WorldWideScience

Sample records for pwr accident conditions

  1. Transient fuel behavior of preirradiated PWR fuels under reactivity initiated accident conditions

    Science.gov (United States)

    Fujishiro, Toshio; Yanagisawa, Kazuaki; Ishijima, Kiyomi; Shiba, Koreyuki

    1992-06-01

    Since 1975, extensive studies on transient fuel behavior under reactivity initiated accident (RIA) conditions have been continued in the Nuclear Safety Research Reactor (NSRR) of Japan Atomic Energy Research Institute. A new experimental program with preirradiated LWR fuel rods as test samples has recently been started. In this program, transient behavior and failure initiation have been studied with 14 × 14 type PWR fuel rods preirradiated to a burnup of 20 to 42 MWd/kgU. The test fuel rods contained in a capsule filled with the coolant water were subjected to a pulse irradiation in the NSRR to simulate a prompt power surge in an RIA. The effects of preirradiation on the transient fission gas release, pellet-cladding mechanical interaction and fuel failure were clearly observed through the transient in-core measurements and postirradiation examination.

  2. Characterization of PWR vessel steel tearing under severe accident condition temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Matheron, Philippe, E-mail: philippe.matheron@cea.fr [CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Chapuliot, Stephane, E-mail: stephane.chapuliot@cea.fr [CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Nicolas, Laetitia, E-mail: laetitia.nicolas@cea.fr [CEA, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Laboratoire de Mecanique des Structures Industrielles Durables, UMR CNRS-EDF 2832, 1 avenue du General de Gaulle, F-92141 Clamart (France); Koundy, Vincent, E-mail: vincent.koundy@irsn.fr [IRSN-DSR, Service d' evaluation des Accidents Graves et des Rejets radioactifs B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Caroli, Cataldo, E-mail: cataldo.caroli@irsn.fr [IRSN-DSR, Service d' evaluation des Accidents Graves et des Rejets radioactifs B.P. 17, 92262 Fontenay-aux-Roses Cedex (France)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We characterized French PWR vessel steel tearing resistance at high temperatures. Black-Right-Pointing-Pointer Tearing tests on Compact Tension (CT) specimens were carried out. Black-Right-Pointing-Pointer The variability of tearing properties with PWR vessels specifications was studied. Black-Right-Pointing-Pointer We propose a tearing criterion (energy parameter Gfr) at high temperatures. - Abstract: In the event of a severe core meltdown accident in a pressurised water reactor (PWR), core material can relocate into the lower head of the vessel resulting in significant thermal and pressure loads being imposed on the vessel. In the event of reactor pressure vessel (RPV) failure there is the possibility of core material being released towards the containment. On the basis of the loading conditions and the temperature distribution, the determination of the mode, timing, and size of lower head failure is of prime importance in the assessment of core melt accidents. This is because they define the initial conditions for ex-vessel events such as core/basemat interactions, fuel/coolant interactions, and direct containment heating. When lower head failure occurs (i) the understanding of the mechanism of lower head creep deformation; (ii) breach stability and its kinetic of propagation leading to the failure; (iii) and developing predictive modelling capabilities to better assess the consequences of ex-vessel processes, are of equal importance. The objective of this paper is to present an original characterization programme of vessel steel tearing properties by carrying out high temperature tearing tests on Compact Tension (CT) specimens. The influence of metallurgical composition on the kinetics of tearing is investigated as previous work on different RPV steels has shown a possible loss of ductility at high temperatures depending on the initial chemical composition of the vessel material. Small changes in the composition can lead

  3. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  4. The reaction between iodine and organic coatings under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, S.; Funke, F.; Greger, G.U.; Bleier, A.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the deposition and on the resuspension kinetics in the reaction system iodine/organically coated surfaces. Both reactions in the gas phase and in the liquid phase were investigated and kinetic rate constants suitable for modelling were derived. Previous experimental studies on the reaction of iodine with organic coated surfaces were mostly limited to temperatures below 100{sup o}C. Thus, this parameter study aims at filling a gap and providing kinetic data on heterogeneous reactions with organic surfaces in the accident-relevant temperature range of 100-160{sup o}C. Two types of laboratory experiments carried out at Siemens/KWU using coatings representative for German power plants (epoxy-tape paint), namely gas phase tests and liquid phase tests. (author) 6 figs., 6 tabs., 5 refs.

  5. Integral Test Facility PKL: Experimental PWR Accident Investigation

    OpenAIRE

    2012-01-01

    Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR) at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circul...

  6. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Directory of Open Access Journals (Sweden)

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  7. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L. [Rempe and Associates, LLC, Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lutz, R. J. [Lutz Nuclear Safety Consultant, LLC, Asheville, NC (United States)

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  8. Identification and evaluation of PWR in-vessel severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Dukelow, J S [Pacific Northwest Lab., Richland, WA (United States); Harrison, D G [Jason Associates, Idaho Falls, ID (United States); Morgenstern, M [Battelle Human Affairs Research Center, Seattle, WA (United States)

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents.

  9. Methodology of a PWR containment analysis during a thermal-hydraulic accident

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dayane F.; Sabundjian, Gaiane; Lima, Ana Cecilia S., E-mail: dayane.silva@usp.br, E-mail: gdjian@ipen.br, E-mail: aclima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The aim of this work is to present the methodology of calculation to Angra 2 reactor containment during accidents of the type Loss of Coolant Accident (LOCA). This study will be possible to ensure the safety of the population of the surroundings upon the occurrence of accidents. One of the programs used to analyze containment of a nuclear plant is the CONTAIN. This computer code is an analysis tool used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor during an accident. The containment of the type PWR plant is a concrete building covered internally by metallic material and has limits of design pressure. The methodology of containment analysis must estimate the limits of pressure during a LOCA. The boundary conditions for the simulation are obtained from RELAP5 code. (author)

  10. 压水堆严重事故后安全壳内辐射环境计算分析%Calculation and Analysis for the Radiation Condition in the Containment of PWR after Severe Accident

    Institute of Scientific and Technical Information of China (English)

    王晓霞; 张普忠; 刘新建

    2013-01-01

    In order to mitigate severe accident effectively,validation of equipment and instrument after severe accident need to be evaluated.The temperature,pressure,humidity and radiation are key parameters for the validation evaluation.For the source term released from the molten core to the containment,NUREG-1465 was adopted for PWR.Effect of spray and leakage on concentrations of radioactive nuclides in the containment was ignored.In this paper,γ and 3 radiation condition in the containment after severe accident were calculated and analyzed,which is very important to validation evaluation of equipment and instrument after severe accident.%为了确保有效的缓解严重事故,需要对用于缓解和监测严重事故进程的重要设备、仪表在严重事故环境下的可用性进行评估.而温度、压力、湿度、辐射等参数是可用性评估的重要输入条件.本文针对百万千瓦级压水堆核电机组,参考美国核管会发布的《轻水堆核电厂事故源项》(NUREG-1465)关于严重事故后放射性物质的释放阶段和释放份额的假设,计算出事故后由堆芯释放到安全壳内的放射性源项.对于放射性物质在安全壳内的分布,不考虑喷淋和泄漏的影响,计算并分析了严重事故后安全壳内的γ和β辐射环境条件,并与APl000的设备鉴定源项进行了对比分析.本文的计算对于设备和仪表在严重事故后的可用性分析以及其所需耐受的辐射条件具有重要的参考意义.

  11. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor [Zagreb Univ. (Croatia). Faculty of Electrical Engineering and Computing

    2013-12-15

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  12. Regulatory Research of the PWR Severe Accident. Information Needs and Instrumentation for Hydrogen Control and Management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gun Chul; Suh, Kune Y.; Lee, Jin Yong; Lee, Seung Dong [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2001-03-15

    The current research is concerned with generation of basic engineering data needed in the process of developing hydrogen control guidelines as part of accident management strategies for domestic nuclear power plants and formulating pertinent regulatory requirements. Major focus is placed on identification of information needs and instrumentation methods for hydrogen control and management in the primary system and in the containment, development of decision-making trees for hydrogen management and their quantification, the instrument availability under severe accident conditions, critical review of relevant hydrogen generation model and phenomena In relation to hydrogen behavior, we analyzed the severe accident related hydrogen generation in the UCN 3{center_dot}4 PWR with modified hydrogen generation model. On the basis of the hydrogen mixing experiment and related GASFLOW calculation, the necessity of 3-dimensional analysis of the hydrogen mixing was investigated. We examined the hydrogen control models related to the PAR(Passive Autocatalytic Recombiner) and performed MAAP4 calculation in relation to the decision tree to estimate the capability and the role of the PAR during a severe accident.

