica de “spin-coating”, cristalizando cada uno de ellos con un tratamiento térmico rápido. Todas las láminas resultantes presentaban como única fase cristalina la perovskita de (Pb,CaTiO3. Las láminas presentaron una cierta textura, observándose una orientación preferente en la dirección polar en el caso de las películas depositas sobre MgO y SrTiO3. Como resultado de esta orientación, se midieron coeficientes piroeléctricos, sin polarización previa, en las láminas sobre MgO y SrTiO3. Las medidas piroeléctricas de estos materiales evidencian su utilidad en dispositivos para sensores de infrarrojo.

  18. Preparation and Characterization of PbO-SrO-Na2O-Nb2O5-SiO2 Glass Ceramics Thin Film for High-Energy Storage Application

    Science.gov (United States)

    Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun

    2018-03-01

    PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.

  19. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses

    Science.gov (United States)

    Kumar, Ashok

    2017-07-01

    The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li2O-0.40 B2O3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb3B4O9 has been found to be the most effective shield.

  20. Optimized orientation of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal for applications in medical ultrasonic arrays

    Science.gov (United States)

    Zhou, Dan; Chen, Jing; Luo, Laihui; Zhao, Xiangyong; Luo, Haosu

    2008-08-01

    In order to extend the potential applications of medical ultrasonic array transducers, two optimized directions with the maximal electromechanical coefficient k33' and minimal k31 are determined for [001] and [110] poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals using the experimental method. The maximum values of k33' can reach 92.8% and 93.3%, respectively, corresponding to [001]W/[110]L and [110]W/[1-11]L cuts. Furthermore, we simulate the performances of three 3.5 MHz linear array transducers based on the determined directions by PIEZOCAD. Results indicate that under the [001]W/[110]L direction, 25% broader bandwidth, 40% shorter pulse length, and 3 dB higher sensitivity can be obtained compared to the traditional Pb(Zr1-xTix)O3 transducers.

  1. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil

    Science.gov (United States)

    Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho

    2017-09-01

    In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.

  2. Studies on the phase diagram of Pb-Mo-O system

    International Nuclear Information System (INIS)

    Aiswarya, P.M.; Ganesan, Rajesh; Gnanasekaran, T.

    2014-01-01

    Liquid lead and Lead-Bismuth Eutectic (LBE) alloy are considered as spallation target and coolant in the accelerator driven systems and as candidate coolant in advanced nuclear reactors. Corrosion of the structural steel components in these liquid metal coolants can be minimized by the insitu formation of passive oxide layer on the steel surface under controlled oxygen concentration. A detailed knowledge of phase diagrams of Pb-M-O and Bi-M-O (M = Fe, Cr, Mo) systems and data on thermochemical properties of the ternary compounds of these systems are required for better understanding of composition and stability of these passive oxide films. In the present work, studies have been carried out to establish the ternary phase diagram of Pb-Mo-O system

  3. Effects of PbO on the oxide films of incoloy 800HT in simulated primary circuit of PWR

    International Nuclear Information System (INIS)

    Tan, Yu; Yang, Junhan; Wang, Wanwan; Shi, Rongxue; Liang, Kexin; Zhang, Shenghan

    2016-01-01

    Effects of trace PbO on oxide films of Incoloy 800HT were investigated in simulated primary circuit water chemistry of PWR, also with proper Co addition. The trace PbO addition in high temperature water blocked the protective spinel oxides formation of the oxide films of Incoloy 800HT. XPS results indicated that the lead, added as PbO into the high temperature water, shows not only +2 valance but also +4 and 0 valances in the oxide film of 800HT co-operated with Fe, Cr and Ni to form oxides films. Potentiodynamic polarization results indicated that as PbO concentration increased, the current densities of the less protective oxide films of Incoloy 800HT decreased in a buffer solution tested at room temperature. The capacitance results indicated that the donor densities of oxidation film of Incoloy 800HT decreased as trace PbO addition into the high temperature water. - Highlights: • Trace PbO addition into the high temperature water block the formation of spinel oxides on Incoloy 800HT. • The donor density of oxide film decreases with trace PbO addition. • The current density of potentiodynamic polarization decreases of oxide film with trace PbO addition.

  4. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  5. Clamping-induced changes of domain morphology in 88%Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-12%PbTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.-W., E-mail: lchang01@qub.ac.uk; Gregg, J. M., E-mail: m.gregg@qub.ac.uk [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University Belfast, Northern Ireland BT7 1NN (United Kingdom); Nagarajan, V.; Okatan, M. B. [School of Materials Science and Engineering, University of New South Wales, New South Wales 2052 (Australia)

    2014-08-14

    Domain microstructures in single crystal lamellae of 88%Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-12%PbTiO{sub 3} (cut from bulk using focused ion beam milling) have been mapped using both piezoresponse force microscopy and transmission electron microscopy. Dramatic changes from mottled microstructures typical of relaxors to larger scale domains typical of ferroelectrics have been noted. Stresses associated with substrate clamping are suspected as the cause for the transition from short- to long-range polar order, akin to effects induced by cation ordering achieved by thermal quenching.

  6. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  7. Suggested search for 207Pb nuclear Schiff moment in PbTiO3 ferroelectric

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.

    2005-01-01

    We suggest two types of experiments, NMR and macroscopic magnetometry, with solid PbTiO 3 to search for the nuclear Schiff moment of 207 Pb. Both kinds of experiments promise substantial improvement over the presently achieved sensitivities. Statistical considerations show that the improvement of the current sensitivity can be up to ten orders of magnitude for the magnetometry experiment and up to seven orders of magnitude for the NMR experiment. Such significant enhancement is due to the strong internal electric field of the ferroelectric, as well as due to the possibility to cool the nuclear-spin subsystem in the compound down to nanokelvin temperatures

  8. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  9. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics

    Science.gov (United States)

    Yan, Yongke; Cho, Kyung-Hoon; Maurya, Deepam; Kumar, Amit; Kalinin, Sergei; Khachaturyan, Armen; Priya, Shashank

    2013-01-01

    Pb(Zr,Ti)O3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than ˜5× increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 × 10-15 m2 N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained.

  10. Top-down cellular pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A Y; Rosenfeld, A

    1983-10-01

    A cellular pyramid is an exponentially tapering stack of arrays of processors (cells), where each cell is connected to its neighbors (siblings) on its own level, to a parent on the level above, and to its children on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case. 23 references.

  11. Preferential Creation of Polar Translational Boundaries by Interface Engineering in Antiferroelectric PbZrO3 Thin Films

    OpenAIRE

    Wei XK; Vaideeswaran K; Sandu CS; Jia CL; Setter N

    2015-01-01

    Polar translational boundaries (PTBs) are preferentially created in antiferroelectric PbZrO3 films through interfacial engineering. Probe corrected scanning transmission electron microscopy studies reveal that RIII 1 and RI 1 type PTBs are favorably created in PbZrO3/BaZrO3/SrTiO3 and PbZrO3/SrTiO3 films respectively. The relationship between interfacial strain and the internal strain of boundaries is the driving force for the selective formation of PTBs.

  12. [O{sub 2}Pb{sub 3}]{sub 2}(BO{sub 3})Br. An oxidoborate oxide bromide with the {sub ∞}{sup 1}[O{sub 2}Pb{sub 3}] double chains based on edge-sharing OPb{sub 4} tetrahedra

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lingyun [College of Chemistry and Environmental Science, Hebei University, Baoding (China); Biology and Chemistry Department, Baoding University (China); Yang, Jiao; Shen, Shigang; Liu, Zhenzhen; Sun, Sufang [College of Chemistry and Environmental Science, Hebei University, Baoding (China); Chen, Xiaojing [Biology and Chemistry Department, Baoding University (China)

    2017-04-04

    Through extensive research on the PbO / PbBr{sub 2} / B{sub 2}O{sub 3} system, a new single crystal of yellow lead-containing oxyborate bromine, [O{sub 2}Pb{sub 3}]{sub 2}(BO{sub 3})Br, was grown from the melt. It crystallizes in the centrosymmetric space group Cmcm (no. 63) of the orthorhombic system with the following unit cell dimensions: a = 9.5748(8) Aa, b = 20.841(2) Aa, c = 5.7696(5) Aa, and Z = 4. The whole structure is characterized by an infinite one-dimensional (1D) {sub ∞}{sup 1}[O{sub 2}Pb{sub 3}] double chain, which is based on the OPb{sub 4} oxocentered tetrahedra and considered as the derivative of the continuous sheet of OPb{sub 4} tetrahedra from the tetragonal modification of α-PbO. The 1D {sub ∞}{sup 1}[O{sub 2}Pb{sub 3}] double chains are further bridged by the BO{sub 3} units through common oxygen atoms to form two-dimensional (2D) {sub ∞}{sup 1}[(O{sub 2}Pb{sub 3})(BO{sub 3})] layers, with Br atoms situated between the layers. IR spectroscopy, UV/Vis/NIR diffuse reflectance spectroscopy, and thermal analysis were also performed on the reported material. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. PbO-SiO_2及びPbO-SiO_2-K_2O-Na_2O系ガラス中のMn^<3+>イオンの光吸収スペクトル及びガラスの屈折率

    OpenAIRE

    小山田, 了三; 古賀, 秀人; 星野, 朝則

    1985-01-01

    PbO-SiO2系及びPbO-SiO2-K2O-Na2O系ガラス中のMn3+イオンの光吸収スペクトルとガラスの屈折率を測定し、ガラス組成と吸収ピーク波数及び屈折率の関係を調べた。PbO-SiO2系にMnO2を添加したガラス中のMn3+の吸収ピーク波数はMnO2添加量が増加するとともに低波数側へシフトした。屈折率はMnO2添加量が1.0mol%まではほぼ一定となった。PbO-SiO2-K2O-Na2O系ガラス中のMn3+の吸収ピーク波数は[K2O]/[K2O+Na2O]の値の増加とともに低波数側へシフトし、混合アルカリ効果ははっきりとは現れない。屈折率は[K2O]/[K2O+Na2O]の値の増加とともに直線的に減少し、混合アルカリ効果は明確には認められない。...

  14. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  15. Properties of morphotropic phase boundary Pb(Mg1/3Nb2/3)O3PbTiO3 films with submicrometre range thickness on Si-based substrates

    OpenAIRE

    Algueró , M; Stewart , M; Cain , M G; Ramos , P; Ricote , J; Calzada , M L

    2010-01-01

    Abstract The electrical properties of (1-x)Pb(Mg 1/3 Nb 2/3)O 3 -xPbTiO 3 films with composition in the morphotropic phase boundary region around x=0.35, submicron thickness and columnar microstructure, prepared on Si based substrates by chemical solution deposition are presented and discussed in relation to the properties of coarse and fine grained ceramics. The films show relaxor characteristics that are proposed to result from a grain size effect on the kinetics of the relaxor to ferroe...

  16. Tunneling magnetoresistance and electroresistance in Fe/PbTiO3/Fe multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Dai, Jian-Qing

    2016-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO 3 /Fe multiferroic tunnel junction with asymmetric TiO 2 - and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p z orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  17. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  18. Mixed oxides forming in CdO-OsO2 and PbO-OsO2 systems

    International Nuclear Information System (INIS)

    Shaplygin, I.S.; Lazarev, V.B.

    1978-01-01

    The formation of mixed oxides in systems CdO-OsO 2 and PbO-OsO 2 was studied by derivatography, X-ray phase analysis, and IR spectroscopy. It was established that in the system CdO-OsO 2 cubic phases of Cdsub(2)Ossub(2)Osub(6.7) and Cdsub(2)Ossub(2)Osub(7.2) with a pyrochlor-type structure, as well as new compounds with the structure of rhombic perovskite CdOsO 3 and Cd(Cdsub(0.5)Ossub(0.5))Osub(3) containing osmium in the formal degree of oxidation +4 and +6, respectively, are formed. The thermal stability of the compounds obtained was studied and their electrical properties determined

  19. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  20. Urban public health: is there a pyramid?

    Science.gov (United States)

    Su, Meirong; Chen, Bin; Yang, Zhifeng; Cai, Yanpeng; Wang, Jiao

    2013-01-28

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000-2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  1. Dielectric behaviors of Pb1-3x/2LaxTiO3 derived from mechanical activation

    International Nuclear Information System (INIS)

    Soon, H.P.; Xue, J.M.; Wang, J.

    2004-01-01

    To investigate the origin of ultrahigh relative permittivity that has been observed for lanthanum-doped lead titanate, Pb 1-3x/2 La x TiO 3 (PLT-A) with x ranging from 0.10 to 0.25 were synthesized by mechanical activation of constituent oxides. Their sintered density, grain size and relative permittivity demonstrated a steady increase with increasing of La doping. Upon thermal annealing in oxygen, the relative permittivity of Pb 0.70 La 0.2 TiO 3 (PLT-A20) at T c showed an initial rise and a peak at 4h of annealing, and then a steady fall with further increase in annealing time. In contrast, when annealed in nitrogen for 4 h, a significant rise in relative permittivity was observed, although the increase rate falls with prolonged annealing. The observed dependence of relative permittivity and dielectric loss for PLT-A20 on the initial annealing in both oxygen and nitrogen demonstrated the domination of space charge polarization as a result of PbO loss through evaporation from the surface region. While the high activation energy for Pb 2+ and O 2- diffusion through the surface scale slows down the rate of PbO loss through evaporation, excess loss of PbO adversely affect space charge polarization, leading to a fall in relative permittivity of PLT-A20, upon prolonged annealing in oxygen. In addition to PbO loss, prolonged annealing in nitrogen generated oxygen vacancies, which played an important role in affecting the relative permittivity

  2. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO

    International Nuclear Information System (INIS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-01-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2 O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2 O 3 , BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  3. Micro-Raman study of the microheterogeneity in the MA-MC phase transition in 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 single crystal

    KAUST Repository

    Yang, Y.; Zhang, L. Y.; Zhu, K.; Liu, Y. L.

    2011-01-01

    Polarized Raman spectroscopy has been employed to investigate the evolution of the microstructure of 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 (PMN-33%PT) single crystal in the temperature range from −195 to 300 °C. The M A-M C-cubic transition sequence

  4. Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb{sub 0.95}La{sub 0.05}Zr{sub 0.54}Ti{sub 0.46}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Vaishali [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ramana, C.V. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Kotru, Sushma, E-mail: skotru@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-08-30

    Highlights: • Influence of post-deposition annealing temperature (T{sub a} = 550 and 750 °C) on the chemical valence state and crystalline quality of PLZT thin films was investigated. • XPS analyses demonstrated the shift in binding energies of the constituent atoms which indicated change in chemical state with the change in T{sub a}. • Raman spectra revealed shift in optical modes with the change in T{sub a} indicating the change in phase and crystallinity in the films. • Higher T{sub a} (750 °C) resulted in PLZT films with perovskite structure, nanocrystalline morphology, and better chemical homogeneity. - Abstract: We report the effect of post deposition annealing temperature (T{sub a} = 550 and 750 °C) on the surface morphology, chemical bonding and structural development of lanthanum doped lead zirconate titanate (Pb{sub 0.95}La{sub 0.05}Zr{sub 0.54}Ti{sub 0.46}O{sub 3}; referred to PLZT) thin films prepared using chemical solution deposition method. Atomic force microscopy demonstrates formation of nanocrystallites in the film annealed at T{sub a} = 750 °C. X-ray photoelectron spectroscopy (XPS) analyses indicate that the binding energies (BE) of the Pb 4f, Zr 3d, and Ti 2p doublet experience a positive energy shift at T{sub a} = 750 °C, whereas the BE of O 1s and La 3d doublet show a negative shift with respect to the BE of the films annealed at T{sub a} = 750 °C. Thermal induced crystallization and chemical modification is evident from XPS results. The Ar+ sputtering of the films reveals change in oxidation state and chemical bonding between the constituent atoms, with respect to T{sub a}. Raman spectroscopy used to study phonon-light interactions show shift in longitudinal and transverse optical modes with the change in T{sub a}, confirming the change in phase and crystallinity of these films. The results suggest annealing at T{sub a} = 750 °C yield crystalline perovskite PLZT films, which is essential to obtain photovoltaic response from

  5. Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors

    Science.gov (United States)

    Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.

    2005-09-01

    The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.

  6. Synthesis and Characterization of Pb(Zr𝟎.𝟓𝟑, Ti𝟎.𝟒𝟕)O𝟑-Pb(Nb𝟏/𝟑, Zn𝟐/𝟑)O𝟑 Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.; Debray-Mechtaly, W.; Quevedo-Lopez, M. A.; Gnade, B.; Leon-Salguero, E.; Shah, P.; Alshareef, Husam N.

    2012-01-01

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  7. Local hysteresis and grain size effect in Pb(Mg1/3Nb2/3)O3- PbTiO3 thin films

    Science.gov (United States)

    Shvartsman, V. V.; Emelyanov, A. Yu.; Kholkin, A. L.; Safari, A.

    2002-07-01

    The local piezoelectric properties of relaxor ferroelectric films of solid solutions 0.9Pb(Mg1/3Nb2/3)O3- 0.1PbTiO3 were investigated by scanning force microscopy (SFM) in a piezoelectric contact mode. The piezoelectric hysteresis loops were acquired in the interior of grains of different sizes. A clear correlation between the values of the effective piezoelectric coefficients, deff, and the size of the respective grains is observed. Small grains exhibit slim piezoelectric hysteresis loops with low remanent deff, whereas relatively strong piezoelectric activity is characteristic of larger grains. Part of the grains (approx20-25%) is strongly polarized without application of a dc field. The nature of both phenomena is discussed in terms of the internal bias field and grain size effects on the dynamics of nanopolar clusters.

  8. Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure

    Science.gov (United States)

    Han, Yunxia; Wang, Shanmin; Liu, Yinjuan; Ma, Dejiang; He, Duanwei; Zhao, Yusheng

    2018-04-01

    As a new member in the family of Mott system, perovskite PbCrO3 has recently been uncovered to exhibit fantastic structural transition under pressure, coupled with magnetic, electronic, and ferromagnetic transitions, which provide many opportunities for understanding of correlated system. However, it is still challenging to synthesize high-quality single-crystal PbCrO3, leading to the limited exploration of this Mott compound. In this work, we formulate a new high-pressure reaction route for preparation of high-quality PbCrO3 crystals between PbCl2 and Na2CrO4 at high pressure of 5-10 GPa and at high temperature of 750-1500°C. Because of the formation of reaction byproduct NaCl, the final product can readily be separated by washing with water. The obtained sample is in the form of single crystal with crystallite size up to 200 μm. In addition, combined with X-ray diffraction measurement, a tentative pressure-temperature synthesis diagram of PbCrO3 is mapped out from the reaction between PbCl2 and Na2CrO4 and the reaction mechanism is also explored in detail.

  9. Thermal degradation of {alpha}- and {beta}-PbO{sub 2} and its relationship to capacity loss

    Energy Technology Data Exchange (ETDEWEB)

    Fitas, R.; Zerroual, L.; Chelali, N.; Djellouli, B. [Univ. Ferhat ABBAS, Setif (Algeria). Inst. de Chimie Industrielle

    2000-01-01

    The thermal degradation of {alpha} and {beta} PbO{sub 2} and its relationship to capacity loss was studied using galvanostatic discharge and voltamperometry. The results clearly demonstrate the dramatic effect of the thermal treatment of the capacity of the PAM. The variation of proton diffusion with temperature was determined for both {alpha}- and {beta}-PbO{sub 2}. The two forms of PbO{sub 2} exhibit different behaviour with regard to water loss. (orig.)

  10. Group 13 ligand supported heavy-metal complexes: first structural evidence for gallium-lead and gallium-mercury bonds.

    Science.gov (United States)

    Prabusankar, Ganesan; Gemel, Christian; Winter, Manuela; Seidel, Rüdiger W; Fischer, Roland A

    2010-05-25

    Heavy-metal complexes of lead and mercury stabilized by Group 13 ligands were derived from the oxidative addition of Ga(ddp) (ddp=HC(CMeNC(6)H(3)-2,6-iPr(2))(2), 2-diisopropylphenylamino-4-diisopropyl phenylimino-2-pentene) with corresponding metal precursors. The reaction of Me(3)PbCl and Ga(ddp) afforded compound [{(ddp)Ga(Cl)}PbMe(3)] (1) composed of Ga-Pb(IV) bonds. In addition, the monomeric plumbylene-type compound [{(ddp)Ga(OSO(2)CF(3))}(2)Pb(thf)] (2a) with an unsupported Ga-Pb(II)-Ga linkage was obtained by the reaction of [Pb(OSO(2)CF(3))(3)] with Ga(ddp) (2 equiv). Compound 2a falls under the rare example of a discrete plumbylene-type compound supported by a nonclassical ligand. Interesting structural changes were observed when [Pb(OSO(2)CF(3))(3)]2.H(2)O was treated with Ga(ddp) in a 1:2 ratio to yield [{(ddp)Ga(mu-OSO(2)CF(3))}(2)(OH(2))Pb] (2b) at below -10 degrees C. Compound 2b consists of a bent Ga-Pb-Ga backbone with a bridging triflate group between the Ga-Pb bond and a weakly interacting water molecule at the gallium center. Similarly, the reaction of mercury thiolate Hg(SC(6)F(5)) with Ga(ddp) (2 equiv) produced the bimetallic homoleptic compounds anti-[{(ddp)Ga(SC(6)F(5))}(2)Hg] (3a) and gauche-[{(ddp)Ga(SC(6)F(5))}(2)Hg] (3b), respectively, with a linear Ga-Hg-Ga linkage. Compounds 1-3 were structurally characterized and these are the first examples of compounds comprised of Ga-Pb(II), Ga-Pb(IV), and Ga-Hg bonds.

  11. Urban Public Health: Is There a Pyramid?

    Directory of Open Access Journals (Sweden)

    Meirong Su

    2013-01-01

    Full Text Available Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH. Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000–2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  12. Structural characterization and impedance studies of PbO nanofibers synthesized by electrospinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Hari Prasad, Kamatam [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Vinoth, S. [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Centre for Nanoscience, Pondicherry University, Puducherry, 605014 (India); Jena, Paramananda [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); School of Materials Science and Technology, Indian Institute of Technology(BHU), Varanasi, 221 005 (India); Venkateswarlu, M. [R & D, Amara Raja Batteries Ltd, Karakambadi, 517 520, A.P (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Puducherry, 605 014 (India)

    2017-06-15

    One-dimensional electrospun lead oxide nanofibers synthesized by a simple electrospinning technique. The prepared lead oxide nanofibers investigated by using TG/DTA, FTIR, Raman, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analyzer, scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), Transmission electron microscopy (TEM), and impedance spectroscopy techniques. TG/DTA results confirmed the thermal behavior of the as-spun nanofibers. XRD, FTIR, and Raman spectra results, respectively, confirm the formation of pure orthorhombic crystalline phase and structural coordination of the lead oxide (β-PbO) nanofibers. The BET specific surface area of β-PbO nanofibers sample is found to be 51.23 m{sup 2} g{sup -1}. SEM and AFM micrographs showed the formation of β-PbO nanofibers with a diameter of 85–300 nm. The impedance measurements of lead oxide nanofibers as a function of temperature, 25–150 °C, was evaluated by analyzing the measured impedance data using the winfit software. The electrical conductivity of the lead oxide (β-PbO) nanofibers evaluated by analyzing the measured impedance data using the winfit software is found to be 5.68 × 10{sup -6} S cm{sup -1} at 150 °C. Also, an activation energy (E{sub a}) for the migration of the charge carrier evaluated from the temperature dependence of conductivity plot is found to be 0.27 eV. The temperature dependence AC conductivity of β-PbO nanofibers was evaluated using the measured impedance data and sample dimension. The observed variation of high-frequency AC conductivity attributed to the hopping electrons between the adjacent sites. - Highlights: • First time, β-PbO nanofibers were successfully prepared by electrospinning technique. • Structural, morphological, roughness and electrical properties are studied. • TG/DTA, XRD, FTIR, Raman, SEM/AFM, TEM-EDX, and impedance measurements were made.

  13. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  14. Preparation of Pb(Mg1/3Nb2/3)O3 by simultaneous precipitations

    International Nuclear Information System (INIS)

    Juiz, S.A.; Varela, J.A.; Santilli, C.V.; Pulcinelli, S.H.; Longo, E.

    1990-01-01

    Pb(Mg 1/3 Nb 2/3 )O 3 was obtained by simultaneous precipitation of Pb(NO 3 ) 2' Mg(NO 3 ) 2 . 6H 2 O and NH 4 H 2 /NbO(C 2 O 4 ) 3 ./3H 2 O in alkaline medium. DTA of the precipitates show the PMN formation between 700 and 750 0 C. XRD on powder calcined at 750 0 C indicates on other phases basiders PMN. Measurements of dielectric constants shows a Curie temperature shifted to -80 0 C. (author) [pt

  15. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Wei, Lan-ying; Lian, Chao; Meng, Sheng

    2017-05-01

    First-principles calculations predict the emergence of magnetoelectric coupling mediated by two-dimensional electron gas (2DEG) at the ferroelectric PbTiO3/SrTiO3 heterostructure. Free electrons endowed by naturally existing oxygen vacancies in SrTiO3 are driven to the heterostructure interface under the polarizing field of ferroelectric PbTiO3 to form a 2DEG. The electrons are captured by interfacial Ti atoms, which surprisingly exhibits ferromagnetism even at room temperature with a small critical density of ˜15.5 μ C /cm2 . The ferroelectricity-controlled ferromagnetism mediated by interfacial 2DEG shows strong magnetoelectric coupling strength, enabling convenient control of magnetism by electric field and vice versa. The PbTiO3/SrTiO3 heterostructure is cheap, easily grown, and controllable, promising future applications in low-cost spintronics and information storage at ambient condition.

  16. Neutron diffraction from lead germanate glasses

    International Nuclear Information System (INIS)

    Umesaki, Norimasa; Brunier, T.M.; Wright, A.C.; Hannon, A.C.; Scinclair, R.N.

    1993-01-01

    High resolution neutron diffraction data have been collected on the PbO-GeO 2 glasses and on GeO 2 for comparison. These neutron data have revealed the existence of 6-fold coordinated germanium (GeO 6 octahedra) by virtue of the shift in the first peak in the obtained total correlation function T(r) and increase in the coordination. The neutron results also indicate that PbO exits as PbO 4 pyramids, as found in the orthorhombic form of PbO crystal, in the studied PbO-GeO 2 glasses. (author)

  17. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    Science.gov (United States)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  18. INSTABILITY MODELING OF FINANCIAL PYRAMIDS

    OpenAIRE

    Girdzijauskas, Stasys; Moskaliova, Vera

    2005-01-01

    The financial structures that make use of money flow for “easy money” or cheating purpose are called financial pyramids. Recently financial pyramids intensively penetrates IT area. It is rather suitable way of the fraud. Money flow modeling and activity analysis of such financial systems allows identifying financial pyramids and taking necessary means of precautions. In the other hand even investing companies that function normally when market conditions changes (e.g. interest rates) eventual...

  19. Position annihilation study on the (Bi,Pb)-Sr-Ca-Cu-(O,F) superconductor

    International Nuclear Information System (INIS)

    Wang Xiaogang; Gao Xiaohui; Wang Ruidan; Hu Pingya

    1993-01-01

    In this note, we report the results of positron lifetime measurements in heat-treated (Bi, Pb)-Sr-Ca-Cu-(O, F), and discuss the possible location of the doped fluorine in the (Bi, Pb)-system superconductors. (orig.)

  20. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  1. TiO2 flower-like nanostructures decorated with CdS/PbS nanoparticles

    International Nuclear Information System (INIS)

    Trenczek-Zajac, Anita; Kusior, Anna; Lacz, Agnieszka; Radecka, Marta; Zakrzewska, Katarzyna

    2014-01-01

    Highlights: • TiO 2 flower-like nanostructures were prepared with the use of Ti foil and 30% H 2 O 2 . • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO 2 with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO 2 were prepared by immersing Ti foil in 30% H 2 O 2 at 80 °C for times varying from 15 to 240 min. Upon annealing at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO 2 nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO 2 nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS

  2. Study of fusion cross-sections of 16O + 208Pb and 28Si + 208Pb reactions by effective soft-core nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Mahmodi, M.; Ariai, J.; O. N. Ghodsi)

    2007-01-01

    In this paper, the cross-sections of fusion reactions 16 O + 208 Pb, 28 Si + 208 Pb, 40 C + 40 Ca, 40 Ca + 48 Ca, 58 Ni + 58 Ni, and 16 O + 154 Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16 O + 208 Pb and 28 Si + 208 Pb reactions are due to the many particle effects on the nucleon-nucleon potential. (author)

  3. Study of fusion cross-sections of 16O + 208Pb and 28Si + 208Pb reactions by effective soft-core nucleon-nucleon interaction

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2007-01-01

    Full Text Available In this paper, the cross-sections of fusion reactions 16O + 208Pb, 28Si + 208Pb, 40C + + 40Ca, 40Ca + 48Ca, 58Ni + 58Ni, and 16O + 154Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16O + 208Pb and 28Si + 208Pb reactions are due to the many particle effects on the nucleon-nucleon potential.

