WorldWideScience

Sample records for pwr bwr fuel

  1. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  2. Siemens Nuclear Power Corporation experience with BWR and PWR fuels

    International Nuclear Information System (INIS)

    Reparaz, A.; Smith, M.H.; Stephens, L.G.

    1992-01-01

    The large data base of fuel performance parameters available to Siemens Nuclear Power Corporation (SNP), and the excellent track record of innovation and fuel reliability accumulated over the last twenty-three years, allows SNP to have a clear insight on the characteristics of future developments in the area of fuel design. Following is a description of some of SNP's recent design innovations to prevent failures and to extend burnup capabilities. A goal paramount to the design and manufacture of BWR and PWR fuel is that of zero defects from any case during its operation in the reactor. Progress has already been made in achieving this goal. This paper summarized the cumulative failure rate of SNP fuel rod through January 1992

  3. PWR and BWR spent fuel assembly gamma spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Tobin, S.J.; Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hu, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Schwalbach, P. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company (SKB) (Sweden); Trellue, H.; Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-10-11

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of {sup 137}Cs, {sup 154}Eu, and {sup 134}Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  4. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  5. A probabilistic analysis of PWR and BWR fuel rod performance using the code CASINO-SLEUTH

    International Nuclear Information System (INIS)

    Bull, A.J.

    1987-01-01

    This paper presents a brief description of the Monte Carlo and response surface techniques used in the code, and a probabilistic analysis of fuel rod performance in PWR and BWR applications. The analysis shows that fission gas release predictions are very sensitive to changes in certain of the code's inputs, identifies the most dominant input parameters and compares their effects in the two cases. (orig./HP)

  6. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  7. Observations of crud deposits, corrosion and erosion of BWR and PWR fuel

    International Nuclear Information System (INIS)

    Bairiot, H.

    1983-01-01

    The BWR experience is limited to one reactor but the PWR experience covers a wide range of successive generations of power plants (7 in total). The systems are described and their water chemistry briefly commented. Some R and D performed on the effects of the operating regimes (steady state and transients) are summarized. Observations made by pool-side inspections and postirradiation examinations of fuel are outlined concerning water chemistry effects (crud deposits and corrosion) and ''mechanical'' coolant-cladding interaction (chip deposits and baffle jetting). (author)

  8. Experience of Areva in fuel services for PWR and BWR

    International Nuclear Information System (INIS)

    Morales, I.

    2015-01-01

    AREVA being an integrated supplier of fuel assemblies has included in its strategy to develop services and solutions to customers who desire to improve the performance and safety of their fuel. These services go beyond the simple 'after sale' services that can be expected from a fuel supplier: The portfolio of AREVA includes a wide variety of services, from scientific calculations to fuel handling services in a nuclear power plant. AREVA is committed to collaborate and to propose best-in-class solutions that really make the difference for the customer, based on 40 years of Fuel design and manufacturing experience. (Author)

  9. Further developments of PWR and BWR fuel elements

    International Nuclear Information System (INIS)

    Sofer, G.A.; Busselman, G.J.; Federico, L.J.

    1988-01-01

    The performance, safety, and economy of nuclear power plants in inluenced very decisively by the quality of their fuel elements. This is why quality assurance in fuel fabrication has been a factor of great importance from the outset. Operating experince and more stringent performance requirements have resulted in a continuous process of further development of fuel elements, which has been reflected also in lower and lower failure rates and increasingly higher burn-ups. Next to further development also innovation has been an important factor contributing to the present high quality level of fuel elements, which also has allowed fuel cycle costs to be decreased quite considerably. (orig.) [de

  10. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  11. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  12. Fuel thermal conductivity (FTHCON). Status report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D. L.

    1979-02-01

    An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced.

  13. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  14. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  15. ORCOST-2, PWR, BWR, HTGR, Fossil Fuel Power Plant Cost and Economics

    International Nuclear Information System (INIS)

    Fuller, L.C.; Myers, M.L.

    1975-01-01

    1 - Description of problem or function: ORCOST2 estimates the cost of electrical energy production from single-unit steam-electric power plants. Capital costs and operating and maintenance costs are calculated using base cost models which are included in the program for each of the following types of plants: PWR, BWR, HTGR, coal, oil, and gas. The user may select one of several input/output options for calculation of capital cost, operating and maintenance cost, levelized energy costs, fixed charge rate, annual cash flows, cumulative cash flows, and cumulative discounted cash flows. Options include the input of capital cost and/or fixed charge rate to override the normal calculations. Transmission and distribution costs are not included. Fuel costs must be input by the user. 2 - Method of solution: The code follows the guidelines of AEC Report NUS-531. A base capital-cost model and a base operating- and maintenance-cost model are selected and adjusted for desired size, location, date, etc. Costs are discounted to the year of first commercial operation and levelized to provide annual cost of electric power generation. 3 - Restrictions on the complexity of the problem: The capital cost models are of doubtful validity outside the 500 to 1500 MW(e) range

  16. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the PWR for use in the naval reactor programme and the subsequent construction and operation of the nuclear power plant at Shippingport in 1957. The development of the BWR in 1954 and its selection for the plant at Dresden in 1959 established this concept as the other major reactor type in the US nuclear power programme. The subsequent growth profile is presented. A significant operating record has been accumulated concerning the availability of each of these reactor types. In addition, the use and performance of BWRs and PWRs in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to ensure effective safeguards at nuclear power installations; current measures are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. Both fuel cycles are examined in terms of: fuel burnup experience and prospects for improvement; natural uranium resources; enrichment capacity; reprocessing and recycle; and the interrelationships among the latter three factors. High-level waste management currently involving on-site storage of spent fuel is discussed in terms of available capacity and plans for expansion. The US electric utility industry viewpoint regarding an ultimate programme for waste management is outlined. Finally, the current economics and future cost trends of nuclear power plants are evaluated. (author)

  17. Radiation dose rates from commercial PWR and BWR spent fuel elements

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel

  18. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  19. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  20. Secondary systems of PWR and BWR

    International Nuclear Information System (INIS)

    Schindler, N.

    1981-01-01

    The secondary systems of a nuclear power plant comprises the steam, condensate and feedwater cycle, the steam plant auxiliary or ancillary systems and the cooling water systems. The presentation gives a general review about the main systems which show a high similarity of PWR and BWR plants. (orig./RW)

  1. Experience of Areva in fuel services for PWR and BWR; Experiencia de Areva en servicios de combustible para PWR y BWR

    Energy Technology Data Exchange (ETDEWEB)

    Morales, I.

    2015-07-01

    AREVA being an integrated supplier of fuel assemblies has included in its strategy to develop services and solutions to customers who desire to improve the performance and safety of their fuel. These services go beyond the simple 'after sale' services that can be expected from a fuel supplier: The portfolio of AREVA includes a wide variety of services, from scientific calculations to fuel handling services in a nuclear power plant. AREVA is committed to collaborate and to propose best-in-class solutions that really make the difference for the customer, based on 40 years of Fuel design and manufacturing experience. (Author)

  2. Within AREVA, FRAMATOME ANP and its worldwide experience with PWR and BWR fuels

    International Nuclear Information System (INIS)

    Watteau, Michel; Esteve, Bernard; Giese, Ulrich; Matheson, John

    2002-01-01

    Faced with obvious energy procurement security needs and the increasing concern about global warming, many countries are making a lucid analysis of their energy situation and reconsidering the multiple assets of nuclear energy. After the European Commission's Green Paper evaluation which was endorsed by the European Parliament, the United States gave a strong signal to the whole world by deciding to extent the operating life time of its existing NPPs and by envisioning the construction of new ones. In Asia, here in Korea, and in Japan, the People's Republic of China, Taiwan, large-scale nuclear power plant programs are being pursued. It was in this context, with the aim of ever-greater competitiveness, that the AREVA group was conceived. The aim is for all our skills to have a higher profile on the international markets, so that we are in a stronger position to develop a leadership in our two main high tech sectors of interconnect - electronics and nuclear. In the nuclear sector, the pooling of the Cogema and Framatome ANP forces is enabling AREVA to offer a comprehensive service package ranging from uranium mining to decommissioning, encompassing the design and construction of plants and their fuel; AREVA's experience is grounded in unequalled know-how. Further, with the CEA, a multidisciplinary research organization in charge of anticipating the emerging technologies, as a close partner, AREVA has a unique strategic vision. With this set-up, AREVA has the financial resources it needs to forge the alliances necessary for its development, so that it can best confront international competition and meet the requirements of its customers world-wide

  3. Equipment for nondestructive testing of the PWR and BWR spept fUel elements and assemblies in the NPP storage pools

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1983-01-01

    Design features are considered of units for nondestructive testing of spent fUel elements and fuel assemblies (FA) in the storage pools of NPP with the PWR and BWR reactors. Units for remote viewing control of fuel element cans and FA, for direct measurements of their geometrical dimensions, for FA leak-testing, fuel element can nondestructive testing and gamma scanning, for measuring gaseous fission product pressure and fuel element free volume are described along with units for complex checking of fuel element and FA parameters. The units for nondestructive testing of spent fuel elements and EA are shown to differ both in their designs and a number of checked parameters of fuel elements and FA. The remote viewing and those for measuring the basic FA parameters are most generally employed. Units for complex testing of multiple fuel element parameters, designed in the last few years, are intended for operation with FA disassembled partially or fully and are characteristic of a high degree of computer measuring automation both for the process control and data processing

  4. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1997-01-01

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  5. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  6. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  7. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  8. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  9. Evaluation of PWR and BWR pin cell benchmark results

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J.; Hoogenboom, J.E.; Leege, P.F.A. de; Voet, J. van der; Verhagen, F.C.M.

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs

  10. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  11. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97/degree/C and whether the cladding of the stored spent fuel ever exceeds 350/degree/C. Limiting the borehole to temperatures of 97/degree/C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350/degree/C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97/degree/C for the full 1000-yr analysis period

  12. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  13. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  14. Decay ratio studies in BWR and PWR using wavelet

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-10-01

    The on-line stability of BWR and PWR is studied using the neutron noise signals as the fluctuations reflect the dynamic characteristics of the reactor. Using appropriate signal modeling for time domain analysis of noise signals, the stability parameters can be directly obtained from the system impulse response. Here in particular for BWR, an important stability parameter is the decay ratio (DR) of the impulse response. The time series analysis involves the autoregressive modeling of the neutron detector signal. The DR determination is strongly effected by the low frequency behaviour since the transfer function characteristic tends to be a third order system rather than a second order system for a BWR. In a PWR low frequency behaviour is modified by the Boron concentration. As a result of these phenomena there are difficulties in the consistent determination of the DR oscillations. The enhancement of the consistency of this DR estimation is obtained by wavelet transform using actual power plant data from BWR and PWR. A comparative study of the Restimation with and without wavelets are presented. (orig.)

  15. Condensate polishing guidelines for PWR and BWR plants

    International Nuclear Information System (INIS)

    Robbins, P.; Crinigan, P.; Graham, B.; Kohlmann, R.; Crosby, C.; Seager, J.; Bosold, R.; Gillen, J.; Kristensen, J.; McKeen, A.; Jones, V.; Sawochka, S.; Siegwarth, D.; Keeling, D.; Polidoroff, T.; Morgan, D.; Rickertsen, D.; Dyson, A.; Mills, W.; Coleman, L.

    1993-03-01

    Under EPRI sponsorship, an industry committee, similar in form and operation to other guideline committees, was created to develop Condensate Polishing Guidelines for both PWR and BWR systems. The committee reviewed the available utility and water treatment industry experience on system design and performance and incorporated operational and state-of-the-art information into document. These guidelines help utilities to optimize present condensate polisher designs as well as be a resource for retrofits or new construction. These guidelines present information that has not previously been presented in any consensus industry document. The committee generated guidelines that cover both deep bed and powdered resin systems as an integral part of the chemistry of PWR and BWR plants. The guidelines are separated into sections that deal with the basis for condensate polishing, system design, resin design and application, data management and performance and management responsibilities

  16. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  17. Siemens Nuclear Power Corporation methods development for BWR/PWR reactor licensing

    International Nuclear Information System (INIS)

    Pruitt, D.W.

    1992-01-01

    This presentation addresses the Siemens Nuclear Power Corporation (SNP) perspective on the primary forces driving methods development in the nuclear industry. These forces are fuel design, computational environment and industry requirement evolution. The first segment of the discussion presents the SNP experience base. SNP develops, manufactures and licenses both BWR and PWR reload fuel. A review of this experience base highlights the accelerating rate at which new fuel designs are being introduced into the nuclear industry. The application of advanced BWR lattice geometries provides an example of fuel design trends. The second aspect of the presentation is the rapid evolution of the computing environment. The final subject in the presentation is the impact of industry requirements on code or methods development

  18. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  19. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.; Morrison, G.W.; Petrie, L.M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given

  20. THALES, Thermohydraulic LOCA Analysis of BWR and PWR

    International Nuclear Information System (INIS)

    ABE, Kiyoharu

    1990-01-01

    reactor coolant system, combustible gas burning, atmosphere- structure heat transfer, ventilation, containment spray cooling, etc. After the molten core penetrates the reactor bottom head, steam generation, concrete disintegration and noncondensable gas generation are calculated in the reactor cavity or the pedestal. 2 - Method of solution: Each of the THALES member codes first establishes the steady state conditions after reading input data. Then iterative time-dependent calculation is continued, taking account of various phenomena and events and their interactions which will occur in the course of a postulated severe accident. The transient calculations are iterated by the physical times specified by input. Generally the RCS thermal hydraulic analysis with the THALES-PM or THALES-BM code is first carried out and its results are transferred to the following containment analysis with the THALES-CV code. Then both results are transferred to a code for analyzing fission product release and transport behavior. Automatic data transfer is possible in the case the JAERI's ART code is used for fission product behavior analysis. In overall thermal hydraulic analysis, a new method is adopted aiming at sufficiently accurate estimation of mixture levels in the reactor coolant system and the containment in a reasonable computer time. The heat transfer calculation in the core is carried out based on the backward method. 3 - Restrictions on the complexity of the problem: Restrictions relating to storage allocation are: (1) Maximum number of radial regions in the core : 10; (2) Maximum number of axial increments in the fuel rods : 50; (3) Maximum number of loops in the PWR primary system : 4; (4) Maximum number of volumes in the PWR primary system : 11; (5) Number of BWR recirculation loops: 2 (fixed); (6) Number of volumes in the BWR reactor coolant system : 7 (fixed); (7) Maximum number of compartments in the containment : 10. There is another restriction, which relates to time step

  1. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  2. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  3. BWR water chemistry guidelines and PWR primary water chemistry guidelines in Japan – Purpose and technical background

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirotaka, E-mail: kawamuh@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (Japan); Hirano, Hideo [Central Research Institute of Electric Power Industry (Japan); Katsumura, Yousuke [University of Tokyo (Japan); Uchida, Shunsuke [Tohoku University (Japan); Mizuno, Takayuki [Mie University (Japan); Kitajima, Hideaki; Tsuzuki, Yasuo [Japan Nuclear Safety Institute (Japan); Terachi, Takumi [Institute of Nuclear Safety System, Inc. (Japan); Nagase, Makoto; Usui, Naoshi [Hitachi-GE Nuclear Energy, Ltd. (Japan); Takagi, Junichi; Urata, Hidehiro [Toshiba Corporation (Japan); Shoda, Yasuhiko; Nishimura, Takao [Mitsubishi Heavy Industry, Ltd. (Japan)

    2016-12-01

    Highlights: • Framework of BWR/PWR water chemistry Guidelines in Japan are presented. • Guideline necessity, definitions, philosophy and technical background are mentioned. • Some guideline settings for control parameters and recommendations are explaines. • Chemistry strategy is also mentioned. - Abstract: After 40 years of light water reactor (LWR) operations in Japan, the sustainable development of water chemistry technologies has aimed to ensure the highest coolant system component integrity and fuel reliability performance for maintaining LWRs in the world; additionally, it aimed to achieve an excellent dose rate reduction. Although reasonable control and diagnostic parameters are utilized by each boiling water reactor (BWR) and pressurized water reactor (PWR) owner, it is recognized that specific values are not shared among everyone involved. To ensure the reliability of BWR and PWR operation and maintenance, relevant members of the Atomic Energy Society of Japan (AESJ) decided to establish guidelines for water chemistry. The Japanese BWR and PWR water chemistry guidelines provide strategies to improve material and fuel reliability performance as well as to reduce dosing rates. The guidelines also provide reasonable “control values”, “diagnostic values” and “action levels” for multiple parameters, and they stipulate responses when these levels are exceeded. Specifically, “conditioning parameters” are adopted in the Japanese PWR primary water chemistry guidelines. Good practices for operational conditions are also discussed with reference to long-term experience. This paper presents the purpose, technical background and framework of the preliminary water chemistry guidelines for Japanese BWRs and PWRs. It is expected that the guidelines will be helpful as an introduction to achieve safety and reliability during operations.

  4. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  5. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  6. PWR fuel thermomechanics

    International Nuclear Information System (INIS)

    Traccucci, R.; Leclercq, J.

    1986-01-01

    Fuel thermo-mechanics means the studies of mechanical and thermal effects, and more generally, the studies of the behavior of the fuel assembly under stresses including thermal and mechanical loads, hydraulic effects and phenomena induced by materials irradiation. This paper describes the studies dealing with the fuel assembly behavior, first in normal operating conditions, and then in accidental conditions. 43 refs [fr

  7. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  8. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  9. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  10. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  11. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Energy Technology Data Exchange (ETDEWEB)

    González-Robles, E., E-mail: ernesto.gonzalez-robles@kit.edu [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Serrano-Purroy, D. [European Commission - EC, Joint Research Centre (JRC), Institute for Transuranium Elements - ITU, Postfach 2340, D-76125 Karlsruhe (Germany); Sureda, R. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Casas, I. [Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Pablo, J. de [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2015-10-15

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO{sub 2} spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAP{sub c}) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  12. Detection of failed fuel rods in shrouded BWR fuel assemblies

    International Nuclear Information System (INIS)

    Baero, G.; Boehm, W.; Goor, B.; Donnelly, T.

    1988-01-01

    A manipulator and an ultrasonic testing (UT) technique were developed to identify defective fuel rods in shrouded BWR fuel assemblies. The manipulator drives a UT probe axially through the bottom tie plate into the water channels between the fuel rods. The rotating UT probe locates defective fuel rods by ingressed water which attenuates the UT-signal. (author)

  13. Identification of dose-reduction techniques for BWR and PWR repetitive high-dose jobs

    International Nuclear Information System (INIS)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    As a result of concern about the apparent increase in collective radiation dose to workers at nuclear power plants, this project will provide information to industry in preplanning for radiation protection during maintenance operations. This study identifies Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) repetitive jobs, and respective collective dose trends and dose reduction techniques. 3 references, 2 tables

  14. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  15. The DACC system. Code burnup of cell for projection of the fuel elements in the power net work PWR and BWR

    International Nuclear Information System (INIS)

    Cepraga, D.; Boeriu, St.; Gheorghiu, E.; Cristian, I.; Patrulescu, I.; Cimporescu, D.; Ciuvica, P.; Velciu, E.

    1975-01-01

    The calculation system DACC-5 is a zero-dimensional reactor physics code used to calculate the criticality and burn-up of light-water reactors. The code requires as input essential extensive reactor parameters (fuel rod radius, water density, etc.). The nuclear constants (intensive parameters) are calculated with a five-group model (2 thermal and 3 fast groups). A fitting procedure is systematically employed to reduce the computation time of the code. Zero-dimensional burn-up calculations are made in an automatic way. Part one of the paper contains the code physical model and computer structure. Part two of the paper will contain tests of DACC-5 credibility for different light-water power lattices

  16. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  17. PWR fuel management optimization

    International Nuclear Information System (INIS)

    Dumas, Michel.

    1981-10-01

    This report is aimed to the optimization of the refueling pattern of a nuclear reactor. At the beginning of a reactor cycle a batch of fuel assemblies is available: the physical properties of the assemblies are known: the mathematical problem is to determine the refueling pattern which maximizes the reactivity or which provides the flattest possible power distribution. The state of the core is mathematically characterized by a system of partial derivative equations, its smallest eigenvalue and the associated eigenvector. After a study of the convexity properties of the problem, two algorithms are proposed. The first one exhanges assemblies to improve the starting configurations. The enumeration of the exchanges is limited to the 2 by 2, 3 by 3, 4 by 4 permutations. The second one builds a solution in two steps: in the first step the discrete variables are replaced by continuous variables. The non linear optimization problem obtained is solved by ''the Method of Approximation Programming'' and in the second step, the refuelling pattern which provides the best approximation of the optimal power distribution is searched by a Branch an d Bound Method [fr

  18. PWR fuel assembly

    International Nuclear Information System (INIS)

    Yamada, Yuji.

    1995-01-01

    A lower end plug is secured to a lower end of a thimble tube. A bolt-like thimble screw is screw-coupled and fastened to a female screw disposed to the end plug by way of a bushing screw-coupled to a lower nozzle. Then, the thimble screw and the lower nozzle are welded to secure the thimble tube and the lower nozzle. The lower portion of the bushing extends near the lower surface of the lower nozzle. The extended portion is provided with a recess to which a bolt head of the thimble screw is tightly inserted and a seating-face portion against which a seating-face of the bolt head abuts. Then, the extended portion of the bushing and the lower nozzle are spot-welded on the side of the lower surface of the nozzle, to prevent rotation of the bushing. This can easily prevent the rotation of the bushing after adjustment, to simplify the assembling of the fuel assembly. (I.N.)

  19. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  20. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  1. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  2. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  3. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  4. HORIZONTAL LIFTING OF 5 DHLW/DOE LONG, 12-PWR LONG AND 24-BWR WASTE PACKAGES

    International Nuclear Information System (INIS)

    V. de la Brosse

    2001-01-01

    The objective of this calculation was to determine the structural response of a 12-Pressurized Water Reactor (PWR) Long, a 24-Boiling Water Reactor (BWR) and a 5-Defense High Level Waste/Department of Energy (DHLW/DOE)--Long spent nuclear fuel waste packages lifted in a horizontal position. The scope of this calculation was limited to reporting the calculation results in terms of maximum stress intensities in the trunnion collar sleeves. In addition, the maximum stress intensities in the inner and outer shells of the waste packages were presented for illustrative purposes. The information provided by the sketches (Attachments I, II and III) is that of the potential design of the types of waste packages considered in this calculation, and all obtained results are valid for these designs only. This calculation is associated with the waste package design and was performed by the Waste Package Design Section in accordance with the ''Technical work plan for: Waste Package Design Description for LA'' (Ref. 7). AP-3.12Q, Calculations (Ref. 13), was used to perform the calculation and develop the document

  5. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  6. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio; Horiki, Oichiro; Chen Dianshan; Takeuchi, Kiyoshi.

    1992-01-01

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  7. Product Evaluation Task Force Phase Two report for BWR/PWR dissolver wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out, under Phase 2 of the Product Evaluation Task Force programme, on BWR/PWR Dissolver Wastes. Three possible types of encapsulants for BWR/PWR Dissolver Wastes:- Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC), is recommended for Phase 3 studies on BWR/PWR Dissolver Wastes. (author)

  8. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  9. PWR fuel behavior: lessons learned from LOFT

    International Nuclear Information System (INIS)

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior

  10. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  11. Application of tearing modulus stability concepts to nuclear piping. Final report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK.

  12. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  13. Advancing PWR fuel to meet customer needs

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, F W

    1987-03-01

    Since the introduction of the Optimized Fuel Assembly (OFA) for PWRs in the late 1970s, Westinghouse has continued to work with the utility customers to identify the greatest needs for further advance in fuel performance and reliability. The major customer requirements include longer fuel cycle at lower costs, increased fuel discharge burn-up, enhanced operating flexibility, all accompanied by even greater reliability. In response to these needs, Westinghouse developed Vantage 5 PWR fuel. To optimize reactor operations, Vantage 5 fuel features distinct advantages: integral fuel burnable absorbers, axial and radial blankets, intermediate flow mixers, a removable top nozzle, and assembly modifications to accommodate increased discharge burn-up.

  14. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    International Nuclear Information System (INIS)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Soler, A.

    2013-01-01

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  15. GAIA: AREVAs New PWR fuel assembly design

    Energy Technology Data Exchange (ETDEWEB)

    Vollmert, N.; Gentet, G.; Louf, P.H.; Mindt, M.; O' Brian, J.; Peucker, J.

    2015-07-01

    GAIA is the label of a new PWR Fuel Assembly design developed by AREVA with the objective to provide its customers an advanced fuel assembly design regarding both robustness and performance. Since 2012 GAIA lead fuel assemblies are under irradiation in a Swedish reactor and since 2015 in a U.S. reactor. Visual inspections and examinations carried out so far during the outages confirmed the intended reliability, robustness and the performance enhancement of the design. (Author)

  16. THERMIT, 3-D Thermo-Hydraulics of BWR and PWR

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Kao, S.P.; Kelly, J.E.

    1984-01-01

    1 - Description of program or function: THERMIT2, the most recent release of THERMIT, is intended for thermal-hydraulic analysis of both boiling and pressurized water reactor cores. It solves the three-dimensional, two-fluid equations describing the two-phase flow and heat transfer dynamics in rectangular coordinates. The two-fluid model uses separate partial differential equations expressing conservation of mass, momentum, and energy for each fluid. THERMIT2 offers the choice of either pressure or velocity boundary conditions at the top and bottom of the core. THERMIT2 includes a two-phase turbulent mixing model which provides subchannel analysis capability. THERMIT2 also solves the radial heat conduction equations for fuel pin temperatures, and calculates the heat flux from fuel pin to coolant with appropriate heat transfer models described by a boiling curve. 2 - Method of solution: By expressing the exchange of mass, momentum, and energy between the fluids with physically-based mathematical models, the relative motion and thermal non-equilibrium between the fluids can exist

  17. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  18. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    International Nuclear Information System (INIS)

    Saernmark, Ivan; Lenz, Herbert

    2008-01-01

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction

  19. Lightweight submersed 'Walking' NDE manipulators for PWR and BWR vessel weld inspection

    Energy Technology Data Exchange (ETDEWEB)

    Saernmark, Ivan; Lenz, Herbert [WesDyne TRC AB, Stockholm (Sweden)

    2008-04-15

    Three new manipulators developed by WesDyne TRC in Sweden have under the year 2007 performed three very successful inspections in the PWR reactor Ringhals 3 and the BWR reactors Ringhals 1 and Oskarshamn 1. The manipulator systems can be used to perform inspection of circumferential and vertical welds on the reactor pressure vessel, the core shroud, core shroud support in BWR reactors or vessel and core barrel welds in PWR reactors. Most other flat or curved surfaces can be inspected using the new concept through relatively simple mechanical reconfigurations of system modules. The first inspection was performed on the R3 PWR core barrel in June 2007 with a very good result. This Manipulator is designed for access in very narrow gaps and for the type of core barrels with a shield covering the whole area of the perimeter. The manipulator is attached to the inspection area by means of a new unique suction cup system. The current manipulators consist of a curved horizontal beam, with radius similar to the reactor vessel, and a straight vertical beam, forming a T-shaped structure. By alternating the application of suction cup pairs on the horizontal beam and the vertical beam and by driving the scanning motors, the manipulator performs an incremental translational movement upwards/downwards or from side to side. The principles of this system give a well defined and stable platform for global and local positioning accuracy. A combination of advanced sensor solutions provides accurate position information in the absence of other physical reference objects. The system is controlled by the new WesDyne TRC Motor Control Panel and software, the MCP is specifically designed for remote control of submersed manipulators using techniques for cable reduction.

  20. A direct comparison of MELCOR 1.8.3 and MAAP4 results for several PWR ampersand BWR accident sequences

    International Nuclear Information System (INIS)

    Leonard, M.T.; Ashbaugh, S.G.; Cole, R.K.; Bergeron, K.D.; Nagashima, K.

    1996-01-01

    This paper presents a comparison of calculations of severe accident progression for several postulated accident sequences for representative Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) nuclear power plants performed with the MELCOR 1.8.3 and the MAAP4 computer codes. The PWR system examined in this study is a 1100 MWe system similar in design to a Westinghouse 3-loop plant with a large dry containment; the BWR is a 1100 MWe system similar in design to General Electric BWR/4 with a Mark I containment. A total of nine accident sequences were studied with both codes. Results of these calculations are compared to identify major differences in the timing of key events in the calculated accident progression or other important aspects of severe accident behavior, and to identify specific sources of the observed differences

  1. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  2. Treatment of core components from nuclear power plants with PWR and BWR reactors - 16043

    International Nuclear Information System (INIS)

    Viermann, Joerg; Friske, Andreas; Radzuweit, Joerg

    2009-01-01

    During operation of a Nuclear Power Plant components inside the RPV get irradiated. Irradiation has an effect on physical properties of these components. Some components have to be replaced after certain neutron doses or respectively after a certain operating time of the plant. Such components are for instance water channels and control rods from Boiling Water Reactors (BWR) or control elements, poisoning elements and flow restrictors from Pressurized Water Reactors (PWR). Most of these components are stored in the fuel pool for a certain time after replacement. Then they have to be packaged for further treatment or for disposal. More than 25 years ago GNS developed a system for disposal of irradiated core components which was based on a waste container suitable for transport, storage and disposal of Intermediate Level Waste (ILW), the so-called MOSAIK R cask. The MOSAIK R family of casks is subject of a separate presentation at the ICEM 09 conference. Besides the MOSAIK R cask the treatment system developed by GNS comprised underwater shears to cut the components to size as well as different types of equipment to handle the components, the shears and the MOSAIK R casks in the fuel pool. Over a decade of experience it showed that this system although effective needed improvement for BWR plants where many water channels and control rods had to be replaced after a certain operating time. Because of the large numbers of components the time period needed to cut the components in the pool had a too big influence on other operational work like rearranging of fuel assemblies in the pool. The system was therefore further developed and again a suitable cask was the heart of the solution. GNS developed the type MOSAIK R 80 T, a cask that is capable to ship the unsegmented components with a length of approx. 4.5 m from the Power plants to an external treatment centre. This treatment centre consisting of a hot cell installation with a scrap shear, super-compactor and a heavy

  3. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    Lee, G.S.; Suh, K.S.; Chang, H.I.; Chung, S.H.

    1980-01-01

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  4. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  5. General model for Pc-based simulation of PWR and BWR plant components

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Abomustafa, A M [Faculty of enginnering, alfateh univerity Tripoli, (Libyan Arab Jamahiriya)

    1995-10-01

    In this paper, we present a basic mathematical model derived from physical principles to suit the simulation of PWR-components such as pressurizer, intact steam generator, ruptured steam generator, and the reactor component of a BWR-plant. In our development, we produced an NMMS-package for nuclear modular modelling simulation. Such package is installed on a personal computer and it is designed to be user friendly through color graphics windows interfacing. The package works under three environments, namely, pre-processor, simulation, and post-processor. Our analysis of results using cross graphing technique for steam generator tube rupture (SGTR) accident, yielded a new proposal for on-line monitoring of control strategy of SGTR-accident for nuclear or conventional power plant. 4 figs.

  6. Investigation of 3H and 14C inventory and distribution in spent BWR fuel rods

    International Nuclear Information System (INIS)

    Bleier, A.; Beuerle, M.; Neeb, K.H.

    1984-10-01

    In order to obtain reliable data for fuel reprocessing and waste disposal, the T and C-14 inventory, distribution and behaviour was investigated on a typical LWR fuel rod discharged from a BWR plant. The results showed that 50 ± 5% of the T generated in the fuel is present in the cladding after reactor operation. The remainder of the T stays with the fuel. Related to the reactor power the total T inventory corresponds to a T production rate of 19 000 Ci/GW e . a. The C-14 built up in the fuel represents approximately 60% of the C-14 inventory of the BWR fuel rod. The remaining part of C-14 (about 40%) experimentally determined by this analysis for the first time is generated in the cladding. From the total C-14 inventory a C-14 production rate of 17,5 Ci/GW e . a can be calculated. The fill gas contains only negligible fractions of both nuclides. The results obtained in this program are generally in good agreement with the data of theoretical estimates and with results of earlier investigations on PWR fuel rods. (orig.) [de

  7. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    Andersor, C.K.; Harris, R.P.; Crump, M.W.; Fuhrman, N.

    1987-01-01

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  8. An economic analysis code used for PWR fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1989-01-01

    An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost

  9. Optimum fuel use in PWR reactors

    International Nuclear Information System (INIS)

    Neubauer, W.

    1979-07-01

    An optimization program was developed to calculate minimum-cost refuelling schedules for PWR reactors. Optimization was made over several cycles, without any constraints (equilibrium cycle). In developing the optimization program, special consideration was given to an individual treatment of every fuel element and to a sufficiently accurate calculation of all the data required for safe reactor operation. The results of the optimization program were compared with experimental values obtained at Obrigheim nuclear power plant. (orig.) [de

  10. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  11. Modeling of the thermo-mechanical behaviour of the PWR fuel

    International Nuclear Information System (INIS)

    Mailhe, P.