  13. Radiative heat transfer modelling in a PWR severe accident sequence

    Energy Technology Data Exchange (ETDEWEB)

    Magali Zabiego; Florian Fichot [Institut de Radioprotection et de Surete Nucleaire - BP 3 - 13115 Saint-paul-Lez-Durance (France); Pablo Rubiolo [Westinghouse Science and Technology - 1344 Beulah Road - Pittsburgh - PA 15235 (United States)

    2005-07-01

    a debris bed. In particular, an expression of the conductivity was established in cells in which remaining cylinders and debris particles coexist. In the present document, after a recall of the main lines of the modelling, an application to a reactor sequence is proposed. A severe accident transient with core degradation is simulated. The radiative transfer model is shown to behave properly and to smoothly calculate the transitions between the successive core configurations. A comparison with the more classical Hottel method shows that the present model gives a better prediction of the degradation progression owing to a more accurate estimate of the radial heat transfers. References: [1] M. Zabiego et al., ICARE/CATHARE V1: application to a PWR 900 MWe severe accident sequence, SARJ, Tokyo, 1999; [2] M. Zabiego, F. Fichot, P. Rubiolo Transfert radiatif lors d'une sequence accidentelle dans un coeur de Reacteur a Eau sous Pression, Congres Francais de Thermique, SFT 2004, Presqu'ile de Giens, 25-28 mai 2004. (authors)

  14. Study of safety relief valve operation under ATWS conditions. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hutmacher, E.S.; Nesmith, B.J.; Brukiewa, J.B.

    1979-06-25

    A literature survey and analysis project has been performed to determine if recent (since mid-1975) data has been reported which could influence the current approach to predicting PWR relief valve capacity under ATWS conditions. This study was conducted by the Energy Technology Engineering Center for NRC. Results indicate that the current relief valve capacity model tends to predict less capacity than actually obtains; however, no experimental verification at PWR ATWS conditions was found. Other project objectives were to establish the availability of methods for evaluating reaction forces and back pressure effects on relief valve capacity, and to determine if facilities exist which are capable of testing PWR relief valves at ATWS conditions.

  15. Quantitative uncertainty and sensitivity analysis of a PWR control rod ejection accident

    Energy Technology Data Exchange (ETDEWEB)

    Pasichnyk, I.; Perin, Y.; Velkov, K. [Gesellschaft flier Anlagen- und Reaktorsicherheit - GRS mbH, Boltzmannstasse 14, 85748 Garching bei Muenchen (Germany)

    2013-07-01

    The paper describes the results of the quantitative Uncertainty and Sensitivity (U/S) Analysis of a Rod Ejection Accident (REA) which is simulated by the coupled system code ATHLET-QUABOX/CUBBOX applying the GRS tool for U/S analysis SUSA/XSUSA. For the present study, a UOX/MOX mixed core loading based on a generic PWR is modeled. A control rod ejection is calculated for two reactor states: Hot Zero Power (HZP) and 30% of nominal power. The worst cases for the rod ejection are determined by steady-state neutronic simulations taking into account the maximum reactivity insertion in the system and the power peaking factor. For the U/S analysis 378 uncertain parameters are identified and quantified (thermal-hydraulic initial and boundary conditions, input parameters and variations of the two-group cross sections). Results for uncertainty and sensitivity analysis are presented for safety important global and local parameters. (authors)

  16. Modeling and Simulation of Release of Radiation in Flow Blockage Accident for Two Loops PWR

    OpenAIRE

    Khurram Mehboob; Cao Xinrong; Majid Ali

    2012-01-01

    In this study modeling and simulation of release of radiation form two loops PWR has been carried out for flow blockage accident. For this purpose, a MATLAB based program “Source Term Evaluator for Flow Blockage Accident” (STEFBA) has been developed, which uses the core inventory as its primary input. The TMI-2 reactor is considered as the reference plant for this study. For 1100 reactor operation days, the core inventory has been evaluated under the core design constrains at average reactor ...

  17. INTERCOMPARISON OF RESULTS FOR A PWR ROD EJECTION ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    DIAMOND,D.J.; ARONSON,A.; JO,J.; AVVAKUMOV,A.; MALOFEEV,V.; SIDOROV,V.; FERRARESI,P.; GOUIN,C.; ANIEL,S.; ROYER,M.E.

    1999-10-01

    This study is part of an overall program to understand the uncertainty in best-estimate calculations of the local fuel enthalpy during the rod ejection accident. Local fuel enthalpy is used as the acceptance criterion for this design-basis event and can also be used to estimate fuel damage for the purpose of determining radiological consequences. The study used results from neutron kinetics models in PARCS, BARS, and CRONOS2, codes developed in the US, the Russian Federation, and France, respectively. Since BARS uses a heterogeneous representation of the fuel assembly as opposed to the homogeneous representations in PARCS and CRONOS, the effect of the intercomparison was primarily to compare different intra-assembly models. Quantitative comparisons for core power, reactivity, assembly fuel enthalpy and pin power were carried out. In general the agreement between methods was very good providing additional confidence in the codes and providing a starting point for a quantitative assessment of the uncertainty in calculated fuel enthalpy using best-estimate methods.

  18. Water Reflooding Effectiveness Assessment for 1 000 MWe PWR under Severe Accident Condition%百万千瓦级压水堆严重事故后再注水的有效性评价

    Institute of Scientific and Technical Information of China (English)

    胡啸; 黄挺; 裴杰; 陈炼

    2015-01-01

    根据现有的设计资料,使用一体化严重事故分析程序 MELCOR1.8.6建立了核电厂一、二回路系统,非能动堆芯冷却系统和安全壳系统的模型,并模拟冷段2英寸(5.08 cm)小破口叠加重力注入失效的严重事故发生后,将冷却剂注入堆芯的情形,分析其对严重事故进程的缓解能力。本文选取3个严重事故的不同阶段,将冷却剂分别以小流量(10 kg/s)、中流量(50 kg/s)和大流量(200 kg/s)的速率注入堆芯,通过比较氢气产生量、堆芯放射性产生量及堆芯温度等数据来评估在严重事故不同阶段再注水的可行性。结果表明:在堆芯损伤初期,可认为10 kg/s以上的流量足以冷却百万千瓦级事故安全。而当严重事故发展到堆芯开始坍塌阶段,200 kg/s的注水流量可认为是基本可行的,而小于此流量的注水应慎重考虑。%The MELCOR1.8.6 code was applied to a severe accident model of a 1 000 MWe PWR which includes primary system,secondary system,passive core cool-ing system and containment system.For the transient case,a small break LOCA with 2 inch (5.08 cm)break at the cold leg concurrent with failure of gravity injection was selected.After the core was damaged due to the failure of gravity inj ection,it was assumed that the coolant was inj ected into the pressure vessel,and then the water reflooding effectiveness was evaluated and analyzed.In this calculation,the coolant injection into reactor core with the small (10 kg/s),medium (50 kg/s)and large (200 kg/s)mass flow rates respectively at 3 different time stages of the severe accident was simulated.The effectiveness of water reflooding was assessed through hydrogen production,radioactive materials released from core,and core temperature.The results show that the mass flow rate above 10 kg/s is believed to be efficient for cooling a 1 000 MWe reactor at the beginning of core damage.However,with the accident devel-oping to core relocation,a large mass flow

  19. Examination of offsite radiological emergency measures for nuclear reactor accidents involving core melt. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, D.C.; McGrath, P.E.; Rasmussen, N.C.

    1978-06-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects.

  20. Analysis of the containment of a compact reactor PWR submitted to loss of coolant accident; Analise da contencao de um reator PWR compacto submetido a acidente de perda de refrigerante

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Alexandre de Souza; Belchior Junior, Antonio; Guimaraes, Leonam dos Santos [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2000-07-01

    In the present paper analyses were done with the computer code RELAP5/MOD2 for rising the process conditions of the containment of a compact reactor PWR of low potency, submitted to Loss of Coolant Accidents (LOCA). The main results obtained were the behavior of maximum conditions of pressure as a function of the available containment free volume. It was also studied the problem of containment sub-compartmentation, that is to say, the possibility of the rupture to happen in restricted spaces generating high sub-compartment peak pressure and, consequently, high strains on the internal structures. (author)

  1. Development of a parametric containment event tree model of a severe PWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-06-01

    The study supports the development project of STUK on `Living` PSA Level 2. The main work objective is to develop review tools for the Level 2 PSA studies underway at the utilities. The SPSA (STUK PSA) code is specifically designed for the purpose. In this work, SPSA is utilized as the Level 2 programming and calculation tool. A containment event tree (CET) model is built for analysis of severe accidents at the Loviisa pressurized water reactor (PWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to include new research results, and so it facilitates the Living PSA concept on Level 2 as well. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting at a low primary system pressure. Severe accident progression from five plant damage states (PDSs) is examined, however the integration with Level 1 is deferred to more definitive, integrated, safety assessments. (34 refs., 5 figs., 9 tabs.).