  4. Dielectric enhancement of PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yasong; Chen, Xiaoyang; Habibul, Arzigul; Zhang, Danyang; Yu, Ping [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China)

    2016-08-15

    Multilayer thick films (∝4 μm) with compositional PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} layers and one-layer PZT thick films were prepared on the silicon substrate by radio-frequency magnetron sputtering. PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film are characterized by highly preferential (100)-oriented growth and columnar microstructure due to alternately introducing LaNiO{sub 3} seeding layers. The effects of LaNiO{sub 3} layers on microstructure and electrical properties of PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} thick films were investigated in detail. The results show that both PZT and PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film were pure perovskite crystalline phase. The PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} film texture was dense and well adhered on the LaNiO{sub 3} layer. PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film possessed obvious enhanced dielectric properties compared with PZT thick film: ε{sub r} ∝2450 (10 kHz) and tanδ ∝0.02 (10 kHz). Rayleigh law was used to analysis the behavior of the enhanced dielectric properties and the pinched-shaped polarization-electric field hysteresis loops. The larger Rayleigh parameter, α ∝51.1408 cm kV{sup -1} (1 kHz) indicates the larger extrinsic contribution to permittivity and strong domain-wall-defect charge interaction. The leakage current behaviors of the multilayer thick film were also investigated in detail. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. First-principle study on bonding mechanism of ZnO by LDA+U method

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Zhong, X.L.; Chen Xiaoshuang; Wei Lu; Wang, J.B.

    2007-01-01

    The electronic structure and the bonding mechanism of ZnO have been studied by using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation potential. The valence and the bonding charge density are calculated and compared with those derived from LDA and GGA to describe the bonding mechanism. The charge transfer along with the bonding process is analyzed by using the theory of Atoms in Molecules (AIM). The bonding, the topological characteristics and the p-d coupling effects on the bonding mechanism of ZnO are shown quantitatively with the critical points (CPs) along the bonding trajectory and the charge in the atomic basins. Meanwhile, the bonding characteristics for wurtzite, zinc blende and rocksalt phase of ZnO are discussed systematically in the present paper

  6. Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures

    Science.gov (United States)

    Wang, Juan; Salev, Pavel; Grigoriev, Alexei

    As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.

  7. o-Vanillin functionalized mesoporous silica – coated magnetite nanoparticles for efficient removal of Pb(II) from water

    Energy Technology Data Exchange (ETDEWEB)

    Culita, Daniela C., E-mail: danaculita@yahoo.co.uk [“Ilie Murgulescu” Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest (Romania); Simonescu, Claudia Maria; Patescu, Rodica-Elena [Politehnica University, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania); Dragne, Mioara [S.C. KEMCRISTAL S.R.L., Muncii Str., No. 51, Fundulea, Călăraşi (Romania); Stanica, Nicolae [“Ilie Murgulescu” Institute of Physical Chemistry, Splaiul Independentei 202, Bucharest (Romania); Oprea, Ovidiu [Politehnica University, Faculty of Applied Chemistry and Materials Science, Bucharest (Romania)

    2016-06-15

    o-Vanillin functionalized mesoporous silica – coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N{sub 2} adsorption–desorption technique and magnetic measurements. The capacity of Fe{sub 3}O{sub 4}@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica – coated magnetite (Fe{sub 3}O{sub 4}@MCM-41) and amino – modified mesoporous silica coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-NH{sub 2}). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80–90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe{sub 3}O{sub 4}@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water. - Graphical abstract: A novel magnetic adsorbent based on o-vanillin functionalized mesoporous silica – coated magnetite was synthesized and fully characterized and its adsorption capacity for Pb(II) ions in aqueous solutions was evaluated. The maximum adsorption capacity for Pb(II) ions was determined to be 155.71 mg g{sup −1}. The adsorption rate was very high at the beginning of the adsorption process, 90% of the total amount of Pb(II) being removed within the first 60 min. Display Omitted.

  8. o-Vanillin functionalized mesoporous silica – coated magnetite nanoparticles for efficient removal of Pb(II) from water

    International Nuclear Information System (INIS)

    Culita, Daniela C.; Simonescu, Claudia Maria; Patescu, Rodica-Elena; Dragne, Mioara; Stanica, Nicolae; Oprea, Ovidiu

    2016-01-01

    o-Vanillin functionalized mesoporous silica – coated magnetite (Fe 3 O 4 @MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N 2 adsorption–desorption technique and magnetic measurements. The capacity of Fe 3 O 4 @MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica – coated magnetite (Fe 3 O 4 @MCM-41) and amino – modified mesoporous silica coated magnetite (Fe 3 O 4 @MCM-41-NH 2 ). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80–90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe 3 O 4 @MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water. - Graphical abstract: A novel magnetic adsorbent based on o-vanillin functionalized mesoporous silica – coated magnetite was synthesized and fully characterized and its adsorption capacity for Pb(II) ions in aqueous solutions was evaluated. The maximum adsorption capacity for Pb(II) ions was determined to be 155.71 mg g −1 . The adsorption rate was very high at the beginning of the adsorption process, 90% of the total amount of Pb(II) being removed within the first 60 min. Display Omitted

  9. Pyramiding for Resistance Durability: Theory and Practice.

    Science.gov (United States)

    Mundt, Chris

    2018-04-12

    Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impact durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.

  10. Tunneling magnetoresistance and electroresistance in Fe/PbTiO{sub 3}/Fe multiferroic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jian-Qing, E-mail: djqkust@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-21

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  11. Pyramid Comet Sampler, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the sampling requirements, we propose an Inverted Pyramid sampling system. Each face of the pyramid includes a cutting blade which is independently actuated...

  12. ZnO-PbO-B2O3 glasses as gamma-ray shielding materials

    International Nuclear Information System (INIS)

    Singh, Harvinder; Singh, Kulwant; Gerward, Leif; Singh, Kanwarjit; Sahota, Hari Singh; Nathuram, Rohila

    2003-01-01

    Values of the gamma-ray mass-attenuation coefficient, the photon mean free path (MFP), the effective atomic number and the effective electron density have been determined experimentally for xZnO · 2xPbO · (1-3x)B 2 O 3 (x=0.1-0.26) glasses at photon energies 511, 662, 1173 and 1332 keV and compared with theoretical data. The specific volume of the glasses has been derived from density measurements and studied as a function of composition. It is pointed out that these glasses have potential applications in radiation shielding

  13. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The Zintl Chemistry of the Heavy Tetrel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael Thomas [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    Exploration of the alkali metal/alkaline-earth metal/heavy tetrel (Sn or Pb) systems has revealed a vast array of new chemistry and novel structure types. The structures and properties of these new materials have been studied in an attempt to understand the chemistry of these and other related systems. The first phase reported is Rb4Pb9 (K4Pb9 type). The compound contains two different types of Pb94- deltahedra, a monocapped square pyramid and a distorted tricapped trigonal prism. Both cluster geometries correspond to a nido assignment even though the tricapped trigonal prism is not the classic Wade's rules nido deltahedron expected for a monocapped square antiprism. Also, a series of compounds that contain square pyramidal Tt5 polyanions of tin and lead has been obtained in alkaline-earth or rare-earth metal-tetrel systems by direct fusion of the elements to yield Sr3Sn5, Ba3Pb5, and La3Sn5. These phases contain square pyramidal clusters of the tetrel elements that are weakly interlinked into chains via two types of longer intercluster interactions that are mediated by bridging cations and substantially influenced by cation size and the free electron count. Attempts at incorporating another main-group element to form heteroatomic clusters were also successful. In the case of A5InPb8 (A = K, Rb), the compounds contain clusters composed of two Pb4 tetrahedra that are interbridged by a lone μ6-In atom. The InPb8 units are weakly interlinked into sheets in the ab plane by long intercluster Pb-Pb interactions. Using As led to the formation of the compound K5As3Pb3 which is made up of As3Pb35- crown clusters that can be likened to a 6-atom hypho-cluster based on the tricapped trigonal parent as the closo

  15. The influence of thermal stresses on the phase composition of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 thick films

    Science.gov (United States)

    Uršič, Hana; Zarnik, Marina Santo; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Kosec, Marija

    2011-01-01

    The influence of thermal stresses versus the phase composition for 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thick films is being reported. The thermal residual stresses in the films have been calculated using the finite-element method. It has been observed that in 0.65PMN-0.35PT films a compressive stress enhances the thermodynamic stability of the tetragonal phase with the space group P4mm.

  16. Unusual inhomogeneous microstructures in charge glass state of PbCrO3

    Science.gov (United States)

    Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo

    2018-05-01

    We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.

  17. Electronic parameters and top surface chemical stability of RbPb{sub 2}Br{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Tarasova, A.Yu. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Bridgman growth of RbPb{sub 2}Br{sub 5} crystal. Black-Right-Pointing-Pointer Electronic structure measurements with XPS. Black-Right-Pointing-Pointer Optical crystalline surface fabrication. - Abstract: The RbPb{sub 2}Br{sub 5} crystal has been grown by Bridgman method. The electronic structure of RbPb{sub 2}Br{sub 5} has been measured with XPS for a powder sample. High chemical stability of RbPb{sub 2}Br{sub 5} surface is verified by weak intensity of O 1s core level recorded by XPS and structural RHEED measurements. Chemical bonding effects have been observed by the comparative analysis of element core levels and crystal structure of RbPb{sub 2}Br{sub 5} and several rubidium- and lead-containing bromides using binding energy difference parameters {Delta}{sub Rb} = (BE Rb 3d - BE Br 3d) and {Delta}{sub Pb} = (BE Pb 4f{sub 7/2} - BE Br 3d).

  18. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  19. Polarity of translation boundaries in antiferroelectric PbZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xian-Kui, E-mail: xiankui.wei@epfl.ch [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); Jia, Chun-Lin [Peter Grünberg Institute and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Research Center Jülich, 52425 Jülich (Germany); International Centre of Dielectric Research, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Roleder, Krystian [Institute of Physics, University of Silesia, Katowice 40007 (Poland); Setter, Nava [Ceramics Laboratory, EPFL–Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland)

    2015-02-15

    Graphical abstract: Strain-free rigid model and aberration-corrected transmission electron microscopes are used to investigate the polarity of translation boundaries in antiferroelectric PbZrO{sub 3}. - Highlights: • Domain boundaries in antiferroelectric PbZrO{sub 3} show polar and antipolar property. • The antiphase boundary can split into “sub-domains”. • Polarization reversal possibly exists inside the translation boundaries. • Thermal treatment can alter morphology and density of the translation boundaries. - Abstract: The polarity of translation boundaries (TBs) in antiferroelectric PbZrO{sub 3} is investigated. We show that previous experimentally reported polar property of R{sub III-1} type TB can be well approximated by a strain-free rigid model. Based on this, the modeling investigation suggests that there are two additional polar TBs, three antipolar-like TBs and one antipolar antiphase boundary. High-resolution scanning-transmission-electron-microscopy study reveals that the straight R{sub III-1} type TB can split into “sub-domains” with possible polarization reversal, suggesting the occurrence of ferroic orders at the TBs. In addition, dependence of morphology and density of the TBs on thermal treatments is discussed according to our results.

  20. Gamma-ray attenuation studies of PbO-BaO-B2O3 glass system

    International Nuclear Information System (INIS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2006-01-01

    PbO-BaO-B 2 O 3 glass system has been investigated in terms of molar mass, mass attenuation coefficient and half value layer parameters by using gamma-ray at 511,662 and 1274keV photon energies. Gamma-ray attenuation coefficients of the prepared glass samples have been compared with tabulations based upon the results of XCOM. Good agreement has been observed between experimental and theoretical tabulations. Our results have uncertainty less than 3%. Radiation shielding properties of the glass system have been compared with some standard radiation shielding concretes

  1. ELECTRO-DEGRADATION OF REACTIVE BLUE DYES USING CYLINDER MODIFIED ELECTRODE: Ti/β-PbO2 AS DIMENSIONALLY STABLE ANODE

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2010-12-01

    Full Text Available A cylinder modified electrode of the β-PbO2 was fabricated by anodic electro-deposition method on titanium substrate. The PbO2 layer prepared from high acid solution (pH: 0.3 that contains a mixed of 0.5 M Pb(NO32, 1 M HNO3, and 0,02 M NaF. The physicochemical properties of the PbO2 electrode were analyzed by using Energy Dispersive X-Ray Analysis and X-Ray Diffraction. The analyses have shown that oxide layer has an O/Pb ratio about 1.6 and the PbO impurities are formed in the surface layer besides the β-PbO2. The modified electrode was used as anode paired stainless cathode in the electro-degradation of reactive blue dye. The results of the electro-catalytic oxidation process of the dye solution were expressed in terms of the remaining intensity dye and chemical oxygen demand (COD values. The modified electrode has removal efficiency of the reactive blue dye at voltage of 7 V, pH of 7, concentration NaCl of 2 g/L, initial dye concentration of 100 mg/L with simple and short time operations.

  2. Pyramid solar micro-grid

    Science.gov (United States)

    Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen

    2018-03-01

    A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.

  3. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO6

    International Nuclear Information System (INIS)

    Weng, Ke-Chuan; Wang, Y. K.

    2015-01-01

    The electronic structure and magnetic properties of BiPbCrCuO 6 double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO 6 double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr 5+ (t 2g 1 ↓) and Cu 2+ (t 2g 3 ↑t 2g 3 ↓e g 2 ↑e g ↓) via the intermediate O 2− (2s 2 2p 6 ) ion

  4. Electric Field Tuning Non-volatile Magnetism in Half-Metallic Alloys Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 Heterostructure

    Science.gov (United States)

    Dunzhu, Gesang; Wang, Fenglong; Zhou, Cai; Jiang, Changjun

    2018-03-01

    We reported the non-volatile electric field-mediated magnetic properties in the half-metallic Heusler alloy Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure at room temperature. The remanent magnetization with different applied electric field along [100] and [01-1] directions was achieved, which showed the non-volatile remanent magnetization driven by an electric field. The two giant reversible and stable remanent magnetization states were obtained by applying pulsed electric field. This can be attributed to the piezostrain effect originating from the piezoelectric substrate, which can be used for magnetoelectric-based memory devices.

  5. o-Vanillin functionalized mesoporous silica - coated magnetite nanoparticles for efficient removal of Pb(II) from water

    Science.gov (United States)

    Culita, Daniela C.; Simonescu, Claudia Maria; Patescu, Rodica-Elena; Dragne, Mioara; Stanica, Nicolae; Oprea, Ovidiu

    2016-06-01

    o-Vanillin functionalized mesoporous silica - coated magnetite (Fe3O4@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption-desorption technique and magnetic measurements. The capacity of Fe3O4@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica - coated magnetite (Fe3O4@MCM-41) and amino - modified mesoporous silica coated magnetite (Fe3O4@MCM-41-NH2). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80-90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe3O4@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water.

  6. Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, central Norway: Anthropogenic or natural sources?

    International Nuclear Information System (INIS)

    Reimann, C.; Fabian, K.; Flem, B.; Schilling, J.; Roberts, D.; Englmaier, P.

    2016-01-01

    Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km"2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km"2), and analysed for Pb and three of the four naturally occurring Pb isotopes ("2"0"6Pb, "2"0"7Pb and "2"0"8Pb) in a HNO_3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct "2"0"6Pb/"2"0"7Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the "2"0"6Pb/"2"0"7Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the "2"0"6Pb/"2"0"7Pb isotope ratio in the soil O horizon. - Highlights: • Lead concentrations are on average higher by a factor of 4 in the soil O than in the C horizon. • The "2"0"6Pb/"2"0"7Pb isotope ratio is considerably lower in the soil O than in the C horizon. • The observed shifts are in conflict with exclusive anthropogenic input of Pb. • The hypothesis of natural Pb-isotope invariance can not be hold.

  7. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  8. Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr0.53Ti0.47O3 (PZT)-PbFe0.5Ta0.5O3 (PFT).

    Science.gov (United States)

    Schiemer, J A; Lascu, I; Harrison, R J; Kumar, A; Katiyar, R S; Sanchez, D A; Ortega, N; Mejia, C Salazar; Schnelle, W; Shinohara, H; Heap, A J F; Nagaratnam, R; Dutton, S E; Scott, J F; Nair, B; Mathur, N D; Carpenter, M A

    2017-01-01

    Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr 0.53 Ti 0.47 O 3 -PbFe 0.5 Ta 0.5 O 3 (PZT-PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr 0.53 Ti 0.47 O 3 -PbFe 0.5 Nb 0.5 O 3 (PZT-PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe 0.5 Ta 0.5 O 3 . As for PZT-PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic-tetragonal-monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel-Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT-PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales.

  9. Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy

    Science.gov (United States)

    Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.

    2009-02-01

    Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.

  10. The poisoning effect of PbO on Mn-Ce/TiO{sub 2} catalyst for selective catalytic reduction of NO with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lingling [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhao, Lingkui; Zeng, Guangming; Gao, Lei; Wang, Yan; Yu, Ming’e [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-12-15

    Highlights: • The poisoning effects of PbO-doped Mn-Ce/TiO{sub 2} catalysts for low temperature NH{sub 3}-SCR were investigated. • Low concentration of Mn{sup 4+} and chemisorbed oxygen (O{sub b}) were not favorable for the generation of intermediates. • The decreased Ce{sup 3+} and less reducible of manganese oxides hindered the redox cycle (Mn{sup 3+} + Ce{sup 4+} ↔ Mn{sup 4+} + Ce{sup 3+}). • The doping of PbO not only altered acid sites but also inhibited ammonia adsorption as well as activation. • The poisoning of PbO resulted in the decrease of ad-NO{sub x} species (only a spot of bidentate nitrates remained). - Abstract: Lead oxide (PbO) as one of the typical heavy metals in flue gas from power plants has strong accumulation as well as poisoning effects on SCR catalysts. In this paper, a series of PbO-doped Mn-Ce/TiO{sub 2} catalysts were synthesized by impregnation method. The poisoning effects of PbO over Mn-Ce/TiO{sub 2} samples for selective catalytic reduction of NO by NH{sub 3} were investigated based on catalytic activity test and characterizations. The NO conversion of Mn-Ce/TiO{sub 2} was greatly decreased after the addition of PbO. It was obvious that the NO conversion efficiency of Mn-Ce/TiO{sub 2} catalyst declined from 96.75% to about 40% at 200 °C when Pb:Mn molar ratio reached 0.5. Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Hydrogen temperature programmed reduction (H{sub 2}-TPR), Ammonia temperature programmed desorption (NH{sub 3}-TPD) and Fourier transform infrared spectroscopy (FT-IR) were carried out to study the deactivation reasons of PbO poisoned catalysts. Manganese oxides’ crystallization, less reducible of manganese and cerium oxides, the decreasing of surface area, Mn{sup 4+} as well as Ce{sup 3+} concentration and chemisorbed oxygen (O{sub b}) after the introduction of PbO, all of these resulted in a poor SCR performance

  11. Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2 interface

    Science.gov (United States)

    Gruber, G.; Cottom, J.; Meszaros, R.; Koch, M.; Pobegen, G.; Aichinger, T.; Peters, D.; Hadley, P.

    2018-04-01

    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured g-factors. Here, the HF spectra measured of different SiC MOSFETs are compared, and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC) center and the silicon vacancy (VSi) demonstrates that the PbC center is a more suitable candidate to explain the observed HF spectra.

  12. Climbing the Needs Pyramids

    Directory of Open Access Journals (Sweden)

    J. C. Lomas

    2013-08-01

    Full Text Available Abraham Maslow’s theory of human adult motivation is often represented by a pyramid image showing two proposals: First, the five needs stages in emergent order of hierarchical ascension and second, a percentage of the adult population suggested to occupy each needs tier. Specifically, Maslow proposed that adults would be motivated to satisfy their unfilled needs until they reached the hierarchy’s apex and achieved self-transcendence. Yet how adults can purposefully ascend Maslow’s pyramid through satisfying unfilled needs remains elusive. This brief article challenges this on the theory’s 70th anniversary by presenting a new image of the needs hierarchy, based on ecological design principles to support adults’ purposeful endeavors to climb the needs pyramid.

  13. HRTEM analysis on nanocrystalline BaTiO3 and PbTiO3: size effects on ferroelectric phase transition temperature

    International Nuclear Information System (INIS)

    Bursill, L.A.; Jiang, B.; Peng, J.L.; Zhong, W.L.; Zhang, P.L.

    1997-01-01

    High-Resolution Transmission Electron Microscopic studies of nanocrystaline particles of BaTiO 3 and PbTiO 3 are reported. There are characteristic differences observed for BaTiO 3 prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition, whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. The SAG preparations always showed chemical intergrowth defects whereas the SG preparations were single phase. Atomic resolution images of both varieties showed interesting surface steps and surface relaxations/reconstructions of some facets. Nanocrystalline PbTiO 3 prepared by the SG route remains tetragonal, albeit with decreasing c/a ratio, down to 25nm diameter. HRTEM observations of nanocrystalline PbTiO 3 are also presented. X-ray diffraction, dielectric and Raman scattering measurements also demonstrate pronounced size effects. The relationship between the observed nanostructures and size effects on the physical properties is discussed. 6 refs., 1 tab., 6 figs

  14. Relaxation of photodielectric effect in Pb3O4 layers

    International Nuclear Information System (INIS)

    Avanesyan, V. T.; Baranova, E. P.

    2007-01-01

    Experimental data on the kinetics of the photodielectric effect in layers of red lead (Pb 3 O 4 ) are reported. The photocapacitive properties and dielectric loss under photoexcitation have been studied with the spectral composition of light varied at low frequencies of the measuring field. The dielectric parameters attain steady values long after light is switched on (off). The relationship of the photodielectric phenomena with structural features of the semiconductor and, in particular, with the presence of lone pair electrons of Pb 2+ cations is discussed

  15. Crystal structure of zdenekite NaPbCu5(AsO4)4Cl · 5H2O

    International Nuclear Information System (INIS)

    Zubkova, N.V.; Pushcharovsky, D.Yu.; Sarp, H.; Teat, S. J.; MacLean, E. J.

    2003-01-01

    The crystal structure of the mineral zdenekite NaPbCu 5 (AsO 4 ) 4 Cl · 5H 2 O was established (Bruker SMART CCD diffractometer, synchrotron radiation, λ = 0.6843 A, R = 0.096 for 1356 reflections). Single-crystal X-ray diffraction study demonstrated that zdenekite belongs to the monoclinic system with the unit-cell parameters a = 10.023(7) A, b 19.55(1) A, c = 10.023(6) A, β = 90.02(1) deg., sp. gr. P2 1 /n, Z = 4. The structure consists of polyhedral layers parallel to the (010) plane. These layers are formed by Cuφ 5 polyhedra (φ = O, Cl, H 2 O) and AsO 4 tetrahedra. Distorted Na octahedra and Pb 7-vertex polyhedra and H 2 O molecules coordinated to these metal atoms are located between the layers

  16. Coupled channel effects in quasi-elastic barrier distributions of 16,18O + 206Pb systems

    International Nuclear Information System (INIS)

    Jha, V.; Roy, B.J.; Parkar, V.V.; Kumawat, H.; Pal, U.K.; Pandit, S.K.; Mahata, K.; Shrivastava, A.; Mohanty, A.K.

    2013-01-01

    The fusion barrier distribution and QEBD for the 16 O + 208 Pb have been studied in great detail. The couplings due to the collective excitations of the colliding nuclei are found to have the dominant effect as deduced by the conventional coupled-channels calculations used to explain the experimental QEBD and fusion barrier distributions. In contrast, for the 18 O + 206 Pb system, the role of single neutron stripping (Q-value= -1.308 MeV) and neutron pair transfer (Q-value = + 1.917 MeV) are expected to be significant. In the present work, the QEBD measurements for the 18 O + 206 Pb system are performed for the investigation of these aspects

  17. Possible route to d0 magnetism in α-PbO compound

    Science.gov (United States)

    Berashevich, J.; Reznik, A.

    2014-10-01

    Using first principles methods, we investigated the possibility of inducing d0 magnetism in α-PbO. The Pbi interstitial defect was found to acquire magnetic properties after its incorporation into the α-PbO crystal structure. The Pbi interstitial defect generates a p localized state with two electrons on-site, the spin alignment of which is governed by Hund's rule, thereby leading to the formation of the local magnetic moment 2μB. The magnetic coupling between defects is a function of the occupancy of the defect states. For two defects in their zero charge state Pbi(0), the antiferromagnetic coupling is more stable. The Pb interstitial defects in the charge state Pbi(1 +) already have the ferromagnetic ground state. The magnetic coupling was found to be driven by long-range order interactions. The critical limit on the defect concentration required to establish magnetic percolation above room temperature is about 1020 cm-3, which may be possible when Pbi defects are formed on the surface of a single crystal. The substitution of the Pb interstitial defect with the non-magnetic elements of the s2px outer shell (the local magnetic moment is defined by 1 ≤ x ≤ 3) was found to be a potential means for tuning the magnetic behavior.

  18. Investigation of the Great Pyramid of Giza.

    Science.gov (United States)

    Peace, Nigel; And Others

    1997-01-01

    Describes an activity in which geometry and trigonometry are studied using pyramids. Identical model pyramids are constructed from card stock, along with pyramids of different proportions and cuboids to use as controls. Also includes an investigation of some apparently non-scientific claims. (DDR)

  19. Pb4(OH)4(BrO3)3(NO3): An Example of SHG Crystal in Metal Bromates Containing π-Conjugated Planar Triangle.

    Science.gov (United States)

    Kong, Fang; Hu, Chun-Li; Liang, Ming-Li; Mao, Jiang-Gao

    2016-01-19

    The first example of SHG crystal in the metal bromates containing π-conjugated planar triangle systems, namely, Pb4(OH)4(BrO3)3(NO3), was successfully synthesized via the hydrothermal method. Furthermore, a single crystal of centrosymmetric Pb8O(OH)6(BrO3)6(NO3)2·H2O was also obtained. Both compounds contain similar [Pb4(OH)4] cubane-like tetranuclear clusters, but they display different one-dimensional (1D) chain structures. Pb4(OH)4(BrO3)3(NO3) features a zigzag [Pb4(OH)4(BrO3)3](+) 1D chain, while Pb8O(OH)6(BrO3)6(NO3)2·H2O is composed of two different orthogonal chains: the linear [Pb4(OH)4(BrO3)2](2+) 1D chain along the b-axis and the zigzag [Pb4O2(OH)2(BrO3)4](2-) 1D chain along the a-axis. The NO3 planar triangles of the compounds are all isolated and located in the spaces of the structures. Pb4(OH)4(BrO3)3(NO3) exhibits the first example of SHG crystal in the metal bromates with π-conjugated planar triangle. The second-harmonic generation (SHG) efficiency of Pb4(OH)4(BrO3)3(NO3) is approximately equal to that of KDP and it is phase-matchable. Dipole moment and theory calculations indicate that BrO3, NO3, and PbO4 groups are the origin of its SHG efficiency, although some of the contributions cancel each other out.

  20. Electrical properties of Sb and Cr-doped PbZrO3-PbTiO3-PbMg1/3Nb2/3O3 ceramics

    OpenAIRE

    Whatmore, Roger W.; Molter, O.; Shaw, Christopher P.

    2003-01-01

    The pyroelectric, dielectric and DC resistive properties of Sb and Cr-doped ceramics with a base composition of Pb(Mg1/3Nb2/3)0.025(Zr0.825Ti0.175)0.975O3 have been studied. Sb doping has been shown to produce a linear reduction in Curie temperature (TC=−22z+294 °C) with concentration (z) and to give an increase in pyroelectric coefficient from 250 to 310 μCm−2 K−1 for z increasing from 0 to 3 at.%. It also produces first a reduction and then an increase in both dielectric constant and loss, ...

  1. Bond length effects during the dissociation of O2 on Ni(1 1 1)

    International Nuclear Information System (INIS)

    Shuttleworth, I.G.

    2015-01-01

    Graphical abstract: - Highlights: • The dissociation of O 2 on Ni(1 1 1) has been investigated using the Nudged Elastic Band (NEB) technique. • An exceptional correlation has been identified between the O/Ni bond order and the O 2 bond length for a series of sterically different reaction paths. • Direct magnetic phenomena accompany these processes suggesting further mechanisms for experimental control. - Abstract: The interaction between O 2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (E A = 103–315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between O−Ni bond order and the O 2 bond length. This correlation demonstrates that the O−O interaction predominantly determines the bonding of this system

  2. Synthesis and characterization of the lead borate Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenegger, Sandra; Ortner, Teresa S.; Wurst, Klaus; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2016-11-01

    A lead borate with the composition Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} was synthesized through a hydrothermal synthesis, using lead metaborate in combination with sodium nitrate and potassium nitrate. The compound crystallizes in the trigonal, non-centrosymmetric space group P3{sub 2} (no. 145) with the lattice parameters a = 1176.0(4), c = 1333.0(4) pm, and V = 0.1596(2) nm{sup 3}. Interestingly, the data of Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} correct the structure of a literature known lead borate with the composition ''Pb{sub 6}B{sub 11}O{sub 18}(OH){sub 9}''. For the latter compound, nearly identical lattice parameters of a = 1176.91(7) and c = 1333.62(12) pm were reported, possessing a crystal structure, in which the localization and refinement of one boron atom was obviously overlooked. The structure of Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} is built up from trigonal planar BO{sub 3} and tetrahedral BO{sub 4} groups forming complex chains. The Pb{sup 2+} cations are located between neighboring polyborate chains. The here reported compound Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} and ''Pb{sub 6}B{sub 11}O{sub 18}(OH){sub 9}'' were, however, produced under different synthesis conditions. While ''Pb{sub 6}B{sub 11}O{sub 18}(OH){sub 9}'' was synthesized via a hydrothermal synthesis including ethylenediamine and acetic acid, the here reported lead borate Pb{sub 6}B{sub 12}O{sub 21}(OH){sub 6} could be obtained under moderate hydrothermal conditions (240 C) without the addition of organic reagents.

