WorldWideScience

Sample records for pwr reactor radionuklidy

  1. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  2. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  3. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  4. RSK-guidelines for PWR reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The RSK guidelines for PWA reactors of April 24, 1974, have been revised and amended in this edition. The RSK presents a summary of safety requirements to be observed in the design, construction, and operation of PWR reactors in the form of guidelines. From January 1979 onwards these guidelines will be the basis of siting and safety considerations for new PWR reactors, and newly built nuclear power plants will have to form these guidelines. They are not binding for existing nuclear power plants under construction or in operation. It will be a matter of individual discussion whether or not the guidelines will be applied in these plants. The main purpose of the guidelines is to facilitate discussion among RSK members and to give early information on necessary safety requirements. If the guidelines are observed by producers and operators, the RSK will make statements on individual projects at short notice. (orig./HP) [de

  5. Plutonium recycle in PWR reactors (Brazilian Nuclear Program)

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-02-01

    An evaluation is made of the material requirements of the nuclear fuel cycle with plutonium recycle. It starts from the calculation of a reference reactor and allows the evaluation of demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. For plutonium recycle, the concept of uranium and plutonium homogeneous mixture has been adopted, using self-produced plutonium at equilibrium, in order to get minimum neutronic perturbations in the reactor core. The refueling model studied in the reference reactor was the 'out-in' scheme with a constant number of changed fuel elements (approximately 1/3 of the core). Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5%U 3 O 8 and 6% separative work units if recycle is assumed only after the 5th operation cycle of the thermal reactors. The cumulative amount of fissile plutonium obtained by the Brazilian Nuclear Program of PWR reactors by 1991 should be sufficient for a fast breeder with the same capacity as Angra 2. For the proposed fast breeder programs, the fissile plutonium produced by thermal reactors is sufficient to supply fast breeder initial necessities. Howewer, U 3 O 8 and SWU economy with recycle is not significant when the proposed fast breeder program is considered. (Author) [pt

  6. BEACON TSM application system to the operation of PWR reactors

    International Nuclear Information System (INIS)

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.

    2012-01-01

    BEACON-TSM is an advanced core monitoring system for PWR reactor cores, and also offers the possibility to perform a wide range of predictive calculation in support of reactor operation. BEACON-TSM is presently installed and licensed in the 5 Spanish PWR reactors of standard Westinghouse design. the purpose of this paper is to describe the features of this software system and to show the advantages obtainable by a nuclear power plant from its use. To illustrate the capabilities and benefits of BEACON-TSM two real case reactor operating situations are presented. (Author)

  7. Serious accidents of PWR type reactors for power generation

    International Nuclear Information System (INIS)

    2008-12-01

    This document presents the great lines of current knowledge on serious accidents relative to PWR type reactors. First, is exposed the physics of PWR type reactor core meltdown and the possible failure modes of the containment building in such a case. Then, are presented the dispositions implemented with regards to such accidents in France, particularly the pragmatic approach that prevails for the already built reactors. Then, the document tackles the case of the European pressurized reactor (E.P.R.), for which the dimensioning takes into account explicitly serious accidents: it is a question of objectives conception and their respect must be the object of a strict demonstration, by taking into account uncertainties. (N.C.)

  8. The plutonium recycle for PWR reactors from brazilian nuclear program

    International Nuclear Information System (INIS)

    Rubini, L.A.

    1978-01-01

    The purpose of this thesis is to evaluate the material requirements of the nuclear fuel cycle with plutonium recycle. The study starts with the calculation of a reference reactor and has flexibility to evaluate the demand under two alternatives of nuclear fuel cycle for Pressurized Water Reactors (PWR): Without plutonium recycle; and with plutonium recycle. Calculations of the reference reactor have been carried out with the CELL-CORE codes. Variations in the material requirements were studied considering changes in the installed nuclear capacity of PWR reactors, the capacity factor of these reactors, and the introduction of fast breeders. Recycling plutonium produced inside the system can reach economies of about 5% U 3 O 8 and 6% separative work units if recycle is assumed only after the fifth operation cycle of the thermal reactors. (author)

  9. Optimum fuel use in PWR reactors

    International Nuclear Information System (INIS)

    Neubauer, W.

    1979-07-01

    An optimization program was developed to calculate minimum-cost refuelling schedules for PWR reactors. Optimization was made over several cycles, without any constraints (equilibrium cycle). In developing the optimization program, special consideration was given to an individual treatment of every fuel element and to a sufficiently accurate calculation of all the data required for safe reactor operation. The results of the optimization program were compared with experimental values obtained at Obrigheim nuclear power plant. (orig.) [de

  10. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  11. Degradation of fastener in reactor internal of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Chung, M. K.; Han, C. H

    2000-03-01

    Main component degraded in reactor internal structure of PWR is fastener such as bolts, stud, cap screw, and pins. The failure of these components may damage nuclear fuel and limits the operation of nuclear reactor. In foreign reactors operated more than 10 years, an increasing number of incidents of degraded thread fasteners have been reported. The degradation of these components impair the integrity of reactor internal structure and limit the life extension of nuclear power plant. To solve the problem of fastener failure, the incidents of failure and main mechanisms should be investigated. the purpose of this state-of-the -art report is to investigate the failure incidents and mechanisms of fastener in foreign and domestic PWR and make a guide to select a proper materials. There is no intent to describe each event in detail in this report. This report covers the failures of fastener and damage mechanisms reported by the licensees of operating nuclear power plants and the applications of plants constructed after 1964. This information is derived from pertinent licensee event report, reportable occurrence reports, operating reactor event memoranda, failure analysis reports, and other relevant documents. (author)

  12. Vibration behavior of PWR reactor internals Model experiments and analysis

    International Nuclear Information System (INIS)

    Assedo, R.; Dubourg, M.; Livolant, M.; Epstein, A.

    1975-01-01

    In the late 1971, the CEA and FRAMATOME decided to undertake a comprehensive joint program of studying the vibration behavior of PWR internals of the 900 MWe, 50 cycle, 3 loop reactor series being built by FRAMATOME in France. The PWR reactor internals are submitted to several sources of excitation during normal operation. Two main sources of excitation may effect the internals behavior: the large flow turbulences which could generate various instabilities such as: vortex shedding: the pump pressure fluctuations which could generate acoustic noise in the circuit at frequencies corresponding to shaft speed frequencies or blade passing frequencies, and their respective harmonics. The flow induced vibrations are of complex nature and the approach selected, for this comprehensive program, is semi-empirical and based on both theoretical analysis and experiments on a reduced scale model and full scale internals. The experimental support of this program consists of: the SAFRAN test loop which consists of an hydroelastic similitude of a 1/8 scale model of a PWR; harmonic vibration tests in air performed on full scale reactor internals in the manufacturing shop; the GENNEVILLIERS facilities which is a full flow test facility of primary pump; the measurements carried out during start up on the Tihange reactor. This program will be completed in April 1975. The results of this program, the originality of which consists of studying separately the effects of random excitations and acoustic noises, on the internals behavior, and by establishing a comparison between experiments and analysis, will bring a major contribution for explaining the complex vibration phenomena occurring in a PWR

  13. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  14. VALIDATION OF SIMBAT-PWR USING STANDARD CODE OF COBRA-EN ON REACTOR TRANSIENT CONDITION

    Directory of Open Access Journals (Sweden)

    Muhammad Darwis Isnaini

    2016-03-01

    Full Text Available The validation of Pressurized Water Reactor typed Nuclear Power Plant simulator developed by BATAN (SIMBAT-PWR using standard code of COBRA-EN on reactor transient condition has been done. The development of SIMBAT-PWR has accomplished several neutronics and thermal-hydraulic calculation modules. Therefore, the validation of the simulator is needed, especially in transient reactor operation condition. The research purpose is for characterizing the thermal-hydraulic parameters of PWR1000 core, which be able to be applied or as a comparison in developing the SIMBAT-PWR. The validation involves the calculation of the thermal-hydraulic parameters using COBRA-EN code. Furthermore, the calculation schemes are based on COBRA-EN with fixed material properties and dynamic properties that calculated by MATPRO subroutine (COBRA-EN+MATPRO for reactor condition of startup, power rise and power fluctuation from nominal to over power. The comparison of the temperature distribution at nominal 100% power shows that the fuel centerline temperature calculated by SIMBAT-PWR has 8.76% higher result than COBRA-EN result and 7.70% lower result than COBRA-EN+MATPRO. In general, SIMBAT-PWR calculation results on fuel temperature distribution are mostly between COBRA-EN and COBRA-EN+MATPRO results. The deviations of the fuel centerline, fuel surface, inner and outer cladding as well as coolant bulk temperature in the SIMBAT-PWR and the COBRA-EN calculation, are due to the value difference of the gap heat transfer coefficient and the cladding thermal conductivity.

  15. PWR reactor vessel in-service-inspection according to RSEM

    International Nuclear Information System (INIS)

    Algarotti, Marc; Dubois, Philippe; Hernandez, Luc; Landez, Jean Paul

    2006-01-01

    Nuclear services experience Framatome ANP (an AREVA and Siemens company) has designed and constructed 86 Pressurized Water Reactors (PWR) around the world including the three units lately commissioned at Ling Ao in the People's Republic of China and ANGRA 2 in Brazil; the company provided general and specialized outage services supporting numerous outages. Along with the American and German subsidiaries, Framatome ANP Inc. and Framatome ANP GmbH, Framatome ANP is among the world leading nuclear services providers, having experience of over 500 PWR outages on 4 continents, with current involvement in more than 50 PWR outages per year. Framatome ANP's experience in the examinations of reactor components began in the 1970's. Since then, each unit (American, French and German companies) developed automated NDT inspection systems and carried out pre-service and ISI (In-Service Inspections) using a large range of NDT techniques to comply with each utility expectations. These techniques have been validated by the utilities and the safety authorities of the countries where they were implemented. Notably Framatome ANP is fully qualified to provide full scope ISI services to satisfy ASME Section XI requirements, through automated NDE tasks including nozzle inspections, reactor vessel head inspections, steam generator inspections, pressurizer inspections and RPV (Reactor Pressure Vessel) inspections. Intercontrole (Framatome ANP subsidiary dedicated in supporting ISI) is one of the leading NDT companies in the world. Its main activity is devoted to the inspection of the reactor primary circuit in French and foreign PWR Nuclear Power Plants: the reactor vessel, the steam generators, the pressurizer, the reactor internals and reactor coolant system piping. NDT methods mastered by Intercontrole range from ultrasonic testing to eddy current and gamma ray examinations, as well as dye penetrant testing, acoustic monitoring and leak testing. To comply with the high requirements of

  16. Utilization of thorium in PWR type reactors

    International Nuclear Information System (INIS)

    Correa, F.

    1977-01-01

    Uranium 235 consumption is comparatively evaluated with thorium cycle for a PWR type reactor. Modifications are only made in fuels components. U-235 consumption is pratically unchanged in both cycles. Some good results are promised to the mixed U-238/Th-232 fuel cycle in 1/1 proportion [pt

  17. Transient performance of flow in PWR reactor circuits

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.; Carajilescov, P.

    1988-12-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  18. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  19. A PWR reactor downcomer modification for reduction of ECC bypass flow during LOCA

    International Nuclear Information System (INIS)

    Popov, N.; Bosevski, T.

    1986-01-01

    The ECC bypass phenomenon in the PWR reactor down-comer, which delays the reactor vessel refilling, after cold leg large break LOCA accident, has been subject of analysis in this paper. In the paper, a particular construction modification of the reactor down-comer has been suggested by inserting vertical ribs, aimed to intensify the reactor ECC refilling following the LOCA accident, and to advance the thermal-hydraulics safety of post-accidental cooling of the PWR reactors. To verify the effectiveness of the suggested down-comer construction modification, some properly selected results, obtained by corresponding verified mathematical model, have been presented in this paper. (author)

  20. Problems of control of WWER-type pressurized water reactors (PWR's)

    International Nuclear Information System (INIS)

    Drab, F.; Grof, V.

    1978-01-01

    The problems are dealt with of nuclear power reactor control. Special attention is paid to the reactor of the WWER type, which will play the most important part in the Czechoslovak power system in the near future. The subsystems are described which comprise the systems of reactor control and protection. The possibilities are outlined of using Czechoslovak instrumentation for the control and safety system of the WWER-type PWR. (author)

  1. Aging management of PWR reactor internals in U.S. plants

    International Nuclear Information System (INIS)

    Amberge, K.J.; Demma, A.

    2015-01-01

    This paper describes the development, aging management strategies and inspection results of the Pressurized Water Reactor (PWR) vessel internals inspection and evaluation guidelines. The goal of these guidelines is to provide PWR owners with robust aging management strategies to monitor degradation of internals components to support life extension as well as the current period of operation and power up-rate activities. The implementation of these guidelines began in 2010 within the U.S. PWR fleet and several examinations have been performed since. Examples of inspection results are presented for selected vessel internals components and are compared with simulation results. In summary, to date there have been no observations of austenitic stainless steel stress corrosion cracking (SCC), which is consistent with expectations based on the current understanding of the mechanism. Observations of irradiation assisted stress corrosion cracking (IASCC) have been limited and only found in baffle former bolting. Additionally, no macroscopic effects or global observations of void swelling impacts on general conditions of reactor internal hardware have been observed. (authors)

  2. Minimization of PWR reactor control rods wear

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Moura Angelkorte, Gunther de

    1995-01-01

    The Rod Cluster Control Assemblies (RCCA's) of Pressurized Water Reactors (PWR's) have experienced a continuously wall cladding wear when Reactor Coolant Pumps (RCP's) are running. Fretting wear is a result of vibrational contact between RCCA rodlets and the guide cards which provide lateral support for the rodlets when RCCA's are withdrawn from the core. A procedure is developed to minimize the rodlets wear, by the shuffling and axial reposition of RCCA's every operating cycle. These shuffling and repositions are based on measurement of the rodlet cladding thickness of all RCCA's. (author). 3 refs, 2 figs, 2 tabs

  3. Comparison of radioactive doses after the last protection layer insight the reactor structure for Russian VVER-1000 and German PWR-1300 reactors

    International Nuclear Information System (INIS)

    Rahimi, A.; Mansourshaiflu, N.; Alizadeh, M. R.

    2004-01-01

    In pressurized reactors (VVER and PWR), various protections layers are used for reducing the output core doses. At any protection layer, some amount of neutron and gamma doses is reduced. In this project the axial flux of neutron and gamma beams have been evaluated at various protection layers in the operation state the German PWR-1300 and Russian VVER-1000 reactors by the MCNP computer code. For the purpose of effective use of the MCNP code and assuring its correct performance about of fluxed beams common and series of scientific answers and bench marks should be considered and the results obtained by the MCNP code, be compared with this answers. Then by using appropriate method, for reducing the flux variants of neutron and gamma beams at various protection layers of German PWR-1300 and Russian VVER-1000 reactors of the operation state of both reactors have been accelerated. In this projects, bench marks are computations and numbers existing in PSAR's present at Bushehr nuclear power plant. At the end, by using the results obtained and the standard doses, the time which a person can have work activity at the reactor wall (after the last protection layer), was compared for the operation status of the German PWR-1300 and Russian VVER-1000 reactors

  4. Study of PWR reactor efficiency as a function of turbine steam extractions

    International Nuclear Information System (INIS)

    Rocha, Janine Gandolpho da; Alvim, Antonio Carlos Marques; Martinez, Aquilino Senra

    2002-01-01

    The objective of this work is to optimize the extractions of the low-pressure turbine of a PWR nuclear reactor, in order to obtain the best thermodynamic cycle efficiency. We have analyzed typical data of a 1300 MW PWR reactor, operating at 25%, 50%, 75% and 100% capacities, respectively. The first stage of this study consists of generating a mathematical model capable of describing the reactor behavior and efficiency at any power level. The second stage of this study consists of to combine the generated mathematical model in an optimization computer program that optimize the extractions flow of the low-pressure turbine until it finds the optimal system efficiency. This work does not alter the nuclear facility project in any way. (author)

  5. Response of pressurized water reactor (PWR) to network power generation demands

    International Nuclear Information System (INIS)

    Schreiner, L.A.

    1991-01-01

    The flexibility of the PWR type reactor in terms of response to the variations of the network power demands, is demonstrated. The factors that affect the transitory flexibility and some design prospects that allow the reactor fits the requirements of the network power demands, are also discussed. (M.J.A.)

  6. PWR: 10 years after and perspectives

    International Nuclear Information System (INIS)

    1990-01-01

    These proceedings of the SFEN days on PWR (Ten years after and perspectives) comprise 13 conferences bearing on: - From the occurential approach to the state approach - Evolution of calculating tools - Human factors and safety - Reactor safety in the PWR 2000 - The PWR and the electrical power grid load follow - Fuel aspect of PWR management - PWR chemistry evolution - Balance of radiation protection - PWR modifications balance and influence on reactor operation - Design and maintenance of reactor components: 4 conferences [fr

  7. Transient performance of flow in circuits of PWR type reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.; Carajilescov, P.

    1988-09-01

    Generally, PWR's are designed with several primary loops, each one provided with a pump to circulate the coolant through the core. If one or more of these pumps fail, there would be a decrease in reactor flow rate which could cause coolant phase change in the core and components overheating. The present work establishes a simulation model for pump failure in PWR's and the SARDAN-FLOW computes code was developed, considering any combination of such failures. Based on the data of Angra I, several accident and operational transient conditions were simulated. (author) [pt

  8. Power ramp testing method for PWR fuel rod at research reactor

    International Nuclear Information System (INIS)

    Zhou Yidong; Zhang Peisheng; Zhang Aimin; Gao Yongguang; Wang Huarong

    2003-01-01

    A tentative power ramp test for short PWR fuel rod has been conducted at the Heavy Water Research Reactor (HWRR) in China Institute of Atomic Energy (CIAE). The test fuel rod was cooled by the circulating water in the test loop. The power ramp was realized by moving solid neutron-absorbing screen around the fuel rod. The linear power of the fuel rod increased from 220 W/cm to 340 W/cm with a power ramp rate of 20 W/cm/min. The power of the fuel rod was monitored by both in-core thermal and nuclear measurement sensors in the test rig. This test provides experiences for further developing the power ramp test methods for PWR fuel rods at research reactor. (author)

  9. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  10. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  11. Seismic proving test of PWR reactor containment vessel

    International Nuclear Information System (INIS)

    Akiyama, H.; Yoshikawa, T.; Tokumaru, Y.

    1987-01-01

    The seismic reliability proving tests of nuclear power plant facilities are carried out by Nuclear Power Engineering Test Center (NUPEC), using the large-scale, high-performance vibration of Tadotsu Engineering Laboratory, and sponsored by the Ministry of International Trade and Industry (MITI). In 1982, the seismic reliability proving test of PWR containment vessel started using the test component of reduced scale 1/3.7 and the test component proved to have structural soundness against earthquakes. Subsequently, the detailed analysis and evaluation of these test results were carried out, and the analysis methods for evaluating strength against earthquakes were established. Whereupon, the seismic analysis and evaluation on the actual containment vessel were performed by these analysis methods, and the safety and reliability of the PWR reactor containment vessel were confirmed

  12. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal

  13. Study for identification of control rod drops in PWR reactors at any burnup step

    International Nuclear Information System (INIS)

    Souza, Thiago J.; Martinez, Aquilino S.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C.

    2013-01-01

    The control rod drop event in PWR reactors induces an unsafe operating condition. Therefore, in a scenario of a control rod drop is important to quickly identify the rod to minimize undesirable effects. The objective of this work is to develop an on-line method for identification of control rod drop in PWR reactors. The method consists on the construction of a tool that is based on the ex-core detector responses. Therefore, it is proposed to recognize patterns in the neutron ex-core detectors responses and thus to identify on-line a control rod drop in the core during the reactor operation. The results of the study, as well as the behavior of the detector responses, demonstrated the feasibility of this method. (author)

  14. Study for identification of control rod drops in PWR reactors at any burnup step

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Thiago J.; Martinez, Aquilino S.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C., E-mail: tsouza@nuclear.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: canedo@lmp.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The control rod drop event in PWR reactors induces an unsafe operating condition. Therefore, in a scenario of a control rod drop is important to quickly identify the rod to minimize undesirable effects. The objective of this work is to develop an on-line method for identification of control rod drop in PWR reactors. The method consists on the construction of a tool that is based on the ex-core detector responses. Therefore, it is proposed to recognize patterns in the neutron ex-core detectors responses and thus to identify on-line a control rod drop in the core during the reactor operation. The results of the study, as well as the behavior of the detector responses, demonstrated the feasibility of this method. (author)

  15. Contribution to the study of the conversion PWR type reactors to the thorium cycle

    International Nuclear Information System (INIS)

    Martins Filho, J.R.

    1980-01-01

    The use of the thorium cycle in PWR reactors is discussed. The fuel has been calculated in the equilibrium condition for a economic comparison with the uranium cycle (in the same condition). First of all, a code named EQUILIBRIO has been developed for the fuel equilibrium calculation. The results gotten by this code, were introduced in the LEOPARD code for the fuel depletion calculation (in the equilibrium cycle). Same important physics details of fuel depletion are studied, for instance: the neutron balance, power sharing, fuel burnup, etc. The calculations have been done taking as reference the Angra-1 PWR reactor. (Author) [pt

  16. Fuel assembly for pressure loss variable PWR type reactor

    International Nuclear Information System (INIS)

    Yoshikuni, Masaaki.

    1993-01-01

    In a PWR type reactor, a pressure loss control plate is attached detachably to a securing screw holes on the lower surface of a lower nozzle to reduce a water channel cross section and increase a pressure loss. If a fuel assembly attached with the pressure loss control plate is disposed at a periphery of the reactor core where the power is low and heat removal causes no significant problem, a flowrate at the periphery of the reactor core is reduced. Since this flowrate is utilized for removal of heat from fuel assemblies of high powder at the center of the reactor core where a pressure loss control plate is not attached, a thermal limit margin of the whole reactor core is increased. Thus, a limit of power peaking can be moderated, to obtain a fuel loading pattern improved with neutron economy. (N.H.)

  17. Burst protected nuclear reactor plant with PWR

    International Nuclear Information System (INIS)

    Harand, E.; Michel, E.

    1978-01-01

    In the PWR, several integrated components from the steam raising unit and the main coolant pump are grouped around the reactor pressure vessel in a multiloop circuit and in a vertical arrangement. For safety reasons all primary circuit components and pipelines are situated in burst protection covers. To reduce the area of the plant straight tube steam raising units with forced circulation are used as steam raising units. The boiler pumps are connected to the vertical tubes and to the pressure vessel via double pipelines made as twin chamber pipes. (DG) [de

  18. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  19. Conversion rate for PWR reactors in thorium cycle

    International Nuclear Information System (INIS)

    Angelkorte, G.M.

    1980-01-01

    This work concerns to the determination of the conversion-rate for a PWR reactor with an enrichment of 7.47%, considering a cell, geometrically equal to Angra I, composed by Thorium and U-238 in a 1:1 relation. The study was performed considering neutrons of one and two groups of energy, according to the suggestion from other authors sup(1,2). It was also performed a study about the production and consumption of fissile material. (author)

  20. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    Barroso, D.E.G.; Nair, R.P.K.; Vellozo, S.O.

    1981-01-01

    A study about fuel management in PWR reactors, where not only the conventional uranium cycle is considered, but also the thorium cycle as an alternative is presented. The final results are presented in terms of U 3 O 8 demand and SWU and the approximate costs of the principal stages of the fuel cycle, comparing with the stardand cycle without recycling. (E.G.) [pt

  1. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  2. The pseudo-harmonics method: an application involving perturbations caused by control rod insertion in PWR reactors

    International Nuclear Information System (INIS)

    Claro, L.H.; Alvim, A.C.M.; Thome, Z.D.

    1988-08-01

    The objective of this work is to stydy the effect of intense perturbations, such as control rod insertion in the core of PWR reactors, through a perturbation approach consisting of a modified version of the pseudo-harmonics method. A typical one-dimensional PWR reactor model was used as a reference state, from which two perturbations were imposed, simulation gray and black control rod insertion. In the first case, eigenvalue convergence was achieved with the eighth order of approximation approximation and perturbed fluxes and eigenvalue estimates agreed very well with direct calculation results. The second case tested represents a very intense localized perturbation. Oscillation in keff were observed er of approximation increased and the method failed to converge. Results obtained indicate that the pseudo-harmonics method can be used to compute 2 group fluxes and fundamental eigenvalue of perturbated states resulting from gray control rod insertion in PWR reactors. The method is limited, however, by perturbation intensity, as other perturbation methods are. (author) [pt

  3. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  4. Study on Reactor Physics Characteristic of the PWR Core Using UO2

    International Nuclear Information System (INIS)

    Tukiran Surbakti

    2009-01-01

    Study on reactor physics characteristic of the PWR core using UO 2 fuel it is necessary to be done to know the characteristic of geometry, condition and configuration of pin cell in the fuel assembly Because the geometry, configuration and condition of the pin cell in fuel core determine the loading strategy of in-core fuel management Calculation of k e ff is a part of the neutronic core parameter calculation to know the reactor physics characteristic. Generally, core calculation is done using computer code starts from modelling one unit fuel lattice cell, fuel assembly, reflector, irradiation facility and until core reactor. In this research, the modelling of pin cell and fuel assembly of the PWR 17 ×17 is done homogeneously. Calculation of the k-eff is done with variation of the fuel volume fraction, fuel pin diameter, fuel enrichment. The calculation is using by NITAWL and CENTRM, and then the results will be compared to KENOVI code. The result showed that the value of k e ff for pin cell and fuel assembly PWR 17 ×17 is not different significantly with homogenous and heterogenous models. The results for fuel volume fraction of 0.5; rod pitch 1.26 cm and fuel pin diameter of 9.6 mm is critical with burn up of 35,0 GWd/t. The modeling and calculation method accurately is needed to calculation the core physic parameter, but sometimes, it is needed along time to calculate one model. (author)

  5. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  6. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  7. AGR v PWR

    International Nuclear Information System (INIS)

    Green, D.

    1986-01-01

    When the Central Electricity Generating Board (CEGB) invited tenders and placed a contract for the Advanced Gas Cooled Reactor (AGR) at Dungeness B in 1965 -preferring it to the Pressurised Water Reactor (PWR) -the AGR was lamentably ill developed. The effects of the decision were widely felt, for it took the British nuclear industry off the light water reactor highway of world reactor business and up and idiosyncratic private highway of its own, excluding it altogether from any material export business in the two decades which followed. Yet although the UK may have made wrong decisions in rejecting the PWR in 1965, that does not mean that it can necessarily now either correct them, or redeem their consequence, by reversing the choice in 1985. In the 20 years since 1965 the whole world economic and energy picture has been transformed and the national picture with it. Picking up the PWR now could prove as big a disaster as rejecting it may have been in 1965. (author)

  8. Coolant degassing device for PWR type reactors

    International Nuclear Information System (INIS)

    Kita, Kaoru; Takezawa, Kazuaki; Minemoto, Masaki.

    1982-01-01

    Purpose: To efficiently decrease the rare gas concentration in primary coolants, as well as shorten the degassing time required for the periodical inspection in the waste gas processing system of a PWR type reactor. Constitution: Usual degassing method by supplying hydrogen or nitrogen to a volume control tank is replaced with a method of utilizing a degassing tower (method of flowing down processing liquid into the filled tower from above while uprising streams from the bottom of the tower thereby degassing the gases dissolved in the liquid into the steams). The degassing tower is combined with a hydrogen separator or hydrogen recombiner to constitute a waste gas processing system. (Ikeda, J.)

  9. Seismic analysis of a PWR 900 reactor: study of reactor building with soil-structure interaction and evaluation of floor spectra

    International Nuclear Information System (INIS)

    Gantenbein, F.; Aguilar, J.

    1983-08-01

    The purpose of this paper is the evaluation of seismic response and floor spectra for a typical PWR 900 reactor building with respect to soil-structure interaction for soil stiffness). The typical PWR 900 reactor building consists of a concrete cylindrical external building and roof dome, a concrete internal structure (internals) on a common foundation mat as illustrated. The seismic response is obtained by SRSS method and floor spectra directly from ground spectrum and modal properties of the structure. Seismic responses and floor spectra computation is performed in the case of two different ground spectra: EDF spectrum (mean of oscillator spectra obtained from 8 californian records) normalized to 0.2 g, and DSN spectrum (typical of shallow seism) normalized to 0.3 g. The first section is devoted to internals' modelisation, the second one to the axisymmetric model of the reactor, the third one to the seismic response, the fourth one to floor spectra

  10. The AMEBA PWR, a new concept in the technology of nuclear reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A

    2000-05-01

    AMEBA is an Italian acronym which stands for 'alta moderazione e basso arricchimento' (high moderation and low enrichment). The AMEBA reactor is nothing more than a PWR which possesses very unusual values of both volumetric ratio moderator/fuel and U-235 enrichment of UO{sub 2}. The possibility is shown of the technical realisation of a nuclear power plant equipped with an AMEBA PWR reactor. Among the most enticing properties of AMEBA are the following: self-shut-down in any abnormal condition, elimination of all need for control rods and boric acid dissolution in the water, absolute impossibility of reaching values of reactivity greater than a fraction of a dollar, intrinsic subcriticality, attaining to several dollars, in non-operative condition when the water is at ambient temperature, normal operation with a very small-sized pressurizer, self-start-up.

  11. The AMEBA PWR, a new concept in the technology of nuclear reactor safety

    International Nuclear Information System (INIS)

    Novelli, A.

    2000-01-01

    AMEBA is an Italian acronym which stands for 'alta moderazione e basso arricchimento' (high moderation and low enrichment). The AMEBA reactor is nothing more than a PWR which possesses very unusual values of both volumetric ratio moderator/fuel and U-235 enrichment of UO 2 . The possibility is shown of the technical realisation of a nuclear power plant equipped with an AMEBA PWR reactor. Among the most enticing properties of AMEBA are the following: self-shut-down in any abnormal condition, elimination of all need for control rods and boric acid dissolution in the water, absolute impossibility of reaching values of reactivity greater than a fraction of a dollar, intrinsic subcriticality, attaining to several dollars, in non-operative condition when the water is at ambient temperature, normal operation with a very small-sized pressurizer, self-start-up

  12. Study on dynamic characteristics of reduced analytical model for PWR reactor internal structures

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae Han; Kim, Jong Bum; Koo, Kyeong Hoe

    1993-01-01

    The objective of this study is to establish the procedure of the reduced analytical modeling technique for the PWR reactor internal(RI) structures and to carry out the sensitivity study of the dynamic characteristics of the structures by varying the structural parameters such as the stiffness, the mass and the damping. Modeling techniques for the PWR reactor internal structures and computer programs used for the dynamic analysis of the reactor internal structures are briefly investigated. Among the many components of RI structures, the dynamic characteristics for CSB was performed. The sensitivity analysis of the dynamic characteristics for the reduced analytical model considering the variations of the stiffnesses for the lower and upper flanges of the CSB and for the RV Snubber were performed to improve the dynamic characteristics of the RI structures against the external loadings given. In order to enhance the structural design margin of the RI components, the nonlinear time history analyses were attempted for the RI reduced models to compare the structural responses between the reference model and the modified one. (Author)

  13. Thermal-hydraulic study of integrated steam generator in PWR

    International Nuclear Information System (INIS)

    Osakabe, Masahiro

    1989-01-01

    One of the safety aspects of innovative reactor concepts is the integration of steam generators (SGs) into the reactor vessel in the case of the pressurized water reactor (PWR). All of the reactor system components including the pressurizer are within the reactor vessel in the SG integrated PWR. The simple heat transfer code was developed for the parametric study of the integrated SG. The code was compared to the once-through 19-tube SG experiment and the good agreement between the experimental results and the code predictions was obtained. The assessed code was used for the parametric study of the integrated once-through 16 m-straight-tube SG installed in the annular downcomer. The proposed integrated SG as a first attempt has approximately the same tube size and pitch as the present PWR and the SG primary and secondary sides in the present PWR is inverted in the integrated PWR. Based on the study, the reactor vessel size of the SG integrated PWR was calculated. (author)

  14. Reactor building seismic analysis of a PWR type - NPP

    International Nuclear Information System (INIS)

    Kakubo, Masao

    1983-01-01

    Earthquake engineering studies raised up in Brazil during design licensing and construction phases of Almirante Alvaro Alberto NPP, units 1 and 2. State of art of soil - structure interaction analysis with particular reference to the impedance function calculation analysis with particular reference to the impedance function calculation of a group of pile is presented in this M.Sc. Dissertation, as an example the reactor building dynamic response of a 1325 MWe NPP PWR type is calculated. The reactor building is supported by a pile foundation with 2002 end bearing piles. Upper and lower bound soil parameters are considered in order to observe their influence on dynamic response of structure. Dynamic response distribution on pile heads show pile-soil-pile interaction effects. (author)

  15. Study of PWR reactor efficiency as a function of turbine steam extractions; Estudo da otimizacao da eficiencia de reator PWR em funcao das extracoes de vapor da turbina

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Janine Gandolpho da; Alvim, Antonio Carlos Marques; Martinez, Aquilino Senra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is to optimize the extractions of the low-pressure turbine of a PWR nuclear reactor, in order to obtain the best thermodynamic cycle efficiency. We have analyzed typical data of a 1300 MW PWR reactor, operating at 25%, 50%, 75% and 100% capacities, respectively. The first stage of this study consists of generating a mathematical model capable of describing the reactor behavior and efficiency at any power level. The second stage of this study consists of to combine the generated mathematical model in an optimization computer program that optimize the extractions flow of the low-pressure turbine until it finds the optimal system efficiency. This work does not alter the nuclear facility project in any way. (author)

  16. The new electricity of France PWR: calculation scheme of neutron leakages from the reactor cavity

    International Nuclear Information System (INIS)

    Vergnaud, T.; Bourdet, L.; Nimal, J.C.; Brandicourt, G.; Champion, G.