    2014-01-01

    This article reviews the various physical phenomena that take place in an irradiated fuel rod and presents the development of the thermo-mechanical codes able to simulate them. Though technically simple the fuel rod is the place where appear 4 types of process: thermal, gas behaviour, mechanical and corrosion that combine involving 5 elements: the fuel pellet, the fuel clad, the fuel-clad gap, the inside volume and the coolant. For instance the pellet is the place where the following mechanical processes took place: thermal dilatation, elastic deformation, creep deformation, densification, solid swelling, gaseous swelling and cracking. The first industrial code simulating the behaviour of the fuel rod was COCCINEL, it was developed by AREVA teams from the American PAD code that was included in the Westinghouse license. Today the GALILEO code has replaced the COPERNIC code that was developed in the beginning of the 2000 years. GALILEO is a synthesis of the state of the art of the different models used in the codes validated for PWR and BWR. GALILEO has been validated on more than 1500 fuel rods concerning PWR, BWR and specific reactors like Siloe, Osiris, HFR, Halden, Studsvik, BR2/3,...) and also for extended burn-ups. (A.C.)

  12. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  13. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests

    International Nuclear Information System (INIS)

    Garzarolli, F.; Broy, Y.; Busch, R.A.

    1996-01-01

    Laboratory corrosion tests have always been an important tool for Zr alloy development and optimization. However, it must be known whether a test is representative for the application in-reactor. To shed more light on this question, coupons of several Zr alloys were exposed under isothermal conditions in BWR and PWR type environments. For evaluation of the in-PWR tests and for comparison of out-of-pile and in-pile tests, the different temperatures and times were normalized to a temperature-independent normalized time by assuming an activation temperature (Q/R) of 14,200 K. Comparison of in-PWR and out-of-pile corrosion behavior of Zircaloy shows that corrosion deviates to higher values in PWR if a weight gain of about 50 mg/dm 2 is exceeded. In the case of the Zr2.5Nb alloy, a slight deviation of corrosion as compared to laboratory results starts in PWR only above a weight gain of 100 mg/dm 2 . In BWR, corrosion of Zircaloy is enhanced early in time if compared with out-of-pile. Zr2.5Nb exhibits higher corrosion results in BWR than Zircaloy-4. Alloying chemistry and material condition affect corrosion of Zr alloys. However, several of the material parameters have shown a different ranking in the different environments. Nevertheless, several material parameters influencing in-reactor corrosion like the second phase particle (SPP) size of in-PWR behavior as the Sn and Fe content can be optimized by out-of-pile corrosion tests

  14. Evaluation model for PWR irradiated fuel

    International Nuclear Information System (INIS)

    Gomes, I.C.

    1983-01-01

    The individual economic value of the plutonium isotopes for the recycle of the PWR reactor is investigated, assuming the existence of an market for this element. Two distinct market situations for the stages of the fuel cycle are analysed: one for the 1972 costs and the other for costs of 1982. Comparisons are made for each of the two market situations concerning enrichment of the U-235 in the uranium fuel that gives the minimum cost in the fuel cycle. The method adopted to establish the individual value of the plutonium isotopes consists on the economical analyses of the plutonium fuel cycle for four different isotopes mixtures refering to the uranium fuel cycle. (Author) [pt

  15. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    Weidinger, H.

    2006-01-01

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  16. Assessment of management alternatives for LWR wastes. Volume 3. Description of German scenarios for PWR and BWR wastes

    International Nuclear Information System (INIS)

    Santraille, S.

    1993-01-01

    This report deals with the description of a management route for PWR waste relying to a certain extent on German practices in this particular area. This description, which aims at providing input data for subsequent cost evaluation, includes all management steps which are usually implemented for solid, liquid and gaseous wastes from their production up to the interim storage of the final waste products. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for PWR and BWR wastes based on economical and radiological criteria

  17. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  18. Pushing back the boundaries of PWR fuel performance

    International Nuclear Information System (INIS)

    Sofer, G.A.; Skogen, F.B.; Brown, C.A.; Fresk, Y.U.

    1985-01-01

    In today's fiercely competitive PWR reload market utilities are benefiting from a variety of design innovations which are helping to cut fuel cycle costs and to improve fuel performance. An advanced PWR fuel design from Exxon, for example, currently under evaluation at the Ginna plant in the United States, offers higher burn-up and greater power cycling. (author)

  19. Stakes and Solutions for current and up-coming Licensing Challenges in PWR and BWR Reload and Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tiving, F.; Opel, S.

    2014-07-01

    Regulatory requirements for reloads and safety analyses are evolving: New safety criteria, requests for enlarged qualification databases, statistical applications, uncertainty propagation... In order to address these challenges and access more predictable licensing processes, AREVA implements a consistent code and methodology suite for PWR and BWR core design and safety analysis, based on a first principles modeling with an extremely broad international verification and validation data base. (Author)

  20. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  1. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    International Nuclear Information System (INIS)

    Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.

    2008-01-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  2. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)

    2008-07-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  3. Study on thermal performance and margins of BWR fuel elements

    International Nuclear Information System (INIS)

    Stosic, Zoran

    1999-01-01

    This paper contributes to developing a methodology of predicting and analyzing thermal performance and margins of Boiling Water Reactor (BWR) fuel assemblies under conditions of reaching high quality Boiling Crisis and subsequent post-dryout thermal hydraulics causing temperature excursion of fuel cladding. Operational margins against dryout and potential for increasing fuel performance with appropriate benefits are discussed. The philosophy of modeling with its special topics are demonstrated on the HECHAN (HEated CHannel ANalyzer) model as the state-of-art for thermal-hydraulics analysis of BWR fuel assemblies in pre- and post-dryout two-phase flow regimes. The scope of further work either being or has to be performed concerning implementation of new physical aspects, including domain extension of HECHAN model applications to the Pressurized Water Reactors (PWRs), is discussed. Finally, a comprehensive overview of the literature dealing with development of the model is given. (author)

  4. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  5. Highlights of the French program on PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pages, J P [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1997-12-01

    The presentation reviews the French programme on PWR fuel including the overall results of the year 1996 for nuclear operation; fuel management and economy; French nuclear electricity generation sites; production of nuclear generated electricity; energy availability of the 900 and 1,300 Mw PWR units; average radioactive liquid releases excluding tritium per unit; plutonium recycling experience.

  6. Containment venting sliding pressure venting process for PWR and BWR plants

    International Nuclear Information System (INIS)

    Eckardt, B.

    1991-01-01

    In order to reduce the residual risk associated with hypothetical severe nuclear accidents, nuclear power plants in Germany as well as in certain other European countries have been or will be backfitted with a system for filtered containment venting. During venting system process design, particular importance is attached to the requirements regarding, for example, high aerosol loading capability, provision for decay heat removal from the scrubber unit, the aerosol spectrum to be retained and entirely passive functioning of the scrubber unit. The aerosol spectrum relevant for process design and testing varies depending on aerosol concentrations, the time at which venting is commenced and whether there is an upstream wetwell, etc. Because of this the Reactor Safety Commission in Germany has specified that SnO 2 with a mass mean diameter of approximately 0.5 μm should be used as an enveloping test aerosol. To meet the above-mentioned requirements, a combined venturi scrubber system was developed which comprises a venturi section and a filter demister section and is operated in the sliding pressure mode. This scrubber system was tested using a full-scale model and has now been installed in 14 PWR and BWR plants in Germany and Finland

  7. Comparative analysis of station blackout accident progression in typical PWR, BWR, and PHWR

    International Nuclear Information System (INIS)

    Park, Soo Young; Ahn, Kwang Il

    2012-01-01

    Since the crisis at the Fukushima plants, severe accident progression during a station blackout accident in nuclear power plants is recognized as a very important area for accident management and emergency planning. The purpose of this study is to investigate the comparative characteristics of anticipated severe accident progression among the three typical types of nuclear reactors. A station blackout scenario, where all off-site power is lost and the diesel generators fail, is simulated as an initiating event of a severe accident sequence. In this study a comparative analysis was performed for typical pressurized water reactor (PWR), boiling water reactor (BWR), and pressurized heavy water reactor (PHWR). The study includes the summarization of design differences that would impact severe accident progressions, thermal hydraulic/severe accident phenomenological analysis during a station blackout initiated-severe accident; and an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.

  8. ASTM standards associated with PWR and BWR power plant licensing, operation and surveillance

    International Nuclear Information System (INIS)

    McElroy, W.N.; McElroy, R.J.; Gold, R.; Lippincott, E.P.; Lowe, A.L. Jr.

    1994-01-01

    This paper considers ASTM Standards that are available, under revision, and are being considered in support of Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) Nuclear Power Plant (NPP) licensing, regulation, operation, surveillance and life attainment. The current activities of ASTM Committee E10 and its Subcommittees E10.02 and current activities of ASTM Committee E10 and its Subcommittees E10.02 and E10.05 and their Task Groups (TG) are described. A very important aspect of these efforts is the preparation, revision, and balloting of standards identified in the ASTM E706 Standard on Master Matrix for Light Water Reactor (LWR) Pressure Vessel (PV) Surveillance Standards. The current version (E706-87) of the Master Matrix identifies 21 ASTM LWR physics-dosimetry-metallurgy standards for Reactor Pressure Vessel (RPV) and Support Structure (SS) surveillance programs, whereas, for the next revision 34 standards are identified. The need for national and international coordination of Standards Technology Development, Transfer and Training (STDTT) is considered in this and other Symposium papers that address specific standards related physics-dosimetry-metallurgy issues. 69 refs

  9. The mechanical structure of the SVEA BWR fuel

    International Nuclear Information System (INIS)

    Nylund, O.; Johansson, A.; Junkrans, S.

    1985-01-01

    The SVEA BWR fuel assembly design is characterized by a double-wall cruciform internal structure forming an internal water gap and dividing the assembly into 4 subbundles. The effect is a favourable distribution of fuel and moderator, a minimum amount of structural material in active core, a combination of structural stability and flexibility for minimum control rod friction in reduced gaps and a reduced creep deformation of the fuel assembly. The results of a laboratory test program confirm the much lower friction force obtained with the SVEA fuel assemblies while withdrawing and inserting the control rod. (RF)

  10. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  11. Transmutation of minor actinide using BWR fueled mixed oxide

    International Nuclear Information System (INIS)

    Susilo, Jati

    2000-01-01

    Nuclear spent fuel recycle has a strategic importance in the aspect of nuclear fuel economy and prevention of its spread-out. One among other application of recycle is to produce mixed oxide fuel (Mo) namely mixed Plutonium and uranium oxide. As for decreasing the burden of nuclear high level waste (HLW) treatment, transmutation of minor actinide (MA) that has very long half life will be carried out by conversion technique in nuclear reactor. The purpose of this study was to know influence of transition fuel cell regarding the percent weight of transmutation MA in the BWR fueled MOX. Calculation of cell BWR was used SRAC computer code, with assume that the reactor in equilibrium. The percent weight of transmutation MA to be optimum by increasing the discharge burn-up of nuclear fuel, raising ratio of moderator to fuel volume (Vm/Vf), and loading MA with percent weight about 3%-6% and also reducing amount of percent weight Pu in MOX fuel. For mixed fuel standard reactor, reactivity value were obtained between about -50pcm ∼ -230pcm for void coefficient and -1.8pcm ∼ -2.6pcm for fuel temperature coefficient

  12. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  13. Characteristics of axial splits in failed BWR fuel rods

    International Nuclear Information System (INIS)

    Lysell, G.; Grigoriev, V.

    2000-01-01

    Secondary cladding defects in BWR fuel sometimes have the shape of long axial cracks or ''splits''. Due to the large open UO 2 surfaces exposed to the water, fission product and UO 2 release to the coolant can reach excessive levels leading to forced shut downs to remove the failed fuel rods. A number of such fuel rods have been examined in Studsvik over the last 10 years. The paper describes observations from the PIE of long cracks and discusses the driving force of the cracks. Details such as starting cracks, macroscopic and microscopic fracture surface appearance, cross sections of cracks, hydride precipitates, location and degree of plastic deformation are given. (author)

  14. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  15. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  16. Modeling of PWR fuel at extended burnup

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Raphael M.; Silva, Antonio Teixeira, E-mail: rmdias@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  17. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael M.; Silva, Antonio Teixeira

    2015-01-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  18. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  19. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  20. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Kato, Shigeru.

    1993-01-01

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  1. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  2. Preliminary study on characteristics of equilibrium thorium fuel cycle of BWR

    International Nuclear Information System (INIS)

    Waris, A.; Kurniadi, R.; Su'ud, Z.; Permana, S.

    2007-01-01

    One of the main objectives behind the transuranium recycling ideas is not merely to utilize natural resource that is uranium much more efficiently, but to reduce the environmental impact of the radio-toxicity of the nuclear spent fuel. Beside uranium resource, there is thorium which has three times abundance compared to that of uranium which can be utilized as nuclear fuel. On top of that thorium is believed to have less radio-toxicity of spent fuel since its produce smaller amount of higher actinides compared to that of uranium. However, the studies on the thorium utilization in nuclear reactor in particular in light water reactors (LWR) are not performed intensively yet. Therefore, the aim of the present study is to evaluate the characteristics of thorium fuel cycle in LWR, especially boiling water reactor (BWR). To conduct the comprehensive investigations we have employed the equilibrium burnup model (1-3). The equilibrium burnup model is an alternative powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor1). We have employed 1368 nuclides in the equilibrium burnup calculation where 129 of them are heavy metals (HMs). This burnup code then is coupled with SRAC cell calculation code by using PIJ module to compose an equilibrium-cell burnup code. For cell calculation, 26 HMs, 66 fission products (FPs) and one pseudo FP have been utilized. The JENDL 3.2 library has been used in this study. References: 1. A. Waris and H. Sekimoto, 'Characteristics of several equilibrium fuel cycles of PWR', J. Nucl. Sci. Technol., 38, p.517-526, 2001 2. A. Waris, H. Sekimoto, and G. Kastchiev, Influence of Moderator-to-Fuel Volume Ratio on Pu and MA Recycling in Equilibrium Fuel Cycles of

  3. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  4. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Fukada, Hiroshi

    1979-01-01

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  5. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto

    1990-01-01

    Various considerations are applied to fuel rods for improving the fuel burnup degree. If a gap between the fuel rods is changed, this varies the easiness for the flow of coolants depending on places, to reduce the thermal margin. Then, it is noted for the distribution of stresses generated due to the difference of water pressure caused by the difference of water streams between the inside and the outside of a channel box, and composite value, of stresses upon occurrence of earthquakes, neutron irradiation and a channel creep phenomenon caused by the stresses of due to the water pressure difference described above, the thickness of the channel box is increased in the upstream and decreased toward the downstream. Further, fuel spacers at the position where the thickness of the channel box is changed are spaced apart from the channel box so as not to brought into contact with the channel box. This can contribute to the reduction of coolants pressure loss, improvement of critical power and improvement of reactivity, as well as remarkably moderate local stresses applied from the fuel spacers to the channel box due to horizontal vibrations upon occurrence of earthquakes to improve the integrity of fuel assembly. (N.H.)

  6. Ultrasonic inspection for testing the PWR fuel rod endplug welds

    International Nuclear Information System (INIS)

    Pillet, C.; Destribats, M.T.; Papezyk, F.

    1976-01-01

    A method of ultrasonic testing with local immersion and transversal waves was developed. It is possible to detect defects as the lacks of fusion and penetration and porosity in the PWR fuel rod endplug welds [fr

  7. Program of monitoring PWR fuel in Spain; Programa de Vigilancia de Combustible pwr en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Murillo, J. C.; Quecedo, M.; Munoz-Roja, C.

    2015-07-01

    In the year 2000 the PWR utilities: Centrales Nucleares Almaraz-Trillo (CNAT) and Asociacion Nuclear Asco-Vandellos (ANAV), and ENUSA Industrias Avanzadas developed and executed a coordinated strategy named PIC (standing for Coordinated Research Program), for achieving the highest level of fuel reliability. The paper will present the scope and results of this program along the years and will summarize the way the changes are managed to ensure fuel integrity. The excellent performance of the ENUSA manufactured fuel in the PWR Spanish NPPs is the best indicator that the expectations on this program are being met. (Author)

  8. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    Core components of light water reactor (LWR), mainly made of austenitic stainless steels (SS), subjected to stress and exposed to relatively high fast neutron flux may suffer a cracking process termed as Irradiation Assisted Stress Corrosion Cracking (IASCC). Neutron radiation leads to critical modifications in material characteristics, which can modify their stress corrosion cracking (SCC) response. Current knowledge highlights three fundamental factors, induced by radiation, as primary contributors to IASCC of core materials: Radiation Induced Segregation (RIS) at grain boundaries, Radiation Hardening and Radiolysis. Most of the existing literature on IASCC is focussed on the influence of RIS, mainly chromium depletion, which can promote IASCC in oxidizing environments, such a Boiling Water Reactor (BWR) under normal water chemistry. However, in non-oxidizing environments, such as primary water of Pressurized Water Reactor (PWR) or BWR hydrogen water chemistry, the role played by chromium depletion at grain boundary on IASCC behaviour of highly irradiated material is irrelevant. One important issue with limited study is the effect of radiation induced hardening. The role of hardening on IASCC is became stronger considered, especially for environments where other factors, like micro-chemistry, have no significant influence. To formulate the mechanism of IASCC, a well-established method is to isolate and quantify the effect of individual parameters. The use of unirradiated material and the simulation of the irradiation effects is a procedure used with success for evaluating the influence of irradiation effects. Radiation hardening can be simulated by mechanical deformation and, although some differences exist in the types of defects produced, it is believed that the study of the SCC behaviour of unirradiated materials with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the

  9. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  10. Post irradiation examination on test fuel pins for PWR

    International Nuclear Information System (INIS)

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  11. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  12. Neutron physical aspects of the storage of BWR fuel elements

    International Nuclear Information System (INIS)

    Woloch, F.; Sdouz, G.; Suda, M.

    1980-01-01

    For the storage of BWR fuel elements in a high density fuel rack using boronated steel absorbers and in a fuel rack with a larger pitch without absorber, criticality calculations are performed. The cooling water density is varied for the storage without absorbers. For the selected pitches of 16.5 cm for the high density fuel rack and 25 cm for the fuel rack without absorber respectively the ksub(infinitely) values of 0.933 and 0.748 are obtained. The dependence of the results on different calculational methods and on the influence of the variation of three important design parameters, i.e. of the concentration of boron, of the thickness of the boronated steel and of the watergap is investigated for the high density fuel rack. The average isothermal temperature coefficient is obtained for the high density fuel rack as -4.5 x 10 -40 sup(0)C -1 and as approx. 2.0 x 10 -40 sup(0)C -1 for the fuel rack without absorbers. For both ways of storage the aspects of safety of the results are discussed thoroughly. (orig.) 891 RW/orig. 892 CKA [de

  13. PWR fuel performance and future trend in Japan

    International Nuclear Information System (INIS)

    Kondo, Y.

    1987-01-01

    Since the first PWR power plant Mihama Unit 1 initiated its commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts to improve PWR technology. The results are already seen in significantly improved performance of 16 PWR plants now in operation. Mitsubishi Heavy Industries Ltd. (MHI) has been supplying them with nuclear fuel assemblies, which are over 5700. As the reliability of the current design fuel has been achieved, the direction of R and D on nuclear fuel has changed to make nuclear power more competitive to the other power generation methods. The most important R and D targets are the burnup extension, Gd contained fuel, Pu utilizatoin and the load follow capacility. (author)

  14. Fuel assemblies for use in BWR type reactors

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1987-01-01

    Purpose: To moderate the peak configuration of the burnup degree change curve for the infinite multiplication factor by applying an improvement to the arrangement of fuel rods. Constitution: In a fuel assembly for a BWR type reactor comprising a plurality of fuel rods and water rods arranged in a square lattice, fuel rods containing burnable poisons are arranged at four corners at the second and the third layers from the outside of the square lattice arrangement. Among them, the Cd poison effect in the burnable poison incorporated fuel rods disposed at the second layer is somewhat greater at the initial burning stage and then rapidly decreased along with burning. While on the other hand, the poison effect of the burnable poison-incorporated fuel rods at the third layer is smaller than that at the second layer at the initial burning stage and the reduction in the poison effect due to burning is somewhat more moderate. Since these fuel rods are in adjacent with each other, they interfere to each other and also provide an effect of moderating the burning of the burnable poisons. (Takahashi, M.)

  15. The traveller: a new look for PWR fresh fuel packages

    International Nuclear Information System (INIS)

    Bayley, B.; Stilwell, W.E.; Kent, N.A.

    2004-01-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. This paper follows the development effort from the establishment of goals and objectives, to intermediate testing and analysis, to final testing and licensing. The discussion starts with concept origination and covers the myriad iterations that followed until arriving at a design that would meet the demanding licensing requirements, last for 30 years, and would be easy to load and unload fuel, easy to handle, inexpensive to manufacture and transport, and simple and inexpensive to maintain

  16. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1977-01-01

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author) [es

  17. Make use of EDF orientations in PWR fuel management

    International Nuclear Information System (INIS)

    Gloaguen, A.

    1989-01-01

    The EDF experience acquired permits to allow the PWR fuel performances and to make use of better management. In this domain low progress can be given considerable financial profits. The industrial and commercial structures, the time constant of the fuel cycle, has for consequence that the electric utilities can take advantage only progressively of the expected profits [fr

  18. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  19. A scheme of better utilization of PWR spent fuels

    International Nuclear Information System (INIS)

    Chung, Bum Jin; Kang, Chang Soon

    1991-01-01

    The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is investigated in this study. This scheme of utilizing PWR spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration. For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burn up and distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The results show that most tandem fuel cycle option considered in this study are technically feasible as well as economically viable. (Author)

  20. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  1. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1992-03-01

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  2. Uncertainty and sensitivity analysis in the neutronic parameters generation for BWR and PWR coupled thermal-hydraulic–neutronic simulations

    International Nuclear Information System (INIS)

    Ánchel, F.; Barrachina, T.; Miró, R.; Verdú, G.; Juanas, J.; Macián-Juan, R.

    2012-01-01

    Highlights: ► Best-estimate codes are affected by the uncertainty in the methods and the models. ► Influence of the uncertainty in the macroscopic cross-sections in a BWR and PWR RIA accidents analysis. ► The fast diffusion coefficient, the scattering cross section and both fission cross sections are the most influential factors. ► The absorption cross sections very little influence. ► Using a normal pdf the results are more “conservative” comparing the power peak reached with uncertainty quantified with a uniform pdf. - Abstract: The Best Estimate analysis consists of a coupled thermal-hydraulic and neutronic description of the nuclear system's behavior; uncertainties from both aspects should be included and jointly propagated. This paper presents a study of the influence of the uncertainty in the macroscopic neutronic information that describes a three-dimensional core model on the most relevant results of the simulation of a Reactivity Induced Accident (RIA). The analyses of a BWR-RIA and a PWR-RIA have been carried out with a three-dimensional thermal-hydraulic and neutronic model for the coupled system TRACE-PARCS and RELAP-PARCS. The cross section information has been generated by the SIMTAB methodology based on the joint use of CASMO-SIMULATE. The statistically based methodology performs a Monte-Carlo kind of sampling of the uncertainty in the macroscopic cross sections. The size of the sampling is determined by the characteristics of the tolerance intervals by applying the Noether–Wilks formulas. A number of simulations equal to the sample size have been carried out in which the cross sections used by PARCS are directly modified with uncertainty, and non-parametric statistical methods are applied to the resulting sample of the values of the output variables to determine their intervals of tolerance.

  3. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  4. Calculation device for fuel power history in BWR type reactors

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To enable calculations for power history and various variants of power change in the power history of fuels in a BWR type reactor or the like. Constitution: The outputs of the process computation for the nuclear reactor by a process computer are stored and the reactor core power distribution is judged from the calculated values for the reactor core power distribution based on the stored data. Data such as for thermal power, core flow rate, control rod position and power distribution are recorded where the changes in the power distribution exceed a predetermined amount, and data such as for thermal power and core flow rate are recorded where the changes are within the level of the predetermined amount, as effective data excluding unnecessary data. Accordingly, the recorded data are taken out as required and the fuel power history and the various variants in the fuel power are calculated and determined in a calculation device for fuel power history and variants for fuel power fluctuation. (Furukawa, Y.)

  5. Decruding of PWR Fuel with the ICEDEC{sup TM} technique

    Energy Technology Data Exchange (ETDEWEB)

    Ivars, Roland; Fredriksson, Eva; Rosengren, Anders; Hallgren, Peter [Westinghouse Atom AB, Uppsala (Sweden)

    2002-04-15

    The novel fuel decontamination system ICEDEC{sup TM} utilizes a mixture of ice particles and water circulating through the assembly for scraping off loose crud from the fuel surfaces. Initially, ICEDEC{sup TM} was developed for BWRs. By means of fuel decontamination the origin of the personnel radiation exposure, i. e. the loose fuel crud, can be decreased. The technique can be used for radiation level reduction, eliminating the AOA (Axial Offset anomaly) problem or general decruding purposes. Decontamination tests of burned out and two-year-old fuel in the BWR Ringhals 1 in Sweden verified that ICEDEC{sup TM} maintained the mechanical integrity of the fuel and fulfilled the very important criteria; only the loose crud was removed and the oxide layer was not affected. Activity measurements prior to and after the decontamination, showed that more than 50% of the loose crud was removed from the fuel surfaces. For PWR the condition of maintained boron level in the pool water is a prerequisite. This can be achieved by utilizing a closed loop system with a water reservoir. From the reservoir water is used for the production of the ice particles. After removal of the loose crud from the fuel the crud/ice/water slurry is separated in a specially designed filter unit. The melted ice and residual water is then transported back to the water reservoir. Other methods could be to add boron equivalent to the excess water from the melted ice or use reverse osmosis to separate the boron and water in the pool. Including an application study followed by preliminary and detailed designs and manufacture and testing a PWR ICEDEC{sup TM} system can be licensed after two years.

  6. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  7. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  8. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  9. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  10. Fuel management optimization for a PWR

    International Nuclear Information System (INIS)

    Dumas, M.; Robeau, D.

    1981-04-01

    This study is aimed to optimize the refueling pattern of a PWR. Two methods are developed, they are based on a linearized form of the optimization problem. The first method determines a feasible solution in two steps; in the first one the original problem is replaced by a relaxed one which is solved by the Method of Approximation Programming. The second step is based on the Branch and Bound method to find the feasible solution closest to the solution obtained in the first step. The second method starts from a given refueling pattern and tries to improve this pattern by the calculation of the effects of 2 by 2, 3 by 3 and 4 by 4 permutations on the objective function. Numerical results are given for a typical PWR refueling using the two methods

  11. Artificial intelligence applied to fuel management in BWR type reactors

    International Nuclear Information System (INIS)

    Ortiz S, J.J.

    1998-01-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  12. Design and axial optimization of nuclear fuel for BWR reactors

    International Nuclear Information System (INIS)

    Garcia V, M.A.

    2006-01-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  13. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    2002-07-01

    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)

  14. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Cha, Chong Hee; Chung, Chang Hwan; Chun, Se Young; Song, Chul Hwa; Chung, Heung Joon; Won, Soon Yeun; Cho, Yeong Rho; Kim, Bok Deuk

    1988-05-01

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  15. Uranium savings on a once through PWR fuel cycle

    International Nuclear Information System (INIS)

    Cupo, J.V.

    1980-01-01

    A number of alternatives which have the greatest potential for near term savings with minimum plant and fuel modifications have been examined at Westinghouse as part of continued internal assessment and part of NASAP study conducted for DOE pertaining to uranium utilization in a once through PWR fuel cycle. The alternatives which could be retrofitted to existing reactors were examined in more detail in the evaluation since they would have the greater near term impact on U savings

  16. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    Barroso, D.E.G.; Nair, R.P.K.; Vellozo, S.O.

    1981-01-01

    A study about fuel management in PWR reactors, where not only the conventional uranium cycle is considered, but also the thorium cycle as an alternative is presented. The final results are presented in terms of U 3 O 8 demand and SWU and the approximate costs of the principal stages of the fuel cycle, comparing with the stardand cycle without recycling. (E.G.) [pt

  17. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Andrade, G.G. de

    1982-01-01

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.) [pt

  18. Enhancing BWR proliferation resistance fuel with minor actinides

    Science.gov (United States)

    Chang, Gray S.

    2009-03-01

    To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced light water reactor- LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides ( 237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu/Pu. For future advanced nuclear systems, minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In the study, a typical boiling water reactor (BWR) fuel unit lattice cell model with UO 2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance in the intermediate-term goal for future nuclear energy systems. To account for the water coolant density variation from the bottom (0.76 g/cm 3) to the top (0.35 g/cm 3) of the core, the axial coolant channel and fuel pin were divided to 24 nodes. The MA transmutation characteristics at different elevations were compared and their impact on neutronics criticality discussed. The concept of MARA, which involves the use of transuranic nuclides ( 237Np and/or 241Am), significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in

  19. Axial gap formation in P.W.R. fuel pins

    International Nuclear Information System (INIS)

    Roberts, G.; Jones, K.W.

    1978-07-01

    The potential mechanisms of axial gap formation in PWR fuel pins are examined analytically and also using evidence from post-irradiation examination (p.i.e.) investigation. It is concluded that fuel and cladding cannot remain in contact during densification and so the settling of of the fuel stack, which forms the gaps, must be prevented by such things as asperities in the cladding, fuel chips or tilted pellets. Examples from the p.i.e. examination programme are used to support this conclusion. (author)

  20. Calibration of the TVO spent BWR reference fuel assembly

    International Nuclear Information System (INIS)

    Tarvainen, M.; Baecklin, A.; Haakanson, A.

    1992-02-01

    In 1989 the Support Programmes of Finland (FSP) and Sweden (SSP) initiated a joint task to cross calibrate the burnup of the IAEA spent BWR reference fuel assembly at the TVO AFR storage facility (TVO KPA-STORE) in Finland. The reference assembly, kept separately under the IAEA seal, is used for verification measurements of spent fuel by GBUV method (SG-NDA-38). The cross calibration was performed by establishing a calibration curve, 244 Cm neutron rate versus burnup, using passive neutron assay (PNA) measurements. The declared burnup of the reference assembly was compared with the burnup value deduced from the calibration curve. A calibration line was also established by using the GBUV method with the aid of high resolution gamma ray spectrometry (HRGS). Normalization between the two different facilities was performed using sealed neutron and gamma calibration sources. The results of the passive neutron assay show consistency, better than 1 %, between the declared mean burnup of the reference assembly and the burnup deduced from the calibration curve. The corresponding consistency is within +-2 % for the HRGS measurements

  1. A comprehensive in-pile test of PWR fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang Rixin; Zhang Shucheng; Chen Dianshan (Academia Sinica, Beijing (China). Inst. of Atomic Energy)

    1991-02-01

    An in-pile test of PWR fuel bundle has been conducted in HWRR at IAE of China. This paper describes the structure of the test bundle (3x3-2), fabrication process and quality control of the fuel rod, irradiation conditions and the main Post Irradiation Examination (PIE) results. The test fuel bundle was irradiated under the PWR operation and water chemistry conditions with an average linear power of 381 W/cm and reached an average burnup of 25010 MWd/tU of the fuel bundle. After the test, destructive and non-destructive examination of the fuel rods was conducted at hot laboratories. The fission gas release was 10.4-23%. The ridge height of cladding was 3 to 8 {mu}m. The hydrogen content of the cladding was 80 to 140 ppm. The fuel stack height was increased by 2.9 to 3.3 mm. The relative irradiation growth was about 0.11 to 0.17% of the fuel rod length. During the irradiation test, no fuel rod failure or other abnormal phenomena had been found by the on-line fuel failure monitoring system of the test loop and water sampling analysis. The structure of the test fuel assembly was left undamaged without twist and detectable deformation. (orig.).

  2. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  3. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  4. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  5. Layout of the primary circuit with its components for PWR and BWR

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1981-01-01

    The light water-moderated and cooled pressurized water reactors and boiling water reactors constitute the basis of economic utilization of nuclear energy all over the world. Pressurized water reactors up to capacities of 3,800 MWth are those most used for power generation. However, their potential capacities exceed 3,800 MWth, so that already in the near future PWR are conseivable which readily generate 1,500 to 2,000 MWe. The main problem for starting the next generation of PWRs are of safety measure and licensing questions. Interesting applications of the PWRs are nuclear district heating, generation of process steam of desalination plants, steam injection into the ground for oil production or chemical factories. A new generation of natural circulation boiling water reactors with a capacity of 200 to 400 MW will be used for development of small industrial areas or for countries without an integral grid system. The natural circulation boiling water reactor will be subject of a separate lecture. Due to the fact of the majority of the PWR all over the world this lecture will discuss mainly PWR design aspects. (orig./RW)

  6. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  7. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  8. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  9. Spent fuel storage rack for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Machado, O.; Henry, C.W.; Congleton, R.L.; Flynn, W.M.