  2. Severe accident modeling of a PWR core with different cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S. C. [Westinghouse Electric Company LLC, 5801 Bluff Road, Columbia, SC 29209 (United States); Henry, R. E.; Paik, C. Y. [Fauske and Associates, Inc., 16W070 83rd Street, Burr Ridge, IL 60527 (United States)

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  3. Control rod ejection accident analysis for a PWR with thorium fuel loading

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D.F. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2010-07-01

    This paper presents the results of 3-D transient analysis of a pressurized water reactor (PWR) core loaded with 100% Th-Pu MOX fuel assemblies. The aim of this study is to evaluate the safety impact of applying a full loading of this innovative fuel in PWRs of the current generation. A reactivity insertion accident scenario has been simulated using the reactor core analysis code PANTHER, used in conjunction with the lattice code WIMS. A single control rod assembly, with the highest reactivity worth, has been considered to be ejected from the core within 100 milliseconds, which may occur due to failure of the casing of the control rod driver mechanism. Analysis at both hot full power and hot zero power reactor states have been taken into account. The results were compared with those obtained for a representative PWR fuelled with UO{sub 2} fuel assemblies. In general the results obtained for both cores were comparable, with some differences associated mainly to the harder neutron spectrum observed for the Th-Pu MOX core, and to some specific core design features. The study has been performed as part of the LWR-DEPUTY project of the EURATOM 6. Framework Programme, where several aspects of novel fuels are being investigated for deep burning of plutonium in existing nuclear power plants. (authors)

  4. Degraded core accidents for the Sizewell PWR A sensitivity analysis of the radiological consequences

    CERN Document Server

    Kelly, G N; Clarke, R H; Ferguson, L; Haywood, S M; Hemming, C R; Jones, J A

    1982-01-01

    The radiological impact of degraded core accidents postulated for the Sizewell PWR was assessed in an earlier study. In this report the sensitivity of the predicted consequences to variation in the values of a number of important parameters is investigated for one of the postulated accidental releases. The parameters subjected to sensitivity analyses are the dose-mortality relationship for bone marrow irradiation, the energy content of the release, the warning time before the release to the environment, and the dry deposition velocity for airborne material. These parameters were identified as among the more important in determining the uncertainty in the results obtained in the initial study. With a few exceptions the predicted consequences were found to be not very sensitive to the parameter values investigated, the range of variation in the consequences for the limiting values of each parameter rarely exceeded a factor of a few and in many cases was considerably less. The conclusions reached are, however, p...

  5. Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR

    Directory of Open Access Journals (Sweden)

    Ge Shao

    2013-01-01

    Full Text Available To prevent HPME and DCH, SADV is proposed to be added to the pressurizer for Chinese improved 1000 MWe PWR NPP with the reference of EPR design. Rapid depressurization capability is assessed using the mechanical analytical code. Three typical severe accident sequences of TMLB’, SBLOCA, and LOFW are selected. It shows that with activation of the SADV the RCS pressure is low enough to prevent HPME and DCH. Natural circulation at upper RPV and hot leg is considered for the rapid depressurization capacity analysis. The result shows that natural circulation phenomenon results in heat transfer from the core to the pipes in RCS which may cause the creep rupture of pipes in RCS and delays the severe accident progression. Different SADV valve areas are investigated to the influence of depressurization of RCS. Analysis shows that the introduction of SADV with right valve area will delay progression of core degradation to RPV failure. Valve area is to be optimized since smaller SADV area will reduce its effect and too large valve area will lead to excessive loss of water inventory in RCS and makes core degradation progression to RPV failure faster without additional core cooling water sources.

  6. Evaluation of Physical Characteristics of PWR Cores with Accident Tolerant Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of); In, Wang Kee [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The accident tolerant fuels (ATF) considered in this work includes metallic microcell UO{sub 2} pellets and outer Cr-based alloy coating on cladding, which is being developed in KAERI (Korea Atomic Energy Research Institute). Chromium metals have been used in many fields because of its hardness and corrosion-resistance. The use of the chromium metal in nuclear fuel rod can enhance the conductivity of pellets and corrosion-resistance of cladding. The objective of this work is to study the neutronic performances and characteristics of the commercial PWR core loaded the ATF-bearing assemblies. In this work, we studied the PWR cores which are loaded with ATF assemblies to improve the safety of reactor core. The ATF rod consists of the metallic microcell UO2 pellet which includes chromium of 3.34 wt% and the outer 0.05mm thick coating of Cr-based alloy with atomic number ratio of 85:15. We performed the cycle-by-cycle reload core analysis from the cycle 8 at which the ATF fuel assemblies start to be loaded into the core. The target nuclear power plant is the Hanbit-3 nuclear power plant. From the analysis, it was found that 1) the uranium enrichment is required to be increased up to 5.20/4.70 wt% in order to satisfy a required cycle length of 480 EFPDs, 2) the cycle length for the core using ATF fuel assemblies with the same uranium enrichments as those in the reference UO{sub 2} fueled core is decreased from 480 EFPDs to 430 EFPDs.

  7. EPRI PWR Safety and Relief Valve Test Program: test condition justification report

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, J.

    1982-12-01

    In response to NUREG 0737, Item II.D.1.A requirements, several safety and relief valve designs were tested by EPRI under PWR utility sponsorship. Justification that the inlet fluid conditions under which these valve designs were tested are representative of those expected in participating domestic PWR units during FSAR, Extended High Pressure Injection, and Cold Overpressurization events is presented.

  8. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  9. Long-Term Station Blackout Accident Analyses of a PWR with RELAP5/MOD3.3

    Directory of Open Access Journals (Sweden)

    Andrej Prošek

    2013-01-01

    Full Text Available Stress tests performed in Europe after accident at Fukushima Daiichi also required evaluation of the consequences of loss of safety functions due to station blackout (SBO. Long-term SBO in a pressurized water reactor (PWR leads to severe accident sequences, assuming that existing plant means (systems, equipment, and procedures are used for accident mitigation. Therefore the main objective was to study the accident management strategies for SBO scenarios (with different reactor coolant pumps (RCPs leaks assumed to delay the time before core uncovers and significantly heats up. The most important strategies assumed were primary side depressurization and additional makeup water to reactor coolant system (RCS. For simulations of long term SBO scenarios, including early stages of severe accident sequences, the best estimate RELAP5/MOD3.3 and the verified input model of Krško two-loop PWR were used. The results suggest that for the expected magnitude of RCPs seal leak, the core uncovery during the first seven days could be prevented by using the turbine-driven auxiliary feedwater pump and manually depressurizing the RCS through the secondary side. For larger RCPs seal leaks, in general this is not the case. Nevertheless, the core uncovery can be significantly delayed by increasing RCS depressurization.

  10. The radiological consequences of degraded core accidents for the Sizewell PWR The impact of adopting revised frequencies of occurrence

    CERN Document Server

    Kelly, G N

    1983-01-01

    The radiological consequences of degraded core accidents postulated for the Sizewell PWR were assessed in an earlier study and the results published in NRPB-R137. Further analyses have since been made by the Central Electricity Generating Board (CEGB) of degraded core accidents which have led to a revision of their predicted frequencies of occurrence. The implications of these revised frequencies, in terms of the risk to the public from degraded core accidents, are evaluated in this report. Increases, by factors typically within the range of about 1.5 to 7, are predicted in the consequences, compared with those estimated in the earlier study. However, the predicted risk from degraded core accidents, despite these increases, remains exceedingly small.

  11. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Joy L. Rempe; Darrell L. Knudson

    2013-03-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  12. TMI-2 - A Case Study for PWR Instrumentation Performance during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Joy L. Rempe; Darrell L. Knudson

    2014-05-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor provided a unique opportunity to evaluate sensors exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during this accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This new effort focussed upon a set of sensors that provided critical data to TMI-2 operators for assessing the condition of the plant and the effects of mitigating actions taken by these operators. In addition, the effort considered sensors providing data required for subsequent accident simulations. Over 100 references related to instrumentation performance and post-accident evaluations of TMI-2 sensors and measurements were reviewed. Insights gained from this review are summarized within this report. For each sensor, a description is provided with the measured data and conclusions related to the sensor’s survivability, and the basis for conclusions about its survivability. As noted within this document, several techniques were invoked in the TMI-2 post-accident evaluation program to assess sensor status, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design but more easily removed from the TMI-2 plant for evaluations. Conclusions from this review provide important insights related to sensor survivability and enhancement options for improving sensor performance. In addition, this document provides recommendations related to the sensor survivability and data evaluation

  13. Numerical simulation of radioisotope's dependency on containment performance for large dry PWR containment under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Khurram, E-mail: khurramhrbeu@gmail.com [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Xinrong, Cao [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ahmed, Raheel [College of Automation, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ali, Majid [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China)

    2013-09-15

    Highlights: • Calculation and comparison of activity of BURN-UP code with ORIGEN2 code. • Development of SASTC computer code. • Radioisotopes dependency on containment ESFs. • Mitigation in atmospheric release with ESFs operation. • Variation in radioisotopes source term with spray flow and pH value. -- Abstract: During the core melt accidents large amount of fission products can be released into the containment building. These fission products escape into the environment to contribute in accident source term. The mitigation in environmental release is demanded for such radiological consequences. Thus, countermeasures to source term, mitigations of release of radioactivity have been studied for 1000 MWe PWR reactor. The procedure of study is divided into five steps: (1) calculation and verification of core inventory, evaluated by BURN-UP code, (2) containment modeling based on radioactivity removal factors, (3) selection of potential accidents initiates the severe accident, (4) calculation of release of radioactivity, (5) study the dependency of release of radioactivity on containment engineering safety features (ESFs) inducing mitigation. Loss of coolant accident (LOCA), small break LOCA and flow blockage accidents (FBA) are selected as initiating accidents. The mitigation effect of ESFs on source term has been studied against ESFs performance. Parametric study of release of radioactivity has been carried out by modeling and simulating the containment parameters in MATLAB, which takes BURN-UP outcomes as input along with the probabilistic data. The dependency of iodine and aerosol source term on boric and caustic acid spray has been determined. The variation in source term mitigation with the variation of containment spray flow rate and pH values have been studied. The variation in containment retention factor (CRF) has also been studied with the ESF performance. A rapid decrease in source term is observed with the increase in pH value.