  3. High-performance broadband photodetector using solution-processible PbSe-TiO(2)-graphene hybrids.

    Science.gov (United States)

    Manga, Kiran Kumar; Wang, Junzhong; Lin, Ming; Zhang, Jie; Nesladek, Milos; Nalla, Venkatram; Ji, Wei; Loh, Kian Ping

    2012-04-03

    Highly sensitive, multicomponent broadband photodetector devices are made from PbSe/graphene/TiO(2). TiO(2) and PbSe nanoparticles act as light harvesting photoactive materials from the UV to IR regions of the electromagnetic spectrum, while the graphene acts as a charge collector for both photogenerated holes and electrons under an applied electric field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. TiO{sub 2} flower-like nanostructures decorated with CdS/PbS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trenczek-Zajac, Anita, E-mail: anita.trenczek-zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Kusior, Anna; Lacz, Agnieszka; Radecka, Marta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Zakrzewska, Katarzyna [AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2014-12-15

    Highlights: • TiO{sub 2} flower-like nanostructures were prepared with the use of Ti foil and 30% H{sub 2}O{sub 2}. • QDs of CdS and PbS were deposited using the SILAR method. • The SILAR method makes it possible to control the size of QDs. • Band gap energy of CdS was found to be 2.35 eV. • Sensitization of TiO{sub 2} with CdS or PbS improves the photoelectrochemical properties. - Abstract: Flower-like nanostructures of TiO{sub 2} were prepared by immersing Ti foil in 30% H{sub 2}O{sub 2} at 80 °C for times varying from 15 to 240 min. Upon annealing at 450 °C in an Ar atmosphere, the received amorphous samples crystallized in an anatase structure with rutile as a minority phase. SEM images revealed that partially formed flowers were present at the surface of the prepared samples as early as after 15 min of immersion. The size of the individual flowers increased from 400–800 nm after 15 min of reaction to 2.5–6.0 μm after 240 min. It was also found that surface is very rough and surface development is considerable. After 45 min of immersion, the nanoflowers were sensitized with CdS and PbS quantum dots (QDs-CdS/QDs-PbS) deposited using the SILAR method from water- and methanol-based precursor solutions at different concentrations (0.001–0.1 M). QDs-CdS crystallized in the hawleyite structure, while QDs-PbS in the galena form. SEM analysis showed the tendency of quantum dots to agglomerate at high concentrations of the precursor in water-based solutions. QDs obtained from methanol-based solutions were uniformly distributed. The produced QDs-PbS were smaller than QDs-CdS. Based on the optical reflectance spectra, the band-gap energies of TiO{sub 2} nanostructures with and without QDs were calculated to be 3.32 eV for flower-like TiO{sub 2} nanostructures and 2.35 eV for QDs-CdS. The photoelectrochemical behaviour of nanoflowers was found to improve significantly after the deposition of QDs-CdS.

  5. Influence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin

    Directory of Open Access Journals (Sweden)

    Marcio Vivan Cardoso

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp. Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX and one self-etch system (Clearfil SE Bond - SE were employed, varying the presence or absence of an intrapulpal pressure (IPP simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05. The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.

  6. Imaging a Pyramid Interior by ERT-3D Methods, Preliminar Results at El Castillo Pyramid, Chichen Itza, Mexico

    Science.gov (United States)

    Chavez, R. E.; Tejero, A.; Cifuentes, G.; HernaNdez-Quintero, J. E.; Garcia-Serrano, A.

    2016-12-01

    The well known Pyramid El Castillo, located in the archaeological site of Chichen Itza, in the Yucatan Peninsula is the emblematic structure of this archaeological site and elected as one of the man-made world seven wonders. The archaeological team that restored this structure during the 1920's discovered a smaller pyramid inside this prehispanic body, which corresponded to an older Mayan period. The possibility of finding other constructive periods inside this edifice should be important to reconstruct the Mayan history. Previous geophysical studies carried out by us in 2014, employed novel Electrical Resistivity Tomography (ERT) arrays that surrounded the pyramids surface with flat electrodes to obtain a 3D image of the subsoil. At that time, a low resistivity body was found beneath the pyramid, which was associated to a sinkhole filled with sweet water. Employing the same technique, a series of flat electrodes were deployed on each body conforming the pyramid, a total of 10 bodies were covered, employing a different number of electrodes trying to keep the distance between each electrode constant ( 3 m). Each body was treated as a single observation cube, where the apparent resistivity data measured was later inverted. A precise topographic control for each electrode was realized and introduced in the inversion process. 45,000 observation points within the pyramid were obtained. Initially, each working cube corresponding to a given pyramid's body was inverted. A composition of each inversion was assembled to form the resistivity distribution within the pyramid using a smooth interpolation method. A high resistivity anomaly was found towards the northern portion of the model that could be associated to the main stairway of the inner pyramid. The cavity detected during the 2014 survey was observed as a low resistivity anomaly found at the pyramid's base. At the moment, we are assembling the full observed resistivity data as a single file to compute an integrated

  7. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives.

    Science.gov (United States)

    Hosaka, Keiichi; Nakajima, Masatoshi; Monticelli, Francesca; Carrilho, Marcela; Yamauti, Monica; Aksornmuang, Juthatip; Nishitani, Yoshihiro; Tay, Franklin R; Pashley, David H; Tagami, Junji

    2007-10-01

    To evaluate the microtensile bond strength (microTBS) of two all-in-one self-etching adhesive systems and two self-etching adhesives with and without simulated hydrostatic pulpal pressure (PP). Flat coronal dentin surfaces of extracted human molars were prepared. Two all-in-one self-etching adhesive systems, One-Up Bond F (OBF; Tokuyama) and Clearfil S3 Bond (Tri-S, Kuraray Medical) and two self-etching primer adhesives, Clearfil Protect Bond (PB; Kuraray) and Clearfil SE Bond (SE; Kuraray) were applied to the dentin surfaces according to manufacturers' instructions under either a pulpal pressure (PP) of zero or 15 cm H2O. A hybrid resin composite (Clearfil AP-X, Kuraray) was used for the coronal buildup. Specimens bonded under PP were stored in water at 37 degrees C under 15 cm H2O for 24 h. Specimens not bonded under PP were stored under a PP of zero. After storage, the bonded specimens were sectioned into slabs that were trimmed to hourglass-shaped specimens, and were subjected to microtensile bond testing (microTBS). The bond strength data were statistically analyzed using two-way ANOVA and the Holm-Sidak method for multiple comparison tests (alpha = 0.05). The surface area percentage of different failure modes for each material was also statistically analyzed with three one-way ANOVAs and Tukey's multiple comparison tests. The microTBS of OBF and Tri-S fell significantly under PP. However, in the, PB and SE bonded specimens under PP, there were no significant differences compared with the control groups without PP. The microTBS of the two all-in-one adhesive systems decreased when PP was applied. However, the microTBS of both self-etching primer adhesives did not decrease under PP.

  8. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    Science.gov (United States)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  9. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses

    Science.gov (United States)

    Sayyed, M. I.; Çelikbilek Ersundu, M.; Ersundu, A. E.; Lakshminarayana, G.; Kostka, P.

    2018-03-01

    In this work, glasses in the MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) system, which show a great potential for optoelectronic applications, were used to evaluate their resistance under high energy ionizing radiations. The basic shielding quantities for determining the penetration of radiation in glass, such as mass attenuation coefficient (μ/ρ), half value layer (HVL), mean free path (MFP) and exposure buildup factor (EBF) values were investigated within the energy range 0.015 MeV ‒ 15 MeV using XCOM program and variation of shielding parameters were compared with different glass systems and ordinary concrete. From the derived results, it was determined that MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses show great potentiality to be used under high energy radiations. Among the studied glass compositions, Bi2O3 and WO3 containing glasses were found to possess superior gamma-ray shielding effectiveness.

  10. X-ray and electron diffraction studies of the structures of pseudo-perovskite compounds Pb2(Sc,Ta)O6 and Pb2(Mg,W)O6

    International Nuclear Information System (INIS)

    Baba-Kishi, K.Z.; Cernik, R.J.

    1992-01-01

    Electron diffraction patterns, X-ray precession patterns and synchrotron Rietveld powder diffraction profiles were used to study the crystal structure of the pseudo-perovskite compound Pb 2 (Sc, Ta)O 6 (PST). The results of a Rietveld refinement and single-crystal X-ray precession studies showed that PST has a lower symmetry than the cubic Fm3m in the paraelectric state. The remarkable similarities between the crystal structures of the antiferroelectric Pb 2 (Mg, W)O 6 (PMW) and ferroelectric PST are studied in detail by electron diffraction and it is suggested that PST is a weak or frustrated antiferroelectric oxide. The influence of the degree of structural long-range order on the existence of an antiferroelectric phase transition in PST and PMW is discussed. (orig.)

  11. Multiple matching scheme for broadband 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 single crystal phased-array transducer

    OpenAIRE

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-01-01

    Lead magnesium niobate–lead titanate single crystal 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and back...

  12. Infrared studies of the monoclinic-tetragonal phase transition in Pb(Zr,Ti)O3 ceramics

    International Nuclear Information System (INIS)

    Guarany, C A; Pelaio, L H Z; Araujo, E B; Yukimitu, K; Moraes, J C S; Eiras, J A

    2003-01-01

    Recently, the observation of a new monoclinic phase in the PbZr 1-x Ti x O 3 (PZT) system in the vicinity of the morphotropic phase boundary was reported. Investigations of this new phase were reported using different techniques such as high-resolution synchrotron x-ray powder diffraction and Raman spectroscopy. In this work, the monoclinic → tetragonal phase transition in PbZr 0.50 Ti 0.50 O 3 ceramics was studied using infrared spectroscopy between 1000 and 400 cm -1 . The four possible ν 1 -stretching modes (Ti-O and Zr-O stretch) in the BO 6 octahedron in the ABO 3 structure of PZT in this region were monitored as a function of temperature. The lower-frequency mode ν 1 -(Zr-O) remains practically unaltered, while both intermediate ν 1 -(Ti-O) modes decrease linearly as temperature increases from 89 to 263 K. In contrast, the higher-frequency ν 1 -(Ti-O) and ν 1 -(Zr-O) modes present anomalous behaviour around 178 K. The singularity observed at this mode was associated with the monoclinic → tetragonal phase transition in PbZr 0.50 Ti 0.50 O 3 ceramics

  13. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  14. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    Science.gov (United States)

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  15. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation.

    Science.gov (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-01-01

    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  16. Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices

    Science.gov (United States)

    Zhou, P. X.; Dong, S.; Liu, H. M.; Ma, C. Y.; Yan, Z. B.; Zhong, C. G.; Liu, J. -M.

    2015-01-01

    Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO3/PbTiO3 superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO3 in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures. PMID:26269322

  17. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    Science.gov (United States)

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses

  18. Primordial Pb, radiogenic Pb and lunar soil maturity

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1978-01-01

    The soil maturity index I/sub s//FeO does not apply to either 204 Pb/sub r/ or C/sub hyd/; both are directly correlated with the submicron Fe 0 (I/sub s/) content. They act as an index of soil maturity which is independent of soil composition. In contrast to primordial Pb, radiogenic Pb is lost during soil maturation. Radiogenic Pb is present in mineral grains and may be lost by solar wind sputtering (or volatilization) and not resupplied. 204 Pb coating grain surfaces acts as a reservoir to provide the 204 Pb being extracted in the Fe 0 formation process. Venting or some other volatile source may replenish the surface 204 Pb. 1 figure

  19. Virtual Reality Tumor Resection: The Force Pyramid Approach.

    Science.gov (United States)

    Sawaya, Robin; Bugdadi, Abdulgadir; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Alotaibi, Fahad E; Bajunaid, Khalid; AlZhrani, Gmaan A; Alsideiri, Ghusn; Sabbagh, Abdulrahman J; Del Maestro, Rolando F

    2017-09-05

    The force pyramid is a novel visual representation allowing spatial delineation of instrument force application during surgical procedures. In this study, the force pyramid concept is employed to create and quantify dominant hand, nondominant hand, and bimanual force pyramids during resection of virtual reality brain tumors. To address 4 questions: Do ergonomics and handedness influence force pyramid structure? What are the differences between dominant and nondominant force pyramids? What is the spatial distribution of forces applied in specific tumor quadrants? What differentiates "expert" and "novice" groups regarding their force pyramids? Using a simulated aspirator in the dominant hand and a simulated sucker in the nondominant hand, 6 neurosurgeons and 14 residents resected 8 different tumors using the CAE NeuroVR virtual reality neurosurgical simulation platform (CAE Healthcare, Montréal, Québec and the National Research Council Canada, Boucherville, Québec). Position and force data were used to create force pyramids and quantify tumor quadrant force distribution. Force distribution quantification demonstrates the critical role that handedness and ergonomics play on psychomotor performance during simulated brain tumor resections. Neurosurgeons concentrate their dominant hand forces in a defined crescent in the lower right tumor quadrant. Nondominant force pyramids showed a central peak force application in all groups. Bimanual force pyramids outlined the combined impact of each hand. Distinct force pyramid patterns were seen when tumor stiffness, border complexity, and color were altered. Force pyramids allow delineation of specific tumor regions requiring greater psychomotor ability to resect. This information can focus and improve resident technical skills training. Copyright © 2017 by the Congress of Neurological Surgeons

  20. Minimization of pyroelectric effects in relaxor-PbTiO3 crystals for piezoelectric sensors

    International Nuclear Information System (INIS)

    Tang, Yanxue; Shen, Zongyang; Zhang, Shujun; Jiang, Wenhua; Luo, Jun; Shrout, Thomas R.

    2014-01-01

    To minimize pyroelectric effects while keeping high piezoelectric effects in relaxor-PbTiO 3 single crystals, the crystallographic orientation dependence of the pyroelectric and piezoelectric coefficients were investigated for binary (1 − x)Pb(Mg 1/3 Nb 2/3 )O 3 –xPbTiO 3 (PMN–PT), ternary (1 − x − y)Pb(In 1/2 Nb 1/2 )O 3 –yPb(Mg 1/3 Nb 2/3 )O 3 –xPbTiO 3 (PIN–PMN–PT) and Mn-doped PIN–PMN–PT single crystals with the “4R” multidomain state. The secondary pyroelectric coefficients were calculated from the thermodynamic inter-relationship between the piezoelectric, elastic, and thermal expansion coefficients, being on the order of (1.16–1.23) × 10 −4  C m −2  K −1 for binary crystals and (0.97–2.03) × 10 −4  C m −2  K −1 for ternary ones. The primary pyroelectric coefficients were –(6.73–6.84) × 10 −4  C m −2  K −1 and −(5.44–6.43) × 10 −4  C m −2  K −1 for binary and ternary crystals, respectively. The pyroelectric coefficients could be reduced by matrix rotation, but at the cost of decreasing longitudinal piezoelectric coefficients d 33 . Of particular interest is that the maximum piezoelectric coefficients d 24 ∗ at θ = ±55 o and d 34 ∗ at θ = ±35 o by a counterclockwise rotation of θ about the X axis (θ is the rotation angle about the coordinate axes), or d 15 ∗ at θ = ±55 o , and d 35 ∗ at θ = ±35 o by a counterclockwise rotation the Y axis, were found on the order of 3000 pC N −1 . The corresponding pyroelectric coefficients could be reduced by ∼20%. The reduced pyroelectric coefficients that can contribute to decrease undesirable output signals, together with the high piezoelectric coefficients, enable relaxor-PT crystals as favorable candidates for high-sensitivity piezoelectric sensors. - Highlights: • Primary/secondary pyroelectric coefficients were determined for relaxor-PT crystals. • Pyroelectric coefficients could be reduced by

  1. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO3/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2015-01-01

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO 3 /Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO 3 /Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances

  2. Disponibilidade e fracionamento de Cd, Pb, Cu e Zn em função do pH e tempo de incubação com o solo Availability and fractionation of Cd, Pb, Cu, AND Zn in soil as a function of incubation time and pH

    Directory of Open Access Journals (Sweden)

    Évio Eduardo Chaves de Melo

    2008-06-01

    Full Text Available O pH e o tempo de contato influenciam a distribuição dos metais entre frações do solo e a eficiência da fitoextração. Objetivou-se, neste trabalho estudar a disponibilidade dos metais Cd, Pb, Cu e Zn para a fitoextração, bem como suas redistribuições no solo, em função do tempo de incubação em solo com e sem calagem. O solo recebeu Cd, Pb, Cu e Zn nas doses 20, 150, 100 e 150 mg kg-1, respectivamente, na forma de sal solúvel. As amostras foram incubadas por 210, 180, 150, 120, 90, 60, 30 e 0,5 dia. Terminada a incubação, mucuna preta (Stizolobium aterrimum Piper & Tracy foi cultivada por 30 dias. EDTA (10 mmol kg-1 foi aplicado sete dias, antes da coleta das plantas. As amostras de solo foram submetidas à extração química e fracionada. A concentração de metais pesados e a calagem afetaram a produção de matéria seca da parte aérea e da raiz. Em solos sem calagem, o aumento da solubilidade dos metais aumentou a fitoextração de Cd e Zn, mesmo sem aplicação do EDTA. A aplicação do EDTA ao solo com calagem mostrou-se eficiente para a fitoextração de Pb e Cu. A calagem reduziu os teores disponíveis de Cd, Pb, Cu e Zn. A calagem provocou redução nos teores de Cd, Pb, Cu e Zn trocáveis e aumento nas frações matéria orgânica, óxidos de ferro amorfo e cristalino.It is known that pH and incubation time influence the distribution of metals into soil fractions and therefore affect phytoextraction. Taking this in account, the aim of this work was to study the fractionation and availability of heavy metals for phytoextraction, as a function of incubation period in soils with or without liming. The soil samples were applied to Cd, Pb, Cu, and Zn at concentrations of 20, 150, 100, and 150 mg kg-1, respectively, in the form of soluble salt. The samples were kept incubated for high incubation periods: 210, 180, 150, 120, 90, 60, 30, and 0,5 day. After that, velvetbean (Stizolobium aterrimum Piper & Tracy was cultivated

  3. Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO{sub 2} porous film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Yanyan; Gong, Zezhou; Tao, Jiajia [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo [School of Electronic & Information Engineering, Hefei Normal University, Hefei, 230601 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Jiang, Xishun [School of Physics & Material Science, Anhui University, Hefei 230601 (China); School of Mechanical & Electronic Engineering, Chuzhou University, Chuzhou, 239000 (China); He, Gang; Wang, Peihong; Meng, Fanming [School of Physics & Material Science, Anhui University, Hefei 230601 (China)

    2015-11-15

    A novel translucent TiO{sub 2} porous film was prepared through etched method. The CdS, PbS and CdS/PbS nanoclusters were imbedded on TiO{sub 2} porous film by successive ionic layer adsorption and reaction method. Microstructure, morphology, optical and photoelectron-chemical properties of the as-synthesized thin films were investigated systematically. XRD and morphology analysis showed that PbS or CdS nanoclusters have been attached to the TiO{sub 2} porous films. It was found that the energy band gap of TiO{sub 2} porous film decreased from 3.46 to 3.2 eV after sensitized with nanoclusters. The photocurrent density of ITO/TiO{sub 2} photoelectrode increased from 0.017 to 0.28 mA/cm{sup 2} after co-sensitized with CdS and PbS nanoclusters. Besides, the photoelectrode sensitized with two sorts of nanoclusters showed evident higher photocurrent density than which sensitized just one sort of nanoclusters. The photocurrent density of ITO/TiO{sub 2}/PbS and TO/TiO{sub 2}/CdS photoelectrode was 0.11 mA/cm{sup 2} and 0.22 mA/cm{sup 2} respectively. 0.28 mA/cm{sup 2} can be obtained by ITO/TiO{sub 2}/CdS/PbS photoelectrode. The results showed that the optical and photoelectrochemistry properties and phtotcatalysis performance of TiO{sub 2} porous film were greatly improved by co-sensitized with CdS and PbS nanoclusters. - Graphical abstract: When CdS and PbS were brought in the cascade structure, such a Fermi level alignment causes upward and downward shifts of the band edges for PbS and CdS, respectively. Therefore the resulting band edges for the ITO/TiO{sub 2}/CdS/PbS devices are inferred to have a stepwise structure. The elevated conduction band edge of PbS provides a higher driving force for the injection of photogenerated electrons from PbS to CdS as well as the injection of excited holes from CdS to PbS. Such a structure offers efficient separation and transport of the excited electrons and holes. - Highlights: • Ti films were obtained from direct current

  4. Phase transitions of Pb(ZrxTi1-x)O3 ceramics

    International Nuclear Information System (INIS)

    Frantti, J.; Kakihana, M.; Ivanov, S.; Eriksson, S.; Rundloef, H.; Lantto, V.; Lappalainen, J.

    2002-01-01

    Recent experimental and theoretical reports on the structure of lead zirconate titanate [Pb(Zr x Ti 1-x )O 3 (PZT)] ceramics with compositions in the vicinity of the morphotropic phase boundary are discussed. There has been ambiguity concerning the low-temperature structure of x=0.52 samples, due to the superlattice reflections which were not explained by the reported monoclinic phase Cm [B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and L. E. Cross, Phys. Rev. B 63, 014103 (2001)]. Neutron powder diffraction (NPD) and Rietveld refinement were used to identify the space group symmetries of x=0.52 and x=0.53 samples at 10 K. Both samples had two coexisting phases R3c and Cm at 10 K. At 10 K, monoclinic angles of both samples were larger than at 295 K, as was the octahedral tilt angle of the R3c phase of the x=0.53 sample. We analyzed our previous and current NPD data to study the structural changes in PZT ceramics, 0.20≤x≤0.53, as a function of x and temperature. Bond-valence calculations were carried out to test the models used in Rietveld refinements. Valences of Zr and Ti ions were larger and smaller than their nominal valences, respectively, although the anomaly decreased with increasing x. The composition-weighted-average valence of Zr and Ti ions was close to +4, and the relationship between the positions and valences of Zr and Ti ions explains the main structural features of PZT ceramics as a function of x. The valence of Pb ions was slightly below +2 and decreased with increasing x until it started to slightly increase for x≥0.50. Average oxygen valency was found to be close to -2. Also spontaneous polarization values were computed and found to be reasonable

  5. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  6. The relativistic titls of Giza pyramids' entrance-passages

    Science.gov (United States)

    Aboulfotouh, H.

    The tilts of Giza pyramids' entrance-passages have never been considered as if they were the result of relativistic mathematical equations, and never been thought to encode the Earth's obliquity parameters. This paper presents an attempt to retrieve the method of establishing the equations that the pyramids' designer used to quantify the entrance-passages' tilts of these architectonic masterpieces. It proves that the pyramids' designer was able to include the geographic, astronomical and time parameters in one relativistic equation, encoding the date of the design of the Giza pyramids in the tilt of the entrance passage of the great pyramid.

  7. Electron density distribution in BaPb1−xSbxO3 superconducting oxides studied by double nuclear magnetic resonance methods

    International Nuclear Information System (INIS)

    Piskunov, Yu. V.; Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-01-01

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb 1−x Sb x O 3 superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of 17 O are measured systematically, and the contributions from 17 O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of 17 O- 207 Pb and 17 O- 121 Sb are measured in the metal phase of BaPb 1−x Sb x O 3 oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin 17 O- 207 Pb interaction are determined as functions of the local Knight shift 207 Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of 17 O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb 1−x Sb x O 3 oxides.

  8. Strong piezoelectric anisotropy d15/d33 in ⟨111⟩ textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics

    Science.gov (United States)

    Yan, Yongke; Priya, Shashank

    2015-08-01

    The shear mode piezoelectric properties of Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) ceramic with 72% ⟨111⟩ texture were investigated. The piezoelectric anisotropic factor d15/d33 was as high as 8.5 in ⟨111⟩ textured ceramic as compared to 2.0 in random counterpart. The high d15/d33 indicates the "rotator" ferroelectric characteristics of PMN-PZT system and suggests that the large shear piezoelectric response contributes towards the high longitudinal piezoelectric response (d33) in non-polar direction (d33 = 1100 pC/N in ⟨001⟩ textured ceramic vs. d33 = 112 pC/N in ⟨111⟩ textured ceramic).

  9. Monoanionic Tin Oligomers Featuring Sn–Sn or Sn–Pb Bonds: Synthesis and Characterization of a Tris(TriheteroarylstannylStannate and -Plumbate

    Directory of Open Access Journals (Sweden)

    Kornelia Zeckert

    2016-06-01

    Full Text Available The reaction of the lithium tris(2-pyridylstannate [LiSn(2-py6OtBu3] (py6OtBu = C5H3N-6-OtBu, 1, with the element(II amides E{N(SiMe32}2 (E = Sn, Pb afforded complexes [LiE{Sn(2-py6OtBu3}3] for E = Sn (2 and E = Pb (3, which reveal three Sn–E bonds each. Compounds 2 and 3 have been characterized by solution NMR spectroscopy and X-ray crystallographic studies. Large 1J(119Sn–119/117Sn as well as 1J(207Pb–119/117Sn coupling constants confirm their structural integrity in solution. However, contrary to 2, complex 3 slowly disintegrates in solution to give elemental lead and the hexaheteroarylditin [Sn(2-py6OtBu3]2 (4.

  10. Synthesis of Pb(II Imprinted Carboxymethyl Chitosan and the Application as Sorbent for Pb(II Ion

    Directory of Open Access Journals (Sweden)

    Abu Masykur

    2014-07-01

    Full Text Available The aims of this research is to synthesize Pb(II imprinted polymers with carboxymethyl chitosan (CMC as polymers and bisphenol A diglycidyl ether (BADGE as cross-linker (Pb-IIP. Chitosan (CTS, non imprinted polymer (NIP and Pb-IIP were characterized using infrared (IR spectroscopy, X-ray diffraction (XRD, surface area analyzer (SAA, scanning electron microscopy (SEM, and energy dispersive X-ray (EDX spectroscopy. The result showed that the adsorption was optimum at pH 5 and contact time of 250 min. Adsorption of Pb(II ion with all of adsorbents followed pseudo-second order kinetic equation. Adsorption of Pb(II ion on CTS followed Freundlich isotherm while that on NIP and Pb-IIP followed the Langmuir adsorption isotherm. The adsorbent of Pb-IIP give higher capacity than the NIP and CTS. Adsorption capacity of Pb-IIP, NIP and CTS were 167.1, 128.9 and 76.1 mg/g, respectively. NIP gave higher adsorption selectivity for Pb(II/Ni(II and Pb(II/Cu(II, whereas Pb-IIP showed higher adsorption selectivity for Pb(II/Cd(II.The hydrogen bonding dominated interaction between Pb(II ion on NIP and Pb-IIP.

  11. Stability of B2O3-PbO glasses under irradiation

    International Nuclear Information System (INIS)

    Biron, I.; Barbu, A.

    1987-07-01

    The stability of B 2 O 3 -PbO glasses under in situ electron irradiation have been investigated owing to a careful measurement of the local temperature rise of the sample under the beam. It is shown that, both inside and outside miscibility gap, droplets of pure lead feature Brownian Motion and coagulate at a rate depending on the electron flux and the temperature. The evolution of the density of particle have been measured and by using the coagulation theory of Smoluchowsky, the viscosity of the practically pur B 2 O 3 matrix has been obtained: it is drastically reduced by up to 10 orders of magnitude by irradiation. It is shown and discussed that this effect come from electronic excitation but is much more important when atomic displacement are present

  12. Pb and O isotope systematics in granulite facies xenoliths, French Massif Central: Implications for crustal processes

    International Nuclear Information System (INIS)

    Downes, H.; Kempton, P.D.; Harmon, R.S.; Briot, D.; Leyreloup, A.F.

    1991-01-01

    Pb and O isotope data are represented for a suite of granulite facies xenoliths found within Tertiary alkaline volcanic rocks of the Massif Central, France. The suite consists of ultramafic and mafic cumulates, metagabbros which are considered to represent basic liquids, felsic meta-igneous lithologies (charnockites) and metasediments. Ranges of δ 18 O values are +6.9 to +9.8per mille for mafic xenoliths, +9.3 to +10.2per mille for felsic meta-igneous samples and +6.1 to +11.8per mille for the metasediments. By comparison, δ 18 O values for mantle peridotites from the same region range from +5.1 to +6.9per mille, whilst local Hercynian granitoids vary from +8.6 to +12.0per mille. The 206 Pb/ 204 Pb ratios of the granulite xenoliths are between 17.77 and 19.19, 207 Pb/ 204 Pb ratios vary from 15.51 to 15.69, and 208 Pb/ 204 Pb ratios range from 38.07 to 40.07. In general, metasedimentary granulites have the more radiogenic Pb isotope compositions, whereas mafic meta-igneous samples are less radiogenic. These isotopic characteristics can be explained as the result of the interaction of mafic magmas with the metasedimentary crust into which they intruded. The release of heat also provoked melting of the more fusible parts of the lower crust and led to the formation of late-orogenic Hercynian granitoids. However, an additional component which provides less radiogenic Pb is also needed in the source of the granitoids; this may be the felsic meta-igneous xenoliths or middle/upper crustal gneisses. (orig.)

  13. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    Science.gov (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  14. Experimental Study of Liquidus of the "FeO"-SiO2-PbO Slags in Equilibrium with Air and with Metallic Lead

    Science.gov (United States)

    Shevchenko, Maksym; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    Limited data are available on phase equilibria of the "FeO"-SiO2-PbO slag system at conditions used in the lead smelting due to difficulties from lead vaporization and interactions with metal and ceramic crucibles. Recently experimental procedures have been developed and successfully applied to complex industrial slag-metal-matte systems involving high temperature equilibration on a primary phase substrate and rapid quenching followed by the electron probe X-ray microanalysis. The liquidus isotherms and invariant lines in the "FeO"-SiO2-PbO slag system in equilibrium with air and with metallic lead have been constructed. Preliminary data compared to the FactSage package predictions demonstrate differences in some aspects, indicating the possibility for further improvement of the thermodynamic database. The present work is a part of the integrated experimental and thermodynamic modelling research program on multi-phase lead systems in support of the optimization and development of complex lead smelting, refining and recycling technologies.