    1987-04-01

    A new calculation scheme is adapted to evaluate neutron fluxes in the reactor cavity and the containment of next french PWR. In this scheme a large part is given to Monte Carlo method, coupled with SN-method, in order to take into account multiple neutron diffusions and the complexity of the reactor geometry

  17. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  18. Simulation model and methodology for calculating the damage by internal radiation in a PWR reactor; Modelo de simulacion y metodologia para el calculo del dano por irradiacion en los internos de un reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Mendicoa, A. M.; Benito Hernandez, M.; Barreira Pereira, P.

    2012-07-01

    This study involves the development of the methodology and three-dimensional models to estimate the damage to the vessel internals of a commercial PWR reactor from irradiation history of operating cycles.

  19. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  20. Comparison of problems and experience of core operation with distorted fuel element assemblies in VVER-1000 and PWR reactors

    International Nuclear Information System (INIS)

    Afanas'ev, A.

    1999-01-01

    The main reactors leading to distortion of fuel element assemblies during reactor operation were studied. A series of actions which compensate this effect was proposed. Criteria of operation limitation in VVER-1000 and PWR reactors are described

  1. Reactor analysis support package (RASP). Volume 7. PWR set-point methodology. Final report

    International Nuclear Information System (INIS)

    Temple, S.M.; Robbins, T.R.

    1986-09-01

    This report provides an overview of the basis and methodology requirements for determining Pressurized Water Reactor (PWR) technical specifications related setpoints and focuses on development of the methodology for a reload core. Additionally, the report documents the implementation and typical methods of analysis used by PWR vendors during the 1970's to develop Protection System Trip Limits (or Limiting Safety System Settings) and Limiting Conditions for Operation. The descriptions of the typical setpoint methodologies are provided for Nuclear Steam Supply Systems as designed and supplied by Babcock and Wilcox, Combustion Engineering, and Westinghouse. The description of the methods of analysis includes the discussion of the computer codes used in the setpoint methodology. Next, the report addresses the treatment of calculational and measurement uncertainties based on the extent to which such information was available for each of the three types of PWR. Finally, the major features of the setpoint methodologies are compared, and the principal effects of each particular methodology on plant operation are summarized for each of the three types of PWR

  2. Critical heat flux correlation analysis for PWR reactors with low mass flow

    International Nuclear Information System (INIS)

    Carajilescov, Pedro

    1996-01-01

    The major limit in the thermalhydraulic design of water cooled reactors consists in the occurrence of critical heat flux, which is verified by correlation of large range of validity. In the present work, the major design correlations were analyzed, through comparisons with experimental data, for utilization in PWR with low mass flux in the core. The results show that the EPRI correlation, with modifications, gives conservative results, from the safety point of view, with lower data spreading, being the most indicated for the reactor thermal design. (author)

  3. Application of the BEACON-TSM system to the operation of PWR reactors

    International Nuclear Information System (INIS)

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.

    2011-01-01

    BEACON-TSM is an advanced system of the operation support of PWR reactors that combines the capabilities of an advanced nodal neutronic model and the measures of the instrumentation available in plant to determine, accurately and continuously, the distribution of power in the core and the available margins to the limits of the beak factors.

  4. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1985-02-01

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation [fr

  5. Method of stopping operation of PWR type reactor

    International Nuclear Information System (INIS)

    Ueno, Takashi; Tsuge, Ayao; Kawanishi, Yasuhira; Onimura, Kichiro; Kadokami, Akira.

    1989-01-01

    In PWR type reactors after long period of l00 % power operation, since boiling is caused in heat conduction pipes and water is depleted within the intergranular corrosion fracture face in the crevis portion to result in a dry-out state, impregnation and concentration of corrosion inhibitors into the intergranular corrosion fracture face are insufficient. In view of the above, the corrosion inhibitor at a high concentration is impregnated into the intergranular corrosion fracture face by keeping to inject the corrosion inhibitor from l00 % thermal power load by way of the thermal power reduction to the zero power state upon operatioin shutdown. That is, if the thermal power is reduced to or near the 0 power upon reactor shutdown, feedwater in the crevis portion is put to subcooled state, by which the steam present in the intergranular corrosion fracture face are condensated and the corrosion inhibitor at high concentration impregnated into the crevis portion are penetrated into the intergranular corrosion fracture face. (K.M.)

  6. Analysis of reactivity insertion accidents in PWR reactors

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1978-06-01

    A calculation model to analyze reactivity insertion accidents in a PWR reactor was developed. To analyze the nuclear power transient, the AIREK-III code was used, which simulates the conventional point-kinetic equations with six groups of delayed neutron precursors. Some modifications were made to generalize and to adapt the program to solve the proposed problems. A transient thermal analysis model was developed which simulates the heat transfer process in a cross section of a UO 2 fuel rod with Zircalloy clad, a gap fullfilled with Helium gas and the correspondent coolant channel, using as input the nulcear power transient calculated by AIREK-III. The behavior of ANGRA-i reactor was analized during two types of accidents: - uncontrolled rod withdrawal from subcritical condition; - uncontrolled rod withdrawal at power. The results and conclusions obtained will be used in the license process of the Unit 1 of the Central Nuclear Almirante Alvaro Alberto. (Author) [pt

  7. Programme of hot points eradication (Co-60) led on French PWR type reactors

    International Nuclear Information System (INIS)

    Rocher, A.; Ridoux, P.; Anthoni, S.; Brun, C.

    1998-01-01

    The question of hot points (pellets rich in cobalt 59 or in cobalt 60 in a PWR type reactor), is studied from the radiation protection point of view. The purpose is to see how to optimize the radiation protection, the elimination of these hot points can bring an improvement. (N.C.)

  8. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V; Rosenberg, R [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  9. A method to determine the dampening system of control rod drop mechanism for PWR reactors

    International Nuclear Information System (INIS)

    Trindade, C.E.; Mattos, J.R.L. de; Perrotta, J.A.

    1988-08-01

    A method to determine the Control Assembly damping drop system (dashpot/guide tube) was developed. It's presented a theoretical model, an experimental device and the procedures to determine this system, which is used in PWR reactors. (author) [pt

  10. Study of power peak migration due to insertion of control bars in a PWR reactor

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Costa, Danilo Leite; Borges, Diogo da Silva; Lava, Deise Diana; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2014-01-01

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown

  11. Method of starting up PWR type reactor

    International Nuclear Information System (INIS)

    Kadokami, Akira; Ueno, Ryuji; Tsuge, Ayao; Onimura, Kichiro; Ochi, Tatsuya.

    1988-01-01

    Purpose: To start-up a PWR type reactor so as to effectively impregnate and concentrate corrosion inhibitors in intergranular corrosive faces. Method: Upon reactor start-up, after transferring from the warm zero output state to thermal power loaded state and injecting corrosion inhibitors, thermal power is returned to zero and, subsequently, increased up to a rated power. By selecting the thermal power upon injecting the corrosion inhibitors to a steam generator body, that is, by selecting a thermal power load that starts to boil in heat conduction tubes, feedwater in the clavis portion can be formed into an appropriate boiling convection and, accordingly, the corrosion inhibitors can be penetrated to the clevis portion at a higher rate and in a greater amount as compared with those under zero power condition. Subsequently, when the thermal power is reduced, a sub-cooled state is attained in the clevis portion, in which steams present in the intergranular corrosion faces in the heat conduction tubes are condensated. As a result, the corrosion inhibitors at high concentration are impregnated into the intergranular corrosive faces to provide excellent effects. (Kamimura, M.)

  12. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR [pressurized-water-reactor] plants

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1988-01-01

    Recent pressure-vessel surveillance data from the High Flux Isotope Reactor (HFIR) indicate an embrittlement fluence-rate effect that is applicable to the evaluation of the integrity of light-water reactor (LWR) pressure vessel supports. A preliminary evaluation using the HFIR data indicated increases in the nil ductility transition temperature at 32 effective full-power years (EFPY) of 100 to 130/degree/C for pressurized-water-reactor (PWR) vessel supports located in the cavity at midheight of the core. This result indicated a potential problem with regard to life expectancy. However, an accurate assessment required a detailed, specific-plant, fracture-mechanics analysis. After a survey and cursory evaluation of all LWR plants, two PWR plants that appeared to have a potential problem were selected. Results of the analyses indicate minimum critical flaw sizes small enough to be of concern before 32 EFPY. 24 refs., 16 figs., 7 tabs

  13. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  14. The application of modern nodal methods to PWR reactor physics analysis

    International Nuclear Information System (INIS)

    Knight, M.P.

    1988-06-01

    The objective of this research is to develop efficient computational procedures for PWR reactor calculations, based on modern nodal methods. The analytic nodal method, which is characterised by the use of exact exponential expansions in transverse-integrated equations, is implemented within an existing finite-difference code. This shows considerable accuracy and efficiency on standard benchmark problems, very much in line with existing experience with nodal methods., Assembly powers can be calculated to within 2.0% with just one mesh per assembly. (author)

  15. Criticality analysis for mixed thorium-uranium fuel in the Angra-2 PWR reactor using KENO-VI

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowski, Caio C.; Gonçalves, Isadora C.; Oliveira, Claudio L.; Vellozo, Sergio O.; Baptista, Camila O., E-mail: wichrowski@ime.eb.br, E-mail: isadora.goncalves@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The increasing energy demand associated to the current sustainability challenges have given the thorium nuclear fuel cycle renewed interest in the scientific community. Studies have focused on energy production in different reactor designs through the fission of uranium 233, the product of thorium fertilization by neutrons. In order to make it possible for near future applications a strategy based on the adaptation of current nuclear reactors for the use of thorium fuels is being considered. In this work, bearing in mind these limitations, a code was used to evaluate the effect on criticality (k{sub inf}) of the mixing of thorium and uranium in different proportions in the fuel of a PWR, the German designed Angra-2 Brazilian reactor in order to scrutinise its behaviour and determine the feasibility of an adapted ThO{sub 2}-UO{sub 2} mixed fuel cycle using current PWR technology. The analysis is performed using the KENO-VI module in the SCALE 6.1 nuclear safety analysis simulation code and the information is taken from the Angra-2 FSAR (Final Security Analysis Report). (author)

  16. Study for on-line system to identify inadvertent control rod drops in PWR reactors using ex-core detector and thermocouple measures

    International Nuclear Information System (INIS)

    Souza, Thiago J.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C.

    2015-01-01

    Accidental control rod drops event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimize undesirable effects in such a scenario. In this event, there is a distortion in the power distribution and temperature in the reactor core. The goal of this study is to develop an on-line model to identify the inadvertent control rod dropped in PWR reactor. The proposed model is based on physical correlations and pattern recognition of ex-core detector responses and thermocouples measures. The results of the study demonstrated the feasibility of an on-line system, contributing to safer operation conditions and preventing undesirable effects, as its shutdown. (author)

  17. Study for on-line system to identify inadvertent control rod drops in PWR reactors using ex-core detector and thermocouple measures

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Thiago J.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C., E-mail: tsouza@nuclear.ufrj.br, E-mail: canedo@lmp.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Accidental control rod drops event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimize undesirable effects in such a scenario. In this event, there is a distortion in the power distribution and temperature in the reactor core. The goal of this study is to develop an on-line model to identify the inadvertent control rod dropped in PWR reactor. The proposed model is based on physical correlations and pattern recognition of ex-core detector responses and thermocouples measures. The results of the study demonstrated the feasibility of an on-line system, contributing to safer operation conditions and preventing undesirable effects, as its shutdown. (author)

  18. Fine numerical modelling of thermohydraulic phenomena in EDF PWR reactors

    International Nuclear Information System (INIS)

    Boulot, F.

    1993-01-01

    Over the last 20 years, EDF has developed a family of 2D and 3D industrial thermohydraulics software to solve problems encountered in existing PWR power plants and to design new reactors for the future. The equations used in the models are the averaged Navier-Stokes and energy equations. A brief description is given of the four main codes developed for single-phase and two-phase water-steam flows, some of which use finite differences or finite volumes methods, while others make use of finite elements methods. An example of application is given for each code. (author). 4 figs., 4 refs

  19. The simulation research for the dynamic performance of integrated PWR

    International Nuclear Information System (INIS)

    Yuan Jiandong; Xia Guoqing; Fu Mingyu

    2005-01-01

    The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)

  20. Study on external reactor vessel cooling capacity for advanced large size PWR

    International Nuclear Information System (INIS)

    Jin Di; Liu Xiaojing; Cheng Xu; Li Fei

    2014-01-01

    External reactor vessel cooling (ERVC) is widely adopted as a part of in- vessel retention (IVR) in severe accident management strategies. In this paper, some flow parameters and boundary conditions, eg., inlet and outlet area, water inlet temperature, heating power of the lower head, the annular gap size at the position of the lower head and flooding water level, were considered to qualitatively study the effect of them on natural circulation capacity of the external reactor vessel cooling for an advanced large size PWR by using RELAP5 code. And the calculation results provide some basis of analysis for the structure design and the following transient response behavior of the system. (authors)

  1. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  2. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  3. The PWR cores management

    International Nuclear Information System (INIS)

    Barral, J.C.; Rippert, D.; Johner, J.

    2000-01-01

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  4. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  5. Simulation model for the dynamic behavior of the hydraUlic circuito of PWR reactors

    International Nuclear Information System (INIS)

    Hirdes, V.R.T.R.

    1987-01-01

    The present work consist of the development of a computer code for the simulations of hydraulic transients caused by stoppages of the primary coolant pumps of nuclear reactors and it applied to the hydraulic circuits typical of PWR reactor. The code calculates the time-histories of the mass flux, rotation speed, electric and hydraulic torque and dynamic head of the pumps. It can be used for any combination of active and inactive pumps. Several transients were analysed and the results were compared with comparared with data from the Angra-I nuclear power plant. The results were considered satisfactory. (author) [pt

  6. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor

    International Nuclear Information System (INIS)

    Bedier, P.O.; Libmann, M.

    1995-01-01

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs

  7. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)

    Science.gov (United States)

    Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur

    2017-09-01

    The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  8. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  9. The integrated PWR

    International Nuclear Information System (INIS)

    Gautier, G.M.

    2002-01-01

    This document presents the integrated reactors concepts by a presentation of four reactors: PIUS, SIR, IRIS and CAREM. The core conception, the operating, the safety, the economical aspects and the possible users are detailed. From the performance of the classical integrated PWR, the necessity of new innovative fuels utilization, the research of a simplified design to make easier the safety and the KWh cost decrease, a new integrated reactor is presented: SCAR 600. (A.L.B.)

  10. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  11. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  12. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    Belem, J.A.T.

    1993-09-01

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs

  13. Management routes for materials arising from the decommissioning of a PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Demeulemeester, Y.; Moers, S.; Ponnet, M.

    2001-01-01

    The management of wastes from decommissioning is described for the on-going dismantling of the BR3 PWR small reactor. The incentive is put on the radionuclides characterization, the description of the various waste streams, the conditioning techniques for low radioactive waste (LAW) to high radioactive waste (RAW), the alternative evacuation routes (recycling in the nuclear, free release by decontamination) and the minimization of secondary wastes during dismantling. Finally, some considerations are given on the overall dismantling cost and on the relative costs of the various evacuation routes. (author)

  14. Seismic analysis of the reactor coolant system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Borsoi, L.; Sollogoub, P.

    1986-01-01

    For safety considerations, seismic analyses are performed of the Reactor Coolant System (R.C.S.) of PWR Plants. After a brief description of the R.C.S. and R.C.S. operation, the paper presents the two types of analysis used to determine the effect of earthquake on the R.C.S.: modal spectral analysis and nonlinear time history analysis. The paper finally shows how seismic loadings are combined with other types of loadings and illustrates how the consideration of seismic loads affects R.C.S. design [fr

  15. Sensitivity analysis on hot channel of PWR type reactors using matricial formalism

    International Nuclear Information System (INIS)

    Maciel, Edisson Savio G.; Andrade Lima, Fernando Roberto de; Lira, Carlos Alberto B.O.

    1995-01-01

    The matricial formalism of the perturbation theory is applied in a simplified model to study the hot channel of PWR reactors. Mass, linear momentum and energy conservation equations and appropriated heat transfer and fluid mechanics correlations describe the discretized system. After calculating system's thermalhydraulic properties, the matricial formalism is applied and the sensitivity coefficients are determined for each case of interest. Comparisons between perturbative method and direct results of the model have shown good agreement which demonstrates that the matricial formalism is an important tool for discretized system analysis. (author). 6 refs, 2 tabs

  16. A neural networks based ``trip`` analysis system for PWR-type reactors; Um sistema de analise de ``trip`` em reatores PWR usando redes neuronais

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    1993-12-31

    The analysis short after automatic shutdown (trip) of a PWR-type nuclear reactor takes a considerable amount of time, not only because of the great number of variables involved in transients, but also the various equipment that compose a reactor of this kind. On the other hand, the transients`inter-relationship, intended to the detection of the type of the accident is an arduous task, since some of these accidents (like loss of FEEDWATER and station BLACKOUT, for example), generate transients similar in behavior (as cold leg temperature and steam generators mixture levels, for example). Also, the sequence-of-events analysis is not always sufficient for correctly pin point the causes of the trip. (author) 11 refs., 39 figs.

  17. A neural networks based ``trip`` analysis system for PWR-type reactors; Um sistema de analise de ``trip`` em reatores PWR usando redes neuronais

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    1994-12-31

    The analysis short after automatic shutdown (trip) of a PWR-type nuclear reactor takes a considerable amount of time, not only because of the great number of variables involved in transients, but also the various equipment that compose a reactor of this kind. On the other hand, the transients`inter-relationship, intended to the detection of the type of the accident is an arduous task, since some of these accidents (like loss of FEEDWATER and station BLACKOUT, for example), generate transients similar in behavior (as cold leg temperature and steam generators mixture levels, for example). Also, the sequence-of-events analysis is not always sufficient for correctly pin point the causes of the trip. (author) 11 refs., 39 figs.

  18. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    Xie Zhongsheng; Huo Xiaodong

    2002-01-01

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  19. A calculation methodology applied for fuel management in PWR type reactors using first order perturbation theory

    International Nuclear Information System (INIS)

    Rossini, M.R.

    1992-01-01

    An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)

  20. Optimization of the distribution of bars with gadolinium oxide in reactor fuel elements PWR; Optimizacion de la distribucion de barras con oxido de gadolinio en elementos combustibles para reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Melgar Santa Cecilia, P. A.; Velazquez, J.; Ahnert Iglesias, C.

    2014-07-01

    In the schemes of low leakage, currently used in the majority of PWR reactors, it makes use of absorbent consumables for the effective control of the factors of peak, the critical concentration of initial boron and the moderator temperature coefficient. One of the most used absorbing is the oxide of gadolinium, which is integrated within the fuel pickup. Occurs a process of optimization of fuel elements with oxide of gadolinium, which allows for a smaller number of configurations with a low peak factor for bar. (Author)

  1. Recommendations of the MRP-139: Inspection of Welds dissimilar in Nozzles PWR reactor vessel in Spain

    International Nuclear Information System (INIS)

    Gadea, J. R.; Willke, A.; Regidor, J. J.; Tecnatom, S. A.

    2010-01-01

    The guide EPRI MRP-139, which provides the way forward for the inspection and evaluation of dissimilar butt welds, the primary system of PWR reactors, indicating the type of nondestructive testing to be done in these areas, based on discovered several cases of default in lnconel alloys 600 and 182 in American and European plants. The phenomenon of cracking.

  2. Effects of generation and optimization of libraries of effective sections in the analysis of transient in PWR reactors; Efectos de generacion y optimizacion de librerias de secciones eficaces en el analisis de transitorios en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cervera, S.; Garcia Herranz, N.; Cuervo, D.; Ahnert, C.

    2014-07-01

    In this paper evaluates the impact that has a certain mesh on a transient in a PWR reactor in the expulsion of a control bar. Have been used for this purpose the coupled codes neutronic and Thermo-hydraulic COBAYA3/COBRA-TF. This objective has been chosen the OECD/NEA PWR MOX/UO{sub 2} rod ejection transient benchmark provides isotopic compositions and defined geometric configurations that allow the use of codes lattice to generate own bookstores. The code used for this transport has been the code APOLLO2.8. The results show large discrepancies when using the benchmark library or libraries own by comparing them to the other participants solutions. The source of these discrepancies is the nodal effective sections provided in the benchmark. (Author)

  3. INETEC new system for inspection of PWR reactor pressure vessel head

    International Nuclear Information System (INIS)

    Nadinic, B.; Postruzin, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed new equipment for inspection of PWR and VVER reactor pressure vessel head. The new advances in inspection technology are presented in this article, as the following: New advance manipulator for inspection of RPVH with high speed of inspection possibilities and total automated work; New sophisticated software for manipulator driving which includes 3D virtual presentation of manipulator movement and collision detection possibilities; New multi axis controller MAC-8; New end effector system for inspection of penetration tube and G weld; New eddy current and ultrasonic probes for inspection of G weld and penetration tube; New Eddy One Raster scan software for analysis of eddy current data with mant advanced features which allows easy and quick data analysis. Also the results of laboratory testing and laboratory qualification are presented on reactor pressure vessel head mock, as well as obtained speed of inspection and quality of collected data.(author)

  4. Sensitivity of risk parameters to human errors in reactor safety study for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hall, R.E.; Swoboda, A.L.

    1981-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study (RSS) for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study. The code employed point estimate approach and ignored the smoothing technique applied in RSS. It computed the point estimates for the system unavailabilities from the median values of the component failure rates and proceeded in terms of point values to obtain the point estimates for the accident sequence probabilities, core melt probability, and release category probabilities. The sensitivity measure used was the ratio of the top event probability before and after the perturbation of the constituent events. Core melt probability per reactor year showed significant increase with the increase in the human error rates, but did not show similar decrease with the decrease in the human error rates due to the dominance of the hardware failures. When the Minimum Human Error Rate (M.H.E.R.) used is increased to 10 -3 , the base case human error rates start sensitivity to human errors. This effort now allows the evaluation of new error rate data along with proposed changes in the man machine interface

  5. Basic information about development and construction of a PWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1977-01-01

    1.0) Plant layout of a PWR; 2.0) principle design of a PWR and the reactor coolant system; 3.0) reactor auxiliary and ancillary systems; 3.1) volume control system; 3.2) boric acid control and chemical feeding system; 3.3) coolant purification and degassing system; 3.4) coolant storage and treatment system; 3.5) nuclear component cooling system; 3.6) liquid waste processing system; 3.7) gaseous waste processing system; 4.0) residual heat removal system; 5.0) emergency feedwater system; 6.0) containment design; 7.0) fuel handling, storage and transport system in a PWR. (orig.) [de

  6. Study On Safety Analysis Of PWR Reactor Core In Transient And Severe Accident Conditions

    International Nuclear Information System (INIS)

    Le Dai Dien; Hoang Minh Giang; Nguyen Thi Thanh Thuy; Nguyen Thi Tu Oanh; Le Thi Thu; Pham Tuan Nam; Tran Van Trung; Le Van Hong; Vo Thi Huong

    2014-01-01

    The cooperation research project on the Study on Safety Analysis of PWR Reactor Core in Transient and Severe Accident Conditions between Institute for Nuclear Science and Technology (INST), VINATOM and Korean Atomic Energy Research Institute (KAERI), Korea has been setup to strengthen the capability of researches in nuclear safety not only in mastering the methods and computer codes, but also in qualifying of young researchers in the field of nuclear safety analysis. Through the studies on the using of thermal hydraulics computer codes like RELAP5, COBRA, FLUENT and CFX the thermal hydraulics research group has made progress in the research including problems for safety analysis of APR1400 nuclear reactor, PIRT methodologies and sub-channel analysis. The study of severe accidents has been started by using MELCOR in collaboration with KAERI experts and the training on the fundamental phenomena occurred in postulated severe accident. For Vietnam side, VVER-1000 nuclear reactor is also intensively studied. The design of core catcher, reactor containment and severe accident management are the main tasks concerning VVER technology. The research results are presented in the 9 th National Conference on Mechanics, Ha Noi, December 8-9, 2012, the 10 th National Conference on Nuclear Science and Technology, Vung Tau, August 14-15, 2013, as well as published in the journal of Nuclear Science and Technology, Vietnam Nuclear Society and other journals. The skills and experience from using computer codes like RELAP5, MELCOR, ANSYS and COBRA in nuclear safety analysis are improved with the nuclear reactors APR1400, Westinghouse 4 loop PWR and especially the VVER-1000 chosen for the specific studies. During cooperation research project, man power and capability of Nuclear Safety center of INST have been strengthen. Three masters were graduated, 2 researchers are engaging in Ph.D course at Hanoi University of Science and Technology and University of Science and Technology, Korea

  7. Effects of aging in containment spray injection system of PWR reactor containment

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L.

    2014-01-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems

  8. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  9. Automatic welding processes for reactor coolant pipes used in PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, T.; Nakamura, A.; Nagura, Y.; Sakamoto, N.

    1979-01-01

    The authors developed automatic welding processes (submerged arc welding process and TIG welding process) for application to the welding of reactor coolant pipes which constitute the most important part of the PWR type nuclear power plant. Submerged arc welding process is suitable for flat position welding in which pipes can be rotated, while TIG welding process is suitable for all position welding. This paper gives an outline of the two processes and the results of tests performed using these processes. (author)

  10. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  11. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  12. Application of the integrated analysis of safety (IAS) to sequences of Total loss of feed water in a PWR Reactor; Aplicacion del Analisis Integrado de Seguridad (ISA) a Secuencias de Perdidas Total de Agua de Alimentacion en un Reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Chamorro, P.; Gallego Diaz, C.

    2011-07-01

    The main objective of this work is to show the current status of the implementation of integrated analysis of safety (IAS) methodology and its SCAIS associated tool (system of simulation codes for IAS) to the sequence analysis of total loss of feedwater in a PWR reactor model Westinghouse of three loops with large, dry containment.

  13. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  14. Proposal for a advanced PWR core with adequate characteristics for passive safety concept

    International Nuclear Information System (INIS)

    Perrotta, Jose Augusto

    1999-01-01

    This work presents a discussion upon the suitable from an advanced PWR core, classified by the EPRI as 'Passive PWR' (advanced reactor with passive safety concept to power plants with less than 600 MW electrical power). The discussion upon the type of core is based on nuclear fuel engineering concepts. Discussion is made on type of fuel materials, structural materials, geometric shapes and manufacturing process that are suitable to produce fuel assemblies which give good performance for this type of reactors. The analysis is guided by the EPRI requirements for Advanced Light Water Reactor (ALWR). By means of comparison, the analysis were done to Angra 1 (old type of 600 MWe PWR class), and the design of the Westinghouse Advanced PWR-AP600. It was verified as a conclusion of this work that the modern PWR fuels are suitable for advanced PWR's Nevertheless, this work presents a technical alternative to this kind of fuel, still using UO 2 as fuel, but changing its cylindrical form of pellets and pin type fuel element to plane shape pallets and plate type fuel element. This is not a novelty fuel, since it was used in the 50's at Shippingport Reactor and as an advanced version by CEA of France in the 70's. In this work it is proposed a new mechanical assembly design for this fuel, which can give adequate safety and operational performance to the core of a 'Passive PWR'. (author)

  15. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  16. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    International Nuclear Information System (INIS)

    Virpi Kouhia, V.; Purhonen, H.; Riikonen, V.; Puustinen, M.; Kyrki-Rajamaki, R.; Vihavainen, J.

    2012-01-01

    This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  17. Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using Trace

    International Nuclear Information System (INIS)

    El-Sahlamy, N.M.

    2017-01-01

    One of the main concerns in the area of severe accidents in nuclear reactors is that of station blackout (SBO). The loss of offsite electrical power concurrent with the unavailability of the onsite emergency alternating current (AC) power system can result in loss of decay heat removal capability, leading to a potential core damage which may lead to undesirable consequences to the public and the environment. To cope with an SBO, nuclear reactors are provided with protection systems that automatically shut down the reactor, and with safety systems to remove the core residual heat. This paper provides a best estimate assessment of the SBO scenario in a 3-loop Westinghouse PWR reactor. The evaluation is performed using TRACE, a best estimate computer code for thermal-hydraulic calculations. Two sets of scenarios for SBO analyses are discussed in the current work. The first scenario is the short term SBO where it is assumed that in addition to the loss of AC power, there is no DC power; i.e., no batteries are available. In the second scenario, a long term SBO is considered. For this scenario, DC batteries are available for four hours. The aim of the current SBO analyses for the 3-loop pressurized water reactor presented in this paper is to focus on the effect of the availability of a DC power source to delay the time to core uncovers and heatup

  18. Chooz-B1, the new Electricite de France PWR: calculation scheme of neutron leakages from the reactor cavity

    International Nuclear Information System (INIS)

    Champion, G.; Thiriet, A.; Vergnaud, T.; Bourdet, L.; Nimal, J.C.; Brandicourt, G.

    1987-04-01

    A new calculation scheme has been set up to assess the neutron field characteristics inside French PWR. In order to take into account multiple neutron scattering and the complexity of the reactor geometry, the use of Monte-Carlo methods have been heavily increased. They are coupled with classical SN.-methods. The main goal aimed at was to find out the neutron field characteristics at the level of the reactor pit openings. These radiation reference sources will be used to check the neutron shielding efficiencies. The new calculation scheme has been applied to CHOOZ-B1, the first unit of the new N4 program. The former results have been compared with the measurement results related to PALUEL-I and II PWR, two units of the previous P4 program. Although the core and the geometry are not entirely similar, it is possible to check with confidence the calculation results along the vessel and at the core midplane level with the measurement results at the same locations. It appears that they are in good agreement. Consequently, the new calculation scheme appears reliable

  19. System for stress corrosion conditions tests on PWR reactors

    International Nuclear Information System (INIS)

    Castro, Andre Cesar de Jesus

    2007-01-01

    The study of environmentally assisted cracking (EAC) involves the consideration and evaluation of the inherent compatibility between a material and the environment under conditions of either applied or residual stress. EAC is a critical problem because equipment, components and structure are subject to the influence of mechanical stress, water environment of different composition, temperature and different material history. Testing for resistance to EAC is one of the most effective ways to determine the interrelationships among this variables on the process of EAC. Up to now, several experimental techniques have been developed worldwide, which address different aspects of environmental caused damage. Constant loading of CT specimens test is a typical example of test, which is used for the estimation of parameters of stress corrosion cracking. To assess the initiation stages and kinetics of crack growth, the testing facility should allow active loading of specimens in the environment that is close to the actual operation conditions of assessed component. This paper presents a testing facility for stress corrosion cracking to be installed at CDTN, which was designed and developed at CDTN. The facility is used to carry out constant load tests under simulated PWR environment, where temperature, water pressure and chemistry are controlled, which are considered the most important factors in SCC. Also, the equipment operational conditions, its applications, and restrictions are presented. The system was developed to operate at temperature until 380 degree C and pressure until 180 bar. It consists in a autoclave stuck at a mechanical system, responsible of producing load , a water treatment station, and a data acquisition system. This testing facility allows the evaluation of cracking progress, especially at PWR reactor. (author) operational conditions. (author)

  20. PWR plant transient analyses using TRAC-PF1

    International Nuclear Information System (INIS)

    Ireland, J.R.; Boyack, B.E.

    1984-01-01

    This paper describes some of the pressurized water reactor (PWR) transient analyses performed at Los Alamos for the US Nuclear Regulatory Commission using the Transient Reactor Analysis Code (TRAC-PF1). Many of the transient analyses performed directly address current PWR safety issues. Included in this paper are examples of two safety issues addressed by TRAC-PF1. These examples are pressurized thermal shock (PTS) and feed-and-bleed cooling for Oconee-1. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to models of the plant integrated control systems. The results of these analyses show that for these two transients, the reactor cores remained covered and cooled at all times posing no real threat to the reactor system nor to the public

  1. Assessment of some interfacial shear correlations in a model of ECC bypass flow in PWR reactor downcomer

    International Nuclear Information System (INIS)

    Popov, N.K.; Rohatgi, U.S.

    1987-01-01

    The bypass/refill process in the PWR reactor downcomer, following a large rupture of a cold leg coolant supply pipe, is a complicated thermo-hydraulic two-phase flow phenomenon. Mathematical modeling of such phenomena is always accompanied with a difficult task of selection of suitable constitutive correlations. In a typically hydrodynamic phenomenon, like ECC refill process of the reactor lower plenum is considered, the phasic interfacial friction is the most influential constitutive correlation. Therefore, assessment of the well-known widely-used interfacial friction constitutive correlations in the model of ECC bypass/refill process, is the subject of this paper

  2. Application of directional solidification ingot (LSD) in forging of PWR reactor vessel heads

    International Nuclear Information System (INIS)

    Benhamou, C.; Poitrault, I.

    1985-09-01

    Creusot-Loire Industrie uses this type of ingot for manufacture of Framatome 1300 and 1450 MW 4-loop PWR reactor vessel heads. This type of ingot offers a number advantages: improved internal soundness; greater chemical, structural and mechanical homogeneity of the finished part; simplified forging process. After a brief description of the pouring and solidification processes, this paper presents an analysis of the results of examinations performed on the prototype forging, as well as review of results obtained during industrial fabrication of dished heads from LSD ingots. The advantages of the LSD ingot over conventional ingots are discussed in conclusion

  3. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Bunz, H.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-01-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSIM-M, UK; AEROSOLS/B1, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR. Topics considered in this paper include aerosols, containment buildings, reactor safety, fission product release, reactor cores, meltdown, and monitoring

  4. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor; Modelo simplificado para simulacao do comportamento termohidraulico do canal quente de reator nuclear do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Belem, J A.T.