    1990-01-01

    This patent describes for the use in storing nuclear fuel assemblies in a storage pool containing a coolant and having a pool floor, a fuel rack module. It comprises: a base plate to be disposed generally horizontally on the floor and having a horizontal surface area sufficient to support a fuel assemblies; uniformly spaced openings in the base plate, disposed in rows and columns throughout the surface area; fabricated cells of rectangular cross section extending over alternate openings along each row of the openings, the fabricated cells of each row being uniformly staggered by one opening with respect to the cells of its just adjacent rows so that the fabricated cells form a checkerboard like array; each of the fabricated cells having elongated walls mounted generally vertically on the base plate; each of the corners formed by the walls of each fabricated cell, which corners are internal of the periphery of the array, being disposed as closely adjacent as practicable to and face-to-face with a corner of an adjacent fabricated cell and joined by weld means so that substantially no space exists between adjacent cells. The cells being welded to their bottom ends to the base plate so that a strong compact modular structure is produced; neutron-absorbing means on the external surface of the fabricated cell walls except on the coextensive sections of the outer wall around the periphery of the array; and leveling pads are mounted under the base plate near the periphery thereof and adjustably engage the pool floor and intermediate leveling pads are mounted under cells within the fuel-rack module, the intermediate pads being uniformly disposed

  10. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  11. Assessment of cold composite fuels for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Coulon-Picard, E.; Agard, M.; Boulore, A.; Castelier, E.; Chabert, C.; Conti, A.; Frayssines, P.E.; Lechelle, J.; Maillard, S.; Matheron, P.; Pelletier, M.; Phelip, M.; Piluso, P.; Vaudano, A

    2009-06-15

    This study is devoted to evaluation of a new innovative micro structured fuel for future pressurized water reactor. This fuel would have potential to increase the safety margins, lowering fuel temperatures by adding a small fraction of a high conductivity second phase material in the oxide fuel phase. The behavior of this fuel in a standard rod has been modeled with finite element codes and was assessed for different aspects of the cycle as neutronic studies, thermal behavior, reprocessing and economics. Feasibility of fuels has been investigated with the fabrication and characterizations of the microstructure of composite fuels with powder metallurgy and HIP processes. First, a CERCER (Ceramic = UO{sub 2}- Ceramic matrix made of silicon carbide, SiC) fuel type has been investigated, the advantages of a ceramic being generally its transparency to neutrons and its high melting temperature. A first design of kernel type fuel was first chosen with a gap between the UO{sub 2} particles and the second phase material in order to avoid mechanical interaction between the two components. Due to lowering thermal conductivity of SiC under irradiation, this CERCER fuel did not allow a temperature gain compared to current fuel. No ceramic material seems to exhibit all required properties. Even beryllium oxide (BeO), which conductivity does not decrease with irradiation according to the literature, induces difficulties with ({alpha}, n) reactions and toxicity. The study then focused on Cermet fuels (Ceramic-Metal). The metal matrix must be transparent to neutrons and have a good thermal conductivity. Several materials have been considered such as zirconium alloys, austenitic and ferritic stainless steals and chromium based alloys. The heterogeneous composite fuels were modeled using the 3D/CASTM finite element code. From an economical and neutron point of view, it was important to keep a low fraction of metal phase, i.e. less than 10 % of Zr for example. However, the fuel

  12. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    Damsohn, M.

    2011-01-01

    In the upper part of boiling water reactors (BWR) the flow regime is dominated by a steam-water droplet flow with liquid films on the nuclear fuel rod, the so called (wispy) annular flow regime. The film thickness and liquid flow rate distribution around the fuel rod play an important role especially in regard to so called dryout, which is the main phenomenon limiting the thermal power of a fuel assembly. The deposition of droplets in the liquid film is important, because this process sustains the liquid film and delays dryout. Functional spacers with different vane shapes have been used in recent decades to enhance droplet deposition and thus create more favorable conditions for heat removal. In this thesis the behavior of liquid films and droplet deposition in the annular flow regime in BWR bundles is addressed by experiments in an adiabatic flow at nearly ambient pressure. The experimental setup consists of a vertical channel with the cross-section resembling a pair of neighboring subchannels of a fuel rod bundle. Within this double subchannel an annular flow is established with a gas-water mixture. The impact of functional spacers on the annular flow behavior is studied closely. Parameter variations comprise gas and liquid flow rates, gas density and spacer shape. The setup is instrumented with a newly developed liquid film sensor that measures the electrical conductance between electrodes flush to the wall with high temporal and spatial resolution. Advanced post-processing methods are used to investigate the dynamic behavior of liquid films and droplet deposition. The topic is also assessed numerically by means of single-phase Reynolds-Averaged-Navier-Stokes CFD simulations of the flow in the gas core. For this the commercial code STAR-CCM+ is used coupled with additional models for the liquid film distribution and droplet motion. The results of the experiments show that the liquid film is quite evenly distributed around the circumference of the fuel rods. The

  13. Design and development of PWR fuel

    International Nuclear Information System (INIS)

    Dehon, C.; Leclercq, J.; Watteau, M.

    1982-06-01

    After a brief description of the FRAGEMA fuel assembly which equips at the present time the pressurized water reactors of EdF (Electricite de France), and a presentation of the experience obtained on this fuel, one reviews the main aims and trends of the research and development program carried out by FRAGEMA to improve the design of fuels and to propose to the national customer, but also on the foreign markets, new products adapted to the demands of operators. One insists more particularly on new products that are on one hand the AFA fuel and on the other hand the burnable poison UO 2 -Gd 2 O 3 ; their description is presented and their advantages are given. To conclude, one insists on the importance of the collaboration that have to be kept between the designer and the operator, the manufacturer, the R and D groups and the boiler specialist [fr

  14. Development of MHI PWR fuel assembly with high thermal performance

    International Nuclear Information System (INIS)

    Yasushi Makino; Masaya Hoshi; Masaji Mori; Hidetoshi Kido; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been developing a PWR fuel assembly to meet the needs of Japanese fuel market with mainly improving its reliability such as a mechanical strength, a seismic strength and endurance. For burn-up extension of the fuel to 55 GWd/t, MHI has introduced a Zircaloy spacer grid with better neutron economics with retaining the reliability in an operating core. However, for a future power up-rating and a longer cycle operation, a higher thermal performance is required for PWR fuel assembly. To meet the needs of fuel market, MHI has developed an advanced type of Zircaloy spacer grid with a greater DNB performance while retaining the reliability of a fuel and a relatively low pressure drop. For the greater DNB performance, MHI optimized geometrical shape of mixing vane to promote a fluid mixing performance. In this report, higher DNB performance provided by the advanced Zircaloy spacer grid is presented. The results of 3D simulation for the flow behavior in 5 x 5 partial assembly, a mixing test and a water DNB test were compared between the current and the advanced spacer grids. Consequently, it was confirmed that a crossover vane enhanced a fluid mixing and the advanced spacer grid could significantly improve DNB performance compared with the current design of spacer grids. (authors)

  15. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J.; Straka, M.

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report

  16. Characteristics of several equilibrium fuel cycles of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Sekimoto, Hiroshi

    2001-01-01

    This paper evaluated the influence of neutron spectrum on characteristics of several equilibrium fuel cycles of pressurized water reactor (PWR). In this study, five kinds of fuel cycles were investigated. Required uranium enrichment, required natural uranium amount, and toxicity of heavy metals (HMs) in spent fuel were presented for comparison. The results showed that the enrichment and the required amount of natural uranium decrease significantly with increasing number of confined heavy nuclides when uranium is discharged from the reactor. On the other hand, when uranium is totally confined, the enrichment becomes extremely high. The confinement of plutonium and minor actinides (MA) seems effective in reducing radio-toxicity of discharged wastes. By confining all heavy nuclides except uranium those three characteristics could be reduced considerably. For this fuel cycle the toxicity of HMs in spent fuel become nearly equal to or less than that of loaded uranium. (author)

  17. Comparison of PWR-IMF and FR fuel cycles

    International Nuclear Information System (INIS)

    Darilek, Petr; Zajac, Radoslav; Breza, Juraj; Necas, Vladimir

    2007-01-01

    The paper gives a comparison of PWR (Russia origin VVER-440) cycle with improved micro-heterogeneous inert matrix fuel assemblies and FR cycle. Micro-heterogeneous combined assembly contains transmutation pins with Pu and MAs from burned uranium reprocessing and standard uranium pins. Cycle analyses were performed by HELIOS spectral code and SCALE code system. Comparison is based on fuel cycle indicators, used in the project RED-IMPACT - part of EU FP6. Advantages of both closed cycles are pointed out. (authors)

  18. The improvement of performances for PWR fuels

    International Nuclear Information System (INIS)

    Debes

    2001-01-01

    UO 2 fuels used in French nuclear power plants are authorized for values of burn-ups up to 52 GWj/t. Constant technological progress concerning pellets, cladding, and the design of the assembly has led to better performance and a broader safety margin. EDF is gathering all the elements to qualify and back its demand to increase the limit burn-up to 65 GWj/t in 2004 and to 70 GWj/t in 2008. For the same amount of energy produced, this policy of higher burn-ups will allow: - a reduction of the number of spent fuel assemblies, - a direct economic spare by using less fuel assemblies, - a reduction of personnel dosimetry because of longer irradiation campaigns, and - less quantity of residual plutonium produced. (A.C.)

  19. IFPE/IFA-432, Fission Gas Release, Mechanical Interaction BWR Fuel Rods, Halden

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1996-01-01

    Description: It contains data from experiments that have been performed at the IFE/OECD Halden Reactor Project, available for use in fuel performance studies. It covers experiments on thermal performance, fission product release, clad properties and pellet clad mechanical interaction. It includes also experimental data relevant to high burn-up behaviour. IFA-432: Measurements of fuel temperature response, fission gas release and mechanical interaction on BWR-type fuel rods up to high burn-ups. The assembly featured several variations in rod design parameters, including fuel type, fuel/cladding gap size, fill gas composition (He and Xe) and fuel stability. It contained 6 BWR-type fuel rods with fuel centre thermocouples at two horizontal planes, rods were also equipped with pressure transducers and cladding extensometers. Only data from 6 rods are compiled here

  20. PWR fuel rod corrosion in Japan

    International Nuclear Information System (INIS)

    Inoue, S.; Mori, K.; Murata, K.; Kobasyashi, S.

    1997-01-01

    Many particular appearance were observed on the fuel rod surfaces during fuel inspection at reactor outage in 1991. The appearances looked like small black circular nodules. The size was approximately 1 mm. This kind of appearances were found on fuel rods of which burnup exceeded approximately 30 GWd/t and at the second or third spans of the fuel assembly from the top. In order to clarify the cause, PIE was performed. The black nodules were confirmed to be oxide film spalling by visual inspection. Maximum oxide film thickness was 70 μm and spalling was observed where oxide thickness exceeded 40 t0 50 μm. Oxide film thickness was greater than expected. Many small pores were found in the oxide film when the oxide film had become thicker. Many circumferential cracks were also found in the film. It was speculated that these cracks caused the spalling of the oxide film. Hydride precipitates were mainly oriented circumferentially. Dense hydrides were observed near the outer rim of the cladding. No concentrated hydrides were observed near the spalling area. Maximum hydrogen content was 315 ppm. It was confirmed that the results of tensile test showed no significant effects by corrosion. The mechanism of accelerated corrosion was studied in detail. Water chemistry during irradiation was examined. Lithium content was maintained below 2.2 ppm. pH value was kept between 6.9 and 7.2. There was no anomalies in water chemistry during reactor operation. Cladding fabrication record clarified that heat treatment parameter was smaller than the optimum value. In Japan, heat treatment of the cladding was already optimized by improved fabrication process. Also chemical composition optimization of the cladding, such as low Tin and high Silicon content, was adopted for high burnup fuel. These remedies has already reduced fuel cladding corrosion and we believe we have solved this problem. (author). 6 figs, 1 tab

  1. PWR fuel rod corrosion in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S [Kansai Electric Power Co., Inc., Osaka (Japan); Mori, K; Murata, K; Kobasyashi, S [Nuclear Fuel Industries, Ltd, Osaka (Japan)

    1997-02-01

    Many particular appearance were observed on the fuel rod surfaces during fuel inspection at reactor outage in 1991. The appearances looked like small black circular nodules. The size was approximately 1 mm. This kind of appearances were found on fuel rods of which burnup exceeded approximately 30 GWd/t and at the second or third spans of the fuel assembly from the top. In order to clarify the cause, PIE was performed. The black nodules were confirmed to be oxide film spalling by visual inspection. Maximum oxide film thickness was 70 {mu}m and spalling was observed where oxide thickness exceeded 40 t0 50 {mu}m. Oxide film thickness was greater than expected. Many small pores were found in the oxide film when the oxide film had become thicker. Many circumferential cracks were also found in the film. It was speculated that these cracks caused the spalling of the oxide film. Hydride precipitates were mainly oriented circumferentially. Dense hydrides were observed near the outer rim of the cladding. No concentrated hydrides were observed near the spalling area. Maximum hydrogen content was 315 ppm. It was confirmed that the results of tensile test showed no significant effects by corrosion. The mechanism of accelerated corrosion was studied in detail. Water chemistry during irradiation was examined. Lithium content was maintained below 2.2 ppm. pH value was kept between 6.9 and 7.2. There was no anomalies in water chemistry during reactor operation. Cladding fabrication record clarified that heat treatment parameter was smaller than the optimum value. In Japan, heat treatment of the cladding was already optimized by improved fabrication process. Also chemical composition optimization of the cladding, such as low Tin and high Silicon content, was adopted for high burnup fuel. These remedies has already reduced fuel cladding corrosion and we believe we have solved this problem. (author). 6 figs, 1 tab.

  2. Benchmarking Computational Fluid Dynamics for Application to PWR Fuel

    International Nuclear Information System (INIS)

    Smith, L.D. III; Conner, M.E.; Liu, B.; Dzodzo, B.; Paramonov, D.V.; Beasley, D.E.; Langford, H.M.; Holloway, M.V.

    2002-01-01

    The present study demonstrates a process used to develop confidence in Computational Fluid Dynamics (CFD) as a tool to investigate flow and temperature distributions in a PWR fuel bundle. The velocity and temperature fields produced by a mixing spacer grid of a PWR fuel assembly are quite complex. Before using CFD to evaluate these flow fields, a rigorous benchmarking effort should be performed to ensure that reasonable results are obtained. Westinghouse has developed a method to quantitatively benchmark CFD tools against data at conditions representative of the PWR. Several measurements in a 5 x 5 rod bundle were performed. Lateral flow-field testing employed visualization techniques and Particle Image Velocimetry (PIV). Heat transfer testing involved measurements of the single-phase heat transfer coefficient downstream of the spacer grid. These test results were used to compare with CFD predictions. Among the parameters optimized in the CFD models based on this comparison with data include computational mesh, turbulence model, and boundary conditions. As an outcome of this effort, a methodology was developed for CFD modeling that provides confidence in the numerical results. (authors)

  3. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  4. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  5. Status and future perspectives of PWR and comparing views on WWER fuel technology

    International Nuclear Information System (INIS)

    Weidinger, H.

    2003-01-01

    The main purpose of this paper is to give an overview on status and future perspectives of the Western PWR fuel technology. For easer understanding and correlating, some comparing views to the WWER fuel technology are provided. This overview of the PWR fuel technology of course can not go into the details of the today used designs of fuel, fuel rods and fuel assemblies. However, it tries to describe the today achieved capability of PWR fuel technology with regard to reliability, efficiency and safety

  6. CORD, PWR Core Design and Fuel Management

    International Nuclear Information System (INIS)

    Trkov, Andrej

    1996-01-01

    1 - Description of program or function: CORD-2 is intended for core design applications of pressurised water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refuelling). 2 - Method of solution: The calculations are performed at the cell level with a lattice code in the supercell approximation to generate the single cell cross sections. Fuel assembly cross section homogenization is done in the diffusion approximation. Global core calculations can be done in the full three-dimensional cartesian geometry. Thermohydraulic feedbacks can be accounted for. The Effective Diffusion Homogenization method is used for generating the homogenized cross sections. 3 - Restrictions on the complexity of the problem: The complexity of the problem is selected by the user, depending on the capacity of his computer

  7. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  8. Design criteria for confidence in the manufacture of BWR fuel rods

    International Nuclear Information System (INIS)

    Anantharaman, K.; Basu, S.; Anand, A.K.; Mehta, S.K.

    Based on the experience of fuel manufacture for BWR type reactors in India, the parameters which need stringent quality control, are discussed. The design specifications of the fuel rods as well as the cladding material and tubes are reported. The defect mechanisms to be taken into account and the fuel failure in reference to the variation of mechanical properties of the cladding are also described. (K.B.)

  9. Fuel assembly for pressure loss variable PWR type reactor

    International Nuclear Information System (INIS)

    Yoshikuni, Masaaki.

    1993-01-01

    In a PWR type reactor, a pressure loss control plate is attached detachably to a securing screw holes on the lower surface of a lower nozzle to reduce a water channel cross section and increase a pressure loss. If a fuel assembly attached with the pressure loss control plate is disposed at a periphery of the reactor core where the power is low and heat removal causes no significant problem, a flowrate at the periphery of the reactor core is reduced. Since this flowrate is utilized for removal of heat from fuel assemblies of high powder at the center of the reactor core where a pressure loss control plate is not attached, a thermal limit margin of the whole reactor core is increased. Thus, a limit of power peaking can be moderated, to obtain a fuel loading pattern improved with neutron economy. (N.H.)

  10. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  11. Scope and procedures of fuel management for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Yao Zenghua

    1997-01-01

    The fuel management scope of PWR nuclear power plant includes nuclear fuel purchase and spent fuel disposal, ex-core fuel management, in-core fuel management, core management and fuel assembly behavior follow up. A suit of complete and efficient fuel management procedures have to be created to ensure the quality and efficiency of fuel management work. The hierarchy of fuel management procedure is divided into four levels: main procedure, administration procedure, implement procedure and technic procedure. A brief introduction to the fuel management scope and procedures of PWR nuclear power plant are given

  12. Fuel rod D07/B15 from Ringhals 2 PWR: Source material for corrosion/leach tests in groundwater. Fuel rod/pellet characterization program. Pt. 1

    International Nuclear Information System (INIS)

    Forsyth, R.

    1987-03-01

    A joint SKB/STUDSVIK experimental program to determine the corrosion rates and to establish the corrosion mechanisms of spent UO 2 fuel in groundwater under both oxidizing and reducing conditions is in progress in the Hot Cell Laboratory of Studsvik Energiteknik AB. High burnup fuel of both BWR and PWR type are studied. Characterization of the spent fuel at both rod and pellet level is an important part of the experimental program. Experiments on PWR fuel have been concentrated so far on specimens from one rod, manufacturer's number 03688, which had occupied position B15 in assembly D07. This assembly had been irradiated for 5 cycles in the Ringhals 2 reactor between 1977 and 1983. The calculated assembly burnup was 41.3 MWd/kg U. The present report is a collection of separate reports describing those items in the characterization program which have been performed so far. No overall summary of the experimental results is given here, and the report should be viewed as a collection of reference data. (orig.)

  13. On site PWR fuel inspection measurements for operational and design verification

    International Nuclear Information System (INIS)

    1996-01-01

    The on-site inspection of irradiated Pressurized Water Reactor (PWR) fuel and Non-Fuel Bearing Components (NFBC) is typically limited to visual inspections during refuelings using underwater TV cameras and is intended primarily to confirm whether the components will continue in operation. These inspections do not normally provide data for design verification nor information to benefit future fuel designs. Japanese PWR utilities and Nuclear Fuel Industries Ltd. designed, built, and performed demonstration tests of on-site inspection equipment that confirms operational readiness of PWR fuel and NFBC and also gathers data for design verification of these components. 4 figs, 3 tabs

  14. Optimization of axial enrichment and gadolinia distributions for BWR fuel under control rod programming, (2)

    International Nuclear Information System (INIS)

    Hida, Kazuki; Yoshioka, Ritsuo

    1992-01-01

    A method has been developed for optimizing the axial enrichment and gadolinia distributions for the reload BWR fuel under control rod programming. The problem was to minimize the enrichment requirement subject to the criticality and axial power peaking constraints. The optimization technique was based on the successive linear programming method, each linear programming problem being solved by a goal programming algorithm. A rapid and practically accurate core neutronics model, named the modified one-dimensional core model, was developed to describe the batch-averaged burnup behavior of the reload fuel. A core burnup simulation algorithm, employing a burnup-power-void iteration, was also developed to calculate the rigorous equilibrium cycle performance. This method was applied to the optimization of axial two- and 24-region fuels for demonstrative purposes. The optimal solutions for both fuels have proved the optimality of what is called burnup shape optimization spectral shift. For the two-region fuel with a practical power peaking of 1.4, the enrichment distribution was nearly uniform, because a bottom-peaked burnup shape flattens the axial power shape. Optimization of the 24-region fuel has shown a potential improvement in BWR fuel cycle economics, which will guide future advancement in BWR fuel designs. (author)

  15. Validating Westinghouse atom 16 x 16 and 18 x 18 PWR fuel performance

    International Nuclear Information System (INIS)

    Andersson, S.; Gustafson, J.; Jourdain, P.; Lindstroem, L.; Hallstadius, L.; Hofling, C.G.

    2001-01-01

    Westinghouse Atom designs and fabricates PWR fuel for all major European fuel types: 17 x 17 standard (12 ft) and 17 x 17 XL (14 ft) for Westinghouse type PWRs, and 16 x 16 and 18 x 18 fuel for Siemens type PWRs. The W Atom PWR fuel designs are based on the extensive Westinghouse CE PWR fuel experience from combustion engineering type PWRs. The W atom designs utilise basic design features from the W CE fuel tradition, such as all-Zircaloy mid grids and the proven ( 6 rod years) Guardian TM debris catcher, which is integrated in the bottom Inconel grid. Several new features have been developed to meet with stringent European requirements originating from requirements on very high burnup, in combination with low-leakage core operating strategies and high coolant temperatures. The overall reliability of the Westinghouse Atom PWR fuel is very high; no fuel failure has been detected since 1997. (orig.)

  16. A neutronic assessment of the new Spherical Cermets Fuel concept for the BWR-PB reactor

    International Nuclear Information System (INIS)

    Benchrif, A.; Chetaine, A.; Amsil, H.; Bounakhla, M.

    2010-01-01

    The tri-structural-isotopic (TRISO) fuel directly cooled by boiling light water is used in the boiling water reactor with pebble-bed coated particles (BWR-PB). At the lower coolant temperature, the TRISO fuel particles demonstrate an unacceptable irradiation swelling in the silicon carbide coating layer during a fuel cycle. So, the objectives of this paper, on the one hand is to evaluate some neutronic parameters of a new fuel concept, Spherical Cermets Fuel (SCF), for a BWR-PB reactor. On the other hand, to assess the fact of SCF fuel concept on the fuel assembly lifetime and the burn-up characteristic. All the parameters as well as Infinite Multiplication Factor, Spectrum Index, Instantaneous Conversion Ratio and Neutron Energy Spectrum was calculated then compared for the TRISO and the SCF fuel concept. It can be seen from the assessment of fuel assembly burn-up characteristics that the normalised neutron spectra of all the assembly's parts pointed out a thermal spectrum for the SCF fuel assembly's parts than the TRISO one. The SCF fuel element increase the assembly life time about 6.1 EFPY corresponding 8000 MWd/t. So, the fuel assembly can be operated for a reasonably long period without outside refuelling. The difference in the assembly lifetime might leads to SCF fuel concept adopted, because the geometry and concept of TRISO fuel particles are wholly different to SCF ones. (author)

  17. Experimental investigation of the enthalpy- and mass flow-distribution in 16-rod clusters with BWR-PWR-geometries and conditions

    International Nuclear Information System (INIS)

    Herkenrath, H.; Hufschmidt, W.; Jung, U.; Weckermann, F.

    1981-01-01

    The enthalpy- and mass-flow-distribution at the outlet of two different 16-rod cluster test sections with uniform heating in axial and radial direction under steady state conditions has been measured for the first time by simultaneous sampling of 5 from 6 present characteristic subchannels in the bundle using the isokinetic technique and analysing the outlet quantities by a calorimetic method. The test-sections are provided with typical geometrical configurations for BWR s (70 bars; test section PELCO-S) and PWR s (160 bars; test-section EUROP). The latter has also been tested under BWR conditions (70 bars) to study the influence of geometry and pressure. The results showed the abnormal behaviour of the corner subchannel under BWR typical conditions (70 bars) which could not be found for PWR conditions (160 bars) and which is only an effect of pressure and not of geometry. The analysis of the experimental data confirms the usefullness of the subchannel sampling technique for the better understanding of the complex thermohydraulic phenomena under two-phase flow conditions in multirod bundles. Calculations of subchannel resistance coefficients for both types of spacers under one-phase flow conditions have been made with a special sub-structure method which showed a rather high local value of the corner subchannel. With the local drag coefficents the total resistance of the spacer has been evaluated and agreed well with measured values under adiabatic conditions. The measured subchannel data permit a direct valuation and examination of respective computer codes in a fundamental manner which are, however, not subject of this report

  18. Subchannel analysis of a critical power test, using simulated BWR 8x8 fuel assembly

    International Nuclear Information System (INIS)

    Mitsutake, T.; Terasaka, H.; Yoshimura, K.; Oishi, M.; Inoue, A.; Akiyama, M.

    1990-01-01

    Critical power predictions have been compared with the critical power test data obtained in simulated BWR 8x8 fuel rod assemblies. Two analytical methods for the critical power prediction in rod assemblies are used in the prediction, which are the subchannel analysis using the COBRA/BWR subchannel computer code with empirical critical heat flux (CHF) correlations and the liquid film dryout estimation using the CRIPP-3F 'multi-fluid' computer code. Improvements in both the analytical methods were made for spacer effect modeling, though they were specific for application to the current BWR rod assembly type. In general a reasonable agreement was obtained, though comparisons, between the prediction and the obtained test data. (orig.)

  19. PWR fuel of high enrichment with erbia and enriched gadolinia

    International Nuclear Information System (INIS)

    Bejmer, Klaes-Håkan; Malm, Christian

    2011-01-01

    Today standard PWR fuel is licensed for operation up to 65-70 MWd/kgU, which in most cases corresponds to an enrichment of more than 5 w/o "2"3"5U. Due to criticality safety reason of storage and transportation, only fuel up to 5 w/o "2"3"5U enrichment is so far used. New fuel storage installations and transportation casks are necessary investments before the reactivity level of the fresh fuel can be significantly increased. These investments and corresponding licensing work takes time, and in the meantime a solution that requires burnable poisons in all pellets of the fresh high-enriched fuel might be used. By using very small amounts of burnable absorber in every pellet the initial reactivity can be reduced to today's levels. This study presents core calculations with fuel assemblies enriched to almost 6 w/o "2"3"5U mixed with a small amount of erbia. Some of the assemblies also contain gadolinia. The results are compared to a reference case containing assemblies with 4.95 w/o "2"3"5U without erbia, utilizing only gadolinia as burnable poison. The comparison shows that the number of fresh fuel assemblies can be reduced by 21% (which increases the batch burnup by 24%) by utilizing the erbia fuel concept. However, increased cost of uranium due to higher enrichment is not fully compensated for by the cost gain due to the reduction of the number assemblies. Hence, the fuel cycle cost becomes slightly higher for the high enrichment erbia case than for the reference case. (author)

  20. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  1. MELCOR Modeling of Air-Cooled PWR Spent Fuel Assemblies in Water empty Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Lopez, C.

    2013-07-01

    The OECD Spent Fuel Project (SFP) investigated fuel degradation in case of a complete Loss-Of- Coolant-Accident in a PWR spent fuel pool. Analyses of the SFP PWR ignition tests have been conducted with the 1.86.YT.3084.SFP MELCOR version developed by SNL. The main emphasis has been placed on assessing the MELCOR predictive capability to get reasonable estimates of time-to-ignition and fire front propagation under two configurations: hot neighbor (i.e., adiabatic scenario) and cold neighbor (i.e., heat transfer to adjacent fuel assemblies). A detailed description of hypotheses and approximations adopted in the MELCOR model are provided in the paper. MELCOR results accuracy was notably different between both scenarios. The reasons are highlighted in the paper and based on the results understanding a set of remarks concerning scenarios modeling is given.

  2. AREVA 10x10 BWR fuel experience feedback and on going upgrading

    International Nuclear Information System (INIS)

    Lippert, Hans Joachim; Rentmeister, Thomas; Garner, Norman; Tandy, Jay; Mollard, Pierre

    2008-01-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to boiling water reactors worldwide, representing today more than 63 000 fuel assemblies. The evolution of BWR fuel rod arrays from early 6x6 designs to the 10x10 designs first introduced in the mid 1990's yielded significant improvements in thermal mechanical operating limits, critical power level, cold shutdown margin, discharge burnup, as well as other key operational capabilities. Since first delivered in 1992, ATRIUM T M 1 0 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. This article presents in detail the operational experience consolidated by these more than 20 000 ATRIUM T M 1 0 BWR assemblies already supplied to utilities. Within the different 10x10 fuel assemblies available, the Fuel Assembly design is chosen and tailored to the operating strategies of each reactor. Among them, the latest versions of ATRIUM T M a re ATRIUM T M 1 0XP and ATRIUM T M 1 0XM fuel assemblies which have been delivered to several utilities worldwide. The article details key aspects of ATRIUM T M 1 0 fuel assemblies in terms of reliability and performance. Special attention is paid to key proven features, ULTRAFLOW T M s pacer grids, the use of part length fuel rods (PLFRs) and their geometrical optimization, water channel and load chain, upgraded features available for inclusion with most advanced designs. Regular upgrading of the product has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. Regarding thermal mechanical behavior of fuel rods, chromia (Cr2O3) doped fuel pellets, described in Reference 1, well illustrate this improvement strategy to reduce fission gas release, increase power thresholds for PCI

  3. Prediction of droplet deposition around BWR fuel spacer by FEM flow analysis

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shinichi

    1997-01-01

    The critical power of the BWR fuel assembly has been remarkably increased. That increase mainly depends on the improvement of the spacer which keeps fixed gaps between fuel rods. So far, these improvements have been carried out on the basis of what developers consider to be appropriate and the results of mockup tests of the BWR fuel assembly. However, continued reliance on these approaches for the development of a higher performance fuel assembly will prove time-consuming and costly. Therefore, it is hoped that the spacer effects for the critical power can be investigated by computer simulation, and it is significantly important to develop the critical power prediction method. Direct calculation of the two-phase flow in a BWR fuel channel s still difficult. Accordingly, a new method for predicting the critical power was proposed. Our method consists of CFD (computer fluid dynamics) code based on the single-phase flow analysis method and the subchannel analysis code. To verify our method, the critical power predictions for various spacer geometries were performed. The predicted results of the critical power were compared with the experimental data. The result of the comparison showed a good agreement and the applicability of our method for various spacer geometries. (author)

  4. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning

    International Nuclear Information System (INIS)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-01-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  5. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly

    International Nuclear Information System (INIS)

    Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner

    2005-01-01

    Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the

  6. PWR fuel physico chemistry. Improvements of the Sage code to compute thermochemical balance in PWR fuel

    International Nuclear Information System (INIS)

    Garcia, P.; Baron, D.; Piron, J.P.

    1993-02-01

    A physicochemical survey of high burnup fuel has been undertaken in the context of a 3-party action (CEA Cadarache - EDF/DER - FRAMATOME). One of the tasks involved consists in adapting the SAGE code for assessment of the thermochemical equilibria of fission products in solution in the fuel matrix. This paper describes the first stage of this task. Even if other improvements are planned, the oxid oxygen potentials are yet properly reproduced for the simulated burnup. (authors). 63 figs., 4 tabs., 41 refs

  7. Fuel Cycle Cost Calculations for a 120,000 shp PWR for Ship Propulsion. RCN Report

    International Nuclear Information System (INIS)

    Dekker, N.H.; Foggi, C.; Giacomazzi, G.

    1972-02-01

    A parametric study of the fuel cycle costs for a 120,000 SHP PWR for ship propulsion has been carried out. Variable parameters are: fuel pellet diameter, moderating ratio and refuelling scheme. Minimum fuel cycle costs can be obtained at moderating ratios of about 2.2. Both fuel cycle costs and reactor control requirements favour the two batch core. (author)

  8. Prototypical fabrication of PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, Byung Ku; Kang, Hee Yung; Lee, Chung Young; Jeon, Kyeong Lak; Lee, Bum Soo

    1985-02-01

    This report describes about the safety analysis for the spent fuel shipping cask, which is used to transfer a single fuel assembly discharged from PWR in operation in Korea. The contents cover the methods and the results of structural, thermal, thermo-hydraulic, radiation shield and criticality detail analysis. The safety evaluation has been made under the normal transportation and hypothetical accident conditions such as 30ft free drop, puncture, fire, immersion, penetration, corner drop, etc,. Some corrections in design are made, and a brief information for fabrication and transportation are obtained by the use of a 1/6 scale model. The design is based on one year cooling time of the spent fuel with 40,000 MWT/MTU maximum burnup, which gives 7.2KW decay heat and 1.6x10 6 ci/hr radiation intensity. The cask is composed of main body with the double closures, impact limiter and fuel basket. The inner shell, inner closure and valves constitute the pressure boundary of the containment. The inner, intermediate and outer shells, upper and lower forgings are made of stainless steel which compose the main body with lead for gamma shield and 50% ethylene glycol for neutron shield. The impact limiters are made of balsa wood on both end sides of the cask to protect the cask from a sudden shocks in accident during the transportation. The analysis results show that the cask is proved to retain its structural integrity within allowable stress and to be safe under the normal and hypothetical accident conditions, and the maximum dose rates of radiation at 2m distance from the surface of the cask are less than the required values. The weight will be 23.2tons in dry and 27.8 tons in wet with fuel loaded. All the design data, calculated results for the structural integrity, shield and thermal analysis are shown in this report with the basic drawings. (Author)

  9. Connection between end plates and rods in a BWR fuel element

    International Nuclear Information System (INIS)

    Cali', G.P.