  14. Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions

    Science.gov (United States)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide; Ishijima, Kiyomi

    1997-09-01

    To study the fuel behavior and to evaluate the fuel enthalpy threshold of fuel rod failure under reactivity initiated accident (RIA) conditions, a series of experiments using pulse irradiation capability of the Nuclear Safety Research Reactor (NSRR) has been performed. During the experiments with 50 MWd/kg U PWR fuel rods (HBO test series; an acronym for high burnup fuels irradiated in Ohi unit 1 reactor), significant cladding failure occurred. The energy deposition level at the instant of the fuel failure in the test is 60 cal/g fuel, and is considerably lower than those expected and pre-evaluated. The result suggests that mechanical interaction between the fuel pellets and the cladding tube with decreased integrity due to hydrogen embrittlement causes fuel failure at the low energy deposition level. After the pulse irradiation, the fuel pellets were found as fragmented debris in the coolant water, and most of these were finely fragmented. This paper describes several key observations in the NSRR experiments, which include cladding failure at the lower enthalpy level, possible post-failure events and large fission gas release.

  15. ASTEC V2.0 reactor applications on French PWR 900 MWe accident sequences and comparison with MAAP4

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, Virginie; Azarian, Garo; Ducousso, Erik; Gandrille, Pascal, E-mail: pascal.gandrille@areva.com

    2014-06-01

    In the frame of the SARNET Severe Accident Network of Excellence an important task of partners is the assessment of the ASTEC integral code, considered today as the European reference code for evaluation of the source term. A code-to-code comparison between ASTEC V2.0 rev1 and MAAP 4.0.7 code versions has been performed by AREVA NP SAS on a French PWR 900 MWe. Two transients have been analyzed, focussing on in-vessel phenomena: total loss of feedwater (H2 sequence in the French nomenclature) and total loss of onsite and offsite power (H3 sequence). The detailed analysis shows an overall good agreement between both code results on thermal-hydraulics, hydrogen production and core degradation phenomena.

  16. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun, Gyoo Dong; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Bang, Kwang Hyun; Kim, Ki Yong [Korea Maritime Univ., Busan (Korea, Republic of)

    1999-03-15

    After TMI-2 accident, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining confidence in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression is proposed.

  17. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Jeun, Gyoo Dong; Park, Seh In; Lim, Jae Hyuck; Park, Seong Yong [Hanyang Univ., Seoul (Korea, Republic of); Bang, Kwang Hyun; Kim, Ki Yong [Korea Maritime Univ., Busan (Korea, Republic of)

    1999-03-15

    After TMI-2 accident, it has been paid much attention to severe accidents beyond the design basis accidents and the research on the progress of severe accidents and mitigation and the closure of severe accidents has been actively performed. In particular, a great deal of uncertainties yet exist in the phase of late core melt progression and thus the research on this phase of severe accident progress has a key role in obtaining confidence in severe accident mitigation and nuclear reactor safety. In the present study, physics of late core melt progression, experimental data and the major phenomenological models of computer codes are reviewed and a direction of reducing the uncertainties in the late core melt progression is proposed.

  18. Effect of water injection on hydrogen generation during severe accident in PWR

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; CAO Xuewu

    2009-01-01

    Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied.The analyses were carried out with different water injection rates at different core damage stages.The core can be quenched and accident progression can be terminated by water injection at the time before cohesive core debris is formed at lower core region.Hydrogen generation rate decreases with water injection into the core at the peak core temperature of 1700 K,because the core is quenched and reflooded quickly.The water injection at the peak core temperature of 1900 K,the hydrogen generation rate increases at low injection rates of the water,as the core is quenched slowly and the core remains in uncovered condition at high temperatures for a longer time than the situation of high injection rate.At peak core temperature of 2100-2300 K,the Hydrogen generation rate increases by water injection because of the steam serving to the high temperature steam-starved core.Hydrogen generation rate increases significantly after water injection into the core at peak core temperature of 2500 K because of the steam serving to the relocating Zr-U-O mixture.Almost no hydrogen generation can be seen in base case after formation of the molten pool at the lower core region.However,hydrogen is generated if water is injected into the molten pool,because steam serves to the crust supporting the molten pool.Reactor coolant system (RCS) depressurization by opening power operated relief valves has important effect on hydrogen generation.Special attention should be paid to hydrogen generation enhancement caused by RCS depressurization.

  19. The study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Gyoo Dong; Cho, Sung Won; Bang, Kwang Hyun; Park, Shane; Park, Seong Yong; Kim, Jin Man; Lim, Jae Hyuck; Song, Myung Jin [Hanyang Univ., Seoul (Korea, Republic of)

    2000-03-15

    TMI-2 accident is more valuable than the related experiments in the point of view that it is a real accident offering huge information about the late phase of severe accident. Therefore it gives out good standards for evaluation of code performance and inputs suitableness by comparing the accident data and simulated outputs. In this study SCDAP/REALAP5/MOD3.4 was selected for accident simulation. And sensitivity analysis was performed on varied cases to find out the most proper input variable about the late phase of core meting phenomena. Other plants and experimental facilities input deck were collected and analyzed for the sensitivity study and the shortcomings proposed by SCDAP/RELAP5 peer review were considered to the simulation. As a result gamma heating fraction in the input affect the progress of core melting phenomena. About this a study on the related model itself will be carried out.

  20. Study of the distribution of hydrogen in a PWR containment with CFD codes; Estudio de la distribucion de hidrogeno en una contencion PWR con codigos CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, G.; Matias, R.; Fernandez, K.; Justo, D.; Bocanegra, R.; Mena, L.; Queral, C.

    2015-07-01

    During a severe accident in a PWR, the hydrogen generated may be distributed in the containment atmosphere and reach the combustion conditions that can cause the containment failure. In this research project, a preliminary study has been done about the capacities of ANSYS Fluent 15.0 and GOTHIC 8.0 to tri dimensional distribution of the hydrogen in a PWR containment during a severe accident. (Author)

  1. On-line measurement of gaseous iodine species during a PWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Haykal, I.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, 91191 Gif sur Yvette Cedex, (France); Perrin, A. [CNRS-University of Paris Est and Paris 7, Laboratoire Inter-Universitaire des Systemes Atmospheriques, 94010 Creteil, (France); Vincent, B. [University of Burgundy, Laboratoire de physique, CNRS UMR 5027, 9, Avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Manceron, L. [Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); Mejean, G. [University of Joseph Fourier in Grenoble, Laboratoire de Spectrometrie Physique-CNRS UMR 5588, 38402 Saint Martin d' Heres, (France); Ducros, G. [CEA Cadarache, CEA, DEN, Departement d' Etudes des Combustibles, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    A long-range remote sensing of severe accidents in nuclear power plants can be obtained by monitoring the online emission of volatile fission products such as xenon, krypton, caesium and iodine. The nuclear accident in Fukushima was ranked at level 7 of the International Nuclear Event Scale by the NISA (Nuclear and Industrial Safety Agency) according to the importance of the radionuclide release and the off-site impact. Among volatile fission products, iodine species are of high concern, since they can be released under aerosols as well as gaseous forms. Four years after the Fukushima accident, the aerosol/gaseous partition is still not clear. Since the iodine gaseous forms are less efficiently trapped by the Filtered Containment Venting Systems than aerosol forms, it is of crucial importance to monitor them on-line during a nuclear accident, in order to improve the source term assessment in such a situation. Therefore, we propose to detect and quantify these iodine gaseous forms by the use of highly sensitive optical methods. (authors)

  2. Thermal-hydraulic analysis best-estimate of an accident in the containment a PWR-W reactor with GOTHIC code using a 3D model detailed; Analisis termo-hidraulico best-estimate de un accidente en contencion de un reactor PWR-W con el codigo GOTHIC mediante un modelo 3D detallado

    Energy Technology Data Exchange (ETDEWEB)

    Bocanegra, R.; Jimenez, G.

    2013-07-01

    The objective of this project will be a model of containment PWR-W with the GOTHIC code that allows analyzing the behavior detailed after a design basis accident or a severe accident. Unlike the models normally used in codes of this type, the analysis will take place using a three-dimensional model of the containment, being this much more accurate.

  3. Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle A.; Hales, Jason D.

    2016-12-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. Thus, the United States Department of Energy through its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is funded for a three-year period. The purpose of the HIP is to perform research into two potential accident tolerant concepts and provide an in-depth report to the Advanced Fuels Campaign (AFC) describing the behavior of the concepts, both of which are being considered for inclusion in a lead test assembly scheduled for placement into a commercial reactor in 2022. The initial focus of the HIP is on uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (INL, LANL, and ANL) a comprehensive mulitscale approach to modeling is being used including atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. In this paper, we present simulations of two proposed accident tolerant fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. The simulations investigate the fuel performance response of the proposed ATF systems under Loss of Coolant and Station Blackout conditions using the BISON code. Sensitivity analyses are completed using Sandia National Laboratories’ DAKOTA software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). Early results indicate that each concept has significant advantages as well as areas of concern. Further work is required prior to formulating the proposition report for the Advanced Fuels Campaign.