  15. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  16. Z-contrast imaging of ordered structures in Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3

    International Nuclear Information System (INIS)

    Yan, Y.; Pennycook, S.J.; Xu, Z.; Viehland, D.

    1998-02-01

    Lead-based cubic perovskites such as Pb(B 1/3 2+ B 2/3 5+ )O 3 (B 2+ Mg, Co, Ni, Zn; B 5+ = Nb, Ta) are relaxor ferroelectrics. Localized order and disorder often occur in materials of this type. In the Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) family, previous studies have proposed two models, space-charge and charge-balance models. In the first model, the ordered regions carry a net negative charge [Pb(Mg 1/2 Nb 1/2 )O 3 ], while in the second model it does not carry a net charge [Pb((Mg 2/3 Nb 1/3 ) 1/2 Nb 1/2 )O 3 ]. However, no direct evidence for these two models has appeared in the literature yet. In this paper the authors report the first direct observations of local ordering in undoped and La-doped Pb(Mg 1/3 Nb 2/3 )O 3 , using high-resolution Z-contrast imaging. Because the ordered structure in Ba(Mg 1/3 Nb 2/3 )O 3 is well known, the Z-contrast image from an ordered domain is used as a reference for this study

  17. Syntheses, structures, and characterizations of a new second-order nonlinear optical material: Pb2(SeO3)(NO3)2

    International Nuclear Information System (INIS)

    Meng, Chang-Yu; Geng, Lei; Chen, Wen-Ting; Wei, Ming-Fang; Dai, Kai; Lu, Hong-Yan; Cheng, Wen-Dan

    2015-01-01

    Highlights: • The new polar compound Pb 2 (SeO 3 )(NO 3 ) 2 was synthesized by the conventional hydrothermal method. • The compound was characterized structurally and optically, showing SHG efficiency about 2 times that of KDP. • The electronic band structures and density of states are investigated theoretically. - Abstract: A new polar compound Pb 2 (SeO 3 )(NO 3 ) 2 was synthesized by the conventional facile hydrothermal method at middle temperature 200 °C and characterized by X-ray single crystal diffraction, powder diffraction, UV–vis−NIR optical absorption spectrum and infrared spectrum. It crystallizes in the orthorhombic system, space group Pmn2 1 with a = 5.4669(3) Å, b = 10.3277(6) Å, c = 7.2610(4) Å, V = 409.96(4) Å 3 . The compound features a 2D [Pb 2 (SeO 3 )] 2 ∞ architectures composed of SeO 3 and PbO 2 /PbO 3 units. Two unequivalent N(1)O 3 and N(2)O 3 units is inserted between adjacent [Pb 2 (SeO 3 )] 2 ∞ layers to stabilize the whole crystal structure. Second-harmonic generation (SHG) efficiency has been evaluated for powder Pb 2 (SeO 3 )(NO 3 ) 2 samples, showing about 2 times that of KDP reference. Moreover, the compound can achieve I-type phase-matching according to measurements by the Kurtz–Perry method. Theoretical investigations based on the first-principle DFT method were also performed to gain further insights into the crystal structure and optical properties relationship. The calculated band gap value of 3.38 eV is consistent with the optical reflectance measurements value of 3.76 eV

  18. CuO nanostructures grown by the SILAR method: Influence of Pb-doping on the morphological, structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bayansal, F., E-mail: fbayansal@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay (Turkey); Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Gülen, Y. [Department of Physics, Faculty of Arts and Sciences, Marmara University, İstanbul (Turkey); Şahin, B. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Kahraman, S. [Department of Metallurgical and Materials Engineering, Faculty of Technology, Mustafa Kemal University, Hatay (Turkey); Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey); Çetinkara, H.A. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, Hatay (Turkey)

    2015-01-15

    Highlights: • CuO nanostructures with Pb-doping by the SILAR method is reported for the first time. • CuO nanostructures of different morphologies were grown by different Pb ratios. • E{sub g} values of the films can be altered by changing Pb doping concentrations. - Abstract: CuO nanostructures with and without Pb were synthesized by the Successive Ionic Layer Adsorption and Reaction method. The films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and ultraviolet–visible spectrophotometry. Scanning electron microscopy results showed that the morphology of the film surface was changed from plate-like to coral-like nanostructures with increasing Pb concentration. The X-ray diffraction patterns showed the monoclinic crystal structure with preferential planes of (1{sup ¯}11) and (1 1 1). Furthermore, ultraviolet–visible spectra showed that the band gap of the films was tailored by Pb doping.

  19. CuO nanostructures grown by the SILAR method: Influence of Pb-doping on the morphological, structural and optical properties

    International Nuclear Information System (INIS)

    Bayansal, F.; Gülen, Y.; Şahin, B.; Kahraman, S.; Çetinkara, H.A.

    2015-01-01

    Highlights: • CuO nanostructures with Pb-doping by the SILAR method is reported for the first time. • CuO nanostructures of different morphologies were grown by different Pb ratios. • E g values of the films can be altered by changing Pb doping concentrations. - Abstract: CuO nanostructures with and without Pb were synthesized by the Successive Ionic Layer Adsorption and Reaction method. The films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and ultraviolet–visible spectrophotometry. Scanning electron microscopy results showed that the morphology of the film surface was changed from plate-like to coral-like nanostructures with increasing Pb concentration. The X-ray diffraction patterns showed the monoclinic crystal structure with preferential planes of (1 ¯ 11) and (1 1 1). Furthermore, ultraviolet–visible spectra showed that the band gap of the films was tailored by Pb doping

  20. Multiple matching scheme for broadband 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystal phased-array transducer.

    Science.gov (United States)

    Lau, S T; Li, H; Wong, K S; Zhou, Q F; Zhou, D; Li, Y C; Luo, H S; Shung, K K; Dai, J Y

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double lambda8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  1. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO{sub 3}/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jian-Qing, E-mail: djqkust@sina.com; Zhang, Hu; Song, Yu-Min [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-07

    We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.

  2. Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems

    International Nuclear Information System (INIS)

    Singh, K.J.; Kaur, Sandeep; Kaundal, R.S.

    2014-01-01

    Gamma-ray shielding properties have been estimated in terms of mass attenuation coefficient, half value layer and mean free path values, whereas, structural studies have been performed in terms of density, optical band gap, glass transition temperature and longitudinal ultrasonic velocity parameters. X-ray diffraction, UV–visible, DSC and ultrasonic techniques have been used to explore the structural properties of PbO–SiO 2 –Al 2 O 3 and Bi 2 O 3 –SiO 2 –Al 2 O 3 glass systems. - Highlights: • Bi 2 O 3 –SiO 2 –Al 2 O 3 and PbO–SiO 2 –Al 2 O 3 glasses can replace conventional concretes as gamma-ray shielding materials. • Gamma-ray shielding properties improve with the addition of heavy metals. • Rigidity deteriorates with the increase in the content of heavy metals. • Bi 2 O 3 –SiO 2 –Al 2 O 3 glass system is better than PbO–SiO 2 –Al 2 O 3 glass system in terms of gamma-ray shielding as well as structural properties

  3. Fabrication and electrical investigations of Pb-doped BaTiO_3 ceramics

    International Nuclear Information System (INIS)

    Sareecha, N.; Shah, W.A.; Maqsood, A.; Anis-ur-Rehman, M.; Latif Mirza, M.

    2017-01-01

    Electrical properties of Pb doped BaTiO_3; PBT are investigated in the wide range of temperatures (40–700 °C) at 1 kHz frequency. PBT ceramics were fabricated through solid state sintering method. Pre fired BaTiO_3 prepared with Ba/Ti molar ratio of 0.98 was doped with PbCO_3 (<1 mole %). XRD patterns indicated perovskite phase with tetragonal structures (P4mm). Morphological studies (SEM) revealed grain development with increasing lead contents. With lead doping and its variation, Curie temperature (T_C) was shifted from 120 to 200 °C with broad dielectric constant peaks and dielectric anomalies with relaxor behavior were observed. Resistivity decreased with increasing temperature, all specimens showed semiconductor behavior with negative temperature coefficient of resistivity (NTCR) characteristics. Mobility of electrons increased with thermal activation due to hopping of charge carriers from one site to another. Ohmic conductivities and associated activation energies were evaluated by impedance spectroscopy. Conductivity followed the Arrhenius law with E_a = 1.187–1.169 eV which can be attributed to the ionic conduction owning to doubly ionized oxygen vacancies. Well-defined hysteresis P-E loops measured at room temperature depicted ferroelectric properties of the materials. - Graphical abstract: Temperature dependence of dielectric constant (Ɛ′) and resistivity (ρ) for pure and Pb-doped BaTiO_3 ceramics at 1 k Hz frequency. - Highlights: • Pb-doped BaTiO_3ceramics were fabricated through solid state sintering. • Electrical properties were studied at the temperatures 40–700 °C at 1 kHz. • Specimens showed negative temperature coefficient of resistivity characteristics. • Conductivity followed the Arrhenius law with E_a = 1.187–1.169 eV. • Ionic conduction was supposed to be responsible for conduction process.

  4. Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films

    Science.gov (United States)

    Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.

    2002-12-01

    We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.

  5. Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells

    KAUST Repository

    Etgar, Lioz

    2012-10-24

    We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH 3NH 3PbI 3) perovskite/TiO 2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH 3NH 3I and PbI 2 in γ-butyrolactone on a 400 nm thick film of TiO 2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH 3NH 3PbI 3 as a back contact. Importantly, the CH 3NH 3PbI 3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH 3NH 3PbI 3/TiO 2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J sc= 16.1 mA/cm 2, open-circuit photovoltage V oc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m 2 intensity. At a lower light intensity of 100W/m 2, a PCE of 7.3% was measured. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost, high-efficiency solar cells. © 2012 American Chemical Society.

  6. Characteristic of Ti-based PbO{sub 2} anodes with SnO{sub 2}+Sb{sub 2}O{sub 3} intermediate layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Tong, H.; Xu, W. [Yangzhou Univ., College of Chemistry and Chemical Engineering, Yangzhou (China)

    2006-07-01

    Ceramic coatings are used in many electrochemical applications, such as organic synthetic applications, wastewater treatment and oxygen production. These processes typically occur in aqueous sulphuric acid. Desirable features for electrode materials include electro-catalytic activity, high stability, low cost, good overall performance under mild conditions and commercial availability. Lead dioxide exhibits excellent chemical stability, high conductivity, high overpotential for oxygen evolution and lower cost in an acid medium. Studies have shown that the stability of active coating prepared by depositing lead dioxide on titanium substrate is poor. In order to solve this problems, methods of doping expensive noble metals or adding an intermediate layer have been examined. Electrode coatings are very sensitive to preparation procedures, in which precursors play an important role in the surface morphology, microstructure, final composition and stability of anodes. However, appreciable inorganic salt loss has been reported using traditional precursors. A polymeric precursor (PP) method commonly used in the preparation of nano-particles has certain advantages, such as easy manipulation and insensitivity to the presence of water. This study characterized the surface morphology and electrochemical behaviour of titanium (Ti)/tin oxide (SnO{sub 2}) plus antimony oxide ((Sb{sub 2}O{sub 3})/lead dioxide (PbO{sub 2}) anode with SnO{sub 2} plus Sb{sub 2}O{sub 3} intermediate coatings. The electrochemical performance of Ti/SnO{sub 2}+Sb{sub 2}O{sub 3}/PbO{sub 2} anode preparing intermediate layer by the PP method was compared with alcohol precursors. It was concluded that adding SnO{sub 2}+Sb2O{sub 3} intermediate layer to Ti/PbO{sub 2} anodes could enhance the lifetime and stability of the anodes, thus its performance. 10 refs., 2 tabs.

  7. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    Science.gov (United States)

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Homogenized electromechanical properties of crystalline and ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3 0.42PbTiO3

    Science.gov (United States)

    Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.

    2007-10-01

    A modelling framework that incorporates the peculiarities of microstructural features, such as the spatial correlation of crystallographic orientations and morphological texture in piezoelectrics, is established. The mathematical homogenization theory of a piezoelectric medium is implemented using the finite element method by solving the coupled equilibrium electrical and mechanical fields. The dependence of the domain orientation on the macroscopic electromechanical properties of crystalline as well as polycrystalline ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 (PMN-42% PT) is studied based on this model. The material shows large anisotropy in the piezoelectric coefficient ejK in its crystalline form. The homogenized electromechanical moduli of polycrystalline ceramic also exhibit significantly anisotropic behaviours. An optimum texture at which the piezoceramic exhibits its maximum longitudinal piezoelectric response is identified.

  9. Electron lone pair distortion facilitated metal-insulator transition in β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wangoh, L.; Quackenbush, N. F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Marley, P. M.; Banerjee, S. [Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 (United States); Sallis, S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-05-05

    The electronic structure of β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized “in-gap” state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the “in-gap” state. Moreover, we reveal that this state is a hybridized Pb 6s–O 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  10. Apparent vanishing of ferroelectricity in nanostructured BiScO3PbTiO3

    OpenAIRE

    Amorín , H; Jiménez , R; Ricote , J; Hungría , T; Castro , A; Algueró , M

    2010-01-01

    Abstract Nanostructured ceramics of high-temperature piezoelectric 0.375BiScO 3 -0.625PbTiO 3 were prepared by spark plasma sintering of nanocrystalline powders obtained by mechanosynthesis. The macroscopic electrical properties were characterized on dense ceramics with decreasing average grain size down to 28 nm. Results indicate that the electric field is screened by the electrically insulating grain boundaries at the nanoscale, which needs to be considered when discussing size effects i...

  11. Crystal orientation dependence of the optical bandgap of (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals

    International Nuclear Information System (INIS)

    Wan Xinming; Zhao Xiangyong; Chan, H.L.W.; Choy, C.L.; Luo Haosu

    2005-01-01

    The transmission spectra of rhombohedral 0.71Pb(Mg 1/3 Nb 2/3 )O 3 -0.29PbTiO 3 (PMN-0.29PT) and tetragonal PMN-0.38PT single crystals were obtained in the main crystallographic directions , and . The absorption coefficients were computed and the optical bandgaps were calculated in both direct and indirect transitions. The energy of phonons contributing in the indirect transition was also calculated. For PMN-0.38PT single crystal in all the three directions, the values of direct bandgaps E gd are all slightly lower than those of PMN-0.29PT single crystal, while the indirect bandgaps E gi are all higher. For different crystallographic directions, the values of E gi for -direction are lower compared with and directions, both for PMN-0.29PT and PMN-0.38PT single crystals. Some discussions about the B-site cation d-orbits and the O-anion 2p orbits that determine the basic energy level of the single crystals are presented. The optical transition mechanism was also discussed

  12. Amalgam shear bond strength to dentin using single-bottle primer/adhesive systems.

    Science.gov (United States)

    Cobb, D S; Denehy, G E; Vargas, M A

    1999-10-01

    To evaluate the in vitro shear bond strengths (SBS) of a spherical amalgam alloy (Tytin) to dentin using several single-bottle primer/adhesive systems both alone: Single Bond (SB), OptiBond Solo (Sol), Prime & Bond 2.1 (PB), One-Step (OS) and in combination with the manufacturer's supplemental amalgam bonding agent: Single Bond w/3M RelyX ARC (SBX) and Prime & Bond 2.1 w/Amalgam Bonding Accessory Kit (PBA). Two, three-component adhesive systems, Scotchbond Multi-Purpose (SBMP) and Scotchbond Multi-Purpose Plus w/light curing (S + V) and w/o light curing (S+) were used for comparison. One hundred eight extracted human third molars were mounted lengthwise in phenolic rings with acrylic resin. The proximal surfaces were ground to expose a flat dentin surface, then polished to 600 grit silicon carbide paper. The teeth were randomly assigned to 9 groups (n = 12), and dentin surfaces in each group were treated with an adhesive system according to the manufacturer's instructions, except for S + V specimens, where the adhesive was light cured for 10 s before placing the amalgam. Specimens were then secured in a split Teflon mold, having a 3 mm diameter opening and amalgam was triturated and condensed onto the treated dentin surfaces. Twenty minutes after condensation, the split mold was separated. Specimens were placed in distilled water for 24 hrs, then thermocycled (300 cycles, between 5 degrees C and 55 degrees C, with 12 s dwell time). All specimens were stored in 37 degrees C distilled water for 7 days, prior to shear strength testing using a Zwick Universal Testing Machine at a cross-head speed of 0.5 mm/min. The highest to the lowest mean dentin shear bond strength values (MPa) for the adhesive systems tested were: S + V (10.3 +/- 2.3), SBX (10.2 +/- 3.5), PBA, (6.4 +/- 3.6), SOL (5.8 +/- 2.5), SBMP (5.7 +/- 1.8), S+ (4.8 +/- 2.3), PB (2.7 +/- 2.6), SB (2.7 +/- 1.1) and OS (2.5 +/- 1.8). One-way ANOVA and Duncan's Multiple Range Test indicated significant

  13. Magnetoelectric properties of Pb free Bi2FeTiO6: A theoretical investigation

    Science.gov (United States)

    Patra, Lokanath; Ravindran, P.

    2018-05-01

    The structural, electronic, magnetic and ferroelectric properties of Pb free double perovskite multiferroic Bi2FeTiO6 are investigated using density functional theory within the general gradient approximation (GGA) method. Our structural optimization using total energy calculations for different potential structures show a minimum energy for a non-centrosymmetric rhombohedral structure with R3c space group. Bi2FeTiO6 is found to be an antiferromagnetic insulator with C-type magnetic ordering with bandgap value of 0.3 eV. The calculated magnetic moment of 3.52 μB at Fe site shows the high spin arrangement of 3d electrons which is also confirmed by our orbital projected density of states analysis. We have analyzed the characteristics of bonding present between the constituents of Bi2FeTiO6 with the help of calculated partial density of states and Born effective charges. The ground state of the nearest centrosymmetric structure is found to be a G-type antiferromagnet with half metallicity showing that by the application of external electric field we can not only get a polarized state but also change the magnetic ordering and electronic structure in the present compound indicating strong magnetoelectric coupling. The cation sites the coexistence of Bi 6s lone pair (bring disproportionate charge distribution) and Ti4+ d0 ions which brings covalency produces off-center displacement and favors a non-centrosymmetric ground state and thus ferroelectricity. Our Berry phase calculation gives a polarization of 48 µCcm-2 for Bi2FeTiO6.

  14. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO2 nanosheets array film photoelectrodes

    International Nuclear Information System (INIS)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong; Mu, Yannan; Su, Pengyu; Wang, Guangxia; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO 2 NSs) films were reported for the first time. The TiO 2 NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO 2 NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO 2 NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO 2 NSs was with photocurrent density of 6.12 mA cm −2 under an illumination of AM 1.5 G, indicating the TiO 2 NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO 2 nanosheets films were fabricated by a simple hydrothermal. • TiO 2 nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO 2 nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm −2

  15. Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing

    International Nuclear Information System (INIS)

    Li, C.C.; Drymiotis, F.; Liao, L.L.; Dai, M.J.; Liu, C.K.; Chen, C.L.; Chen, Y.Y.; Kao, C.R.; Snyder, G.J.

    2015-01-01

    Highlights: • Ag serves as a promising bonding material for PbTe operating at T Hot ⩽ 400 °C. • The Ag foils reacted vigorously with PbTe to form Ag 2 Te at 550 °C. • The Seebeck coefficient of Ag/PbTe/Ag is slightly higher than that of pure PbTe. • A cost-effective way for long-term operations at high temperature. - Abstract: We use the rapid hot-pressing method to bond Ag foil onto pure PbTe in order to assess its effectiveness as a bonding layer material for thermoelectric module applications. Scanning electron microscopy and X-ray diffraction are employed to examine intermetallic compound formation and microstructure evolution during isothermal aging at 400 °C and 550 °C. We find that Ag is a promising bonding material for PbTe modules operating at T Hot ⩽ 400 °C. Additionally, our approach highlights a highly effective and inexpensive method to metallize PbTe prior to module assembly

  16. The electric field manipulation of magnetization in La{sub 1−x}Sr{sub x}CoO{sub 3}/Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q. M.; Li, Q.; Zhou, W. P.; Wang, L. Y.; Yang, Y. T.; Wang, D. H., E-mail: wangdh@nju.edu.cn; Lv, L. Y.; Du, Y. W. [Jiangsu Key Laboratory for Nano Technology and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, R. L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2014-04-07

    La{sub 1−x}Sr{sub x}CoO{sub 3} (x = 0.18, 0.33, and 0.5) films were grown epitaxially on piezoelectric Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} substrates by pulsed laser deposition. The magnetization of these films varies with the external electric field, showing the magnetoelectric effect. With different doping content of Sr{sup 2+} ions, the change of magnetization for these films show different behaviors with increasing temperature, which can be attributed to the competition between electric-field-induced changes of spin state and double exchange interaction. This work presents an alternative mechanism to investigate the electric field control of magnetism in magnetoelectric heterostructure by tuning the spin state.

  17. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, N.B. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); K.A.M.P. & N.K.P. Science College, Pimpalner, Sakri, Dhule, M.S. (India); Baviskar, P.K. [Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon, 425001 M.S. (India); Ahire, R.R. [S.G. Patil Science, Sakri, Dhule, M.S. (India); Sankapal, B.R., E-mail: brsankapal@gmail.com [Nano Materials and Device Laboratory, Department of Applied Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440010 M.S. (India)

    2017-04-15

    Simple chemical route has been employed to grow interconnected nanobeads of CdO having necklace like structure through air annealing of cadmium hydroxide nanowires. This nanobeads of n-CdO with high surface area has been decorated with p-PbS nanoparticles resulting in the formation of nano-heterojunction which has been utilized effectively as room temperature liquefied petroleum gas (LPG) sensor. The room temperature gas response towards C{sub 2}H{sub 5}OH, Cl{sub 2}, NH{sub 3}, CO{sub 2} and LPG was investigated, among which LPG exhibits significant response. The maximum gas response of 51.10% is achieved with 94.54% stability upon exposure of 1176 ppm concentration of LPG at room temperature (27 °C). The resulting parameters like gas response, response and recovery time along with stability studies has been studied and results are discussed herein. - Highlights: • Conversion of Cd(OH){sub 2} nanowires to CdO nanonecklace by air annealing at 290 °C. • Decoration of PbS nanoparticles over CdO nanobeads by SILAR method. • Formation of n-CdO/p-PbS nano-heterojunction as room temperature LPG sensor. • Maximum gas response of 51.10% with 94.54% stability.

  18. Photoelectrochemical property of CdS and PbS cosensitized on the TiO2 array by novel successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Lv, Pin; Fu, Wuyou; Mu, Yannan; Sun, Hairui; Su, Shi; Chen, Yanli; Yao, Huizhen; Ding, Dong; Liu, Tie; Wang, Jun; Yang, Haibin

    2015-01-01

    Highlights: • (CdS + PbS)/TiO 2 NTWs array was firstly synthesized by novel SILAR (N-SILAR) method. • N-SILAR method could shorten time, simplify procedure, lower cost. • (CdS + PbS)/TiO 2 NTWs contain both PbS/CdS/TiO 2 and CdS/PbS/TiO 2 composites structure. • (CdS + PbS)/TiO 2 NTWs can improve electron transport and reduce chemical erosion both. • The photocurrent of (CdS + PbS)/TiO 2 NTWs was 4.1 mA/cm 2 —8 times as high as TiO 2 . - Abstract: TiO 2 film materials have very wide applications in photovoltaic conversion techniques. And, TiO 2 nanotubes array film with nanowires directly formed on top (denoted as TiO 2 NTWs) was prepared by the anodization method. CdS and PbS quantum dots (QDs) were firstly cosensitized on the TiO 2 NTWs array (denoted as (CdS + PbS)/TiO 2 NTWs) by novel successive ionic layer adsorption and reaction (N-SILAR), which only needed a cation mixed solution containing Cd 2+ and Pb 2+ and an anionic solution containing S 2− . This N-SILAR method can not only effectively shorten the experimental time, simplify the experiment procedure and reduce the experiment cost, but also make the material of (CdS + PbS)/TiO 2 NTWs possess the advantages of improving electron transport and reducing chemical erosion. Moreover, the photocurrent of (CdS + PbS)/TiO 2 NTWs was 4.1 mA/cm 2 under an illumination of 100 mW/cm 2 . The most eye-popping part was that the result was 8 times higher than that of the bare TiO 2 NTWs array. The result of photoelectrochemical measurements indicated that this novel material had a potential application in photovoltaic devices

  19. O PROCESSAMENTO DA LEITURA NA AQUISIÇÃO DA MORFOLOGIA DERIVACIONAL EM PORTUGUÊS BRASILEIRO (PB POR DISLÉXICOS

    Directory of Open Access Journals (Sweden)

    José Ferrari Neto

    2013-01-01

    Full Text Available Este estudo investiga a aquisição da morfologia derivacional do português brasileiro (PB por crianças com diagnóstico preliminar de dislexia. A literatura tem sugerido uma dificuldade dos disléxicos em processar palavras morfologicamente complexas (CAPLAN, 1998, o que remete a um possível distúrbio no modo como palavras derivadas são representadas no léxico mental dos portadores de dislexia e por eles processadas. Outra explicação cabível seria a de que o disléxico apresenta problemas na passagem do reconhecimento da forma gráfica da palavra para a forma fônica correspondente. Em qualquer dos casos, essa dificuldade se reflete tanto nas habilidades de leitura quanto na aquisição das regras subjacentes aos processos derivacionais de formação de palavras em PB. A fim de prover mais evidências sobre essa questão, realizou-se um experimento, valendo-se da Técnica de Decisão Morfossemântica (BESSE; VIDIGAL DE PAULA; GOMBERT, 2005, numa adaptação da que foi usada por Mota (2008. Foram testadas 25 crianças sem queixa de dislexia, divididas em dois grupos etários, as quais serviram como controle, e 16 crianças com diagnóstico preliminar desse distúrbio, também divididas em dois grupos etários. Os resultados indicam que as crianças disléxicas que adquirem PB têm maior dificuldade em ler e processar as palavras morfologicamente complexas, em relação às crianças não disléxicas que adquirem essa mesma língua.

  20. Ge(001)-(<2 1>, <0 3>)-Pb(<2 1>, <0 6>)↔Pb: Low-temperature two-dimensional phase transition

    DEFF Research Database (Denmark)

    Bunk, Oliver; Nielsen, Martin Meedom; Zeysing, J.H.

    2001-01-01

    The Ge(001)-((2 1)(0 3))-Pb surface reconstruction with a lead coverage of 5/3 monolayer is on the borderline between the low-coverage covalently-bonded and high-coverage metallic lead overlayers. This gives rise to an unusual low-temperature phase transition with concomitant changes in the bonding...

  1. Oxygen tracer studies of ferroelectric fatigue in Pb(Zr,Ti)O3 thin films

    International Nuclear Information System (INIS)

    Schloss, Lawrence F.; McIntyre, Paul C.; Hendrix, Bryan C.; Bilodeau, Steven M.; Roeder, Jeffrey F.; Gilbert, Stephen R.

    2002-01-01

    Long-range oxygen motion has been observed in Pt/Pb(Zr,Ti)O 3 /Ir thin-film structures after electrical fatigue cycling at room temperature. Through an exchange anneal, isotopic 18 O was incorporated as a tracer into bare Pb(Zr,Ti)O 3 (PZT) films, allowing secondary ion mass spectrometry measurements of the tracer profile evolution as a function of the number of polarization reversals. Observation of 18 O tracer redistribution during voltage cycling, which is presumably mediated by oxygen vacancy motion, was found to be strongly dependent upon the thermal history of the film. However, there was no strong correlation between the extent of 18 O tracer redistribution and the extent of polarization suppression induced by voltage cycling. Our results suggest that oxygen vacancy motion plays, at most, a secondary role in ferroelectric fatigue of PZT thin films

  2. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells

    Science.gov (United States)

    Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian

    2018-02-01

    Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.

  3. catena-Poly[lead(II-[μ-2,4-diamino-6-(piperidin-1-ylpyrimidine N-oxide-κ2O:O]di-μ-iodido

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2009-07-01

    Full Text Available The N-oxide O atom of the minoxidil unit in the 1/1 adduct with lead(II iodide, [PbI2(C9H15N5O]n, bridges two PbII atoms, as do each of the I atoms. The bridging interactions give rise to a linear chain motif that propagates along the a axis of the orthorhombic unit cell. The coordination sphere around the six-coordinate PbII atom is a distorted ψ-monocapped octahedron in which the stereochemically active lone pair caps one of the faces defined by the O and I atoms forming the longer Pb—O or Pb—I bonds. The PbII atom lies on a mirror plane; the mirror plane is perpendicular to the pyrimidine ring and it bisects the piperidine ring. The aromatic ring is disordered about the mirror plane with respect to the 1-nitrogen and 5-carbon atoms.

  4. Egyptian pyramid or Aztec pyramid: How should we describe the industrial architecture of automotive supply chains in Europe?