    1975-01-01

    The problem of the connection between the end plates and the rods of a BWR fuel element is analytically formulated. The behaviour of the springs coupling the rods with the upper plate is analyzed with particular detail since the deformation of these springs affects the forces at the interface of the fuel element structure components. A tool is given to design the springs according to some considerations regarding the mechanical strength of the interacting components as well as the influence of the possible geometrical unevennes of the system that can arise during the fuel element lifetime. (Cali', G.P.)

  10. DUPIC fuel fabrication using spent PWR fuels at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Yang, Myung Seung; Ko, Won Il and others

    2000-12-01

    This document contains DUPIC fuel cycle R and D activities to be carried out for 5 years beyond the scope described in the report KAERI/AR-510/98, which was attached to Joint Determination for Post-Irradiation Examination of irradiated nuclear fuel, by MOST and US Embassy in Korea, signed on April 8, 1999. This document is purposely prepared as early as possible to have ample time to review that the over-all DUPIC activities are within the scope and contents in compliance to Article 8(C) of ROK-U.S. cooperation agreement, and also maintain the current normal DUPIC project without interruption. Manufacturing Program of DUPIC Fuel in DFDF and Post Irradiation Examination of DUPIC Fuel are described in Chapter I and Chapter II, respectively. In Chapter III, safeguarding procedures in DFDF and on-going R and D on DUPIC safeguards such as development of nuclear material accounting system and development of containment/surveillance system are described in details.

  11. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles. Appendixes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    The appendixes present the calculations that were used to derive the release factors discussed for each fuel cycle facility in Volume I. Appendix A presents release factor calculations for a surface mine, underground mine, milling facility, conversion facility, diffusion enrichment facility, fuel fabrication facility, PWR, BWR, and reprocessing facility. Appendix B contains additional release factors calculated for a BWR, PWR, and a reprocessing facility. Appendix C presents release factors for a UO 2 fuel fabrication facility

  12. Seismic evaluation of BWR spent fuel storage racks using actual damping by vibration test in water

    International Nuclear Information System (INIS)

    Yamasaki, Hiroto; Iwakura, Shigeyoshi; Imaoka, Tetsuo; Okumura, Kazue; Orita, Syuichi; Namita, Yoshio

    2010-01-01

    Damping value for BWR spent fuel storage racks has been used 1 percent damping, which is applied to welded steel structures in air as defined JEAG4601. However, it is considered that the actual damping is higher than that of the above mentioned, because of its underwater installation. This report shows the actual damping value of the Check Arrayed Rack by vibration test in water and Evaluation by the analysis of rack using actual damping. (author)

  13. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  14. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    Xie Zhongsheng; Huo Xiaodong

    2002-01-01

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  15. Improvements of nuclear fuel management in pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    1978-07-01

    The severe variations to which the different elements contributing to the determination of the fuel cycle cost are subjected have led to a reopening of the problem of ''optimization'' of nuclear fuel management. The increase in costs of uranium ore, isotope separation work units (swu), reprocessing, the political implications of proliferation associated with the employment of reprocessing operations have been at the origin of a reassessment of present-day management. It therefore appeared to be appropriate to study variants with respect to a reference mode represented by the management of the PWR 900 MWe systems, without burnable poison in the cycle at equilibrium (Case 3 of Table 1). In order to obtain a complete view of impacts of such modifications, computations were carried out as far as the appraisal of the cycle cost and with reprocessing. There has likewise been added to this the estimate of the gain anticipated from certain improvements in the neutron balance contributed at the level of the lattice

  16. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.; DeHart, M.D.

    1999-01-01

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  17. Fuel rod for use in BWR type reactor

    International Nuclear Information System (INIS)

    Takeuchi, Kiyoshi.

    1989-01-01

    A hollow intermediate end plug is disposed to a plenum portion of a fuel rod and a plenum spring is disposed between the end plug and the upper end of a fuel pellet. Then, a hollow portion is disposed between the intermediate end plug and an upper end plug. Thus, since a only a non exothermic portion is present from the intermediate end plug to the upper end plug, oxidation, corrosion, etc. to the fuel can are not caused so much as in the exothermic portion. Accordingly, the wall thickness of the fuel may be reduced to such a extent as only capable of withstanding the external pressure by coolants and the increasing inner pressure due to the release of FP gases and, accordingly, the wall thickness can be reduced as compared with that of the fuel portion in the fuel can. Further, since the power density per unit length of the fuel rod is reduced for fuels with increased number of fuel rods, it is possible to design so as to reduce the release amount of FP gases thereby decreasing the plenum volume. Further, since the surface area in the coolant phase stream portion is reduced, it can be expected for decreasing the pressure loss of fuels and accompanying effect for improving the channel stability. (T.M.)

  18. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  19. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  20. Fuel assembly for use in BWR type reactor

    International Nuclear Information System (INIS)

    Inaba, Yuzo.

    1988-01-01

    Purpose: To attain the reduction of neutron irradiation amount to control rods by the improvement in the reactor shutdown margin and the improvement of the control rod worth, by enhancing the arrangement of burnable poisons. Constitution: The number of burnable poison-incorporated fuel rods present in the outer two rows along the sides in adjacent with a control rod among the square lattice arrangement in a fuel assembly is decreased to less than 1/4 for that of total burnable poison-incorporated fuel rods, while the remaining burnable posion-incorporated fuel rods are arranged in the region other than above (that is, those regions not nearer to the control rod). Thus, even if a sufficient number of burnable poison to prolong the controlling effect for the reactivity with the burnable contents as the fuel assembly are disposed, only the burnable poison -incorporated fuel rods by the number less than 1/4 for that of the total burnable poison-incorporated fuel rods are present near the control rod of the fuel assembly. Accordingly, the control rod worth at the initial stage of the burning is increased at both high and normal temperatures. (Kawakami, Y.)

  1. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    International Nuclear Information System (INIS)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data

  2. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  3. A new coupled system for BWR nuclear fuel management

    International Nuclear Information System (INIS)

    Castillo, A.; Ortiz-Servin, J.J.; Montes-Tadeo, J.L.; Perusquia, R.; Rizos, R.L.M.

    2015-01-01

    In this work, a system to solve four stages of the fuel management problem is showed.The system uses different heuristic techniques to solve each stage of that area, and this problem is solved in a coupled way. Considered problems correspond to the following designs: fuel lattice, fuel assembly, fuel reload and control rod patterns. Even though, each stage of the problem can have its own objective function, the complete problem was solved using a multi-objective function. The solution strategy is to solve each stage of design in an iterative process, taking into account previous results for the next stage, until to achieve a complete solution. The solution strategy to solve the coupled problem is the following: the first solved stage is the fuel lattice design, the second one is fuel assembly design, finally an internal loop between both fuel reload design and control rod pattern design is carried out.For this internal loop, a seed reload using Haling principle is generated. The obtained results showed the advantage to solve the whole problem in a coupled way. (author)

  4. Investigations on the thermal-hydraulics of a natural circulation cooled BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kok, H.V.; Hagen, T.H.J.J. van der; Mudde, R.F. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    A scaled natural circulation loop facility has been built after the Dodewaard Boiling Water Reactor, which is the only operating natural circulation cooled BWR in the world. The loop comprises one fuel assembly, a riser with a downcomer and a condenser with a cooling system. Freon-12 is used as a scaling liquid. This paper reports on the first measurements done with this facility. Quantities like the circulation flow, carry-under and the void-fraction have been measured as a function of power, pressure, liquid level, riser length, condensate temperature and friction factors. The behavior of the circulation flow can be understood by considering the driving force. Special attention has been paid to the carry-under, which has been shown to have a very important impact on the dynamics of a natural circulation cooled BWR.

  5. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  6. Finite element analysis of BWR fuel channel buckling during a seismic event

    International Nuclear Information System (INIS)

    Kinoshita, Mika; Iwamoto, Yuji; Ledford, Kevin; Cantonwine, Paul

    2014-01-01

    This paper documents the predicted response of three BWR fuel channel designs in bending using a typical moment profile for GNF fuel designs. The bending performance of the fuel channel is predicted using ANSYS, a finite element modeling tool. Specifically, linear and non-linear buckling analyses were performed to determine the onset of elastic buckling, which causes a wavy structure on the compression face in bending that might also increase channel – control blade friction, and to determine to onset of channel collapse, which causes permanent deformation and would inhibit control rod insertion. The three channel designs considered in this paper are the 0.080 inch uniform channel, the 0.100 inch uniform channel and the 0.120 inch uniform channel at the beginning of fuel life (BOL) and at the end of fuel life (EOL). (author)

  7. Analysis of the moderating ratio in BWR fuels

    International Nuclear Information System (INIS)

    Gomez, A.; Xolocostli, V.; Alonso, G.

    2001-01-01

    In all different light water nuclear reactors is very important the fuel assembly design. It has to be designed to achieve safety and efficiency performance in an economical way. The moderating ratio plays a very important role because an adequate election can provide an optimal energy production making the fuel assembly more efficient. This work analyze the moderation ratio as a function of the fuel assembly enrichment and ifs burnup, based on this study the optimal moderation ratio are obtained. Furthermore, based on numerical relations some simulation schemes are proposed to describe the behavior of the infinite multiplication factor as a function of the moderating ratio for a given fuel assembly enrichment at zero burnup. (Author)

  8. Interactive color graphics system for BWR fuel management

    International Nuclear Information System (INIS)

    Reese, A.P.

    1986-01-01

    An interactive color graphics system has been developed by the General Electric Company for fuel management engineers. The system consists of a Hewlett-Packard color graphics workstation in communication with a host mainframe. The system aids in such tasks as fuel cycle optimization, refueling bundle shuffle and control blade sequence design. Since being installed in 1983 turn-around time for a typical cycle reload and control blade pattern design has been reduced by a factor of four

  9. Seismic behaviour of PWR fuel assemblies model and its validation

    International Nuclear Information System (INIS)

    Queval, J.C.; Gantenbein, F.; Brochard, D.; Benjedidia, A.

    1991-01-01

    The validity of the models simulating the seismic behaviour of PWR cores can only be exactly demonstrated by seismic testing on groups of fuel assemblies. Shake table seismic tests of rows of assembly mock-ups, conducted by the CEA in conjunction with FRAMATOME, are presented in reference /1/. This paper addresses the initial comparisons between model and test results for a row of five assemblies in air. Two models are used: a model with a single beam per assembly, used regularly in accident analyses, and described in reference /2/, and a more refined 2-beam per assembly model, geared mainly towards interpretation of test results. The 2-beam model is discussed first, together with parametric studies used to characterize it, and the study of the assembly row for a period limited to 2 seconds and for different excitation levels. For the 1-beam model assembly used in applications, the row is studied over the total test time, i.e twenty seconds, which covers the average duration of the core seismic behaviour studies, and for a peak exciting acceleration value at 0.4 g, which corresponds to the SSE level of the reference spectrum

  10. The deformation of PWR fuel in a LOCA

    International Nuclear Information System (INIS)

    Mann, C.A.; Hindle, E.D.; Parsons, P.D.

    1982-04-01

    Available world-wide published data on the deformation of PWR fuel in a loss-of-coolant accident are reviewed. Adequate data exist for the oxidation of Zircaloy up to about 1500 0 C; data are increasingly sparse above this temperature and lacking above the melting point. The US NRC criteria for embrittlement are discussed and considered adequate for undeformed cladding, though they may be less so for deformed thinned material. Cladding deformation and the factors controlling it are considered in the light of data from the US, Germany, Japan and the UK. It is concluded that strains in the range 30% - 70% can be produced in experiments simulating LOCA conditions. The behaviour of cladding is strongly influenced by the spatial distribution of temperature, which is in turn dependent on heat transfer mechanisms at the surfaces of the cladding. No realistic experiment, i.e. one with a multirod array and simulated cooling, has produced deformations which would inhibit quenching. Such experiments have not, however, as yet covered the entire range of conditions which might obtain following a LOCA. (author)

  11. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Majed, M.; Morback, G.; Wiman, P. [ABB Atom AB, Vasteras (Sweden)] [and others

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give large advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.

  12. Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Carmona, Roberto; Oropeza, Ivonne P.

    2007-01-01

    An optimization methodology based on the Genetic Algorithms (GA) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The optimization algorithm was linked to the HELIOS code to evaluate the neutronic parameters included in the objective function. The goal is to search for a fuel lattice with the lowest average enrichment, which satisfy a reactivity target, a local power peaking factor (PPF), lower than a limit value, and an average gadolinia concentration target. The methodology was applied to the design of a 10 x 10 fuel lattice, which can be used in fuel assemblies currently used in the two BWRs operating at Mexico. The optimization process showed an excellent performance because it found forty lattice designs in which the worst one has a better neutronic performance than the reference lattice design. The main contribution of this study is the development of an efficient procedure for BWR fuel lattice design, using GA with an objective function (OF) which saves computing time because it does not require lattice burnup calculations

  13. Nuclear fuel activity with minor actinides after their useful life in a BWR

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2016-09-01

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10 15 Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  14. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trianti, N.; Su' ud, Z.; Riyana, E. S. [Nuclear Physics and Biophysics Research Division Department of Physics - Institut Teknologi Bandung (ITB) Jalan Ganeca 10 Bandung 40132 (Indonesia)

    2012-06-06

    A preliminary design study for the utilization of thorium added with {sup 231}Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of {sup 233}U to {sup 231}Pa in burn-up process. Optimizations of the content of {sup 231}Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 {approx} 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  15. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Castillo M, J.A.; Valle G, E. del

    2004-01-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  16. Sphere-pac versus pellet UO2 fuel in de Dodewaard BWR

    International Nuclear Information System (INIS)

    Linde, A. van der.

    1989-04-01

    Comparative testing of UO 2 sphere-pac and pellet fuel rods under LWR conditions has been jointly performed by the Netherlands Utilities Research Centre (KEMA) in Arnhem, the Netherlands Energy Research Foundation (ECN) at Petten and the Netherlands Joint Nuclear Power Utility (GKN) at Dodewaard. This final report summarizes the highlights of this 1968-1988 program with strong emphasis on the fuel rods irradiated in the Dodewaard BWR. The conclusion reached is that under normal LWR conditions sphere-pac UO 2 in LWR fuel rods offers better resistance against stress corrosion cracking of the cladding, but that under fast, single step, power ramping conditions pellet UO 2 in LWR fuel rods has a better resistance against hoop stress failure of the cladding. 128 figs., 36 refs., 19 tabs

  17. Feasibility studies of computed tomography in partial defect detection of spent BWR fuel

    International Nuclear Information System (INIS)

    Levai, F.; Tikkinen, J.; Tarvainen, M.; Arlt, R.

    1990-10-01

    Feasibility studies were made for tomographic reconstruction of a cross-sectional activity distribution of a spent nuclear fuel assembly. The purpose was to determine the number of fuel rods (pins) and localize the positisons where pins are missing. The activity distribution map showing the locations of fuel rods in the assembly was reconstructed. The theoretical part of this work consists of simulation of image reconstruction based on theoretically calculated data from a reference assembly model. Evaluation of different image reconstruction techniques was made. Measurements were made in real facility conditions. Gamma radiation from an irradiated 8 x 8 - 1 BWR fuel assembly was measured through a narrow custom made collimator from different angles and positions. The measured data set was used as projections for reconstructing the activity profile of the assembly in cross-sectional plane

  18. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Nuenighoff, K.; Allelein, H.J. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Sicherheitsforschung und Reaktortechnik (IEK-6)

    2011-07-01

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  19. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  20. Cladding tube of fuel rod for a BWR type reactor

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Fujie, Kunio; Kuwahara, Heikichi; Hirai, Tadamasa; Kakizaki, Kimio.

    1976-01-01

    Object: To form a cladding tube wall with tunnels in communication with the exterior through a number of small-diameter openings to rapidly disperse a large quantity of heat thereby providing high density of the fuel rod. Structure: Tunnels adjacent to each other are provided under the skin in contact with cooling liquid of a cladding tube, and a number of openings through which said tunnels and the periphery of the cladding tube are placed in communication are formed, said openings each having its section smaller than that of said tunnel. With this arrangement, the cooling water entered the tunnel through some of small diameter openings absorbs heat of the fuel rod to be vaporized, which is flown out into the cooling water through the other small diameter openings and formed into vapor bubbles which move up for release of heat. (Taniai, N.)

  1. ORIGEN-2 libraries based on JENDL-3.2 for PWR-MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hideki; Onoue, Masaaki; Tahara, Yoshihisa [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2001-08-01

    A set of ORIGEN-2 libraries for PWR MOX fuel was developed based on JENDL-3.2 in the Working Group on Evaluation of Nuclide Production, Japanese Nuclear Data Committee. The calculational model generating ORIGEN-2 libraries of PWR MOX is explained here in detail. The ORIGEN-2 calculation with the new ORIGEN-2 MOX library can predict the nuclides contents within 10% for U and Pu isotopes and 20% for both minor actinides and main FPs. (author)

  2. Intermediate flow mixing nonsupport grid for BWR fuel assembly

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    An intermediate flow mixing nonsupport grid is described for use in a nuclear reactor fuel assembly containing an array of elongated fuel rods. The grid comprises: (a) interleaved inner straps arranged in an egg-crate configuration to define inner cell openings for receiving respective ones of the fuel rods. The inner straps have outer terminal end portions; (b) an outer peripheral strap attached to the respective terminal end portions of the inner straps to define perimeter cell openings for receiving other ones of the fuel rods. The inner straps and outer strap together have opposite upstream and downstream sides; (c) a first group of mixing vanes disposed at the downstream side and being attached on portions of the outer strap and on respective portions of the inner straps. Together with the outer strap portions, they define the perimeter cell openings. Each of the mixing vanes of the first group extend generally in a downstream direction and inwardly toward the perimeter cell openings for deflecting coolant flowing; and (d) a second group of mixing vanes disposed at the downstream side and being attached on other portions of the inner straps. Together with the respective portions, they define the inner cell openings. Each of the mixing vanes of the second group extend generally in a downstream direction and inwardly toward the inner cell openings for deflecting coolant flowing therethrough; (e) the mixing vanes of the second group are substantially smaller in size than the mixing vanes of the first group so as to generate substantially less turbulence in the portions of the coolant flowing through the inner cell openings than in the portions of the coolant flowing through the perimeter cell openings

  3. The optimum fuel and power distribution for a PWR burnup cycle

    International Nuclear Information System (INIS)

    Stillman, J.A.

    1989-01-01

    A method was developed to determine the optimum fuel and power distributions for a PWR burnup cycle. The backward diffusion calculation [1] and the Core-wise Green's Function [2] method were used for the core model which provided analytic derivatives for solving the nonlinear optimization problem using successive linear programming [3] methods. The solution algorithm consisted of a reverse depletion strategy which begins at the end of cycle and solves simultaneously for the optimal fuel and burnable absorber distributions while the core is depleted to the beginning of cycle. The resulting optimal solutions minimize the required fissile fuel inventory and burnable absorber loading for a PWR

  4. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  5. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  6. On the channel box for the fuel bundle of BWR

    International Nuclear Information System (INIS)

    Yokoyama, Hiroomi; Yamamoto, Takeo

    1976-01-01

    Channel boxes play the important roles of making coolant flow uniform and protecting fuel rods as the component of fuel assemblies for BWRs. About ten years ago, the domestic production of channel boxes was first investigated, and now, the original technology has been developed, and the channel boxes sufficiently satisfying the required quality can be produced. The actual experience by being charged in reactors has also been accumulated. At present, the supply capacity is almost sufficient to meet the domestic demand, and the future increase of demand can be dealt with promptly. The channel boxes are made of Zircaloy-4 plates which are favorable in view of neutron absorption, and are the boxes with 138 mm hollow square section, 2 mm thickness, and 4240 mm length. Two channels were welded together and made into a box. In order to eliminate the residual stress caused during the manufacture, high temperature heating with an electric furnace was adopted. The measurement of dimensions and the inspection of appearance of the channel boxes after irradiation proved that they were rather superior to imported ones. The production processes, the system for the quality guarantee, and the quality control in the Kobe Steel Ltd. are explained. The test and inspection are carried out at the time of accepting outside products, before starting the production, after the completion of longitudinal welding and after the completion of production. (Kako, I.)

  7. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  8. Standard for assessment of fuel integrity under anticipated operational occurrences in BWR power plant:2002

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Suzuki, Riichiro; Komura, Seiichi; Kudo, Yoshiro; Yamanaka, Akihiro; Oomizu, Satoru; Kitamura, Hideya; Nagata, Yoshifumi

    2003-01-01

    To secure fuel integrity, a Light Water Reactor (LWR) core is designed so that no boiling transition (BT) should take place in fuel assemblies and excessive rise in fuel cladding temperature due to deteriorated that transfer should be avoided in Anticipated Operational Occurrences (AOO). In some AOO in a Boiling Water Reactor (BWR), however, the rise in reactor power could be limited by SCRAM or void reactivity effect. Recent studies have provided accumulated knowledge that even if BT takes place in fuel assemblies, the rise in fuel cladding temperature could be so small that it will not threat to fuel integrity, as long as the BT condition terminates within a short period of time. In addition, appropriate methods have been developed to evaluate the cladding temperature during dryout. This standard provides requirements in the assessment of fuel integrity under AOO in which limited-BT condition is temporarily reached and the propriety of reusing a fuel assembly that has experienced limited-BT condition. The standard has been approved by the Atomic Energy Society of Japan following deliberation by impartial members for two and half years. It is now expected that this standard will provide an effective measure for the rational expansion of fuel design and operational margin. (author)

  9. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  10. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D. [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study.

  11. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    International Nuclear Information System (INIS)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D.

    2012-01-01

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study

  12. Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Onishi, Yoichi; Minato, Akihiko; Ichikawa, Ryoko; Mashara, Yasuhiro

    2011-01-01

    It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed

  13. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    Gonzalez C, J.; Martin del Campo M, C.

    2003-01-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  14. BWR simulation in a stationary state for the evaluation of fuel cell design

    International Nuclear Information System (INIS)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A.

    2014-10-01

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  15. Numerical simulation of progressive BWR fuel inlet orifices

    International Nuclear Information System (INIS)

    Sara Lundgren; Hernan Tinoco; Aleksander Pohl; Wiktor Frid

    2005-01-01

    Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to the two

  16. Numerical simulation of progressive BWR fuel inlet orifices

    Energy Technology Data Exchange (ETDEWEB)

    Sara Lundgren; Hernan Tinoco [Forsmarks Kraftgrupp AB, 742 03 Oesthammar (Sweden); Aleksander Pohl; Wiktor Frid [The Royal Institute of Technology, Dept. Energy Technology, SE-100 44 Stockholm (Sweden)

    2005-07-01

    Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to

  17. Power ramp testing method for PWR fuel rod at research reactor

    International Nuclear Information System (INIS)

    Zhou Yidong; Zhang Peisheng; Zhang Aimin; Gao Yongguang; Wang Huarong

    2003-01-01

    A tentative power ramp test for short PWR fuel rod has been conducted at the Heavy Water Research Reactor (HWRR) in China Institute of Atomic Energy (CIAE). The test fuel rod was cooled by the circulating water in the test loop. The power ramp was realized by moving solid neutron-absorbing screen around the fuel rod. The linear power of the fuel rod increased from 220 W/cm to 340 W/cm with a power ramp rate of 20 W/cm/min. The power of the fuel rod was monitored by both in-core thermal and nuclear measurement sensors in the test rig. This test provides experiences for further developing the power ramp test methods for PWR fuel rods at research reactor. (author)

  18. Actinides record, power calculations and activity for present isotopes in the spent fuel of a BWR

    International Nuclear Information System (INIS)

    Enriquez C, P.; Ramirez S, J. R.; Lucatero, M. A.

    2012-10-01

    The administration of spent fuel is one of the more important stages of the nuclear fuel cycle, and this has become a problem of supreme importance in countries that possess nuclear reactors. Due to this in this work, the study on the actinides record and present fission products to the discharge of the irradiated fuel in a light water reactor type BWR is shown, to quantify the power and activity that emit to the discharge and during the cooling time. The analysis was realized on a fuel assembly type 10 x 10 with an enrichment average of 3.69 wt % in U-235 and the assembly simulation assumes four cycles of operation of 18 months each one and presents an exposition of 47 G Wd/Tm to the discharge. The module OrigenArp of the Scale 6 code is the computation tool used for the assembly simulation and to obtain the results on the actinides record presents to the fuel discharge. The study covers the following points: a) Obtaining of the plutonium vector used in the fuel production of mixed oxides, and b) Power calculation and activity for present actinides to the discharge. The results presented in this work, correspond at the same time immediate of discharge (0 years) and to a cooling stage in the irradiated fuel pool (5 years). (Author)

  19. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  20. The computer program ELCOM in the planning and structural analysis of PWR fuel elements: an example

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da

    1990-01-01

    Is's presented some results obtained with the ELCOM computer code, such as deflections, moments and natural frequencies, used in the design and structural analysis of PWR fuels assemblies. It's studied the behavior of these results varying the number of spacer grids, the rigidity of the joint between the fuel pin and the spacer grid, and the fuel assembly's boundary condition, considered in the analysis, in it's mounting into the core (if clamped-clamped, clamped-hinged or hinged-hinged). (author)

  1. Thermal analysis of a one-element PWR spent fuel shipping cask

    International Nuclear Information System (INIS)

    Fields, S.R.

    1979-06-01

    The transient thermal behavior of a typical one-element PWR spent fuel shipping cask, following a hypothetical accident and fire, has been simulated. The objectives of the study were to determine the transient behavior of the cask and its spent fuel primary coolant through the pressure relief system and possible fuel pin clad failure due to overheating following loss of coolant. 15 figures, 7 tables

  2. VANTAGE 5 PWR fuel assembly demonstration program at Virgil C. Summer nuclear station

    International Nuclear Information System (INIS)

    Warner, D.C.; Orr, W.L.

    1985-01-01

    VANTAGE 5 is an improved PWR fuel product designed and manufactured by Westinghouse Electric Corporation. The VANTAGE 5 fuel design features integral fuel burnable absorbers, intermediate flow mixer grids, axial blankets, high burnup capability, and a reconstitutable top nozzle. A demonstration program for this fuel design commenced in late 1984 in cycle 2 of the Virgil C. Summer Nuclear Station. Objectives for VANTAGE 5 fuel are reduced fuel cycle costs, better core operating margins, and increased design and operating flexibility. Inspections of the VANTAGE 5 demonstration assemblies are planned at each refueling outage

  3. Experimental data report for Test TS-2 reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo

    1993-02-01

    This report presents experimental data for Test TS-2 which was the second test in a series of Reactivity Initiated Accident (RIA) condition test using pre-irradiated BWR fuel rods, performed at the Nuclear Safety Research Reactor (NSRR) in February, 1990. Test fuel rod used in the Test TS-2 was a short sized BWR (7x7) type rod which was fabricated from a commercial rod irradiated at Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79% and a burnup of 21.3Gwd/tU (bundle average). A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 72±5cal/g·fuel (66±5cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and, results of pre and post pulse irradiation examinations are described in this report. (author)

  4. Optimization of fuel reloads for a BWR using the ant colony system

    International Nuclear Information System (INIS)

    Esquivel E, J.; Ortiz S, J. J.

    2009-10-01

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  5. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    Tanabe, A.; Yamamoto, T.; Shinfuku, K.; Nakamae, T.

    1992-01-01

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  6. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide

    International Nuclear Information System (INIS)

    Gallardo V, J. M.; Morales S, J. B.

    2013-10-01

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO 2 ) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO 2 mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  7. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  8. Fuel loading and control rod patterns optimization in a BWR using tabu search

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Ortiz, Juan Jose; Montes, Jose Luis; Perusquia, Raul

    2007-01-01

    This paper presents the QuinalliBT system, a new approach to solve fuel loading and control rod patterns optimization problem in a coupled way. This system involves three different optimization stages; in the first one, a seed fuel loading using the Haling principle is designed. In the second stage, the corresponding control rod pattern for the previous fuel loading is obtained. Finally, in the last stage, a new fuel loading is created, starting from the previous fuel loading and using the corresponding set of optimized control rod patterns. For each stage, a different objective function is considered. In order to obtain the decision parameters used in those functions, the CM-PRESTO 3D steady-state reactor core simulator was used. Second and third stages are repeated until an appropriate fuel loading and its control rod pattern are obtained, or a stop criterion is achieved. In all stages, the tabu search optimization technique was used. The QuinalliBT system was tested and applied to a real BWR operation cycle. It was found that the value for k eff obtained by QuinalliBT was 0.0024 Δk/k greater than that of the reference cycle

  9. Fuel rod response to BWR power oscillations during anticipated transient without scram

    International Nuclear Information System (INIS)

    Cunningham, M.; Scott, H.

    1998-01-01

    The US NRC is examining fuel behaviour during a postulated BWR anticipated transient without scram (ATWS) with power oscillations to determine if current regulatory criteria are adequate. Currently, the 280 cal/g limit for RIAs is used to show that coolable geometry is maintained and pressure pulses are avoided during ATWSs. Two specific questions have now been raised about the continued use of the 280 cal/g value. First, this value was derived from energy deposition values whereas the regulatory requirements are written in terms of fuel enthalpy. The second is that fuel rod rupture with fuel dispersal has been observed in RIA tests with high bum-up fuel rods having energy deposition values well below the current limit. However, the BWR ATWS power oscillation transient is slower than a RIA power pulse, thus reducing the likelihood of failure. Therefore questions about the adequacy of the 280 cal/g limit do not necessarily imply unacceptable fuel damage occurring during such power oscillations and there is no immediate safety concern. The reported analysis, using the FRAPTRAN transient fuel rod analysis code, was thus undertaken to determine if further investigation might be appropriate and with the intention of starting some discussions about the issue. There was a comment that a limit of 100 cal/g fuel enthalpy had been mentioned following the scoping calculations but that perhaps enthalpy was not the main concern in an ATWS. It was also observed that cladding stresses are lower than in all RIA. The question was what really is the main concern. It was replied that the main concern was a question of maintaining a coolable geometry i.e. not loosing fuel particles out of the rod. And it was agreed that enthalpy may not be the important issue, rather that it previously had been used as the parameter and so had been considered. Confirmation of this presently being an evaluation and not a regulatory concern was sought and provided, it being pointed out that the NRC

  10. 3D modeling of missing pellet surface defects in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov; Williamson, R.L.; Stafford, D.S.; Novascone, S.R.; Hales, J.D.; Pastore, G.

    2016-10-15

    Highlights: • A global/local analysis procedure for missing pellet surface defects is proposed. • This is applied to defective BWR fuel under blade withdrawal and high power ramp conditions. • Sensitivity of the cladding response to key model parameters is studied. - Abstract: One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed here. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding

  11. An analysis of fuel performance cycle 20 of BWR unit 2

    International Nuclear Information System (INIS)

    Hemantha Rao, G.V.S.; Prasad, P.N.; Jayaraj, R.N.

    2008-01-01

    Nuclear Fuel Complex (NFC), an industrial unit of the Department of Atomic Energy (DAE), Government of India manufactures and supplies fuel assemblies to the two Boiling Water Reactors (BWR) at Tarapur Atomic Power Station (TAPS 1 and 2) in India which were commissioned on turnkey collaboration with GE, USA. Each fuel assembly has 36 fuel elements arranged in 6x6 square configuration. Each fuel assembly contains UO 2 pellets of different enrichments. Several improvements have been carried out over the years in the manufacture of fuel assemblies. These changes have helped in improving the fuel performance considerably. During cycle 20, the unit 2 was operating at 506/153 MWth/MWe (95.47% of rated thermal power of 530MWth) prior to shut down for refueling outage. In core sipping was completed within two days. Five leakers were identified during in core sipping. The average leaky assembly's exposure was 16,098.4 MWD/T. The minimum value of a leaky assembly's exposure was 8,591 MWD/T. Out of five assemblies, four assemblies had seen two cycles of exposure and were due for discharge. One assembly had seen single cycle. Trend of chemistry parameters for the last four cycles were within tech spec limits. Similarly trend of physics parameters for the fuel assemblies for the last cycles were also within design/tech spec limits. There were no fuel failures in the previous cycles 18 and 19. The manufacturing and QA details of the five assemblies show no deviations from the procedures and the trends are normal and within specified limits. This paper discusses the analysis of fuel failures in detail

  12. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas

    2013-01-01

    One of the most common ways to investigate new Non-Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK-CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGEN-ARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  13. PWR fuel inspection and repair technology development in the Republic of Korea

    International Nuclear Information System (INIS)

    Park, J.Y.