    1993-09-01

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs.

  5. Natural vibrations of a core banel of a PWR type reactor by elements of revolution shell

    International Nuclear Information System (INIS)

    Barcellos, C.S. de.

    1980-01-01

    Aim to estimate the behavior of the cove barrel of PWR type reactors, submitted to several load conditions, their dynamic characteristic, were determined. In order to obtain the natural modes and frequencies of the core barrel, the CYLDYFE comprete code based in the finite element method, was developed. The obtained results are compared with results obtained by other programs such as SAP, ASKA and STRUDL/DYNAL and by other analytical methods. (M.C.K.) [pt

  6. Theoretical-experimental modelling of the momentum equation for PWR reactor steam generators

    International Nuclear Information System (INIS)

    Rodrigues, L.A.H.

    1994-01-01

    A mathematical model in steady-state conditions of the momentum equation at the secondary side of a vertical U-tube steam generator with recirculation is presented. The U-tube test section was the 150 bar - Circuito Termoidraulico Experimental - CTE-150. This facility is a Experimental Thermal-hydraulic Circuit and operates at the same conditions (pressure and temperature) of a typical PWR reactor. A comparison between the Homogeneous and Separate Flow models was done. those models were verified and compared with experimental data for several operational conditions. The results show that the model fits very well the experimental data and seems to be appropriate to study water recirculation of a steam generator secondary side. (author)

  7. Thermohydraulic calculations of PWR primary circuits

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1984-01-01

    Some mathematical and numerical models from Retran computer codes aiming to simulate reactor transients, are presented. The equations used for calculating one-dimensional flow are integrated using mathematical methods from Flash code, with steam code to correlate the variables from thermodynamic state. The algorithm obtained was used for calculating a PWR reactor. (E.G.) [pt

  8. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  9. The application of neural networks for optimization of the configuration of fuel assemblies in PWR reactors

    International Nuclear Information System (INIS)

    Sadighi, M.; Setayeshi, S.; Salehi, A.A.

    2002-01-01

    This paper presents a new method to solve the problem of finding the best configuration of fuel assemblies in a PWR (Pressurized Water Reactor) core. Finding an optimum solution requires a huge amount of calculations in classical methods. It has been shown that the application of continuous Hop field neural network accompanied by the Simulated Annealing method to this problem not only reduces the volume of the calculations, but also guarantees finding the best solution. In this study flattening of neutron flux inside the reactor core of Brusher NPP is considered as an objective function. The result shows the optimum core configuration which is in agreement with the pattern proposed by the designer

  10. Data assimilation and PWR primary measurement

    International Nuclear Information System (INIS)

    Mercier, Thibaud

    2015-01-01

    A Pressurized Water Reactor (PWR) Reactor Coolant System (RCS) is a highly complex physical process: heterogeneous power, flow and temperature distributions are difficult to be accurately measured, since instrumentations are limited in number, thus leading to the relevant safety and protection margins. EDF R and D is seeking to assess the potential benefits of applying Data Assimilation to a PWR's RCS (Reactor Coolant System) measurements, in order to improve the estimators for parameters of a reactor's operating setpoint, i.e. improving accuracy and reducing uncertainties and biases of measured RCS parameters. In this thesis, we define a 0D semi-empirical model for RCS, satisfying the description level usually chosen by plant operators, and construct a Monte-Carlo Method (inspired from Ensemble Methods) in order to use this model with Data Assimilation tools. We apply this method on simulated data in order to assess the reduction of uncertainties on key parameters: results are beyond expectations, however strong hypothesis are required, implying a careful preprocessing of input data. (author)

  11. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  12. Turbulent heat transfer in a coolant channel of a pressurized water reactor (PWR) core

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Saha, Arun K.; Munshi, Prabhat

    2016-01-01

    Exact predictions in nuclear reactors are more crucial, because of the safety aspects. It necessitates the appropriate modeling of heat transfer phenomena in the reactors core. A two-dimensional thermal-hydraulics model is used to study the detailed analysis of the coolant region of a fuel pin. Governing equations are solved using Marker and Cell (MAC) method. Standard wall functions k-ε turbulence model is incorporated to consider the turbulent behaviour of the flow field. Validation of the code and a few results for a typical PWR running at normal operating conditions reported earlier. There were some discrepancies in the old calculations. These discrepancies have been resolved and updated results are presented in this work. 2D thermal-hydraulics model results have been compared with the 1D thermal-hydraulics model results and conclusions have been drawn. (author)

  13. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  14. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  15. Mathematical modelling of plant transients in the PWR for simulator purposes

    International Nuclear Information System (INIS)

    Hartel, K.

    1984-01-01

    This chapter presents the results of the testing of anticipated and abnormal plant transients in pressurized water reactors (PWRs) of the type WWER 440 by means of the numerical simulation of 32 different, stationary and nonstationary, operational regimes. Topics considered include the formation of the PWR mathematical model, the physical approximation of the reactor core, the structure of the reactor core model, a mathematical approximation of the reactor model, the selection of numerical methods, and a computerized simulation system. The necessity of a PWR simulator in Czechoslovakia is justified by the present status and the outlook for the further development of the Czechoslovak nuclear power complex

  16. Computer-generated vibratory signatures for EDF PWR reactor vessel internals

    International Nuclear Information System (INIS)

    Trenty, A.; Lefevre, F.; Garreau, D.

    1992-07-01

    This paper presents a device for generation of characteristic signatures for normal or faulty vibrations on EDF PWR internal structures. The objective is to test the efficiency of methods for diagnosing faults in these structures. With this device, it is possible to build an entire PSD in several phases: choice of a general basic shape, localized addition of several kinds of background noise, generation of peaks of variable shapes, adjustment of local or global amplifications... It also offers the possibility of distorting real PSDs acquired from the reactor: shifting frequency or modifying peak shape, eliminating or adding existing shapes or shapes to be created, smoothing curves... One example is given of simulated loss of function in a hold-down spring on a computer-generated PSD of ex-core neutron noise. The device is now being used to test the potential of neural networks in recognizing faults on internal structures

  17. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    International Nuclear Information System (INIS)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-01-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  18. Results of water chemistry control in the in-pile ''Callisto'' loop (an experimental PWR rig installed in the BR2 reactor)

    International Nuclear Information System (INIS)

    Weber, M.; Benoit, P.; Dekeyser, J.; Verwimp, A.

    1994-01-01

    Since June 1992, a new experimental facility, called CALLISTO, is being irradiated in the BR2 materials testing reactor at Mol, Belgium. The main objective of the present test campaign is to study the behaviour of advanced fuel to high burn-up rates in a realistic PWR environment. Three in-pile sections, containing each 9 fuel rods, are loaded inside the reactor vessel and are connected to a common out-of-pile pressurized water circulation loop (ref.1). The later is branched-off into a purification circuit (feed-bleed concept) and further equipped with safety and auxiliary systems. To cope with the test programme, the equipments are designed so that the guidelines of a PWR primary water chemistry can be followed (ref.2). Real steady-state conditions cannot be observed because the typical BR2 cycle (3 weeks running/3 weeks shut-down) is much shorter and because the rig is cooled down during each reactor shut-down. The purpose of this poster is to provide results of chemical parameters recorded during the cycling behaviour of the CALLISTO primary water. (authors). 4 figs., 1 tab., 2 refs

  19. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  20. Status of developing advanced PWR in Japan

    International Nuclear Information System (INIS)

    Iida, Yotaro

    1982-01-01

    During past eleven years since the first PWR power plant, Mihama Unit 1 of Kansai Electric Power Co., started the commercial operation in 1970, Mitsubishi Heavy Industries has endeavored to improve PWR technologies on the basis of the advice from electric power companies and the technical information to overcome difficulties in PWR power plants. Now, the main objective is to improve the overall plant performance, and the rate of operation of Japanese PWR power plants has significantly risen. The improvement of the reliability, the shortening of regular inspection period and the reduction of radioactive waste handling were attempted. In view of the satisfactory operational experience of Westinghouse type PWRs, the basic reactor concept has not been changed so far. Mitsubishi and Westinghouse reached basic agreement in August, 1981, to develop a spectral shift type large capacity reactor as the advanced PWRs for Japan. This type of PWRs hab higher degree of freedom for extended fuel cycle operation and enhances the advantage of entire fuel cycle economy, particularly the significant reduction of uranium use. The improved neutron economy is attainable by reducing neutron loss, and the core design with low power density and the economical use of plutonium are advantageous for the fuel cycle economy. (Kako, I.)

  1. PHEDRE model for the simulation of PWR reactors

    International Nuclear Information System (INIS)

    Bernard, Patrice; Dupraz, Remy; Vasile, Alfredo.

    1979-11-01

    This note presents the model of PHEDRE, simulator of a PWR, set on the hybrid computers of CISI, at the Nuclear Research Center of Cadarache. The model mainly concerns the primary part and the steam production of the PWR constructed in France. It includes an axial modelization of the core, the pressurizer, two loops of steam production and the inlet of the turbine, and the regulations concerning these components. The note presents the equations of the model, the structures of the codes concerning the initialization and the dynamic resolution, and describes the control panel of PHEDRE [fr

  2. Comparative economic analysis of the Integral Molten Salt Reactor and an advanced PWR using the G4-ECONS methodology

    International Nuclear Information System (INIS)

    Samalova, Ludmila; Chvala, Ondrej; Maldonado, G. Ivan

    2017-01-01

    The assessment of economic viability of a new reactor concept is crucial particularly during the early stages of its concept development. The G4-ECONS methodology provides a standardized top-down estimate of electricity cost and parametric sensitivities, not specifically targeted toward an accurate prediction of the final cost when deployed, but rather seeking an approximation of cost variations relative to other systems. This study presents an analysis of the Integral Molten Salt Reactor (IMSR) concept in comparison with a consistent analysis of an advanced PWR reactor (represented by AP1000). Estimation of levelized unit electricity costs, as well as sensitivity analyses to the discount rate and uranium or SWU prices, are presented using this methodology.

  3. Development of Cost Estimation Methodology of Decommissioning for PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Lim, Yong Kyu; Chang, Hyeon Sik; Song, Geun Ho

    2013-01-01

    The permanent closure of nuclear power plant should be conducted with the strict laws and the profound planning including the cost and schedule estimation because the plant is very contaminated with the radioactivity. In Korea, there are two types of the nuclear power plant. One is the pressurized light water reactor (PWR) and the other is the pressurized heavy water reactor (PHWR) called as CANDU reactor. Also, the 50% of the operating nuclear power plant in Korea is the PWRs which were originally designed by CE (Combustion Engineering). There have been experiences about the decommissioning of Westinghouse type PWR, but are few experiences on that of CE type PWR. Therefore, the purpose of this paper is to develop the cost estimation methodology and evaluate technical level of decommissioning for the application to CE type PWR based on the system engineering technology. The aim of present study is to develop the cost estimation methodology of decommissioning for application to PWR. Through the study, the following conclusions are obtained: · Based on the system engineering, the decommissioning work can be classified as Set, Subset, Task, Subtask and Work cost units. · The Set and Task structure are grouped as 29 Sets and 15 Task s, respectively. · The final result shows the cost and project schedule for the project control and risk management. · The present results are preliminary and should be refined and improved based on the modeling and cost data reflecting available technology and current costs like labor and waste data

  4. In-service inspection of sub-coating defects in PWR reactor vessel tubes

    International Nuclear Information System (INIS)

    Birac, A.; Frappier, J.C.; Saglio, Robert.

    1982-08-01

    Since the presence of cracks under the coating of the tubes of certain PWR reactor vessels were noted during manufacture, the need emerged to develop a nondestructive testing method to guarantee the detection of existing cracks and to determine their potential evolution. An ultrasonic testing method was developed for the purpose. In Part 1, the choice of ultrasonic transducers is justified from the theoretical and practical standpoints. In Part 2, the results obtained on test specimens containing artificial defects are presented in accordance with the different parameters involved. In Part 3, covering parts with a large number of real defects, the results of real defect/recorded signal correlations are given, with respect to both detection and dimensions. Examples of automatic data processing are analyzed [fr

  5. Babcock and Wilcox advanced PWR development

    International Nuclear Information System (INIS)

    Kulynych, G.E.; Lemon, J.E.

    1986-01-01

    The Babcock and Wilcox 600 MWe PWR design is discussed. Main features of the new B-600 design are improvements in reactor system configuration, glandless coolant pumps, safety features, core design and steam generators

  6. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  7. Sensitivity of risk parameters to human errors for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.; Hall, R.E.; Kerr, W.

    1980-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study

  8. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  9. Research of natural resources saving by design studies of Pressurized Light Water Reactors and High Conversion PWR cores with mixed oxide fuels composed of thorium/uranium/plutonium

    International Nuclear Information System (INIS)

    Vallet, V.

    2012-01-01

    Within the framework of innovative neutronic conception of Pressurized Light Water Reactors (PWR) of 3. generation, saving of natural resources is of paramount importance for sustainable nuclear energy production. This study consists in the one hand to design high Conversion Reactors exploiting mixed oxide fuels composed of thorium/uranium/plutonium, and in the other hand, to elaborate multi-recycling strategies of both plutonium and 233 U, in order to maximize natural resources economy. This study has two main objectives: first the design of High Conversion PWR (HCPWR) with mixed oxide fuels composed of thorium/uranium/plutonium, and secondly the setting up of multi-recycling strategies of both plutonium and 233 U, to better natural resources economy. The approach took place in four stages. Two ways of introducing thorium into PWR have been identified: the first is with low moderator to fuel volume ratios (MR) and ThPuO 2 fuel, and the second is with standard or high MR and ThUO 2 fuel. The first way led to the design of under-moderated HCPWR following the criteria of high 233 U production and low plutonium consumption. This second step came up with two specific concepts, from which multi-recycling strategies have been elaborated. The exclusive production and recycling of 233 U inside HCPWR limits the annual economy of natural uranium to approximately 30%. It was brought to light that the strong need in plutonium in the HCPWR dedicated to 233 U production is the limiting factor. That is why it was eventually proposed to study how the production of 233 U within PWR (with standard MR), from 2020. It was shown that the anticipated production of 233 U in dedicated PWR relaxes the constraint on plutonium inventories and favours the transition toward a symbiotic reactor fleet composed of both PWR and HCPWR loaded with thorium fuel. This strategy is more adapted and leads to an annual economy of natural uranium of about 65%. (author) [fr

  10. Application of the integrated analysis of safety (ISA) to sequences of Total loss of feed water in a PWR Reactor

    International Nuclear Information System (INIS)

    Moreno Chamorro, P.; Gallego Diaz, C.

    2011-01-01

    The main objective of this work is to show the current status of the implementation of integrated analysis of safety (ISA) methodology and its SCAIS associated tool (system of simulation codes for ISA) to the sequence analysis of total loss of feedwater in a PWR reactor model Westinghouse of three loops with large, dry containment.

  11. An evaluation of debris mobility within a PWR reactor coolant system during the recirculation mode

    International Nuclear Information System (INIS)

    Andreychek, T.S.

    1987-01-01

    To provide for the long-term cooling of the nuclear core of a Pressurized Water Rector (PWR) following a hypothetical Loss-of-Coolant Accidnet (LOCA), water is drawn from the containment sump and pumped into the reactor coolant system (RCS). It has been postulated that debris from the containment, such as dirt, sand, and paint from containment walls and in-containment equipment, could be carried into the containment sump due to the action of the RCS coolant that escapes from the breach in the piping and then flows to the sump. Once in the sump, this debris could be pumped into the Safety Injection System (SIS) and ultimately the RCS itself, causing the performance of the SIS to be degraded. Of particular interest is the potential for core blockage that may occur due to debris transport into the core region by the recirculating flow. This paper presents a method of evaluating the potential for debris from the sump to form core blockages under recirculating flow conditions following a hypothetical LOCA for a PWR

  12. MTR and PWR/PHWR in-pile loop safety in integration with the operation of multipurpose reactor - GAS

    International Nuclear Information System (INIS)

    Suharno; Aji, Bintoro; Sugiyanto; Rohman, Budi; Zarkasi, Amin S.; Giarno

    1998-01-01

    MTR and PWR/PHWR In-Pile Loop safety analysis in integration with the operation of Multipurpose Reactor - Gas has been carried out and completed. The assessment is emphasized on the function of the interface systems from the dependence of the operation and the evaluation to the possibility of leakage or failure of the in-pile part inside the reactor pool and reactor core. The analysis is refers to the logic function of the interface system and the possibility of leakage or failure of the in-pile part inside reactor pool and reactor core to consider the integrity of the core qualitatively. The results show that in normal and in transient conditions , the interface system meet the function requirement in safe integrated operation of in-pile loop and reactor. And the results of the possibility analysis of the leakage shows that the possibility based on mechanically assessment is very low and the impact to core integrity is nothing or can be eliminated. The possible position for leakage is on the flen on which one meter above the top level of the core, therefore no influence of leakage to the core

  13. Aqueous Boric acid injection facility of PWR type reactor

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi; Iwami, Masao.

    1996-01-01

    If a rupture should be caused in a secondary system of a PWR type reactor, pressure of a primary coolant recycling system is lowered, and a back flow check valve is opened in response to the lowering of the pressure. Then, low temperature aqueous boric acid in the lower portion of a pressurized tank is flown into the primary coolant recycling system based on the pressure difference, and the aqueous boric acid reaches the reactor core together with coolants to suppress reactivity. If the injection is continued, high temperature aqueous boric acid in the upper portion boils under a reduced pressure, further urges the low temperature aqueous boric acid in the lower portion by the steam pressure and injects the same to the primary system. The aqueous boric acid stream from the pressurized tank flowing by self evaporation of the high temperature aqueous boric acid itself is rectified by a rectifying device to prevent occurrence of vortex flow, and the steam is injected in a state of uniform stream. When the pressure in the pressurized tank is lowered, a bypass valve is opened to introduce the high pressure fluid of primary system into the pressurized tank to keep the pressure to a predetermined value. When the pressure in the pressurized tank is elevated to higher than the pressure of the primary system, a back flow check valve is opened, and high pressure aqueous boric acid is flown out of the pressurized tank to keep the pressure to a predetermined value. (N.H.)

  14. The NCSU [North Carolina State Univ.] freon PWR [pressurized water reactor] loop

    International Nuclear Information System (INIS)

    Caves, J.R.; Doster, J.M.; Miller, G.D.; Wehring, B.W.; Turinsky, P.J.

    1989-01-01

    The nuclear engineering department at North Carolina State University has designed and constructed an operating scale model of a pressurized water reactor (PWR) nuclear steam supply system (NSSS). This facility will be used for education, training, and research. The loop uses electric heaters to simulate the reactor core and Freon as the primary and secondary coolant. Viewing ports at various locations in the loop allow the students to visualize flow regimes in normal and off-normal operating conditions. The objective of the design effort was to scale the thermal-hydraulic characteristics of a two-loop Westinghouse NSSS. Provisions have been made for the simulation of various abnormal occurrences. The model is instrumented in much the same manner as the actual NSSS. Current research projects using the loop include the development of adaptive expert systems to monitor the performance of the facility, diagnose mechanical faults, and to make recommendations to operators for mitigation of accidents. This involves having thermal-hydraulics and core-physics simulators running faster than real time on a mini-supercomputer, with operating parameters updated by communication with the data acquisition and control computer. Further opportunities for research will be investigated as they arise

  15. Layout of the primary circuit with its components for PWR and BWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1981-01-01

    The light water-moderated and cooled pressurized water reactors and boiling water reactors constitute the basis of economic utilization of nuclear energy all over the world. Pressurized water reactors up to capacities of 3,800 MWth are those most used for power generation. However, their potential capacities exceed 3,800 MWth, so that already in the near future PWR are conseivable which readily generate 1,500 to 2,000 MWe. The main problem for starting the next generation of PWRs are of safety measure and licensing questions. Interesting applications of the PWRs are nuclear district heating, generation of process steam of desalination plants, steam injection into the ground for oil production or chemical factories. A new generation of natural circulation boiling water reactors with a capacity of 200 to 400 MW will be used for development of small industrial areas or for countries without an integral grid system. The natural circulation boiling water reactor will be subject of a separate lecture. Due to the fact of the majority of the PWR all over the world this lecture will discuss mainly PWR design aspects. (orig./RW)

  16. Shielding design for PWR in France

    International Nuclear Information System (INIS)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983

  17. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  18. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  19. Method and Result of Experiment for Support of Technical Solutions in the Field of Perfection of a Nuclear Fuel Cycle for Future PWR Reactors

    International Nuclear Information System (INIS)

    Ostrovskiy, V.; Kudryavtsev, E.; Tutnov, I.

    2011-01-01

    The paper presents the basics of approach of planning and carrying out of experiments to validate safety PWR reactors of the future when accepting technical solutions concerning using of improved fuel rods in fuel assembly. Basic principles and criteria used for the validation of technical solutions and developments in improving of nuclear fuel cycle of PWR reactors of the future are presented from the point of safety of future operation of modified fuel rods. We explore the questions of safety operation of PWR reactors with fuel assemblies, containing fuel rods with different length of fuel. The paper discusses the ways of solving of important tasks of critical facility experiments conducting for verification of new technical solutions in the sphere of PWR nuclear fuel cycle improvement on the base of international standards ISO 2000:9000 and functional safety recommendations of IEC (International Electromechanical Commission). New Federal laws of Russian Federation define the main principle for demands to NPP and any supplier of nuclear techniques. The principle is 'quantity indicators of risk should not exceed comprehensible social size of the established indicators of safety for any moment of operation of NPP'. On the other hand the second principle should be applied to extraction of the greatest benefit from operation of the equipment, systems or the NPP as whole: 'The long operation and full commercial use of resource and service properties of the equipment, systems and the NPP as a whole'. Realization of this principle assumes development and introduction of new technical solutions for a validation of guarantees of safety of the future operation of NPP or it separate components. Solving the practical problems of a validation of safety use of fuel rods with the increased length of a fuel column in fuel assembly in nuclear reactors of the future, we should choose new strategies and programs of verification experiments on the base of the analysis of guarantees

  20. Leak before break application in French PWR plants under operation

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  1. Studies of a small PWR for onsite industrial power

    International Nuclear Information System (INIS)

    Klepper, O.H.; Smith, W.R.

    1977-01-01

    Information on the use of a 300 to 400 MW(t) PWR type reactor for industrial applications is presented concerning the potential market, reliability considerations, reactor plant description, construction techniques, comparison between nuclear and fossil-fired process steam costs, alternative fossil-fired steam supplies, and industrial application

  2. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  3. Four-fluid model of PWR degraded cores

    International Nuclear Information System (INIS)

    Dearing, J.F.

    1985-01-01

    This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before

  4. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  5. ASTEC-CATHARE2 benchmarks on French PWR 1300MWe reactors

    International Nuclear Information System (INIS)

    Tregoures, Nicolas; Philippot, Marc; Foucher, Laurent; Guillard, Gaetan; Fleurot, Joelle

    2009-01-01

    The French Institut de Radioprotection et de Surete Nucleaire (IRSN) is performing a level 2 Probabilistic Safety Assessment (PSA-2) on the French 1300 MWe reactors. This PSA-2 is heavily relying on the ASTEC integral computer code, jointly developed by IRSN and GRS (Germany). In order to assess the reliability and the quality of physical results of the ASTEC V1.3 code as well as the PWR 1300 MWe reference input deck, an important series of benchmarks with the French best-estimate thermal-hydraulic code CATHARE 2 V2.5 has been performed on 14 different severe accident scenarios. The present paper details 2 out of the 14 studied scenarios: a 12 inches cold leg Loss of Coolant Accident (LOCA) and a 2 tubes Steam Generator Tube Rupture (SGTR). The thermal-hydraulic behavior of the primary and secondary circuits is thoroughly investigated and the ASTEC results of the core degradation phase are presented. Overall, the thermal-hydraulic behavior given by the ASTEC V1.3 is in very good agreement with the CATHARE 2 V2.5 results. (author)

  6. Study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP

    International Nuclear Information System (INIS)

    Soares, Alexandre de Souza

    2014-01-01

    The present paper proposes a study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP. To this end, it considered a loss of coolant accident with 160 cm 2 breaking area in cold leg of 20 circuit of the reactor cooling system of nuclear power plant Angra 2, with the reactor operating in stationary condition, to 100% power. It considered that occurred at the same time the loss of External Power Supply and the availability of emergency cooling system was not full. The results obtained are quite relevant and with the possibility of being used in the planning of future activities, given that the construction of Angra 3 is underway and resembles the Angra 2. (author)

  7. The advanced main control console for next japanese PWR plants

    International Nuclear Information System (INIS)

    Tsuchiya, A.; Ito, K.; Yokoyama, M.

    2001-01-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  8. Safety considerations of PWR's

    International Nuclear Information System (INIS)

    Arnold, W.H. Jr.

    1977-01-01

    The safety of the central station pressurized water reactor is well established and substantiated by its excellent operating record. Operating data from 55 reactors of this type have established a record of safe operating history unparalleled by any modern large scale industry. The 186 plants under construction require a continuing commitment to maintain this outstanding record. The safety of the PWR has been further verified by the recently completed Reactor Safety Study (''Rasmussen'' Report). Not only has this study confirmed the exceptionally low risk associated with PWR operation, it has also introduced a valuable new tool in the decision making process. PWR designs, utilizing the philosophy of defense in depth, provide the bases for evaluating margins of safety. The design of the reactor coolant system, the containment system, emergency core cooling system and other related systems and components provide substantial margins of safety under both normal and postulated accident conditions even considering simultaneous effects of earthquakes and other environmental phenomena. Margins of safety in the assessment of various postulated accident conditions, with emphasis on the postulated loss of reactor coolant accident (LOCA), have been evaluated in depth as exemplified by the comprehensive ECCS rulemaking hearings followed by imposition of very conservative Nuclear Regulatory Commission requirements. When evaluated on an engineering best estimate approach, the significant margins to safety for a LOCA become more apparent. Extensive test programs have also substantiated margins to safety limits. These programs have included both separate effects and systems tests. Component testing has also been performed to substantiate performance levels under adverse combinations of environmental stress. The importance of utilizing past experience and of optimizing the deployment of incremental resources is self evident. Recent safety concerns have included specific areas such

  9. Physics of pressurized water reactors

    International Nuclear Information System (INIS)

    Gruen, A.

    1980-01-01

    The objective of this lecture is to demonstrate typical problems and solutions encountered in the design and operation of PWR power plants. The examples selected for illustration refer to PWR's of KWU design and to results of KWU design methods. In order to understand the physics of a power reactor it is necessary to have some knowledge of the structure and design of the power plant system of which the reactor is a part. It is therefore assumed that the reader is familiar with the design of the more important components and systems of a PWR, such as fuel assemblies, control assemblies, core lay-out, reactor coolant system, instrumentation. (author)

  10. An analysis of transients in the PWR downcomer

    International Nuclear Information System (INIS)

    Jovanovic, A.

    1981-01-01

    The paper deals with the problem of determining non-stationary temperature field in the downcomer of a PWR type reactor. For this purpose, an analytical model has been developed. The model covers five components of (PWR - Krsko) downcomer: the core-barrel, floor between the core-barrel and the thermal shield, the thermal shield, flow between the thermal shield and the reactor vessel wall, the reactor vessel wall. The model includes internal heat generation in metal structures. The governing equations of the model have been written in the finite difference explicit form. The system of resulting algebraic equations was solved bu Gauss-Seidel method, using a modular computer code. Several characteristic transients were examined (step and continuous change of fluid temperature at the inlet nozzle). Also, an analysis of main parameters (heat transfer coefficient and flow rate) has been performed. The model is intended to be used as basics for further development of a more realistic model that could be used for practical safety analysis. (author)

  11. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR); Implementacion en software libre del simulador universitario de nucleoelectrica tipo PWR (SU-PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Hidago H, F.; Morales S, J.B. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: julfi_jg@yahoo.com.mx

    2007-07-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  12. PWR reactors for BBR nuclear power plants

    International Nuclear Information System (INIS)

    Structure and functioning of the nuclear steam generator system developed by BBR and its components are described. Auxiliary systems, control and load following behaviour and fuel management are discussed and the main data of PWR given. The brochure closes with a perspective of the future of the Muelheim-Kaerlich nuclear power plant. (GL) [de

  13. Workers doses in central European PWR NPPs

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2003-01-01

    As is stated, the ISOE database which was established in 1992 forms an excellent basis for studies and comparisons of occupational exposure data between nuclear power plants. In the year 2001, 69% of all participating reactors were pressurised water reactors. The ISOE database presents workers' exposure from 213 participating pressurised reactors (PWR) from 27 countries in that year. Among these 32 PWRs belong to six Central European Countries. The analysis of the exposure of workers based on radiation protection performance indicators (collective dose, average dose etc.) in these PWRs could be related to some nuclear safety performance indicators for recent years using ISOE database. The comparison is made to ISOE world - wide data. In the six Central European Countries altogether 32 PWR operated in the year 2001.The international databases of performance indicators related to radiation protection as for example the ISOE or the UNSCEAR database can be use as an efficient tool in the management of radiation protection of workers in a nuclear facilities and regulatory bodies. The databases enable the study of performance trends and the improvement of radiation protection. (authors)

  14. PWR type reactor plant

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1993-01-01

    A water chamber of a horizontal U-shaped pipe type steam generator is partitioned to an upper high temperature water chamber portion and a lower low temperature water chamber portion. An exit nozzle of a reactor container containing a reactor core therein is connected to a suction port of a coolant pump by way of first high temperature pipelines. The exit port of the coolant pump is connected to the high temperature water chamber portion of the steam generator by way of second high temperature pipelines. The low temperature water chamber portion of the steam generator is connected to an inlet nozzle of the reactor container by way of the low temperature pipelines. The low temperature water chamber portion of the steam generator is positioned lower than the high temperature water chamber portion, but upper than the reactor core. Accordingly, all of the steam generator for a primary coolant system, coolant pumps as well as high temperature pipelines and low temperature pipelines connecting them are disposed above the reactor core. With such a constitution, there is no worry of interrupting core cooling even upon occurrence of an accident, to improve plant safety. (I.N.)

  15. The power control system of the Siemens-KWU nuclear power station of the PWR [pressurized water reactors] type

    International Nuclear Information System (INIS)

    Huber, Horacio

    1989-01-01

    Starting with the first nuclear power plant constructed by Siemens AG of the pressurized light water reactor line (PWR), the Obrigheim Nuclear Power Plant (340 MWe net), until the recently constructed plants of 1300 MWe (named 'Konvoi'), the design of the power control system of the plant was continuously improved and optimized using the experience gained in the operation of the earlier generations of plants. The reactor power control system of the Siemens - KWU nuclear power plants is described. The features of this design and of the Siemens designed heavy water power plants (PHWR) Atucha I and Atucha II are mentioned. Curves showing the behaviour of the controlled variables during load changes obtained from plant tests are also shown. (Author) [es

  16. PWR control rod ejection analysis with the numerical nuclear reactor

    International Nuclear Information System (INIS)

    Hursin, M.; Kochunas, B.; Downar, T. J.

    2008-01-01

    During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then

  17. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-02-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSISM-M, UK; AEROSOLS/BI, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

  18. Simplified analysis of passive residual heat removal systems for small size PWR's

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1992-02-01

    The function and general objectives of a passive residual heat removal system for small size PWR's are defined. The characteristic configuration, the components and the operation modes of this system are concisely described. A preliminary conceptual specification of this system, for a small size PWR of 400 MW thermal, is made analogous to the decay heat removal system of the AP-600 reactor. It is shown by analytic models that such passive systems can dissipate 2% of nominal power within the thermal limits allowed to the reactor fuel elements. (author)

  19. Assessment of void swelling in austenitic stainless steel PWR core internals

    International Nuclear Information System (INIS)

    Chung, H.M.

    2006-01-01

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  20. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.; Fero, A.; Snyder, M.

    2004-01-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR

  1. A new approach to PWR power control using intelligent techniques

    International Nuclear Information System (INIS)

    Boroushaki, M.; Ghofrani, M.B.; Lucas, C.; Yazdanpanah, M.J.; Sadati, N.

    2004-01-01

    Improved load following capability is one of the main technical performances of advanced PWR(APWR). Controlling the nuclear reactor core during load following operation encounters some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking, while the core is subject to large and sharp variation of local power density during transients. Axial offset (A.O) is the parameter usually used to represent of core power peaking, in form of a practical parameter. This paper, proposes a new intelligent approach to A.o control of PWR nuclear reactors core during load following operation. This method uses a neural network model of the core to predict the dynamic behavior of the core and a fuzzy critic based on the operator knowledge and experience for the purpose of decision-making during load following operations. Simulation results show that this method can use optimum control rod groups maneuver with variable overlapping and may improve the reactor load following capability

  2. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  3. Approximation for maximum pressure calculation in containment of PWR reactors

    International Nuclear Information System (INIS)

    Souza, A.L. de

    1989-01-01

    A correlation was developed to estimate the maximum pressure of dry containment of PWR following a Loss-of-Coolant Accident - LOCA. The expression proposed is a function of the total energy released to the containment by the primary circuit, of the free volume of the containment building and of the total surface are of the heat-conducting structures. The results show good agreement with those present in Final Safety Analysis Report - FSAR of several PWR's plants. The errors are in the order of ± 12%. (author) [pt

  4. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    International Nuclear Information System (INIS)

    Krug, M.; Shogan, R.

    2004-01-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR

  5. Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type

    Science.gov (United States)

    Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.