  4. On-line measurements of RuO{sub 4} during a PWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, S.; Doizi, D. [CEA, DEN, Departement de Physico-chimie, CEA/Saclay, 91191 Gif sur Yvette Cedex, (France); Manceron, L. [Societe Civile Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex, (France); MONARIS, UMR 8233, Universite Pierre et Marie Curie, 4 Place Jussieu, case 49, F-75252 Paris Cedex 05, (France); Boudon, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, F-21078 Dijon Cedex, (France); Ducros, G. [CEA, DEN, Departement d' Etudes des Combustibles, CEA/Cadarache, 13108 Saint-Paul-lez-Durance cedex, (France)

    2015-07-01

    After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is not trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)

  5. Definition of loss-of-coolant accident radiation source. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist.

  6. A study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Gyoo Dong; Park, Shane; Kim, Jong Sun; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Man [Korea Maritime Univ., Busan (Korea, Republic of)

    2001-03-15

    In the 4th year, SCDAP/RELAP5 best estimate input data obtained from the TMI-2 accident analysis were applied to the analysis of domestic nuclear power plant. Ulchin nuclear power plant unit 3, 4 were selected as reference plant and steam generator tube rupture, station blackout SCDAP/RELAP5 calculation were performed to verify the adequacy of the best estimate input parameters and the adequacy of related models. Also, System 80+ EVSE simulation was executed to study steam explosion phenomena in the reactor cavity and EVSE load test was performed on the simplified reactor cavity geometry using TRACER-II code.

  7. Valve inlet fluid conditions for pressurizer safety and relief valves in Westinghouse-designed plants. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Meliksetian, A.; Sklencar, A.M.

    1982-12-01

    The overpressure transients for Westinghouse-designed NSSSs are reviewed to determine the fluid conditions at the inlet to the PORV and safety valves. The transients considered are: licensing (FSAR) transients; extended operation of high pressure safety injection system; and cold overpressurization. The results of this review, presented in the form of tables and graphs, define the range of fluid conditions expected at the inlet to pressurized safety and power-operated relief valves utilized in Westinghouse-designed PWR units. These results will provide input to the PWR utilities in their justification that the fluid conditions under which their valve designs were tested as part of the EPRI/PWR Safety and Relief Valve Test Program indeed envelop those expected in their units.

  8. Effect of sensitization and cold work on stress corrosion susceptibility of austenitic stainless steels in BWR and PWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, H.; Aho-Mantila, I.

    1981-05-01

    The influence of metallurgical variables on stress corrosion cracking of austenitic stainless steels, in particular AISI 304 and OX18H10T, has been examined both in O2-enriched BWR-conditions (8 ppm O2) and in typical PWR-conditions.

  9. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herer, C. [RRAMATOME EP/TC, Paris (France); Souyri, A. [EdF DER/RNE/TTA, Chatou (France); Garnier, J. [CEA DRN/DTP/STR/LETC, Grenoble (France)

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  10. Computational analysis for prediction of pressure of PWR presurizer undertransient conditions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A computer model has been developed for prediction of the pressure in thepressurizer undertransient conditions. In the model three separate thermodynamic regions which arenot required to be inthermal equilibrium have been considered. The mathematical model derived from the general conservation equations includesall of theimportant thermal-hydraulics phenomena occurring in the pressurizer,i.e., stratificationof the hot water andincoming cold water, bulk flashing and condensation, wall condensation, andinterfacial heat and masstransfer, etc. The bubble rising and rain-out models are developed to describe bulkflashing andcondensation, respectively. To obtain the wall condensation rate, a one-dimensionalheat conductionequation is solved by the pivoting method. The presented model will predict thepressure-time behaviorof a PWR pressurizer during a variety of transients. The results obtained from the proposed mathematical model are in good agreementwithavailable data on the CHASHMA nuclear power plant's pressurizer performance.

  11. Projects of Modifications of design for mitigation of accidents outside the design Bases on nuclear Central PWR Siemens-KWU and Westinghouse; Proyectos de Modificaciones de Sieno para Mitigacion de Accidentes fuera de la Bases de Diseno en Centrales Nucleares PWR Siemens-KWU y Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Gonzalez, G.; Cano Rodriguez, L. A.; Arguello Tara, A.

    2014-07-01

    Following the accident at the Japanese Fukushima-Daiichi NPP, the different regulators of nuclear power generation have required numerous reports regarding the evaluation and modification of the capacity of the plants to face accidents with severities beyond that established in their Design Bases. Under this new scenario, with multiple new demands and commitments, EA has carried out the required works for the implementation of strategies to mitigate the consequences of beyond Design Basis accidents for utilities owning Siemens-KWU and Westinghouse PWR nuclear power plants. (Author)

  12. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  13. Fatigue-crack growth behavior of Type 347 stainless steels under simulated PWR water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Min, Ki-Deuk; Yoon, Ji-Hyun; Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fatigue crack growth rate (FCGR) curve of stainless steel exists in ASME code section XI, but it is still not considering the environmental effects. The longer time nuclear power plant is operated, the more the environmental degradation issues of materials pop up. There are some researches on fatigue crack growth rate of S304 and S316, but researches of FCGR of S347 used in Korea nuclear power plant are insufficient. In this study, the FCGR of S347 stainless steel was evaluated in the PWR high temperature water conditions. The FCGRs of S347 stainless steel under pressurized-water conditions were measured by using compact-tension (CT) specimens at different levels of dissolved oxygen (DO) and frequency. 1. FCGRs of SS347 were slower than that in ASME XI and environmental effect did not occur when frequency was higher than 1Hz. 2. Fatigue crack growth is accelerated by corrosion fatigue and it is more severe when frequency is slower than 0.1Hz. 3. Increase of crack tip opening time increased corrosion fatigue and it deteriorated environmental fatigue properties.

  14. Failure behavior of plutonium-uranium mixed oxide fuel under reactivity-initiated accident condition

    Science.gov (United States)

    Abe, T.; Nakae, N.; Kodato, K.; Matsumoto, M.; Inabe, T.

    1992-06-01

    Two series of in-pile tests on MOX fuels were performed in the NSRR to study failure behavior under RIA (reactivity-initiated accident) conditions in water cooled reactors. PWR type MOX test rods were pulsed in a first series. The test rods were designed to have dimensions identical to standard UO 2 fuel, on which a large number of tests had been conducted previously. The test result was that the failure mechanism and the threshold of MOX fuel was consistent with those of UO 2 fuel. ATR-type MOX test rods with PuO 2 particles as well as reference rods without PuO 2 particles were subjected to pulsing in a second series. PuO 2 particles of 400 and 1100 μm in diameter were artificially embedded at the surface of MOX pellets. No effect of particles appeared on the threshold, and no significant indication of their effect was observed on the cladding.

  15. Ruthenium release from fuel in accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G.; Marchetto, C.; Plumecocq, W. [Inst. de Radioprotection et de Surete Nucleaire, DPAM, SEMIC, LETR and LIMSI, Saint-Paul-Lez-Durance (France)

    2010-07-01

    During a hypothetical nuclear power plant accident, fission products may be released from the fuel matrix and then reach the containment building and the environment. Ruthenium is a very hazardous fission product that can be highly and rapidly released in some accident scenarios. The impact of the atmosphere redox properties, temperature, and fuel burn-up on the ruthenium release is discussed. In order to improve the evaluation of the radiological impact by accident codes, a model of the ruthenium release from fuel is proposed using thermodynamic equilibrium calculations. In addition, a model of fuel oxidation under air is described. Finally, these models have been integrated in the ASTEC accident code and validation calculations have been performed on several experimental tests. (orig.)

  16. SCC crack growth rate of cold-worked austenitic stainless steels in PWR primary water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guerre, C.; Raquet, O.; Herms, E. [Commissariat a l' Energie Atomique (CEA), DEN/DPC/SCCME/LECA, Gif-sur-Yvette Cedex (France); Marie, S. [Commissariat a l' Energie Atomique (CEA), DEN/DM2S/SEMT/LISN, Gif-sur-Yvette Cedex (France); Le Calvar, M. [Inst. for Radiological Protection and Nuclear Safety (IRSN), DSR/SAMS, Fontenay-aux-Roses Cedex (France)

    2007-07-01

    Stress corrosion cracking (SCC) of stainless steels (SS) is a significant cause of failure in the pressurized water reactors (PWR). Most of the reported case history failures of SS in PWR can be attributed to pollutants (chloride, sulphate) and / or locally oxygenated environments, even to sensitisation of the SS. However, some failures have been attributed to heavy cold work (CW) of SS. In laboratory tests, SCC initiation of cold-worked SS has been obtained using slow strain rate tests (SSRT) in nominal PWR environment. This paper describes constant load and cyclic crack growth rate (CGR) tests on cold-worked SS, on CT specimens. 304L and 316L have been tested with a CW up to 60 %. CW 316L is more prone to cracking than 304L. Over 30 % of CW, 316L is susceptible to crack propagation under constant load. CW is the main controlling parameter for cracking. (author))

  17. Regulatory research of the PWR severe accident information needs and instrumentation availability for hydrogen control and management

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Hong; Park, Gun-Chul; Suh, Kune Y.; Kang, Yun-Moon; Lee, Un-Jang; Oh, Se-Chul; Lee, Jin-Yong [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    During the current research period, we have set forth the methodology for identification of a severe accident, developed a framework for hydrogen management decision trees, and analyzed the literature on hydrogen management and experimental data for hydrogen bum. Specifically, we have summarized me results for information needs in a severe accident obtained in the U.S. and other countries, and applied the methodology to the reference plant YGN 3 and 4 as part of severe accident management. We have also examined the existing instruments in terms of their availability and survivability during a severe accident, and identified additionally needed information needs and instruments. We have identified dominant accident sequences for me reference plant YGN 3 and 4 to construct decision trees, and extracted available data from the IPE study of the plant. Based upon the data we have performed preliminary study on the decision tree and decision node. Last, we have examined various mechanisms for hydrogen generation and reIevant experimental data to predict me amount of hydrogen generation and governing factors in me process. We have also reviewed the hydrogen generation related models in the severe accident analysis.