    OpenAIRE

    Vincent FRIGANT (GREThA, CNRS, UMR 5113)

    2011-01-01

    This article questions a terminology that is frequently used to describe automotive supply chains’ industrial architecture. Since vertical disintegration became a trend in the 1980s, this architecture has been represented using the image of the pyramid. Implicitly, authors have had the image of an Egyptian pyramid in mind, one that is pointed at the top and broad at the base. We will demonstrate that even if pyramids are an appropriate image, in the auto industry the Aztec variant, with its s...

  5. Low temperature formation of ferroelectric PbTiO3 films by laser ablation with 2nd laser irradiation; Reiki hikari laser heiyo laser ablation ho ni yoru kyoyudentai PbTiO3 usumaku no teion keisei

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, H.; Kawai, T. [Osaka University, Osaka (Japan)

    1997-08-20

    The unique advantage of the pulsed laser deposition is its ability to produce highly oriented stoichiometric films at a low substrate temperature. Ferroelectric PbTiO3 thin films have been formed using 2nd laser assisted laser ablaion technique at low temperature, i.e., 350degC, on Sr7iO3 single-crystal substrates and Pt/MgO electrodes. The second laser irradiation at the substrate surface is quite effective for crystallization of the films at low substrate temperature below 400degC. The suitable energy density (fluence) of the irradiation laser is in the range of 30-100 mJ/cm{sup 2}. X-ray diffraction patterns of PbTiO3 thin films show c-axis orientation, with a rocking angle of 1.0 - 0.5deg. These films exhibit ferroelectric hysteresis loop. The dielectric constant and remanent polalyzation of the PbTiO3 films are in the range of 120-150 and 60-80 {mu}C/cm{sup 2}, respectively. 31 refs., 10 figs., 1 tab.

  6. Influence of La and Sr addition on the structural parameter of PbTiO3

    International Nuclear Information System (INIS)

    Garcia, D.; Mascarenhas, Y.P.; Oliveira Paiva Santos, C. de; Eiras, J.A.

    1989-01-01

    Compositions of (Pb 1-x Ln x ) (Ti 1-y Mn y )O 3 (Ln = La, Sr; 0 0 C and sintered at 1200 0 C. The influence of the adition of La and Sr in the structural parameters of the tetragonal lattice of the lead titanate (PbTiO 3 ) was investigated with X-ray diffraction. The doping, with La or Sr, increase the lattice parameter a and decrease de parameter c of the PbTiO 3 . The variation of a and c increase with the dopant concentration and is greather in the La doped samples. The addition of 1% mol of Mn in these compositions increase the their sinterability. The apparent densites were compared with those calculated from the lattice parameters a and c. A decrease of the Curie temperature T c was observed when the concentration of La or Sr was increased. (author) [pt

  7. On the astronomical orientation of the IV dynasty Egyptian pyramids and the dating of the second Giza pyramid

    OpenAIRE

    Magli, Giulio

    2003-01-01

    The data on the astronomical orientation of the IV dynasty Egyptian pyramids are re-analyzed and it is shown that such data suggest an inverse chronology between the `first` and the `second` Giza pyramid.

  8. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  9. Specific heat (1-330K), magnetic susceptiblity and Meissner effect Bi-(Pb)-Sr-Ca-Cu-O samples

    International Nuclear Information System (INIS)

    Junod, A.; Eckert, D.; Triscone, G.; Brunner, O.; Muller, J.; Zhao, Z.

    1989-01-01

    Five samples in the Bi 2 - y Pb y Sr 2 CaCu 2 O 8 + x system selected for their sharp diamagnetic transitions are characterized with particular emphasis on the specific heat. The behavior of the magnetic susceptibility upon doping with holes (Pb) is similar to that of the La 1 - y Sr y CuO 4 system

  10. Photoelectron emission as a tool to assess dose of electron radiation received by ZrO2:PbS films

    International Nuclear Information System (INIS)

    Krumpane, Diana; Dekhtyar, Yury; Surkova, Indra; Romanova, Marina

    2013-01-01

    PbS nano dots embedded in ZrO 2 thin film matrix (ZrO 2 :PbS films) were studied for application in nanodosimetry of electron radiation used in radiation therapy. ZrO 2 :PbS films were irradiated with 9 MeV electron radiation with doses 3, 7 and 10 Gy using medical linear accelerator. Detection of the dosimetric signal was made by measuring and comparing photoelectron emission current from ZrO 2 :PbS films before and after irradiation. It was found that electron radiation decreased intensity of photoemission current from the films. Derivatives of the photoemission spectra were calculated and maximums at photon energies 5.65 and 5.75 eV were observed. Amplitude of these maximums decreased after irradiation with electrons. Good linear correlation was found between the relative decrease of the intensity of these maximums and dose of electron radiation. Observed changes in photoemission spectra from ZrO 2 :PbS films under influence of electron radiation suggested that the films may be considered to be effective material for electron radiation dosimetry. Photoelectron emission is a tool that allows to read the signal from such dosimeter. (authors)

  11. Lead nitroprusside: A new precursor for the synthesis of the multiferroic Pb{sub 2}Fe{sub 2}O{sub 5,} an anion-deficient perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Diego M. [Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán (Argentina); Nieva, Gladys [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche (Argentina); Franco, Diego G. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche (Argentina); Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC – CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Gómez, María Inés [Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán (Argentina); and others

    2013-08-15

    In order to investigate the formation of multiferroic oxide Pb{sub 2}Fe{sub 2}O{sub 5}, the thermal decomposition of Pb[Fe(CN){sub 5}NO] has been studied. The complex precursor and the thermal decomposition products were characterized by IR and Raman spectroscopy, thermal analysis, powder X-ray diffraction (PXRD), scanning electron microscopy and magnetic measurements. The crystal structure of Pb[Fe(CN){sub 5}NO] was refined by Rietveld analysis. It crystallizes in the orthorhombic system, space group Pnma. The thermal decomposition in air produces highly pure Pb{sub 2}Fe{sub 2}O{sub 5} as final product. This oxide is an anion deficient perovskite with an incommensurate superstructure. The magnetic measurements confirm that Pb{sub 2}Fe{sub 2}O{sub 5} shows a weak ferromagnetic signal probably due to disorder in the perfect antiferromagnetic structure or spin canting. The estimated ordering temperature from the fit of a phenomenological model was 520 K. The SEM images reveal that the thermal decomposition of Pb[Fe(CN){sub 5}NO] produces Pb{sub 2}Fe{sub 2}O{sub 5} with small particle size. - Highlights: • Pb[Fe(CN){sub 5}NO] was synthesized and characterized. • Pb[Fe(CN){sub 5}NO] belongs to orthorhombic crystal system, space group Pnma. • Pb{sub 2}Fe{sub 2}O{sub 5} was obtained by thermal decomposition of Pb[Fe(CN){sub 5}NO]. • Pb{sub 2}Fe{sub 2}O{sub 5} is a weak ferromagnet due to spin canting. • Ordering temperature of Pb{sub 2}Fe{sub 2}O{sub 5} from the fit of a phenomenological model was 520 K. - Graphical abstract: Field cooling (FC) and zero field cooling (ZFC) magnetization curves at H = 10 and 1000 Oe for Pb{sub 2}Fe{sub 2}O{sub 5} obtained at 750 °C. Remnant magnetization after applying H = 1 T, FC procedure at 0.8 Oe. The fitted expression (see text) yield an ordering temperature T{sub o} = 520 K. Display Omitted.

  12. Phase fragility and mechatronic reliability for Pb(Mg1/3Nb2/3O3–PbTiO3 ferroelectric single crystals — A review

    Directory of Open Access Journals (Sweden)

    F. Fang

    2014-01-01

    Full Text Available Single crystals of (1-xPb(Mg1/3Nb2/3O3–xPbTiO3(PMN–xPT near their morphotropic phase boundaries (MPBs are under extensive investigations for their extraordinary high dielectric and piezoelectric behavior. Applications of those single crystals facilitated the breakthrough in ultrasonic transducer materials and devices. Ferroelectric materials are known to be fragile which often leads to various reliability failures in applications involving electric loadings. In a mechanical sense, the failure modes concern the fracture under an intensive electric field, and the fatigue crack propagation under an alternating electric field. In an electrical sense, the failure is exhibited by degenerated hysteresis loop by shrinking the remnant polarization and expanding the coercive field. All these modes degrade the performance for ferroelectric devices. As a departure from the tetragonal (T ferroelectric materials, exemplified by BaTiO3 and Pb(ZrTiO3, the domain structures of PMN–PT around the MPB are versatile and intricate, depending sensitively on the composition variation, orientation and previous loading history. In this review, the attention is mainly focused on three aspects. First, the phase fragility and multiphase coexistence are presented for both [100]- and [101]-oriented PMN–PT single crystals. Second, investigations on electric field-induced fatigue crack propagation are described, along with the orientation effect on the crack propagation behavior. Third, the inverse effects of the phase transition and fatigue crack growth on the polarization behavior, or the interaction between the mechanical and electrical degradations will be elucidated. The review aims for better understanding the underlying mechanism for the ultrahigh performance of the PMN–PT single crystals, to bridge the studies of ferroelectric materials from the mechanical and electrical senses, as well as to evaluate the reliability of PMN–PT single crystals under device

  13. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jian; Batra, Vaishali; Han, Hui; Kotru, Sushma, E-mail: skotru@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Pandey, Raghvendar K. [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States)

    2015-09-15

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structure with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.

  14. Effects of gamma-ray irradiation on optical properties of ZnO-PbO-B2O3 glasses

    DEFF Research Database (Denmark)

    Sharma, G.; Thind, K.S.; Manupriya, -

    2006-01-01

    Effects of gamma-ray irradiation on some optical properties of xZnO(.)2xPbO(.)(1-3x)B2O3 glasses have been studied in the wavelength range 300-800 nm. Decrease in transmittance indicates the formation of color-center defects. Values for the energy-band gap, the width of the energy tail above...... the mobility gap and the cut-off wavelength have been measured before and after irradiation. Changes in the optical properties are explained in terms of radiation-induced structural defects and the composition of the glass....

  15. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  16. Dielectric and piezoelectric properties of sol-gel derived Ca doped PbTiO3

    International Nuclear Information System (INIS)

    Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2006-01-01

    Synthesis of Ca doped PbTiO 3 powder by a chemically derived sol-gel process is described. Crystallization characteristics of different compositions Pb 1-x Ca x TiO 3 (PCT) with varying calcium (Ca) content in the range x = 0-0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x ≤ 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol-gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol-gel derived Pb 1-x Ca x TiO 3 ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (k t /k p ) with a high d 33 = 80 pC/N, ε' = 298 and low dielectric loss (tan δ = 0.0041)

  17. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    Science.gov (United States)

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  18. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reduction of P2O5 in the glass-ceramic where the P2O5 is to form Li3PO4 nuclei for growth of high expansion crystalline SiO2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.

  19. A study on radiation energy of Pyramidal shape 1- Effect of housing within a Pyramid model on cancer growth and some blood parameters of mice

    International Nuclear Information System (INIS)

    El-Abiad, N.M.; Lotfi, S.A.; El Hadary, A.A.; Nagi, G.A.

    2010-01-01

    A study of solid tumor growth retardation by impaling the pyramid energy radiation in a pyramidal model shape was carried out. The great Pyramid of Egypt has evoked a keen interest since 1920, both for its architectural, marvel and mystical significance. Its strange thing (via shaping of razers, longer shelf life of vegetables, alerted states of consciousnesses, sleeping in hum and, wound healing). Power energy radiations are said to occur within a pyramid constructed in the exact geometric properties of Giza pyramid. The effect of housing in two different pyramidal shapes on cancer growth and some blood physiological indices in mice infected with cancer were observed. The results obtained that housing in pyramid shape cage significantly reduced the development of cancer, significant increase in liver enzymes activity and α feto proteins, however, no effect was observed in levels of thyroid hormones concentration when compared with their matched value in ordinary 2 inverted pyramid cages. It could be concluded that the radiation energy of pyramidal shapes might improve certain biochemical and physiological indices leading to tumor growth retardation

  20. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    Science.gov (United States)

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.

  1. Interconnected TiO2 Nanowire Networks for PbS Quantum Dot Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Fan Xu

    2012-01-01

    Full Text Available We present a simple method for the fabrication of an interconnected porous TiO2 nanostructured film via dip coating in a colloidal suspension of ultrathin TiO2 nanowires followed by high-temperature annealing. The spheroidization of the nanowires and the fusing of the loosely packed nanowire films at the contact points lead to the formation of nanopores. Using this interconnected TiO2 nanowire network for electron transport, a PbS/TiO2 heterojunction solar cell with a large short-circuit current of 2.5 mA/cm2, a Voc of 0.6 V, and a power conversion efficiency of 5.4% is achieved under 8.5 mW/cm2 white light illumination. Compared to conventional planar TiO2 film structures, these results suggest superior electron transport properties while still providing the large interfacial area between PbS quantum dots and TiO2 required for efficient exciton dissociation.

  2. Domain morphology controlled crystal habits in PbTiO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudhe, C.M., E-mail: chandraguptadudhe@gmail.com; Khambadkar, S.J.

    2015-11-05

    Various crystal habits and associated domain structures in PbTiO{sub 3} nanocrystals synthesized by a modified sol–gel method have been studied. Structural and morphological characterizations of synthesized nanoparticles have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found from the -z coordinates of O{sub 1} and O{sub 2} that the Ti–O{sub 6} octahedra were distorted slightly, favorable for the ferroelectric nature. TEM images show butterfly like, plate like, irregular sphere like and oval-shaped habits of the nanocrystals. 90° and 180° domain structures in these crystal habits were explored from their morphologies and appearance in the field of views. The mutual association between the crystal habit and the direction spontaneous polarization P{sub s} due to domain structures was explored. Domain wall energies of 90° and 180° domains were also estimated from the kinetic process of domain nucleation. - Highlights: • Various crystal habits of PbTiO{sub 3} nanoparticles were examined by TEM. • 90° and 180° domains were explored in the nanocrystal. • Crystal habits and domain structures were correlated. • Domain wall energies were estimated.

  3. Exciton binding energy in a pyramidal quantum dot

    Indian Academy of Sciences (India)

    A ANITHA

    2018-03-27

    Mar 27, 2018 ... screening function on exciton binding energy in a pyramid-shaped quantum dot of ... tures may generate unique properties and they show .... where Ee is the ground-state energy of the electron in ... Figure 1. The geometry of the pyramidal quantum dot. base and H is the height of the pyramid which is taken.

  4. Optimization of Firing Temperature of PbO-doped SnO2 Sensor for Detection of Acetone, Methanol, Propanol

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2009-08-01

    Full Text Available In the present work, the response of a set of three PbO (1 % wt doped thick film SnO2 sensors fired at different firing temperatures (6500 C, 7500 C, 8500 C have been studied. The selection of appropriate firing temperature is necessary for the sensor fabrication in order to achieve the highest sensitivity for a particular species of gas. To achieve this, thick film PbO-doped sensor were fabricated on a 1˝x1˝ alumina substrate. The sensitivity of these sensors has been studied at different operating temperatures (1500 C-3500 C upon exposure to acetone, methanol and propanol. The sensor fired at 8500 C besides having good adhesion yields maximum sensitivity at an operating temperature of 2500 C for all gases except acetone for which it gives maximum response at 2000 C.

  5. Imaging the Cheops Pyramid

    CERN Document Server

    Bui, H D

    2012-01-01

    In this book Egyptian Archeology  and Mathematics meet. The author is an expert in theories and applications in Solid Mechanics and Inverse Problems, a former professor at Ecole Polytechnique and now works with Electricité de France on maintenance operations on nuclear power plants. In the Autumn of 1986, after the end of the operation on the King’s chamber conducted under the Technological and Scientific Sponsorship of EDF, to locate a cavity, he was called to solve a mathematical inverse problem, to find the unknown tomb of the King and the density structure of the whole pyramid based on measurements of microgravity made inside and outside of the pyramid. This book recounts the various search operations on the pyramid of Cheops made at the request of the Egyptian and French authorities in 1986-1987. After the premature end of the Cheops operation in the Autumn of 1986, following the fiasco of unsuccessful drillings in the area suspected by both architects G. Dormion and J.P. Goidin and microgravity aus...

  6. Sonographic findings in primary diseases of renal pyramids

    International Nuclear Information System (INIS)

    Rao, B.K.

    1987-01-01

    Primary pathologic processes involving the renal pyramids such as papillary necrosis, drug-induced necrosis or calcinosis, cysts, neoplasms, and medullary nephrocalcinosis are rare. Thirty-four patients with primary renal pyramid diseases underwent US evaluation for altered morphology; a 5-MHz transducer was used. In 20 patients site-specific changes in the pyramid (e.g., papillary necrosis at the apex, small cysts at the base in medullary cystic disease, tubular calcification in MSK, corticomedullary hyperechogenicity in oxalosis) were noted on US. Sonographic delineation of the site and pattern of pathologic changes in the renal pyramid may help to identify specific diseases

  7. Photoelectrochemical property of CdS and PbS cosensitized on the TiO{sub 2} array by novel successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Pin; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Sun, Hairui; Su, Shi; Chen, Yanli; Yao, Huizhen; Ding, Dong; Liu, Tie; Wang, Jun; Yang, Haibin [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-02-05

    Highlights: • (CdS + PbS)/TiO{sub 2}NTWs array was firstly synthesized by novel SILAR (N-SILAR) method. • N-SILAR method could shorten time, simplify procedure, lower cost. • (CdS + PbS)/TiO{sub 2}NTWs contain both PbS/CdS/TiO{sub 2} and CdS/PbS/TiO{sub 2} composites structure. • (CdS + PbS)/TiO{sub 2}NTWs can improve electron transport and reduce chemical erosion both. • The photocurrent of (CdS + PbS)/TiO{sub 2}NTWs was 4.1 mA/cm{sup 2}—8 times as high as TiO{sub 2}. - Abstract: TiO{sub 2} film materials have very wide applications in photovoltaic conversion techniques. And, TiO{sub 2} nanotubes array film with nanowires directly formed on top (denoted as TiO{sub 2}NTWs) was prepared by the anodization method. CdS and PbS quantum dots (QDs) were firstly cosensitized on the TiO{sub 2}NTWs array (denoted as (CdS + PbS)/TiO{sub 2}NTWs) by novel successive ionic layer adsorption and reaction (N-SILAR), which only needed a cation mixed solution containing Cd{sup 2+} and Pb{sup 2+} and an anionic solution containing S{sup 2−}. This N-SILAR method can not only effectively shorten the experimental time, simplify the experiment procedure and reduce the experiment cost, but also make the material of (CdS + PbS)/TiO{sub 2}NTWs possess the advantages of improving electron transport and reducing chemical erosion. Moreover, the photocurrent of (CdS + PbS)/TiO{sub 2}NTWs was 4.1 mA/cm{sup 2} under an illumination of 100 mW/cm{sup 2}. The most eye-popping part was that the result was 8 times higher than that of the bare TiO{sub 2}NTWs array. The result of photoelectrochemical measurements indicated that this novel material had a potential application in photovoltaic devices.

  8. Phenomenological theory of size effects in ultrafine ferroelectric particles (PbTiO3-type)

    International Nuclear Information System (INIS)

    Jiang, B.; Bursill, L.A.

    1998-01-01

    A new phenomenological model is proposed and discussed to study the size effects on phase transitions in PbTiO 3 -type ferroelectric particles. This model, by taking size effects on the phenomenological Landau-Ginzburg-Devonshire coefficients into consideration, can successfully explain the size effects on Curie temperature, c/a ratio, thermal and dielectric properties of lead-titanate-type ferroelectric particles. Theoretical and experimental results for PbTiO 3 fine particles are also compared and discussed. The relationship between the current model and the model of Zhong et al (Phys. Rev. B 50, 698 (1994)) is also presented. (authors)

  9. Fabrication and electrical investigations of Pb-doped BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sareecha, N., E-mail: nsareecha@hotmail.com [Laboratory of Physical Chemistry, Department of Chemistry, Islamia University of Bahawalpur (Pakistan); Shah, W.A. [Glass and Ceramics Research Centre, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600 (Pakistan); Maqsood, A. [Nano Scale Physics Laboratory, Department of Physics, Air University, PAF Complex E-9, Islamabad (Pakistan); Anis-ur-Rehman, M. [Applied Thermal Physics Laboratory, COMSATS Institute of Information and Technology, Park Road, Islamabad 44000 (Pakistan); Latif Mirza, M. [Laboratory of Physical Chemistry, Department of Chemistry, Islamia University of Bahawalpur (Pakistan)

    2017-06-01

    Electrical properties of Pb doped BaTiO{sub 3}; PBT are investigated in the wide range of temperatures (40–700 °C) at 1 kHz frequency. PBT ceramics were fabricated through solid state sintering method. Pre fired BaTiO{sub 3} prepared with Ba/Ti molar ratio of 0.98 was doped with PbCO{sub 3} (<1 mole %). XRD patterns indicated perovskite phase with tetragonal structures (P4mm). Morphological studies (SEM) revealed grain development with increasing lead contents. With lead doping and its variation, Curie temperature (T{sub C}) was shifted from 120 to 200 °C with broad dielectric constant peaks and dielectric anomalies with relaxor behavior were observed. Resistivity decreased with increasing temperature, all specimens showed semiconductor behavior with negative temperature coefficient of resistivity (NTCR) characteristics. Mobility of electrons increased with thermal activation due to hopping of charge carriers from one site to another. Ohmic conductivities and associated activation energies were evaluated by impedance spectroscopy. Conductivity followed the Arrhenius law with E{sub a} = 1.187–1.169 eV which can be attributed to the ionic conduction owning to doubly ionized oxygen vacancies. Well-defined hysteresis P-E loops measured at room temperature depicted ferroelectric properties of the materials. - Graphical abstract: Temperature dependence of dielectric constant (Ɛ′) and resistivity (ρ) for pure and Pb-doped BaTiO{sub 3} ceramics at 1 k Hz frequency. - Highlights: • Pb-doped BaTiO{sub 3}ceramics were fabricated through solid state sintering. • Electrical properties were studied at the temperatures 40–700 °C at 1 kHz. • Specimens showed negative temperature coefficient of resistivity characteristics. • Conductivity followed the Arrhenius law with E{sub a} = 1.187–1.169 eV. • Ionic conduction was supposed to be responsible for conduction process.

  10. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO{sub 2} nanosheets array film photoelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Su, Pengyu; Wang, Guangxia; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Yang, Haibin, E-mail: yanghb@jlu.edu.cn [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-10-25

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO{sub 2}NSs) films were reported for the first time. The TiO{sub 2}NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO{sub 2}NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO{sub 2}NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO{sub 2}NSs was with photocurrent density of 6.12 mA cm{sup −2} under an illumination of AM 1.5 G, indicating the TiO{sub 2}NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO{sub 2} nanosheets films were fabricated by a simple hydrothermal. • TiO{sub 2} nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO{sub 2} nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm{sup −2}.

  11. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    International Nuclear Information System (INIS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-01-01

    Highlights: ► A method from new respect to characterize and measure the bond strength is proposed. ► We calculate the D pb of a series of various bonds to justify our approach. ► A quite good linear relationship of the D pb with the bond lengths for series of various bonds is shown. ► Take the prediction of strengths of C–H and N–H bonds for base pairs in DNA as a practical application of our method. - Abstract: A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by D pb . Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the D pb of base pairs in DNA along C–H and N–H bonds are obtained for the first time. All results show that C 7 –H of A–T and C 8 –H of G–C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate D pb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules

  12. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

      DAFTAR PUSTAKA Abbas M.M., Abass L.K and Salman U., (2012, Influences of Sintering Time on the Tc of Bi2-xCuxPb0.3Sr2Ca2Cu3010+ High Temperature Superconductors, Energy Procedia 18, 215-224  Abbas, M.M., Abbas, L.K., Bahedh, H.S. 2015. Superconducting Properties of Bi2-SbxPb0,3Sr1,9Ba0,1Ca2Cu3O10+δ Compounds. Journal of Applied Science Research. 11. 22: 164-172 Darsono, N., Imaduddin, A., Raju, K., Yoon, D.H., (2015, Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling, J Supercond Nov Magn. E. Chew,. (2010, Superconducting Transformer Design And Construction, University of Canterbury, Christchurch, New Zealand. March Hamadneh, I., Halim, S. A., dan Lee, C. K., (2006,  Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared Via Coprecipitation Method at Different Sintering Time, J. Mater. Sci, 41: 5526-5530. Hermiz G.Y., Aljurani B.A., Beayaty M.A., (2014, Effect of Mn Substitution on the Superconducting Properties of Bi1.7Pb0,3Sr2Ca2-xMnxCu3O10+, International Journal Of Engineering and Advanced Technology (IJEAT. 3. 4: 213-217 John R Hull, (2003, Applications of high-temperature superconductors in power technology, Reports on Progress in Physics, Volume 66, Number 11 Lu, X.Y., Yi, D., Chen, H., Nagata, A. 2016. Effect of Sn, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes. Physics Procedia. 81: 129-132 Meretliev Sh., Sadykov K.B., Berkeliev A., (2000, Doping of High Temperature Superconductors, Turk J Phy.24: 39-48 Mohammed, N. H., Ramadhan A., Ali I. A., Ibrahim, I. H., dan Hassan, M. S, (2012, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, 3: 224-233. Roumie, M., Marhaba, S., Awad R., Kork M., Hassan I., Mawassi R., (2014, Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb-2223 Phase, Journal of Supercond Nov Magn, 27: 143-153 Serkan

  13. Relevance of the pyramidal syndrome in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Álvarez, N; Díez, L; Avellaneda, C; Serra, M; Rubio, M Á

    Pyramidal signs (hyperreflexia, spasticity, Babinski sign) are essential for the diagnosis of amyotrophic lateral sclerosis (ALS). However, these signs are not always present at onset and may vary over time, besides which their role in disease evolution is controversial. Our goal was to describe which pyramidal signs were present and how they evolved in a cohort of patients with ALS, as well as their role in prognosis. Retrospective analysis of prospectively collected patients diagnosed with ALS in our centre from 1990 to 2015. Of a total of 130 patients with ALS, 34 (26.1%) patients showed no pyramidal signs at the first visit while 15 (11.5%) had a complete pyramidal syndrome. Of those patients without initial pyramidal signs, mean time of appearance of the first signs was 4.5 months. Babinski sign was positive in 64 (49.2%) patients, hyperreflexia in 90 (69.2%) and 22 (16.9%) patients had spasticity. Pyramidal signs tended to remain unchanged over time, although they seem to appear at later stages or even disappear with time in some patients. We found no association between survival and the presence of changes to pyramidal signs, although decreased spasticity was associated with greater clinical deterioration (ALSFR scale) (P<.001). A quarter of patients with ALS initially showed no pyramidal signs and in some cases they even disappear over time. These data support the need for tools that assess the pyramidal tract. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3−33%PbTiO3 Ferroelectric Single Crystal Substrate

    International Nuclear Information System (INIS)

    Huang Nai-Xing; LÜ Tian-Quan; Zhang Rui; Wang Yu-Ling; Cao Wen-Wu

    2014-01-01

    Dispersion relations of Love mode acoustic guided waves propagation in Pb(Mg 1/3 Nb 2/3 )O 3 −33%PbTiO 3 (PMN-0.33 PT) single crystal with a gold electrode film are calculated. There is no cross coupling among Love wave modes, which is conducive to eliminating the cross interference between modes. The general formula is derived to precisely measure the thickness of the electrode. More acoustic energy would be concentrated inside the electrode with the increase of film thickness for a given frequency. Compared with the PZT-5 ceramic, [001] c poled PMN-33%PT single crystal has a slower attenuation of the amplitude of the acoustic guided wave. Therefore, single crystal is extremely suitable for making low loss acoustic wave devices with a high operating frequency

  15. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8+δ

    International Nuclear Information System (INIS)

    Finnemore, D.K.; Xu, M.; Kouzoudis, D.; Bloomer, T.; Kramer, M.J.; McKernan, S.; Balachandran, U.; Haldar, P.

    1996-01-01

    In the growth of Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ from mixed powders of Pb-doped Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like open-quote open-quote chicken pox close-quote close-quote growing on the grains at about 700 degree C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb) 2 Sr 2 Ca 1 Cu 2 O 8+δ , and are definitely not a Pb rich phase. copyright 1996 American Institute of Physics

  16. Phase equilibria and homogeneity range of the high temperature superconducting compound (Bi,Pb)2+xSr2Ca2Cu3O10+δ

    International Nuclear Information System (INIS)

    Kaesche, S.

    1995-01-01

    For the superconducting cuprates (Bi,Pb) 2+x Sr 2 Ca 2 Cu 3 O 10+y phase equilibria, the homogeneity region, and the phase formation has been studied in the temperture range 800 to 890 C. Sintered samples were prepared by a solid state reaction starting from Bi 2 O 3 , PbO, CuO and carbonates CaCO 3 and SrCO 3 in a three-stage calcination process. For the phase identification polarization microscopy, X-ray diffraction and susceptibility measurements have been applied. Multi-phase regions were determined in the cross section of the quasi-ternary system (Bi,Pb) 2 O 3 -SrO-CaO-CuO with constant Bi/(Bi+Pb) ratio 0.84 taking into account the 2223-phase. The homogeneity region was determined as function of Sr, Ca, Bi and Pb concentration. Its maximum size was found at 850 C

  17. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    Science.gov (United States)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  18. [Pyramidal syndrome in lateral amyotrophic sclerosis: clinico-morphological analysis].