  6. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  7. Actinides transmutation - a comparison of results for PWR benchmark

    International Nuclear Information System (INIS)

    Claro, Luiz H.

    2009-01-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO 2 used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k∞ and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  8. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  9. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  10. Instrumentation of fuel safety test rods of the PWR system in the Phebus reactor

    International Nuclear Information System (INIS)

    Schley, Robert; Leveque, J.P.; Aujollet, J.M.; Dutraive, Pierre; Colome, Jean; Bouly, J.C.

    1979-01-01

    The tests were performed in an experimental cell centred in the core of the PHEBUS water reactor of 50 MW. The CEA make two types of apparatus for testing the safety of PWR fuel. One is for testing a single fuel stick and the other a bunch of 25 sticks. The instrumentation described enables the main parameters of the test to be known: temperatures of the fuel - central temperature of the UO 2 - cladding surface temperatures; temperature of the cooling circuits - thermal balance - temperatures of the structures, etc.; coolant pressure; internal pressure of the fuel sticks; direction and flow rate of the fluid. This instrumentation and the technological problems to be overcome are described and the results of the first tests carried out are given [fr

  11. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  12. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  13. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  14. Electrical and control aspects of the Sizewell B PWR

    International Nuclear Information System (INIS)

    1992-01-01

    The pressurized water reactor, Sizewell-B, which is being built in Suffolk is well on in its construction schedule. This conference looked at the electrical and control aspects of the first PWR to be built in the United Kingdom. Although based on the standard Westinghouse PWR design, modifications have been made to meet the particular requirements of the site and the UK licensing regulations. There are 11 papers on all aspects of the electrical systems, 5 papers on the cables and cable installation, 5 on the main control rooms and auxiliary shutdown room, 5 on the integrated system and centralised operation, 6 on the monitoring and protection systems and 9 on the reactor protection systems. All 41 are indexed separately. (UK)

  15. Assessment of PWR plutonium burners for nuclear energy centers

    International Nuclear Information System (INIS)

    Frankel, A.J.; Shapiro, N.L.

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible

  16. Source terms associated with two severe accident sequences in a 900 MWe PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Berthion, Y.; Lhiaubet, G.; Lucas, M.

    1983-12-01

    Hypothetical accidents taken into account in PWR risk assessment result in fission product release from the fuel, transfer through the primary circuit, transfer into the reactor containment building (RCB) and finally release to the environment. The objective of this paper is to define the characteristics of the source term (noble gases, particles and volatile iodine forms) released from the reactor containment building during two dominant core-melt accident sequences: S 2 CD and TLB according to the ''Reactor Safety Study'' terminology. The reactor chosen for this study is a French 900 MWe PWR unit. The reactor building is a prestressed concrete containment with an internal liner. The first core-melt accident sequence is a 2-break loss-of-coolant accident on the cold leg, with failure of both system and the containment spray system. The second one is a transient initiated by a loss of offsite and onsite power supply and auxiliary feedwater system. These two sequences have been chosen because they are representative of risk dominant scenarios. Source terms associated with hypothetical core-melt accidents S 2 CD and TLB in a French PWR -900 MWe- have been performed using French computer codes (in particular, JERICHO Code for containment response analysis and AEROSOLS/31 for aerosol behavior in the containment)

  17. French PWR safety philosophy

    International Nuclear Information System (INIS)

    Conte, M.

    1986-05-01

    Increasing knowledge and lessons learned from starting and operating experience of French nuclear power plants, completed by the experience learned from the operation of foreign reactors, has contributed to the improvement of French PWR design and safety philosophy. Based on a deterministic approach, the French safety analysis was progressively completed by a probabilistic approach, each of them having possibilities and limits. As a consequence of the global risk objective set in 1977 for nuclear reactors, safety analysis was extended to the evaluation of events more complex than the conventional ones, and later to the evaluation of the feasibility of the offsite emergency plans in case of severe accidents

  18. Study of essential safety features of a three-loop 1,000 MWe light water reactor (PWR) and a corresponding heavy water reactor (HWR) on the basis of the IAEA nuclear safety standards

    International Nuclear Information System (INIS)

    1989-02-01

    Based on the IAEA Standards, essential safety aspects of a three-loop pressurized water reactor (1,000 MWe) and a corresponding heavy water reactor were studied by the TUeV Baden e.V. in cooperation with the Gabinete de Proteccao e Seguranca Nuclear, a department of the Ministry which is responsible for Nuclear power plants in Portugal. As the fundamental principles of this study the design data for the light water reactor and the heavy water reactor provided in the safety analysis reports (KWU-SSAR for the 1,000 MWe PWR, KWU-PSAR Nuclear Power Plant ATUCHA II) are used. The assessment of the two different reactor types based on the IAEA Nuclear Safety Standards shows that the reactor plants designed according to the data given in the safety analysis reports of the plant manufacturer meet the design requirements laid down in the pertinent IAEA Standards. (orig.) [de

  19. PWR radiation fields at combustion engineering plants through mid-1985: Final report

    International Nuclear Information System (INIS)

    Barshay, S.S.; Beineke, T.A.; Bradshaw, R.W.

    1987-01-01

    This report presents the results of the initial phase of the EPRI-PWR Standard Radiation Monitoring Program (SRMP) for PWR nuclear power plants with Nuclear Steam Supply Systems supplied by Combustion Engineering, Inc. The purposes of the SRMP are to provide reliable, consistent and systematic measurements of the rate of radiation-field buildup at operating PWR's; and to use that information to identify opportunities for radiation control and the consequent reduction of occupational radiation exposure. The report includes radiation surveys from seven participating power plants. These surveys were conducted at well-defined locations on the reactor coolant loop piping and steam generators, and/or inside the steam generator channel heads. In most cases only one survey is available from each power plant, so that conclusions about the rate of radiation-field buildup are not possible. Some observations are made about the distribution pattern of radiation levels within the steam generator channel heads and around the reactor coolant loops. The report discusses the relationship between out-of-core radiation fields (as measured by the SRMP) and: the pH of the reactor coolant, the concentration of lithium hydroxide in the reactor coolant, and the frequency of changes in reactor power level. In order to provide data for possible future correlations of these parameters with the SRMP radiation-field data, the report summarizes information available from participating plants on primary coolant pH, and on the frequency of changes in reactor power level. 12 refs., 22 figs., 7 tabs

  20. Manufacturing and properties of closure head forging integrated with flange for PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tomoharu Sasaki; Iku Kurihara; Etsuo Murai; Yasuhiko Tanaka; Koumei Suzuki

    2003-01-01

    Closure head forging (SA508, Gr.3 Cl.1) integrated with flange for PWR reactor pressure vessel has been developed. This is intended to enhance structural integrity of closure head resulted in elimination of ISI, by eliminating weld joint between closure head and flange in the conventional design. Manufacturing procedures have been established so that homogeneity and isotropy of the material properties can be assured in the closure head forging integrated with flange. Acceptance tensile and impact test specimens are taken and tested regarding the closure head forging integrated with flange as very thick and complex forgings. This paper describes the manufacturing technologies and material properties of the closure head forging integrated with flange. (orig.)

  1. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes

    2011-01-01

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  2. Experimental research progress on passive safety systems of Chinese advanced PWR

    International Nuclear Information System (INIS)

    Xiao Zejun; Zhuo Wenbin; Zheng Hua; Chen Bingde; Zong Guifang; Jia Dounan

    2003-01-01

    TMI and Chernobyl accidents, having pronounced impact on nuclear industries, triggered the governments as well as interested institutions to devote much attention to the safety of nuclear power plant and public's requirements on nuclear power plant safety were also going to be stricter and stricter. It is obvious that safety level of an ordinary light water reactor is no longer satisfactory to these requirements. Recently, the safety authorities have recommended the implementation of passive system to improve the safety of nuclear reactors. Passive safety system is one of the main differences between Chinese advanced PWR and other conventional PWR. The working principle of passive safety system is to utilize the gravity, natural convection (natural circulation) and stored energy to implement the system's safety function. Reactors with passive safety systems are not only safer, but also more economical. The passive safety system of Chinese advanced PWR is composed of three independent systems, i.e. passive containment cooling system, passive residual heat removal system and passive core makeup tank injection system. This paper is a summary of experimental research progress on passive containment cooling system, passive residual heat removal system and passive core makeup tank injection system

  3. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  4. Introduction of advanced pressurized water reactors in France

    International Nuclear Information System (INIS)

    Millot, J.P.; Nigon, M.; Vitton, M.

    1988-01-01

    Designed >30 yr ago, pressurized water reactors (PWRs) have evolved well to match the current safety, operating, and economic requirements. The first advanced PWR generation, the N4 reactor, is under construction with 1992 as a target date for commercial operation. The N4 may be considered to be a technological outcome of PWR evolution, providing advances in the fields of safety, man/machine interfaces, and load flexibility. As a step beyond N4, a second advanced PWR generation is presently under definition with, as a main objective, a greater ability to cope with the possible deterioration of the natural uranium market. In 1986, Electricite de France (EdF) launched investigations into the possible characteristics of this advanced PWR, called REP-2000 (PWR-2000: the reactor for the next century). Framatome joined EdF in 1987 but had been working on a new tight-lattice reactor. Main options are due by 1988; preliminary studies will begin and, by 1990, detailed design will proceed with the intent of firm commitments for the first unit by 1995. Commissioning is planned in the early years of the next century. This reactor type should be either an improved version of the N4 reactor or a spectral shift convertible reactor (RCVS). Through research and development efforts, Framatome, Commissariat a l'Energie Atomique (CEA), and EdF are investigating the physics of fuel rod tight lattices including neutronics, thermohydraulics, fuel behavior, and reactor mechanics

  5. A comparison of in-vessel behaviors between SFR and PWR under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggil; Cho, Cheon Hwey [ACT Co., Daejeon (Korea, Republic of); Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper aims to provide an easy guide for experts who know well the severe accident phenomenology of Pressurized Water Reactor (PWR) by comparing both reactor design concepts and in vessel behaviors under a postulated severe accident condition. This study only provides a preliminary qualitative comparison based on available literature. The PWR and SFR in-vessel design concepts and their effects under a postulate severe accident are investigated in this paper. Although this work is a preliminary study to compare the in-vessel behaviors for both PWR and SFR, it seems that there is no possibility to lead a significant core damage in the metal fuel SFR concept. In the oxide fuel SFR, there might be a chance to progress to the severe accident initiators such as the energetic reaction, flow blockage and so on.

  6. Advanced ion exchange resins for PWR condensate polishing

    International Nuclear Information System (INIS)

    Hoffman, B.; Tsuzuki, S.

    2002-01-01

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  7. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  8. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the PWR for use in the naval reactor programme and the subsequent construction and operation of the nuclear power plant at Shippingport in 1957. The development of the BWR in 1954 and its selection for the plant at Dresden in 1959 established this concept as the other major reactor type in the US nuclear power programme. The subsequent growth profile is presented. A significant operating record has been accumulated concerning the availability of each of these reactor types. In addition, the use and performance of BWRs and PWRs in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to ensure effective safeguards at nuclear power installations; current measures are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. Both fuel cycles are examined in terms of: fuel burnup experience and prospects for improvement; natural uranium resources; enrichment capacity; reprocessing and recycle; and the interrelationships among the latter three factors. High-level waste management currently involving on-site storage of spent fuel is discussed in terms of available capacity and plans for expansion. The US electric utility industry viewpoint regarding an ultimate programme for waste management is outlined. Finally, the current economics and future cost trends of nuclear power plants are evaluated. (author)

  9. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  10. A Feasibility Study on Core Cooling of Reduced-Moderation PWR for the Large Break LOCA

    International Nuclear Information System (INIS)

    Hiroyuki Yoshida; Akira Ohnuki; Hajime Akimoto

    2002-01-01

    A design study of a reduced-moderation water reactor (RMWR) with tight lattice core is being carried out at the Japan Atomic Energy Research Institute (JAERI) as one candidate for future reactors. The concept is developed to achieve a conversion ratio greater than unity using the tight lattice core (volume ratio of moderator to fuel is around 0.5 and the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated). Under such tight configuration, the core thermal margin becomes smaller and should be evaluated in a normal operation and also during the reflood phase in a large break loss-of-coolant accident (LBLOCA) for PWR type reactors. In this study, we have performed a feasibility evaluation on core cooling of reduced moderation PWR for the LBLOCA (200% break). The evaluation was performed for the primary system after the break by the REFLA/TRAC code. The core thermal output of the reduced moderation PWR is 2900 MWt, the gap between adjacent fuel rods is 1 mm, and heavy water is used as the moderator and coolant. The present design adopts seed fuel assemblies (MOX fuel) and several blanket fuel assemblies. In the blanket fuel assemblies, power density is lower than that of the seed fuel assemblies. Then, we set a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because the possibility that the coolant boils in the seed fuel assemblies is very high. The pressure vessel diameter is bigger in comparison with a current PWR and core height is smaller than the current one. The current 4-loop PWR system is used, and, however, to fit into the bigger pressure vessel volume (about 1.5 times), we set up the capacity of the accumulator (1.5 times of the current PWR). Although the maximum clad temperature reached at about 1200 K in the position of 0.6 m from the lower core support plate, it is sufficiently lower than the design criteria of the current PWR (1500 K). The core cooling of the reduced moderation

  11. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  12. GAIA: AREVAs New PWR fuel assembly design

    Energy Technology Data Exchange (ETDEWEB)

    Vollmert, N.; Gentet, G.; Louf, P.H.; Mindt, M.; O' Brian, J.; Peucker, J.

    2015-07-01

    GAIA is the label of a new PWR Fuel Assembly design developed by AREVA with the objective to provide its customers an advanced fuel assembly design regarding both robustness and performance. Since 2012 GAIA lead fuel assemblies are under irradiation in a Swedish reactor and since 2015 in a U.S. reactor. Visual inspections and examinations carried out so far during the outages confirmed the intended reliability, robustness and the performance enhancement of the design. (Author)

  13. On site PWR fuel inspection measurements for operational and design verification

    International Nuclear Information System (INIS)

    1996-01-01

    The on-site inspection of irradiated Pressurized Water Reactor (PWR) fuel and Non-Fuel Bearing Components (NFBC) is typically limited to visual inspections during refuelings using underwater TV cameras and is intended primarily to confirm whether the components will continue in operation. These inspections do not normally provide data for design verification nor information to benefit future fuel designs. Japanese PWR utilities and Nuclear Fuel Industries Ltd. designed, built, and performed demonstration tests of on-site inspection equipment that confirms operational readiness of PWR fuel and NFBC and also gathers data for design verification of these components. 4 figs, 3 tabs

  14. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  15. Industrial assessment of nonbackfittable PWR design modifications. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Daleas, R.S.; Miller, D.D.

    1980-11-01

    As part of the US Department of Energy's Advanced Reactor Design Study, various nonbackfittable PWR design modifications were evaluated to determine their potential for improved uranium utilization and commercial viability. Combustion Engineering, Inc. contributed to this effort through participation in the Battelle Pacific Northwest Laboratory industrial assessment of such design modifications. Seven modifications, including the use of higher primary system temperatures and pressures, rapid-frequent refueling, end-of-cycle stretchout, core periphery modifications, radial blankets, low power density cores, and small PWR assemblies, were evaluated with respect to uranium utilization, economics, technical and operational complexity, and several other subjective considerations. Rapid-frequent refueling was judged to have the highest potential although it would probably not be economical for the majority of reactors with the design assumptions used in this assessment

  16. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  17. Modeling in fast dynamics of accidents in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Robbe, M.F.

    2003-12-01

    Two kinds of accidents, liable to occur in the primary circuit of a Pressurized Water Reactor and involving fast dynamic phenomena, are analyzed. The Loss Of Coolant Accident (LOCA) is the accident used to define the current PWR. It consists in a large-size break located in a pipe of the primary circuit. A blowdown wave propagates through the circuit. The pressure differences between the different zones of the reactor induce high stresses in the structures of the lower head and may degrade the reactor core. The primary circuit starts emptying from the break opening. Pressure decreases very quickly, involving a large steaming. Two thermal-hydraulic simulations of the blowdown phase of a LOCA are computed with the Europlexus code. The primary circuit is represented by a pipe-model including the hydraulic peculiarities of the circuit. The main differences between both computations concern the kind of reactor, the break location and model, and the initialization of the accidental operation. Steam explosion is a hypothetical severe accident liable to happen after a core melting. The molten part of the core (called corium) falls in the lower part of the reactor. The interaction between the hot corium and the cold water remaining at the bottom of the vessel induces a massive and violent vaporization of water, similar to an explosive phenomenon. A shock wave propagates in the vessel. what can damage seriously the neighbouring structures or drill the vessel. This work presents a synthesis of in-vessel parametrical studies carried out with the Europlexus code, the linkage of the thermal-hydraulic code Mc3d dedicated to the pre-mixing phase with the Europlexus code dealing with the explosion, and finally a benchmark between the Cigalon and Europlexus codes relative to the Vulcano mock-up. (author)

  18. Swing-Down of 21-PWR Waste Package

    International Nuclear Information System (INIS)

    A.K. Scheider

    2001-01-01

    The objective of this calculation is to determine the structural response of the waste package (WP) swinging down from a horizontally suspended height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 13). AP-3.12Q, ''Calculations'' (Ref. 18) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 21-PWR WP design considered in this calculation and provides the potential dimensions and materials for the 21-PWR WP design

  19. Transient study of a PWR pressurizer

    International Nuclear Information System (INIS)

    Sotoma, H.

    1973-01-01

    An appropriate method for the calculation and transient performance of the pressurizer of a pressurized water reactor is presented. The study shows a digital program of simulation of pressurizer dynamics based on the First Law of Thermodynamic and Laws of Heat and Mass Transfer. The importance of the digital program that was written for a pressurizer of PWR, lies in the fact that, this can be of practical use in the safety analysis of a reactor of Angra dos Reis type with a power of about 500 M We. (author)

  20. Evaluation on the habitability of a reactor control room for a 1300 MWe PWR following a LOCA

    International Nuclear Information System (INIS)

    Chang, Si Young; Ha, Chung Woo

    1988-01-01

    An evaluation on the habitability of a reactor control room for a French 1300 MWe P'4 type PWR following a LOCA has been performed through exposure dose assessment for a reactor operator. A computer code COREX calculating the time-integrated exposure dose has been developed to provide a reasonable basis in this evaluation. Using COREX the exposure dose reduction factors in the reactor control room, the time--integrated radioactivities released into the atmosphere and the time-integrated exposure dose up to 30 days following the LOCA can be also calculated. From the exposure dose assessment, the time-integrated exposure dose to whole body and thyroid of a reactor operator were 0.36 mSv(0.036 rem) and 480 mSv(48.0 rem), respectively after 30 days following the LOCA. The thyroid dose of 480 mSv was nearly 10 times greater than the dose equivalent limit of 50 mSv(5.0 rem) set by the ICRP. Regarding the habitability of a reactor control room, this exceeding thyroid exposure dose could be reduced to 1.2 mSv(0.12 rem), which is 400 times less than the original, by considering the practical 4 work-shifts a day, and by improving the iodine removal efficiency of the filtration system n the reactor control room through the reinforcement of charcoal bed filters for iodine removal. The radiological habitability of a reactor control room, therefore, could be assured by comparing with the dose equivalent limit of the ICRP

  1. A Multi-Physics PWR Model for the Load Following

    OpenAIRE

    Muniglia , Mathieu; Do , Jean-Michel; Jean-Charles , Le Pallec; Grard , Hubert; Verel , Sébastien; David , S.

    2016-01-01

    International audience; In this paper, a new model of a Pressurized Water Reactor (PWR) is described. This model includes the description of the core as well as a simplified secondary loop: the goal is to reproduce a load-following type transient, where the output power of the plant is controlled by the electric grid. Consequently, the control systems are also modeled, as the control rods or the soluble boron. The reference power plant is a 1300MW electrical PWR, managed with the french G mode.

  2. 3-D full core calculations for the long-term behaviour of PWR's

    International Nuclear Information System (INIS)

    Winter, H.J.; Koebke, K.; Wagner, M.R.

    1987-01-01

    Presently, the most realistic simulation of a PWR core is by means of three-dimensional (3-D) full core calculations. Only by such 3-D representations can the large scope of axial effects be treated in an accurate and direct way, without the need to perform various auxiliary calculations. Although the computationally efficient burnup-corrected nodal expansion method (NEM-BC) is used, the computing effort for 3-D reactor calculations becomes rather high, e.g. a storage of about 320000 words is required to describe a 1300 MWe PWR. NEM-BC was introduced (1979) into KWU's package of PWR design codes because of its high accuracy and the great reduction of computing time and storage requirements in comparison to other methods. The application of NEM-BC to 3-dimensional PWR design is strongly correlated with the progress achieved in the solution of the homogenization and dehomogenization problem. By means of suitable methods (equivalence theory) the transport-theoretical information of the pinwise power and burnup distribution for the heterogeneous fuel assemblies is transferred in a consistent manner to the full core reactor solution. The new methods and the corresponding code system are explained in some detail. (orig.)

  3. Special points of view about development and construction of a PWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1977-01-01

    1.0) The reactor core and its components, 1.1) design of the fuel assemblies, 1.2) incore instrumentation, 2.0) reactor pressure vessel with internals, 3.0) components of the reactor coolant loops, 3.1) steam generator, 3.2) pressurizer, 3.3) pressurizer relief tank, 3.4) reactor coolant pumps, 4.0) instrumentation and control of a PWR, 4.1) ex-core measuring system, 4.2) reactor protection system, 4.3) control systems, 4.4) radiation monitoring. (orig.) [de

  4. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  5. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  6. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  7. Fracture toughness behavior of irradiated stainless steel in PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Fyfitch, S. [AREVA NP Inc., Lynchburg, Pennsylvania (United States); Tang, H.T. [Electric Power Research Inst., Palo Alto, California (United States)

    2007-07-01

    Data from available research programs were collected and evaluated by the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) to determine the relationship between fracture toughness and neutron fluence for conditions representative of pressurized water reactor (PWR) conditions. It is shown that the reduction of fracture toughness with increasing neutron dose in both boiling water reactors (BWRs) and PWRs is consistent with that observed in fast reactors. The lower bound fracture toughness observed for irradiated stainless steels in PWRs is 38 MPa{radical}m (34.6 ksi{radical}in) at neutron exposures greater than 6.7 X 10{sup 21} n/cm{sup 2} (E > 1.0 MeV) or approximately 10 dpa. For such levels of fracture toughness, it is recommended that linear-elastic fracture mechanics (LEFM) analyses be considered for design and operational analyses. The results from this study can be used by the nuclear industry to assess the effects of irradiation on stainless steels in PWR systems. (author)

  8. Modeling on a PWR power conversion system with system program

    International Nuclear Information System (INIS)

    Gao Rui; Yang Yanhua; Lin Meng

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Daya Bay Power Station, this paper models the thermal-hydraulic systems of primary and secondary loops for PWR by using the PWR best-estimate program-RELAP5. To simulate the full-scope power conversion system, not only the traditional basic system models of nuclear island, but also the major system models of conventional island are all considered and modeled. A comparison between the calculated results and the actual data of reactor demonstrates a fine match for Daya Bay Nuclear Power Station, and manifests the feasibility in simulating full-scope power conversion system of PWR by RELAP5 at the same time. (authors)

  9. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  10. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR)

    International Nuclear Information System (INIS)

    Valle H, J.; Hidago H, F.; Morales S, J.B.

    2007-01-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  11. Application of perturbation theory to sensitivity calculations of PWR type reactor cores using the two-channel model

    International Nuclear Information System (INIS)

    Oliveira, A.C.J.G. de.

    1988-12-01

    Sensitivity calculations are very important in design and safety of nuclear reactor cores. Large codes with a great number of physical considerations have been used to perform sensitivity studies. However, these codes need long computation time involving high costs. The perturbation theory has constituted an efficient and economical method to perform sensitivity analysis. The present work is an application of the perturbation theory (matricial formalism) to a simplified model of DNB (Departure from Nucleate Boiling) analysis to perform sensitivity calculations in PWR cores. Expressions to calculate the sensitivity coefficients of enthalpy and coolant velocity with respect to coolant density and hot channel area were developed from the proposed model. The CASNUR.FOR code to evaluate these sensitivity coefficients was written in Fortran. The comparison between results obtained from the matricial formalism of perturbation theory with those obtained directly from the proposed model makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations (author). 23 refs, 4 figs, 7 tabs

  12. Probabilistic study of primary pump trip in a P.W.R. reactor: use of response surface methodology

    International Nuclear Information System (INIS)

    Bars, C.; Duchemin, B.; Maigret, N.; Peltier, J.; Rostan, O.; Villeneuve, M.J. de; Lanore, J.M.

    1981-09-01

    This paper describes a probabilistic study about the consequences of the trip or blockage of one of the three PWR reactor primary pumps. The distribution of the input parameters is taken into account and the resulting distribution of the consequence (number of failed fuel rods) is assessed. The necessity to do this study with the response surface methodology and the precautions to take are outlined. The results show that the probability to have failed fuel rods is about 10 -4 for pump trip and 0.16 for blockage with, in this case, a mean of 196 failed rods, that is 0.5 % of total number of rods

  13. Advanced high conversion PWR: preliminary analysis

    International Nuclear Information System (INIS)

    Golfier, H.; Bellanger, V.; Bergeron, A.; Dolci, F.; Gastaldi, B.; Koberl, O.; Mignot, G.; Thevenot, C.

    2007-01-01

    In this paper, physical aspects of a HCPWR (High Conversion Light Water Reactor), which is an innovative PWR fuelled with mixed oxide and having a higher conversion ratio due to a lower moderation ratio. Moderation ratios lower than unity are considered which has led to low moderation PWR fuel assembly designs. The objectives of this parametric study are to define a feasibility area with regard to the following neutronic aspects: moderation ratio, Pu loading, reactor spectrum, irradiation time, and neutronic coefficients. Important thermohydraulic parameters are the pressure drop, the critical heat flux, the maximum temperature in the fuel rod and the pumping power. The thermohydraulic analysis shows that a range of moderation ratios from 0.8 to 1.2 is technically possible. A compromise between improved fuel utilization and research and development effort has been found for the moderation ration of about 1. The parametric study shows that there are 2 ranges of interest for the moderation ratio: -) moderation ratio between 0.8 and 1.2 with reduced fissile heights (> 3 m), hexagonal arrangement fuel assembly and square arrangement fuel assembly are possible; and -) moderation between 0.6 and 0.7 with a modification of the reactor operating conditions (reduction of the primary flow and of the thermal power), the fuel rods could be arranged inside a hexagonal fuel rod assembly. (A.C.)

  14. Development of technologies for nuclear reactors of small and medium sized; Desarrollo de Tecnologias para Reactores Nucleares de pequeno y medio tamano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  15. PWR thermocouple mechanical sealing structure

    International Nuclear Information System (INIS)

    Shen Qiuping; He Youguang

    1991-08-01

    The PWR in-core temperature detection device, which is one of measures to insure reactor safety operation, is to monitor and diagnose reactor thermal power output and in-core power distribution. The temperature detection device system uses thermocouples as measuring elements with stainless steel protecting sleeves. The thermocouple has a limited service time and should be replaced after its service time has reached. A new sealing device for the thermocouples of reactor in-core temperature detection system has been developed to facilitate replacement. The structure is complete tight under high temperature and pressure without any leakage and seepage, and easy to be assembled or disassembled in radioactive environment. The device is designed to make it possible to replace the thermocouple one by one if necessary. This is a new, simple and practical structure

  16. Use of standard spectra for the short life radionuclides and ratios for long life radionuclides in the wastes of EDF PWR type reactors

    International Nuclear Information System (INIS)

    Lantes, B.; Bienvenu, Ph.

    2001-01-01

    This paper presents the type of declaration of radioactivity in the wastes of PWR type reactors park. Particularly, it insists on the justification of use of spectra for the declaration of short live radionuclides. It tackles the important developments of methods and measures of radiochemical analysis made by the Cea in order to determine the ratios to declare the long life radioisotopes. (N.C.)

  17. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  18. EPRI PWR primary water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Fruzzetti, Keith

    2014-01-01

    EPRI periodically updates the PWR Primary Water Chemistry Guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). The last revision of the PWR water chemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This new revision provides further details with regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdown dose rates. A committee of industry experts, including utility specialists, nuclear steam supply system (NSSS) and fuel vendor representatives, Institute of Nuclear Power Operations (INPO) representatives, consultants, and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactor water coolant system materials issues, fuel integrity and performance issues, and radiation dose rate issues. From the data, the committee updated the water chemistry guidelines that all PWR nuclear plants should adopt. The committee revised guidance with regard to optimization to reflect industry experience gained since the publication of Revision 6. Among the changes, the technical information regarding the impact of zinc injection on PWSCC initiation and dose rate reduction has been updated to reflect the current level of knowledge within the industry. Similarly, industry experience with elevated lithium concentrations with regard to fuel performance and radiation dose rates has been updated to reflect data collected to date. Recognizing that each nuclear plant owner has a unique set of design, operating, and corporate concerns, the guidelines committee has retained a method for plant-specific optimization. Revision 7 of the Pressurized Water Reactor Primary Water Chemistry Guidelines provides guidance for PWR primary systems of all manufacture and design. The guidelines continue to emphasize plant

  19. Dosimetry and fluence calculations on french PWR vessels comparisons between experiments and calculations

    International Nuclear Information System (INIS)

    Nimal, J.C.; Bourdet, L.; Guilleret, J.C.; Hedin, F.

    1988-01-01

    Fluence and damage calculations on PWR pressure vessels and irradiation test specimens are presented for two types of reactor: the franco-belgian (reactor CHOOZ) and the french reactors (CPY program). Comparisons with measurements are given for activation foils and fission detectors; most of them are about irradiation test specimen locations; comparisons are made for the Chooz plant on vessel stainless steel samplings and in the reactor pit

  20. PWR [pressurized water reactor] optimal reload configuration with an intelligent workstation

    International Nuclear Information System (INIS)

    Greek, K.J.; Robinson, A.H.

    1990-01-01

    In a previous paper, the implementation of a pressurized water reactor (PWR) refueling expert system that combined object-oriented programming in Smalltalk and a FORTRAN power calculation to evaluate loading patterns was discussed. The expert system applies heuristics and constraints that lead the search toward an optimal configuration. Its rate of improvement depends on the expertise coded for a search and the loading pattern from where the search begins. Due to its complexity, however, the solution normally cannot be served by a rule-based expert system alone. A knowledge base may take years of development before final acceptance. Also, the human pattern-matching capability to view a two-dimensional power profile, recognize an imbalance, and select an appropriate response has not yet been surpassed by a rule-based system. The user should be given the ability to take control of the search if he believes the solution needs a new direction and should be able to configure a loading pattern and resume the search. This paper introduces the workstation features of Shuffle important to aid the user to manipulate the configuration and retain a record of the solution

  1. A systematic approach for development of a PWR cladding corrosion model

    International Nuclear Information System (INIS)

    Quecedo, M.; Serna, J.J.; Weiner, R.A.; Kersting, P.J.

    2001-01-01

    A new model for the in-reactor corrosion of Improved (low-tin) Zircaloy-4 cladding irradiated in commercial pressurized water reactors (PWRs) is described. The model is based on an extensive database of PWR fuel cladding corrosion data from fuel irradiated in commercial reactors, with a range of fuel duty and coolant chemistry control strategies which bracket current PWR fuel management practices. The fuel thermal duty with these current fuel management practices is characterized by a significant amount of sub-cooled nucleate boiling (SNB) during the fuel's residence in-core, and the cladding corrosion model is very sensitive to the coolant heat transfer models used to calculate the coolant temperature at the oxide surface. The systematic approach to developing the new corrosion model therefore began with a review and evaluation of several alternative models for the forced convection and SNB coolant heat transfer. The heat transfer literature is not sufficient to determine which of these heat transfer models is most appropriate for PWR fuel rod operating conditions, and the selection of the coolant heat transfer model used in the new cladding corrosion model has been coupled with a statistical analysis of the in-reactor corrosion enhancement factors and their impact on obtaining the best fit to the cladding corrosion data. The in-reactor corrosion enhancement factors considered in this statistical analysis are based on a review of the current literature for PWR cladding corrosion phenomenology and models. Fuel operating condition factors which this literature review indicated could have a significant effect on the cladding corrosion performance were also evaluated in detail in developing the corrosion model. An iterative least squares fitting procedure was used to obtain the model coefficients and select the coolant heat transfer models and in-reactor corrosion enhancement factors. This statistical procedure was completed with an exhaustive analysis of the model

  2. Characterization and modeling of the thermal hydraulic and chemical environment of fuel claddings of PWR reactors during boiling

    International Nuclear Information System (INIS)

    March, Ph.

    1999-01-01

    In pressurised water reactors (PWR), nucleate boiling can strongly influence the oxidation rate of the fuel cladding. To improve our understanding of the effect of the boiling phenomenon on corrosion kinetics, information about the chemical and thermal hydraulic boundary conditions at the heating rod surface is needed. Moreover, very few data are available in the range of thermal hydraulic parameters of PWR cores (15,5 MPa and 340 deg C) concerning the two-phase flow pattern close to the fuel cladding. A visualization device has been adapted on an out-of-pile loop Reggae to obtain both qualitative and quantitative data. These observations provide a direct access to the geometrical properties of the vapor inclusions, the onset of nucleate boiling and the gas velocity and trajectory. An image processing method has been validated to measure both void fraction and interfacial area concentration in a bubbly two-phase flow. Thus, the visualization device proves to be a suitable and accurate instrumentation to characterize nucleate boiling in PWR conditions. The experimental results analysis indicates that a local approach is needed for the modelling of the fuel rod chemical environment. To simulate the chemical additives enrichment, a new model is proposed where the vapor bubbles are now considered as physical obstacles for the liquid access to the rod surface. The influence of the two-phase flow pattern appears to be of major importance for the enrichment phenomenon. This study clearly demonstrates the existence of strong interactions between the two-phase flow pattern, the rod surface condition, the corrosion process and the water chemistry. (author)

  3. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  4. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  5. Fundamentals of pressurized water reactors

    International Nuclear Information System (INIS)

    Murray, L.