  18. Theoretical estimation of the impact velocity during the PWR spent drop in water condition

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Joon; Park, Nam Gyu; Lee, Seong Ki; Kim, Jae Ik [KEPCO NF, Daejeon (Korea, Republic of)

    2016-06-15

    The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the 3×3 short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

  19. ACCOUNT OF ROAD CONDITIONS WHILE INVESTIGATING TRAFFIC ACCIDENTS

    Directory of Open Access Journals (Sweden)

    D. D. Selioukov

    2010-01-01

    Full Text Available The paper considers problems on better traffic safety at government, authority, engineering and driver activity levels, account of road conditions while investigating traffic accidents. The paper also provides road defects mentioned in forensic transport examinations of traffic accidents.

  20. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendix XI. Analysis of comments on the draft WASH-1400 report. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning comments on reactor safety by governmental agencies and civilian organizations; reactor safety study methodology; consequence model; probability of accident sequences; and various accident conditions.

  1. Modeling in fast dynamics of accidents in the primary circuit of PWR type reactors; Modelisation en dynamique rapide d'accidents dans le circuit primaire des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F

    2003-12-01

    Two kinds of accidents, liable to occur in the primary circuit of a Pressurized Water Reactor and involving fast dynamic phenomena, are analyzed. The Loss Of Coolant Accident (LOCA) is the accident used to define the current PWR. It consists in a large-size break located in a pipe of the primary circuit. A blowdown wave propagates through the circuit. The pressure differences between the different zones of the reactor induce high stresses in the structures of the lower head and may degrade the reactor core. The primary circuit starts emptying from the break opening. Pressure decreases very quickly, involving a large steaming. Two thermal-hydraulic simulations of the blowdown phase of a LOCA are computed with the Europlexus code. The primary circuit is represented by a pipe-model including the hydraulic peculiarities of the circuit. The main differences between both computations concern the kind of reactor, the break location and model, and the initialization of the accidental operation. Steam explosion is a hypothetical severe accident liable to happen after a core melting. The molten part of the core (called corium) falls in the lower part of the reactor. The interaction between the hot corium and the cold water remaining at the bottom of the vessel induces a massive and violent vaporization of water, similar to an explosive phenomenon. A shock wave propagates in the vessel. what can damage seriously the neighbouring structures or drill the vessel. This work presents a synthesis of in-vessel parametrical studies carried out with the Europlexus code, the linkage of the thermal-hydraulic code Mc3d dedicated to the pre-mixing phase with the Europlexus code dealing with the explosion, and finally a benchmark between the Cigalon and Europlexus codes relative to the Vulcano mock-up. (author)

  2. On the performance of an artificial bee colony optimization algorithm applied to the accident diagnosis in a PWR nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Iona Maghali S. de; Schirru, Roberto; Medeiros, Jose A.C.C., E-mail: maghali@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2009-07-01

    The swarm-based algorithm described in this paper is a new search algorithm capable of locating good solutions efficiently and within a reasonable running time. The work presents a population-based search algorithm that mimics the food foraging behavior of honey bee swarms and can be regarded as belonging to the category of intelligent optimization tools. In its basic version, the algorithm performs a kind of random search combined with neighborhood search and can be used for solving multi-dimensional numeric problems. Following a description of the algorithm, this paper presents a new event classification system based exclusively on the ability of the algorithm to find the best centroid positions that correctly identifies an accident in a PWR nuclear power plant, thus maximizing the number of correct classification of transients. The simulation results show that the performance of the proposed algorithm is comparable to other population-based algorithms when applied to the same problem, with the advantage of employing fewer control parameters. (author)

  3. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendix VI. Calculation of reactor accident consequences. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the radioactive releases from the containment following accidents; radioactive inventory of the reactor core; atmospheric dispersion; reactor sites and meteorological data; radioactive decay and deposition from plumes; finite distance of plume travel; dosimetric models; health effects; demographic data; mitigation of radiation exposure; economic model; and calculated results with consequence model.

  4. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  5. Valve inlet fluid conditions for pressurizer safety and relief valves in combustion engineering-designed plants. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, J.; Chari, D.; Puchir, M.; Weismantel, S.

    1982-12-01

    The purpose of this study is to assemble documented information for C-E designed plants concerning pressurizer safety and power operated relief valve (PROV) inlet fluid conditions during actuation as calculated by conventional licensing analyses. This information is to be used to assist in the justification of the valve inlet fluid conditions selected for the testing of safety valves and PORVs in the EPRI/PWR Safety/Relief Valve Test Program. Available FSAR/Reload analyses and certain low temperature overpressurization analyses were reviewed to identify the pressurization transients which would actuate the valves, and the corresponding valve inlet fluid conditions. In addition, consideration was given to the Extended High Pressure Liquid Injection event. A general description of each pressurization transient is provided. The specific fluid conditions identified and tabulated for each C-E designed plant for each transient are peak pressurizer pressure, pressure ramp rate at actuation, temperature and fluid state.

  6. Valve inlet fluid conditions for pressurizer safety and relief valves for B and W 177-FA and 205-FA plants. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cartin, L.R.; Winks, R.W.; Merchent, J.W.; Brandt, R.T.

    1982-12-01

    The overpressurization transients for the Babcock and Wilcox Company's 177- and 205-FA units are reviewed to determine the range of fluid conditions expected at the inlet of pressurizer safety and relief valves. The final Safety Analysis Report, extended high-pressure injection, and cold overpressurization events are considered. The results of this review, presented in the form of tables and graphs, provide input to the PWR utilities in their justification that the fluid conditions under which their valve designs were tested as part of the EPRI PWR Safety and Relief Valve Test Program are representative of those expected in their unit(s).

  7. Surface Oxidation Phenomena of Ni-Based Alloy 600 in PWR Primary Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yun Soo; Hwang, Seong Sik; Kim, Sung Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    There is, nevertheless, growing evidence in support for the internal oxidation model by Scot, in which grain boundary oxidation is responsible for embrittlement and cracking. Grain boundaries can act as an enhanced diffusion path for oxidation, and grain boundary oxidation can be regarded as a precursor for crack initiation. Oxidation of the grain boundary in almost all nickel-based alloys exposed to primary water is known to be detrimental for grin boundary cohesion. Panter et al. showed that the crack initiation time is strongly reduced when the specimens are pre-exposed in a simulated PWR environment in the absence of applied stress. The changes of the grain boundary structure and chemistry owing to oxygen penetration can increase the sensitivity to PWSCC under a load since grain boundary oxidization significantly weakens the grain boundary strength. Most of the important experimental results obtained are believed to correlate with the oxidation penetration into the material. A spinel structure was detected by XRD in the oxide layers. Several different types of oxide scales were found by SEM examination on the corroded surface of Alloy 600 after an immersion test in the primary water environments. Surface grain boundaries were oxidized by oxygen penetration into the matrix through grain boundaries. Grain boundary oxidization is thought to be the main reason for intergranular cracking in this alloy in a primary water environment of a PWR.

  8. PSA LEVEL 3 DAN IMPLEMENTASINYA PADA KAJIAN KESELAMATAN PWR

    Directory of Open Access Journals (Sweden)

    Pande Made Udiyani

    2015-03-01

    series of calculations performed are: calculate the source terms of the core damaged, modeling of meteorological conditions and environmental site, exposure pathway modeling, analysis of radionuclide dispersion and transport phenomena in the environment, radionuclide deposition analysis, analysis of radiation dose, protection & mitigation analysis, and risk analysis. The assessment uses a series of subsystems on PC Cosyma software. The results prove that the safety assessment using Level 3 PSA methodology is very effective and comprehensive estimate the impact, consenquences, risks, nuclear emergency preparedness, and the reactor accident management especially for severe accidents or beyond design basis accidents of nuclear power plants. The results of the assessment can be used as a feedback to safety assessment of Level 1 PSA and Level 2 PSA. Keywords: Level 3 PSA, accident, PWR

  9. Uncertainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation

    Directory of Open Access Journals (Sweden)

    C. Mesado

    2012-01-01

    Full Text Available In nuclear safety analysis, it is very important to be able to simulate the different transients that can occur in a nuclear power plant with a very high accuracy. Although the best estimate codes can simulate the transients and provide realistic system responses, the use of nonexact models, together with assumptions and estimations, is a source of uncertainties which must be properly evaluated. This paper describes a Rod Ejection Accident (REA simulated using the coupled code RELAP5/PARCSv2.7 with a perturbation on the cross-sectional sets in order to determine the uncertainties in the macroscopic neutronic information. The procedure to perform the uncertainty and sensitivity (U&S analysis is a sampling-based method which is easy to implement and allows different procedures for the sensitivity analyses despite its high computational time. DAKOTA-Jaguar software package is the selected toolkit for the U&S analysis presented in this paper. The size of the sampling is determined by applying the Wilks’ formula for double tolerance limits with a 95% of uncertainty and with 95% of statistical confidence for the output variables. Each sample has a corresponding set of perturbations that will modify the cross-sectional sets used by PARCS. Finally, the intervals of tolerance of the output variables will be obtained by the use of nonparametric statistical methods.