    1998-01-01

    As of September 1997, 10 PWRs and 2 PHWRs generate 10,320MW electricity in Korea. And another 8 PWRs and 2 PHWRs will be constructed by 2006. These will need about 400 MTU of PWR fuels and 400 MTU of PHWR fuels. To improve average burnup, thermal power, fuel usability and plant safety, better poolside fuel service technologies are strongly recommended as well as the fuel design and fabrication technology improvements. During the last twenty years of nuclear power plant operation in Korea, more than 4,000 fuel assemblies has been used. At the site, continuous coolant activity measurement, pool-side visual inspection and ultrasonic tests have been performed. Some of the fuels are damaged or failed for various reasons. Some of the defected fuels were examined in hot cell to investigate the cause of failure. Even though 30 PWR fuel assemblies were repaired by foreign engineers, fuel inspection and repair technologies are not established yet. Various kind of design for the fuel make the inspection, repair and reconstitution equipment more complex. As a result, recently, a plant to obtain overall technology for poolside fuel inspection, failed fuel repair and reconstitution through R and D activities are set forth. (author)

  14. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Area de Ingenieria en Recursos Energeticos, Iztapalapa (Mexico)

    2014-07-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  15. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    International Nuclear Information System (INIS)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.

    2014-01-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  16. Thermal analyses for the spend fuel pool of Taiwan BWR plants during the loss of cooling accident

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B-Y.; Yeh, C-L.; Wei, W-C.; Chen, Y-S., E-mail: onepicemine@iner.gov.tw, E-mail: clinyeh@iner.gov.tw, E-mail: hn150456@iner.gov.tw, E-mail: yschen@iner.gov.tw [Inst. of Nuclear Energy Research, Longtan Township, Taoyuan County, Taiwan (China)

    2014-07-01

    After the Fukushima nuclear accident, the safety of the spent fuel pool has become an important concern. In this study, thermal analysis of the spent fuel pool under a loss of cooling accident is performed. The BWR spent fuel pools in Taiwan are investigated, including the Chinshan, Kuosheng, and Lungmen plants. The transient pool temperature and level behaviors are calculated based on lumped energy balance. After the pool level drops below the top of the fuel, the peak cladding temperature is predicted by the Computational Fluid Dynamics (CFD) analysis. The influence to the cladding temperature of the uniform and checkboard fuel loading patterns is also investigated. (author)

  17. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  18. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  19. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Dias, A.F.V.

    1980-10-01

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.) [pt

  20. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  1. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Root, Margaret A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Belian, Anthony P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  2. Generation of SCALE 6 Input Data File for Cross Section Library of PWR Spent Fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Cho, Dong Keun

    2010-11-01

    In order to obtain the cross section libraries of the Korean Pressurized water reactor (PWR) spent fuel (SF), SCALE 6 code input files have been generated. The PWR fuel data were obtained from the nuclear design report (NDR) of the current operating PWRs. The input file were prepared for 16 fuel types such as 4 types of Westinghouse 14x14, 3 types of OPR-1000 16x16, 4 types of Westinghouse 16x16, and 6 types of Westinghouse 17x17. For each fuel type, 5 kinds of fuel enrichments have been considered such as 1.5, 2.0 ,3.0, 4.0 and 5.0 wt%. In the SCALE 6 calculation, a ENDF-V 44 group was used. The 25 burnup step until 72000 MWD/T was used. A 1/4 symmetry model was used for 16x16 and 17x17 fuel assembly, and 1/2 symmetry model was used for 14x14 fuel assembly The generated cross section libraries will be used for the source-term analysis of the PWR SF

  3. A new uncertainty reduction method for PWR cores with erbia bearing fuel

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Sano, Tadafumi; Kitada, Takanori; Kuroishi, Takeshi; Yamasaki, Masatoshi; Unesaki, Hironobu

    2008-01-01

    The concept of a PWR with erbia bearing high burnup fuel has been proposed. The erbia is added to all fuel with over 5% 235 U enrichment to retain the neutronics characteristics to that within 5% 235 U enrichment. There is a problem of the prediction accuracy of the neutronics characteristics with erbia bearing fuel because of the short of experimental data of erbia bearing fuel. The purpose of the present work is to reduce the uncertainty. A new method has been proposed by combining the bias factor method and the cross section adjustment method. For the PWR core, the uncertainty reduction, which shows the rate of reduction of uncertainty, of the k eff is 0.865 by the present method and 0.801 by the conventional bias factor method. Thus the prediction uncertainties are reduced by the present method compared to the bias factor method. (authors)

  4. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  5. PREP-PWR-1.0: a WIMS-D/4 pre-processor code for the generation of data for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Ball, G.

    1991-06-01

    The PREP-PWR-1.0 computer code is a substantially modified version of the PREWIM code which formed part of the original MARIA System (Report J.E.N. 543). PREP-PWR-1.0 is a comprehensive pre-processor code which generates input data for the WIMS-D/4.1 code (Report PEL 294) for PWR fuel assemblies, with or without control and burnable poison rods. This data is generated at various base and off-base conditions. The overall cross section generation methodology is described, followed by a brief overview of the model. Aspects of the base/off-base calculational scheme are outlined. Additional features of the code are described while the input data format of PREP-PWR-1.0 is listed. The sample problems and suggestions for further improvements to the code are also described. 2 figs., 2 tabs., 12 refs

  6. Radioprotection and safety for a dry storage module for bare PWR fuel elements

    International Nuclear Information System (INIS)

    Tzontlimatzin, E.

    1983-01-01

    A module for dry storage of spent fuel from PWR, after a previous cooling time of 2 years, is examined. Biological protection is obtained by 185 cm of concrete. The safety study shows the impossibility of a fast increase in temperature in case of cooling system failure because in this case the module will be cooled by natural convection or thermosiphon. A project for a storage installation consisting of 5 modules for 1500 irradiated fuel assemblies is described [fr

  7. Methods and computer programs for PWR's fuel management: Programs Sothis and Ciclon

    International Nuclear Information System (INIS)

    Aragones, J.M.; Corella, M.R.; Martinez-Val, J.M.

    1976-01-01

    Methos and computer programs developed at JEN for fuel management in PWR are discussed, including scope of model, procedures for sistematic selection of alternatives to be evaluated, basis of model for neutronic calculation, methods for fuel costs calculation, procedures for equilibrium and trans[tion cycles calculation with Soth[s and Ciclon codes and validation of methods by comparison of results with others of reference (author) ' [es

  8. Mechanical interaction between fuel pins and assemblies during LOCA in BWR

    International Nuclear Information System (INIS)

    Jonsson, T.

    1978-10-01

    The size of the rod elongation by oxidation is so large that deformation of a standard BWR fuel element with tie rods in the outer row will surely occur during a LOCA transient typical for BWRs with external pumps. Available data does not however show whether this deformation will occur early in the transient or during the cooling. Combined effects of thermal expansion of zircaloy and expansion due to oxidation and dissolution of oxygen can be expected to be large enough to cause rod bowing early in a LOCA transient. It is however not impossible that observed residual expansion of zircaloy tubes to a dominating extent are caused through expansion of zirconium oxide during cool-down. Length measurements of zircaloy tubes during a transient are desirable. (author)

  9. Evaluations on power ramp data of PWR fuels by FROST and THERMOST codes

    International Nuclear Information System (INIS)

    Murai, K.; Ogawa, S.; Nuno, H.; Kondo, Y.

    1987-01-01

    An evaluation is presented of power ramp data of Mitsubishi's PWR fuel rods tested in R-2, Studsvik, which was analysed by FROST and THERMOST codes. The analyses give good predictions for measured diameter changes and on-power rod elongations. The work indicates that FROST is capable of analysing both radial and axial pellet-cladding mechanism interaction (PCMI) appropriately, and that predicted states of PCMI (i.e. stress and strain which cannot be measured directly) are considered to be reliable. The ramp data used in the present analyses were obtained in two joint programmes with five Japanese PWR utilities (KEPCO, KYEPCO, SEPCO, HEPCO, and JAPCO). (UK)

  10. Optimization of fuel cells for BWR using Path Re linking and flexible strategies of solution

    International Nuclear Information System (INIS)

    Castillo M, J. A.; Ortiz S, J. J.; Torres V, M.; Perusquia del Cueto, R.

    2009-10-01

    In this work are presented the obtained preliminary results to design nuclear fuel cells for boiling water reactors (BWR) using new strategies. To carry out the cells design some of the used rules in the fuel administration were discarded and other were implemented. The above-mentioned with the idea of making a comparative analysis between the used rules and those implemented here, under the hypothesis that it can be possible to design nuclear fuel cells without using all the used rules and executing the security restrictions that are imposed in these cases. To evaluate the quality of the obtained cells it was taken into account the power pick factor and the infinite multiplication factor, in the same sense, to evaluate the proposed configurations and to obtain the mentioned parameters was used the CASMO-4 code. To optimize the design it is uses the combinatorial optimization technique named Path Re linking and the Dispersed Search as local search method. The preliminary results show that it is possible to implement new strategies for the cells design of nuclear fuel following new rules. (Author)

  11. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji.

    1993-01-01

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  12. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  13. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    International Nuclear Information System (INIS)

    Waseem; Elahi, N.; Siddiqui, A.; Murtaza, G.

    2011-01-01

    Research highlights: → A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. → The spring hold-down force is calculated using the contact pressure obtained from the FE model. → Experiment has also been conducted in the same environment for the measurement of this force. → The spring hold-down force values obtained from both studies confirm the validation of this analysis. → The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  14. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, E-mail: wazim_me@hotmail.co [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan); Elahi, N.; Siddiqui, A.; Murtaza, G. [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan)

    2011-01-15

    Research highlights: A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies confirm the validation of this analysis. The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  15. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2008-01-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor (K max ), stress intensity range (ΔK max ), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded

  16. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  17. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  18. Optimization of fuel reloads for a BWR using the ant colony system; Optimizacion de recargas de combustible para un BWR usando el sistema de colonia de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J. [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50110 Toluca, Estado de Mexico (Mexico); Ortiz S, J. J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jaime.es.jaime@gmail.com

    2009-10-15

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  19. Design and optimization of a fuel reload of BWR with plutonium and minor actinides

    International Nuclear Information System (INIS)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A.

    2008-01-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  20. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  1. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  2. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 4, Appendices: Part 3

    International Nuclear Information System (INIS)

    Ciez, A.P.

    1987-01-01

    The purpose of this manual is to provide assembly, installation, operation, maintenance, and off-normal recovery procedures for the Consolidation Equipment. The Consolidation System is a horizontal, dry system capable of processing one Pressurized Water Reactor (PWR) fuel assembly or one Boiling Water Reactor (BWR) fuel assembly at a time. The system will process all spent PWR and BWR fuels from the commercial US nuclear power reactor industry. Component changeouts for various fuel types have been minimized to reduce costs, required in-cell module storage space, and to increase efficiency by decreasing set-up time between fuel consolidation campaigns. The most important feature of the Westinghouse system is the ability to control the fuel rods at all times during the consolidation process from rod extraction, through canister loading. This features assures that the rods from two PWR fuel assemblies or four BWR fuel assemblies (minimum) can be loaded into one consolidated rods canister

  3. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    International Nuclear Information System (INIS)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10x10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  4. BWR - Spent Fuel Transport and Storage with the TNTM9/4 and TNTM24BH Casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2006-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., the Muehleberg Nuclear Power Plant owner, is involved in this process and has elected to store its BWR spent fuel in a new high capacity dual-purpose cask, the TNeTeM24BH from the COGEMA Logistics/TRANSNUCLEAR TN TM 24 family. The Muehleberg BWR spent fuels are transported by road in a medium size shuttle transport cask and then transferred to a heavy transport/storage cask (dry transfer) in the hot cell of ZWILAG site. For that purpose, COGEMA Logistics designed and supplied: - Two shuttle casks, TN TM 9/4, mainly devoted to transport of spent fuel from Muehleberg NPP to ZWILAG. Licensed according to IAEA 1996, the TN TM 9/4 is a 40 ton transport cask, for 7 BWR high bum-up spent fuel assemblies. - A series of new high capacity dual-purpose casks, TN TM 24BH, holding 69 BWR spent fuels. Two transport campaigns took place in 2003 and 2004. For each campaign, ten TN TM 9/4 round trips are performed, and one TN TM 24BH is loaded. 5 additional TN TM 24BH are being manufactured for BKW, and the next transport campaigns are scheduled from 2006. The TN TM 24BH high capacity dual purpose cask and the TN TM 9/4 transport cask characteristics and capabilities will then be detailed. (authors)

  5. Development of the vacuum drying process for the PWR spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chagn Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process)

  6. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  7. The physical and chemical degradation of PWR fuel rods in severe accident conditions

    International Nuclear Information System (INIS)

    Parsons, P.D.; Mowat, J.A.S.; Dewhurst, D.W.F.; Hughes, T.E.

    1983-01-01

    An experimental study of the interaction between Zircaloy-4 cladding and UO 2 in PWR fuel rods heated to high temperatures with a negligible differential pressure across the cladding wall is described. The fuel rods were of dimensions appropriate to the 17x17 PWR fuel sub-assembly and were heated in a non-oxidising environment (vacuum) up to approx. 1850 deg. C either isothermally or through heating ramps. Observations were made concerning the extent and nature of the reaction zone between Zircaloy-4 and UO 2 over the temperature range 1500-1850 deg. C for times ranging from 1 min to 125 min. The location, morphology and the chemical composition of the phases formed are described along with the kinetics of their formation. (author)

  8. Siemens advance PWR fuel assemblies (HTP) and cladding

    International Nuclear Information System (INIS)

    Stout, R. B.; Woods, K. N.

    1997-01-01

    This paper describes the key features of the Siemens HTP (High Thermal Performance) fuel design, the current in-reactor performance of this advanced fuel assembly design, and the advanced cladding types available

  9. Development of failed fuel detection system for PWR (III)

    International Nuclear Information System (INIS)

    Hwang, Churl Kew; Kang, Hee Dong; Jeong, Seung Ho; Cho, Byung Sub; Yoon, Byeong Joo; Yoon, Jae Seong

    1987-12-01

    Ultrasonic transducers satisfying the conditions for failed fuel rod detection for failed fuel rod detection have been designed and built. And performance tests for them have been carried out. Ultrasonic signal processing units, a manipulator guiding the ultrasonic probe through the fuel assembly lanes and its control units have been constructed. The performance of the system has been verified experimentally to be successful in failed fuel rod detection. (Author)

  10. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  11. Technical report: fabrication of PWR type rodlet fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Uno, Hisao; Sasajima, Hideo

    1990-06-01

    With respect to the simulated reactivity initiated accident (RIA) experiments with pre-irradiated LWR type fuel rods at nuclear safety research reactor (NSRR), there were principally three technical difficulties which should be overcome: (1) Fabrication of the rodlet fuel; Fuel rods from the commercial power reactors had an active column length by 3.6m. To utilize this for NSRR pulse experiment, rodlet fuel having an active column length by 0.12m (reduced to one thirtieth) is requested to fabricate without changing the inside fuel conditions. (2) Development of in-core instrumentations: During pre-irradiation stages, a long-sized fuel rod had dimensional changes by waterside corrosion, bowing, creep down and so on. The fuel also had greater amount of radioactive fission products. This condition is significant to in-core instrumentations to be attached to the fuel rods. Well characterized data to be obtained from these, however, are quite necessary and important from research point of view. Remote handling techniques to attach the rod pressure sensor, the cladding extensometer, the fuel extensometer, and the cladding surface thermocouple to pre-irradiated fuel rods are, therefore, requested to develop. (3) Installation of PIE equipments for pulsed rodlet fuels: PIE on the pulsed rodlet fuels are necessary to better understanding the fuel performance detaily. Equipments which can easily detect the data related to PCMI type fuel failure are matter of concern. Since 1986, the technical difficulties have been tried to overcome by all staffs belonging to Reactivity Accident Laboratory, NSRR Operation Division, Department of Reactor Fuel Examination and Hot Laboratory. This report describes the technical achievements obtained through four years work. (author)

  12. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  13. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    Itagaki, N.; Ohira, K.; Tsuda, K.; Fischer, G.; Ota, T.

    1998-01-01

    UO 2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO 2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  14. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M.; Palomera, M.A.

    2005-01-01

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  15. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements

    International Nuclear Information System (INIS)

    Ganzmann, I.; Hille, D.; Staude, U.

    2009-01-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  16. Comparison of problems and experience of core operation with distorted fuel element assemblies in VVER-1000 and PWR reactors

    International Nuclear Information System (INIS)

    Afanas'ev, A.

    1999-01-01

    The main reactors leading to distortion of fuel element assemblies during reactor operation were studied. A series of actions which compensate this effect was proposed. Criteria of operation limitation in VVER-1000 and PWR reactors are described

  17. Calculation of nuclide inventory, decay power, activity and dose rates for spent nuclear fuel

    International Nuclear Information System (INIS)

    Haakansson, Rune

    2000-03-01

    The nuclide inventory was calculated for a BWR and a PWR fuel element, with burnups of 38 and 55 MWd/kg uranium for the BWR fuel, and 42 and 60 MWd/kg uranium for the PWR fuel. The calculations were performed for decay times of up to 300,000 years. Gamma and neutron dose rates have been calculated at a distance of 1 m from a bare fuel element and outside the spent fuel canister. The calculations were performed using the CASMO-4 code

  18. Contribution to the experimental qualification of PWR fuel storage calculations

    International Nuclear Information System (INIS)

    Marsault, Philippe.

    1980-12-01

    Experiments were carried out on assemblies representative of those used in PWR reactors in a configuration made critical with a driver zone. In this way, certain parameters were able to be measured using current classical techniques. As the multiplication factor for a group of assemblies cannot be determined directly, substitutions were made with an equivalent homogeneous lattice in which Laplacian measurements could be made. The k(infinite) factor was obtained by introducing a migration area which can only be obtained from calculations. Experimental storage studies realized during the CRISTO 1 campaign utilize: 1) a lattice with 4 14x14 pin assemblies immersed in ordinary water; 2) a lattice with 4 14x14 pin assemblies and 3) a regular lattice. The CRISTO experiment enabled criticality calculations to be qualified with these lattices for storage under accidental conditions [fr

  19. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP

    International Nuclear Information System (INIS)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R.

    2013-10-01

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  20. Survey of the power ramp performance testing of KWU'S PWR UO 2, fuel

    Science.gov (United States)

    Ga¨rtner, M.; Fischer, G.

    1987-06-01

    To determine the power ramp performance of KWU's PWR UO 2 fuel, 134 fuel rodlets with burnups of up to 46 GWd/ t (U) and several fuel assemblies with 19 to 30 GWd/t (U) burnup were ramped in power in the research reactors HFR Petten/The Netherlands and R2 Studsvik/Sweden and in the power plants KWO and KWB-A/Germany, respectively. The power ramp tests demonstrate decreasing resistance of the PWR fuel rods to PCI (pellet-to-clad interaction) up to fuel burnups of 35 GWd/t (U) and a reversal effect at higher burnups. The fuel rods can be operated free of defects at fast power transients to linear heat generation rates of up to 400 W/cm, at least.Power levels of up to 490 W/cm can be reached without defects by reducing the ramp rate. After reshuffling according to an out-in scheme, 1-cycle fuel assemblies may return to rod powers of up to 480 W/cm with a power increase rate of up to 10 W/(cm min) without fuel rod damage. Set points basing on these test results and incorporated into the power distribution control and power density limitation system of KWU's advanced power plants guarantee safe plant operation under normal and load follow operating conditions.

  1. Simulation of the fuel rod thermal hydraulic performance during the blow down phase in a PWR

    International Nuclear Information System (INIS)

    Gadelha, J.A.M.

    1982-10-01

    A digital computer code to predict the fuel rod thermalhydraulic performance during a postulated loss-of-coolant accident (LOCA) in the primary circuit of a PWR nuclear power plant is developed. The fuel rod corresponds to that in an average channel in the core. Only the blowdown phase is considered during the accident. The conservation equations of mass, momentum, and energy, and the heat conduction equation are solved to determine the fuel rod conditions during the accident. Finite differences are applied as a numerical method in the solution of the equations modelling the rod and coolant conditions. (Author) [pt

  2. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes

    International Nuclear Information System (INIS)

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-01-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  3. Study on new-type fuel-related assembly handling tools for PWR NPP

    International Nuclear Information System (INIS)

    Fan Xiumei

    2013-01-01

    This article describes the design and study on a set of new-type fuel-related assembly snatching tools used for PWR NPP. The purpose is mainly to enhance the tool safety, reliability and convenientness by improvement of the mechanism and structure of the tool for snatching preciseness and avoiding from falling and abrasion of fuel-related assemblies for any condition. The new-type fuel-related assembly handling tools are compared with similar equipment in worldwide in terms of function, main technical characteristic, and safety and protection, some of them are better than the similar equipment in that they have reliable loading and unloading and conveying capabilities. (author)

  4. Experimental data report for Test TS-1 Reactivity Initiated Accident Test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Horiki, Ohichiro; Yamahara, Takeshi; Ichihashi, Yoshinori; Kikuchi, Teruo

    1992-01-01

    This report presents experimental data for Test TS-1 which was the first in a series of tests, simulating Reactivity Initiated Accident (RIA) conditions using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in October, 1989. Test fuel rod used in the Test TS-1 was a short-sized BWR (7 x 7) type rod which was fabricated from a commercial rod provided from Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79 % and burnup of 21.3 GWd/t (bundle average). Pulse irradiation was performed at a condition of stagnant water cooling, atmospheric pressure and ambient temperature using a newly developed double container-type capsule. Energy deposition of the rod in this test was evaluated to be about 61 cal/g·fuel (55 cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, fuel burnup measurements, transient behavior of the test rod during pulse irradiation and results of post pulse irradiation examinations are contained in this report. (author)

  5. Optimization of fuel cells for BWR based in Tabu modified search

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Francois L, J.L.; Palomera P, M.A.

    2004-01-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  6. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  7. Fuel design with low peak of local power for BWR reactors with increased nominal power

    International Nuclear Information System (INIS)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A.

    2006-01-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  8. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1980-01-01

    A comparitive study of fuel recycling in Pressurized Water Reactors was developed, considering not only the conventional uranium cycle, but also the use of thorium as an alternative. The use of thorium was done by varying its conoentration in the homogeneous mixture with uranium in the fuel from 30% up to 90%. The U-233 produced is incorporated within the isotopic composition of irradiated uranium. Various fractions of irradiated recycled fuel to be reprocessed and recycled was considered. Various alternatives of recycling were outlined and a final comparison in the tests done, is furnished in terms of U 3 O 8 and UTS requirements and approximated costs of fuel cycle stages involved. The recycled fuel is considered to be uniformly distributed in the fuel element rods introduced in the nucleus. The influence of the utilization of thorium was also considered for the development of an optimum fuel cycle, regarding the safeguards against nuclear proliferation when utilizing plutonium. A zero-dimensional cellular model was adopted to represent the reactor and the calculus of microscopic cross-sections for the homogenized cell was done by the computer code LEOPARD. A digital computer program was develped for neutronic and fuel depletion calculus and to simulate the refueling of various cycles. (Author) [pt

  9. Preliminary analysis of a large 1600 MWe PWR core loaded with 30% MOX fuel

    International Nuclear Information System (INIS)

    Polidoro, Franco; Corsetti, Edoardo; Vimercati, Giuliano

    2011-01-01

    The paper presents a full-core 3-D analysis of the performances of a large 1600 MWe PWR core, loaded with 30% MOX fuel, in accordance with the European Utility Requirements (EUR). These requirements state that the European next generation power plants have to be designed capable to use MOX (UO 2 - PuO 2 ) fuel assemblies up to 50% of the core, together with UO 2 fuel assemblies. The use of MOX assemblies has a significant impact on key physic parameters and on safety. A lot of studies have been carried out in the past to explore the feasibility of plutonium recycling strategies by loading LWR reactors with MOX fuel. Many of these works were based on lattice codes, in order to perform detailed analyses of the neutronic characteristics of MOX assemblies. With the aim to take into account their interaction with surrounding UO 2 fuel elements, and the global effects on the core at operational conditions, an integrated approach making use of a 3-D core simulation is required. In this light, the present study adopts the state-of-art numerical models CASMO-5 and SIMULATE-3 to analyze the behavior of the core fueled with 30% MOX and to compare it with that of a large PWR reference core, fueled with UO 2 . (author)

  10. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design

    International Nuclear Information System (INIS)

    Fernandez, J. L.; Lopez, J.

    1986-01-01

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs

  11. Comparison of thermal behavior of different PWR fuel rod simulators for LOCA experiments

    International Nuclear Information System (INIS)

    Casal, V.; Malang, S.; Rust, K.

    1982-10-01

    For experimental investigations of a loss-of-coolant accident (LOCA) of a PWR electrical heater rods are applied as thermal fuel rod simulators. To substitute heater rods from the SEMISCALE program by INTERATOM-KfK heater rods in a current experimental program at the Instituut for Energiteknikk-(OECD-Halden), the thermodynamic behavior of different heater rods during a LOCA were compared. The results show, that SEMISCALE-heater rods can be replaced by those fabricated by INTERATOM. (orig.) [de

  12. Installation of the water environment irradiation facility for the IASCC research under the BWR/PWR irradiation environment (2)

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Hanawa, Hiroshi; Sakuta, Yoshiyuki; Kanno, Masaru; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Shibata, Mitsunobu

    2014-07-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. This report summarizes manufacture and installation of the material irradiation test facility for IASCC research carried out from 2012 to 2014 in the follow-up report reported before (JAEA-Technology 2013-019). (author)

  13. AREVA's fuel assemblies addressing high performance requirements of the worldwide PWR fleet

    International Nuclear Information System (INIS)

    Anniel, Marc; Bordy, Michel-Aristide

    2009-01-01

    Taking advantage of its presence in the fuel activities since the start of commercial nuclear worldwide operation, AREVA is continuing to support the customers with the priority on reliability, to: >participate in plant operational performance for the in core fuel reliability, the Zero Tolerance for Failure ZTF as a continuous improvement target and the minimisation of manufacturing/quality troubles, >guarantee the supply chain a proven product stability and continuous availability, >support performance improvements with proven design and technology for fuel management updating and cycle cost optimization, >support licensing assessments for fuel assembly and reloads, data/methodologies/services, >meet regulatory challenges regarding new phenomena, addressing emergent performance issues and emerging industry challenges for changing operating regimes. This capacity is based on supplies by AREVA accumulating very large experience both in manufacturing and in plant operation, which is demonstrated by: >manufacturing location in 4 countries including 9 fuel factories in USA, Germany, Belgium and France. Up to now about 120,000 fuel assemblies and 8,000 RCCA have been released to PWR nuclear countries, from AREVA European factories, >irradiation performed or in progress in about half of PWR world wide nuclear plants. Our optimum performances cover rod burn ups of to 82GWD/tU and fuel assemblies successfully operated under various world wide fuel management types. AREVA's experience, which is the largest in the world, has the extensive support of the well known fuel components such as the M5'TM'cladding, the MONOBLOC'TM'guide tube, the HTP'TM' and HMP'TM' structure components and the comprehensive services brought in engineering, irradiation and post irradiation fields. All of AREVA's fuel knowledge is devoted to extend the definition of fuel reliability to cover the whole scope of fuel vendor support. Our Top Reliability and Quality provide customers with continuous

  14. Development of an advanced 16x165 Westinghouse type PWR fuel assembly for Slovenia

    International Nuclear Information System (INIS)

    Boone, M. L.; King, S. J.; Pulver, E. F.; Jeon, K.-L.; Esteves, R.; Kurincic, B.

    2004-01-01

    Industrias Nucleares do Brasil (INB), KEPCO Nuclear Fuel Company, Ltd. (KNFC), and Westinghouse Electric Company (Westinghouse) have jointly designed an advanced 16x16 Westinghouse type PWR fuel assembly. This advanced 16x16 Westinghouse type PWR fuel assembly, which will be implemented in both Kori Unit 2 (in Korea) and Angra Unit 1 (in Brazil) in January and March 2005, respectively, is an integral part of the utilities fuel management strategy. This same fuel design has also been developed for future use in Krsko Unit 1 (in Slovenia). In this paper we will describe the front-end nuclear fuel management activities utilized by the joint development team and describe how these activities played an integral part in defining the direction of the advanced 16x16 Westinghouse type PWR fuel assembly design. Additionally, this paper will describe how this design demonstrates improved margins under high duty plant operating conditions. The major reason for initiating this joint development program was to update the current 16x16 fuel assembly, which is also called 16STD. The current 16STD fuel assembly contains a non-optimized fuel rod diameter for the fuel rod pitch (i.e. 9.5 mm OD fuel rods at a 0.485 inch pitch), non-neutronic efficient components (i.e. Inconel Mid grids), no Intermediate Flow Mixer (IFM) grids, and other mechanical features. The advanced 16x16 fuel assembly is being designed for peak rod average burnups of up to 75 MWd/kgU and will use an optimized fuel rod diameter (i.e. 9.14 mm OD ZIRLO TM fuel rods), neutronic efficient components (i.e. ZIRLO TM Mid grids), ZIRLO TM Intermediate Flow Mixer (IFM) grids to improve Departure from Nucleate Boiling (DNB) margin, and many other mechanical features that improve design margins. Nuclear design activities in the areas of fuel cycle cost and fuel management were performed in parallel to the fuel assembly design efforts. As the change in reactivity due to the change in the fuel rod diameter influences directly

  15. Characteristic test technology for PWR fuel and its components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho; Jeong, Yong Hwan; Park, Sang Yoon; Kim, Kyeng Ho; Nam, Cheol; Baek, Jong Hyuk; Lee, Myung Ho; Choi, Byoung Kwon; Song, Kun Woo; Kang, Ki Won; Kim, Keon Sik; Kim, Jong Hun; Kim, Young Min; Yang, Jae Ho; Song, Kee Nam; Kim, Hyung Kyu; Kang, Heung Seok; Yoon, Kyung Ho; Chun, Tae Hyun; In, Wang Kee; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Characteristic tests of fuel assembly and its components being developed in the Advanced LWR Fuel Development Project supported by the mid-long term nuclear R and D program are described in this report. Performance verification of fuel and its components by the characteristic tests are essential to their development. Fuel components being developed in the Advanced LWR Fuel Development Project are zirconium alloy cladding, UO{sub 2} and burnable absorber pellets, spacer grid and top and bottom end pieces. Detailed test plans for those fuel components are described in this report, and test procedures of cladding and pellet are also described in the Appendix. Examples of the described tests are in- and out-of- pile corrosion and mechanical tests such as creep and burst tests for the cladding, in-pile capsule and ramp tests for the pellet, mechanical tests such as strength and vibration, and thermal-hydraulic tests such as pressure drop and critical heat flux for the spacer grid and top and bottom end pieces. It is expected that this report could be used as the standard reference for the performance verification tests in the development of LWR fuel and its components. 11 refs., 9 figs., 2 tabs. (Author)

  16. Implement of MOX fuel assemblies in the design of the fuel reload for a BWR; Implemento de ensambles de combustible MOX en el diseno de la recarga de combustible para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Alonso V, G.; Palacios H, J. C., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    At the present time the use of mixed oxides as nuclear fuel is a technology that has been implemented in mixed reloads of fuel for light water reactors. Due to the plutonium production in power reactors, is necessary to realize a study that presents the plutonium use like nuclear fuel. In this work a study is presented that has been carried out on the design of a fuel assembly with MOX to be proposed in the supply of a fuel reload. The fissile relationship of uranium to plutonium is presented for the design of the MOX assembly starting from plutonium recovered in the reprocessing of spent fuel and the comparison of the behavior of the infinite multiplication factor is presented and of the local power peak factor, parameters of great importance in the fuel assemblies design. The study object is a fuel assembly 10 x 10 GNF2 type for a boiling water reactor. The design of the fuel reload pattern giving fuel assemblies with MOX, so the comparison of the behavior of the stop margin for a fuel reload with UO{sub 2} and a mixed reload, implementing 12 and 16 fuel assemblies with MOX are presented. The results show that the implement of fuel assemblies with MOX in a BWR is possible, but this type of fuels creates new problems that are necessary to study with more detail. In the development of this work the calculus tools were the codes: INTREPIN-3, CASMO-4, CMSLINK and SIMULATE-3. (Author)

  17. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  18. Effect of transplutonium doping on approach to long-life core in uranium-fueled PWR

    Energy Technology Data Exchange (ETDEWEB)

    Peryoga, Yoga; Saito, Masaki; Artisyuk, Vladimir [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Shmelev, Anatolii [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    2002-08-01

    The present paper advertises doping of transplutonium isotopes as an essential measure to improve proliferation-resistance properties and burnup characteristics of UOX fuel for PWR. Among them {sup 241}Am might play the decisive role of burnable absorber to reduce the initial reactivity excess while the short-lived nuclides {sup 242}Cm and {sup 244}Cm decay into even plutonium isotopes, thus increasing the extent of denaturation for primary fissile {sup 239}Pu in the course of reactor operation. The doping composition corresponds to one discharged from a current PWR. For definiteness, the case identity is ascribed to atomic percentage of {sup 241}Am, and then the other transplutonium nuclide contents follow their ratio as in the PWR discharged fuel. The case of 1 at% doping to 20% enriched uranium oxide fuel shows the potential of achieving the burnup value of 100 GWd/tHM with about 20% {sup 238}Pu fraction at the end of irradiation. Since so far, americium and curium do not require special proliferation resistance measures, their doping to UOX would assist in introducing nuclear technology in developing countries with simultaneous reduction of accumulated minor actinides stockpiles. (author)

  19. Estimation of PWR spent fuel composition using SCALE and SWAT code systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kenya, Suyama; Hiroshi, Okuno [Japan Atomic Energy Research Institute, Tokyo (Japan)

    2001-05-01

    The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account.