    1982-01-01

    In many countries, the pressurized water reactor (PWR) is the most widely used, even though it requires enrichment of the uranium to about 3% in U-235 and the moderator-coolant must be maintained at a high pressure, about 2200 pounds per square inch. Our objective in this series of seven lectures is to describe the design and operating characteristics of the PWR system, discuss the reactor physics methods used to evaluate performance, examine the way fuel is consumed and produced, study the instrumentation system, review the physics measurements made during initial startup of the reactor, and outline the administrative aspects of starting up a reactor and operating it safely and effectively

  6. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  7. Qualification according to PDI's techniques UT EPRI methodology Phased Array for the inspection of vessels of PWR reactor with advanced robotic equipment; Cualificacion segun metodologia PDI de EPRI de te cnicas UT Phased Array para la inspeccion de vasijas de reactor PWR con eq uipos roboticos avanzados

    Energy Technology Data Exchange (ETDEWEB)

    Gadea, J. R.; Gonzalez, P.; Fernandez, F.

    2014-07-01

    The techniques and procedures qualified in the program EPRI PDI are directly applicable in plants whose reference code is ASME XI - specifically the Appendix VIII-, mainly USA and countries in which it is established American PWR technology. While countries with reactors in operation technology ABB (Sweden) or type VVER (Finland and Eastern countries) requires a qualification of specific technical type ENIQ, PDI qualification is a valuable reference since it allows to deal with such qualifications with guarantees. (Author)

  8. Design study of a PWR of 1.300 MWe of Angra-2 type operating in the thorium cycle

    International Nuclear Information System (INIS)

    Andrade, E.P.; Carneiro, F.A.N.; Schlosser, G.J.

    1984-01-01

    The utilization of the thorium-highly enriched uranium and thorium-plutonium mixed oxide fuels in an unmodified PWR is analysed. The PWR of 1300 MWe from KWU (Angra-2 type) is taken as the reference reactor for the study. Reactor core design calculations for both types of fuels considering once-through and recycle fuels. The calculations were performed with the KWU design codes FASER-3 and MEDIUM 2.2 after introduction of the thorium chain and some addition of nuclide data in FASER-3. A two-energy group scheme and a two-dimensional (XY) representation of the reactor core were utilized. (Author) [pt

  9. Study of the spatial dependence of neutronic flow oscillations caused by fluctuations thermohydraulics at the entrance of the core of a reactor PWR; Estudio de la dependencia espacial de las oscilaciones de flujo neutronico causadas por flucturaciones termohidraulicas a la entrada del nucleo de un reactor PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bermejo, J. A.; Lopez, A.; Ortego, A.

    2014-07-01

    It presents a theoretical study on spatial dependence of flow oscillations neutronic caused by thermal hydraulics fluctuations at the entrance of the core of a PWR reactor. To simulate, with SIMULATE code - 3K different fluctuations thermohydraulics at the entrance to the core and the spatial dependence of the oscillations and is analyzed neutronic flow obtained at locations of neutron detectors. the work It is part of the r and d program initiated in CNAT to investigate the phenomenon of the noise neutronic. (Author)

  10. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  11. Use of 'tail' as spent fuel dilution factor of Angra-1 (PWR) for use in the Embalse (Candu) reactor

    International Nuclear Information System (INIS)

    Mai, Luiz Antonio; Maiorino, Jose Rubens

    1995-01-01

    This work purposes a process to use the tail of isotopic enrichment as a factor of dilution (blending) for the burned fuel of Angra-I reactor (PWR) for final utilization in the Embalse (Candu). It was made use of the same technic in previous works that used natural uranium. For this purpose, it was made a tail parametrization inside of the traditional limits of enrichment (between 0.2 and 0.3%). The study showed that the tail utilization represents great savings for the uranium supplies and environment and economic advantages. (author). 8 refs, 4 figs, 11 tabs

  12. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    International Nuclear Information System (INIS)

    Saernmark, Ivan; Lenz, Herbert

    2008-01-01

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction

  13. Corrosion of PWR steam generators

    International Nuclear Information System (INIS)

    Garnsey, R.

    1979-01-01

    Some designs of pressurized water reactor (PWR) steam generators have experienced a variety of corrosion problems which include stress corrosion cracking, tube thinning, pitting, fatigue, erosion-corrosion and support plate corrosion resulting in 'denting'. Large international research programmes have been mounted to investigate the phenomena. The operational experience is reviewed and mechanisms which have been proposed to explain the corrosion damage are presented. The implications for design development and for boiler and feedwater control are discussed. (author)

  14. Cylindrization of a PWR core for neutronic calculations

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos

    2005-01-01

    In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)

  15. The design of a compact integral medium size PWR

    International Nuclear Information System (INIS)

    Shirvan, Koroush; Hejzlar, Pavel; Kazimi, Mujid S.

    2012-01-01

    Highlights: ► We model the IRIS reactor in RELAP5 and VIPRE codes. ► We use Printed Circuit Heat Exchangers and internally and externally cooled fuel pins in IRIS. ► We increase the IRIS power by 50% and demonstrate adequate safety performance. ► We show significant potential gain in economics for any integral PWR reactor design. - Abstract: Integral reactors have been proposed in recent years as a means to eliminate loss of coolant events, and reduce the number of large vessels of a nuclear power plant. In this paper the focus on how to further increase the power that can be derived from a given vessel volume. The example is applied to the International Reactor Innovative and Secure (IRIS), a medium size, light water reactor rated at 1000 MWt. The IRIS is an integral design containing all pumps and steam generators along with a traditional PWR core inside the reactor vessel. IRIS was designed with 8 Once-Through Helically Coiled Steam Generators (OTHSG), located above the core, in an annular region between the riser and the pressure vessel wall. This work examines ideas to increase its power output in the same vessel size while maintaining or improving the safety margins. The combination of Printed Circuit Heat Exchangers (PCHE) and Internally and EXternally cooled Annular Fuel (IXAF) is proposed to implement such improvement in otherwise the reference IRIS design. Safety implications of such steam generator and fuel design changes for the same reactor size are examined, under both steady state and transients, using the RELAP5 and VIPRE codes. It is found that the IRIS reactor power can be increased by 50% by using the PCHE and IXAF. The proposed design is found to be less expensive per unit electric power produced, these improvements and analyses can be applied to any integral reactor design.

  16. Efforts onto nuclear research and development such as new reactor and so forth

    International Nuclear Information System (INIS)

    Onishi, Tuneji

    2000-01-01

    The Japan Atomic Power Co. which is one of specified business company on nuclear power generation, has carried out construction and operation of power plants with different types of reactor such as boiling light water reactor (BWR), pressurized light water rector (PWR), and so forth. And, by actively using technical powers and experiences accumulated before then, additional construction of a new power unit, and researches and developments on a simplified light water reactor, a future type rector, and a high breeder proof reactor have been made some efforts. Here were introduced some outlines on development of an improved type PWR, development of a new type reactor for example, deep embedded plant), future type reactor (for example, revolutionary middle and small type reactor, simplified PWR, and simplified BWR), a fast breeder reactor, and a reactor building suitable for a ship shell structure. (G.K.)

  17. Research on 3D power distribution of PWR reactor core based on RBF neural network

    International Nuclear Information System (INIS)

    Xia Hong; Li Bin; Liu Jianxin

    2014-01-01

    Real-time monitor for 3D power distribution is critical to nuclear safety and high efficiency of NPP's operation as well as the control system optimization. A method was proposed to set up a real-time monitor system for 3D power distribution by using of ex-core neutron detecting system and RBF neural network for improving the instantaneity of the monitoring results and reducing the fitting error of the 3D power distribution. A series of experiments were operated on a 300 MW PWR simulation system. The results demonstrate that the new monitor system works very well under condition of certain burnup range during the fuel cycle and reconstructs the real-time 3D distribution of reactor core power. The accuracy of the model is improved effectively with the help of several methods. (authors)

  18. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    International Nuclear Information System (INIS)

    Kavaklioglu, K.; Ikonomopoulos, A.

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint

  19. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  20. Bias identification in PWR pressurizer instrumentation using the generalized liklihood-ratio technique

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A method for detecting and identifying biases in the pressure and level sensors of a pressurized water reactor (PWR) pressurizer is described. The generalized likelihood ratio (GLR) technique performs statistical tests on the innovations sequence of a Kalman filter state estimator and is capable of determining when a bias appears, in what sensor the bias exists, and estimating the bias magnitude. Simulation results using a second-order linear, discrete PWR pressurizer model demonstrate the capabilities of the GLR method

  1. Modeling a nuclear reactor for experimental purposes

    International Nuclear Information System (INIS)

    Berta, V.T.

    1980-01-01

    The Loss-of-Fluid Test (LOFT) Facility is a scale model of a commercial PWR and is as fully functional and operational as the generic commercial counterpart. LOFT was designed and built for experimental purposes as part of the overall NRC reactor safety research program. The purpose of LOFT is to assess the capability of reactor safety systems to perform their intended functions during occurrences of off-normal conditions in a commercial nuclear reactor. Off-normal conditions arising from large and small break loss-of-coolant accidents (LOCA), operational transients, and anticipated transients without scram (ATWS) were to be investigated. This paper describes the LOFT model of the generic PWR and summarizes the experiments that have been conducted in the context of the significant findings involving the complex transient thermal-hydraulics and the consequent effects on the commercial reactor analytical licensing techniques. Through these techniques the validity of the LOFT model as a scaled counterpart of the generic PWR is shown

  2. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant

    International Nuclear Information System (INIS)

    Monteiro, Iara Arraes

    1999-02-01

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  3. Development of computational program for studying the reactor control system in PWR plants; Desenvolvimento de um programa computacional para estudo do sistema de controle do reator em plantas PWR

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jose Ricardo de; Soares, Adalberto Jose [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    In this work a computational program is presented which has been developed for specific application on the study of the reactor control system of a typical PWR plant. As to the basic function of simulating power transients the program has the following structure: a representative mathematical model of the dynamic and stationary behaviors of the primary circuit; a group of equations associated to the reactor power control and system pressure control; screens for the entry of reference data as well as of control blocks and control bar speed programming module parameters; main entering screens for the configuration of the excitement/transient function as well as of simulation time and control mood; and graphical output of all the process variables incorporated to the model. As premise it has been considered as sufficient the modeling of the primary circuit, a differential equation being used which associates the average temperature of the coolant within the steam generator with the potency transferred to the secondary circuit, denominated 'secondary potency', as an interface with the secondary circuit. Every transient - ramp or step - is established upon the 'turbine power' variable, which in turn is related to the 'secondary power' variable by means of a differential equation that represents a first - order delay, having adjustable parameters on the data - entry screen. In the neutronic model as defined for the reactor, the reactivity feedback effects due to primary circuit pressure variation, as well as fuel and coolant temperature variation, were taken into consideration. Thermo-hydraulics constants and project data taken from the available bibliography, adapted to a particular small PWR unit conception , were employed for loading the program. With the open-loop simulation results a positive qualitative evaluation of the program was obtained, in comparison to published results related to simulators bearing equal purposes, more

  4. Development of technologies for nuclear reactors of small and medium sized

    International Nuclear Information System (INIS)

    2011-08-01

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  5. The new French code for PWR in service inspection

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R; Hutin, J P [Electricite de France (EDF), 75 - Paris (France)

    1988-12-31

    This document presents the new french code for pressured water reactor in service inspection. The historic regulatory basis is presented, together with the new regulatory act (dating back to the 26 february 1974) and the major guidelines of the french practice for in service inspection of PWR components. (TEC).

  6. Spain's nuclear industry achieves maturity with its third generation of PWR

    International Nuclear Information System (INIS)

    Vallejo, Juan

    1986-01-01

    The Vandellos II PWR is under construction at present, and commercial operation is scheduled for December 1987. Details of the planning and construction of the reactor are given. Technical data and a cutaway drawing are included. (UK)

  7. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  8. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  9. Technology selection for offshore underwater small modular reactors

    International Nuclear Information System (INIS)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO 2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options

  10. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  11. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  12. Feasibility study on thermal-hydraulic design of reduced-moderation PWR-type core

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    2000-03-01

    At JAERI, a conceptual study on reduced-moderation water reactor (RMWR) has been performed as one of the advanced reactor system which is designed so as to realize the conversion ratio more than unity. In this reactor concept, the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated. Therefore, an evaluation of the core thermal margin becomes very important in the design of the RMWR. In this study, we have performed a feasibility evaluation on thermal-hydraulic design of RM-PWR type core (core thermal output: 2900 MWt, Rod gaps: 1 mm). In RM-PWR core, seed and blanket regions are exist. In the blanket region, power density is lower than that of the seed region. Then, evaluation was performed under setting a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because it is possible that the coolant boils in the seed region. In the feasibility evaluations, subchannel code COBRA-IV-I was used in combination with KfK DNB (departure nucleate boiling) correlation. When coolant mass flow rate to the blanket fuel assembly is reduced by 40%, and that to the seed fuel assembly is increased, coolant boiling is not occurred in the assembly region calculation. Provided that the channel boxes to the blanket fuel assembly are set up and coolant mass flow rate to the blanket fuel assembly is reduced by 40%, it is confirmed by the whole core calculation that the boiling of the coolant is not occurred and the RM-PWR core is feasible. (author)

  13. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  14. Bond graph modeling of nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed

  15. Elaboration and qualification of a reference calculation routes for the absorbers in the PWR reactors

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    1999-11-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code Apollo 2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B 4 C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI14. They were then checked against experimental data measured during french experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  16. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  17. Light-water reactors: preliminary safety and environmental information document. Volume I

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the reference PWR reactor system; once-through, low-enrichment uranium-235 fuel, 30 MWD per kilogram (PWR LEU(5)-OT); once-through, low-enrichment, high-burnup uranium fuel (PWR LEU(5)-Mod OT); self-generated plutonium spiked recycle (PWR LEU(5)-Pu-Spiked Recycle); denatured uranium-233/thorium cycle (PWR DU(3)-Th Recycle DU(3)); and plutonium/thorium cycle

  18. Radiation embrittlement of PWR vessel supports

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Robinson, G.C.; Pennell, W.E.; Nanstad, R.K.

    1989-01-01

    Several studies pertaining to radiation damage of PWR vessel supports were conducted between 1978 and 1987. During this period, apparently there was no reason to believe that low-temperature (<100 degree C) MTR embrittlement data were not appropriate for evaluating embrittlement of PWR vessel supports. However, late in 1986, data from the High Flux Isotope Reactor (HFIR) vessel surveillance program indicated that the embrittlement rates of the several HFIR vessel materials (A212-B, A350-LF3, A105-II) were substantially greater than anticipated on the basis of MTR data. Further evaluation of the HFIR data suggested that a fluence-rate effect was responsible for the apparent discrepancy, and shortly thereafter it became apparent that this rate effect was applicable to the evaluation of LWR vessel supports. As a result, the Nuclear Regulatory Commission (NRC) requested that the Oak Ridge National Laboratory (ORNL) evaluate the impact of the apparent embrittlement rate effect on the integrity of light-water-reactor (LWR) vessel supports. The purpose of the study was to provide an indication of whether the integrity of reactor vessel supports is likely to be challenged by radiation-induced embrittlement. The scope of the evaluation included correlation of the HFIR data for application to the evaluation of LWR vessel supports; a survey and cursory evaluation of all US LWR vessel support designs, selection of two plants for specific-plant evaluation, and a specific-plant evaluation of both plants to determine critical flaw sizes for their vessel supports. 19 refs., 8 figs., 2 tabs

  19. Measurement of the residual stresses in a PWR Control Rod Drive Mechanism nozzle

    OpenAIRE

    Coules, Harry; Smith, David

    2018-01-01

    Residual stress in the welds that attach Control Rod Drive Mechanism nozzles into the upper head of a PWR reactor vessel can influence the vessel's structural integrity and initiate Primary Water Stress Corrosion Cracking. PWSCC at Alloy 600 CRDM nozzles has caused primary coolant leakage in operating PWRs. We have used Deep Hole Drilling to characterise residual stresses in a PWR vessel head. Measurements of the internal cladding and nozzle attachment weld showed that although modest tensile...

  20. PWR benchmarks. From OECD working party on physics of plutonium recycling

    International Nuclear Information System (INIS)

    Bernnat, W.; Lutz, D.; Sartori, E.; Schlosser, G.; Cathalau, S.; Soldevila, M.

    1995-01-01

    A two year study organised by the OECD/NEACOGEMA on the physics of plutonium recycle (Working Party on the Physics of Plutonium Recycle - WPPR) has just completed its final report. The study reviewed the important aspects of the physics of plutonium recycle in Pressurised Water Reactors (PWRs), Bolling Water reactors (BWRs) and fast reactors. The final report includes a description and analysis of the results of three physical benchmark exercises which were specified for PWRs and two for fast reactors. This paper presents a summary of the most important observations and conclusions from the PWR benchmark exercises. (authors)

  1. Is it possible to improve regulation system of PWR

    International Nuclear Information System (INIS)

    Bonnemay, A.; Martinez, J.M.

    1983-03-01

    This paper deals with two problems: first of all, it presents the critical analysis of usually implemented general regulation systems, on PWR plants, and derives from it same possibilities to improve the transient behavior of reactor, the second part is a proposition from an automatic control system for spatial distribution of flux

  2. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1997-01-01

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  3. Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples

    International Nuclear Information System (INIS)

    Murphy, M.F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H.-D.; Chawla, R.

    2006-01-01

    Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity

  4. A concept of PWR using plate and shell heat exchangers

    International Nuclear Information System (INIS)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de

    2015-01-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  5. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  6. Application of digital control in Japanese PWR Plants

    International Nuclear Information System (INIS)

    Taguchi, S.; Kondo, Y.; Teranishi, S.; Matsumiya, M.; Takashima, M.; Nagai, T.

    1986-01-01

    More reliable and flexible control system to improve the plant availability and operability is constantly demanded. In order to answer the demands, digital control systems are being applied to Japanese PWR plants. Microprocessor-based digital control systems are widely used in other industries and show good performance. The digital control system has been already applied to the chemical and volume control system and the radioactive waste disposal system in the operating plants. These systems have been working as expected and demonstrating good performances. The digital control system for the reactor control system, which is the main control system of the PWR plants, is being developed. The design of the system has been already finished and the verification/validation process is now in progress

  7. PWR-GALE, Radioactive Gaseous Release and Liquid Release from PWR

    International Nuclear Information System (INIS)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1988-01-01

    1 - Description of program or function: The PWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from pressurized water reactors (PWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment. 2 - Method of solution: GALE calculates expected releases based on 1) standardized coolant activities derived from ANS Standards 18.1 Working Group recommendations, 2) release and transport mechanisms that result in the appearance of radioactive material in liquid and gaseous waste streams, 3) plant-specific design features used to reduce the quantities of radioactive materials ultimately released to the environs, and 4) information received on the operation of nuclear power plants. 3 - Restrictions on the complexity of the problem: The liquid release portion of GALE uses subroutines taken from the ORIGEN (CCC-217) to calculate radionuclide buildup and decay during collection, processing, and storage of liquid radwaste. Memory requirements for this part of the program are determined by the large nuclear data base accessed by these subroutines

  8. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    International Nuclear Information System (INIS)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C.; Palma, Daniel A.P.

    2017-01-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  9. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail: sabrinapral@gmail.com, E-mail: amir@cdtn.brm, E-mail: hcr@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)

  10. Refitting of the 'Celimene' hot cell for following up the fuel assembly of 900 MWe PWR power reactors

    International Nuclear Information System (INIS)

    Lhermenier, Andre; Van Craeynest, J.-C.

    1980-05-01

    The 'Celimene' cell adjoining the EL3 reactor provides for the acceptance, handling and the examination of irradiated fuel assemblies from power reactors (length approximately 4m, weight approximately 700 kg). Within the framework of the PWR fuel behavior follow-up or reprocessing, it is possible to extract an assembly representative of the normal fuel cycle, carry out non destructive tests on this assembly, extract pencils from it and re-insert this assembly, after refitting the head, into the normal fuel cycle for handling in a reprocessing plant or storage pond. Given suitable refitting techniques, the re-irradiation of the assembly can be considered after examination. Significant changes have been made to the buildings and the hoist facilities for handling very heavy flasks. It was necessary to rearrange the handling, machining and in-cell storage facilities. The development of an inspection rig will make it possible, some time in 1980, to carry out non destructive tests of assemblies, optical and metrological examination of assemblies prior to dismantling or of the structure after dismantling [fr

  11. Chemical decontamination solutions: Effects on PWR equipment

    International Nuclear Information System (INIS)

    Pezze, C.M.; Colvin, E.R.; Aspden, R.G.

    1992-01-01

    A critical objective for the nuclear industry is the reduction of personnel exposure to radiation. Reductions have been achieved through industry's radiation management programs including training and radiation awareness concepts. Increased plant maintenance and higher radiation fields at many sites continue to raise concerns. To alleviate the radiation exposure problem, the sources of radiation which contribute to personnel exposure must be removed from the plant. A feasible was of significantly reducing these sources from a Pressurized Water Reactor (PWR) is to chemically decontaminate the entire reactor coolant system (RCS). A program was conducted to determine the technical acceptability of using certain dilute chemical solvent processes for full RCS chemical decontamination. The two processes evaluated were CAN-DEREM and LOMI. The purpose of the program was to define and complete a systematic evaluation of the major issues that need to be addressed for the successful decontamination of the entire RCS and affected portions of the auxiliary systems of a four-loop PWR system. A test program was designed to evaluate the corrosion effects of the two decontamination processes under expected plant conditions. Materials and sample configurations dictated by generic PWR components were evaluated. The testing also included many standard corrosion coupons. The test data were then used to assess the impact of chemical decontamination on the physical condition and operability of the components, equipment and mechanical systems that make up the RCS. An overview of the test program, sample configurations, data and engineering evaluations is presented. The data demonstrate that through detailed engineering evaluations of corrosion data and equipment function, the impact of full RCS chemical decontamination on plant equipment is established

  12. Essays of leaching in cemented products containing simulated waste from evaporator concentrated of PWR reactor; Ensaios de lixiviacao em produtos cimentados contendo rejeito simulado de concentrado do evaporador de reator PWR

    Energy Technology Data Exchange (ETDEWEB)

    Haucz, Maria Judite A.; Calabria, Jaqueline A. Almeida; Tello, Cledola Cassia O.; Candido, Francisco Donizete; Seles, Sandro Rogerio Novaes, E-mail: hauczmj@cdtn.b, E-mail: jaalmeida@cdtn.b, E-mail: tellocc@cdtn.b, E-mail: fdc@cdtn.b, E-mail: seless@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    This paper evaluated the results from leaching resistance essays of cemented products, prepared from three distinct formulations, containing simulated waste of concentrated from the PWR reactor evaporator. The leaching rate is a parameter of qualification of solidified products containing radioactive waste and is determined in accordance with regulation ISO 6961. This procedure evaluates the capacity of transfer organic and inorganic substances presents in the waste through dissolution in the extractor medium. For the case of radioactive waste it is reached the more retention of contaminants in the cemented product, i.e.the lesser value of lixiviation rate. Therefore, this work evaluated among the proposed formulation that one which attend the criterion established in the regulation CNEN-NN-6.09

  13. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  14. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.

    1984-01-01

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  15. PWR fuel behavior: lessons learned from LOFT

    International Nuclear Information System (INIS)

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior

  16. Chemical and radiochemical specifications - PWR power plants

    International Nuclear Information System (INIS)

    Stutzmann, A.

    1997-01-01

    Published by EDF this document gives the chemical specifications of the PWR (Pressurized Water Reactor) nuclear power plants. Among the chemical parameters, some have to be respected for the safety. These parameters are listed in the STE (Technical Specifications of Exploitation). The values to respect, the analysis frequencies and the time states of possible drops are noticed in this document with the motion STE under the concerned parameter. (A.L.B.)

  17. Steam Generator Owners Group PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Green, S.J.

    1985-01-01

    In 1981 the Steam Generator Owners Group (SGOG), a group of domestic and foreign pressurized water reactor (PWR) owners, developed and issued the PWR secondary water chemistry guidelines. The guidelines were prepared in response to the growing recognition that a majority of the problems causing reduced steam generator reliability (e.g., denting, wasteage, pitting, etc.) were related to secondary (steam) side water purity. The guidelines were subsequently issued as an Electric Power Research Institute (EPRI) report. In 1984 they were revised to reflect industry experience in adopting the original issuance and to incorporate new information on causes of corrosion damage. The guidelines have been endorsed and their adoption recommended by the SGOG

  18. Estimation of PWR spent fuel composition using SCALE and SWAT code systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kenya, Suyama; Hiroshi, Okuno [Japan Atomic Energy Research Institute, Tokyo (Japan)

    2001-05-01

    The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account.

  19. Design and Development of Virtual Reactivity System for PWR

    International Nuclear Information System (INIS)

    Anwar, M. I.

    2012-01-01

    The reactivity monitoring and investigation is an important mean to ensure the safety operation of a nuclear power plant. But the reactivity of the nuclear reactor usually cannot be directly measured. It should be computed with certain estimation method. In this thesis, an effort has been made using an artificial neural network and highly fluctuating experimental data for predicting the total reactivity of the nuclear reactor based on all components of net reactivity. This virtual reactivity system is designed by taking advantage of neural network's nonlinear mapping capability. Based on analysis of the reactivity contributing factors, several neural network models are built separately for control rod, boron, poisons, fuel Doppler Effect and moderator effect. Extensive simulation and validation tests for PWR show that satisfied results have been obtained with the proposed approach. It presents a new idea to estimate the PWR's reactivity using artificial intelligence. All the design and simulation work is carried out in MATLAB and a real time programming environment is chosen for the computation and prediction of reactivity. (author)

  20. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    Energy Technology Data Exchange (ETDEWEB)

    Saernmark, Ivan; Lenz, Herbert [WesDyne TRC AB, Stockholm (Sweden)

    2008-04-15

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction.

  1. Advanced passive PWR AC-600: Development orientation of nuclear power reactors in China for the next century

    International Nuclear Information System (INIS)

    Huang Xueqing; Zhang Senru

    1999-01-01

    Based on Qinshan II Nuclear Power Plant that is designed and constructed by way of self-reliance, China has developed advanced passive PWR AC-600. The design concept of AC-600 not only takes the real situation of China into consideration, but also follows the developing trend of nuclear power in the world. The design of AC-600 has the following technical characteristics: Advanced reactor: 18-24 month fuel cycle, low neutron leakage, low power density of the core, no any penetration in the RPV below the level of the reactor coolant nozzles; Passive safety systems: passive emergency residual heat removal system, passive-active safety injection system, passive containment cooling system and main control room habitability system; System simplified and the number of components reduced; Digital I and C; Modular construction. AC-600 inherits the proven technology China has mastered and used in Qirtshan 11, and absorbs advanced international design concepts, but it also has a distinctive characteristic of bringing forth new ideas independently. It is suited to Chinese conditions and therefore is expected to become an orientation of nuclear power development by self-reliance in China for the next century. (author)

  2. Thermal-hydraulic transient characteristics of ship-propulsion reactor investigated through safety analysis

    International Nuclear Information System (INIS)

    Fujiki, Kazuo; Asaka, Hideaki; Ishida, Toshihisa

    1986-01-01

    Thermal-hydraulic behaviors in the reactor of Nuclear Ship ''Mutsu'' were investigated through safety evaluation of operational transients by using RETRAN and COBRA-IV codes. The results were compared to the transient behaviors of typical commercial PWR and the characteristics of transient thermal-hydraulic behaviors in ship-loaded reactor were figured out. ''Mutsu'' reactor has larger thermal margin than commercial PWR because it is designed to be used as ship-propulsion power source in the load-following operation mode. This margin makes transient behavior in general milder than in commercial PWR but high opening pressure set point of main-steam safety valves leads poor heat-sink condition after reactor trip. The effects of other small-sized components are also investigated. The findings in the paper will be helpful in the design of future advanced reactor for nuclear ship. (author)

  3. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  4. The European Pressurized Water Reactor. A safe and competitive solution for future energy needs

    International Nuclear Information System (INIS)

    Leverenz, R.; Gerhard, L.; Goebel, A.

    2004-01-01

    The European Pressurized Water Reactor - the EPR - is a PWR in the 1600 MW class. Its design is based on experience feedback from several thousand reactors x years of light water reactor operation worldwide, primarily those incorporating the most recent technologies: the French N4 and the German KONVOI reactors. It is an evolutionary design that ensures continuity in the mastery of PWR technology, minimizing the risk for the customer. (author)

  5. Identification of dose-reduction techniques for BWR and PWR repetitive high-dose jobs

    International Nuclear Information System (INIS)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    As a result of concern about the apparent increase in collective radiation dose to workers at nuclear power plants, this project will provide information to industry in preplanning for radiation protection during maintenance operations. This study identifies Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) repetitive jobs, and respective collective dose trends and dose reduction techniques. 3 references, 2 tables

  6. BWR water chemistry guidelines and PWR primary water chemistry guidelines in Japan – Purpose and technical background

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirotaka, E-mail: kawamuh@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (Japan); Hirano, Hideo [Central Research Institute of Electric Power Industry (Japan); Katsumura, Yousuke [University of Tokyo (Japan); Uchida, Shunsuke [Tohoku University (Japan); Mizuno, Takayuki [Mie University (Japan); Kitajima, Hideaki; Tsuzuki, Yasuo [Japan Nuclear Safety Institute (Japan); Terachi, Takumi [Institute of Nuclear Safety System, Inc. (Japan); Nagase, Makoto; Usui, Naoshi [Hitachi-GE Nuclear Energy, Ltd. (Japan); Takagi, Junichi; Urata, Hidehiro [Toshiba Corporation (Japan); Shoda, Yasuhiko; Nishimura, Takao [Mitsubishi Heavy Industry, Ltd. (Japan)

    2016-12-01

    Highlights: • Framework of BWR/PWR water chemistry Guidelines in Japan are presented. • Guideline necessity, definitions, philosophy and technical background are mentioned. • Some guideline settings for control parameters and recommendations are explaines. • Chemistry strategy is also mentioned. - Abstract: After 40 years of light water reactor (LWR) operations in Japan, the sustainable development of water chemistry technologies has aimed to ensure the highest coolant system component integrity and fuel reliability performance for maintaining LWRs in the world; additionally, it aimed to achieve an excellent dose rate reduction. Although reasonable control and diagnostic parameters are utilized by each boiling water reactor (BWR) and pressurized water reactor (PWR) owner, it is recognized that specific values are not shared among everyone involved. To ensure the reliability of BWR and PWR operation and maintenance, relevant members of the Atomic Energy Society of Japan (AESJ) decided to establish guidelines for water chemistry. The Japanese BWR and PWR water chemistry guidelines provide strategies to improve material and fuel reliability performance as well as to reduce dosing rates. The guidelines also provide reasonable “control values”, “diagnostic values” and “action levels” for multiple parameters, and they stipulate responses when these levels are exceeded. Specifically, “conditioning parameters” are adopted in the Japanese PWR primary water chemistry guidelines. Good practices for operational conditions are also discussed with reference to long-term experience. This paper presents the purpose, technical background and framework of the preliminary water chemistry guidelines for Japanese BWRs and PWRs. It is expected that the guidelines will be helpful as an introduction to achieve safety and reliability during operations.

  7. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  8. Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection

    International Nuclear Information System (INIS)

    Muhammad Subekti

    2009-01-01

    Sensitivity Verification of PWR Monitoring System Using Neuro-Expert For LOCA Detection. The present research was done for verification of previous developed method on Loss of Coolant Accident (LOCA) detection and perform simulations for knowing the sensitivity of the PWR monitoring system that applied neuro-expert method. The previous research continuing on present research, has developed and has tested the neuro-expert method for several anomaly detections in Nuclear Power Plant (NPP) typed Pressurized Water Reactor (PWR). Neuro-expert can detect the LOCA anomaly with sensitivity of primary coolant leakage of 7 gallon/min and the conventional method could not detect the primary coolant leakage of 30 gallon/min. Neuro expert method detects significantly LOCA anomaly faster than conventional system in Surry-1 NPP as well so that the impact risk is reducible. (author)

  9. Aging mechanisms in the Westinghouse PWR [Pressurized Water Reactor] Control Rod Drive system

    International Nuclear Information System (INIS)

    Gunther, W.; Sullivan, K.

    1991-01-01

    An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs

  10. Assessment of subcriticality during PWR-type reactor refueling; Evaluation de la sous-criticite lors des operations de chargement d'un reacteur nucleaire REP

    Energy Technology Data Exchange (ETDEWEB)

    Verdier, A

    2005-04-15

    During the core loading period of a PWR, any fuel assembly misplacements may significantly reduce the existing criticality margin. The Dampierre 4-18 event showed the present monitoring based on the variations of the outside-core detector counting rate cannot detect such misplacements. In order to circumvent that, a more detailed analysis of the available signal was done. We particularly focused on the neutronic noise analysis methods such as MSM (modified source multiplication), MSA (amplified source multiplication), Rossi-{alpha} and Feynman-{alpha} methods. The experimental part of our work was dedicated to the application of those methods to a research reactor. Finally, our results showed that those methods cannot be used with the present PWR instrumentation. Various detector positions were then studied using Monte Carlo calculations capable of following the neutron origin. Our results showed that the present technology does not allow us to use any solution based on neutron detection for monitoring core loading. (author)

  11. Report on the PWR-radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Malone, D.J. [Consumers Power Co., Covert, MI (United States)

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and information relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.