  10. The reaction between iodine and silver under severe PWR accident conditions. An experimental parameter study

    Energy Technology Data Exchange (ETDEWEB)

    Funke, F.; Greger, G.U.; Bleier, A.; Hellmann, S.; Morell, W. [Siemens AG, Power Generation Group, Erlangen (Germany)

    1996-12-01

    An extensive experimental parameter study was performed on the kinetics in the reaction system I{sub 2}/Ag and I{sup -}/Ag in a laboratory-scale apparatus.Starting with I{sub 2} or I{sup -} solutions and silver powder suspensions, the decrease of soluted I{sub 2} or I{sup -}, respectively, due to fixation on the silver particles, was monitored as function of time using the radioactive tracer I-131. The measured data were analyzed using a model of first order kinetics with respect to the iodine concentration. However, the analysis using first order kinetics had to be performed separately in an early, fast reaction phase and in a late, slow reaction phase. The reason for this unexpected behaviour was not identified. Thus, rate constant, two for each test, were deduced from 14 I{sub 2}/Ag main tests and from 36 I{sup -}/Ag tests. No dependencies of the rate constants were found on the parameters temperature, initial iodine concentration, presence of boric acid, type of silver educt, and pretreatment of the silver educt prior to the tests. However, the stirring of the reaction solution generally enhanced the kinetics highlighting the importance of mass transfer. The I{sup -}/Ag reaction proceeded only if there was no inertization of the reaction solution by sparging with nitrogen. The temperature-independent rate constant for the early, fast I{sub 2}/Ag reaction phase is 2E-5 m/s. However, a smaller rate constant of 6E-6 m/s is recommended for use in source term calculations with IMPAIR, which already contains a first order model. Analogously, the temperature-independent I{sup -}/Ag reaction rate constant is 8E-6 m/s in an early, fast reaction phase. For use in source term calculations, a smaller rate constant of 2E-6 m/s is recommended. The lower bound of the I{sup -}/Ag rate constant was 3E-8 m/s which could be used in very conservative source term calculations. (author) 20 figs., 6 tabs., 15 refs.

  11. Standard PWR for Italy

    Energy Technology Data Exchange (ETDEWEB)

    Negroni, A.; Velona, F. (Ente Nazionale per l' Energia Elettrica, Rome (Italy))

    1983-03-01

    A description is given of the general design for the standard PWR which will be used in the seven to eight nuclear power stations provided for in the Italian national energy plan. Special features to meet Italian conditions include double containment and a common foundation mat for the reactor, auxiliary and fuel buildings.

  12. Radionuclides release possibility analysis of MSR at various accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Wie; Kim, Hee Reyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are some accidents which go beyond our expectation such as Fukushima Daiichi nuclear disaster and amounts of radionuclides release to environment, so more effort and research are conducted to prevent it. MSR (Molten Salt Reactor) is one of GEN-IV reactor types, and its coolant and fuel are mixtures of molten salt. MSR has a schematic like figure 1 and it has different features with the solid fuel reactor, but most important and interesting feature of MSR is its many safety systems. For example, MSR has a large negative void coefficient. Even though power increases, the reactor slows down soon. Radionuclides release possibility of MSR was analyzed at various accident conditions including Chernobyl and Fukushima ones. The MSR was understood to prevent the severe accident by the negative reactivity coefficient and the absence of explosive material such as water at the Chernobyl disaster condition. It was expected to contain fuel salts in the reactor building and not to release radionuclides into environment even if the primary system could be ruptured or broken and fuel salts would be leaked at the Fukushima Daiichi nuclear disaster condition of earthquake and tsunami. The MSR, which would not lead to the severe accident and therefore prevents the fuel release to the environment at many expected scenarios, was thought to have priority in the aspect of accidents. A quantitative analysis and a further research are needed to evaluate the possibility of radionuclide release to the environment at the various accident conditions based on the simple comparison of the safety feature between MSR and solid fuel reactor.

  13. Analysis of flammability in the attached buildings to containment under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, J.C. de la, E-mail: juan-carlos.de-la-rosa-blul@ec.europa.eu [European Commission Joint Research Centre (Netherlands); Fornós, Joan, E-mail: jfornosh@anacnv.com [Asociación Nuclear Ascó-Vandellós (Spain)

    2016-11-15

    Highlights: • Analysis of flammability conditions in buildings outside containment. • Stepwise approach easily applicable for any kind of containment and attached buildings layout. • Detailed application for real plant conditions has been included. - Abstract: Right after the events unfolded in Fukushima Daiichi, the European Union countries agreed in subjecting Nuclear Power Plants to Stress Tests as developed by WENRA and ENSREG organizations. One of the results as implemented in many European countries derived from such tests consisted of mandatory technical instructions issued by nuclear regulatory bodies on the analysis of potential risk of flammable gases in attached buildings to containment. The current study addresses the key aspects of the analysis of flammable gases leaking to auxiliary buildings attached to Westinghouse large-dry PWR containment for the specific situation where mitigating systems to prevent flammable gases to grow up inside containment are available, and containment integrity is preserved – hence avoiding isolation system failure. It also provides a full practical exercise where lessons learned derived from the current study – hence limited to the imposed boundary conditions – are applied. The leakage of gas from the containment to the support buildings is based on separate calculations using the EPRI-owned Modular Accident Analysis Program, MAAP4.07. The FATE™ code (facility Flow, Aerosol, Thermal, and Explosion) was used to model the transport and distribution of leaked flammable gas (H{sub 2} and CO) in the penetration buildings. FATE models the significant mixing (dilution) which occurs as the released buoyant gas rises and entrains air. Also, FATE accounts for the condensation of steam on room surfaces, an effect which acts to concentrate flammable gas. The results of the analysis show that during a severe accident, flammable conditions are unlikely to occur in compartmentalized buildings such as the one used in the

  14. Effect of sensitization and cold work on stress corrosion susceptibility of austenitic stainless steels in boiling water reactor (BWR) and pressurized water reactor (PWR) conditions

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, H.; Aho-Mantila, I.

    1981-05-01

    The influence of metallurgical variables on stress corrosion cracking of austenitic stainless steels, in particular AISI 304 and OX18H10T, was examined in O/sub 2/ enriched BWR conditions (8 ppm O/sub 2/) and in typical PWR conditions. Cracking susceptibility in BWR conditions is especially sensitive to alpha martensite content and sensitization. Cracking in alpha martensite compounds is intergranular and transgranular and it can not be related to sensitization. Sensitization induces cracking only in creviced conditions (double U-bend specimens) in AISI 304 steels. In creviced conditions OX18H10T steel exhibits cracking in solution annealed, stabilized and sensitized conditions. The sensitized material is most susceptible. Cracking in solution annealed and stabilized OX18H10T steel is intergranular and transgranular. In PWR conditions (O/sub 2/ content 2 ppb) no cracking is observed. (ESA)

  15. Countermeasures for traffic accidents due to road conditions in China

    Institute of Scientific and Technical Information of China (English)

    PEI Yu-long; MA Ji

    2005-01-01

    Regarding the postulate of traffic infrastmcture and vehicles, much attention should be given to the effect of road conditions on accidents. With large numbers of traffic accidents on Shenda Freeway, Liaoning Province, Harbin City and others in P. R. China, parameters and the effect of accidents caused by horizontal alignment, vertical alignment, cross section and intersection are studied systematically The disciplinary analysis of these effects are presented in this paper. The viewpoint is acknowledged that high sub grade and steep slopes are against traffic safety, which is common and ignored in high-usage highways in China. Design parameters of the current design criteria and the corresponding countermeasures are suggested for safety on our highways.

  16. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendices VII, VIII, IX, and X. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the release of radioactivity in reactor accidents; physical processes in reactor meltdown accidents; safety design rationale for nuclear power plants; and design adequacy.

  17. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  18. Inclusion of models to describe severe accident conditions in the fuel simulation code DIONISIO

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Daverio, Hernando [Gerencia Reactores y Centrales Nucleares, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Denis, Alicia [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina)

    2017-04-15

    The simulation of fuel rod behavior is a complex task that demands not only accurate models to describe the numerous phenomena occurring in the pellet, cladding and internal rod atmosphere but also an adequate interconnection between them. In the last years several models have been incorporated to the DIONISIO code with the purpose of increasing its precision and reliability. After the regrettable events at Fukushima, the need for codes capable of simulating nuclear fuels under accident conditions has come forth. Heat removal occurs in a quite different way than during normal operation and this fact determines a completely new set of conditions for the fuel materials. A detailed description of the different regimes the coolant may exhibit in such a wide variety of scenarios requires a thermal-hydraulic formulation not suitable to be included in a fuel performance code. Moreover, there exist a number of reliable and famous codes that perform this task. Nevertheless, and keeping in mind the purpose of building a code focused on the fuel behavior, a subroutine was developed for the DIONISIO code that performs a simplified analysis of the coolant in a PWR, restricted to the more representative situations and provides to the fuel simulation the boundary conditions necessary to reproduce accidental situations. In the present work this subroutine is described and the results of different comparisons with experimental data and with thermal-hydraulic codes are offered. It is verified that, in spite of its comparative simplicity, the predictions of this module of DIONISIO do not differ significantly from those of the specific, complex codes.