    Science.gov (United States)

    Musaeva, L S; Zavalishin, I A; Gulevskaia, T S

    2003-01-01

    Retrospective clinical analysis with a special focus on pyramidal syndrome expression in the disease course as well as morphological study of brain and spinal structures in all levels of cortical-spinal projection (from brain motor cortex to spinal lumbar segments) have been conducted for 11 section cases of lateral amyotrophic sclerosis (LAS), sporadic type. Two groups of patients were studied: with pronounced pyramidal syndrome (spasticity, hyperreflexia, etc)--7 cases and with some signs of pyramidal deficiency (anisoreflexia, stability of peritoneal reflexes)--4 cases. Pyramidal syndrome in LAS is considered as an emergence of current neurodegenerative process, embracing a significant part of upper motor neurons of both precentral convolution and its axons along the whole length of cerebrospinal axis in the form of cytoplasmic inclusions and axonal spheroids. A presence of pathomorphological changes in other upper segmental structures of motor control reveals their role in pyramidal deficiency. Comparative analysis showed that expression of pyramidal syndrome signs and its correlation to atrophic paresis appearances is specifically determined by the severity of upper and lower motor neurons lesions. With regard to morphological changes in CNS structures, the peculiarities of some pyramidal syndrome appearances in LAS are analyzed.

  19. Structural, electrical, and magnetic properties of Pb2−xLaxCrO5 (0≤x≤0.15)

    International Nuclear Information System (INIS)

    Indovski, Biljana; Singh, M.P.; Razavi, F.S.

    2013-01-01

    We report structural, electrical, and magnetic properties of a parent and La-doped polycrystalline Pb 2−x La x CrO 5 . The X-ray study suggests that La-doping alters the lattice parameters of Pb 2 CrO 5 and the solubility limit of La is 7.5%. Temperature dependent resistivity data exhibit that both doped and parent materials are semiconducting in nature. Furthermore, La-doping induces electrical conduction and significantly reduces the electrical bandgap of Pb 2 CrO 5 . A lowest bandgap of 1.16 eV is observed in the samples containing 7.5% of La. Magnetic measurements reveal that Pb 2 CrO 5 is characterized by a weak Curie–Weiss type paramagnetic behavior with the effective magnetic moment of 0.17 μ B . Also, La-doping has induced a ferromagnetic behavior with a Curie temperature of 293 K. Observed physical properties are explained based on the possible oxygen vacancy and multiple oxidation states of Cr induced by La-doping

  20. Luminescence characteristics of Pb2+ centres in undoped and Ce3+-doped Lu3Al5O12 single-crystalline films and Pb2+→Ce3+ energy transfer processes

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Makhov, A.; Mares, J.A.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2007-01-01

    At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce 3+ -doped Lu 3 Al 5 O 12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb 2+ -based centres were identified. The processes of energy transfer from the host lattice to Pb 2+ and Ce 3+ ions and from Pb 2+ to Ce 3+ ions were investigated. Competition between Pb 2+ and Ce 3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb 2+ centres with the 3.6 eV absorption band of Ce 3+ centres, an effective nonradiative energy transfer from Pb 2+ ions to Ce 3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce 3+ centres and decrease of the Ce 3+ -related luminescence intensity

  1. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) O4 reaction using the electron pair localization function.

    Science.gov (United States)

    Scemama, Anthony; Caffarel, Michel; Ramírez-Solís, Alejandro

    2009-08-06

    We study the nature of the electron pairing at the most important critical points of the singlet potential energy surface of the 2O2 O4 reaction and its evolution along the reaction coordinate using the electron pair localization function (EPLF) [Scemama, A.; Chaquin, P.; Caffarel, M. J. Chem. Phys. 2004, 121, 1725]. To do that, the 3D topology of the EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geometry the EPLF analysis reveals four equivalent covalent bonds and two lone pairs on each oxygen atom. Along the reaction path toward dissociation it is found that the two oxygen-oxygen bonds are not broken simultaneously but sequentially, and then the lone pairs are rearranged. In a more general perspective, the usefulness of the EPLF as a unique tool to analyze the topology of electron pairing in nontrivial chemical bonding situations as well as to visualize the major steps involved in chemical reactivity is emphasized. In contrast with most standard schemes to reveal electron localization (atoms in molecules, electron localization function, natural bond orbital, etc.), the newly introduced EPLF function gives a direct access to electron pairings in molecules.

  2. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    Science.gov (United States)

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  4. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 : A positron annihilation lifetime spectroscopy study

    Science.gov (United States)

    Keeble, D. J.; Singh, S.; Mackie, R. A.; Morozov, M.; McGuire, S.; Damjanovic, D.

    2007-10-01

    Positron annihilation lifetime spectroscopy measurements identify A - and B -site cation vacancies in ferroelectric perovskite oxides (ABO3) . Crystal PbTiO3 and ceramic lead zirconium titanate (PZT) were studied and gave consistent values for the lifetime resulting from positron localization at lead vacancies VPb . Positron trapping to B -site vacancies was inferred in PZT. Temperature dependent studies showed that the defect specific trapping rate was higher for VB compared to VPb , consistent with the larger negative charge. Doping PZT with Fe increased the fraction positron trapping to VB compared to VPb -type defects.

  5. Adaptação transcultural para o português brasileiro do Parental Bonding Instrument (PBI Cross-cultural adaptation of Parental Bonding Instrument (PBI to Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Simone Hauck

    2006-08-01

    Full Text Available OBJETIVO: O artigo apresenta a adaptação transcultural do Parental Bonding Instrument, um questionário auto-aplicável desenvolvido em 1979 e usado desde então para avaliar a percepção da qualidade do vínculo com os pais até os 16 anos. MÉTODO: Foram realizadas as etapas de equivalência conceitual, equivalência dos itens, equivalência semântica, equivalência operacional, equivalência funcional e aprovação da versão final pelo autor original do instrumento. RESULTADOS: Os critérios de equivalência foram satisfeitos, tendo a versão final sido aprovada pelo autor do instrumento original. CONCLUSÃO: A adaptação do Parental Bonding Instrument disponibiliza para uso um instrumento que já demonstrou ser extremamente útil em pesquisas de risco e resiliência nas últimas décadas, ao avaliar a percepção de características do comportamento dos pais tradicionalmente associadas ao desenvolvimento da personalidade.OBJETIVE: This article aims to present a cross-cultural adaptation of the Parental Bonding Instrument to Brazilian Portuguese. It is a self-administered questionnaire developed in 1979, which has been used since then to measure the subjective experience of being parented to the age of 16 years. METHOD: The following steps were performed: conceptual equivalence, item equivalence, semantic equivalence, operational equivalence, functional equivalence, and approval of the final version by the author of the original instrument. RESULTS: The study has reached the objectives of equivalence, and the final Brazilian Portuguese version has been approved by the original author. CONCLUSION: The study provides a Brazilian Portuguese version of an instrument that has been proven extremely useful in risk and resilience researches over the past decades, assessing the perception of parental characteristics traditionally related to personality development.

  6. Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz

    International Nuclear Information System (INIS)

    Su Rui; Zhang Hong; Han Wei; Chen Jun

    2015-01-01

    The Si–O bond breaking event in the α-quartz at the first triplet (T_1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E′ center (NBOHC-E′) is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54 Å. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E′ is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E′ is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E′ and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital. (paper)

  7. Teacher Acquisition of Functional Analysis Methods Using Pyramidal Training

    Science.gov (United States)

    Pence, Sacha T.; St. Peter, Claire C.; Giles, Aimee F.

    2014-01-01

    Pyramidal training involves an experienced professional training a subset of individuals who, in turn, train additional individuals. Pyramidal training is effective for training a variety of behavior-analytic skills with direct-care staff, parents, and teachers. As teachers' roles in behavioral assessment increase, pyramidal training may be…

  8. Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths

    Science.gov (United States)

    Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi

    2018-03-01

    The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.

  9. Competing hydrogen bonding in methoxyphenols: The rotational spectrum of o-vanillin

    Science.gov (United States)

    Cocinero, Emilio J.; Lesarri, Alberto; Écija, Patricia; Basterretxea, Francisco; Fernández, José A.; Castaño, Fernando

    2011-05-01

    The conformational preferences of o-vanillin have been investigated in a supersonic jet expansion using Fourier transform microwave (FT-MW) spectroscopy. Three molecular conformations were derived from the rotational spectrum. The two most stable structures are characterized by a moderate O sbnd H···O dbnd C hydrogen bond between the aldehyde and the hydroxyl groups, with the methoxy side chain either in plane (global minimum a- cis-trans) or out of plane (a- cis-gauche) with respect to the aromatic ring. In the third conformer the aldehyde group is rotated by ca. 180°, forming a O sbnd H···O hydrogen bond between the methoxy and hydroxyl groups (s- trans-trans). Rotational parameters and relative populations are provided for the three conformations, which are compared with the results of ab initio (MP2) and density-functional (B3LYP, M05-2X) theoretical predictions.

  10. Muon-oxygen bonding in V2O3

    International Nuclear Information System (INIS)

    Chan, K.C.B.; Lichti, R.L.; Boekema, C.

    1986-01-01

    A muon site search using calculated internal fields has been performed for V 2 O 3 , where purely dipolar fields allow a site determination free from covalent complications. The obtained sites are a subset of the Rodriguez and Bates sites found in α-Fe 2 O 3 and indicate muon oxygen bond formation. The sites missing at low temperatures are consistent with the vanadium pairing mechanism for the metal-to-insulator (corundum-to-monoclinic) phase transition. (orig.)

  11. Fabrication and study of the electrical properties of PbO/Fe based ...

    African Journals Online (AJOL)

    Fabrication and study of the electrical properties of PbO/Fe based composite ... is aimed at fabrication and study of the electrical properties of cermets resistor, ... obtained and this largely depended on the composition of the materials used.

  12. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    Science.gov (United States)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  13. Multiple matching scheme for broadband 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal phased-array transducer

    Science.gov (United States)

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double λ /8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  14. Effect of excess Mg and Excess Nb incorporation into the B-site of pyrochlore in the Pb-Mg-Nb-O system

    Directory of Open Access Journals (Sweden)

    Mergen, A.

    2002-12-01

    Full Text Available In the Pb-Mg-Nb-O system, excess Mg and excess Nb incorporation into the B-site of PMN pyrochlore were investigated along the compositons of Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x where x=0.1, 0.2, 0.3, 0.4, 0.522 and Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x where x=0.1, 0.2, 0.29 respectively. Excess Mg incorporation led to the formation of perovskite and excess Nb resulted in formation of Pb2Nb2O7 monoclinic pyrochlore. The densities of the PMN pyrochlore-PMN perovskite mixtures decreased with an increase in Mg concentration. The relative permittivity of the mixtures increased with decreasing pyrochlore content. The effect of pyrochlore on the permittivity follows the Weiner’s mixture rule up to a pyrochlore content of 50 vol%.

    Se investigó la incorporación en lugares B de pirocloro PMN de un exceso de Mg y un exceso de Nb. En el sistema Pb-Mg-Nb-O2 las composiciones analizadas fueron Pb1.83Mg0.29+xNb1.71-xO6.39-1.5x donde x=0.1, 0.2, 0.3, 0.4, 0.522 y en Pb1.83Mg0.29-xNb1.71+xO6.39+1.5x donde x= 0.1, 0.2,0.29. El exceso de Mg condujo a la formación de perovskita y el exceso de Nb resultó en la formación del pirocloro monolínico, Pb2Nb2O7. La densidad de la mezcla de PMN pirocloro-perovskita dismunuye con el aumento de la concentración de Mg. La permitividad dieléctrica de las mezclas aumenta con la disminución del contenido de pirocloro. El efecto del pirocloro sobre la permitividad sigue la regla de mezclas de Weiner hasta conenidos de pirocloro del 50%.

  15. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  16. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  17. Dielectric and piezoelectric properties of sol-gel derived Ca doped PbTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Arun Kumar Singh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)]. E-mail: drvin_gupta@rediffmail.com; Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2006-06-15

    Synthesis of Ca doped PbTiO{sub 3} powder by a chemically derived sol-gel process is described. Crystallization characteristics of different compositions Pb{sub 1-x}Ca {sub x}TiO{sub 3} (PCT) with varying calcium (Ca) content in the range x = 0-0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x {<=} 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol-gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol-gel derived Pb{sub 1-x}Ca {sub x}TiO{sub 3} ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (k {sub t}/k {sub p}) with a high d {sub 33} = 80 pC/N, {epsilon}' = 298 and low dielectric loss (tan {delta} = 0.0041)

  18. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    Science.gov (United States)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  19. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    International Nuclear Information System (INIS)

    Kariyado, Toshikaze

    2015-01-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca 3 PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca 3 PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types. (paper)

  20. Relaxation of the chemical bond skin chemisorption size matter ZTP mechanics H2O myths

    CERN Document Server

    Sun, Chang Q

    2014-01-01

    The aim of this book is to explore the detectable properties of a material to the parameters of bond and non-bond involved and to clarify the interdependence of various properties. This book is composed of four parts; Part I deals with the formation and relaxation dynamics of bond and non-bond during chemisorptions with uncovering of the correlation among the chemical bond, energy band, and surface potential barrier (3B) during reactions; Part II is focused on the relaxation of bonds between atoms with fewer neighbors than the ideal in bulk with unraveling of the bond order-length-strength (BOLS) correlation mechanism, which clarifies the nature difference between nanostructures and bulk of the same substance; Part III deals with the relaxation dynamics of bond under heating and compressing with revealing of rules on the temperature-resolved elastic and plastic properties of low-dimensional materials; Part IV is focused on the asymmetric relaxation dynamics of the hydrogen bond (O:H-O) and the anomalous behav...

  1. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  2. Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers

    International Nuclear Information System (INIS)

    Lee, Kwangbae; Rhee, Byung Roh; Lee, Chanku

    2001-01-01

    We have investigated the feasibility of the Pt/PtO x multilayer as an electrode barrier for Pb(Zr,Ti)O 3 (PZT)-based ferroelectric random access memories. PtO x and Pt layers were prepared on polycrystalline-Si/SiO 2 /Si substrates by means of the sputtering method in Ar and O 2 ambience, and the Pb(Zr 0.53 Ti 0.47 )O 3 layer was prepared by the sol-gel method. A capacitor consisting of Pt/PtO x /PZT/PtO x /Pt/PtO x /poly-Si had a remanent polarization of 18 μC/cm 2 and a low coercive field of 32 kV/cm. The polarization fatigue behavior of test capacitors was improved as compared with that of Pt/PZT/Pt, which showed negligible fatigue loss of 15% after 10 11 switching repetitions with a frequency of 1 MHz. Copyright 2001 American Institute of Physics

  3. Intraoperative tractography and neuronavigation of the pyramidal tract

    International Nuclear Information System (INIS)

    Nimsky, C.; Ganslandt, O.; Weigel, D.; Keller, B. von; Stadlbauer, A.; Akutsu, H.; Hammen, T.; Buchfelder, M.

    2008-01-01

    Diffusion tensor imaging (DTI) based fiber tracking was applied to visualize the course of the pyramidal tract in the surgical field by microscope-based navigation. In 70 patients with lesions adjacent to the pyramidal tract, DTI data were integrated in a navigational setup. Diffusion data (b=0) were rigidly registered with standard T1-weighted 3-D images. Fiber tracking was performed applying a tensor-deflection algorithm using a multiple volume of interest approach as seed regions for tracking. fMRI data identifying the motor gyrus were applied as selection criteria to define the fibers of interest. After tracking, a 3-D object was generated representing the pyramidal tract. In selected cases, the intraoperative image data (1.5 T intraoperative MRI) were used to update the navigation system. In all patients the pyramidal tract could be visualized in the operative field applying the heads-up display of the operating microscope. In 8 patients (11%) a new or aggravated postoperative paresis could be observed, which was transient in 5 of them; thus, only in 3 patients (4.2%) was there a new permanent neurological deficit. Intraoperative imaging depicted a shifting of the pyramidal tract which amounted up to 15 mm; even the direction of shifting was variable and could not be predicted before surgery, so that mathematical models trying to predict brain shift behaviour are of restricted value only. DTI fiber tracking data can be reliably integrated into navigational systems providing intraoperative visualization of the pyramidal tract. This technique allowed the resection of lesions adjacent to the pyramidal tract with low morbidity. (author)

  4. CdSe/beta-Pb0.33V2O5 heterostructures: Nanoscale semiconductor interfaces with tunable energetic configurations for solar energy conversion and storage

    Science.gov (United States)

    Milleville, Christopher C.

    This dissertation focuses on the formation and characterization of semiconductor heterostructures, consisting of light-harvesting cadmium selenide quantum dots (CdSe QDs) and single crystalline lead vanadium oxide nanowires (β-Pb0.33V2O5 NWs), for the purpose of excited-state charge transfer and photocatalytic production of solar fuels. We reported two distinct routes for assembling CdSe/β-Pb0.33V2O5 heterostructures: linker-assisted assembly (LAA) mediated by a bifunctional ligand and successive ionic layer adsorption and reaction (SILAR). In the former case, the thiol end of a molecular linker, cysteine (Cys) is found to bind to the QD surface, whereas a protonated amine moiety interacts electrostatically with the negatively charged NW surface. In the alternative SILAR route, the surface coverage of CdSe on the β-Pb0.33V2O5 NWs is tuned by varying the number of successive precipitation cycles. Hard X-ray photoelectron spectroscopy (HAXPES) measurements revealed that the mid-gap states of β-Pb0.33V2O5 NWs are closely overlapped in energy with the valence band edges of CdSe QDs, suggesting that hole transfer from the valence band of CdSe into the mid-gap states is possible. Preliminary evidence of hole transfer was obtained through photoluminescence quenching experiments. Steady-state and time-resolved photoluminescence measurements on Cys-CdSe dispersions, mixed dispersions of Cys-CdSe QDs and β-Pb0.33V¬2O5 NWs, and mixed dispersions of Cys-CdS QDs and V2O5 revealed a greater extent of quenching of the emission of Cys-CdSe QDs by β Pb0.33V¬2O5 relative to V2O5. V2O5, devoid of mid-gap states, is unable to accept holes from CdSe and therefore should not quench emission to the same extent as β-Pb0.33V¬2O5. The additional quenching was dynamic, consistent with a mechanism involving the transfer of photogenerated holes from CdSe QDs to the mid-gap states of β Pb0.33V2O5. Transient absorption spectroscopy (TA) was used to probe the dynamics of interfacial

  5. Structure and DC conductivity of lead sodium ultraphosphate glasses

    International Nuclear Information System (INIS)

    Abid, M.; Et-tabirou, M.; Taibi, M.

    2003-01-01

    Glasses of (0.40-x)Na 2 O-xPbO-0.60P 2 O 5 system with (0≤x≤0.40) molar fraction have been prepared with a conventional melting procedure. Their physical, thermal and spectroscopic studies such as density, molar volume, glass transition temperature, ionic conductivity and infrared spectroscopy have been investigated. The density and thermal stability of theses glasses increase with the substitution of PbO for Na 2 O. The ionic conductivity increases substantially with increasing concentration of sodium oxide and diminishes with increasing PbO content. Fourier-transform infrared spectroscopy reveals the formation of P-O-Pb bonds in theses glasses. The formation of P-O-Pb bonds which replace P-O - ...Na + bonds is in accordance with variations of glass transition temperature (T g ), molar volume (V m ) and ionic conductivity (σ). The former bonds are the origin of the partial glass-forming ability of Pb 2+

  6. Humidity Sensing Behaviour of Nanocrystalline α-PbO Synthesized by Alcohol Thermal Process

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize meta stable nanocrystalline α-PbO at a relatively low temperature of 75 oC using lead acetate. The synthesized α-PbO (P75 was subjected to different heat treatment with temperatures ranging from 200-500 oC for 2 h to study the effect of crystallinity and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. All the samples were subjected to different humidity levels (5 – 98 %. Among the different composites prepared, P75 possessed the highest humidity sensitivity of 5000, while the heat treated sample P500 possessed a low sensitivity of 127. The response and recovery characteristics of the maximum sensitivity sample P75 were 210 s and 140 s respectively.

  7. Structure ordering effect on dielectric properties of PbIn/sub 0. 5/Nb/sub 0. 5/O/sub 3/ crystals

    Energy Technology Data Exchange (ETDEWEB)

    Turik, A V; Kupriyanov, M F; Zhestkov, B F

    1985-09-01

    Results are presented of dielectric and X-ray diffraction investigations into the PbIn/sub 0.5/Nb/sub 0.5/O/sub 3/ monocrystals of PbB/sub 0.5/'B/sub 0.5/''O/sub 3/ series (B'=ScIn, B''=Nb, Ta) annealed during 5 hours at 500 deg C. It is shown that ordering in the B'-cation position in crystals influences the character of alternation of phases and physical properties. The PbIn/sub 0.5/Nb/sub 0.5/O/sub 3/ crystals may be either in rhombohedral ferro- or zhombic antiferroelectric phases depending on thermal prehistory.

  8. EXAFS investigations on PbMoO4 single crystals grown under ...

    Indian Academy of Sciences (India)

    Abstract. Extended X-ray absorption fine structure (EXAFS) measurements on PbMoO4 (LMO) crystals have been performed at the recently-commissioned dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The LMO samples were prepared under three different conditions viz. (i) grown from ...

  9. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  10. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Biological conversion of anglesite (PbSO(4)) and lead waste from spent car batteries to galena (PbS).

    Science.gov (United States)

    Weijma, Jan; De Hoop, Klaas; Bosma, Wobby; Dijkman, Henk

    2002-01-01

    Lead paste, a solid mixture containing PbSO(4), PbO(2), PbO/Pb(OH)(2) precipitate, and elemental Pb, is one of the main waste fractions from spent car batteries. Biological sulfidation represents a new process for recovery of lead from this waste. In this process the lead salts in lead paste are converted to galena (PbS) by sulfate-reducing bacteria. This paper investigates a continuous process for sulfidation of anglesite (PbSO(4)), the main constituent of lead paste, and lead paste, consisting of a laboratory-scale gas-lift bioreactor to which a slurry of anglesite or lead paste was supplied. Sulfate or elemental sulfur was added as an additional sulfur source. Hydrogen gas served as an electron donor for the biological reduction of sulfate and elemental sulfur to sulfide by sulfate- and sulfur-reducing bacteria. Anglesite was almost completely converted to galena at a loading rate of 19 kg of PbSO(4) m(-)(3) day(-)(1), producing a sludge of which the crystalline lead phases consisted of >98% PbS (galena) and 1-2% elemental Pb. With lead paste, stable sulfidation rates of up to 17 kg of lead paste m(-)(3) day(-)(1) were demonstrated, producing a sludge of which the crystalline lead phases consisted of an estimated >96% PbS, 1-2% elemental Pb, and 1-2% PbO(2).

  12. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3.

    Science.gov (United States)

    Wu, Zhigang; Cohen, Ronald E

    2005-07-15

    We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg(1/3)Nb(2/3))O3-PbTiO3, which are expected to revolutionize electromechanical applications. Our results show that morphotropic phase boundaries and giant piezoelectric effects do not require intrinsic disorder, and open the possibility of studying this effect in simple systems.

  13. Effect of housing rats within a pyramid on stress parameters.

    Science.gov (United States)

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2003-11-01

    The Giza pyramids of Egypt have been the subject of much research. Pyramid models with the same base to height ratio as of the Great Pyramid of Giza, when aligned on a true north-south axis, are believed to generate, transform and transmit energy. Research done with such pyramid models has shown that they induced greater relaxation in human subjects, promoted better wound healing in rats and afforded protection against stress-induced neurodegnerative changes in mice. The present study was done to assess the effects of housing Wistar rats within the pyramid on the status of oxidative damage and antioxidant defense in their erythrocytes and cortisol levels in their plasma. Rats were housed in cages under standard laboratory conditions. Cages were left in the open (normal control), under a wooden pyramid model (experimental rats) or in a cubical box of comparable dimensions (6 hr/day for 14 days). Erythrocyte malondialdehyde and plasma cortisol levels were significantly decreased in rats kept within the pyramid as compared to the normal control and those within the square box. Erythrocyte reduced glutathione levels, erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly increased in the rats kept in the pyramid as compared to the other two groups. There was no significant difference in any of the parameters between the normal control and rats kept in the square box. The results showed that exposure of adult female Wistar rats to pyramid environment reduces stress oxidative stress and increases antioxidant defense in them.

  14. Direct reactions induced by 16O on 208Pb at high incident energy

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Direct reactions induced by 16 O mainly on 208 Pb at 20 MeV/nucleon are reviewed. The quasi-elastic transfer reaction, such as one-proton and one-neutron transfer respectively leading to 209 Bi and 209 Pb single-particle-states, is first discussed, the fragmentation of 16 O projectile on heavy targets is then envisaged. The one-nucleon transfer can be described within the framework of one-step processes using the DWBA formalism to calculate the cross sections. At high incident energy (312.6 MeV), transfer reactions involving nucleons from the deeper 1p 3/2 orbit of 16 O are kinematically favoured and well observed. At 20 MeV/A and above, a large part of the reaction cross sections seems to be due to the fragmentation of the projectile; more especially, an abrasion-ablation model have to be used in order to explain the general trend of the data (energy spectra and angular distribution)

  15. Mechanism of formation of perovskite phase and dielectric properties of Pb(Zn,Mg)1/3Nb2/3O3 ceramics prepared by columbite precursor routes

    International Nuclear Information System (INIS)

    Jang, H.M.; Cho, S.R.; Lee, K.M.

    1995-01-01

    The mechanism of formation of the perovskite phase and the dielectric properties of Pb(Zn,Mg) 1/3 Nb 2/3 O 3 (PZMN) ceramics were examined using two different types of columbite precursors, (Mg,Zn)Nb 2 O 6 (MZN) and MgNb 2 O 6 + ZnNb 2 O 6 (MN + ZN). The formation of perovskite phase in the PbO + MN + ZN system is characterized by an initial rapid formation of Mg-rich perovskite phase, followed by a sluggish formation of Zn-rich perovskite phase. On the other hand, due to the formation of pyrochlore phase of mixed divalent cations Pb 2-x (Zn,Mg) y Nb 2-y O 7-x-3y/2 , the pyrochlore/perovskite transformation in the PbO + MZN system proceeded uniformly with a spatial homogeneity. Further analysis suggested that the formation of perovskite phase is a diffusion-controlled process. The degree of diffuseness of the rhombohedral/cubic phase transition (DPT) is higher in the PbO + MN + ZN system than in the PbO + MZN specimen for T > T max (temperature of the dielectric permittivity maximum), indicating a broadened compositional distribution of the B-site cations in the PbO + MN + ZN system

  16. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  17. Multilevel Resistance Switching Memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) Heterostructure by Combined Straintronics-Spintronics.

    Science.gov (United States)

    Zhou, Weiping; Xiong, Yuanqiang; Zhang, Zhengming; Wang, Dunhui; Tan, Weishi; Cao, Qingqi; Qian, Zhenghong; Du, Youwei

    2016-03-02

    We demonstrate a memory device with multifield switchable multilevel states at room temperature based on the integration of straintronics and spintronics in a La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) (011) heterostructure. By precisely controlling the electric field applied on the PMN-PT substrate, multiple nonvolatile resistance states can be generated in La2/3Ba1/3MnO3 films, which can be ascribed to the strain-modulated metal-insulator transition and phase separation of Manganite. Furthermore, because of the strong coupling between spin and charge degrees of freedom, the resistance of the La2/3Ba1/3MnO3 film can be readily modulated by magnetic field over a broad temperature range. Therefore, by combining electroresistance and magnetoresistance effects, multilevel resistance states with excellent retention and endurance properties can be achieved at room temperature with the coactions of electric and magnetic fields. The incorporation of ferroelastic strain and magnetic and resistive properties in memory cells suggests a promising approach for multistate, high-density, and low-power consumption electronic memory devices.

  18. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  19. The cradle of pyramids in satellite images

    OpenAIRE

    Sparavigna, Amelia Carolina

    2011-01-01

    We propose the use of image processing to enhance the Google Maps of some archaeological areas of Egypt. In particular we analyse that place which is considered the cradle of pyramids, where it was announced the discovery of a new pyramid by means of an infrared remote sensing.

  20. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Synthesis and Optical Characterization of Nd3+ doped TeO2-PbO-Li2O

    Directory of Open Access Journals (Sweden)

    M. Rahim Sahar

    2012-02-01

    Full Text Available Glass based on Nd3+-doped TeO2-PbO-Li2O has successfully been made by melt quenching technique and their thermal parameters have been determined using Differential Thermal Analyzer (DTA. The glass is then nucleated and/or growth by controlled heat treatment at slightly below the crystallization temperature. The X-ray diffraction (XRD technique is used to estimate the nano-crystallite size. Meanwhile, the optical characterization has been determined using the Photoluminescence Spectroscopy. It is found out that the crystallite size is about 20 nm and very much depending on the heat-treatment time. Meanwhile, the intensity of the luminescence spectra is very much depending on the concentration of the dopant.   Keyword: tellurium glasses, melt quenching technique, optical characterization

  2. Impedance-spectroscopy analysis and piezoelectric properties of Pb2KNb5O15 ceramics

    International Nuclear Information System (INIS)

    Rao, K. Sambasiva; Murali Krishna, P.; Swarna Latha, T.; Madhava Prasad, D.