  12. Development of alternative fuel for pressurized water reactors

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferreira, R.A.N.; Ferraz, W.B.; Lameiras, F.S.; Santos, A.; Assis, G. de; Doerr, W.O.; Wehner, E.L.

    1984-01-01

    The utilization of alternative fuel cycles in Pressurized Water Reactors (PWR) such as Th/U and Th/Pu cycles can permit a better utilization of uranium reserves without the necessity of developing new power reactor concepts. The development of the technology of alternative fuels for PWR is one of the objectives of the 'Program on Thorium Utilization in Pressurized Water Reactors' carried out jointly by Empresas Nucleares Brasileiras S.A. (NUCLEBRAS), through its Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) and by German institutions, the Julich Nuclear Research Center (KFA), the Kraftwerk Union A.G. (KWU) and NUKEM GmbH. This paper summarizes the results so far obtained in the fuel technology. The development of a fabrication process for PWR fuel pellets from gel-microspheres is reported as well as the design, the specification, and the fabrication of prototype fuel rods for irradiation tests. (Author) [pt

  13. Contribution to the qualification of Gd calculation in PWR reactors

    International Nuclear Information System (INIS)

    Chaucheprat, Patrick.

    1982-06-01

    This thesis presents the state of knowledge on gadolinium and the advantages of its use as burnable poison. A study on the behaviour of gadolinium makes it possible to bring out the essential parameters to which it is sensitive. The most important part of this work is devoted to the measurements by oscillations carried out in Minerve in 1981. The conceiving and implementation of this campaign are reported. The experimental results and the amending factors linked to the interpretation are presented. To complete this study at zero time, it seemed useful to process configurations with fuel clusters of UO 2 - Gd 2 O 3 in order to see the effect of UO 2 - Gd 2 O 3 rods in interaction. To this end, efficiency determinations of UO 2 - Gd 2 O 3 rod clusters were carried out in the Melodie lattice. The second part of this work involves the change in the gadolinium. Two main points are tackled here. The first concerns the determinations by oscillations of ''reconstituted'' samples that are composed of two concentric rings with various 235 U enrichments and gadolinium levels so as to simulate irradiated UO 2 - Gd 2 O 3 fuel. The second point is devoted to the description of the GEDEON experiment. UO 2 - Gd 2 O 3 rods will be irradiated in a 13 x 13 lattice of which the spectrum is representative of that of a PWR. This experiment will take place in the centre of the Melusine reactor at Grenoble [fr

  14. Maintenance technologies for SCC of PWR

    International Nuclear Information System (INIS)

    Okimura, Koji; Hori, Nobuyuki; Kanzaki, Hiroshi; Tokuhisa, Kiichi; Kamo, Kazuhiko; Kurokawa, Masaaki

    2007-01-01

    The recent technologies of test, relaxation of deterioration, repairing and change of materials are explained for safe and stable operation of pressurized water reactor (PWR). Stress corrosion cracking (SCC) is originated by three factors such as materials, stress and environment. The eddy current test (ECT) method for the stream generator pipe and the ultrasonic test method for welding part of pipe were developed as the test technologies. Primary water stress corrosion cracking (PWSCC) of Inconel 600 in the welding part is explained. The shot peening of instrument in the gas, the water jet peening of it in water, and laser irradiation on the surface are illustrated as some examples of improvement technology of stress. The cladding of Inconel 690 on Inconel 600 is carried out under the condition of environmental cut. Total or some parts of the upper part of reactor, stream generator and structure in the reactor are changed by the improvement technologies. Changing Inconel 600 joint in the exit pipe of reactor with Inconel 690 is illustrated. (S.Y.)

  15. Performance of PWR study in the technology supplier countries: south korea and japan case

    International Nuclear Information System (INIS)

    Sriyana

    2007-01-01

    Electricity is needed as an infrastructure to support the national economic growth. For economic development sustainability, energy alternatives should be provided. Nuclear Power Plant (NPP) become the alternative of electricity generation for optimum energy mix in Indonesia and planned to operate in the 2016. Several studies have already done to prepare the NPP construction. This study focused on NPP performance especially PWR type in Asia, namely Japan and South Korea. Methodology used in this is literature tracing and a small calculation. The energy availability per unit per year is used as a parameter for evaluating the NPP performance. This conclusion are 1) the amount of NPP - PWR type in Japan is 22 units with total operational experiences 526 reactor-years and the average energy availability factor about 70.7% per unit per year. Meanwhile for the same type South Korea has 16 unit with total operational experience 222 reactor-years and average availability factor per unit per year is about 86.9%. 2) the 1000 class of PWR type both South Korea and Japan have 14 units. The operational experiences for thi class is 170 reactor-year for South Korean and 307 reactor-year for Japan. Meanwhile the average availability factor per unit per year is about 87.0% for South Korea and 69.6% for Japan. 3) the average availability factor is closed to capacity factor, so is important for real figure in assuming the techno-economic parameters, because it will influence the result o economic calculation. (author)

  16. Quantification of the distribution of hydrogen by nuclear microprobe at the Laboratory Pierre Sue in the width of zirconium alloy fuel clad of PWR reactors

    International Nuclear Information System (INIS)

    Raepsaet, C.; Bossis, Ph.; Hamon, D.; Bechade, J.L.; Brachet, J.C.

    2007-01-01

    Among the analysis techniques by ions beams, the micro ERDA (Elastic Detection Analysis) is an interesting technique which allows the quantitative distribution of the hydrogen in materials. In particular, this analysis has been used for hydride zirconium alloys, with the nuclear microprobe of the Laboratory Pierre Sue. This probe allows the characterization of radioactive materials. The technique principles are recalled and then two examples are provided to illustrate the fuel clad behavior in PWR reactors. (A.L.B.)

  17. Study of the noise propagation in PWR with coupled codes

    International Nuclear Information System (INIS)

    Verdu, G.; Garcia-Fenoll, M.; Abarca, A.; Miro, R.; Barrachina, T.

    2011-01-01

    The in-core detectors provide signals of the power distribution monitoring for the Reactor Protection System (RPS). The advanced fuel management strategies (high exposure) and the power upratings for PWR reactor types have led to an increase in the noise amplitude in detectors signals. In the present work a study of the propagation along the reactor core and the effects on the core power evolution of a small perturbation on the moderator density, using the coupled code RELAP5-MOD3.3/PARCSv2.7 is presented. The purpose of these studies is to be able to reproduce and analyze the in-core detector simulated signals. (author)

  18. Analyzing the loss of coolant accident in PWR nuclear reactors with elevation change in cold leg by RELAP5/MOD3.2 system code

    International Nuclear Information System (INIS)

    Kheshtpaz, H.; Alison, C.

    2006-01-01

    As, the Russian designed VVER-1000 reactor of the Bushehr Nuclear Power Plant by taking into account the change from German technology to that of Russian technology, and with the design of elevation change in the cold legs has been developed; therefore safety assessment of these systems for loss of coolant accident in elevation change in the cold legs and comparison results for non change elevation in the cold legs for a typical reactor (normal design of nuclear reactors) is the main important factor to be considered for the safe operation. In this article, the main objective is the simulation of the loss of coolant accident scenario by the RELAP5/MOD3.2 code in two different cases; first, the elevation change in the cold legs, and the second, non change in it. After comparing and analyzing these two code calculations the results have been generalized for a new design feature of Bushehr reactor. The design and simulation of the elevation change in the cold legs process with RELAP5/MOD3.2 code for PWR reactor is performed for the first time in the country, where it is introducing several important results in this respect

  19. From fundamental mode to the PWR type reactors blow off: physical analysis and contribution to the qualification of calculation tools

    International Nuclear Information System (INIS)

    Maghnouj, A.

    1996-01-01

    The work reported in this thesis centres on the resolution of reactor physics problems posed by the use in pressurised water reactors of fuel assemblies containing mixed uranium-plutonium oxide fuel (MOX). The work is essentially dependent on the results of the EPICURE experimental programme carried out between 1988 and 1994 in the reactor EOLE at the Cadarache Research Centre of the CEA. Our contribution to the validation of the computer program APOLLO2 and of its nuclear data library CEA93 shows that this code system satisfactorily calculates the neutronic characteristics of PWR cores. The validation of the experiments has provided useful information concerning the modifications required to be made to the library CEA93, which is based on the basic library of evaluated nuclear data, JEF2. This approach should now be extended to a wider basis of reactor experimental data. The studies of methods for calculating coolant voiding coefficients has made it possible to select suitable methods based on the available deterministic methods of transport theory in 2 ad 3 dimensions. These schemes have given results in satisfactory agreement with the measurements made in EPICURE programme for both local and total coolant voiding. It would now be worth while to validate the chosen methods by comparisons with calculations made using continuous energy Monte Carlo methods. (author)

  20. Physics of plutonium and americium recycling in PWR using advanced fuel concepts

    International Nuclear Information System (INIS)

    Hourcade, E.

    2004-01-01

    PWR waste inventory management is considered in many countries including Frances as one of the main current issues. Pu and Am are the 2 main contents both in term of volume and long term radio-toxicity. Waiting for the Generation IV systems implementation (2035-2050), one of the mid-term solutions for their transmutation involves the use of advanced fuels in Pressurized Water Reactors (PWR). These have to require as little modification as possible of the core internals, the cooling system and fuel cycle facilities (fabrication and reprocessing). The first part of this paper deals with some neutronic characteristics of Pu and/or Am recycling. In a second part, 2 technical solutions MOX-HMR and APA-DUPLEX-84 are presented and the third part is devoted to the study of a few global strategies. The main neutronic parameters to be considered for Pu and Am recycling in PWR are void coefficient, Doppler coefficient, fraction of delayed neutrons and power distribution (especially for heterogeneous configurations). The modification of the moderation ratio, the opportunity to use inert matrices (targets), the optimisation of Uranium, Plutonium and Americium contents are the key parameters to play with. One of the solutions (APA-DUPLEX-84) presented here is a heterogeneous assembly with regular moderation ratio composed with both target fuel rods (Pu and Am embedded in an inert matrix) and standard UO 2 fuel rods. An EPR (European Pressurised Reactor) type reactor, loaded only with assemblies containing 84 peripheral targets, can reach an Americium consumption rate of (4.4; 23 kg/TWh) depending on the assembly concept. For Pu and Am inventories stabilisation, the theoretical fraction of reactors loaded with Pu + Am or Pu assemblies is about 60%. For Americium inventory stabilisation, the fraction decreases down to 16%, but Pu is produced at a rate of 18.5 Kg/TWh (-25% compared to one through UOX cycle)

  1. Decay ratio studies in BWR and PWR using wavelet

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-10-01

    The on-line stability of BWR and PWR is studied using the neutron noise signals as the fluctuations reflect the dynamic characteristics of the reactor. Using appropriate signal modeling for time domain analysis of noise signals, the stability parameters can be directly obtained from the system impulse response. Here in particular for BWR, an important stability parameter is the decay ratio (DR) of the impulse response. The time series analysis involves the autoregressive modeling of the neutron detector signal. The DR determination is strongly effected by the low frequency behaviour since the transfer function characteristic tends to be a third order system rather than a second order system for a BWR. In a PWR low frequency behaviour is modified by the Boron concentration. As a result of these phenomena there are difficulties in the consistent determination of the DR oscillations. The enhancement of the consistency of this DR estimation is obtained by wavelet transform using actual power plant data from BWR and PWR. A comparative study of the Restimation with and without wavelets are presented. (orig.)

  2. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1987-01-01

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  3. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests

    International Nuclear Information System (INIS)

    Garzarolli, F.; Broy, Y.; Busch, R.A.

    1996-01-01

    Laboratory corrosion tests have always been an important tool for Zr alloy development and optimization. However, it must be known whether a test is representative for the application in-reactor. To shed more light on this question, coupons of several Zr alloys were exposed under isothermal conditions in BWR and PWR type environments. For evaluation of the in-PWR tests and for comparison of out-of-pile and in-pile tests, the different temperatures and times were normalized to a temperature-independent normalized time by assuming an activation temperature (Q/R) of 14,200 K. Comparison of in-PWR and out-of-pile corrosion behavior of Zircaloy shows that corrosion deviates to higher values in PWR if a weight gain of about 50 mg/dm 2 is exceeded. In the case of the Zr2.5Nb alloy, a slight deviation of corrosion as compared to laboratory results starts in PWR only above a weight gain of 100 mg/dm 2 . In BWR, corrosion of Zircaloy is enhanced early in time if compared with out-of-pile. Zr2.5Nb exhibits higher corrosion results in BWR than Zircaloy-4. Alloying chemistry and material condition affect corrosion of Zr alloys. However, several of the material parameters have shown a different ranking in the different environments. Nevertheless, several material parameters influencing in-reactor corrosion like the second phase particle (SPP) size of in-PWR behavior as the Sn and Fe content can be optimized by out-of-pile corrosion tests

  4. Light water reactors development in Japan. (1) Introduction of LWR technology (PWR)

    International Nuclear Information System (INIS)

    Yamada, Ichita; Suzuki, Shigemitsu

    2008-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. Introduction of LWR technology (PWR) in Japan was reviewed in this article. Kansai Electric Power imported the Mihama-1 - a 340 MWe PWR built by Westinghouse Corp. It began operating in 1970 to supply power to the World Exposition (EXPO70). There followed a period in which designs was purchased from US vendors and they were constructed with the co-operation of Mitsubishi Heavy Industry, who would then receive a license to build similar plants in Japan and develop the capacity to design and construct PWRs by itself. Progress of designs, fabrications, project management and construction of PWRs were reviewed from technology transfer to its autonomy age. (T. Tanaka)

  5. Analysis of WWER-440 and PWR RPV welds surveillance data to compare irradiation damage evolution

    Energy Technology Data Exchange (ETDEWEB)

    Debarberis, L. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands)]. E-mail: luigi.debarberis@cec.eu.int; Acosta, B. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands)]. E-mail: beatriz.acosta-iborra@jrc.nl; Zeman, A. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands); Sevini, F. [Joint Research Centre of the European Commission, Institute for Energy, P.O. Box 2, 1755 ZG Petten (Netherlands); Ballesteros, A. [Tecnatom, Avd. Montes de Oca 1, San Sebasitan de los Reyes, E-28709 Madrid (Spain); Kryukov, A. [Russian Research Centre Kurchatov Institute, Kurchatov Square 1, 123182 Moscow (Russian Federation); Gillemot, F. [AEKI Atomic Research Institute, Konkoly Thege M. ut 29-33, 1121 Budapest (Hungary); Brumovsky, M. [NRI, Nuclear Research Institute, Husinec-Rez 130, 25068 Rez (Czech Republic)

    2006-04-15

    It is known that for Russian-type and Western water reactor pressure vessel steels there is a similar degradation in mechanical properties during equivalent neutron irradiation. Available surveillance results from WWER and PWR vessels are used in this article to compare irradiation damage evolution for the different reactor pressure vessel welds. The analysis is done through the semi-mechanistic model for radiation embrittlement developed by JRC-IE. Consistency analysis with BWR vessel materials and model alloys has also been performed within this study. Globally the two families of studied materials follow similar trends regarding the evolution of irradiation damage. Moreover in the high fluence range typical of operation of WWER the radiation stability of these vessels is greater than the foreseen one for PWR.

  6. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  7. Thermo-mechanical analysis of PWR bolts susceptible to IASCC

    International Nuclear Information System (INIS)

    Matteoli, C.; Hannink, M.H.C.; Blom, F.J.; Marck, S.C. van der; Charpin-Jacobs, F.

    2015-01-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is considered a primary ageing issue for the Reactor Pressure Vessel (RPV) internals of Pressurized Water Reactors (PWR). In particular, this complex phenomenon which develops in an environment featuring thermal and mechanical stresses, interaction with corrosive compounds and irradiation, is affecting the bolts connecting the baffles and the formers in the Nuclear Power Plants' RPVs. The baffle-former assembly is the structure that borders the fuel assemblies region, contributing to keep them in position and separating in the radial direction, the core region from the downcomer region. An evaluation of the stresses and temperatures reached in the baffle-former bolts during normal operation was performed by means of a coupled thermo-mechanical study which uses reactor physics calculations to obtain the fluence in the reactor core and as a consequence the heat deposition in the RPV internals. The heat deposition data are coupled with a finite element model of the bolts and the RPV internals in order to perform a complete analysis taking in account thermal, mechanical and radiation loadings. The study is first carried out focusing on a section of the RPV internals, showing a single row of baffle-former bolts. Then the work is extended to the full core height. The model set up in this work, includes an in-depth study of the behavior of the core internals, in particular baffle-former bolts. The model has the capability of understanding the mechanical and thermal behavior of essential internal components in a PWR. (authors)

  8. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  9. Assessment of environmentally assisted cracking in PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Tice, D.R.

    1991-01-01

    There is a possibility that extension of pre-existing flaws in the reactor pressure vessel of a pressurised water reactor (PWR) may occur by environmentally assisted cracking, in particular by corrosion fatigue under cyclic transient loading. Crack growth predictions have usually been carried out using cyclic crack growth rate (da/dN) versus stress intensity range (δK) curves, such as those given in Section XI, Appendix A of the ASME Boiler and Pressure Vessel Code. However, the inherent time dependent nature of environmental cracking processes renders such an approach unrealistic. The present paper describes the development of an alternative time based assessment methodology. Illustrative calculations of expected crack growth of assumed defects made using the cyclic (ASME XIA) and time-based approaches are compared. The results illustrate that crack growth predicted by the time-based approach can be greater or less than that calculated by the traditional method. For a PWR operated with good control of water chemistry, actual crack growth rates are expected to be well below those predicted by the ASME code. (Author)

  10. Pressure loss coefficient evaluation based on CFD analysis for simple geometries and PWR reactor vessel without geometry simplification

    International Nuclear Information System (INIS)

    Ko II, B.; Park, J. P.; Jeong, J. H.

    2008-01-01

    Nuclear vendors and utilities perform lots of simulations and analyses in order to ensure the safe operation of nuclear power plants (NPPs). In general, the simulations are carried out using vendor-specific design codes and best-estimate system analysis codes and most of them were developed based on 1-dimensional lumped parameter models. These thermal-hydraulic system analysis codes require user input for pressure loss coefficient, k-factor; since they numerically solve Euler-equation. In spite of its high impact on the safety analysis results, there has not been good validation method for the selection of loss coefficient. During the past decade, however; computers, parallel computation methods, and 3-dimensional computational fluid dynamics (CFD) codes have been dramatically enhanced. It is believed to be beneficial to take advantage of advanced commercial CFD codes in safety analysis and design of NPP5. The present work aims to validate pressure loss coefficient evaluation for simple geometries and k-factor calculation for PWR based on CFD. The performances of standard k-ε model, RNG k-ε model, Reynolds stress model (RSM) on the simulation of pressure drop for simple geometry such as, or sudden-expansion, and sudden-contraction are evaluated. The calculated value was compared with pressure loss coefficient in handbook of hydraulic resistance. Then the present work carried out analysis for flow distribution in downcomer and lower plenum of Korean standard nuclear power plants (KSNPs) using STAR-CD. The lower plenum geometry of a PWR is very complicated since there are so many reactor internals, which hinders in CFD analysis for real reactor geometry up to now. The present work takes advantage of 3D CAD model so that real geometry of lower plenum is used. The results give a clear figure about flow fields in the reactor vessel, which is one of major safety concerns. The calculated pressure drop across downcomer and lower plenum appears to be in good agreement

  11. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  12. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  13. Reactor feedwater system

    International Nuclear Information System (INIS)

    Hikabe, Katsumi.

    1978-01-01

    Purpose: In order to prevent thermal stresses of a core of PWR type reactor, described has been a method for feeding heated recirculating water to the core in the case of the reactor start-up or shut-down. Constitution: A recirculating water is degassed, cleaned up and heated in the steam condensers, and then feeds the water to the reactor, characterized in that heaters are provided in the bypasses of the turbine, so that heated water is constantly supplied to the reactor. (Nakamura, S.)

  14. A multi-agent design for a pressurized water reactor (P.W.R.) control system

    International Nuclear Information System (INIS)

    Aimar-Lichtenberger, M.

    1999-01-01

    This PhD work is in keeping with the complex industrial process control. The starting point is the analysis of control principles in a Pressurized Water Reactor (P.W.R). In order to cope with the limits of the present control procedures, a new control organisation by objectives and means is defined. This functional organisation is based on the state approach and is characterized by the parallel management of control functions to ensure the continuous control of the installation essential variables. With regard to this complex system problematic, we search the most adapted computer modeling. We show that a multi-agent system approach brings an interesting answer to manage the distribution and parallelism of control decisions and tasks. We present a synthetic study of multi-agent systems and their application fields.The choice of a multi-agent approach proceeds with the design of an agent model. This model gains experiences from other applications. This model is implemented in a computer environment which combines the mechanisms of an object language with Prolog. We propose in this frame a multi-agent modeling of the control system where each function is represented by an agent. The agents are structured in a hierarchical organisation and deal with different abstraction levers of the problem. Following a prototype process, the validation is realized by an implementation and by a coupling to a reactor simulator. The essential contributions of an agent approach turn on the mastery of the system complexity, the openness, the robustness and the potentialities of human-machine cooperation. (author)

  15. A new formulation of the pseudocontinuous synthesis algorithm applied to the calculation of neutronic flux in PWR reactors

    International Nuclear Information System (INIS)

    Silva, C.F. da.

    1979-09-01

    A new formulation of the pseudocontinuous synthesis algorithm is applied to solve the static three dimensional two-group diffusion equations. The new method avoids ambiguities regarding interface conditions, which are inherent to the differential formulation, by resorting to the finite difference version of the differential equations involved. A considerable number of input/output options, possible core configurations and control rod positioning are implemented resulting in a very flexible as well as economical code to compute 3D fluxes, power density and reactivities of PWR reactors with partial inserted control rods. The performance of this new code is checked against the IAEA 3D Benchmark problem and results show that SINT3D yields comparable accuracy with much less computing time and memory required than in conventional 3D finite differerence codes. (Author) [pt

  16. Evaluation of Computational Fluids Dynamics (CFD) code Open FOAM in the study of the pressurized thermal stress of PWR reactors. Comparison with the commercial code Ansys-CFX; Evaluacion del codigo de Dinamica de Fluidos Computacional (CFD) Open FOAM en el estudio del estres termico presurizado de los reactores PWR. Comparacion con el codigo comercial Ansys-CFX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Barrachina, T.; Miro, R.; Verdu Martin, G.; Chiva, S.

    2012-07-01

    In this work is proposed to evaluate the potential of the OpenFOAM code for the simulation of typical fluid flows in reactors PWR, in particular for the study of pressurized thermal stress. Test T1-1 has been simulated , within the OECD ROSA project, with the objective of evaluating the performance of the code OpenFOAM and models of turbulence that has implemented to capture the effect of the thrust forces in the case study.

  17. Structure-dynamic model verification calculation of PWR 5 tests

    International Nuclear Information System (INIS)

    Engel, R.

    1980-02-01

    Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de

  18. The N4 plant: culmination of French PWR experience

    International Nuclear Information System (INIS)

    Bellet, J.; Houyez, A.; Journet, J.; Pierrard, J.H.

    1985-01-01

    The model N4 series of 1400MWe class PWR plants has been developed in France from a unique base of technical and operating experience. It meets the French government's requirement for a reactor free of constraints due to licensing agreements with overseas companies, with enhanced safety features and incorporating the lessons of Three Mile Island. In particular, improvements have been made to the reactor vessel, the steam generators, the primary pumps and control systems. The units are capable of daily load following and extended operation between refuelling. The N4 plant includes a new design of turbine-generator. (author)

  19. Development of computational methods to describe the mechanical behavior of PWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Seidl, Marcus; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2016-10-15

    To investigate the static mechanical response of PWR fuel assemblies (FAs) in the reactor core, a structural FA model is being developed using the FEM code ANSYS Mechanical. To assess the capabilities of the model, lateral deflection tests are performed for a reference FA. For this purpose we distinguish between two environments, in-laboratory and in-reactor for different burn-ups. The results are in qualitative agreement with experimental tests and show the stiffness decrease of the FAs during irradiation in the reactor core.

  20. Pressurized water reactor inspection procedures

    International Nuclear Information System (INIS)

    Heinrich, D.; Mueller, G.; Otte, H.J.; Roth, W.

    1998-01-01

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.) [de

  1. Study of power peak migration due to insertion of control bars in a PWR reactor; Estudo da migracao do pico de potencia em funcao da insercao das barras de controle em um reator refrigerado a agua

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Costa, Danilo Leite; Borges, Diogo da Silva; Lava, Deise Diana; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: danilolc26@gmail.com, E-mail: diogosb@outlook.com, E-mail: deisedy@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown.

  2. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-01-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH(T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields

  3. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  4. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1976-01-01

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK) [de

  5. Thermal reactor strategy

    International Nuclear Information System (INIS)

    1981-01-01

    This statement sets down briefly the CEGB's views on the requirement for nuclear power and outlines current progress in the implementation of the CEGB's thermal reactor strategy. The programme is traced historically, together with statements of Government policy. The place of Magnox, AGR, SGHWR, PWR and fast breeder reactors is discussed. Advantages and problems associated with the various types are outlined. (U.K.)

  6. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  7. Aspects of PWR nuclear power plant secondary cycle relating to reactor safety

    International Nuclear Information System (INIS)

    Mueller, A.E.F.; Leal, M.R.L.V.; Dominguez, D.

    1981-01-01

    A safety study of the main steam system, condensate and feedwater systems and water treatment system that belong to the secondary cooling circuits of a PWR nuclear power plant is presented. (E.G.) [pt

  8. Recent bibliography on analytical and sampling problems of a PWR primary coolant Suppl. 4

    International Nuclear Information System (INIS)

    Illy, H.

    1986-09-01

    The 4th supplement of a bibliographical series comprising the analytical and sampling problems of the primary coolant of PWR type reactors covers the literature from 1985 up to July 1986 (220 items). References are listed according to the following topics: boric acid; chloride, chlorine; general; hydrogen isotopes; iodine; iodide; noble gases; oxygen; other elements; radiation monitoring; reactor safety; sampling; water chemistry. (V.N.)

  9. On-line method to identify control rod drops in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Souza, T.J.; Martinez, A.S.; Medeiros, J.A.C.C.; Palma, D.A.P.; Gonçalves, A.C.

    2014-01-01

    Highlights: • On-line method to identify control rod drops in PWR reactors. • Identification method based on the readings of the ex-core detector. • Recognition of the patterns in the ex-core detector responses. - Abstract: A control rod drop event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimise undesirable effects in such a scenario. The goal of this work is to develop an online method to identify control rod drops in PWR reactors. The method entails the construction of a tool based on ex-core detector responses. It proposes to recognize patterns in the neutron ex-core detectors responses and thus to make an online identification of a control rod drop in the core during the reactor operation. The results of the study, as well as the behaviour of the detector responses demonstrated the feasibility of this method

  10. Improvements to PWR type reactors

    International Nuclear Information System (INIS)

    Ailloud, Jean; Monteil, Marcel.

    1978-01-01

    Improvements to pressurized water nuclear reactors are described, where the core coolant, called primary fluid, flows under the effect of a circulating pump in a primary loop between a steam generator and a pressure vessel containing the reactor core. The steam generator includes a bundle of tubes through which flows the primary fluid which exchanges calories with a secondary fluid, generally water, entering the generator as a liquid and issuing from it as steam. After expansion in turbines and recovery in a condenser, this steam is returned to the inside of the generator. Each primary fluid circulating pump is powered by a back-pressure turbine located in parallel with the high pressure section of the main turbine and hence fed with steam taken directly from the steam generator or the main steam pipe outside it [fr

  11. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  12. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory

  13. Development a computer codes to couple PWR-GALE output and PC-CREAM input

    Science.gov (United States)

    Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.

  14. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  15. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  16. Development and design of control rod drive mechanisms for pressurized water reactors

    International Nuclear Information System (INIS)

    Leme, Francisco Louzano

    2003-01-01

    The Control Rod Drive Mechanisms (CRDM) for a Pressurized Water Reactor (PWR) are equipment, integrated to the reactor pressure vessel, incorporating mechanical and electrical components designed to move and position the control rods to guarantee the control of power and shutdown of the nuclear reactor, during normal operation, either in emergency or accidental situations. The type of CRDM used in PWR reactors, whose detailed individual description will be presented in this monograph are the Roller-Nut and Magnetic-Jack. The environment, where the CRDM performs its above presented operational functions, includes direct contact with the fluid used as coolant peculiar to the interior of the reactor, and its associated chemical characteristics, the radiation field next to the reactor core, and also the temperature and pressure in the reactor pressure vessel. So the importance of the CRDM design requirements related to its safety functions are emphasized. Finally, some aspects related to the mechanical and structural design of CRDM of a case study, considering the CRDM for a PWR from the experimental nuclear plant to be applied by CTMSP (Centro Tecnologico da Marinha em Sao Paulo), are pointed out. The design and development of these equipment (author)

  17. Reactivity and neutron emission measurements of burnt PWR fuel rod samples in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    Murphy, M. F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H. D.; Chawla, R.

    2004-01-01

    Measurements have been made of the reactivity effects and the neutron emission rates of uranium oxide and mixed oxide burnt fuel samples having a wide range of burnup values and coming from a Pressurised Water Reactor (PWR). The reactivity measurements have been made in a PWR lattice moderated in turn with: water, a water and heavy water mixture, and water containing boron. An interesting relationship has been found between the neutron emission rate and the measured reactivity. (authors)

  18. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2012-01-01

    In this research it has been studied the effects of chemical admixtures in the cementation process of radioactive wastes. These additives are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market. Then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 23. The measured parameters were: the viscosity, the setting time, the paste and product density and the compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  19. On-line analysis of ETA and organic acids in secondary systems of PWR plants

    International Nuclear Information System (INIS)

    Kurashina, Masahiko; Uzawa, Hideo; Utagawa, Koya; Takaku, Hiroshi

    2005-01-01

    To reduce the iron concentration in the secondary water of plants with pressurized water reactors (PWRs), ethanolamine (ETA) is used as an alkalizing agent in the secondary cycle. An on-line ion chromatography (IC) monitoring system for monitoring concentrations of ETA and anions of organic acids was developed, its performance was evaluated, and verification tests were conducted at an actual PWR plant. It was demonstrated that the concentration of both ETA and anions of organic acids may be successfully monitored by IC in PWR secondary cycle streams alkalized by ETA. (orig.)

  20. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  1. ROX PWR

    International Nuclear Information System (INIS)

    Akie, H.; Yamashita, T.; Shirasu, N.; Takano, H.; Anoda, Y.; Kimura, H.

    1999-01-01

    For an efficient burnup of excess plutonium from nuclear reactors spent fuels and dismantled warheads, plutonium rock-like oxide(ROX) fuel has been investigated. The ROX fuel is expected to provide high Pu transmutation capability, irradiation stability and chemical and geological stability. While, a zirconia-based ROX(Zr-ROX)-fueled PWR core has some problems of Doppler reactivity coefficient and power peaking factor. For the improvement of these characteristics, two approaches were considered: the additives such as UO 2 , ThO 2 and Er 2 O 3 , and a heterogeneous core with Zr-ROX and UO 2 assemblies. As a result, the additives UO 2 + Er 2 O 3 are found to sufficiently improve the reactivity coefficients and accident behavior, and to flatten power distribution. On the other hand, in the 1/3Zr-ROX + 2/3UO 2 heterogeneous core, further reduction of power peaking seems necessary. (author)

  2. Fatigue Life of Stainless Steel in PWR Environments with Strain Holding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taesoon; Kim, Kyuhyung [KHNP CRI, Daejeon (Korea, Republic of); Seo, Myeonggyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Many components and structures of nuclear power plants are exposed to the water chemistry conditions during the operation. Recently, as design life of nuclear power plant is expanded over 60 years, the environmentally assisted fatigue (EAF) due to these water chemistry conditions has been considered as one of the important damage mechanisms of the safety class 1 components. Therefore, many studies to evaluate the effect of light water reactor (LWR) coolant environments on fatigue life of materials have been conducted. Many EAF test results including Argonne National Laboratory’s consistently indicated the substantial reduction of fatigue life in the light water reactor environments. However, there is a discrepancy between laboratory test data and plant operating experience regarding the effects of environment on fatigue: while laboratory test data suggest huge accumulation of fatigue damage, very limited experience of cracking caused by the low cycle fatigue in light water reactor. These hold-time effect tests are preformed to characterize the effects of strain holding on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 stainless steel in 310℃ air and PWR environments with triangular strain. In agreement with the previous reports, the LCF life was reduced in PWR environments. Also for the slower strain rate, the reduction of LCF life was greater than the faster strain rate. The LCF test conditions for the hold-time effects were determined by the references and consideration of actual plant transient. To simulate the heat-up and cooldown transient, sub-peak strain holding during the down-hill of strain amplitude was chosen instead of peak strain holding which used in the previous researches.

  3. Expert system for assisting the repair operations on the control racks of the control rods assembly in a 900 MW PWR type reactor

    International Nuclear Information System (INIS)

    Monnier, B.; Doutre, J.L.; Franco, A.