  20. Effect of transplutonium doping on approach to long-life core in uranium-fueled PWR

    International Nuclear Information System (INIS)

    Peryoga, Yoga; Saito, Masaki; Artisyuk, Vladimir

    2002-01-01

    The present paper advertises doping of transplutonium isotopes as an essential measure to improve proliferation-resistance properties and burnup characteristics of UOX fuel for PWR. Among them 241 Am might play the decisive role of burnable absorber to reduce the initial reactivity excess while the short-lived nuclides 242 Cm and 244 Cm decay into even plutonium isotopes, thus increasing the extent of denaturation for primary fissile 239 Pu in the course of reactor operation. The doping composition corresponds to one discharged from a current PWR. For definiteness, the case identity is ascribed to atomic percentage of 241 Am, and then the other transplutonium nuclide contents follow their ratio as in the PWR discharged fuel. The case of 1 at% doping to 20% enriched uranium oxide fuel shows the potential of achieving the burnup value of 100 GWd/tHM with about 20% 238 Pu fraction at the end of irradiation. Since so far, americium and curium do not require special proliferation resistance measures, their doping to UOX would assist in introducing nuclear technology in developing countries with simultaneous reduction of accumulated minor actinides stockpiles. (author)

  1. The PWR fuel cycle. Utilization of uranium in a reactor

    International Nuclear Information System (INIS)

    Mignot, E.

    After having briefly described the core of a pressurized water reactor, the fuel is examined and, in particular, the change in reactivity that governs the renewal of the fuel. The present French nuclear units are taken as example and it is shown that with the development of the nuclear complex, it is no longer possible to reason on the basis of an isolated reactor, since the running of a reactor is set by the network and its working constraints become a priority. The optimization of the fuel control must therefore cover the total cost [fr

  2. BWR fuel assembly with improved spacer and fuel bundle design for enhanced thermal-hydraulic performance

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Taleyarkhan, R.P.

    1987-01-01

    In a fuel assembly having a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods, an outer tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid along the fuel rods, a hollow water cross extending centrally through and interconnected with the outer flow channel so as to divide the channel into separate compartments and the bundle of fuelrods into a plurality of mini-bundles thereof being disposed in the compartments, and spacers axially displaced along the fuel rods in each of the mini-bundles thereof. Each spacer is composed of inner and outer means which together define spacer cells at corner, side and interior locations of the spacer and have respective protrusions formed thereon which extend into cells so as to maintain the fuel rods received through the spacer cells in laterally spaced relationships. The improvement is described which comprises: (a) a generally uniform poison coating within at least a majority of the fuel rods; (b) a predetermined pattern of fuel enrichment with respect to the fuel rods of each mini-bundle thereof which together with the uniform poison coating within the fuel rods ensures that the packing powers of the fuel rods in the corner and side cells of the spacers are less than the peaking power of a leading one of the fuel rods in the interior cells of the spacers; and (c) each of the fuel rods being received through the cells of each spacer having a diametric size smaller than that of each of the fuel rods received through the side and interior cells of each spacer, the diametric sizes of each of the fuel rods received through the side and interior cells of each spacer being generally equal

  3. The thermo-mechanics of the PWR fuel rod

    International Nuclear Information System (INIS)

    Barral, J.C.; Gautier, B.; Chaigne, G.

    1999-01-01

    The fuel rod mechanics is of a great importance in the safety and performance of the reactors. In this domain a meeting has been organized by the SFEN the 18 march 1998 at Paris. With the participation of scientists from CEA, EDF and Framatome, the physics of the fuel rods was presented based on four main aspects. Two first papers dealt with the solicitations of the fuel rod in normal and accidental conditions. The physical phenomena under irradiation were then detailed in the four following talks. Three papers presented the simulation and the codes of the fuel-cladding interactions with the diabolo effect. The last paper was devoted to the experiment feedback and the research programs. (A.L.B.)

  4. Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios

    International Nuclear Information System (INIS)

    Zhou, Shengcheng; Wu, Hongchun; Zheng, Youqi

    2018-01-01

    Highlights: •ADS reloading scheme is optimized to raise discharge burnup and lower reactivity loss. •ADS is flexible to be combined with various pyro-chemical reprocessing technologies. •ADS is flexible to transmute MAs from different spent PWR fuels. -- Abstract: A two-stage Pressurized Water Reactor (PWR)-Accelerator Driven System (ADS) fuel cycle is proposed as an option to transmute minor actinides (MAs) recovered from the spent PWR fuels in the ADS system. At the second stage, the spent fuels discharged from ADS are reprocessed by the pyro-chemical process and the recovered actinides are mixed with the top-up MAs recovered from the spent PWR fuels to fabricate the new fuels used in ADS. In order to lower the amount of nuclear wastes sent to the geological repository, an optimized scattered reloading scheme for ADS is proposed to maximize the discharge burnup and lower the burnup reactivity loss. Then the flexibility of ADS for MA transmutation is evaluated in this research. Three aspects are discussed, including: different cooling time of spent ADS fuels before reprocessing, different reprocessing loss of spent ADS fuels, and different top-up MAs recovered from different kinds of spent PWR fuels. The ADS system is flexible to be combined with various pyro-chemical reprocessing technologies with specific spent fuels cooling time and unique reprocessing loss. The reduction magnitudes of the long-term decay heat and radiotoxicity of MAs by transmutation depend on the reprocessing loss. The ADS system is flexible to transmute MAs recovered from different kinds of spent PWR fuels, regardless of UOX or MOX fuels. The reduction magnitudes of the long-term decay heat and radiotoxicity of different MAs by transmutation stay on the same order.

  5. The Gd-isotopic fuel for high burnup in PWR's

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de

    2017-01-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O_2 isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O_2 nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  6. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1998-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes because of the complexity of their calculation model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equation adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuraniums for different MOX fuel loading fractions and irradiating conditions

  7. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1997-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes, because of the complexity of their calculational model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equilibrium adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuranium for different MOX fuel loading fractions and irradiating conditions. (author)

  8. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  9. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  10. Assessment of the insertion of reprocessed fuel spiked with thorium in a PWR core

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Victor F.; Monteiro, Fabiana B.A.; Pereira, Claubia, E-mail: victorfc@fis.grad.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Reprocessed fuel by UREX+ technique and spiked with thorium was inserted in a PWR core and neutronic parameters have been analyzed. Based on the Final Safety Analysis Report (FSAR) of the Angra-2 reactor, the core was modeled and simulated with SCALE6.0 package. The neutronic data evaluation was carried out by the analysis of the effective and infinite multiplication factors, and the fuel evolution during the burnup. The conversion ratio (CR) was also evaluated. The results show that, when inserting reprocessed fuel spiked with thorium, the insertion of burnable poison rods is not necessary, due to the amount of absorber isotopes present in the fuel. Besides, the conversion ratio obtained was greater than the presented by standard UO{sub 2} fuel, indicating the possibility of extending the burnup. (author)

  11. NDE of PWR fuel: Identifying candidates for hot cell examination

    International Nuclear Information System (INIS)

    Moon, J.E.; Bury, J.G.; Correal, O.A.; Kunishi, H.; Wilson, H.W.

    1992-05-01

    On-site examinations were performed at the Indian Point 3 and Callaway reactors to attempt to identify the leakage mechanism of several leaking fuel rods. The exams consisted of removing the leaking fuel rods from the assembly and performing a visual examination. These results, combined with other available on-site data on leaking fuel rods, were used to select fuel rods for shipment to a hot cell for detailed root cause examination. Three fuel rods from the Indian Point 3 reactor were found to be leaking due to debris-induced fretting. The examinations at Callaway were terminated prior to completion due to utility scheduler conflicts. Rods from the Callaway reactor were selected for shipment to the hot cell along with the rods from the Byron 1 and 2 and V.C. Summer reactors. The data presented in the report summarize the coolant activity history, the UT examination results, and a summary of the review of the fabrication records. The basis for the selection of the rods to be sent to the hot cells is also summarized

  12. The fractalline properties of experimentally simulated PWR fuel crud

    Science.gov (United States)

    Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.

    2018-02-01

    The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.

  13. FAMREC, PWR Lateral Mechanical Fuel Rod Assembly Response

    International Nuclear Information System (INIS)

    Guenzler, R.C.

    1995-01-01

    1 - Description of program or function: The Fuel Assembly Mechanical Response Code (FAMREC) calculates the lateral mechanical response of a row of fuel assemblies while allowing for two types of nonlinearities. The first type is a geometric nonlinearity in the form of gaps between individual assemblies and between peripheral assemblies and a boundary wall. Impacting is monitored across the gaps. The second nonlinearity is the permanent deformation of the fuel assembly spacer grid to compressive loading. 2 - Method of solution: The response is calculated in the modal plane. The coupled differential equations are solved in closed form using Laplace transformations. The discrete displacements and velocities are then calculated and the gaps in the system monitored at each axial elevation for impacting. These impact forces are then applied statistically at a given time-step, and equilibrium is found using a Gaussian elimination technique. Three impact force calculation methods are available: 1- a linear impact force and crushing load audit calculation, 2- a more detailed linear impact force and crushing load calculation, and 3- a non-linear grid calculation which allows for plastic deformation of the fuel assembly spacer grids. 3 - Restrictions on the complexity of the problem: Maxima of: 3601 time-steps and forces; 80 modes; 30 applied forces; 15 fuel assemblies; and 5 impact grids per assembly

  14. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  15. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1982-08-01

    Five fuel pins, taken from a PWR fuel assembly with 32000 MWD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developped to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  16. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations

    International Nuclear Information System (INIS)

    Leudet, A.; Miquel, P.; Goumondy, P.J.; Charrier, G.

    1983-01-01

    Five fuel pins, taken from a PWR fuel assembly with 32,000 MwD/t burn-up were chopped and dissolved in leak-proof equipment designed for accurate determination of the composition and quantity of gaseous elements released in these operations. Analytical methods were specially developed to determine directly the noble gases, tritium and gaseous carbon compounds in the gas phase. Volatile iodine was kept as close as possible to the source by cold traps, then transferred to a caustic solution for quantitative analysis. The quantities and activities of gaseous fission products thus determined were compared with predicted values obtained through computation. Very good agreement was generally observed

  17. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    Leech, W.J.; Kaiser, R.S.

    1980-01-01

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50,000 to 60,000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  18. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Eneida Regina G. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cotta, Renato M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Mecanica; Jian, Su, E-mail: eneidadourado@gmail.com, E-mail: sujian@nuclear.ufrj.br, E-mail: cotta@mecanica.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  19. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    International Nuclear Information System (INIS)

    Dourado, Eneida Regina G.; Cotta, Renato M.; Jian, Su

    2017-01-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  20. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  1. A calculation methodology applied for fuel management in PWR type reactors using first order perturbation theory

    International Nuclear Information System (INIS)

    Rossini, M.R.

    1992-01-01

    An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)

  2. Zircaloy sheathed thermocouples for PWR fuel rod temperature measurements

    International Nuclear Information System (INIS)

    Anderson, J.V.; Wesley, R.D.; Wilkins, S.C.

    1979-01-01

    Small diameter zircaloy sheathed thermocouples have been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Surface mounted thermocouples were developed to measure the temperature of zircaloy clad fuel rods used in the Thermal Fuels Behavior Program (TFBP), and embedded thermocouples were developed for use by the Loss-of-Fluid Test (LOFT) Program for support tests using zircaloy clad electrically heated nuclear fuel rod simulators. The first objective of this developmental effort was to produce zircaloy sheathed thermocouples to replace titanium sheathed thermocouples and thereby eliminate the long-term corrosion of the titanium-to-zircaloy attachment weld. The second objective was to reduce the sheath diameter to obtain faster thermal response and minimize cladding temperature disturbance due to thermocouple attachment

  3. Modal testing and identification of a PWR fuel assembly

    International Nuclear Information System (INIS)

    Pisapia, S.; Collard, B.; Mori, V.; Bellizzi, S.

    2003-01-01

    This study aims at characterizing the vibratory behavior of a full-scale fuel assembly using an experimental approach. The effect of the assembly environment (air, stagnant water, and water under flow) is studied. The analysis of the test series shows that the vibratory behavior of full-scale fuel assembly is strongly nonlinear. An identification phase, based on temporal mean square criterion, allows us to obtain a nonlinear model representative of the first vibration mode of a fuel assembly. The selected class of models including damping and stiffness nonlinear terms is efficient in air, in stagnant water, and in water under flow. In all environments, the stiffness decreases with the displacement level and the damping increases with the velocity level. In the presence of water, the damping goes up and increases again with flowrate. (author)

  4. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies

    International Nuclear Information System (INIS)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-01-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  5. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  6. Mechanical behaviour of PWR fuel rods during intermediate storage

    International Nuclear Information System (INIS)

    Bouffioux, P.; Dalmas, R.; Bernaudat, C.

    2000-01-01

    EDF, which owns the irradiated fuel coming from its NPPs, has initiated studies regarding the mechanical behaviour of a fuel rod and the integrity of its cladding, in the case where the spent fuel is stored for a significant duration. During the phases following in-reactor irradiation (ageing in a water-pool, transport and intermediate storage), many phenomena, which are strongly coupled, may influence the cladding integrity: - residual power and temperature decay; - helium production and release in the free volume of the rod (especially for MOX fuel); - fuel column swelling; - cladding creep-out under the inner gas pressure of the fuel rod; - metallurgical changes due to high temperatures during transportation. In parallel, the quantification of the radiological risk is based on the definition of a cladding integrity criterion. Up to now, this criterion requires that the clad hoop strain due to creep-out does not exceed 1%. A more accurate criterion is being investigated. The study and modelling of all the phenomena mentioned above are included in a R and D programme. This programme also aims at redefining the cladding integrity criterion, which is assumed to be too conservative. The R and D programme will be presented. In order to predict the overall behaviour of the rod during the intermediate storage phases, the AVACYC code has been developed. It includes the models developed in the R and D programme. The input data of the AVACYC code are provided by the results of in-reactor rod behaviour simulations, using the thermal-mechanical CYRANO3 code. Its main results are the evolution vs. time of hoop stresses in the cladding, rod internal pressure and cladding hoop strains. Chained CYRANO-AVACYC calculations have been used to simulate the behaviour of MOX fuel rods irradiated up to 40 GWd/t and stored under air during 100 years, or under water during 50 years. For such fuels, where the residual power remains high, we show that a large part of the cladding strain

  7. Development of underwater high-definition camera for the confirmation test of core configuration and visual examination of BWR fuel

    International Nuclear Information System (INIS)

    Watanabe, Masato; Tuji, Kenji; Ito, Keisuke

    2010-01-01

    The purpose of this study is to develop underwater High-Definition camera for the confirmation test of core configuration and visual examination of BWR fuels in order to reduce the time of these tests and total cost regarding to purchase and maintenance. The prototype model of the camera was developed and examined in real use condition in spent fuel pool at HAMAOKA-2 and 4. The examination showed that the ability of prototype model was either equaling or surpassing to conventional product expect for resistance to radiation. The camera supposes to be used in the dose rate condition of under about 10 Gy/h. (author)

  8. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  9. Construction and utilization of linear empirical core models for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Okafor, K.C.

    1988-01-01

    An empirical core-model construction procedure for pressurized water reactor (PWR) in-core fuel management is developed that allows determining the optimal BOC k ∞ profiles in PWRs as a single linear-programming problem and thus facilitates the overall optimization process for in-core fuel management due to algorithmic simplification and reduction in computation time. The optimal profile is defined as one that maximizes cycle burnup. The model construction scheme treats the fuel-assembly power fractions, burnup, and leakage as state variables and BOC zone enrichments as control variables. The core model consists of linear correlations between the state and control variables that describe fuel-assembly behavior in time and space. These correlations are obtained through time-dependent two-dimensional core simulations. The core model incorporates the effects of composition changes in all the enrichment control zones on a given fuel assembly and is valid at all times during the cycle for a given range of control variables. No assumption is made on the geometry of the control zones. A scatter-composition distribution, as well as annular, can be considered for model construction. The application of the methodology to a typical PWR core indicates good agreement between the model and exact simulation results

  10. Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples

    International Nuclear Information System (INIS)

    Murphy, M.F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H.-D.; Chawla, R.

    2006-01-01

    Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity

  11. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Alex, E-mail: acchamb@gmail.com; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu

    2014-04-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: {sup 235}U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes.

  12. Multi-recycling of transuranic elements in a PWR assembly with reduced fuel rod diameter

    International Nuclear Information System (INIS)

    Chambers, Alex; Ragusa, Jean C.

    2014-01-01

    Highlights: • Study of multiple recycling passes of transuranic elements: (a) without exceeding 5 wt.% on U-235 enrichment; (b) using PWR fuel assemblies compatible with current reactor core internals. • Isotopic concentrations tend towards an equilibrium after 15 recycle passes, suggesting that thermal recycling may be continued beyond that point. • Radiotoxicity comparisons for once-through UOX, once-recycle MOX-Pu, and multiple recycle passes of MOX-PuNpAm and MOX-PuNpAmCm are presented. - Abstract: This paper examines the multi-recycling of transuranic (TRU) elements (Pu-Np-Am-Cm) in standard Pressurized Water Reactor (PWR) assemblies. The original feed of TRU comes from legacy spent UOX fuel. For all subsequent recycling passes, TRU elements from the previous generation are employed, supplemented by TRU from legacy UOX fuel, as needed. The design criteria include: 235 U enrichment requirements to remain below 5 w/o, TRU loading limits to avoid return to criticality under voided conditions, and assembly power peaking factors. In order to carry out multiple recycling passes within the design envelope, additional neutron moderation is required and achieved by reducing the fuel pellet diameter by about 13%, thus keeping the assembly design compatible with current PWR core internals. TRU transmutation rates and long-term ingestion radiotoxicity results are presented for 15 recycling passes and compared to standard UOX and MOX once-through cycles. The results also show that TRU fuel isotopics and radiotoxicity tend towards an equilibrium, enabling further additional recycling passes

  13. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  14. RCC-C: Design and construction rules for fuel assemblies of PWR nuclear power plants

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-C code contains all the requirements for the design, fabrication and inspection of nuclear fuel assemblies and the different types of core components (rod cluster control assemblies, burnable poison rod assemblies, primary and secondary source assemblies and thimble plug assemblies). The design, fabrication and inspection rules defined in RCC-C leverage the results of the research and development work pioneered in France, Europe and worldwide, and which have been successfully used by industry to design and build nuclear fuel assemblies and incorporate the resulting feedback. The code's scope covers: fuel system design, especially for assemblies, the fuel rod and associated core components, the characteristics to be checked for products and parts, fabrication methods and associated inspection methods. The RCC-C code is used by the operator of the PWR nuclear power plants in France as a reference when sourcing fuel from the world's top two suppliers in the PWR market, given that the French operator is the world's largest buyer of PWR fuel. Fuel for EPR projects is manufactured according to the provisions of the RCC-C code. The code is available in French and English. The 2005 edition has been translated into Chinese. Contents of the 2015 edition of the RCC-C code: Chapter 1 - General provisions: 1.1 Purpose of the RCC-C, 1.2 Definitions, 1.3 Applicable standards, 1.4 Equipment subject to the RCC-C, 1.5 Management system, 1.6 Processing of non-conformances; Chapter 2 - Description of the equipment subject to the RCC-C: 2.1 Fuel assembly, 2.2 Core components; Chapter 3 - Design: Safety functions, operating functions and environment of fuel assemblies and core components, design and safety principles; Chapter 4 - Manufacturing: 4.1 Materials and part characteristics, 4.2 Assembly requirements, 4.3 Manufacturing and inspection processes, 4.4 Inspection methods, 4.5 Certification of NDT inspectors, 4.6 Characteristics to be inspected for the

  15. Analysis of confinement effects for in-water seismic tests on PWR fuel assemblies

    International Nuclear Information System (INIS)

    Broc, Daniel; Queval, Jean-Claude; Rigaudeau, J.; Viallet, E.

    2001-01-01

    In the framework of a comprehensive program on the seismic behaviour of the PWR reactor cores, tests have been performed on a row of six PWR fuel assemblies, with two confinement configurations in water. Global fluid motion along the row is not allowed in the 'full confinement configuration', and is allowed in the 'lateral confinement configuration'. The seismic test results show that the impact forces at assembly grid levels are significantly smaller with the full confinement. This is due to damping, which is found to be larger in this configuration where the average fluid velocity inside the assembly (around the rods) is itself larger. We present analyses of these phenomena from theoretical and experimental standpoint. This involves both fluid models and structural models of the assembly row. (author)

  16. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    Francois, J.L.; Martin-del-Campo, C.; Francois, R.; Morales, L.B.

    2003-01-01

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  17. BWR-spent fuel transport and storage with the TN trademark 9/4 and TN trademark 24BH casks

    International Nuclear Information System (INIS)

    Wattez, L.; Marguerat, Y.; Hoesli, C.

    2004-01-01

    The Swiss Nuclear Utilities have started in 2001 to store spent fuel in dry metallic dual-purpose casks in ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd., as Muehleberg Nuclear Power Plant owner, is involved in this process and has selected to store its spent fuel, a new high capacity dual-purpose cask, the TN trademark 24BH. For the transport in a medium size cask, COGEMA LOGISTICS has developed a new cask, the TN trademark 9/4, to replace the NTL9 cask, which performed numerous transports of BWR spent fuel in the past decades. Licensed IAEA 1996, the TN trademark 9/4 is a 40 ton transport cask, for 7 BWR high burn-up spent fuel assemblies. The spent fuel assemblies can be transferred in the ZWILAG hot cell in the TN trademark 24BH cask. The first use of these casks took place in 2003. Ten TN trademark 9/4 transports were performed, and one TN trademark 24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN trademark 24BH high capacity dual purpose cask, the TN trademark 9/4 transport cask and describe in detail their characteristics and possibilities

  18. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  19. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  20. Techniques and devices developed by the CEA for hot cell and in-situ examinations of PWR components and PWR fuel assembliess after irradiation

    International Nuclear Information System (INIS)

    Van Craeynest, J.C.; Leseur, A.; Lhermenier, A.; Cytermann, R.

    1981-11-01

    Within the framework of the electro-nuclear development of the PWR system, the CEA has provided itself with facilities for developing techniques for analyzing assemblies, pins and fuels. These are examinations and tests on irradiated heads and assemblies with the aid of the Fuel Examination Module (FEM), of machining of assemblies and examinations in the Celimene hot laboratory or detailed examinations and analyses on fuel elements using eddy currents, the electronic microprobe and the Fisher ''permeascope'' which enables the outline of the oxide coat present on the cladding to be followed [fr

  1. San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses - Revision 1

    International Nuclear Information System (INIS)

    Hermann, O.W.

    2000-01-01

    The isotopic composition of mixed-oxide fuel (fabricated with both uranium and plutonium isotopes) discharged from reactors is of interest to the Fissile Material Disposition Program. The validation of depletion codes used to predict isotopic compositions of MOX fuel, similar to studies concerning uranium-only fueled reactors, thus, is very important. The EEI-Westinghouse Plutonium Recycle Demonstration Program was conducted to examine the use of MOX fuel in the San Onofre PWR, Unit I, during cycles 2 and 3. The data, usually required as input to depletion codes, either one-dimensional or lattice codes, were taken from various sources and compiled into this report. Where data were either lacking or determined inadequate, the appropriate data were supplied from other references. The scope of the reactor operations and design data, in addition to the isotopic analyses, was considered to be of sufficient quality for depletion code validation

  2. Demonstration of uncertainty quantification and sensitivity analysis for PWR fuel performance with BISON

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Zou, Ling; Burns, Douglas; Ladd, Jacob

    2017-01-01

    BISON is an advanced fuels performance code being developed at Idaho National Laboratory and is the code of choice for fuels performance by the U.S. Department of Energy (DOE)’s Consortium for Advanced Simulation of Light Water Reactors (CASL) Program. An approach to uncertainty quantification and sensitivity analysis with BISON was developed and a new toolkit was created. A PWR fuel rod model was developed and simulated by BISON, and uncertainty quantification and sensitivity analysis were performed with eighteen uncertain input parameters. The maximum fuel temperature and gap conductance were selected as the figures of merit (FOM). Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis. (author)

  3. Demonstration of Uncertainty Quantification and Sensitivity Analysis for PWR Fuel Performance with BISON

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin; Ladd, Jacob; Zhao, Haihua; Zou, Ling; Burns, Douglas

    2015-11-01

    BISON is an advanced fuels performance code being developed at Idaho National Laboratory and is the code of choice for fuels performance by the U.S. Department of Energy (DOE)’s Consortium for Advanced Simulation of Light Water Reactors (CASL) Program. An approach to uncertainty quantification and sensitivity analysis with BISON was developed and a new toolkit was created. A PWR fuel rod model was developed and simulated by BISON, and uncertainty quantification and sensitivity analysis were performed with eighteen uncertain input parameters. The maximum fuel temperature and gap conductance were selected as the figures of merit (FOM). Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis.

  4. Instrumentation of fuel safety test rods of the PWR system in the Phebus reactor

    International Nuclear Information System (INIS)

    Schley, Robert; Leveque, J.P.; Aujollet, J.M.; Dutraive, Pierre; Colome, Jean; Bouly, J.C.

    1979-01-01

    The tests were performed in an experimental cell centred in the core of the PHEBUS water reactor of 50 MW. The CEA make two types of apparatus for testing the safety of PWR fuel. One is for testing a single fuel stick and the other a bunch of 25 sticks. The instrumentation described enables the main parameters of the test to be known: temperatures of the fuel - central temperature of the UO 2 - cladding surface temperatures; temperature of the cooling circuits - thermal balance - temperatures of the structures, etc.; coolant pressure; internal pressure of the fuel sticks; direction and flow rate of the fluid. This instrumentation and the technological problems to be overcome are described and the results of the first tests carried out are given [fr

  5. Analysis of differences in fuel safety criteria for WWER and western PWR nuclear power plants

    International Nuclear Information System (INIS)

    2003-11-01

    In 2001 the OECD issued a report of the NEA/CSNI (Committee on the Safety of Nuclear Installations) Task Force on the existing safety criteria for reactor fuel for western LWR nuclear power plants (both for PWRs and BWRs) under new design elements. Likewise in 2001, the IAEA released a report by a Working Group on the existing safety criteria for reactor fuel for WWER nuclear power plants under new design requirements. However, it was found that it was not possible to compare the two sets of criteria on the basis upon which they had been established. Therefore, the IAEA initiated an assessment of the common features and differences in fuel safety criteria between plants of eastern and western design, focusing on western PWRs and eastern WWER reactors. Between October 2000 and November 2001, the IAEA organized several workshops with representatives from eastern and western European countries in which the current fuel safety related criteria for PWR and WWER reactors were reviewed and compared. The workshops brought together expert representatives from the Russian Federation, from the Ukraine and from western countries that operate PWRs. The first workshop focused on a general overview of the fuel safety criteria in order for all representatives to appreciate the various criteria and their respective bases. The second workshop (which involved one western and one eastern expert) concentrated on addressing and explaining the differences observed, and documenting all these results in preparation for a panel discussion. This panel discussion took place during the third workshop, where the previously obtained results were reviewed in detail and final recommendations were made. This report documents the findings of the workshops. It highlights the common features and differences between PWR and WWER fuel, and may serve as a general basis for the safety evaluation of these fuels. Therefore, it will be very beneficial for licensing activities for PWR and WWER plants, as it

  6. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  7. Optimization of axial enrichment distribution for BWR fuels using scoping libraries and block coordinate descent method

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2017-03-15

    Highlights: • An optimization method for axial enrichment distribution in a BWR fuel was developed. • Block coordinate descent method is employed to search for optimal solution. • Scoping libraries are used to reduce computational effort. • Optimization search space consists of enrichment difference parameters. • Capability of the method to find optimal solution is demonstrated. - Abstract: An optimization method has been developed to search for the optimal axial enrichment distribution in a fuel assembly for a boiling water reactor core. The optimization method features: (1) employing the block coordinate descent method to find the optimal solution in the space of enrichment difference parameters, (2) using scoping libraries to reduce the amount of CASMO-4 calculation, and (3) integrating a core critical constraint into the objective function that is used to quantify the quality of an axial enrichment design. The objective function consists of the weighted sum of core parameters such as shutdown margin and critical power ratio. The core parameters are evaluated by using SIMULATE-3, and the cross section data required for the SIMULATE-3 calculation are generated by using CASMO-4 and scoping libraries. The application of the method to a 4-segment fuel design (with the highest allowable segment enrichment relaxed to 5%) demonstrated that the method can obtain an axial enrichment design with improved thermal limit ratios and objective function value while satisfying the core design constraints and core critical requirement through the use of an objective function. The use of scoping libraries effectively reduced the number of CASMO-4 calculation, from 85 to 24, in the 4-segment optimization case. An exhausted search was performed to examine the capability of the method in finding the optimal solution for a 4-segment fuel design. The results show that the method found a solution very close to the optimum obtained by the exhausted search. The number of

  8. Reactivity and neutron emission measurements of burnt PWR fuel rod samples in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    Murphy, M. F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H. D.; Chawla, R.

    2004-01-01

    Measurements have been made of the reactivity effects and the neutron emission rates of uranium oxide and mixed oxide burnt fuel samples having a wide range of burnup values and coming from a Pressurised Water Reactor (PWR). The reactivity measurements have been made in a PWR lattice moderated in turn with: water, a water and heavy water mixture, and water containing boron. An interesting relationship has been found between the neutron emission rate and the measured reactivity. (authors)

  9. Development and application of methods and computer codes of fuel management and nuclear design of reload cycles in PWR

    International Nuclear Information System (INIS)

    Ahnert, C.; Aragones, J.M.; Corella, M.R.; Esteban, A.; Martinez-Val, J.M.; Minguez, E.; Perlado, J.M.; Pena, J.; Matias, E. de; Llorente, A.; Navascues, J.; Serrano, J.

    1976-01-01

    Description of methods and computer codes for Fuel Management and Nuclear Design of Reload Cycles in PWR, developed at JEN by adaptation of previous codes (LEOPARD, NUTRIX, CITATION, FUELCOST) and implementation of original codes (TEMP, SOTHIS, CICLON, NUDO, MELON, ROLLO, LIBRA, PENELOPE) and their application to the project of Management and Design of Reload Cycles of a 510 Mwt PWR, including comparison with results of experimental operation and other calculations for validation of methods. (author) [es

  10. Developing and analyzing long-term fuel management strategies for an advanced Small Modular PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aeoi.org.ir

    2017-03-15

    Highlights: • Comprehensive introduction and supplementary concepts as a review paper. • Developing an integrated long-term fuel management strategy for a SMR. • High reliable 3-D core modeling over fuel pins against the traditional LRM. • Verifying the expert rules of large PWRs for an advanced small PWR. • Investigating large numbers of safety parameters coherently. - Abstract: In this paper, long-term fuel management (FM) strategies are introduced and analyzed for a new advanced Pressurized Light Water Reactor (PWR) type of Small Modular Reactors (SMRs). The FM strategies are developed to be safe and practical for implementation as much as possible. Safety performances, economy of fuel, and Quality Assurance (QA) of periodic equilibrium conditions are chosen as the main goals. Flattening power density distribution over fuel pins is the major method to ensure safety performance; also maximum energy output or permissible discharging burn up indicates economy of fuel fabrication costs. Burn up effects from BOC to EOC have been traced, studied, and highly visualized in both of transport lattice cell calculations and diffusion core calculations. Long-term characteristics are searched to gain periodical equilibrium characteristics. They are fissile changes, neutron spectrum, refueling pattern, fuel cycle length, core excess reactivity, average, and maximum burn up of discharged fuels, radial Power Peaking Factors (PPF), total PPF, radial and axial power distributions, batch effects, and enrichment effects for fine regulations. Traditional linear reactivity model have been successfully simulated and adapted via fine core and burn up calculations. Effects of high burnable neutron poison and soluble boron are analyzed. Different numbers of batches via different refueling patterns have been studied and visualized. Expert rules for large type PWRs have been influenced and well tested throughout accurate equilibrium core calculations.

  11. Physics of plutonium and americium recycling in PWR using advanced fuel concepts

    International Nuclear Information System (INIS)

    Hourcade, E.