    2006-01-01

    Preparation, dielectric, piezoelectric, hysteresis, impedance spectroscopy and AC conductivity studies in the Pb 0.8 K 0.4 Nb 2 O 6 ferroelectric ceramic have been presented. The Pb 1-x K 2x Nb 2 O 6 (PKN) characterized for ferroelectric and impedance spectroscopy studies from room temperature to 600 deg. C. The sample shows a single phase with orthorhombic structure from X-ray diffraction studies. The Cole-Cole plots and electric modulus plots at different temperatures are drawn. The results obtained from the impedance spectroscopy are analyzed, to understand the conductivity behavior of PKN. The piezoelectric constant, d 33 , has been found to be 75 x 10 -12 C/N

  3. Ag doped (Bi1.6Pb0.4Sr2CaCu2O8+δ textured rods

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    2008-06-01

    Full Text Available In this work, superconducting samples of (Bi1.6Pb0.4Sr2CaCu2O8+δ with Ag additions have been studied. (Bi1.6Pb0.4Sr2CaCu2O8+δ + x wt.% Ag (with x = 0, 1 and 3 powders were synthesized using a sol-gel method. The obtained powders were used as precursors to fabricate long textured cylindrical bars through a floating zone melting method. A drastic change on the microstructure has been found when comparing with undoped Bi2Sr2CaCu2O8+δ samples. The results showed that electrical resistivity at room temperature, critical current as well as flexural strength are improved when Ag is added to these Pb doped samples, while critical temperature does not change. On the other hand, it has been found that samples with composition (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag shown E-I curves with very high sharpness values on the zone of the superconducting to normal transition, reaching n-values (E∼In as high as 45 at 65K.Se han preparado polvos cerámicos de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + x % Ag en peso (con x = 0, 1 y 3 mediante un proceso sol-gel. Estos polvos se han utilizado para fabricar precursores que se texturaron por medio del método de fusión zonal flotante. Se ha encontrado un gran cambio en la microestructura cuando se compara con muestras de composición pura Bi2Sr2CaCu2O8+δ. Tanto la resistividad eléctrica a temperatura ambiente, como la corriente crítica, así como la resistencia a flexión se mejoran cuando la Ag se adiciona a estas muestras dopadas con Pb, mientras que no se observa cambio en la temperatura crítica. Por otra parte, se ha encontrado que las muestras de composición (Bi1.6Pb0.4Sr2CaCu2O8+δ + Ag presentan una gran pendiente de la curva E-I en la zona de transición entre el estado superconductor y el estado normal. Con estas composiciones, se han encontrado valores de n (E∼In de hasta 45 a 65K.

  4. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  5. Pb-H2O Thermogravimetric Plants. The Rankine Cycle

    International Nuclear Information System (INIS)

    Arosio, S.; Carlevaro, R.

    2000-01-01

    An economic evaluation concerning Pb-H 2 O thermogravimetric systems with an electric power in the range 200-1.000 kW has been done. Moreover, plant and running costs for a thermogravimetric and a Rankine cycle, 1 MW power, have been compared. Basically due to the lead charge, the plant cost of the former is higher: nevertheless such amount can be recuperated in less than three years, being higher the running cost of the latter [it

  6. Adsorption-controlled growth of ferroelectric PbTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12} films for nonvolatile memory applications by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Theis, C.D.; Yeh, J.; Schlom, D.G. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hawley, M.E.; Brown, G.W. [Los Alamos National Lab., NM (United States). Center for Materials Science

    1997-09-01

    Epitaxial PbTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12} thin films have been grown on (100) SrTiO{sub 3} and (100) LaAlO{sub 3} substrates by reactive molecular beam epitaxy (MBE). Titanium is supplied to the film in the form of shuttered bursts each containing a one monolayer dose of titanium atoms for the growth of PbTiO{sub 3} and three monolayers for the growth of Bi{sub 4}Ti{sub 3}O{sub 12}. Lead, bismuth, and ozone are continuously supplied to the surface of the depositing film. Growth of phase pure, c-axis oriented epitaxial films with bulk lattice constants is achieved using an overpressure of these volatile species. With the proper choice of substrate temperature (600--650 C) and ozone background pressure (P{sub O{sub 3}} = 2 {times} 10{sup {minus}5} Torr), the excess of the volatile metals and ozone desorb from the surface of the depositing film leaving a phase-pure stoichiometric crystal. The smooth PbTiO{sub 3} surface morphology revealed by atomic force microscopy (AFM) suggests that the PbTiO{sub 3} films grow in a layer-by-layer fashion. In contrast the Bi{sub 4}Ti{sub 3}O{sub 12} films contain islands which evolve either continuously or around screw dislocations via a spiral-type growth mechanism.

  7. Poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4O1:O1′:O2:O3bis(2,2-bipyridine-κ2N,N′(μ2-hydroxidodicopper(II] trihydrate

    Directory of Open Access Journals (Sweden)

    Mohamed N. El-kaheli

    2014-07-01

    Full Text Available In the title two-dimensional coordination polymer, {[Cu2(C9H3O6(OH(C10H8N22]·3H2O}n, each of the two independent CuII atoms is coordinated by a bridging OH group, two O atoms from two benzene-1,3,5-tricarboxylate (L ligands and two N atoms from a 2,2- bipyridine (bipy ligand in a distorted square-pyramidal geometry. Each L ligand coordinates four CuII atoms, thus forming a polymeric layer parallel to the bc plane with bipy molecules protruding up and down. The lattice water molecules involved in O—H...· O hydrogen bonding are situated in the inner part of each layer. The crystal packing is consolidated by π–π interactions between the aromatic rings of bipy ligands from neigbouring layers [intercentroid distance = 3.762 (3 Å].

  8. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  9. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate

    International Nuclear Information System (INIS)

    Haitao Huang; Sun, Chang Q.; Hing, Peter

    2000-01-01

    The grain size effect of lead zirconate titanate PbZr 1-x Ti x O 3 (PZT, x≥0.6) caused by surface bond contraction has been investigated by using the Landau-Ginsburg-Devonshire (LGD) phenomenological theory. It has been shown that, due to the surface bond contraction, both the Curie temperature and the spontaneous polarization of tetragonal PZT decrease with decreasing grain size. These effects become more significant when the grain size is in the nanometre range. A dielectric anomaly appears with decreasing grain size, which corresponds to a size dependent phase transformation. The ferroelectric critical size below which a loss of ferroelectricity will happen is estimated from the results obtained. (author). Letter-to-the-editor

  10. Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite

    International Nuclear Information System (INIS)

    Patel, Jayesh D.; Chaudhuri, Tapas K.

    2009-01-01

    A simple solution growth method for synthesis of nanocomposite of PbS nanoparticles in poly(vinyl-pyrrolidone) (PVP) polymer is described. The nanocomposite is prepared from methanolic solution of lead acetate (PbAc), thiourea (TU) and PVP at room temperature (∼27 deg. C). Optical absorption spectrum of PbS/PVP nanocomposite solution shows strong absorption from 300 to 650 nm with significant bands at 400 and 590 nm which is characteristic of nanoscale PbS. Spin-coated nanocomposite films on glass have an absorption edge at ∼650 nm with band gap of 2.55 eV. Fourier transform infrared (FTIR) spectroscopy of PbS/PVP nanocomposite and PVP shows strong chemical bond between PbS nanoparticles and host PVP polymer. The transmission electron microscope (TEM) images reveal that 5-10 nm PbS particles are evenly embedded in PVP polymer. The formation of PbS is confirmed by selective area electron diffraction (SAED) of a typical nanoparticle.

  11. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  12. Moessbauer study in the glass system PbO. 2B/sub 2/O/sub 3/. Fe/sub 2/O/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Sekhon, S S; Kamal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-05-01

    The Moessbauer technique has been employed to study the structure and crystallite formation in the glass system PbO.2B/sub 2/O/sub 3/ containing upto 30 wt% Fe/sub 2/O/sub 3/. Like alkali borate glasses, this glass system also exhibits a broadened quadrupole doublet and iron ions are present in Fe/sup 3 +/ state. Above about 20 wt%, the crystallites of magnetically ordered states have been identified. Susceptibility variation with concentration suggests the formation of a superparamagnetic state.

  13. A new class of morphological pyramids for multiresolution image analysis

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Asano, T; Klette, R; Ronse, C

    2003-01-01

    We study nonlinear multiresolution signal decomposition based on morphological pyramids. Motivated by a problem arising in multiresolution volume visualization, we introduce a new class of morphological pyramids. In this class the pyramidal synthesis operator always has the same form, i.e. a

  14. Formation of Ag nanoparticles in percolative Ag–PbTiO3 composite thin films through lead-rich Ag–Pb alloy particles formed as transitional phase

    International Nuclear Information System (INIS)

    Hu, Tao; Wang, Zongrong; Su, Yanbo; Tang, Liwen; Shen, Ge; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Ma, Ning; Du, Piyi

    2012-01-01

    The Ag nanoparticle dispersed percolative PbTiO 3 ceramic thin film was prepared in situ by sol–gel method with excess lead introduced into a sol precursor. The influence of excess lead and the heat treatment time on the formation of Ag nanoparticles was investigated by energy dispersive X-ray spectra, scanning electron microscopy, X-ray diffraction, and ultraviolet–visible absorption spectra. Results showed that the excess lead introduced into the sol precursor was in favor of the crystallization of the thin film and in favor of formation of the perovskite phase without the pyrochlore phase. Lead-rich Ag–Pb alloy particles first formed in the thin films and then decomposed to become large numbers of Ag nanoparticles of about 3 nm in size in the thin films when the heat treatment time was longer than 2 min. The content of the Ag nanoparticles increased with increasing the heat treatment time. The percolative behavior appears typically in the Ag nanoparticle dispersed thin films. The dielectric constant of the thin film was about 3 times of that without Ag nanoparticles. - Highlights: ► The Ag nanoparticles formed in the PbTiO 3 percolative ceramic thin film. ► The Ag–Pb alloy particles formed as transitional phase during thin film preparation. ► The lead-rich Ag–Pb alloy particles decomposed to form Ag nanoparticles in the film. ► Permittivity of the thin film is 3 times higher than that without Ag nanoparticles.

  15. Effect of increasing concentration of Na2O on structural, elastic and optical properties of (90  -  x)GeO2-xNa2O-10PbO glass system in the germanate anomaly region

    Science.gov (United States)

    Zainudin, C. N.; Hisam, R.; Yusof, M. I. M.; Yahya, A. K.; Halimah, M. K.

    2017-10-01

    Ternary germanate glasses (90  -  x)GeO2-xNa2O-10PbO (x  =  10-30 mol%) have been prepared by the melt-quenching method. Density, ρ increased with Na2O content up to maxima at 20 mol% while molar volume, V a showed an opposite trend to the density, with a minima at 20 mol% of Na2O content indicating the presence of the germanate anomaly. Ultrasonic velocity measurements showed both longitudinal, v l and shear, v s velocities increased up to 20 mol% before decreasing with further addition of Na2O. Independent longitudinal, L and shear, G moduli along with Young’s modulus, Y, mean sound velocity, v m, Debye temperature, θ D, and hardness, H recorded maximum values at 20 mol% of Na2O content which were suggested to be related to the germanate anomaly. Structural modification occurring due to conversion of six-membered GeO4 rings to three-membered rings of GeO4 changed bond density and compactness of the glass systems and caused the increase in rigidity and stiffness of the glasses. Beyond 20 mol% of Na2O, the decrease in the elastic moduli was due to depolymerization of the glass network. Meanwhile, optical energy gap, E opt exhibited a minima at 20 mol% whereas Urbach energy, E U and refractive index, n showed a maxima at the same concentration, thereby indicating variation in polarizability due to changes in concentration of bridging and non-bridging oxygen.

  16. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  17. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  18. Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li Lin; Qiu Jijun; Weng Binbin; Yuan Zijian; Shi Zhisheng [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Li Xiaomin; Gan Xiaoyan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sellers, Ian R. [Deparment of Physics, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2012-12-24

    A heterojunction of PbSe/ZnO has been grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was used to directly measure the valence-band offset (VBO) of the heterojunction. The VBO, {Delta}E{sub V}, was determined as 2.51 {+-} 0.05 eV using the Pb 4p{sup 3/2} and Zn 2p{sup 3/2} core levels as a reference. The conduction-band offset, {Delta}E{sub C}, was, therefore, determined to be 0.59 {+-} 0.05 eV based on the above {Delta}E{sub V} value. This analysis indicates that the PbSe/ZnO heterojunction forms a type I (Straddling Gap) heterostructure.

  19. Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies

    Science.gov (United States)

    Çevik, U.; Baltaş, H.

    2007-03-01

    The mass attenuation coefficients for Bi, Pb, Sr, Ca, Cu metals, Bi2O3, PbO, SrCO3, CaO, CuO compounds and solid-state forms of Bi1.7Pb0.3Sr2Ca2Cu3O10 superconductor were determined at 57.5, 65.2, 77.1, 87.3, 94.6, 122 and 136 keV energies. The samples were irradiated using a 57Co point source emitted 122 and 136 keV γ-ray energies. The X-ray energies were obtained using secondary targets such as Ta, Bi2O3 and (CH3COO)2UO22H2O. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The effect of absorption edges on electron density, effective atomic numbers and their variation with photon energy in composite superconductor samples was discussed. Obtained values were compared with theoretical values.

  20. La{sub 0.67}Pb{sub 0.33-x}K{sub x}MnO{sub 3} perovskites synthesized by sol-gel method: the effect of potassium substitution on the magnetic and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Asma; Dhahri, J. [University of Monastir, Physics Laboratory of the Condensed Material and the Nanoscience' s, Faculty of Science, Monastir (Tunisia); Alharbi, T.; Alzobaidi, S.; Zaidi, M.A. [Majmaah University, College of Science of Zulfi, Riyadh (Saudi Arabia); Hlil, E.K. [CNRS-Universite J. Fourier, Institut Neel, BP 166, Gronoble (France)

    2017-01-15

    The influence of the potassium substitution for Pb ions in the mixed valence perovskites La{sub 0.67}Pb{sub 0.33-x}K{sub x}MnO{sub 3} (0 ≤ x ≤ 0.15) was investigated by X-ray diffraction, magnetic and electric transport measurements. All the compositions were synthesized using the sol-gel technique. X-ray diffraction and structure refinement showed that they crystallize in the rhombohedral structure with R anti 3c space group. Upon K doping on Pb sites, the lattice parameters, unit cell volume, and the Mn-O-Mn bond angle were reduced. All the samples exhibited a ferromagnetic-paramagnetic transition and metallic-semiconductor one with increasing temperature. The analysis of the electrical resistivity data concluded that the metallic (ferromagnetic) part of the resistivity (below T{sub M-Sc}) can be explained by the following equation ρ(T) = ρ{sub 0} + ρ{sub 2}T{sup 2} + ρ{sub 4.5}T{sup 4.5}, signifying the importance of the domain boundary/grain, combination of electron-magnon, electron-electron and electron-phonon scattering processes. At higher-temperature (T > T{sub M-Sc}) paramagnetic semiconducting regime, the adiabatic small polarons hopping mechanism (ASPH) was found to fit well. (orig.)

  1. Enhancement of luminescence properties in Er3+ doped TeO2-Na2O-PbX (X=O and F) ternary glasses.

    Science.gov (United States)

    Kumar, Kaushal; Rai, S B; Rai, D K

    2007-04-01

    An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions.

  2. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......O3 can be bonded to. Preliminary tests demonstrating a well-defined nanochannel system with-100 nm high channels successfully bonded and tests against leaks using optical fluorescence technique and transmission electron microscopy (TEM) characterization of liquid samples are also reported. Moreover...

  3. Synthesis and characterization of a PbO2-clay nanocomposite: Removal of lead from water using montmorillonite

    International Nuclear Information System (INIS)

    Aroui, L.; Zerroual, L.; Boutahala, M.

    2012-01-01

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: ► In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. ► Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. ► In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. ► A PbO 2 -clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d 001 reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO 2 -clay composite material with good electrical conductivity is synthesized.

  4. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  5. Large-scale synthesis of Pb1-xLa xTiO3 ceramic powders by molten salt method

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Yu Ranbo; Liu Guirong; Xing Qifeng

    2006-01-01

    The ferroelectric perovskite type lanthanum doped lead titanate (PLT) ceramic powders were synthesized in one step with the starting materials of PbC 2 O 4 , La 2 O 3 and TiO 2 in NaCl-KCl molten salts in the temperature range of 700-950 deg. C. It was found that molten salt method was a large scale and easy preparation way to produce PLT powders with high dispersity. Tetragonal phase Pb 1-x La x TiO 3 ceramic powders were identified by XRD in the composition range 0 ≤ x ≤ 0.3 and mono-dispersed particles with spheric shape and less than 100 nm size were observed by SEM. The grain sizes of Pb 1-x La x TiO 3 ceramic powders increased with the increase of La content and decreased with calcination temperature. The grain growth progress and the possible reaction mechanism in molten salts and its influencing factors were discussed in this work. The grain growth process was the main influencing factor of the grain size, which depended on the solubility in the flux

  6. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    KAUST Repository

    Mi, Yang; Liu, Zhixiong; Shang, Qiuyu; Niu, Xinxiang; Shi, Jia; Zhang, Shuai; Chen, Jie; Du, Wenna; Wu, Zhiyong; Wang, Rui; Qiu, Xiaohui; Hu, Xiaoyong; Zhang, Qing; Wu, Tao; Liu, Xinfeng

    2018-01-01

    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

  7. Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities

    KAUST Repository

    Mi, Yang

    2018-01-10

    Recently, organometal halide perovskite-based optoelectronics, particularly lasers, have attracted intensive attentions because of its outstanding spectral coherence, low threshold, and wideband tunability. In this work, high-quality CH3 NH3 PbBr3 single crystals with a unique shape of cube-corner pyramids are synthesized on mica substrates using chemical vapor deposition method. These micropyramids naturally form cube-corner cavities, which are eminent candidates for small-sized resonators and retroreflectors. The as-grown perovskites show strong emission ≈530 nm in the vertical direction at room temperature. A special Fabry-Pérot (F-P) mode is employed to interpret the light confinement in the cavity. Lasing from the perovskite pyramids is observed from 80 to 200 K, with threshold ranging from ≈92 µJ cm-2 to 2.2 mJ cm-2 , yielding a characteristic temperature of T0 = 35 K. By coating a thin layer of Ag film, the threshold is reduced from ≈92 to 26 µJ cm-2 , which is accompanied by room temperature lasing with a threshold of ≈75 µJ cm-2 . This work advocates the prospect of shape-engineered perovskite crystals toward developing micro-sized optoelectronic devices and potentially investigating light-matter coupling in quantum optics.

  8. Complex titanates Sr_1_-_xPb_xLi_2Ti_6O_1_4 (0≤x≤1) as anode materials for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Wu, Yaoyao; Long, Nengbing; Shui, Miao; Shu, Jie

    2016-01-01

    Highlights: • Sr_1_-_xPb_xLi_2Ti_6O_1_4 (0≤x≤1) is prepared by a simple solid state reaction. • Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 exhibits enhanced lithium storage capability. • Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 can deliver a capacity of 141.8 mAh g"−"1 at 700 mA g"−"1. • In-situ XRD is performed to study the reversibility of Sr_1_-_xPb_xLi_2Ti_6O_1_4. - Abstract: With the Pb doping content at Sr-site increasing, a series of Sr_1_-_xPb_xLi_2Ti_6O_1_4 (x = 0, 0.25, 0.50, 0.75, 1.0) are synthesized by a simple solid-state reaction. It is found that the reversible capacity and rate capability experience a parabolic course from SrLi_2Ti_6O_1_4 to PbLi_2Ti_6O_1_4. Among all the as-prepared samples, Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 shows the best cycling and rate properties. It delivers an initial charge capacity of 163.2 mAh g"−"1 at 100 mA g"−"1 with the capacity retention of 96.08% after 100 cycles. In addition, it can also deliver a reversible capacity of 141.8 mAh g"−"1 at 700 mA g"−"1. The superior electrochemical properties of Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 are attributed to the reduced charge transfer resistance and increased lithium-ion diffusion coefficient after doping. Besides, in-situ X-ray diffraction is also performed to investigate the lithium-ion insertion/extraction behaviors of SrLi_2Ti_6O_1_4, Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 and PbLi_2Ti_6O_1_4. The observed results confirm that Sr_0_._5Pb_0_._5Li_2Ti_6O_1_4 has good structural stability and reversibility for repeated lithium storage.

  9. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    Science.gov (United States)

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Characterization of Pb(Zr, Ti)O3 thin films fabricated by plasma enhanced chemical vapor deposition on Ir-based electrodes

    International Nuclear Information System (INIS)

    Lee, Hee-Chul; Lee, Won-Jong

    2002-01-01

    Structural and electrical characteristics of Pb(Zr, Ti)O 3 (PZT) ferroelectric thin films deposited on various Ir-based electrodes (Ir, IrO 2 , and Pt/IrO 2 ) using electron cyclotron resonance plasma enhanced chemical vapor deposition were investigated. On the Ir electrode, stoichiometric PZT films with pure perovskite phase could be obtained over a very wide range of processing conditions. However, PZT films prepared on the IrO 2 electrode contain a large amount of PbO x phases and exhibited high Pb-excess composition. The deposition characteristics were dependent on the behavior of PbO molecules on the electrode surface. The PZT thin film capacitors prepared on the Ir bottom electrode showed different electrical properties depending on top electrode materials. The PZT capacitors with Ir, IrO 2 , and Pt top electrodes showed good leakage current characteristics, whereas those with the Ru top electrode showed a very high leakage current density. The PZT capacitor exhibited the best fatigue endurance with an IrO 2 top electrode. An Ir top electrode provided better fatigue endurance than a Pt top electrode. The PZT capacitor with an Ir-based electrode is thought to be attractive for the application to ferroelectric random access memory devices because of its wide processing window for a high-quality ferroelectric film and good polarization, fatigue, and leakage current characteristics

  11. Acoustic investigations on PbO–Al2O3–B2O3 glasses doped with ...

    Indian Academy of Sciences (India)

    Unknown

    meters such as Debye temperature (θD), diffusion constant (Di), latent heat of melting (∆Hm) etc of PbO–Al2O3– ... From these results (together with IR spectra of these glasses), an ... range below 200°C, which is far below when compared.

  12. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode

    International Nuclear Information System (INIS)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-01-01

    A novel PbO 2 /graphite felt electrode was constructed by electrochemical deposition of PbO 2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8 min at an applied current density of 253 A/m 2 . Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40 min of contact time, respectively. A. salina inactivation follows first-order kinetics. - Highlights: •A novel PbO 2 /graphite felt anode was developed for the electrochemical treatment of the simulated ballast water. •The technology meets the IMO D‐2 regulation and provides a high degree of removal of the microorganisms of ballast water without any additional chemical substances. •E.faecalis, E.coli, and A.salina cells in simulated ballast water were completely inactivated after 60, 8 and 40 min of contact time at 253 A/m 2 of current density, respectively.

  13. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...... atomic layer deposited Al2O3 an excellent choice for the intermediate layer. The authors have optimized the bonding process to achieve a high interface energy of 1.7 J/m2 for a low temperature annealing of 300 °C. The authors also demonstrate wafer bonding of InP to SiO2 on Si and GaAs to sapphire using...

  14. Elastic modulus, hardness and fracture behavior of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal

    International Nuclear Information System (INIS)

    Zeng Kaiyang; Pang Yongsong; Shen Lu; Rajan, K.K.; Lim, Leong-Chew

    2008-01-01

    The deformation, crack initiation, fracture behavior and mechanical properties of (0 0 1)-oriented single crystal of Pb(Zn 1/3 Nb 2/3 )O 3 -7% PbTiO 3 (PZN-7% PT) in both unpoled and poled states have been investigated by using nanoindentation, micro-indentation and three-point bending experiments. Nanoindentation experiments revealed that, unlike typical brittle materials, material pile-ups around the indentation impressions were commonly observed at ultra-low loads. The elastic modulus and hardness were also determined by using nanoindentation experiments. The critical indentation load for crack initiation, determined by using micro-indentation experiments, is 0.135 N for unpoled samples, increasing to 0.465 N for the positive surface (crack propagation direction against the poling direction) of poled samples but decreasing slightly to 0.132 N for the negative surface (crack propagation direction along the poling direction) of the poled samples. Indentation/strength (three-point bend) test showed a similar trend for the 'apparent' fracture toughness, giving 0.36 MPa√m for unpoled samples, increasing to 0.44 MPa√m for the positive surface of poled samples but decreasing to 0.30 MPa√m for the negative surface of poled samples. Polarized light microscopy and scanning electron microscopy were used to study the material adjacent to the indentations and the fracture surfaces produced by the three-point bend tests. The results were correlated with the various fracture properties observed

  15. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Tuning the band gap of PbCrO{sub 4} through high-pressure: Evidence of wide-to-narrow semiconductor transitions

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Bandiello, E.; Segura, A. [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Hamlin, J.J.; Maple, M.B. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Rodriguez-Hernandez, P.; Muñoz, A. [Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, MALTA ConsoliderTeam, La Laguna, 38205 Tenerife (Spain)

    2014-02-25

    Highlights: • Electronic and optical properties of PbCrO{sub 4} are studied under compression. • Band-gap collapses are observed and correlated with structural phase transitions. • PbCrO{sub 4} band-gap is reduced from 2.3 to 0.8 eV in a 20 GPa range. • PbCrO{sub 4} is an n-type semiconductor with donor levels associated to Frenkel defects. • A deep-to-shallow donor transformation at HP induces a large resistivity decrease. -- Abstract: The electronic transport properties and optical properties of lead(II) chromate (PbCrO{sub 4}) have been studied at high pressure by means of resistivity, Hall-effect, and optical-absorption measurements. Band-structure first-principle calculations have been also performed. We found that the low-pressure phase is a direct band-gap semiconductor (Eg = 2.3 eV) that shows a high resistivity. At 3.5 GPa, associated to a structural phase transition, a band-gap collapse takes place, becoming Eg = 1.8 eV. At the same pressure the resistivity suddenly decreases due to an increase of the carrier concentration. In the HP phase, PbCrO{sub 4} behaves as an n-type semiconductor, with a donor level probably associated to the formation of oxygen vacancies. At 15 GPa a second phase transition occurs to a phase with Eg = 1.2 eV. In this phase, the resistivity increases as pressure does probably due to the self-compensation of donor levels and the augmentation of the scattering of electrons with ionized impurities. In the three phases the band gap red shifts under compression. At 20 GPa, Eg reaches a value of 0.8 eV, behaving PbCrO{sub 4} as a narrow-gap semiconductor.

  17. Poly[di-μ2-acetato-κ4O:O′-μ3-thiourea-κ3S:S:S-lead(II]: a redetermination

    Directory of Open Access Journals (Sweden)

    Hafid Zouihri

    2016-12-01

    Full Text Available The structure of the title polymeric lead(II thiourea complex, [Pb(CH3O2{SC(NH22}]n, has been redetermined at significantly higher precision using diffractometer data at 100 K. The previous determination used data obtained from multiple-film integrated Weissenberg photographs [Nardelli et al. (1960. Acta Cryst. 13, 898–904]. The main difference between the two models is in the precision of the bond lengths, angles and cell parameters. In the crystal, the eight-coordinate PbII atom is chelated by two carboxylate groups and bridged by three S atoms from thiourea ligands. The coordination sphere is completed by an O atom from a third carboxylate group, the second O atom of which binds to a neighbouring PbII atom, forming a polymeric chain that runs the a axis. Two of these chains are related by centres of symmetry. Intermolecular hydrogen bonds connect neighbouring chains to one another, generating a three-dimensional network.

  18. Structure, properties, and disorder in the new distorted-Hollandite PbIr{sub 4}Se{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Benjamin A., E-mail: btrump1@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218 (United States); McQueen, Tyrel M., E-mail: mcqueen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Material Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-10-15

    The synthesis and physical properties of the new distorted-Hollandite PbIr{sub 4}Se{sub 8} are reported. Powder X-ray diffraction and transmission electron microscopy show that the structure consists of edge- and corner-sharing IrSe{sub 6} octahedra, with one-dimensional channels occupied by Pb. The structure contains Se-Se anion-anion bonding, leading to an electron count of Pb{sup 2+}(Ir{sup 3+}){sub 4}(Se{sub 2}){sup 2-}(Se{sup 2−}){sub 6}, confirmed by bond-valence sums and diamagnetic behavior. Structural and heat capacity measurements demonstrate disorder on the Pb site, due to the combination of lone-pair effects and the large size of the one-dimensional channels. Comparisons are made to known Hollandite and pseudo-Hollandite structures, which demonstrates that the anion-anion bonding in PbIr{sub 4}Se{sub 8} distorts its structure, to accommodate the Ir{sup 3+} state. An electronic structure calculation indicates semiconductor character with a band gap of 0.76(11) eV.

  19. Sensitive Pb(2+) probe based on the fluorescence quenching by graphene oxide and enhancement of the leaching of gold nanoparticles.

    Science.gov (United States)

    Shi, Xinhao; Gu, Wei; Peng, Weidong; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-02-26

    A novel strategy was developed for fluorescent detection of Pb(2+) in aqueous solution based on the fact that graphene oxide (GO) could quench the fluorescence of amino pyrene (AP)-grafted gold nanoparticles (AP-AuNPs) and Pb(2+) could accelerate the leaching rate of AuNPs in the presence of S2O3(2-). In this system, fluorescence reporter AP was grafted on AuNPs through the Au-N bond. In the presence of GO, the system shows fluorescence quenching because of π-π stacking between AP and GO. With the addition of Pb(2+) and S2O3(2-), the system displays fluorescence recovery, which is attributed to the fact that Pb(2+) could accelerate the leaching of the AuNPs from GO surfaces and release of AP into aqueous solution. Interestingly, the concentration of GO could control the fluorescence "turn-off" or "turn-on" for Pb(2+) detection. In addition, GO is also an excellent promoter for the acceleration of the leaching of AuNPs and shortening the analytical time to ∼15 min. Under the optimal conditions, the fluorescence Pb(2+) sensor shows a linear range from 2.0 × 10(-9) to 2.3 × 10(-7) mol/L, with a detection limit of 1.0 × 10(-10) mol/L.