    1990-01-01

    The expert system presented was developed for assisting the repair operations on the control equipment of the control rod assembly in a PWR type reactor. The expert system allows the representation of expert knowledge and diagnostic reasoning. The objective of the expert system is to achieve the most precise diagnostic and localizing of the breakdown elements, by processing the data acquired during breakdown. The development steps, the structure and the applications of the expert system are summarized. The expert system operates in an IBM PC equipped with a AMAIA 8 Mo card. A time schedule of 18 months is predicted [fr

  4. Prevention and mitigation of steam-generator water-hammer events in PWR plants

    International Nuclear Information System (INIS)

    Han, J.T.; Anderson, N.

    1982-11-01

    Water hammer in nuclear power plants is an unresolved safety issue under study at the NRC (USI A-1). One of the identified safety concerns is steam generator water hammer (SGWH) in pressurized-water reactor (PWR) plants. This report presents a summary of: (1) the causes of SGWH; (2) various fixes employed to prevent or mitigate SGWH; and (3) the nature and status of modifications that have been made at each operating PWR plant. The NRC staff considers that the issue of SGWH in top feedring designs has been technically resolved. This report does not address technical findings relevant to water hammer in preheat type steam generators. 10 figures, 2 tables

  5. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  6. Preventive testing and leakage detection in pipe-lines of steam condensers and generators of a PWR type reactor

    International Nuclear Information System (INIS)

    Canalini, A.; Carvalho, N.C. de

    1985-01-01

    The non-destructive methods: Spum, Helium and Hydrostatic used in leakage detection in condenser pipelines for PWR type reactors are presented. The time, costs, sensitivity, resources necessary and personnel development factors are considered to choose adequated method, in function of nuclear power plant conditions. The leakage tests are applied in pressurized systems or vacuum. Eddy Current testing is used in condensers and steam generators aiming to avoid leakage in these equipments. The spume testing for leakage detection in condenser pipelines - which operation - and hydrostatic testing for leakage detection through reaming with shutdown - were most efficients. The Helium testing applied in pressurized systems or submitted to vacuum systems presented satisfactory results. The Eddy Current testing in condenser and steam generator pipelines reached desired objective, reducing leakage in the first and preserving the integrity in the second. (M.C.K.) [pt

  7. PSA LEVEL 3 DAN IMPLEMENTASINYA PADA KAJIAN KESELAMATAN PWR

    Directory of Open Access Journals (Sweden)

    Pande Made Udiyani

    2015-03-01

    Full Text Available Kajian keselamatan PLTN menggunakan metodologi kajian probabilistik sangat penting selain kajian deterministik. Metodologi kajian menggunakan Probabilistic Safety Assessment (PSA Level 3 diperlukan terutama untuk estimasi kecelakaan parah atau kecelakaan luar dasar desain PLTN. Metode ini banyak dilakukan setelah kejadian kecelakaan Fukushima. Dalam penelitian ini dilakukan implementasi PSA Level 3 pada kajian keselamatan PWR, postulasi kecelakan luar dasar desain PWR AP-1000 dan disimulasikan di contoh tapak Bangka Barat. Rangkaian perhitungan yang dilakukan adalah: menghitung suku sumber dari kegagalan teras yang terjadi, pemodelan kondisi meteorologi tapak dan lingkungan, pemodelan jalur paparan, analisis dispersi radionuklida dan transportasi fenomena di lingkungan, analisis deposisi radionuklida, analisis dosis radiasi, analisis perlindungan & mitigasi, dan analisis risiko. Kajian menggunakan rangkaian subsistem pada perangkat lunak PC Cosyma. Hasil penelitian membuktikan bahwa implementasi metode kajian keselamatan PSA Level 3 sangat efektif dan komprehensif terhadap estimasi dampak, konsekuensi, risiko, kesiapsiagaan kedaruratan nuklir (nuclear emergency preparedness, dan manajemen kecelakaan reaktor terutama untuk kecelakaan parah atau kecelakaan luar dasar desain PLTN. Hasil kajian dapat digunakan sebagai umpan balik untuk kajian keselamatan PSA Level 1 dan PSA Level 2. Kata kunci: PSA level 3, kecelakaan, PWR   Reactor safety assessment of nuclear power plants using probabilistic assessment methodology is most important in addition to the deterministic assessment. The methodology of Level 3 Probabilistic Safety Assessment (PSA is especially required to estimate severe accident or beyond design basis accidents of nuclear power plants. This method is carried out after the Fukushima accident. In this research, the postulations beyond design basis accidentsof PWR AP - 1000 would be taken, and simulated at West Bangka sample site. The

  8. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    International Nuclear Information System (INIS)

    Ichikawa, M.

    1994-01-01

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs

  9. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-12-31

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs.

  10. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  11. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  12. The Conceptual Design of Innovative Safe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Gon [Centural Research Institute, Daejeon (Korea, Republic of); Heo, Sun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Most of countries operating NPPs have been performed post-Fukushima improvements as short-term countermeasure to enhance the safety of operating NPPs. Separately, vendors have made efforts on developing passive safety systems as long-term and ultimate countermeasures. AP1000 designed by Westinghouse Electric Company has passive safety systems including the passive emergency core cooling system (PECCS), the passive residual heat removal system (PRHRS), and the passive containment cooling system (PCCS). ESBWR designed by GE-Hitachi also has passive safety systems consisting of the isolation condenser system, the gravity driven cooling system and the PCCS. Other countries including China and Russia have made efforts on developing passive safety systems for enhancing the safety of their plants. In this paper, we summarize the design goals and main design feature of innovative safe PWR, iPOWER which is standing for Innovative Passive Optimized World-wide Economical Reactor, and show the developing status and results of research projects. To mitigate an accident without electric power and enhance the safety level of PWR, the conceptual designs of passive safety system and innovative safe PWR have been performed. It includes the PECCS for core cooling and the PCCS for containment cooling. Now we are performing the small scale and separate effect tests for the PECCS and the PCCS and preparing the integral effect test for the PECCS and real scale test for the PCCS.

  13. Evaluation of Computational Fluids Dynamics (CFD) code Open FOAM in the study of the pressurized thermal stress of PWR reactors. Comparison with the commercial code Ansys-CFX

    International Nuclear Information System (INIS)

    Martinez, M.; Barrachina, T.; Miro, R.; Verdu Martin, G.; Chiva, S.

    2012-01-01

    In this work is proposed to evaluate the potential of the OpenFOAM code for the simulation of typical fluid flows in reactors PWR, in particular for the study of pressurized thermal stress. Test T1-1 has been simulated , within the OECD ROSA project, with the objective of evaluating the performance of the code OpenFOAM and models of turbulence that has implemented to capture the effect of the thrust forces in the case study.

  14. Two-reactor solution spells kiss of death for the SGHWR option

    International Nuclear Information System (INIS)

    Butler, P.

    1977-01-01

    The main points from the National Nuclear Corporation's assessment of thermal reactors are summarised. Three systems SGHWR, AGR, and PWR were examined. The NNC suggests extending the AGR programme whilst at the same time developing a PWR. (U.K.)

  15. Application of the MELCOR code to design basis PWR large dry containment analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jesse; Notafrancesco, Allen (USNRC, Office of Nuclear Regulatory Research, Rockville, MD); Tills, Jack Lee (Jack Tills & Associates, Inc., Sandia Park, NM)

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  16. Nupec thermal hydraulic test to evaluate post-DNB characteristics for PWR fuel assemblies (1. general test plan and results)

    International Nuclear Information System (INIS)

    Norio, Kono; Kenji, Murai; Kaichiro, Misima; Takayuki, Suemura; Yoshiei, Akiyama; Keiichi, Hori

    2001-01-01

    In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)

  17. Industrywide survey of PWR organics. Final report

    International Nuclear Information System (INIS)

    Richards, J.E.; Byers, W.A.

    1986-07-01

    Thirteen Pressurized Water reactor (PWR) secondary cycles were sampled for organic acids, total organic carbon, and inorganic anions. The distribution and removal of organics in a makeup water treatment system were investigted at an additional plant. TOC analyses were used for the analysis of makeup water systems; anion ion chromatography and ion exclusion chromatography were used for the analysis of secondary water systems. Additional information on plant operation and water chemistry was collected in a survey. The analytical and survey data were compared and correlations made

  18. Economic targets for small PWR reactor designs

    International Nuclear Information System (INIS)

    Board, J.

    1991-01-01

    Small reactors are likely to be less economic than large reactors, but the lower financial exposure with small reactors may be attractive to utilities contemplating a restart to a nuclear programme. New nuclear plant can be economic, but success will depend more on how the plant are built, rather than what type or size is built. A target for new plant for operation early in the next century should be a generation cost of 3p to 3.5 p/kWh. This corresponds to an overnight capital cost of Pound 1000/kWh to Pound 1100/kWh. (author)

  19. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  20. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  1. Application of perturbation theory to sensitivity calculations of PWR type reactor cores using the two-channel model; Aplicacao da teoria de perturbacao para calculos de sensibilidade em nucleos de reatores PWR, usando um modelo de dois canais

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.C.J.G. de

    1988-12-01

    Sensitivity calculations are very important in design and safety of nuclear reactor cores. Large codes with a great number of physical considerations have been used to perform sensitivity studies. However, these codes need long computation time involving high costs. The perturbation theory has constituted an efficient and economical method to perform sensitivity analysis. The present work is an application of the perturbation theory (matricial formalism) to a simplified model of DNB (Departure from Nucleate Boiling) analysis to perform sensitivity calculations in PWR cores. Expressions to calculate the sensitivity coefficients of enthalpy and coolant velocity with respect to coolant density and hot channel area were developed from the proposed model. The CASNUR.FOR code to evaluate these sensitivity coefficients was written in Fortran. The comparison between results obtained from the matricial formalism of perturbation theory with those obtained directly from the proposed model makes evident the efficiency and potentiality of this perturbation method for nuclear reactor cores sensitivity calculations (author). 23 refs, 4 figs, 7 tabs.

  2. Irradiation behavior of German PWR RPV steels under operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    May, J.; Hein, H. [AREVA NP Gmbh (Germany); Ganswind, J. [VGB PowerTech e.V. (Germany); Widera, M. [RWE Power AG (Germany)

    2011-07-01

    In 2007, the last standard surveillance capsule of the original RPV (Reactor Pressure Vessel) surveillance programs of the 11 currently operating German PWR has been evaluated. With it the standard irradiation surveillance programs of these plants was completed. In the present paper, irradiation data of these surveillance programs will be presented and a final assessment of the irradiation behavior of the German PWR RPV steels with respect to current standards KTA 3203 and Reg. Guide 1.99 Rev. 2 will be given. Data from two units which are currently under decommissioning will also be included, so that data from all 13 German PWR manufactured by the former Siemens/KWU company (now AREVA NP GmbH) are shown. It will be shown that all surveillance data within the approved area of chemical composition verify the limit curve RT(limit) of the KTA 3203, which is the relevant safety standard for these plants. An analysis of the data shows, that the prediction formulas of Reg. Guide 1.99 Rev. 2 Pos. 1 or from the TTS model tend to overestimate the irradiation behavior of the German PWR RPV steels. Possible reasons for this behavior are discussed. Additionally, the data will be compared to data from the research project CARISMA to demonstrate that these data are representative for the irradiation behavior of the German PWR RPV steels. Since the data of these research projects cover a larger neutron fluence range than the original surveillance data, they offer a future outlook into the irradiation behavior of the German PWR RPV steels under long term conditions. In general, as a consequence of the relatively large and beneficial water gap between core and RPV, especially in all Siemens/KWU 4-loop PWR, the EOL neutron fluence and therefore the irradiation induced changes in mechanical properties of the German PWR RPV materials are rather low. Moreover the irradiation data indicate that the optimized RPV materials specifications that have been applied in particular for the

  3. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  4. Comparison between MAAP and ECART predictions of radionuclide transport throughout a French standard PWR reactor coolant system

    International Nuclear Information System (INIS)

    Hervouet, C.; Ranval, W.; Parozzi, F.; Eusebi, M.

    1996-04-01

    In the framework of a collaboration agreement between EDF and ENEL, the MAAP (Modular Accident Analysis Program) and ECART (ENEL Code for Analysis of radionuclide Transport) predictions about the fission product retention inside the reactor cooling system of a French PWR 1300 MW during a small Loss of Coolant Accident were compared. The volatile fission products CsI, CsOH, TeO 2 and the structural materials, all of them released early by the core, are more retained in MAAP than in ECART. On the other hand, the non-volatile fission products, released later, are more retained in ECART than in MAAP, because MAAP does not take into account diffusion-phoresis: in fact, this deposition phenomenon is very significant when the molten core vaporizes the water of the vessel lower plenum. Centrifugal deposition in bends, that can be modeled only with ECART, slightly increases the whole retention in the circuit if it is accounted for. (authors). 18 refs., figs., tabs

  5. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  6. PWR surveillance based on correspondence between empirical models and physical

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Upadhyaya, B.R.; Kerlin, T.W.

    1976-01-01

    An on line surveillance method based on the correspondence between empirical models and physicals models is proposed for pressurized water reactors. Two types of empirical models are considered as well as the mathematical models defining the correspondence between the physical and empirical parameters. The efficiency of this method is illustrated for the surveillance of the Doppler coefficient for Oconee I (an 886 MWe PWR) [fr

  7. SACHET, Dynamic Fission Products Inventory in PWR Multiple Compartment System

    International Nuclear Information System (INIS)

    Kodaira, Hideki

    1990-01-01

    1 - Description of program or function: SACHET evaluates the dynamic fission product inventories in the multiple compartment system of pressurized water reactor (PWR) plants. 2 - Method of solution: SACHET utilizes a matrix of fission product core inventory which is previously calculated by the ORIGEN code. 3 - Restrictions on the complexity of the problem: Liquid wastes such as chemical waste and detergent waste are not included

  8. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2017-04-15

    This paper presents the radiation shielding model of a typical PWR (CNPP-II) at Chashma, Pakistan. The model was developed using Monte Carlo N Particle code [2], equipped with ENDF/B-VI continuous energy cross section libraries. This model was applied to calculate the neutron and gamma flux and dose rates in the radial direction at core mid plane. The simulated results were compared with the reference results of Shanghai Nuclear Engineering Research and Design Institute (SNERDI).

  9. Reverse depletion method for PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kim, Y.J.

    1985-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. Prospects for even greater use of in-board fresh fuel loading are good as utilities seek to reduce core vessel fluence, mitigate pressurized thermal shock concerns, and extend vessel lifetime. Consequently, large numbers of burnable poison (BP) pins are being used to control the power peaking at the in-board fresh fuel positions. This has presented an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of BP pins in the fresh fuel. A procedure was developed that utilizes the well-known Haling depletion to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and BP distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provide for the maximum utility to PWR core reload design

  10. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  11. Performance Specification Shippinpark Pressurized Water Reactor Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shippingport Spent Fuel Canisters

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders

  12. ROX PWR

    Energy Technology Data Exchange (ETDEWEB)

    Akie, H.; Yamashita, T.; Shirasu, N.; Takano, H.; Anoda, Y.; Kimura, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    For an efficient burnup of excess plutonium from nuclear reactors spent fuels and dismantled warheads, plutonium rock-like oxide(ROX) fuel has been investigated. The ROX fuel is expected to provide high Pu transmutation capability, irradiation stability and chemical and geological stability. While, a zirconia-based ROX(Zr-ROX)-fueled PWR core has some problems of Doppler reactivity coefficient and power peaking factor. For the improvement of these characteristics, two approaches were considered: the additives such as UO{sub 2}, ThO{sub 2} and Er{sub 2}O{sub 3}, and a heterogeneous core with Zr-ROX and UO{sub 2} assemblies. As a result, the additives UO{sub 2}+ Er{sub 2}O{sub 3} are found to sufficiently improve the reactivity coefficients and accident behavior, and to flatten power distribution. On the other hand, in the 1/3Zr-ROX + 2/3UO{sub 2} heterogeneous core, further reduction of power peaking seems necessary. (author)

  13. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.; Morrison, G.W.; Petrie, L.M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given

  14. Experience of partial dismantling and large component removal of light water reactors

    International Nuclear Information System (INIS)

    Dubourg, M.

    1987-01-01

    Not any of the French PWR reactors need to be decommissioned before the next decade or early 2000. However, feasibility studies of decommissioning have been undertaken and several dismantling scenarios have been considered including the dismantling of four PWR units and the on-site entombment of the active components into a reactor building for interim disposal. In addition to theoretical evaluation of radwaste volume and activity, several operations of partial dismantling of active components and decontamination activities have been conducted in view of dismantling for both PWR and BWR units. By analyzing the concept of both 900 and 1300 MWe PWR's, it appears that the design improvements taken into account for reducing occupational dose exposure of maintenance personnel and the development of automated tools for performing maintenance and repairs of major components, contribute to facilitate future dismantling and decommissioning operations

  15. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    International Nuclear Information System (INIS)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.

    1979-10-01

    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report

  16. A thermal hydraulic analysis in PWR reactors with UO2 or (U-Th)O2 fuel rods employing a simplified code

    International Nuclear Information System (INIS)

    Santos, Thiago A. dos; Maiorino, José R.; Stefanni, Giovanni L. de

    2017-01-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O 2 . For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O 2 .The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO 2 was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  17. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  18. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  19. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  20. Application of a PID controller based on fuzzy logic to reduce variations in the control parameters in PWR reactors

    International Nuclear Information System (INIS)

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Brito, Thiago Souza Pereira de; Afonso, Antonio Claudio Marques; Cruz Filho, Antonio Jose da; Marques, Jose Antonio; Teixeira, Marcello Goulart

    2013-01-01

    Nuclear reactors are in nature nonlinear systems and their parameters vary with time as a function of power level. These characteristics must be considered if large power variations occur in power plant operational regimes, such as in load-following conditions. A PWR reactor has a component called pressurizer, whose function is to supply the necessary high pressure for its operation and to contain pressure variations in the primary cooling system. The use of control systems capable of reducing fast variations of the operation variables and to maintain the stability of this system is of fundamental importance. The best-known controllers used in industrial control processes are proportional-integral-derivative (PID) controllers due to their simple structure and robust performance in a wide range of operating conditions. However, designing a fuzzy controller is seen to be a much less difficult task. Once a Fuzzy Logic controller is designed for a particular set of parameters of the nonlinear element, it yields satisfactory performance for a range of these parameters. The objective of this work is to develop fuzzy proportional-integral-derivative (fuzzy-PID) control strategies to control the level of water in the reactor. In the study of the pressurizer, several computer codes are used to simulate its dynamic behavior. At the fuzzy-PID control strategy, the fuzzy logic controller is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region. Thus the fuzzy logic controller tunes the gain of PID controller to adapt the model with changes in the water level of reactor. The simulation results showed a favorable performance with the use to fuzzy-PID controllers. (author)

  1. Radiation streaming in power reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)

    1979-02-01

    Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.

  2. Natural circulation in a scaled PWR integral test facility

    International Nuclear Information System (INIS)

    Kiang, R.L.; Jeuck, P.R. III

    1987-01-01

    Natural circulation is an important mechanism for cooling a nuclear power plant under abnormal operating conditions. To study natural circulation, we modeled a type of pressurized water reactor (PWR) that incorporates once-through steam generators. We conducted tests of single-phase natural circulations, two-phase natural circulations, and a boiler condenser mode. Because of complex geometry, the natural circulations observed in this facility exhibit some phenomena not commonly seen in a simple thermosyphon loop

  3. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant; Avaliacao da integridade de varetas combustiveis em reatores PWR a partir da analise espectrometrica da agua do primario

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Iara Arraes

    1999-02-15

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  4. Study on the numerical analysis of nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Yang, J.C.

    1980-01-01

    A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

  5. Criteria for safety-related nuclear-power-plant operator actions: 1982 pressurized-water-reactor (PWR) simulator exercises

    International Nuclear Information System (INIS)

    Crowe, D.S.; Beare, A.N.; Kozinsky, E.J.; Haas, P.M.

    1983-06-01

    The primary objective of the Safety-Related Operator Action (SROA) Program at Oak Ridge National Laboratory is to provide a data base to support development of criteria for safety-related actions by nuclear power plant operators. When compared to field data collected on similar events, a base of operator performance data developed from the simulator experiments can then be used to establish safety-related operator action design evaluation criteria, evaluate the effects of performance shaping factors, and support safety/risk assessment analyses. This report presents data obtained from refresher training exercises conducted in a pressurized water reactor (PWR) power plant control room simulator. The 14 exercises were performed by 24 teams of licensed operators from one utility, and operator performance was recorded by an automatic Performance Measurement System. Data tapes were analyzed to extract operator response times (RTs) and error rate information. Demographic and subjective data were collected by means of brief questionnaires and analyzed in an attempt to evaluate the effects of selected performance shaping factors on operator performance

  6. Radiation shield for PWR reactors

    International Nuclear Information System (INIS)

    Esenov, Amra; Pustovgar, Andrey

    2013-01-01

    One of the chief structures of a reactor pit is a 'dry' shield. Setting up a 'dry' shield includes the technologically complex process of thermal processing of serpentinite concrete. Modern advances in the area of materials technology permit avoiding this complex and demanding procedure, and this significantly decreases the duration, labor intensity, and cost of setting it up. (orig.)

  7. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  8. Earthquake resistance of residual heat removed (RHR) pump for pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, K.; Honma, T.; Matsubayashi, H.; Inazuka, H.

    1980-01-01

    The present paper deals with the earthquake resistance of the residual heat removed (RHR) pump of single stage double volute type, which is one of the structurally simplest pumps used for pressurized water reactors (PWR). The results of the study can be summarized as follows: (1) Any trouble which can give effect on the functions of the pump at earthquake does not become a problem so long as each part of the pump is of aseismatically rigid structure. (2) Aseismatic tolerance test in the pump's operating condition has shown that the earthquake resistance of the pump at its location has a tolerance about five times the dynamic design acceleration. (3) The pump is provided with an impeller-casing wear ring at the pressure boundary between the suction side pressure and discharge side pressure. This wear ring acts as an underwater bearing when the pump is in operation, and improves the vibration characteristics, particularly damping ratio, of the pump shaft to a great extent to make the pump more aseismatic. (4) In the evaluation of the underwater bearing characteristics of the wear ring, the evaluation accuracy of the vibration characteristics of the pump shaft can be improved by taking into consideration the pressure loss in the wear ring part from the head of the single stage of the pump due to the rotation of the impeller. (author)

  9. Turning points in reactor design

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1995-01-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  10. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  11. Liquid radioactive waste processing improvement of PWR nuclear power plants; Melhorias no processamento de rejeitos liquidos radioativos de usinas nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Nery, Renata Wolter dos Reis; Martinez, Aquilino Senra; Monteiro, Jose Luiz Fontes [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: wolter@eletronuclear.gov.br; monteiro@peq.coppe.ufrj.br; aquilinosenra@lmp.ufrj.br

    2005-07-01

    The study evaluate an inorganic ion exchange to process the low level liquid radwaste of PWR nuclear plants, so that the level of the radioactivity in the effluents and the solid waste produced during the treatment of these liquid radwaste can be reduced. The work compares two types of ion exchange materials, a strong acid cation exchange resin, that is the material typically used to remove radionuclides from PWR nuclear plants wastes, and a mordenite zeolite. These exchange material were used to remove cesium from a synthetic effluent containing only this ion and another effluent containing cesium and cobalt. The breakthrough curves of the zeolite and resin using a fix bed reactor were compared. The results demonstrated that the zeolite is more efficient than the resin in removing cesium from a solution containing cesium and cobalt. The results also showed that a bed combining zeolite and resin can process more volume of an effluent containing cesium and cobalt than a bed resin alone. (author)

  12. Tritium target performance during an LBLOCA in a PWR

    International Nuclear Information System (INIS)

    Reid, B.D.

    1996-01-01

    In December 1995, the U.S. Department of Energy (DOE) announced a preferred strategy for acquiring a new supply of tritium. That strategy is based on pursuing the two most promising production alternatives. These alternatives include either constructing an accelerator-produced tritium system for tritium production or procuring an existing commercial light water reactor or irradiation services from such a reactor to irradiate tritium targets. This paper discusses the safety performance of a tritium target in a commercial pressurized water reactor (PWR). The current conceptual design for the light water tritium targets is quite similar, in terms of external dimensions and materials, to early designs for stainless steel clad discrete burnable absorbers used in PWRs. The tritium targets nominally consist of an annular lithium aluminate pellet wrapped in a Zircaloy-4 getter and clad with Type 316 stainless steel

  13. Reflooding phase after loss of coolant of an advanced pressurized water reactor with high conversion ratio

    International Nuclear Information System (INIS)

    Schumann, S.

    1984-01-01

    The emergency core cooling behaviour of an advanced pressurized water reactor (APWR) during the reflooding phase of the LOCA with double-ended break is analysed and compared to a common pressurized water reactor (PWR). The code FLUT-BS, its models and correlations are explained in detail and have been verified by numerous PWR-reflood experiments with large parameter range. The influence of core-design on ECC-behaviour as well as the influences of initial and boundary values are examined. The results show the essential differences of ECC-behaviour between PWR and APWR. (orig.) [de

  14. Applications: fission, nuclear reactors. Fission: the various ways for reactors and cycles

    International Nuclear Information System (INIS)

    Bacher, P.

    1997-01-01

    A historical review is presented concerning the various nuclear reactor systems developed in France by the CEA: the UNGG (graphite-gas) system with higher CO 2 pressures, bigger fuel assemblies and powers higher than 500 MW e, allowed by studies on reactor physics, cladding material developments and reactor optimization; the fast neutron reactor system, following the graphite-gas development, led to the Superphenix reactor and important progress in simulation based on experiment and return of experience; and the PWR system, based on the american license, which has been successfully accommodated to the french industry and generates up to 75% of the electric power in France

  15. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  16. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  17. Behavior of a nine-rod PWR bundle under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Sparks, D.T.

    1979-01-01

    An experiment to characterize the behavior of a nine-rod pressurized water reactor (PWR) fuel bundle operating during power-cooling-mismatch (PCM) conditions has been conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The experiment, designated Test PCM-5, is part of a series of PCM experiments designed to evaluate light water reactor (LWR) fuel rod response under postulated accident conditions. Test PCM-5 was the first nine-rod bundle experiment in the PCM test series. The primary objectives and the results of the experiment are described

  18. Localized corrosion problems in water reactors

    International Nuclear Information System (INIS)

    Coriou, Henri.

    1977-01-01

    Main localized etching on the structure materials of water reactors are studied: stress corrosion on stainless steel 304 (B.W.R), stress corrosion, 'wall thinning' and denting of Inconel 600 vapor generator tubes (P.W.R.). Some mechanisms are examined and practical exemples in reactors are described. Various possible cures are presented [fr

  19. The failure diagnoses of nuclear reactor systems

    International Nuclear Information System (INIS)

    Sheng Huanxing.

    1986-01-01

    The earlier period failure diagnoses can raise the safety and efficiency of nuclear reactors. This paper first describes the process abnormality monitoring of core barrel vibration in PWR, inherent noise sources in BWR, sodium boiling in LMFBR and nuclear reactor stability. And then, describes the plant failure diagnoses of primary coolant pumps, loose parts in nuclear reactors, coolant leakage and relief valve location

  20. Reliability analysis of PWR thermohydraulic design by the Monte Carlo method

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da; Berthoud, J.S.; Carajilescov, P.

    1977-01-01

    The operating power level of a PWR is limited by the occurence of DNB. Without affecting the safety and performance of the reactor, it is possible to admit failure of a certain number of core channels. The thermohydraulic design, however, is affect by a great number of uncertainties of deterministic or statistical nature. In the present work, the Monte Carlo method is applied to yield the probability that a number F of channels submitted to boiling crises will not exceed a number F* previously given. This probability is obtained as function of the reactor power level. (Author) [pt

  1. Ultrasonic testing results of fatigue cracks in PWR mock-up

    International Nuclear Information System (INIS)

    Gondard, C.

    1990-01-01

    The Ispra Joint Research Center has entered, since many years a study on fatigue crack propagation in PWR reactor vessels. The objective of this study is to establish a relation between the size and the location of defects and the lifetime of the vessel. For verifying the theoretical models validity a mockup has been built. This document gives the results of CEA for 6 in service inspection during 5 years [fr

  2. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200-percent double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops (three intact, one broken) and cold-leg emergency-core-cooling systems (ECCS). The finely noded TRAC model employed 440 three dimensional (r, THETA, z) vessel cells along with approximately 300 one-dimensional cells that modeled the primary system loops. The calculated peak-clad temperature of 950 0 K occurred during blowdown and the clad temperature excursion was terminated at 175 s, when complete core quenching occurred. Accumulator flows were initiated at 10 s, when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated

  3. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  4. Estimation of maximum pressure in small containments of PWR reactors due to loss of coolant accident in primary circuit; Estimativa da pressao maxima em contencoes de reatores PWR de pequeno porte devido a um acidente de perda de refrigerante no circuito primario

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Neto, Teofilo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Moreira, Joao Manoel Losada [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2000-07-01

    This work studies the problem of containment pressurization after a LOCA in reactors with small containment free volumes. The relationship between the reactor power and the containment free volume is described with the ratio between the volumes of the primary circuit and of the containment. The maximum pressure in a containment, following a LOCA, obtained after a correlation based on large containment PWR, is around 185 psia for a primary circuit and containment volumes ratio of 0.025. For the same problem, calculations with the CONTEMPT-LT code produced a maximum pressure of 162 psia. The behavior of the temperature after a LOCA to the containment, as a function of the ratio between the primary circuit and containment volume, is such that it increases reaching asymptotically to a maximum; differently, the pressure increases almost linearly with the ratio of volumes. (author)

  5. Uranium savings on a once through PWR fuel cycle

    International Nuclear Information System (INIS)

    Cupo, J.V.

    1980-01-01

    A number of alternatives which have the greatest potential for near term savings with minimum plant and fuel modifications have been examined at Westinghouse as part of continued internal assessment and part of NASAP study conducted for DOE pertaining to uranium utilization in a once through PWR fuel cycle. The alternatives which could be retrofitted to existing reactors were examined in more detail in the evaluation since they would have the greater near term impact on U savings

  6. Improvement on main control room for Japanese PWR plants

    International Nuclear Information System (INIS)

    Matsumiya, Masayuki

    1996-01-01

    The main control room which is the information center of nuclear power plant has been continuously improved utilizing the state of the art ergonomics, a high performance computer, computer graphic technologies, etc. For the latest Japanese Pressurized Water Reactor (PWR) plant, the CRT monitoring system is applied as the major information source for facilitating operators' plant monitoring tasks. For an operating plant, enhancement of monitoring and logging functions has been made adopting a high performance computer

  7. A nodal model for the simulation of a PWR core

    International Nuclear Information System (INIS)

    Souza Pinto, R. de.

    1981-06-01

    A computer program FORTRAN language was developed to simulate the neutronic and thermal-hydraulic transient behaviour of a PWR reactor core. The reator power is calculated using a point kinectics model with six groups of delayed neutron precursors. The fission product decay heat was considered assuming three effective decay heat groups. A nodal model was employed for the treatment of heat transfer in the fuel rod, with integration of the heat equation by the lumped parameter technique. Axial conduction was neglected. A single-channel nodal model was developed for the thermo-hydrodynamic simulation using mass and energy conservation equations for the control volumes. The effect of the axial pressure variation was neglected. The computer program was tested, with good results, through the simulation of the transient behaviour of postulated accidents in a typical PWR. (Author) [pt

  8. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  9. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Choi, Samuel

    2012-09-01

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  10. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels.

  11. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    International Nuclear Information System (INIS)

    2002-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels

  12. Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  13. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  14. Stresses in transition region of VVER-1000 reactor vessels

    International Nuclear Information System (INIS)

    Namgung, I.; Nguye, T.L.

    2014-01-01

    Most of the western PWR reactor's bottom head is hemi-spherical shape, however for Russian designed VVER family of reactor it is ellipsoidal shape. The transition region from shell side to ellipsoidal head and transition top flange to cylindrical shell develop higher stress concentration than western PWR reactor vessel. This region can be modeled as conical shell with varying thickness. The theoretical derivation of stress in the thick-walled conical cylinder with varying thickness was developed and shown in detail. The results is applied to VVER-1000 reactor vessel of which shell to bottom ellipsoidal shell and shell to upper flange were investigated for stress field. The theoretical calculations were also compared with FEM solutions. An axisymmetric 3D model of VVER-1000 reactor vessel (without closure head) FEM model was created and internal hydrostatic pressure boundary condition was applied. The stress results from FEM and theoretical calculation were compared, and the discrepancies and accuracies of the theoretical results were discussed. (author)

  15. Stresses in transition region of VVER-1000 reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Namgung, I. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Nguye, T.L. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); National Research Inst. of Mechanical Engineering, Hanoi City, Vietnam (China)

    2014-07-01

    Most of the western PWR reactor's bottom head is hemi-spherical shape, however for Russian designed VVER family of reactor it is ellipsoidal shape. The transition region from shell side to ellipsoidal head and transition top flange to cylindrical shell develop higher stress concentration than western PWR reactor vessel. This region can be modeled as conical shell with varying thickness. The theoretical derivation of stress in the thick-walled conical cylinder with varying thickness was developed and shown in detail. The results is applied to VVER-1000 reactor vessel of which shell to bottom ellipsoidal shell and shell to upper flange were investigated for stress field. The theoretical calculations were also compared with FEM solutions. An axisymmetric 3D model of VVER-1000 reactor vessel (without closure head) FEM model was created and internal hydrostatic pressure boundary condition was applied. The stress results from FEM and theoretical calculation were compared, and the discrepancies and accuracies of the theoretical results were discussed. (author)

  16. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  17. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  18. The empirical intensity of PWR primary coolant pumps failure and repair

    International Nuclear Information System (INIS)

    Milivojevicj, S.; Riznicj, J.