    2004-01-01

    PWR waste inventory management is considered in many countries including Frances as one of the main current issues. Pu and Am are the 2 main contents both in term of volume and long term radio-toxicity. Waiting for the Generation IV systems implementation (2035-2050), one of the mid-term solutions for their transmutation involves the use of advanced fuels in Pressurized Water Reactors (PWR). These have to require as little modification as possible of the core internals, the cooling system and fuel cycle facilities (fabrication and reprocessing). The first part of this paper deals with some neutronic characteristics of Pu and/or Am recycling. In a second part, 2 technical solutions MOX-HMR and APA-DUPLEX-84 are presented and the third part is devoted to the study of a few global strategies. The main neutronic parameters to be considered for Pu and Am recycling in PWR are void coefficient, Doppler coefficient, fraction of delayed neutrons and power distribution (especially for heterogeneous configurations). The modification of the moderation ratio, the opportunity to use inert matrices (targets), the optimisation of Uranium, Plutonium and Americium contents are the key parameters to play with. One of the solutions (APA-DUPLEX-84) presented here is a heterogeneous assembly with regular moderation ratio composed with both target fuel rods (Pu and Am embedded in an inert matrix) and standard UO 2 fuel rods. An EPR (European Pressurised Reactor) type reactor, loaded only with assemblies containing 84 peripheral targets, can reach an Americium consumption rate of (4.4; 23 kg/TWh) depending on the assembly concept. For Pu and Am inventories stabilisation, the theoretical fraction of reactors loaded with Pu + Am or Pu assemblies is about 60%. For Americium inventory stabilisation, the fraction decreases down to 16%, but Pu is produced at a rate of 18.5 Kg/TWh (-25% compared to one through UOX cycle)

  12. BWR fuel assembly having fuel rod spacers axially positioned by exterior springs

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1988-01-01

    In a fuel assembly having spaced fuel rods, an outer hollow tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid there-along, and at least one spacer being disposed along the channel and about the fuel rods so as to maintain them in side-by-side spaced relationship, an arrangement for disposing the spacer in a desired axial position along the fuel rods is described comprising: yieldably resilient springs disposed between an interior side of the outer channel and an exterior side of the spacer. The springs have an inherent spring bias directed away from the exterior sides of the spacers and toward the interior side of the channel such that by contact with the channel and spacer the springs assume states in which they are deflected away from the channel interior side so as to exert sufficient compressive contacting force thereon to maintain the spacer substantially stationary in the desired axial position along the fuel rods

  13. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    International Nuclear Information System (INIS)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A.

    2004-01-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse

  14. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    Energy Technology Data Exchange (ETDEWEB)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A. [Westinghouse Electric Co., LLC, Columbia, SC (United States)]|[ENUSA Industrias Avanzadas SA, Madrid (Spain)

    2004-07-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse.

  15. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding

    International Nuclear Information System (INIS)

    Polley, M.V.; Evans, H.E.

    1993-08-01

    High concentrations of lithium in the coolant may enhance the corrosion rate of Zircaloy fuel cladding. In the present work, oxide thicknesses on fuel cladding from the Millstone 3 PWR were compared with those from the North Anna 1 PWR. The intention was to identify whether the higher lithium levels (up to 3.5 ppM) in the Millstone 3 primary coolant during cycles 2 and 3 led to significantly greater oxidation rates than in North Anna 1 which operated generally with lithium levels lower than 2.2 ppM. The comparisons were made by comparing the measurements with code predictions of Zircaloy oxidation in order to factor out the effect of operational variables on the oxide thicknesses achieved. Overall, Millstone 3 oxide thicknesses were found to be approximately 14% greater than North Anna 1 values. However, approximately 29% lower oxide thicknesses were found on reload Millstone 3 rods exposed to one cycle of elevated lithium chemistry than on Millstone 3 initial fuel exposed to one cycle of normal lithium chemistry during cycle 1. Furthermore, oxide thicknesses on Millstone 3 rods exposed to two cycles of elevated lithium chemistry were approximately 36% lower than on Millstone 3 rods exposed to one cycle of normal lithium chemistry plus one cycle of elevated lithium chemistry. Therefore, it cannot be concluded that elevated lithium operation in Millstone 3 led to enhanced Zircaloy fuel clad corrosion

  16. Control rod ejection accident analysis for a PWR with thorium fuel loading

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D.F. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2010-07-01

    This paper presents the results of 3-D transient analysis of a pressurized water reactor (PWR) core loaded with 100% Th-Pu MOX fuel assemblies. The aim of this study is to evaluate the safety impact of applying a full loading of this innovative fuel in PWRs of the current generation. A reactivity insertion accident scenario has been simulated using the reactor core analysis code PANTHER, used in conjunction with the lattice code WIMS. A single control rod assembly, with the highest reactivity worth, has been considered to be ejected from the core within 100 milliseconds, which may occur due to failure of the casing of the control rod driver mechanism. Analysis at both hot full power and hot zero power reactor states have been taken into account. The results were compared with those obtained for a representative PWR fuelled with UO{sub 2} fuel assemblies. In general the results obtained for both cores were comparable, with some differences associated mainly to the harder neutron spectrum observed for the Th-Pu MOX core, and to some specific core design features. The study has been performed as part of the LWR-DEPUTY project of the EURATOM 6. Framework Programme, where several aspects of novel fuels are being investigated for deep burning of plutonium in existing nuclear power plants. (authors)

  17. PWR fuel monitoring: recent progress with hot cells' examination equipment

    International Nuclear Information System (INIS)

    Chenebault, P.

    1989-01-01

    The 'hot' laboratories set up by the French Atomic Energy Authority (CEA) in its nuclear research centers at Saclay and Grenoble, and by the French Electricity Board (EDF) on the Chinon nuclear power station site, are used for dismantling and examining fuel rod assemblies irradiated in PWRs. This article is limited to a description of a number of new or totally updated items of equipment in these laboratories. Nuclear industry companies are also participating in the development of new examination techniques. As an example, the use of wave-guides for remote transmission of signals in a radioactive environment is described. 2 figs

  18. FEMAXI-7 analysis on behavior of medium and high burnup BWR fuels during base-irradiation and power ramp

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyanagi, Jin, E-mail: ohgiyanagi.jin@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hanawa, Satoshi; Suzuki, Motoe; Nagase, Fumihisa [Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Two power ramp experiments of BWR fuels were analyzed by FEMAXI-7 code. Black-Right-Pointing-Pointer Calculated FGR and cladding deformation showed reasonable agreement with PIE data. Black-Right-Pointing-Pointer High temperature FGR could be predicted by the enhanced Turnbull FG diffusion constant. Black-Right-Pointing-Pointer Local PCMI model in the code could reasonably predict cladding ridging deformation. - Abstract: Irradiation behavior of medium and high burnup BWR fuels during base-irradiation and subsequent power ramp test is analyzed by a fuel performance code FEMAXI-7. The code has a 1.5-D cylindrical geometry (4 axial segments) to have a coupled solution of thermal analysis and FEM mechanical analysis. Two kinds of target fuels are selected; one was subjected to a power ramp test in the DR3 reactor at RISO after the base-irradiation in a commercial BWR, and the other was subjected to the power ramp test in the DR3 reactor after the base-irradiation in the Halden boiling water reactor. The calculated values such as fission gas release after the base-irradiation and a cladding diameter profile before and after the ramp test show a reasonable agreement with measured data. In addition, the calculated ridging deformation of the cladding before and after the ramp test, which is obtained by using a local pellet-cladding mechanical interaction (PCMI) analysis geometry in FEMAXI-7, is compared with the measured data, and it is found that the FEMAXI-7 code is applicable to the local PCMI analysis of medium and high burnup rods under normal operation and power ramp conditions.

  19. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report

    International Nuclear Information System (INIS)

    Tentner, A.

    2009-01-01

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  20. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables

  1. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1985-02-01

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation [fr

  2. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  3. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  4. Overview of the Vercors Programme Devoted to Safety Studies on Irradiated PWR Fuel

    International Nuclear Information System (INIS)

    Tourasse, M.; Andre, B.; Ducros, G.; Maro, D.

    1996-01-01

    The first objective of the Heva-Vercors Program is to improve the data of fission product release and behaviour after an extensive fuel temperature increase and loss of integrity of the fuel elements that occur in case of severe PWR accident. The program is co-funded by the French Nuclear Protection and Safety Institute (IPSN) and Electricite de France (EDF). The experiments are conducted in a shielded cell of the French Grenoble Nuclear Centre. For these tests, industrial fuel from French PWR reactor plants is used. In order to rebuild the short lived fission product inventory, a reirradiation is performed in the experimental Siloe reactor, prior to the test. Eight tests have been conducted in the frame of the Heva Program up to 2370 K in the 1983-1988 period. The main outcomes of these studies were linked to the volatile fission product release. This program has been extended by the Vercors one with higher fuel temperature (2600 K) and improved instrumentation: gamma spectrometry, emission tomography, metallography, scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction are some of the experimental techniques used for on line and post test characterization. The knowledge of the behavior of low volatile fission product has been significantly improved with the six Vercors tests. The results of the Vercors 4 test (38 GWd/t(U), 2570 K, reducing atmosphere) are presented here as an example. The key parameters are exhibited. The next step of these studies will use the Vercors HT loop that is planned to be operational at the beginning of 1996 to reach fuel melting temperature. The first aim of these future tests is to study the behaviour of non volatile and transuranic elements. An even more sophisticated instrumentation is implemented to reach the goal. The use of MOX fuel, the interaction between fission product aerosols and structural materials (Ag-In-Cd) and the fuel granulometry effect will be the next steps of the experimental program

  5. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    International Nuclear Information System (INIS)

    Adamsson, Carl; Le Corre, Jean-Marie

    2011-01-01

    Highlights: → The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. → A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. → MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. → The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. → The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the

  6. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  7. Design premises for canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    Werme, L.

    1998-09-01

    The purpose of this report is to establish the basic premises for designing canisters for the disposal of spent nuclear fuel, the requirements for canister characteristics, and the design criteria, and to present alternative canister designs that satisfy these premises. The point of departure for canister design has been that the canister must be able to be used for both BWR and PWR fuel

  8. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod

    International Nuclear Information System (INIS)

    Hourdequin, N.

    1995-05-01

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR's operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends

  9. Study on the behavior of waterside corroded PWR fuel rods under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Sasajima, Hideo

    1989-06-01

    One of the highlighted problems from the fuel reliability point of view is a waterside corrosion of fuel cladding which becomes more significant at extended burnup stages. To date, at highly burned fuel, waterside corrosion was recognized as important because cladding oxidation increased with increasing burn-up. In experiments, as the basic research for the study of high burn-up fuel, the test fuel rods were prepressurized to ranges from 3.47 to 3.55 MPa, oxidized artificially to both 10 and 20 μm in thickness. Regarding fabricated oxide thickness of 10 μm, it is corresponded to be transition point from cubic law to linear law as a function of burn-up. Pulse irradiation experiments by NSRR were carried out to study the behavior of waterside corroded PWR type fuels under RIA conditions. Obtained results are: (1) The failure threshold of tested fuels was 110 cal/g·fuel (0.46 KJ/g·fuel) in enthalpy. This showed that the failure threshold of tested fuels was same as that of the past NSRR experimental data. (2) The failure mechanisms of the tested fuel rods was cladding rupture induced by ballooning. No differences in failure mechanisms existed between the past NSRR prepressurized standard fuel and the tested fuels. (3) Cracks were existed without propagating into cladding matrix, so that it was judged that these were not initiation of failure. (4) Whithin this experimental condition, reduction of cladding thickness being attributed to the increase of oxidation did not failure threshold. (author)

  10. A Study on Structural Strength of Irradiated Spacer Grid for PWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Baek, S. J.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. I.; Kim, Y. H.; Lee, J. J. [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    A fuel assembly consists of an array of fuel rods, spacer grids, guide thimbles, instrumentation tubes, and top and bottom nozzles. In PWR (Pressurized light Water Reactor) fuel assemblies, the spacer grids support the fuel rods by the friction forces between the fuel rods and springs/dimples. Under irradiation, the spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and also bear static and dynamic loads during operation inside the nuclear reactor and transportation for spent fuel storage. Thus, it is important to understand the characteristics of deformation behavior and the change in structural strength of an irradiated spacer grid.. In the present study, the static compression test of a spacer grid was conducted to investigate the structural strength of the irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the structural strength of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. The fuel assembly was dismantled and the irradiated spacer grid was obtained for the compression test. The apparatus for measuring the compression strength of the irradiated spacer grid was developed and installed successfully in the hot cell.

  11. Seismic analysis with FEM for fuel transfer system of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Jia Xiaofeng; Liu Pengliang; Bi Xiangjun; Ji Shunying

    2012-01-01

    In the PWR nuclear power plant, the function of the fuel transfer system (FTS) is to transfer the fuel assembly between the reactor building and the fuel building. The seismic analysis of the transfer system structure should be carried out to ensure the safety under OBE and SSE. Therefore, the ANASYS 12.0 software is adopted to construct the finite element analysis model for the fuel transfer system in a million kilowatt nuclear power plant. For the various configurations of FTS in the operating process, the stresses of the main structures, such as the transfer tube, fuel assembly container, fuel conveyor car, lifting frame in the reactor building, lifting frame in the fuel building, support and guide structure of conveyor car and the lifting frame in both buildings, are computed. The stresses are combined with the method of square root of square sum (SRSS) and assessed under various seismic conditions based on RCCM code, the results of the assessment satisfy the code. The results show that the stresses of the fuel transfer system structure meet the strength requirement, meanwhile, it can withstand the earthquake well. (authors)

  12. HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    Karvinen, E.

    1981-06-01

    HEXBU-3D is a three-dimensional nodal simulator program for PWR reactors. It is designed for a reactor core that consists of hexagonal fuel assemblies and of big follower-type control assemblies. The program solves two-group diffusion equations in homogenized fuel assembly geometry by a sophisticated nodal method. The treatment of feedback effects from xenon-poisoning, fuel temperature, moderator temperature and density and soluble boron concentration are included in the program. The nodal equations are solved by a fast two-level iteration technique and the eigenvalue can be either the effective multiplication factor or the boron concentration of the moderator. Burnup calculations are performed by tabulated sets of burnup-dependent cross sections evaluated by a cell burnup program. HEXBY-3D has been originally programmed in FORTRAN V for the UNIVAC 1108 computer, but there is also another version which is operable on the CDC CYBER 170 computer. (author)

  13. Neutron multiplication and shielding problems in PWR spent-fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.

    1976-01-01

    In order to evaluate the degree of accuracy of computational methods used for the shield design of spent-fuel shipping casks, comparisons were made between biological dose rate calculations and measurements at the surface of a cask carrying three PWR fuel assemblies (the fuel being successively wet and dry). The experimental methods used provide ksub(eff) with an accuracy of 0.024. Neutron multiplication coefficients provided by the APOLLO and DOT-3 codes are located within the uncertainty range of the experimentally derived values. The APOLLO plus DOT codes for neutron source calculations and ANISN plus DOT codes for neutron transmission calculations provide neutron dose rate predictions in agreement with measurements to within 10%. The PEPIN 76 code used for deriving fission product γ-rays and the point kernel code MERCURE 4 treating the γ-ray transmission give γ dose rate predictions that generally differ from measurements by less than 25%

  14. CLUB, Cell Calculation PF Candu PWR Fuel Clusters

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1985-01-01

    1 - Description of problem or function: CLUB is an integral transport theory code to calculate fluxes, reaction rates and few-group condensed Cross sections for cylindricalized PHWR lattice cells. For a specified buckling, it computes k eff using few-group diffusion theory in fundamental mode. There is also an option to calculate these quantities as a function of burnup. 2 - Method of solution: There are basically two options for solving the integral equation. In the first option, the integral transport equation is solved by the combination of the small scale Pij method and the large scale interface current technique. At each region interface, the angular flux is expanded separately in the incoming and outgoing direction. Up to three terms can be considered in this expansion. In the second option, the complete Pij method is used for the cylindricalized lattice cell. The calculations are performed in 27 groups for which the Cross sections are derived from the 69-group WIMS library by condensing them into 27 groups by using a typical spectrum of PHWRs. The first order differential burnup equations can be solved by either the trapezoidal rule or the Runge-Kutta method. 3 - Restrictions on the complexity of the problem: The program considers the same number of zones in each ring. Furthermore, the fuel pin in each ring should be of the same type

  15. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  16. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  17. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    International Nuclear Information System (INIS)

    Ichikawa, M.

    1994-01-01

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs

  18. Re-irradiation and limit testing of the fuels PWR type reactors

    International Nuclear Information System (INIS)

    Roche, M.; Molvault, M.

    1978-01-01

    In view of investigating the neutron radiation behavior of PWR fuel pins, the S.P.S. (Services des Piles de Saclay) developed a set of experimental means used at OSIRIS in Saclay Nuclear Research Center. Said devices are shown to be able to meet present problems concerning can failures, power and temperature cycling, remote-control studies. These means can also be used either for statistical studies, they can then receive several samples, or for analytical studies in instrumented devices of large capacity and accelerated irradiation rate [fr

  19. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Georgeta [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  20. Development of computational methods to describe the mechanical behavior of PWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Wanninger, Andreas; Seidl, Marcus; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering

    2016-10-15

    To investigate the static mechanical response of PWR fuel assemblies (FAs) in the reactor core, a structural FA model is being developed using the FEM code ANSYS Mechanical. To assess the capabilities of the model, lateral deflection tests are performed for a reference FA. For this purpose we distinguish between two environments, in-laboratory and in-reactor for different burn-ups. The results are in qualitative agreement with experimental tests and show the stiffness decrease of the FAs during irradiation in the reactor core.

  1. A model finite-element to analyse the mechanical behavior of a PWR fuel rod

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.; Tanajura, C.A.S.

    1988-01-01

    A model to analyse the mechanical behavior of a PWR fuel rod is presented. We drew our attention to the phenomenon of pellet-pellet and pellet-cladding contact by taking advantage of an elastic model which include the effects of thermal gradients, cladding internal and external pressures, swelling and initial relocation. The problem of contact gives rise ro a variational formulation which employs Lagrangian multipliers. An iterative scheme is constructed and the finite element method is applied to obtain the numerical solution. Some results and comments are presented to examine the performance of the model. (author) [pt

  2. The application of neural networks for optimization of the configuration of fuel assemblies in PWR reactors

    International Nuclear Information System (INIS)

    Sadighi, M.; Setayeshi, S.; Salehi, A.A.

    2002-01-01

    This paper presents a new method to solve the problem of finding the best configuration of fuel assemblies in a PWR (Pressurized Water Reactor) core. Finding an optimum solution requires a huge amount of calculations in classical methods. It has been shown that the application of continuous Hop field neural network accompanied by the Simulated Annealing method to this problem not only reduces the volume of the calculations, but also guarantees finding the best solution. In this study flattening of neutron flux inside the reactor core of Brusher NPP is considered as an objective function. The result shows the optimum core configuration which is in agreement with the pattern proposed by the designer

  3. Dynamic structural analysis for assemblies of fuel elements in the core of a PWR

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da.

    1991-01-01

    It is presented a procedure for the dynamic structural analysis of a PWR core. Impacts between fuel assemblies may occur because of the existence of gaps between them. Thus, the problem is non-linear and an spectral analysis is avoided. It is necessary a time-history response analysis. The Modal Superposition Method with the Duhamel integral was used in order to solve the problem. It is presented an algorithm of solution and also results obtained with the STYCA computer program, developed in the basis of what was proposed here. (author)

  4. Nuclear regulatory guides for LWR (PWR) fuel in Japan and some related safety research

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-12-31

    The general aspects of licensing procedure for NPPs in Japan and regulatory guides are described. The expert committee reports closely related to PWR fuel are reviewed. Some major results of reactor safety research experiments at NSPR (Nuclear Safety Research Reactor of JAERI) used for establishment of related guide, are discussed. It is pointed out that the reactor safety research in Japan supports the regularity activities by establishing and revising guides and preparing the necessary regulatory data as well as improving nuclear safety. 10 figs., 4 refs.

  5. Evaluation of PWR and BWR assembly benchmark calculations. Status report of EPRI computational benchmark results, performed in the framework of the Netherlands` PINK programme (Joint project of ECN, IRI, KEMA and GKN)

    Energy Technology Data Exchange (ETDEWEB)

    Gruppelaar, H. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Klippel, H.T. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Instituut; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Instituut; Verhagen, F.C.M. [Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands); Bruggink, J.C. [Gemeenschappelijke Kernenergiecentrale Nederland N.V., Dodewaard (Netherlands)

    1993-11-01

    Benchmark results of the Dutch PINK working group on calculational benchmarks on single pin cell and multipin assemblies as defined by EPRI are presented and evaluated. First a short update of methods used by the various institutes involved is given as well as an update of the status with respect to previous performed pin-cell calculations. Problems detected in previous pin-cell calculations are inspected more closely. Detailed discussion of results of multipin assembly calculations is given. The assembly consists of 9 pins in a multicell square lattice in which the central pin is filled differently, i.e. a Gd pin for the BWR assembly and a control rod/guide tube for the PWR assembly. The results for pin cells showed a rather good overall agreement between the four participants although BWR pins with high void fraction turned out to be difficult to calculate. With respect to burnup calculations good overall agreement for the reactivity swing was obtained, provided that a fine time grid is used. (orig.)

  6. Evaluation of PWR and BWR assembly benchmark calculations. Status report of EPRI computational benchmark results, performed in the framework of the Netherlands' PINK programme (Joint project of ECN, IRI, KEMA and GKN)

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Klippel, H.T.; Kloosterman, J.L.; Hoogenboom, J.E.; Bruggink, J.C.

    1993-11-01

    Benchmark results of the Dutch PINK working group on calculational benchmarks on single pin cell and multipin assemblies as defined by EPRI are presented and evaluated. First a short update of methods used by the various institutes involved is given as well as an update of the status with respect to previous performed pin-cell calculations. Problems detected in previous pin-cell calculations are inspected more closely. Detailed discussion of results of multipin assembly calculations is given. The assembly consists of 9 pins in a multicell square lattice in which the central pin is filled differently, i.e. a Gd pin for the BWR assembly and a control rod/guide tube for the PWR assembly. The results for pin cells showed a rather good overall agreement between the four participants although BWR pins with high void fraction turned out to be difficult to calculate. With respect to burnup calculations good overall agreement for the reactivity swing was obtained, provided that a fine time grid is used. (orig.)

  7. A Hold-down Margin Assessment using Statistical Method for the PWR Fuel Assembly

    International Nuclear Information System (INIS)

    Jeon, S. Y.; Park, N. K.; Lee, K. S.; Kim, H. K.

    2007-01-01

    The hold-down springs provide an acceptable hold down force against hydraulic uplift force absorbing the length change of the fuel assembly relative to the space between the upper and lower core plates in PWR. These length changes are mainly due to the thermal expansion, irradiation growth and creep down of the fuel assemblies. There are two kinds of hold-down springs depending on the different design concept of the reactor internals of the PWR in Korea, one is a leaf-type hold down spring for Westinghouse type plants and the other is a coil-type hold-down spring for OPR1000 (Optimized Power Reactor 1000). There are four sets of hold-down springs in each fuel assembly for leaf type hold-down spring and each set of the hold-down springs consists of multiple tapered leaves to form a cantilever leaf spring set. The length, width and thickness of the spring leaves are selected to provide the desired spring constant, deflection range, and hold down force. There are four coil springs in each fuel assembly for coil-type hold-down spring. In this study, the hold-down forces and margins were calculated for the leaf-type and coil-type hold-down springs considering geometrical data of the fuel assembly and its components, length changes of the fuel assembly due to thermal expansion, irradiation growth, creep, and irradiation relaxation. The hold-down spring forces were calculated deterministically and statistically to investigate the benefit of the statistical calculation method in view of hold-down margin. The Monte-Carlo simulation method was used for the statistical hold down force calculation

  8. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network

    International Nuclear Information System (INIS)

    Montes, J.L.; Ortiz, J.J.; Perusquia C, R.; Francois, J.L.; Martin del Campo M, C.

    2007-01-01

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U 235 , some of these bars also contain a concentration of Gd 2 O 3 and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  9. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  10. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  11. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part)

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2003-01-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  12. Small PWR 'PFPWR50' using cermet fuel of Th-Pu particles

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Shimazu, Yoichiro

    2009-01-01

    An innovative concept of PFPWR50 has been studied. The main feature of PFPWR50 has been to adopt TRISO coated fuel particles in a conventional PWR cladding. Coated fuel particle provides good confining ability of fission products. But it is pointed out that swelling of SiC layer at low temperature by irradiation has possibilities of degrading the integrity of coated fuel particle in the LWR environment. Thus, we examined the use of Cermet fuel replacing SiC layer to Zr metal or Zr compound. And the nuclear fuel has been used as fuel compact, which is configured to fix coated fuel particles in the matrix material to the shape of fuel pellet. In the previous study, graphite matrix is adopted as the matrix material. According to the burnup calculations of the several fuel concepts with those covering layers, we decide to use Zr layer embedded in Zr metal base or ZrC layer with graphite matrix. But carbon has the problem at low temperature by irradiation as well as SiC. Therefore, Zr covering layer and Zr metal base are finally selected. The other feature of PFPWR50 concept has been that the excess reactivity is suppressed during a cycle by initially loading burnable poison (gadolinia) in the fuels. In this study, a new loading pattern is determined by combining 7 types of assemblies in which the gadolinia concentration and the number of the fuel rods with gadolinia are different. This new core gives 6.7 equivalent full power years (EFPY) as the core life of a cycle. And the excess reactivity is suppressed to less than 2.0%Δk/k during the cycle. (author)

  13. Overview of the Vercors programme devoted to safety studies on irradiated PWR fuel

    International Nuclear Information System (INIS)

    Tourasse, M.; Andre, B.; Ducros, G.; Maro, D.

    1996-01-01

    The first objective of the Heva-Vercors Program is to improve the data base of fission product release and behaviour after an extensive fuel temperature increase and loss of integrity of the fuel elements that occur in case of severe PWR accident. The program is co-funded by the French Nuclear Protection and Safety Institute (IPSN) and Electricite de France (EdF). The experiments are conducted in a shielded cell of the French Grenoble Nuclear Centre. For these tests, industrial fuel from French PWR reactor plants is used. In order to rebuild the short lived fission product inventory, a reirradiation is performed in the experimental Siloe reactor, prior to the test. Eight tests have been conducted in the frame of the Heva Program up to 2370 K in the 1983-1988 period. The main outcomes of these studies were linked to the volatile fission product release. This program has been extended by the Vercors one with higher fuel temperature (2600 K) and improved instrumentation : gamma spectrometry, emission tomography, metallography, scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction are some of the experimental techniques used for on-line and post-test characterization. The knowledge of the behaviour of low volatile fission product has been significantly improved with the six Vercors tests. The results of the Vercors 4 test (38 GWd/t(U), 2570 K, reducing atmosphere) are presented here as an example. The key parameters are exhibited. The next step of these studies will use the Vercors HT loop that is planned to be operational at the beginning of 1996 to reach fuel melting temperature. (author)

  14. Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N. [Westinghouse Electric Co. LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existing facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)

  15. Development of a methodology of analysis of instabilities in BWR reactors; Desarrollo de una metodologia de analisis de inestabilidades en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fenoll, M.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2012-07-01

    This paper presents a methodology of analysis of the reactors instabilities of BWR type. This methodology covers of modal analysis of the point operation techniques of signal analysis and simulation of transients, through 3D Coupled RELAP5/PARCSv2.7 code.

  16. Low-density moderation in the storage of PWR fuel assemblies

    International Nuclear Information System (INIS)

    Alcorn, F.M.

    1987-01-01

    The nuclear criticality safety of PWR fuel storage arrays requires that the potential of low-density moderation within the array be considered. The calculated criticality effect of low-density moderation in a typical PWR fuel assembly array is described in this paper. Calculated reactivity due to low-density moderation can vary significantly between physics codes that have been validated for well moderated systems. The availability of appropriate benchmark experiments for low-density moderation is quite limited; attempts to validate against the one set of suitable experiments at low density have been disappointing. Calculations indicate that a typical array may be unacceptable should the array be subjected to interstitial moderation equivalent to 5 % of full density water. Array parameters (such as spacing and size) will dramatically affect the calculated maximum K-eff at low-density moderation. Administrative and engineered control may be necessary to assure maintenance of safety at low-density moderation. Potential sources for low-density moderation are discussed; in general, accidentally achieving degrees of low-density moderation which might lead to a compromise of safety are not credible. (author)

  17. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  18. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  19. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  20. Computer code TOBUNRAD for PWR fuel bundle heat-up calculations

    International Nuclear Information System (INIS)

    Shimooke, Takanori; Yoshida, Kazuo

    1979-05-01

    The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)

  1. Development of an innovative PWR for low cost fuel recycle and waste reduction

    International Nuclear Information System (INIS)

    Kanagawa, Takashi; Onoue, Masaaki

    2001-01-01

    In order to bear long-term and stable energy supply, it is important for nuclear power generation to realize establishment of energy security controlling dependence on natural resources and reduction of long-life radioactive wastes such as minor actinide elements (MA) and so on. For this, establishment of fast breeder reproducible on its fuel and of fuel recycling is essential and construction of the fuel recycling capable of repeatedly recycling of plutonium (Pu) and MA with low cost is required. Here were proposed a fuel recycling system combining recycling type PWR with advanced recycling system under development for Na cooling fast breeder reactor as a candidate filling such conditions, to show its characteristics and effects after its introduction. By this system, some facilities to realize flexible and low cost fuel recycling, to reduce longer-life radioactive wastes due to recycling burning of Pu and MA, and to realize an electric power supplying system independent on natural resources due to fuel breeding feature, were shown. (G.K.)

  2. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    Science.gov (United States)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  3. Thermal hydraulic design of a hydride-fueled inverted PWR core

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Hejzlar, P.; Ferroni, P.; Bergles, A.

    2009-01-01

    An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U-ZrH 1.6 ) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U-ZrH 1.6 . The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t , which is 135% of the optimally powered standard design (5080 MW t -determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.

  4. A review on the heterogeneous thorium fuel concept for PWR applications

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Kim, K. H.

    2001-08-01

    Seed-blanket unit (SBU) and whole assembly seed and blanket (WASB) are being investigated for the PWR application as well as homogeneous thorium fuel under the US NERI program. For the verification of HELIOS capability for thorium analysis, the characteristics of heterogeneous thorium fuels was evaluated by HELIOS color-set calculation and compared with the calculation results of the US NERI. The infinite multiplication factors from HELIOS calculation are in good agreement with CASMO-4 except for SBU which uses metallic fuel for seed material. The maximum relative difference in power distribution is occurred in WASB case, and is about 5% compared to MCNP. The isotopic concentrations for Am-241, Am-243, and Cm-244 of HELIOS agree well with CASMO-4's, but show a significant discrepancy from MOCUP mainly caused by the old data of cross section and decay constants in ORIGEN. The nonproliferation characteristic of thorium-based fuel such as critical mass, spontaneous fission rate, decay heat generation rate are superior to the conventional uranium fuel. Even though the diversion of U-233 produced in blanket is a technically difficult, the enrichment of uranium isotopes including U-233 is slightly over the limit for safeguard aspects. The urnaium contents in thorium fuel is need to be adjusted in order to meet the safeguard limit. A preliminary assessment of fuel economics was performed based on the uranium utilization and SWU utilization. The natural uranium utilization factors of heterogeneous thorium-based fuel increased by 10δ18%, but the SWU utilization factor decreased by 6-δ11% compared to uranium fuel. The cost of uranium purchase of 50USI/KgU and SWU cost of 110USI/SWU-Kg, recommended by OECD/NEA, gives a comparable economics of thorium-based fuel to uraium fuel. The detailed fuel cycle analysis will take account of the other factors like the variation of uranium purchase cost and SWU cost, fabrication cost of thorium fuel, thorium purchase cost, the capcity

  5. A review on the heterogeneous thorium fuel concept for PWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Kim, K. H

    2001-08-01

    Seed-blanket unit (SBU) and whole assembly seed and blanket (WASB) are being investigated for the PWR application as well as homogeneous thorium fuel under the US NERI program. For the verification of HELIOS capability for thorium analysis, the characteristics of heterogeneous thorium fuels was evaluated by HELIOS color-set calculation and compared with the calculation results of the US NERI. The infinite multiplication factors from HELIOS calculation are in good agreement with CASMO-4 except for SBU which uses metallic fuel for seed material. The maximum relative difference in power distribution is occurred in WASB case, and is about 5% compared to MCNP. The isotopic concentrations for Am-241, Am-243, and Cm-244 of HELIOS agree well with CASMO-4's, but show a significant discrepancy from MOCUP mainly caused by the old data of cross section and decay constants in ORIGEN. The nonproliferation characteristic of thorium-based fuel such as critical mass, spontaneous fission rate, decay heat generation rate are superior to the conventional uranium fuel. Even though the diversion of U-233 produced in blanket is a technically difficult, the enrichment of uranium isotopes including U-233 is slightly over the limit for safeguard aspects. The urnaium contents in thorium fuel is need to be adjusted in order to meet the safeguard limit. A preliminary assessment of fuel economics was performed based on the uranium utilization and SWU utilization. The natural uranium utilization factors of heterogeneous thorium-based fuel increased by 10{delta}18%, but the SWU utilization factor decreased by 6-{delta}11% compared to uranium fuel. The cost of uranium purchase of 50USI/KgU and SWU cost of 110USI/SWU-Kg, recommended by OECD/NEA, gives a comparable economics of thorium-based fuel to uraium fuel. The detailed fuel cycle analysis will take account of the other factors like the variation of uranium purchase cost and SWU cost, fabrication cost of thorium fuel, thorium purchase cost

  6. Radionuclide release from PWR fuels in a reference tuff repository groundwater

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1985-03-01

    The Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the welded devitrified Topopah Spring tuff at Yucca Mountain, Nye County, Nevada, for potential use as a high-level nuclear waste repository. In support of the Waste Package task of NNWSI, tests have been conducted under ambient air environment to measure radionuclide release from two pressurized water reactor (PWR) spent fuels in water obtained from the J-13 well near the Yucca Mountain site. Four specimen types, representing a range of fuel physical conditions that may exist in a failed waste canister containing a limited amount of water were tested. The specimen types were: fuel rod sections split open to expose bare fuel particles; rod sections with water-tight end fittings with a 2.5-cm long by 150-μm wide slit through the cladding; rod sections with water-tight end fittings and two 200-μm-diameter holes through the cladding; and undefected rod segments with water-tight end fittings. Radionuclide release results from the first 223-day test runs on H.B. Robinson spent fuel specimens in J-13 water are reported and compared to results from a previous test series in which similar Turkey Point reactor spent fuel specimens were tested on deionized water. Selected initial results are also given for Turkey Point fuel specimens tested on J-13 water. Results suggest that the actinides Pu, Am, Cm and Np are released congruently with U as the UO 2 spent fuel matrix dissolves. Fractional release of 137 Cs and 99 Tc was greater than that measured for the actinides. Generally, lower radionuclide releases were measured for the H.B. Robinson fuel in J-13 water than for Turkey Point Fuel in deionized water. 8 references, 7 figures, 9 tables

  7. Utilization of ''CONTACT'' experiments to improve the fission gas release knowledge in PWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Charles, M; Abassin, J J; Bruet, M; Baron, D; Melin, P

    1983-03-01

    The CONTACT experiments, which were carried out by the French CEA, within the framework of a CEA-FRAMATOME collaboration agreement, bear on the behaviour of in-pile irradiated PWR fuel rods. We will focus here upon their results dealing with fission gas release. The experimental device is briefly described, then the following results are given: the kinetics of stable fission gas release for various linear ratings; the instantaneous fractional release rates of radioactive gases versus their decay constant in the range 1.5 10/sup -6/-3.6 10/sup -3/s/sup -1/, for various burnups, as also the influence of fuel temperature. Moreover, the influence of the nature and the pressure of the filling gas upon the release is presented for various linear ratings. The experimental results are discussed and analysed with the purpose to model various physical phenomena involved in the release (low-temperature mechanisms, diffusion).