  20. Influence of gold nanoparticles on the 805 nm gain in Tm3+/Yb3+ codoped PbO-GeO2 pedestal waveguides

    Science.gov (United States)

    de Assumpção, T. A. A.; Camilo, M. E.; Alayo, M. I.; da Silva, D. M.; Kassab, L. R. P.

    2017-10-01

    The production and characterization of pedestal waveguides based on PbO-GeO2 amorphous thin films codoped with Tm3+/Yb3+, with and without gold nanoparticles (NPs), are reported. Pedestal structure was obtained by conventional photolithography and plasma etching. Tm3+/Yb3+ codoped PGO amorphous thin film was obtained by RF Magnetron Sputtering deposition and used as core layer in the pedestal optical waveguide. The minimum propagation losses in the waveguide were 3.6 dB/cm at 1068 nm. The internal gain at 805 nm was enhanced and increased to 8.67 dB due to the presence of gold NPs. These results demonstrate for the first time that Tm3+/Yb3+ codoped PbO-GeO2 waveguides are promising for first telecom window and integrated photonics, especially for applications on fiber network at short distances.

  1. Order-disorder reactions in the ferroelectric perovskites Pb(Sc/sub 1/2/Nb/sub 1/2/)O/sub 3/ and Pb(Sc/sub 1/2/Ta/sub 1/2/)O/sub 3/. 2. Relation between ordering and properties

    Energy Technology Data Exchange (ETDEWEB)

    Stenger, C G.F.; Burggraaf, A J [Technische Hogeschool Twente, Enschede (Netherlands)

    1980-10-16

    The ordering of the trivalent and pentavalent cations in the pervoskites Pb(Sc/sub 1/2/Nb/sub 1/2/)O/sub 3/ and Pb(Sc/sub 1/2/Ta/sub 1/2/)O/sub 3/ can be varied by suitable heat treatments. The degree as well as the kind of order strongly affects the character of the FE ..-->.. PE phase transition. A spatially homogeneous disorder leads to a diffuse phase transition whereas a hybrid crystal with a nonhomogeneous disorder shows a sequence of two FE ..-->.. PE transitions.

  2. Improved performance of CdSe/CdS/PbS co-sensitized solar cell with double-layered TiO2 films as photoanode

    Science.gov (United States)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Jing, Jing; Fang, Biaopeng

    2017-07-01

    Improving the photovoltaic performance of CdSe/CdS/PbS co-sensitized double-layered TiO2 solar cells is reported. Double-layered TiO2 films with TiO2 microspheres as the light blocking layers were prepared. PbS, CdS and CdSe quantum dots (QDs) were assembled onto TiO2 photoanodes by simple successive ionic layer absorption and reaction (SILAR) to fabricate CdSe/CdS/PbS co-sensitized solar cells. An improved power conversion efficiency (PCE) of 5.11% was achieved for CdSe/CdS/PbS co-sensitized solar cells at one sun illumination (AM 1.5 G, 100 mW cm-2), which had an improvement of 22.6% over that of the CdSe/CdS co-sensitized solar cells (4.17%). This enhancement is mainly attributed to their better ability of the absorption of solar light with the existence of PbS QDs, the reduction of charge recombination of the excited electron and longer lifetime of electrons, which have been proved with the photovoltaic studies and electrochemical impedance spectroscopy (EIS).

  3. David Macaulay's Pyramid.

    Science.gov (United States)

    Frew, Andrew W.

    1997-01-01

    Integrating literature and mathematics can be meaningful using David Macaulay's "Pyramid." This article provides an annotated bibliography of picture books, fiction, folk tales, nonfiction, videotapes, audio books, and CD-ROMs for grades 1-12 to support a unit on Egypt. Describes related math activities; and highlights a catalog of…

  4. The Effect of Poling on the Properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Ceramics

    Science.gov (United States)

    Uršič, Hana; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Drnovšek, Silvo; Bobnar, Vid; Alguero, Miguel; Kosec, Marija

    2011-03-01

    The effects of the poling field on the structural and electrical properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) ceramics were investigated. The highest piezoelectric coefficient d33, coupling coefficients kp, kt, and mechanical quality factor Qm were achieved for ceramics poled at electric fields between 2 and 3.5 kV/mm, whereas the d33, kp, kt, and Qm of ceramics poled at higher electric fields, i.e., 4 and 4.5 kV/mm, were lower. The non-poled ceramics contained 86% of the monoclinic phase with the space group Pm and 14% of the tetragonal phase with the space group P4mm. However, the ceramics poled at 2.5 kV/mm contained 99% of the monoclinic phase and the rest is the tetragonal phase. The results show that the ratio of the monoclinic to the tetragonal phases can be changed by the application of a poling electric field and that the extent of this change is dependent on the field strength.

  5. Coupling of electric charge and magnetic field via electronic phase separation in (La,Pr,Ca)MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures

    Science.gov (United States)

    Zheng, Ming; Wang, Wei

    2016-04-01

    The electric-field-tunable non-volatile resistivity and ferromagnetism switching in the (La0.5Pr0.5)0.67Ca0.33MnO3 films grown on (111)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ferroelectric single-crystal substrates have been investigated. By combining the 180° ferroelectric domain switching and in situ X-ray diffraction and resistivity measurements, we identify that this voltage control of order parameters stems from the domain switching-induced accumulation/depletion of charge carriers at the interface rather than induced lattice strain effect. In particular, the polarization-induced charge effect (i.e., ferroelectric field effect) is strongly dependent on the magnetic field. This, together with the charge-modulated magnetoresistance and magnetization, reveals the strong correlation between the electric charge and the magnetic field. Further, we found that this coupling is essentially driven by the electronic phase separation, the relative strength of which could be determined by recording charge-tunability of resistivity [ (Δρ/ρ)c h arg e ] under various magnetic fields. These findings present a potential strategy for elucidating essential physics of perovskite manganites and delivering prototype electronic devices for non-volatile information storage.

  6. Crystal structures of dibromido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khandar

    2017-05-01

    Full Text Available The title compounds, [CdBr2(C12H10N4O]·CH3OH, (I, and [CdI2(C12H10N4O], (II, are cadmium bromide and cadmium iodide complexes of the ligand (E-N′-(pyridin-2-ylmethylenepicolinohydrazide. Complex (I crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I, and by two iodide anions forming an I2N2O pentacoordination sphere for (II, both with a distorted square-pyramidal geometry. In the crystal of complex (I, molecules are linked by pairs of N—H...O and O—H...Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H...Br hydrogen bonds forming layers parallel to (101. In the crystal of complex (II, molecules are linked by N—H...I hydrogen bonds, forming chains propagating along [010]. In complex (II, measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2:0.25 (2.

  7. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    Science.gov (United States)

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  8. Nanosized yolk–shell Fe{sub 3}O{sub 4}@Zr(OH){sub x} spheres for efficient removal of Pb(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shunlong [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wan, Gaojie; Liu, Chao [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Fan, Wenhong, E-mail: fanwh@buaa.edu.cn [Department of Environmental Science and Engineering, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-05-15

    Highlights: • Well dispersed and easy separated nanoadsorbents with stable chemical property are highly desired. • Fe{sub 3}O{sub 4}@Zr(OH){sub x} yolk–shell nanospheres (YSNs) nanoadsorbents were prepared. • Enhanced Pb(II) adsorption capacity of 310.8 mg/g was achieved on Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs based on Zr weight. • The cavities in Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs is responsible for the improved performance. - Abstract: In this work, Fe{sub 3}O{sub 4}@Zr(OH){sub x} yolk–shell nanospheres (YSNs) were synthesized via a two-step process and further examined as adsorbents for the removal of Pb(II). To understand the hollow structure on the adsorption properties of Pb(II), another adsorbent without hollow cavities, i.e., Fe{sub 3}O{sub 4}@SiO{sub 2}@Zr(OH){sub x} core–shell nanospheres (CSNs), was also prepared for comparison. The adsorption results showed that Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs exhibited 41.6% higher Pb(II) adsorption capacity as compared to that of Fe{sub 3}O{sub 4}@SiO{sub 2}@Zr(OH){sub x} CSNs. The isotherm was well fitted to Langmuir adsorption model with q{sub max} value of 310.8 mg/g after normalized by the weight of Zr in Fe{sub 3}O{sub 4}@Zr(OH){sub x} YSNs. Scanning transmission electron microscopy (STEM) mapping results revealed that the existence of cavities between Fe{sub 3}O{sub 4} cores and Zr(OH){sub x} shells is responsible for the improved adsorption performance. XPS analysis indicated the surface hydroxyl groups played a key role in the Pb(II) adsorption. The removal efficiency of Pb(II) was maintained above 90% in five consecutive adsorption–desorption cycles.

  9. O teste das pirâmides coloridas e o transtorno do pânico The colour pyramid test and the panic disorder

    Directory of Open Access Journals (Sweden)

    Anna Elisa de Villemor-Amaral

    2004-08-01

    Full Text Available Esse estudo visa verificar evidências de validade do Teste das Pirâmides Coloridas de Pfister para diagnóstico de transtorno de pânico. Compuseram a amostra desse estudo 15 pacientes diagnosticados pela SCID como tendo um episódio de transtorno dopânico. Seus resultados foram comparados com os obtidos com um grupo de 109 indivíduos não-pacientes que compõem uma amostra normativa.Os dados mais significativos do ponto de vista estatístico, na comparação com o grupo de não-pacientes, foram relativos ao aumento de formações simétricas e da porcentagem do azul. As características atribuídas a esses sinais condizem com os dados encontrados na literatura que descrevem a insegurança, inibição, constrição e rompimento da relação consigo mesmo como aspectos importantes associados ao transtorno do pânico.The aim of this study was to verify the validity of the Pfister’s Colour Pyramid Test in the identification of panic disorder. The sample was composed by 15 patients in psychiatric treatment for having at least one crisis of panic disorder, selected according to the SCID criteria, and 109 non-patients who had never sought for psychological or psychiatric assistance. The results show that the two groups could be distinguished by the using of blue and by the symmetric configurations, both more frequent among the patients, in a significant way. The lack of security, the inhibition and constriction are typical signs and correspond to the panic symptoms described on literature

  10. Mechanosynthesis of MFe2O4 (M = Co, Ni, and Zn Magnetic Nanoparticles for Pb Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    America R. Vazquez-Olmos

    2016-01-01

    Full Text Available Adsorption of Pb(II from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, micro-Raman, and vibrating sample magnetometry (VSM. XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.

  11. Dielectric properties of electron irradiated PbZrO 3 thin films

    Indian Academy of Sciences (India)

    The present paper deals with the study of the effects of electron (8 MeV) irradiation on the dielectric and ferroelectric properties of PbZrO3 thin films grown by sol–gel technique. The films were (0.62 m thick) subjected to electron irradiation using Microtron accelerator (delivered dose 80, 100, 120 kGy). The films were well ...

  12. X-ray absorption spectroscopy of PbMoO 4 single crystals

    Indian Academy of Sciences (India)

    X-ray absorption spectra of PbMoO4 (LMO) crystals have been investigated for the first time in literature. The measurements have been carried out at Mo absorption edge at the dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The optics of the beamline was set to obtain a band of 2000 eV ...

  13. Evaluation of the Green Egyptian Pyramid

    OpenAIRE

    Ammar, Mohamed Gamal

    2012-01-01

    In January 2009 was established the Egyptian Council for evaluating green building, then the Board issue a primary version of the Egyptian pyramid in 2010, and as a result of economic, social and political changes that happened in Egypt after the Arab spring period, the study of regional experiences of neighboring countries in Africa and Asia in the development of evaluation system for green buildings of global systems that can contribute to the development of the Egyptian pyramid to promote ...

  14. Tiling a Pyramidal Polycube with Dominoes

    Directory of Open Access Journals (Sweden)

    Olivier Bodini

    2007-05-01

    Full Text Available The notion of pyramidal polycubes, namely the piling-up of bricks of a non-increasing size, generalizes in ℝ n the concept of trapezoidal polyominoes. In the present paper, we prove that n-dimensional dominoes can tile a pyramidal polycube if and only if the latter is balanced, that is, if the number of white cubes is equal to the number of black ones for a chessboard-like coloration, generalizing the result of [BC92] when n=2

  15. Enhanced field emission from PbTiO{sub 3} nanodots prepared by phase separation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinna; Luo Ming [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng Wenjian, E-mail: wengwj@zju.edu.cn [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Cheng Kui; Du Piyi; Shen Ge; Han Gaorong [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2009-10-15

    Uniformly distributed PbTiO{sub 3} nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO{sub 3} nanodots was observed: the minimum turn-on voltage was about 5.3 V/{mu}m; while the emission current density reached about 270 {mu}A cm{sup -2} at an applied field of about 9.25 V/{mu}m.

  16. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  17. Tunneling and propping : a justification for pyramidal ownership

    NARCIS (Netherlands)

    Riyanto, Y.E.; Toolsema-Veldman, Linda

    2004-01-01

    This paper presents a formal model of tunneling and propping in a pyramidal ownership structure. Tunneling refers to controlling shareholders shifting resources from one firm to another in the same pyramid. Propping is tunneling that is done to save the receiving firm from bankruptcy. We compare the

  18. Structural characterization of PbTi03, Sm0.6Nd0.4NiO3 and NdMnO3 multifunctional Perovskite thin films

    Directory of Open Access Journals (Sweden)

    Rapenne L.

    2012-06-01

    Full Text Available Different multifunctional (PbTiO3, Sm0.6Nd0.4NiO3, NdMnO3 thin films were grown by metalorganic chemical vapor deposition (MOCVD technique on SrTiO3 and LaAlO3 substrates. TEM and X-ray diffraction measurements reveal that almost single crystalline thin films can be epitaxially grown on the top of substrates. The relationship between the crystallographic orientation of the films and those of the substrates were determined by reciprocal space mapping and TEM analyses. PbTi03 thin films appear to be under tensile or compressive strain according to the different mismatch of their cell parameter with those of the substrate. Relaxation mechanism as a function of the film thickness arises from coexistence of different type of domains and size and strain effect are analyzed. SmNiO3 thin films present diffuse scattering strikes and are less well organized when compared to PbTi03 thin films. Different domains are observed as well as an additional parasitic phase close to NiO. Its regular distribution can be associated to reduced transport properties. Preliminary observations on NdMnO3 thin films show that an amorphous phase is obtained during MOCVD that can be transformed in a single crystalline film by annealing. The films are under tensile or compressive strain according to the different mismatch of their cell parameter with those of the substrate. Magnetic properties are investigated.

  19. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural and Optoelectronic Properties of Cubic CsPbF3 for Novel Applications

    International Nuclear Information System (INIS)

    Murtaza, G.; Ahmad, Iftikhar; Maqbool, M.; Rahnamaye Aliabad, H. A.; Afaq, A.

    2011-01-01

    Chemical bonding as well as structural, electronic and optical properties of CsPbF 3 are calculated using the highly accurate full potential linearized augmented plane-wave method within the framework of density functional theory (DFT). The calculated lattice constant is found to be in good agreement with the experimental results. The electron density plots reveal strong ionic bonding in Cs-F and strong covalent bonding in Pb-F. The calculations show that the material is a direct and wide bandgap semiconductor with a fundamental gap at the R-symmetry point. Optical properties such as the real and imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, optical conductivity and absorption coefficient are also calculated. Based on the calculated wide and direct bandgap, as well as other optical properties of the compound, it is predicted that CsPbF 3 is suitable for optoelectronic devices and anti-reflecting coatings. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Supramolecular assemblies in [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O complex – Structural, spectroscopic, magnetic and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowska, Agnieszka, E-mail: agnieszka.wojciechowska@pwr.edu.pl [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland); Kochel, Andrzej [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław (Poland); Duczmal, Marek [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland)

    2016-10-01

    The reaction of L-arginine and oxalate ions with copper(II) salts yields a new complex with formula of [Cu(L-Arg){sub 2}(H{sub 2}O)]·C{sub 2}O{sub 4}·6H{sub 2}O (1) (where L-Arg = L-arginine). Single crystals of 1 were synthesized by crystallization from aqueous solution. The complex properties were characterized by X-ray diffraction, spectroscopy (FT-IR, FT-Raman, NIR-Vis-UV and EPR) as well as thermal and magnetic methods. The square pyramidal (SP) geometry around Cu(II) ions in [Cu(L-Arg){sub 2}(H{sub 2}O)]{sup 2+} cation complex is formed by two cis-chelated L-arginine zwitterions and a water molecule coordinated in the apex of square pyramid. The trigonality distortion of SP geometry is relatively small, τ = 0.0087. The solid state EPR spectrum showed broad hyperfine splitting with g{sub ⊥} = 2.061 at 77 K. The copper centres distanced at 7.558(5) Å are joined in a single zig-zag structure via a chain based on the combination of Cu−O(5)−H(29)⋯O(2)−C1−O1−Cu hydrogen bonds along the b axis (d (O2⋯O5) = 2.812 Å). Taking into account the structural features, the magnetic susceptibility data were best-fitted, giving the exchange parameter J = −0.16 cm{sup −1}. Complex 1 is thermally stable up to 66 °C, where it was observed to lose the crystallization water molecules with an 11.7% mass loss (calc. 11.5%). - Highlights: • Crystal and molecular structure of [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O crystals have been studied. • The magnetic interactions of Cu(II) centres are assisted by the formation of single zig-zag chain. • Role of oxalate ions in completed relatively small square pyramid distortion is described. • The cis-fashioned L-arginine created the stronger ligand field than trans-configuration.

  2. Composition, ferroelectric and antiferroelectric ordering in Pb2InNbO6 crystals

    International Nuclear Information System (INIS)

    Bokov, A.A.; Raevskij, I.P.; Smotrakov, V.G.

    1984-01-01

    Effect of thermal treatment on temperatures of phase transitions and electrical properties has been studied in Pb 2 InNbO 6 crystals with the high-temperature phase transition of the order-disorder type in In and Nb cations disposition in crystallographic positions. The order-disorder transition temperature (Tsub(t) approximately 1020 deg C) has been directly determined for the first time using the method of electric conductivity investigation. It has been shown that Pb 2 InNbO 6 in the ordered state represents the antiferroelectric material with the Curie point of 195 deg C, and it represents the ferroelectric material with a smeared transition to the paraelectric phase in the temperature range of 60 deg C in the disordered state. With temperature decrease crystals with the mean ordering degree-paraelectric phase pass to the antiferroelectric phase and then to the ferroelectric phase

  3. Magnetic Properties of Dy in Pb2Sr2DyCu3O8

    International Nuclear Information System (INIS)

    Skanthakumar, S.; Soderholm, L.; Movshovich, R.

    1999-01-01

    Superconductivity can be induced at high temperatures in Pb 2 Sr 2 RCu 3 O 8 (R - rare earth) by partially doping Ca 2+ for R 3+ . In order to understand the interplay between magnetism and superconductivity, the magnetic properties of the parent compounds, Pb 2 Sr 2 RCu 3 O 8 , have been studied. The work presented here includes magnetic susceptibility and specific heat measurements on R=Dy and extends the previous studies on R=Ce, Pr, Tb, Ho and Er. Specific heat experiments suggest that the Dy ions order antiferromagnetically with an ordering temperature of 1.3K. The magnetic susceptibility data are in good agreement with the susceptibility calculated using crystal field parameters that are extrapolated from previous modeling of the R=Er and Ho analogs of this series

  4. Roymillerite, Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, a new mineral: mineralogical characterization and crystal chemistry

    Science.gov (United States)

    Chukanov, Nikita V.; Jonsson, Erik; Aksenov, Sergey M.; Britvin, Sergey N.; Rastsvetaeva, Ramiza K.; Belakovskiy, Dmitriy I.; Van, Konstantin V.

    2017-11-01

    The new mineral roymillerite Pb24Mg9(Si9AlO28)(SiO4)(BO3)(CO3)10(OH)14O4, related to britvinite and molybdophyllite, was discovered in a Pb-rich assemblage from the Kombat Mine, Grootfontein district, Otjozondjupa region, Namibia, which includes also jacobsite, cerussite, hausmannite, sahlinite, rhodochrosite, barite, grootfonteinite, Mn-Fe oxides, and melanotekite. Roymillerite forms platy single-crystal grains up to 1.5 mm across and up to 0.3 mm thick. The new mineral is transparent, colorless to light pink, with a strong vitreous lustre. Cleavage is perfect on (001). Density calculated using the empirical formula is equal to 5.973 g/cm3. Roymillerite is optically biaxial, negative, α = 1.86(1), β ≈ γ = 1.94(1), 2 V (meas.) = 5(5)°. The IR spectrum shows the presence of britvinite-type tetrahedral sheets, {CO}3^{2 - }, {BO}3^{3 - }, and OH- groups. The chemical composition is (wt%; electron microprobe, H2O and CO2 determined by gas chromatography, the content of B2O3 derived from structural data): MgO 4.93, MnO 1.24, FeO 0.95, PbO 75.38, B2O3 0.50, Al2O3 0.74, CO2 5.83, SiO2 7.90, H2O 1.8, total 99.27. The empirical formula based on 83 O atoms pfu (i.e. Z = 1) is Pb24.12Mg8.74Mn1.25Fe0.94B1.03Al1.04C9.46Si9.39H14.27O83. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is triclinic, space group P \\bar{1}, with a = 9.315(1), b = 9.316(1), c = 26.463(4) Å, α = 83.295(3)°, β = 83.308(3)°, γ = 60.023(2)°, V = 1971.2(6) Å3. The crystal structure of roymillerite is based built by alternating pyrophyllite-type TOT-modules Mg9(OH)8[(Si,Al)10O28] and I-blocks Pb24(OH)6O4(CO3)10(BO3,SiO4). The strongest lines of the powder X-ray diffraction pattern [ d, Å (I, %) ( hkl)] are: 25.9 (100) (001), 13.1 (11) (002), 3.480 (12) (017, 107, -115, 1-15), 3.378 (14) (126, 216), 3.282 (16) (-2-15, -1-25), 3.185 (12) (-116, 1-16), 2.684 (16) (031, 301, 030, 300, 332, -109, 0-19, 1-18), 2.382 (11) (0.0.-11). Roymillerite is

  5. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    Science.gov (United States)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  6. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  7. Tunneling and propping : A justification for pyramidal ownership

    NARCIS (Netherlands)

    Riyanto, Y.E.; Toolsema-Veldman, Linda

    2008-01-01

    This paper links existence of the pyramidal ownership structure to tunneling and propping. Tunneling refers to a transfer of resources from a lower-level firm to a higher-level firm in the pyramidal chain, whereas propping concerns a transfer in the opposite direction intended to bail out the

  8. Multiple matching scheme for broadband 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 single crystal phased-array transducer

    Science.gov (United States)

    Lau, S. T.; Li, H.; Wong, K. S.; Zhou, Q. F.; Zhou, D.; Li, Y. C.; Luo, H. S.; Shung, K. K.; Dai, J. Y.

    2009-01-01

    Lead magnesium niobate–lead titanate single crystal 0.72Pb(Mg1∕3Nb2∕3)O3−0.28PbTiO3 (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the −6 dB transducer bandwidth can be improved significantly by using double λ∕8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A −6 dB bandwidth of 110% and two-way insertion loss of −46.5 dB were achieved. PMID:19657405

  9. Content-adaptive pyramid representation for 3D object classification

    DEFF Research Database (Denmark)

    Kounalakis, Tsampikos; Boulgouris, Nikolaos; Triantafyllidis, Georgios

    2016-01-01

    In this paper we introduce a novel representation for the classification of 3D images. Unlike most current approaches, our representation is not based on a fixed pyramid but adapts to image content and uses image regions instead of rectangular pyramid scales. Image characteristics, such as depth...... and color, are used for defining regions within images. Multiple region scales are formed in order to construct the proposed pyramid image representation. The proposed method achieves excellent results in comparison to conventional representations....

  10. Space Station view of the Pyramids at Giza

    Science.gov (United States)

    2002-01-01

    One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).

  11. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  12. Peculiar temperature aging effects on the piezoelectric constant of Pb(Mg1sol3Nb2sol3)O3-PbTiO3 single crystal near the morphotropic phase boundary

    International Nuclear Information System (INIS)

    Xu Guisheng; Wang Xiaofeng; Yang Danfeng; Duan Ziqing; Feng Chude; Chen Kai

    2005-01-01

    After temperature aging, peculiar changes of the piezoelectric response of 0.67 Pb(Mg 1sol3 Nb 2sol3 )O 3- 0.33 PbTiO 3 crystals appeared. The piezoelectric constant d 33 of the (001)-cut crystals with T RT ∼35 deg. C abruptly rose more than 1000 pC/N in some regions after heat treatment at 65 deg. C for 12 h. For the (001)-cut crystals with T RT ∼74 deg. C, in spite of a fall of 40-100 pC/N after heat treatment at 65 deg. C for 12 h, the values of d 33 rose 50-100 pC/N unexpectedly after the subsequent heat treatment at 85 deg. C for 4 h. The structure adjustment caused by the internal stress relaxation during heat treatment at T>T RT accounted for the enhancement of d 33

  13. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  14. Thickness dependence of magnetoelectric response for composites of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on CoFe{sub 2}O{sub 4} ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wang-jing@nuaa.edu.cn; Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wu, Xia; Deng, Chaoyong [School of Electronics and Information Engineering, Guizhou University, Guiyang 550025 (China); Peng, Renci; Wang, Jianjun [School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-08-15

    Using chemical solution spin-coating we grew Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films of different thicknesses on highly dense CoFe{sub 2}O{sub 4} ceramics. X-ray diffraction revealed no other phases except Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} and CoFe{sub 2}O{sub 4}. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} film was important in obtaining strong magnetoelectric coupling.

  15. Second-order phase transition in PbO and SnO at high pressure: Implications for the litharge-massicot phase transformation

    Science.gov (United States)

    Adams, David M.; Christy, Andrew G.; Haines, Julian; Clark, Simon M.

    1992-11-01

    We have studied the structural behavior of PbO at high pressure by powder neturon diffraction in a McWhan cell, and by energy-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell. A phase (γ-PbO) occurs at room temperature between ~0.7 and ~2.5 GPa pressure, between the stability fields of litharge (phase is related to litharge by a reversible second-order transition. We infer that this is associated with the collapse of the eu acoustic mode. Unit-cell data at 1.6 GPa are Pm21n, a=4.027(3) Å, b=3.950(3) Å, c=4.767(4) Å, and Z=2. The pressure evolution of the spontaneous strain follows a simple Landau model. There are four distinct solid-state transformation paths between litharge and massicot that maintain the known topotactic relationship between the phases, maintain the translational symmetry common to both, and make use of continuous transitions between group-subgroup related structural intermediates. Both the γ phase and the modulated low-temperature phase of PbO are closely related to one step on one of these paths. Although there is evidence to suggest that the intermediate states do have a transient existence, several paths appear to be utilized. A transition to a γ-like phase also occurs in SnO, at 2.5 GPa, although there is no evidence of a massicotlike polymorph of this compound. The orthorhombic phase is stable to at least 7.5 GPa.

  16. A possible explanation of the void discovered in the pyramid of Khufu on the basis of the pyramid texts

    OpenAIRE

    Magli, Giulio

    2017-01-01

    A recent exploration has shown the presence of a significant void in the pyramid of Khufu at Giza. A possible explanation of this space, interpreted as a chamber connected to the lower north channel and aimed to contain a specific funerary equipment is tentatively proposed. According to the Pyramid Texts, this equipment might consist of a Iron throne, actually a wooden throne endowed with meteoritic Iron sheets.

  17. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D.; Martin, F.; Ross, G. G. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Cai, R. S.; Wang, Y. Q. [The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Demarche, J.; Terwagne, G. [LARN, Centre de Recherche en Physique de la Matière et du Rayonnement (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Rosei, F. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 2K6 (Canada)

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  18. Electric-Field-Tunable Ferroelastic Control of Nonvolatile Resistivity and Ferromagnetic Switching in Multiferroic La0.67Ca0.33MnO3/[PbMg1/3Nb2/3O3] 0.7[PbTiO3]0.3 Heterostructures

    Science.gov (United States)

    Zheng, Ming; Zheng, Ren-Kui

    2016-04-01

    The electric-field-modulated nonvolatile resistivity and magnetization switching in elastically coupled La0.67Ca0.33MnO3 films grown on (111)-oriented 0.7 Pb (Mg1 /3Nb2 /3)O3-0.3 PbTiO3 substrates is achieved through the ferroelastic effect. By taking advantage of the 180° ferroelectric and non-180° ferroelastic domain switching, we identify that such changes in order parameters stem from domain-switching-induced strain rather than accumulation or depletion of charge carriers at the interface. Specifically, the strong correlation between the ferroelastic strain and the magnetic field is manifested not only by the strain-tunable magnetoresistance effect but also by the magnetically manipulated strain effect, which is essentially driven by the electronic phase separation. These findings present a potential strategy for elucidating the essential physics of the ferroelastic-strain effect and delivering prototype devices for energy-efficient and nonvolatile information storage.

  19. Untitled

    Indian Academy of Sciences (India)

    and BiO pyramidal units are present depending on compositions. In these glasses with increasing SrO and CaO contents, a conversion of BiO units to BiO units was observed producing nonbridging oxygen atoms, For the PbO-CuO glasses, IR bands have been observed at 830cm, 620 cm and 460 cm corresponding to.

  20. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    Science.gov (United States)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.