    1988-01-01

    The wealth of operating experience concerning PWR type and nuclear reactors that has been regularly monitored and systematically processes since 1971, enabled an analysis of the PWR primary coolant pumps operation. Failure intensity α and repair intensity μ of the pump during its working life were calculated, as these values are necessary in order to determine the reliability and availability of the pump as the basis for analyzing its effect on the safety and efficiency of the nuclear power plant. The trend of failure intensity α follows the theoretically expected changes in α over time, and this is around 10 -5 in the majority of life-time. Repair intensity μ indicates a slow rise during life-time, i.e. its faster return to operation. (author).7 refs.; 5 figs

  19. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1996-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors, because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW el NPP's with PWR and has been successfully tested in a 350 MW el NPP with a PWR. (orig.)

  20. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1998-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors (PWRs), because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW e1 NPP's with PWR and has been successfully tested in a 350 MW e1 NPP with a PWR. (orig.)

  1. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  2. Recent development in PWR zinc injection

    International Nuclear Information System (INIS)

    Ocken, H.; Fruzzetti, K.; Frattini, P.; Wood, C.J.

    2002-01-01

    Zinc injection to the reactor coolant system (RCS) of PWRs holds the promise to alleviate two key challenges facing PWR plant operators: (1) reducing degradation of coolant system materials, including nickel-base alloy tubing and lower alloy penetrations due to stress corrosion cracking, and (2) lowering shutdown dose rates. Primary water stress corrosion cracking (PWSCC) is a dominant tube failure mode at many plants. This paper summarizes recent observations from U. S. and international PWRs that have implemented zinc injection, focusing primarily on coolant chemistry and dose rate issues. It also provides a look at the future direction of EPRI-sponsored projects on this topic. (authors)

  3. Failure probability of PWR reactor coolant loop piping

    International Nuclear Information System (INIS)

    Lo, T.; Woo, H.H.; Holman, G.S.; Chou, C.K.

    1984-02-01

    This paper describes the results of assessments performed on the PWR coolant loop piping of Westinghouse and Combustion Engineering plants. For direct double-ended guillotine break (DEGB), consideration was given to crack existence probability, initial crack size distribution, hydrostatic proof test, preservice inspection, leak detection probability, crack growth characteristics, and failure criteria based on the net section stress failure and tearing modulus stability concept. For indirect DEGB, fragilities of major component supports were estimated. The system level fragility was then calculated based on the Boolean expression involving these fragilities. Indirect DEGB due to seismic effects was calculated by convolving the system level fragility and the seismic hazard curve. The results indicate that the probability of occurrence of both direct and indirect DEGB is extremely small, thus, postulation of DEGB in design should be eliminated and replaced by more realistic criteria

  4. A comparison of the BUGLE-80, SAILOR, and ELXSIR neutron cross-section libraries for PWR pressure vessels surveillance dosimetry and shielding applications

    International Nuclear Information System (INIS)

    Basha, H.S.; Manahan, M.P.

    1992-01-01

    In this paper three multigroup neutron cross-section libraries are used in synthesized three-dimensional discrete ordinates transport analyses to investigate their similarities, differences, and results for pressurized water reactor (PWR) pressure vessel surveillance dosimetry and shielding applications. The calculated-to-experimental (C/E) rations and the calculated reaction rates of several fast reactions are compared for the BUGLE-80, SAILOR, and ELXSIR cross-section libraries at the 97-deg surveillance capsule of the San Onofre Nuclear Generation Station Unit 2 (SONGS-2) and at the 90- and 97-deg (C/E ratios only) cavity dosimetry locations for another PWR (referred to as Reactor X)

  5. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  6. Control rod ejection accident analysis for a PWR with thorium fuel loading

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D.F. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2010-07-01

    This paper presents the results of 3-D transient analysis of a pressurized water reactor (PWR) core loaded with 100% Th-Pu MOX fuel assemblies. The aim of this study is to evaluate the safety impact of applying a full loading of this innovative fuel in PWRs of the current generation. A reactivity insertion accident scenario has been simulated using the reactor core analysis code PANTHER, used in conjunction with the lattice code WIMS. A single control rod assembly, with the highest reactivity worth, has been considered to be ejected from the core within 100 milliseconds, which may occur due to failure of the casing of the control rod driver mechanism. Analysis at both hot full power and hot zero power reactor states have been taken into account. The results were compared with those obtained for a representative PWR fuelled with UO{sub 2} fuel assemblies. In general the results obtained for both cores were comparable, with some differences associated mainly to the harder neutron spectrum observed for the Th-Pu MOX core, and to some specific core design features. The study has been performed as part of the LWR-DEPUTY project of the EURATOM 6. Framework Programme, where several aspects of novel fuels are being investigated for deep burning of plutonium in existing nuclear power plants. (authors)

  7. Investigation of conditions inside the reactor building annulus of a PWR plant of KONVOI type in case of severe accidents with increased containment leakages

    International Nuclear Information System (INIS)

    Bakalov, Ivan; Sonnenkalb, Martin

    2018-01-01

    Improvements of the implemented severe accident management (SAM) concepts have been done in all operating German NPPs after the Fukushima Daiichi accidents following recommendations of the German Reactor Safety Commission (RSK) and as a result of the stress test being performed. The efficiency of newly developed severe accident management guidelines (SAMG) for a PWR KONVOI reference plant related to the mitigation of challenging conditions inside the reactor building (RB) annulus due to increased containment leakages during severe accidents have been assessed. Based on two representative severe accident scenarios the releases of both hydrogen and radionuclides into the RB annulus have been predicted with different boundary conditions. The accident scenarios have been analysed without and with the impact of several SAM measures (already planned or proposed in addition), which turned out to be efficient to mitigate the consequences. The work was done within the frame of a research project financially supported by the Federal Ministry BMUB.

  8. Investigation of conditions inside the reactor building annulus of a PWR plant of KONVOI type in case of severe accidents with increased containment leakages

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Ivan [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Berlin (Germany); Sonnenkalb, Martin [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2018-02-15

    Improvements of the implemented severe accident management (SAM) concepts have been done in all operating German NPPs after the Fukushima Daiichi accidents following recommendations of the German Reactor Safety Commission (RSK) and as a result of the stress test being performed. The efficiency of newly developed severe accident management guidelines (SAMG) for a PWR KONVOI reference plant related to the mitigation of challenging conditions inside the reactor building (RB) annulus due to increased containment leakages during severe accidents have been assessed. Based on two representative severe accident scenarios the releases of both hydrogen and radionuclides into the RB annulus have been predicted with different boundary conditions. The accident scenarios have been analysed without and with the impact of several SAM measures (already planned or proposed in addition), which turned out to be efficient to mitigate the consequences. The work was done within the frame of a research project financially supported by the Federal Ministry BMUB.

  9. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  10. Atmea launches Atmea1 the mid-sized generation 3+ PWR you can rely on

    International Nuclear Information System (INIS)

    2008-01-01

    ATMEA, a daughter company of AREVA NP and Mitsubishi Heavy Industries, is developing and will supply ATMEA1, the most advanced 1100 MWe PWR plant with the combination of the unique set of competence and experience of its parent companies. This folder presents the ATMEA1 reactor main features. (J.S.)

  11. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  12. Contemporary pressurized water reactor technology in the world

    International Nuclear Information System (INIS)

    Komarek, A.

    1991-01-01

    The recent political events enabled Czechoslovak industrial companies to come into direct contact with leading western companies involved in pressurized water ractor technology. A survey is presented of the present situation at the world market of PWR type nuclear power plant suppliers and suppliers of fuel cycle services. Information is given on the potential bids for the next Czechoslovak nuclear power plants with PWR reactors. Economic aspects of the potential bids are presented including some considerations about the participation of the Czechoslovak nuclear industry as a supplier of the reactor for the future power plants. Main technical parameters are listed of PWR units with an output about 1000 MW supplied by Westinghouse EC, ABB -Combustion Engineering and Siemens AG. At present, the bids for new Czechoslovak nuclear power plants are being evaluated. No information on terms of the bids actually coming from foreign companies is used in the article. (Z.S.). 9 figs., 5 tabs

  13. Small modular reactor (SMR) development plan in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup; Choi, Swongho; Hwang, Il Soon [Nuclear Transmutation Energy Research Center, Seoul National University, Bldg.31-1, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 151-742 (Korea, Republic of)

    2015-04-29

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent status of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.

  14. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    International Nuclear Information System (INIS)

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  15. Material property changes of stainless steels under PWR irradiation

    International Nuclear Information System (INIS)

    Fukuya, Koji; Nishioka, Hiromasa; Fujii, Katsuhiko; Kamaya, Masayuki; Miura, Terumitsu; Torimaru, Tadahiko

    2009-01-01

    Structural integrity of core structural materials is one of the key issues for long and safe operation of pressurized water reactors. The stainless steel components are exposed to neutron irradiation and high-temperature water, which cause significant property changes and irradiation assisted stress corrosion cracking (IASCC) in some cases. Understanding of irradiation induced material property changes is essential to predict integrity of core components. In the present study, microstructure and microchemistry, mechanical properties, and IASCC behavior were examined in 316 stainless steels irradiated to 1 - 73 dpa in a PWR. Dose-dependent changes of dislocation loops and cavities, grain boundary segregation, tensile properties and fracture mode, deformation behavior, and their interrelation were discussed. Tensile properties and deformation behavior were well coincident with microstructural changes. IASCC susceptibility under slow strain rate tensile tests, IASCC initiation under constant load tests in simulated PWR primary water, and their relationship to material changes were discussed. (author)

  16. Pseudo-harmonics method: an application to thermal reactors

    International Nuclear Information System (INIS)

    Silva, F.C. da; Rotenberg, S.; Thome Filho, Z.D.

    1985-10-01

    Several applications of the Pseudo-Harmonics method are presented, aiming to calculate the neutron flux and the perturbed eigenvalue of a nuclear reactor, like PWR, with three enrichment regions as Angra-1 reactor. In the reference reactor, perturbations of several types as global as local were simulated. The results were compared with those from the direct calculation. (E.G.) [pt

  17. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  18. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  19. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  20. Maturity of the PWR

    International Nuclear Information System (INIS)

    Bacher, P.; Rapin, M.; Aboudarham, L.; Bitsch, D.

    1983-03-01

    Figures illustrating the predominant position of the PWR system are presented. The question is whether on the basis of these figures the PWR can be considered to have reached maturity. The following analysis, based on the French program experience, is an attempt to pinpoint those areas in which industrial maturity of the PWR has been attained, and in which areas a certain evolution can still be expected to take place

  1. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  2. SARDAN- A program for the transients simulation in a typical PWR plant

    International Nuclear Information System (INIS)

    Mattos Santos, R.L.P. de.

    1979-10-01

    A program in FORTRAN-IV language was developed that simulates the behaviour of the primary circuit in a typical PWR plant during condition II transients, in particular uncontrolled withdrawal of a control rod set, control rod set drops and uncontrolled boron dilution. It the mathematical model adopted the reactor core, the hot piping to which a pressurizer is coupled, the steam generator and the cold piping are considered. The results obtained in the analysis of the mentioned accidents are compared to those present at the Final Safety Analysis Report (FSAR) of the Angra-1 reactor and are considered satisfactory. (F.E.) [pt

  3. Maintenance service for major component of PWR plant. Replacement of pressurizer safe end weld

    International Nuclear Information System (INIS)

    Miyoshi, Yoshiyuki; Kobayashi, Yuki; Yamamoto, Kazuhide; Ueda, Takeshi; Suda, Naoki; Shintani, Takashi

    2017-01-01

    In October 2016, MHI completed the replacement of safe end weld of pressurizer (Pz) of Ringhals unit 3, which was the first maintenance work for main component of pressurized water reactor (PWR) plant in Europe. For higher reliability and longer lifetime of PWR plant, MHI has conducted many kinds of maintenance works of main components of PWR plants in Japan against stress corrosion cracking due to aging degradation. Technical process for replacement of Pz safe end weld were established by MHI. MHI has experienced the work for 21 PWR units in Japan. That of Ringhals unit 3 was planned and conducted based on the experiences. In this work, Alloy 600 used for welds of nozzles of Pz was replaced with Alloy 690. Alloy 690 is more corrosive-resistant than Alloy 600. Specially designed equipment and technical process were developed and established by MHI to replace safe end weld of Pz and applied for the Ringhals unit 3 as a first application in Europe. The application had been performed in success and achieved the planned replacement work duration and total radiation dose by using sophisticated machining and welding equipment designed to meet the requirements to be small, lightweight and remote-controlled and operating by well skilled MHI personnel experienced in maintenance activities for major components of PWR plant in Japan. The success shows that the experience, activities and technology developed in Japan for main components of PWR plant shall be applicable to contribute reliable operations of nuclear power plants in Europe and other countries. (author)

  4. A new model for simulation of pressurizers in PWR power plants

    International Nuclear Information System (INIS)

    Madeira, A.A.

    1981-02-01

    The pressurizer of a PWR type reactor was simulated as a thermodynamical system made up of three regions with movable boundaries. The mechanisms of normal condensation, condensation induced by spray, flashing and heat exchange across the water - steam interface, were studied. Various tests have been carried out and satisfactory results were obtained when compared with those from other models and also with some available experimental data. (E.G.) [pt

  5. Generalized perturbation theory error control within PWR core-loading pattern optimization

    International Nuclear Information System (INIS)

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  6. Radiation dose rates from commercial PWR and BWR spent fuel elements

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel

  7. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  8. Study on thermal-hydraulics during a PWR reflood phase

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs.

  9. Reactor antineutrino detector iDREAM.

    Science.gov (United States)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  10. Definition of thermal-hydraulics parameters of a naval PWR via energy balance of a Westinghouse PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Luiz C.; Curi, Marcos F., E-mail: marcos.curi@cefet-rj.br [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Department of Mechanical Engineering

    2017-07-01

    In this work, we used the operational parameters of the Angra 1 nuclear power plant, designed by Westinghouse, to estimate the thermal-hydraulic parameters for naval nuclear propulsion, focusing on the analysis of the reactor and steam generator. A thermodynamics analysis was made to reach the operational parameters of primary circuit such as pressure, temperature, power generated among others. Previous studies available in literature of 2-loop Westinghouse Nuclear Power Plants, which is based on a PWR and similar to Angra-1, support this analysis in the sense of a correct procedure to deal with many complex processes to energy generation from a nuclear source. Temperature profiles in reactor and steam generator were studied with concepts of heat transfer, fluid mechanics and also some concepts of nuclear systems, showing the behavior into them. In this simulation, the Angra 1 primary circuit was reduced on a scale of 1: 3.5 to fit in a Scorpène-class submarine. The reactor generates 85.7 MW of total thermal power. The maximum power and temperatures reached were lower than the operational safe limits established by Westinghouse. The number of tubes of the steam generator was determined in 990 U-tubes with 6.3 m of average length. (author)

  11. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  12. Conversion ratio and consumption of fissile material in PWR reactors

    International Nuclear Information System (INIS)

    Tiba, C.

    1977-01-01

    It has been shown that the uranium resources will be insufficient for future projected demand. The many solutions to this problem are considered and, in particular, the effect of enrichment on the conversion ratio and hence total uranium comsumption is studied. The developed computacional method employs the one-group neutron diffusion theory. The model is verified by calculating typical burn-up, conversion ratio, U-235 comsumption and plutonium production values in PWR's, and comparing results with those in the published literature. The associated costs of U and U-Pu fuel cycles are also studied for various enrichment values [pt

  13. Study of the influence of temperature and time on the electroplating nickel layer in Inconel 718 strips used in spacer grid of Pressurized Water Cooled nuclear reactors (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Renato; Abati, Amanda; Verne, Júlio; Panossian, Zehbour, E-mail: amanda.abati@marinha.mil.br, E-mail: jvernegropp@gmail.com, E-mail: renato.rezende@marinha.mil.br, E-mail: zep@ipt.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil). Laboratório de Desenvolvimento e Instrumentação de Combustível Nuclear; Instituto de Pesquisas Tecnológicas (IPT), São Paulo, SP (Brazil)

    2017-07-01

    The Inconel 718 (UNS N07718: Ni-{sup 19}Cr-{sup 18}Fe-{sup 5}Nb-3 Mo) is a precipitation hardenable nickel alloy that has good corrosion resistance and high mechanical strength. These strips are used for assembling the spacer grid of fuel element of pressurized water cooled nuclear reactors (PWR). The spacer grid is a structural component of fundamental importance in fuel elements of PWR reactors, maintaining the position and necessary spacing of the fuel rods within the arrangement of the fuel element. The spacer grid is formed by joining the points of intersection of the strips, by a joint process called brazing. For this process, these strips are stamped and plated with a thin layer of nickel by means of electroplating in order to protect against oxidation and allow a better flowability and wettability of the addition metal in the strips during brazing. Oxidation at the surface of the base material harms wettability and inhibits spreading of the liquid addition metal on the substrate surface during the brazing process. The use of coatings such as nickel plating is used to ensure such conditions. The results showed that there is a process of diffusion de some chemical elements such as chromium, iron, titanium and aluminum from the substrate to the nickel layer and nickel from the layer to the substrate. These chemical elements are responsible for the oxidation at the surface of the strip. (author)

  14. Reactor physics methods development at Westinghouse

    International Nuclear Information System (INIS)

    Mueller, E.; Mayhue, L.; Zhang, B.

    2007-01-01

    The current state of reactor physics methods development at Westinghouse is discussed. The focus is on the methods that have been or are under development within the NEXUS project which was launched a few years ago. The aim of this project is to merge and modernize the methods employed in the PWR and BWR steady-state reactor physics codes of Westinghouse. (author)

  15. Basic study on characteristics of some important equilibrium fuel cycles of PWR

    International Nuclear Information System (INIS)

    Waris, A.; Sekimoto, H.

    2001-01-01

    Equilibrium fuel cycle characteristics of a light water reactor (LWR) with enriched uranium supply were evaluated. In this study, five kinds of fuel cycles of 3000 MWt pressurized water reactor (PWR) were investigated, and a method to determine the uranium enrichment in order to achieve their criticality was presented. The results show that the enrichment decreases considerably with increasing number of confined heavy nuclides when U is discharged from the reactor. The required natural uranium was also evaluated for two different enrichment processes. The amount of required natural uranium also decreases as well. On the other hand, when U is totally confined, the enrichment becomes unacceptably high. Furthermore, Pu and minor actinides (MA) confining seem effective to incinerate the discharged radio-toxic wastes

  16. Experimental Irradiations of Materials and Fuels in the BR2 Reactor: An Overview of Current Programmes

    International Nuclear Information System (INIS)

    Van Dyck, S.; Koonen, E.; Verwerft, M.; Wéber, M.

    2013-01-01

    The BR2 material test reactor offers a variety of experimental irradiation possibilities for testing of materials, fuels and instruments. The current paper gives an overview of the recent and ongoing programmes in order to illustrate the experimental potential of the reactor. Three domains of applications are reviewed: Irradiation of materials and fuels for pressurised water reactors (PWR); irradiation of materials for accelerator driven systems (ADS), cooled by liquid lead alloys; and irradiation of fuel for Material Test Reactors (MTR). For PWR relevant tests, a dedicated loop is available, providing a full simulation of the thermo hydraulic conditions of a PWR. ADS related tests require particular control of the irradiation environment and the necessary safety precautions in order to avoid 210 Po contamination. In-core mechanical testing of materials is done in comparison and complimentarily to post-irradiation examinations in order to assess flux related effects on the deformation behaviour of materials. (author)

  17. Pressurised water reactor fuel management using PANTHER

    International Nuclear Information System (INIS)

    Parks, G.T.; Knight, M.P.

    1996-01-01

    This paper describes the integration of Nuclear Electric's reactor physics code PANTHER with an automatic optimisation procedure designed to search for optimal PWR reload cores and assesses its performance. (Author)

  18. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  19. The development of reactor vessel internal heavy forging for 1000 MW pressurized-water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Zhifeng; Chen Yongbo; Ding Xiuping; Zhang Lingfang

    2012-01-01

    This Paper introduced the development of Reactor Vessel Internal (RVI) heavy forgings for 1000 MW Pressurized Water Reactor (PWR) nuclear power plant, analyzed the manufacture difficulties and technical countermeasures. The testing result of the product indicated that the performance of RVI heavy forgings manufactured by Shanghai Heavy Machinery Plant Ld. (SHMP) is outstanding and entirely satisfy the technical requirements for RVI product. (authors)

  20. A thermal hydraulic analysis in PWR reactors with UO{sub 2} or (U-Th)O{sub 2} fuel rods employing a simplified code

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thiago A. dos; Maiorino, José R., E-mail: thiago.santos@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil); Stefanni, Giovanni L. de, E-mail: giovanni.stefanni@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O{sub 2}. For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O{sub 2}.The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO{sub 2} was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)

  1. United Kingdom and USSR reactor types

    International Nuclear Information System (INIS)

    Lewins, Jeffery

    1988-01-01

    The features of the RBMK reactor operated at Chernobyl are compared with reactor types pertinent to the UK. The UK reactors covered are in three classes: the commercial reactors now built and operated or in commission (Magnox and Advanced Gas-cooled Reactor (AGR)); the prototype Steam Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactor (PFR) that have comparable performance to commercial reactors; and the proposed Pressurised Water Reactor (PWR) or Sizewell 'B' design which, it will be recollected, is different in detail from PWRs built elsewhere. We do not include research and test reactors nor the Royal Navy PWRs. The appendices explain resonances, Doppler and Xenon effects, the reactor physics of Chernobyl and positive void coefficients all of which are relevant to the comparisons. (author)

  2. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Eiichi [Omiya Technical Institute, Saitama-ken (Japan)

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  3. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, Edward D [ORNL; Peplow, Douglas E. [ORNL; Wagner, John C [ORNL; Murphy, Brian D [ORNL; Mueller, Don [ORNL

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  4. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    International Nuclear Information System (INIS)

    Blakeman, Edward D.; Peplow, Douglas E.; Wagner, John C.; Murphy, Brian D.; Mueller, Don

    2007-01-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts

  5. Investigation of spatial coupling aspects for coupled code application in PWR safety analysis

    International Nuclear Information System (INIS)

    Todorova, N.K.; Ivanov, K.N.

    2003-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3-D) modeling of the reactor core to ensure a realistic description of physical phenomena. This paper describes a part of the research activities carried out on the sensitivity of coupled neutronics/thermal-hydraulic system code's results to the spatial mesh overlays used for modeling pressurized water reactor (PWR) cores for analysis of different transients. The coupled TRAC-PF1/NEM was used to model PWR rod ejection accident (REA). Modeling schemes for pressurized water reactor are described in detail, followed by a comparative analysis of both steady state and transient calculations. By using different TRAC-PF1/NEM vessel modeling options it was demonstrated that the geometric refinement plays a great role in determining the local parameters and control rod worth in the case of spatially asymmetric transients. The capability of TRAC-PF1/NEM to introduce local refinement of heat structure models was explored while preserving the original coarse-mesh structure of the hydraulic model. The obtained results indicated that the thermal-hydraulic feedback phenomenon is non-linear and cannot be separated even in rod ejection accident analysis, where the Doppler feedback plays a dominant role. While the impact of neutronics mesh refinement is well known, this research found that the local predictions, as well as the global predictions are also very sensitive to the thermal-hydraulic refinement

  6. Evaluation model for PWR irradiated fuel

    International Nuclear Information System (INIS)

    Gomes, I.C.

    1983-01-01

    The individual economic value of the plutonium isotopes for the recycle of the PWR reactor is investigated, assuming the existence of an market for this element. Two distinct market situations for the stages of the fuel cycle are analysed: one for the 1972 costs and the other for costs of 1982. Comparisons are made for each of the two market situations concerning enrichment of the U-235 in the uranium fuel that gives the minimum cost in the fuel cycle. The method adopted to establish the individual value of the plutonium isotopes consists on the economical analyses of the plutonium fuel cycle for four different isotopes mixtures refering to the uranium fuel cycle. (Author) [pt

  7. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  8. The future of the low temperature district heating reactor

    International Nuclear Information System (INIS)

    Lu Yingzhong; Wang Dazhong; Ma Changwen; Dong Duo; Tian Jiafu.

    1984-01-01

    In this paper, the role, development and situation of the low temperature district heating reactor (LTDHR) are briefly summarized. There are four types of LTDHR. They are PWR, reactor with boiling in the chimney, organic reactor and swimming pool reactor. The features of these reactors are introduced. The situation and role of the LTDHR in the future of the energy system are also discussed. The experiment on nuclear district heating with the swimming pool reactor in Qinghua Univ. is described briefly. (Author)

  9. Reduced scaling of thermal-hydraulic circuits for studies of PWR reactors natural circulation

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1993-01-01

    The Ishii et al. hydrodynamic similarity criteria for natural circulation were used for scaling reduced models of prototype passive residual heat removal system of a 600 M We PWR. The physical scales of the thermohydraulic parameters obtained presented a reasonable agreement when compared with simplified analytic models of the systems. (author)

  10. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Saptarshi, E-mail: saptarshi.bhattacharjee@outlook.com [Alternative Energies and Atomic Energy Commission (CEA) – Cadarache, DEN/DTN/STCP/LHC, 13108 Saint Paul lez Durance Cedex (France); Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), UMR7340 CNRS, Aix-Marseille Université, Centrale Marseille, 13451 Marseille Cedex (France); Ricciardi, Guillaume [Alternative Energies and Atomic Energy Commission (CEA) – Cadarache, DEN/DTN/STCP/LHC, 13108 Saint Paul lez Durance Cedex (France); Viazzo, Stéphane [Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), UMR7340 CNRS, Aix-Marseille Université, Centrale Marseille, 13451 Marseille Cedex (France)

    2017-06-15

    Highlights: • Complex geometry inside a PWR fuel assembly is simulated using simplified 3D models. • Structured meshes are generated as far as possible. • Fluctuating hydrodynamic and wall pressure field are analyzed using LES. • Comparative studies between square spacer grid, circular spacer grid and mixing vanes are presented. • Simulations are compared with experimental data. - Abstract: Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in fuel rods. These vibrations can compromise safety of a nuclear reactor. So, it is necessary to know the random fluctuating forces acting on the rods which cause these vibrations. In this paper, simplified 3D models like square spacer grid, circular spacer grid and symmetric mixing vanes have been used inside an annular pipe. Hydrodynamic and wall pressure characteristics are evaluated using large eddy simulations (LES). Structured meshes are generated as far as possible. Simulations are compared with an experiment. Results show that the grid and vanes have a combined effect: grid accelerates the flow whereas the vanes contribute to the swirl structures. Spectral analysis of the simulations illustrate vortex shedding phenomenon in the wake of spacer grids. This initial study opens up interesting perspectives towards improving the modeling strategy and understanding the complex phenomenon inside a PWR core.

  11. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics

    International Nuclear Information System (INIS)

    Bhattacharjee, Saptarshi; Ricciardi, Guillaume; Viazzo, Stéphane

    2017-01-01

    Highlights: • Complex geometry inside a PWR fuel assembly is simulated using simplified 3D models. • Structured meshes are generated as far as possible. • Fluctuating hydrodynamic and wall pressure field are analyzed using LES. • Comparative studies between square spacer grid, circular spacer grid and mixing vanes are presented. • Simulations are compared with experimental data. - Abstract: Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in fuel rods. These vibrations can compromise safety of a nuclear reactor. So, it is necessary to know the random fluctuating forces acting on the rods which cause these vibrations. In this paper, simplified 3D models like square spacer grid, circular spacer grid and symmetric mixing vanes have been used inside an annular pipe. Hydrodynamic and wall pressure characteristics are evaluated using large eddy simulations (LES). Structured meshes are generated as far as possible. Simulations are compared with an experiment. Results show that the grid and vanes have a combined effect: grid accelerates the flow whereas the vanes contribute to the swirl structures. Spectral analysis of the simulations illustrate vortex shedding phenomenon in the wake of spacer grids. This initial study opens up interesting perspectives towards improving the modeling strategy and understanding the complex phenomenon inside a PWR core.

  12. Analytical and sampling problems in primary coolant circuits of PWR-type reactors

    International Nuclear Information System (INIS)

    Illy, H.

    1980-10-01

    Details of recent analytical methods on the analysis and sampling of a PWR primary coolant are given in the order as follows: sampling and preparation; analysis of the gases dissolved in the water; monitoring of radiating substances; checking of boric acid concentration which controls the reactivity. The bibliography of this work and directions for its use are published in a separate report: KFKI-80-48 (1980). (author)

  13. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    International Nuclear Information System (INIS)

    Chambers, Alex; Ragusa, Jean C.

    2014-01-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: 235 U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes

  14. Exxon nuclear neutronics design methods for pressurized water reactors. Supplement 2

    International Nuclear Information System (INIS)

    Skogen, F.B.; Stout, R.B.

    1977-01-01

    Modifications to the Exxon Nuclear PWR neutronic design calculational methods are presented as well as the results obtained when these improved methods are compared to reactor measurements. The basic PWR design tools remain unchanged; i.e., the XPOSE code is used for generating the basic nuclear parameters, the PDQ-7 code is used for calculating reactivity and x-y power distributions, and the XTG code is used for three-dimensional analysis. The recent start-up experiences at D. C. Cook Unit 1 and H. B. Robinson Unit 2 have provided a significant increase in the data base supporting the current ENC PWR neutronic methods. The verification comparisons contained in the supplement include reactor measurements from D. C. Cook Unit 1, Cycle 2; H. B. Robinson Unit 2, Cycles 4 and 5; Palisades Cycle 2, and R. E. Ginna, Cycle 7

  15. Super critical water reactors

    International Nuclear Information System (INIS)

    Dumaz, P.; Antoni, O; Arnoux, P.; Bergeron, A; Renault, C.; Rimpault, G.

    2005-01-01

    Water is used as a calori-porter and moderator in the most major nuclear centers which are actually in function. In the pressurized water reactor (PWR) and boiling water reactor (BWR), water is maintained under critical point of water (21 bar, 374 Centigrade) which limits the efficiency of thermodynamic cycle of energy conversion (yield gain of about 33%) Crossing the critical point, one can then use s upercritical water , the obtained pressure and temperature allow a significant yield gains. In addition, the supercritical water offers important properties. Particularly there is no more possible coexistence between vapor and liquid. Therefore, we don't have more boiling problem, one of the phenomena which limits the specific power of PWR and BWR. Since 1950s, the reactor of supercritical water was the subject of studies more or less detailed but neglected. From the early 1990s, this type of conception benefits of some additional interests. Therefore, in the international term G eneration IV , the supercritical water reactors had been considered as one of the big options for study as Generation IV reactors. In the CEA, an active city has engaged from 1930 with the participation to a European program: The HPWR (High Performance Light Water Reactor). In this contest, the R and D studies are focused on the fields of neutrons, thermodynamic and materials. The CEA intends to pursue a limited effort of R and D in this field, in the framework of international cooperation, preferring the study of versions of rapid spectrum. (author)

  16. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200% double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops and cold-leg emergency-core-cooling systems (ECCS). The calculated peak cladding temperature of 950 K occurred during blowdown and the cladding temperature excursion was terminated at 175 s when complete core quenching occurred. Accumulator flows were initiated at 10 s when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated. Top quenching was caused by entrainment from the lower plenum and lower core regions. The entrained liquid was sufficient to form a small, saturated pool (0.3 m deep) above the upper core support plate. Also, some of the entrained liquid was carried out the hot legs and vaporized in the steam generators. Strong multidimensional effects were calculated in the reactor vessel, particularly with respect to rod quenching

  17. Vulnerability analysis of a PWR to an external event

    International Nuclear Information System (INIS)

    Aruety, S.; Ilberg, D.; Hertz, Y.

    1980-01-01

    The Vulnerability of a Nuclear Power Plant (NPP) to external events is affected by several factors such as: the degree of redundancy of the reactor systems, subsystems and components; the separation of systems provided in the general layout; the extent of the vulnerable area, i.e., the area which upon being affected by an external event will result in system failure; and the time required to repair or replace the systems, when allowed. The present study offers a methodology, using Probabilistic Safety Analysis, to evaluate the relative importance of the above parameters in reducing the vulnerability of reactor safety systems. Several safety systems of typical PWR's are analyzed as examples. It was found that the degree of redundancy and physical separation of the systems has the most prominent effect on the vulnerability of the NPP

  18. Design of large steam turbines for PWR power stations

    International Nuclear Information System (INIS)

    Hobson, G.

    1984-01-01

    The authors review the thermodynamic cycle requirements for use with pressurized-water reactors, outline the way thermal efficiency is maximized, and discuss the special nature of the wet-steam cycle associated with turbines for this type of reactor. Machine and cycle parameters are optimized to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range both of full-speed turbines running at 3000 rev/min on 50 Hz systems and of half-speed turbines running at 1800 rev/min on 60 Hz systems. The importance of service experience with nuclear wet-stream turbines, and its relevance to the design of modern turbines for PWR applications, is discussed. (author)

  19. ALIBABA, an assistance system for the detection of confinement leaks in a PWR reactor; ALIBABA, un systeme d`aide a la detection des voies de fuites du confinement sur un reacteur a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Bedier, P.O.; Libmann, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie

    1995-12-31

    The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs.

  20. Rupther: a simulation approach applied to a PWR vessel failure during a severe accident

    International Nuclear Information System (INIS)

    Mongabure, Ph.; Nicolas, L.; Devos, J.

    2000-01-01

    The Rupther program (Rupture Under Thermal Conditions) is a part of the international researches on severe accidents in the PWR type reactors. The aim of the program is the definition of failure simulation validated by experimental data on vessel steel 16MND5 mechanical properties. The paper presents the program and the first results. (A.L.B.)