  8. Basic study on characteristics of some important equilibrium fuel cycles of PWR

    International Nuclear Information System (INIS)

    Waris, A.; Sekimoto, H.

    2001-01-01

    Equilibrium fuel cycle characteristics of a light water reactor (LWR) with enriched uranium supply were evaluated. In this study, five kinds of fuel cycles of 3000 MWt pressurized water reactor (PWR) were investigated, and a method to determine the uranium enrichment in order to achieve their criticality was presented. The results show that the enrichment decreases considerably with increasing number of confined heavy nuclides when U is discharged from the reactor. The required natural uranium was also evaluated for two different enrichment processes. The amount of required natural uranium also decreases as well. On the other hand, when U is totally confined, the enrichment becomes unacceptably high. Furthermore, Pu and minor actinides (MA) confining seem effective to incinerate the discharged radio-toxic wastes

  9. State of the art report of exponential experiments with PWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Park, Sung Won; Park, Kwang Joon; Kim, Jong Hoon; Hong, Kwon Pyo; Shin, Hee Sung

    2000-09-01

    Exponential experiment method is discussed for verifying the computer code system of the nuclear criticality analysis which makes it possible to apply for the burnup credit in storage, transportation, and handling of spent nuclear fuel. In this report, it is described that the neutron flux density distribution in the exponential experiment system which consists of a PWR spent fuel in a water pool is measured by using 252 Cf neutron source and a mini-fission chamber, and therefrom the exponential decay coefficient is determined. Besides, described is a method for determining the absolute thermal neutron flux density by means of the Cd cut-off technique in association with a gold foil. Also a method is described for analyzing the energy distribution of γ-ray from the gold foil activation detector in detail

  10. Utilization of ''CONTACT'' experiments to improve the fission gas release knowledge in PWR fuel rods

    International Nuclear Information System (INIS)

    Charles, M.; Abassin, J.J.; Bruet, M.

    1983-01-01

    The CONTACT experiments, which were carried out by the French CEA, within the framework of a CEA-FRAMATOME collaboration agreement, bear on the behaviour of in-pile irradiated PWR fuel rods. We will focus here upon their results dealing with fission gas release. The experimental device is briefly described, then the following results are given: the kinetics of stable fission gas release for various linear ratings; the instantaneous fractional release rates of radioactive gases versus their decay constant in the range 1.5 10 -6 -3.6 10 -3 s -1 , for various burnups, as also the influence of fuel temperature. Moreover, the influence of the nature and the pressure of the filling gas upon the release is presented for various linear ratings. The experimental results are discussed and analysed with the purpose to model various physical phenomena involved in the release (low-temperature mechanisms, diffusion)

  11. Advanced PWR Core Design with Siemens High-Plutonium-Content MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Dieter Porsch; Gerhard Schlosser; Hans-Dieter Berger

    2000-01-01

    The Siemens experience with plutonium recycling dates back to the late 1960s. Over the years, extensive research and development programs were performed for the qualification of mixed-oxide (MOX) technology and design methods. Today's typical reload enrichments for uranium and MOX fuel assemblies and modern core designs have become more demanding with respect to accuracy and reliability of design codes. This paper presents the status of plutonium recycling in operating high-burnup pressurized water reactor (PWR) cores. Based on actual examples, it describes the validation status of the design methods and stresses current and future needs for fuel assembly and core design including those related to the disposition of weapons-grade plutonium

  12. Pressure loss tests for DR-BEP of fullsize 17 x 17 PWR fuel assembly

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Chun, Se Young; Chang, Seok Kyu; Won, Soon Youn; Cho, Young Rho; Kim, Bok Deuk; Min, Kyoung Ho

    1993-01-01

    This report describes the conditions, procedure and results in the pressure loss tests carried out for a double grid type debris resistance bottom end piece (DR-BEP) designed by KAERI. In this test, the pressure loss coefficients of the full size 17 x 17 PWR simulated fuel assembly with DR-BET and with standard-BEP were measured respectively, and the pressure loss coefficients of DR-BEP were compared with the coefficients of STD-BET. The test conditions fall within the ranges of loop pressure from 5.2 to 45 bar, loop temperature from 27 to 221 deg C and Reynolds number in fuel bundle from 2.17 x 10 4 to 3.85 x 10 5 . (Author) 5 refs., 18 figs., 5 tabs

  13. VIM Monte Carlo versus CASMO comparisons for BWR advanced fuel designs

    International Nuclear Information System (INIS)

    Pallotta, A.S.; Blomquist, R.N.

    1994-01-01

    Eigenvalues and two-dimensional fission rate distributions computed with the CASMO-3G lattice physics code and the VIM Monte Carlo Code are compared. The cases assessed are two advanced commercial BWR pin bundle designs. Generally, the two codes show good agreement in K inf , fission rate distributions, and control rod worths

  14. Analysis of reactivity worths of highly-burnt PWR fuel samples measured in LWR-PROTEUS Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Peter; Murphy, Michael F.; Jatuff, Fabian; Seiler, Rudolf [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2008-07-01

    The reactivity loss of PWR fuel with burnup has been determined experimentally by inserting fresh and highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II programme. Seven UO{sub 2} samples irradiated in a Swiss PWR plant with burnups ranging from approx40 to approx120 MWd/kg and four MOX samples with burnups up to approx70 MWd/kg were oscillated in a test region constituted of actual PWR UO{sub 2} fuel rods in the centre of the PROTEUS zero-power experimental facility. The measurements were analyzed using the CASMO-4E fuel assembly code and a cross section library based on the ENDF/B-VI evaluation. The results show close proximity between calculated and measured reactivity effects and no trend for a deterioration of the quality of the prediction at high burnup. The analysis thus demonstrates the high accuracy of the calculation of the reactivity of highly-burnt fuel. (authors)

  15. Performance Specification Shippinpark Pressurized Water Reactor Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shippingport Spent Fuel Canisters

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders

  16. Transition from uranium to denatured uranium/thorium fuel in an existing PWR

    International Nuclear Information System (INIS)

    Walters, M.A.

    1982-01-01

    The purpose of this research was to determine whether it is possible to make a gradual transition from uranium to denatured uranium/thorium (DUTH) fuel in an existing PWR by adding DUTH assemblies during each scheduled refueling and, if the transition is possible, to develop a general procedure for making it. The feasibility of the transition was established by identifying acceptable refueling schemes for a series of transition cores, and in the process, a method for identifying acceptable schemes evolved. The utility of the method was then demonstrated by applying it to a standard reactor operating under normal conditions. The vehicle used to examine proposed fuel mixtures and to select acceptable ones was a set of one-dimensional computer codes. The core was modeled as a set of five concentric fuel zones with a reflector. Fuel mixtures were proposed and the computer codes were used to determine whether a mixture was acceptable, i.e., whether it had the desired k-effective and flux and power distributions. The parameters allowed to vary in selection of proposed fuel mixtures were enrichment of fresh fuel assemblies, number of uranium and DUTH assemblies added during each refueling, and distribution of fuel in the core. Results of the research showed that a gradual transition is possible. Furthermore, there is a method that allows the identification of fuel mixtures that are likely to be acceptable. It requires the calculation of K-infinity for the entire proposed core and for some of its regions. These values of K-infinity and relationships developed in this research can be used to predict the flux distribution and the final k-effective for the proposed fuel mixture

  17. Experimental data report for test TS-3 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo; Sobajima, Makoto.

    1993-09-01

    This report presents experimental data for Test TS-3 which was the third test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in September, 1990. Test fuel rod used in the Test TS-3 was a short-sized BWR (7 x 7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79 % and a burnup of 26 Gwd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 94 ± 4 cal/g · fuel (88 ± 4 cal/g · fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  18. CASTOR-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed with vacuum, nitrogen, and helium backfills in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium backfills to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen backfills in a vertical orientation and with helium in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design expectation of less than 200 mrem/h. Cask surface dose rates of <75 mrem/h can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  19. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  20. Cross-sections for homogenized BWR fuel elements in 2d-diffusion theory by 1d-transport calculations

    International Nuclear Information System (INIS)

    Ambrosius, G.

    1980-01-01

    Leakage has a large influence on the thermal spectrum in a fuel rod cell of a BWR and originates: a) from rods with different absorptions and; b) from the different distances to the water gaps. Due to reason a) Gd-rods are treated together with a ring of the homogenized eight nearest neighbours. The often used definition of homogenized cross-sections as the ratio of the integrated reaction rate to the integrated flux proved to be inadequate. This homogenization method is exact as far as the flux is constant over the boundary and as the leakag e during calculating the homogenized cross-sections is similar to that during application. With respect to the condition b) a 1d-transport calculation for the whole fuel element with rings or slabs of homogenized fuel rod cells is performed. With the definition above the flux distribution is that of the fluxes in the moderator regions. The spectrum within each fuel rod cell which includes the leakage is calculated by superimposing at each energy on the flux distribution in the cell the flux at the cell position from the bundle calculation. Changes in the flux ratio between fuel and moderator due to the leakage are taken into account in a final few group 2d-diffusion calculation with fuel and (moderator + cladding) taken separately

  1. Overview of the Vercors Programme Devoted to Safety Studies on Irradiated PWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tourasse, M.; Andre, B.; Ducros, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique; Maro, D. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The first objective of the Heva-Vercors Program is to improve the data of fission product release and behaviour after an extensive fuel temperature increase and loss of integrity of the fuel elements that occur in case of severe PWR accident. The program is co-funded by the French Nuclear Protection and Safety Institute (IPSN) and Electricite de France (EDF). The experiments are conducted in a shielded cell of the French Grenoble Nuclear Centre. For these tests, industrial fuel from French PWR reactor plants is used. In order to rebuild the short lived fission product inventory, a reirradiation is performed in the experimental Siloe reactor, prior to the test. Eight tests have been conducted in the frame of the Heva Program up to 2370 K in the 1983-1988 period. The main outcomes of these studies were linked to the volatile fission product release. This program has been extended by the Vercors one with higher fuel temperature (2600 K) and improved instrumentation: gamma spectrometry, emission tomography, metallography, scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction are some of the experimental techniques used for on line and post test characterization. The knowledge of the behavior of low volatile fission product has been significantly improved with the six Vercors tests. The results of the Vercors 4 test (38 GWd/t(U), 2570 K, reducing atmosphere) are presented here as an example. The key parameters are exhibited. The next step of these studies will use the Vercors HT loop that is planned to be operational at the beginning of 1996 to reach fuel melting temperature. The first aim of these future tests is to study the behaviour of non volatile and transuranic elements. An even more sophisticated instrumentation is implemented to reach the goal. The use of MOX fuel, the interaction between fission product aerosols and structural materials (Ag-In-Cd) and the fuel granulometry effect will be the next steps of the experimental program

  2. Results of a recent crud/corrosion fuel risk assessment at a U.S. PWR

    International Nuclear Information System (INIS)

    Lamanna, Larry; Pop, Mike; Gregorich, Carola; Harne, Richard; Jones, John

    2012-09-01

    In order to avoid potential fuel reliability issues, specifically crud-related issues, it is necessary to achieve and maintain a crud safe environment. Therefore, the ability to confidently predict risks associated with crud deposition on fuel becomes critically important. AREVA is applying its cutting-edge PWR Fuel Crud (Primary System corrosion products)/Corrosion Tools, i.e. COBRA-FLX (subchannel-by-subchannel T/H tool) coupled with FDIC (crud deposition tool) to subsequently perform PWR Fuel Crud /Corrosion risk assessments for operating plants in the US. After describing the method, the result of one of these assessments is presented for an operating plant in the US that has experienced recent crud observations/concerns. Both Crud Induced Localized Corrosion (CILC) and Crud Induced Power Shift (CIPS) risk assessment methods, as applied to the upcoming cycle (Cycle N), were compared to the current/on-going cycle (Cycle N-1) and to the previous cycle (Cycle N-2). The results allowed the Utility to consider crud risk management changes associated with the upcoming cycle (Cycle-N). Benchmarking of the AREVA tools, using the plant-specific crud information gained from the crud sampling/characterization for the Unit will be presented. The CIPS analysis references boron loading and the amount of insoluble iron-nickel-borates predicted for Cycles N-2, N-1, and N. The results of the CILC evaluation reference FDIC-predicted crud thickness, cladding temperature under deposit, evolution of CILC bearing species and lithium concentration in the zirconium oxide layer. The approach taken by AREVA during the evaluation was to consider both 'risk' and 'margin' to fuel performance impact caused by crud deposits. The conclusion of the assessment, illustrated by the results presented in this paper, is that the example Plant has sufficient margin in worst case conditions for CIPS and CILC risk in Cycle N, based on Cycle N-1 and Cycle N-2 conditions and behavior

  3. Future possibilities of SUSEN technologies for R&D of nuclear fuel cladding

    International Nuclear Information System (INIS)

    Mikloš, M.

    2015-01-01

    R&D possibilities with nuclear fuel cladding were discussed in this paper. The availability of 10 MWT reactor with BWR and PWR loops having chemistry control was described. Activity transport and fuel cladding corrosion can be investigated in this facility including PIE. The facility has hot cells and the laboratory is expected to start in 2017

  4. Determination of burnup, cooling time and initial enrichment of PWR spent fuel by use of gamma-ray activity ratios

    International Nuclear Information System (INIS)

    Min, D.K.; Park, H.J.; Park, K.J.; Ro, S.G.; Park, H.S.

    1999-01-01

    The Korea Atomic Energy Institute has been developing the algorithms for sequential determination of cooling time, initial enrichment and burnup of the PWR spent fuel assembly by use of gamma ratio measurements, i.e. 134 Cs/ 137 Cs, 154 Eu/ 137 Cs and 106 Ru 137 Cs/( 134 Cs) 2 . Calculations were performed by applying the ORIGEN-S code. This method has advantages over combination techniques of neutron and gamma measurement, because of its simplicity and insensitivity to the measurement geometry. For verifying the algorithms an experiment for determining the cooling time, initial enrichment and burnup of the two PWR spent fuel rods was conducted by use of high-resolution gamma detector (HPGe) system only. This paper describes the method used and interim results of the experiment. This method can be applied for spent fuel characterization, burnup credit and safeguards of the spent fuel management facility

  5. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Andress, D.; McLeod, N.B.; Rahimi, M.; Joy, D.S.; Peterson, R.W.

    1991-01-01

    The DOE has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design - the GA-4 and GA-9 truck casks and the BR-100 rail cask. The GA-4 cask is designed for PWR fuel only; the GA-9 cask is a longer cask with less shielding designed for BWR fuel only; and the BR-100 cask is designed to accommodate both PWR and BWR fuels. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. Because of the button and spring interference, the basket openings in these casks will not accommodate assemblies in the BWR/2,3 and BWR/4-6 fuel classes with the fuel channels in place

  6. Practice and prospect of advanced fuel management and fuel technology application in PWR in China

    International Nuclear Information System (INIS)

    Xiao Min; Zhang Hong; Ma Cang; Bai Chengfei; Zhou Zhou; Wang Lei; Xiao Xiaojun

    2015-01-01

    Since Daya Bay nuclear power plant implemented 18-month refueling strategy in 2001, China has completed a series of innovative fuel management and fuel technology projects, including the Ling Ao Advanced Fuel Management (AFM) project (high-burnup quarter core refueling) and the Ningde 18-month refueling project with gadolinium-bearing fuel in initial core. First, this paper gives brief introduction to China's advanced fuel management and fuel technology experience. Second, it introduces practices of the advanced fuel management in China in detail, which mainly focuses on the implementation and progress of the Ningde 18-month refueling project with gadolinium-bearing fuel in initial core. Finally, the paper introduces the practices of advanced fuel technology in China and gives the outlook of the future advanced fuel management and fuel technology in this field. (author)

  7. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  8. Automatic determination of BWR fuel loading patterns based on K.E. technique with core physics simulation

    International Nuclear Information System (INIS)

    Ikehara, T.; Tsuiki, M.; Takeshita, T.

    1990-01-01

    On the basis oof a computerized search method, a prototype for a fuel loading pattern expert system has been developed to support designers in core design for BWRs. The method was implemented by coupling rules and core physics simulators into an inference engine to establish an automated generate-and-test cycle. A search control mechanism, which prunes paths to be searched and selects appropriate rules through the interaction with the user, was also introduced to accomplish an effective search. The constraints in BWR core design are: (1) cycle length more than L, (2) core shutdown margin more than S, and (3) thermal margin more than T. Here L, S, and T are the specified minimum values. In this system, individual rules contain the manipulation to improve the core shutdown margin explicitly. Other items were taken into account only implicitly. Several applications to the test cases were carried out. It was found that the results were comparable with those obtained by human expert engineers. Broad applicability of the present method in the BWR core design domain was proved

  9. Numerical solution of the elastic non-axial contact between pellet and cladding of fuel rod in PWR

    International Nuclear Information System (INIS)

    Zymak, J.

    1987-08-01

    Elastic non-axial contacts between the pellet and the cladding of a fuel rod in a pressurized water reactor were calculated. The existence and the uniqueness of the solution were proved. The problem was approximated by the finite element method and quadratic programming was used for the solution. The results will be used in the solution of the probabilistic model of a fuel rod with non-axial pellets in a PWR. (author). 10 figs., 4 tabs., 10 refs

  10. Fuel assembly loads during a hypothetical blowdown event in a PWR

    International Nuclear Information System (INIS)

    Stabel, J.; Bosanyi, B.; Kim, J.D.

    1991-01-01

    As a consequence of a hypothetical sudden break of the main coolant pipe of a PWR, RPV-internals and fuel assemblies (FA's) are undergoing horizontal and vertical motions. FA's may impact against each other, against core shroud or against lower core support. The corresponding impact loads must be absorbed by the FA spacer grids and guide thimbles. In this paper FA-loads are calculated with and without consideration of Fluid-Structure-Interaction (FSI) effects for assumed different break sizes of the main coolant pipe. The analysis has been performed for a hypothetical cold leg break of a typical SIEMENS-4 loop plant. For this purpose the codes DAPSY/DAISY (GRS, Germany) were coupled with the structural code KWUSTOSS (SIEMENS). It is shown that the FA loads obtained in calculations with consideration of FSI effects are by a factor of 2-4 lower than those obtained in the corresponding calculations without consideration of FSI. (author)

  11. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP; Calculos de criticidad de un contenedor de combustible generico para ensambles combustibles PWR, mediante el codigo MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  12. Study of the lattice parameter evolution of PWR irradiated MOX fuel by X-Ray diffraction

    International Nuclear Information System (INIS)

    Clavier, B.

    1995-01-01

    Fuel irradiation leads to a swelling resulting from the formation of gaseous (Kr, Xe) or solid fission products which are found either in solution or as solid inclusions in the matrix. This phenomena has to be evaluated to be taken into account in fuel cladding Interaction. Fuel swelling was studied as a function of burn up by measuring the corresponding cell constant evolution by X-Ray diffraction. This study was realized on Mixed Oxide Fuels (MOX) irradiated in a Pressurized Water Reactor (PWR) at different burn-up for 3 initial Pu contents. Lattice parameter evolutions were followed as a function of burn-up for the irradiated fuel with and without an annealing thermal treatment. These experimental evolutions are compared to the theoretical evolutions calculated from the hard sphere model, using the fission product concentrations determined by the APPOLO computer code. Contribution of varying parameters influencing the unit cell value is discussed. Thermal treatment effects were checked by metallography, X-Ray diffraction and microprobe analysis. After thermal treatment, no structural change was observed but a decrease of the lattice parameter was measured. This modification results essentially from self-irradiation defect annealing and not from stoichiometry variations. Microprobe analysis showed that about 15% of the formed Molybdenum is in solid solution In the oxide matrix. Micrographs showed the existence of Pu packs in the oxide matrix which induces a broadening of diffraction lines. The RIETVELD method used to analyze the X-Ray patterns did not allow to characterize independently the Pu packs and the oxide matrix lattice parameters. Nevertheless, with this method, the presence of micro-strains in the irradiated nuclear fuel could be confirmed. (author)

  13. Modeling of the water gap in BWR fuel elements using SCALE/TRITON; Modellierung des Wasserspalts bei SWR-BE mit SCALE/TRITON

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Chernykh, M. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2012-11-01

    The authors show that an adequate modeling of the water gap in BWR fuel element models using the code TRITON requires an explicit consideration of the Dancoff factors. The analysis of three modeling options reveals that considering the moderating effects of the water gap coolant for the peripheral fuel elements the resulting deviations of the U-235 and Pu-239 concentrations are significantly reduced. The increased temporal calculation efforts are justified with respect to the burnup credits for criticality safety analyses.

  14. Vibration characteristics of a PWR fuel rod supported by optimized H type spacer grids

    International Nuclear Information System (INIS)

    Choi, M. H.; Kang, H. S.; Yoon, K. H.; Kim, H. K.; Song, K. N.

    2002-01-01

    The spacer grids are one of the main structural components in the fuel assembly, which supports and protects the fuel rods from the external loads by seismic and coolant flow. In this study, a modal test and a FE vibration analysis using ABAQUS are performed on a PWR dummy fuel rod of 3.847 m which is continuously supported by eight Optimized H type spacer grids. The experimental results agree with previous works that the natural frequencies decrease, while the amplitudes increase, with the increase of the excitation force. The force levels showing the maximum displacement of 0.2 mm are in the range from 0.2 N to 0.3 N, and at the same force range the fundamental frequencies are measured around 42.0 Hz, at which the relatively big displacements are observed at the 7th span. The results from the modal tests and the FE analyses are compared by both Modal Assurance Criteria (MAC) values and mode shapes. The MAC values at 2nd, 4th, and 7th mode are below 50%. It is believed that the reason of the low MACs at those modes is that the vibration amplitudes of the modes are more distorted by the excitation force than those of the other modes

  15. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  16. High mechanical performance of Areva upgraded fuel assemblies for PWR in USA

    International Nuclear Information System (INIS)

    Gottuso, Dennis; Canat, Jean-Noel; Mollard, Pierre

    2007-01-01

    The merger of the product portfolios of the former Siemens and Framatome fuel businesses gave rise to a new family of PWR products which combine the best features of the different technologies to enhance the main performance of each of the existing products. In this way, the technology of each of the three main fuel assembly types usually delivered by AREVA NP, namely Mark-BW TM , HTP TM and AFA 3G TM has been enriched by one or several components from the others which contributes to improve their robustness and to enhance their performance. The combined experience of AREVA's products shows that the ROBUST FUELGUARD TM , the HMP TM end grid, the MONOBLOC TM guide tube, a welded structure, M5 R material for every zirconium component and an upper QUICK-DISCONNECT TM are key features for boosting fuel assembly robustness. The ROBUST FUELGUARD benefits from a broad experience demonstrating its high efficiency in stopping debris. In addition, its mechanical strength has been enhanced and the proven blade design homogenizes the downstream flow distribution to strongly reduce excitation of fuel rods. The resistance to rod-to-grid fretting resistance of AREVA's new products is completed by the use of a lower HMP grid with 8 lines of contact to insure low wear. The Monobloc guide tube with a diameter maximized to strengthen the fuel assembly stiffness, excludes through its uniform outer geometry any local condition which could weaken guide tube straightness. The application of a welded cage to all fuel assemblies of the new family of products in combination with stiffer guide tubes and optimized hold-down assures each fuel assembly enhanced resistance to distortion. The combination of these features has been widely demonstrated as an effective method to reduce the risk of incomplete RCCA insertion and significantly reduce assembly distortion. Thanks to its enhanced performance, M5 alloy insures that all fuel assemblies in the family maintain their performance in all

  17. Updating of the costs of the nuclear fuels of the equilibrium reloading of the A BWR and EPR reactors

    International Nuclear Information System (INIS)

    Ortega C, R.F.

    2008-01-01

    In the last two and a half years, the price of the uranium in the market spot has ascended of US$20.00 dollars by lb U 3O 8 in January, 2005 to a maximum of US$137.00 dollars by Ib U 3 O 8 by the middle of 2007. At the moment this price has been stabilized in US$90.00 dollars by Ib U 3 O 8 such for the market spot, like for the long term contracts. In this work the reasons of this increment are analyzed, as well as their impact in the fuel prices of the balance recharge of the advanced reactors of boiling water (A BWR) and of the advanced water at pressure reactors (EPR). (Author)

  18. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  19. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.

    2013-08-01

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  20. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  1. Castor-V/21 PWR spent fuel storage cask performance test

    International Nuclear Information System (INIS)

    Creer, J.M.; Schoonen, D.H.

    1986-01-01

    Performance testing of a CASTOR-V/21 PWR spent fuel storage cask manufactured by Gesellschaft fur Nuklear Service (GNS) was performed as part of a cooperative program between Virginia Power and the US Department of Energy. The performance test consisted of obtaining cask handling experience and heat transfer, shielding, and limited fuel integrity data. Five heat transfer test runs were performed with 21 Surry reactor spent fuel assemblies generating approximately 28 kW. Test runs were performed vacuum, nitrogen, and helium backfill environments with the cask in both vertical and horizontal orientations. Cask exterior surface gamma and neutron dose rates were measured with the cask fully loaded. Gas samples were obtained at the beginning and end of each run with nitrogen or helium environments to verify fuel integrity. The heat transfer performance of the CASTOR-V/21 cask was exceptionally good. Peak clad temperatures with helium and nitrogen environments with the cask in a vertical orientation and with helium with the cask in a horizontal orientation were less than 380 0 C. Vertical vacuum and horizontal nitrogen test runs resulted in peak clad temperatures over 380 0 , but the temperatures were not excessively high ( 0 C). The shielding performance of the cask met the design goal of less than 200 mrem/hr. Cask surface dose rates of <75 mrem/hr can easily be established with minor gamma shielding design refinements if desired. Gas samples obtained during testing indicated no leaking fuel rods were present in the cask. It was concluded that the cask performed satisfactorily from heat transfer and shielding perspectives

  2. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  3. On the problem of in-core fuel management in power reactors

    International Nuclear Information System (INIS)

    Marinkovic, N.; Matausek, M.V.

    1985-01-01

    Within the scope of in-core fuel management including refuelling schedule and reactivity control it is indispensable to define nuclear fuel worth, optimal depletion of the spent fuel assemblies as well as isotopic composition of the spent fuel. This paper shows the computed values of the mentioned parameters in case of different reactor types, PWR, WWER, HWR and BWR of 1000 MWe as well as the intensity of radiation of the spent fuel 3 and 1 years after fission.(author)

  4. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Wagner, J.C.; Parks, C.V.

    2000-01-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k inf estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k inf estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration (approx. 2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion (le 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE

  5. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  6. BWR spent fuel transport and storage system for KKL: TN trademark 52L, TN trademark 97L, TN trademark 24 BHL

    International Nuclear Information System (INIS)

    Sicard, D.; Verdier, A.; Monsigny, P.A.

    2004-01-01

    The LEIBSTADT (KKL) nuclear power plant in Switzerland has opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN trademark a52L and TN trademark 97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TNae24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN trademark 52L and TN trademark 97L casks by the KKL and ZWILAG operators

  7. Flux and power distributions in BWR multi-bundle fuel arrays

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-02-01

    Multi-bundle calculations have been performed in order to shed some light on an abnormal TIP trace recently discovered in a BWR/3. Transport theory was employed to perform the calculations with ENDF/B-IV data. The results indicate that a strong variation of the TIP reading does exist along the narrow water gap of a BWR due to the steep gradient of the thermal neutron flux; the maxima occurring at the intersections of the water gaps and the minima in between. Using this characteristic behavior of the TIP reading, together with the observed normal TIP trace, the abnormal behavior of the affected TIP trace exhibiting three peaks along the channel was roughly simulated. The calculations confirmed that the observed TIP trace anomaly was caused by the severe bending of the affected instrument tube as was actually discovered. The effect of hot water intrusion into the TIP guide tube, as well as that of loading the new 8 x 8 reload bundles, was also evaluated

  8. PWR Fuel licensing in France - from design to reprocessing: licensing of nuclear PWR fuel rod design to satisfy with criteria for normal and abnormal fuel operation in France

    International Nuclear Information System (INIS)

    Beraha, R.

    1999-01-01

    In this lecture are presented: French regulatory context; Current fuel management methods; Request from the french operator EdF; Most recent actions of the french Nuclear safety authority; Fuel assemblies deformations (impact of high burn-up; investigations during reactor's exploitation; control rods drop off times)

  9. Study of development of non-destructive method for determining FGR from high burned PWR type fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Miyanishi, Hideyuki; Kitagawa, Isamu; Iida, Shozo; Ito, Tadaharu; Amano, Hidetoshi.

    1991-11-01

    Experimental study was made to evaluate the FGR (Fission Product Gas Release) from high burned PWR type fuel rods by means of non-destructive method through measurement of the gamma activity of 85 Kr isotope which was accumulated in the fuel top plenum. Experimental result shows that it is possible to know the amounts of FGR at fuel plenum by the equations given in the followings. FGR = 0.28C/V f or FGR = 0.07C where, FGR (%) is the amounts of Xe and Kr released from UO 2 fuel, C (counts/h) the radioactivity of 85 Kr at plenum of the tested fuel rod and V f (ml) the plenum volume of the tested fuel rod, respectively. The present study was made by using 14 x 14 PWR type fuel rods preirradiated up to the burn-up of 42.1 MWd/kgU, followed by the pulse irradiation at Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute (JAERI). The FGR of the tested segmented fuel rods were measured by puncturing and found to range from 0.6% to 12% according to the magnitude of the deposited energy given by pulse. Estimated experimental error bands against the above equations were within plus minus 30%. (author)

  10. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  11. TWODEE-2/MOD3, 2-D Time-Dependent Fuel Elements Thermal Analysis after PWR LOCA

    International Nuclear Information System (INIS)

    Lauben, G. N.

    2001-01-01

    1 - Description of problem or function: WREM-TOODEE2 is a two- dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). 2 - Method of solution: TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric case and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. 3 - Restrictions on the complexity of the problem: WREM-TOODEE2 considers only axisymmetric geometry although the equations for slab and polar geometry are included in the program

  12. Sensitivity and uncertainty analysis for UO2 and MOX fueled PWR cells

    International Nuclear Information System (INIS)

    Foad, Basma; Takeda, Toshikazu

    2015-01-01

    Highlights: • A method for calculating sensitivity coefficients has been improved. • The IR approximation was used in order to get accurate results. • Sensitivities and uncertainties are calculated using the improved method. • The method is applied for UO 2 and MOX fueled PWR cells. • The verification was performed by comparing our results with MCNP6 and TSUNAMI-1D. - Abstract: This paper discusses the improvement of a method for calculating sensitivity coefficients of neutronics parameters relative to infinite dilution cross-sections because the conventional method neglects resonance self-shielding effect. In this study, the self-shielding effect is taken into account by using the intermediate resonance approximation in order to get accurate results in both high and low energy groups. The improved method is applied to calculate sensitivity coefficients and uncertainties of eigenvalue responses for UO 2 and MOX (ThO 2 –UO 2 and PuO 2 –UO 2 ) fueled pressurized water reactor cells. The verification of the improved method