  19. THE PREDICTION OF pH BY GIBBS FREE ENERGY MINIMIZATION IN THE SUMP SOLUTION UNDER LOCA CONDITION OF PWR

    Directory of Open Access Journals (Sweden)

    HYOUNGJU YOON

    2013-02-01

    Full Text Available It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  20. The prediction of pH by Gibbs free energy minimization in the sump solution under LOCA condition of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoung Ju [Dept. of Nuclear Engineering, University of Kyunghee, Seoul (Korea, Republic of)

    2013-02-15

    It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3 and 4 and UCN 1 and 2. As results, pH of the sump solution for the SKN 3 and 4 was between 7.02 and 7.45, and for the UCN 1 and 2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  1. Investigation of air cleaning system response to accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  2. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions

    Science.gov (United States)

    Ott, L. J.; Robb, K. R.; Wang, D.

    2014-05-01

    Following the severe accidents at the Japanese Fukushima Daiichi Nuclear Power Station in 2011, the US Department of Energy initiated research and development on the enhancement of the accident tolerance of light water reactors by the development of fuels/cladding that, in comparison with the standard UO2/Zircaloy (Zr) system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations. Analyses are presented that illustrate the impact of these new candidate fuel/cladding materials on the fuel performance at normal operating conditions and on the reactor system under DB and BDB accident conditions.

  3. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  4. Study on Severe Accident Induced by Total Loss of Power Supply for Small PWR%小型压水堆完全丧失电源引发的严重事故研究

    Institute of Scientific and Technical Information of China (English)

    张龙飞; 舒礼伟; 陆古兵

    2012-01-01

    With the use of best estimate computer code RELAP/SCDAPS1M/MOD3. 4 of pressure water reactor severe accident, a three-channel along radial and ten-nodal along axis nuclear reactor severe accident calculation model was established based on a hypothetical small PWR. The severe accident induced by total loss of power supply was studied, and mitigation measure with 300 s continuation of the steam generator auxiliary feedwater was analyzed. The calculation results show that the steam generator auxiliary feedwater plays an important part in delaying core melt progression and mitigating severe accident consequences.%以压水堆严重事故最佳估算程序RELAP/SCDAPSIM/MOD3.4为核心软件,以假想的小型压水堆为研究对象,建立了1个径向3通道、轴向10节块的核反应堆严重事故计算模型,研究了完全丧失电源初因事件引发的严重事故过程,并对事故停堆后蒸汽发生器给水持续300 s的缓解措施进行了分析.计算结果表明:蒸汽发生器辅助给水对于延迟事故进程,缓解事故后果具有重要作用.

  5. Ruthenium behaviour in severe nuclear accident conditions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Backman, U.; Lipponen, M.; Auvinen, A.; Jokiniemi, J.; Zilliacus, R. [VVT Processes (Finland)

    2004-08-01

    During routine nuclear reactor operations, ruthenium will accumulate in the fuel in relatively high concentrations. In a steam atmosphere, ruthenium is not volatile, and it is not likely to be released from the fuel. However, in an air ingress accident during reactor power operation or during maintenance, ruthenium may form volatile species, which may be released into the containment. Oxide forms of ruthenium are more volatile than the metallic form. Radiotoxicity of ruthenium is high both in the short and the long term. The results of this project imply that in oxidising conditions during nuclear reactor core degradation, ruthenium release increases as oxidised gaseous species Ru03 and Ru04 are formed. A significant part of the released ruthenium is then deposited on reactor coolant system piping. However, in the presence of steam and aerosol particles, a substantial amount of ruthenium may be released as gaseous Ru04 into the containment atmosphere. (au)

  6. Risk Assessment of Oil Pipeline Accidents in Special Climatic Conditions

    Science.gov (United States)

    Vtorushina, A. N.; Anishchenko, Y. V.; Nikonova, E. D.

    2017-05-01

    The present study identifies the main accidents’ factors and causes for oil pipeline located in Siberia and operated in special climatic conditions. Various types of pipeline accident scenarios were modeled. It is showed that the most dangerous scenarios are oil spills fire and oil vapor explosion due to the loss of piping integrity (rupture) of the pipeline’s section, laying on marshlands and oil spill on the water surface due to the loss of piping integrity (puncture). The most probable scenario is oil spills fire due to the loss of piping integrity (puncture) of the pipeline’s section, laying on dry lands and marshlands. To estimate the scenarios «event tree analysis» is used. Also such risk indexes as individual, societal, public and potential risks were determined.

  7. CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON U.S. RESEARCH EFFORTS

    Directory of Open Access Journals (Sweden)

    CHI BUM BAHN

    2013-06-01

    Full Text Available Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET, and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain.

  8. Degraded core analysis for the PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-10-01

    The paper presents an analysis of the probability and consequences of degraded core accidents for the PWR. The article is based on a paper which was presented by the author to the Sizewell-B public inquiry. Degraded core accidents are examined with respect to:- the initiating events, safety plant failure, and processes with a bearing on containment failure. Accident types and frequencies are discussed, as well as the dispersion of radionuclides. Accident risks, i.e. individual and societal risks in degraded core accidents are assessed from:- the amount of radionuclides released, the weather, the population distribution, and the accident frequencies. Uncertainties in the assessment of degraded core accidents are also summarized. (U.K.).

  9. Fuel Performance Characterisation under Various PWR Conditions: Description of the Annealing Test Facilities available at the LECA-STAR laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pontillon, Y.; Cornu, B.; Clement, S.; Ferroud-Plattet, M.P.; Malgouyres, P.P. [Commissariat a l' Energie Atomique, CEA/DEN/DEC/SA3C - Centre d' Etudes de Cadarache, BP1, 13108 Saint Paul Lez Durance (France)

    2008-07-01

    The aim to improve LWR fuel behaviour has led Cea to improve its post-irradiation examination capacities in term of test facilities and characterization techniques in the shielded hot cells of the LECA-STAR facility, located in Cadarache Cea center. as far as the annealing test facilities are concerned, fuel qualification and improvement of knowledge require a set of furnaces which are already used or will be used. The main characteristics of these furnaces strongly depend on the experimental objectives. The aim of this paper is to review the main aspects of these specific experiments concerning: (i) fission gas release from high burn up fuel, (ii) global fission product release in severe-accident conditions and (iii) fuel microstructural changes, potential cladding failure, radionuclide source terms... under conditions representative of long term dry storage and geological disposal. (authors)

  10. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  11. Impact evaluation of the accident with release of a PWR coolant. Case study: Angra 3; Avaliacao do impacto de acidente com liberacao do refrigerante de reator PWR. Estudo de caso: Angra 3

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Andre Silva de; Simoes Filho, Francisco Fernando Lamego; Soares, Abner Duarte; Lapa, Celso Marcelo Franklin, E-mail: flamego@ien.gov.b, E-mail: asoares@cnen.gov.b, E-mail: lapa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-10-26

    It was postulated in the cooling system, a LOCA where was lost 431 m{sup 3} of coolant. The inventory was 1.87 x 10{sup 10} Bq/m{sup 3} of tritium, 2.22 x 10{sup 7} Bp/m{sup 3} of cobalt and 3.48 x 10{sup 8} Bq/m{sup 3} of cesium and was launched near tue Itaorna beach, Angra dos Reis, RJ, Brazil. By applying the model in the proposed scenery (Angra 1 and 2 functioning and Angra 3 with variation of water taking and discharge with a progressive reduction after the accident), the dilution of specific activity of the radionuclides reached inferior values after 22 hours, to the reference values. After 54 hours, the levels of radionuclides, in the indirect influence are already below the minimum values of activity detected by the laboratory of environmental monitoring of the CNAAA

  12. In-situ oxide layer analysis of alloy 182 using electrochemical impedance spectroscopy in high dissolved hydrogen condition in PWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Subramanian, Gokul Obulan; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Alloy 82/182 weld metals had been extensively used in joining the components of the PWR primary system. Unfortunately, the cracking caused by PWSCC usually occurs on Alloy 82/182 dissimilar metal welds (DMW). Previous studies indicated that the susceptibility of PWSCC is closely related to the oxide characteristics which are dependent on water chemistry condition, especially dissolved hydrogen (DH). Furthermore, in primary system of pressurized water reactor (PWR), crack initiation resulted from electrochemical instability of oxide film of Ni-base structural materials in various hydrogen concentrations. In this study, in-situ oxide analysis of Alloy 182 using electrochemical impedance spectroscopy (EIS) was performed in high dissolved hydrogen condition. Especially, to understand the effects of tensile loading on the oxide characteristics, we tried to characterize the oxides formed on the tensile loaded specimen using in-situ EIS analysis. The EIS analysis of oxide on Alloy 182 was performed. The increase of oxide film thickness was observed with the increase of exposure time. To analysis the multi-layer structure of oxides, an equivalent model was obtained by fitting EIS data. It is assumed that overall oxide structures were composed of 3 layers approximately.

  13. Large-Scale Containment Cooler Performance Experiments under Accident Conditions

    Directory of Open Access Journals (Sweden)

    Ralf Kapulla

    2012-01-01

    Full Text Available Computational Fluid Dynamics codes are increasingly used to simulate containment conditions after various transient accident scenarios. This paper presents validation experiments, conducted in the frame of the OECD/SETH-2 project. These experiments address the combined effects of mass sources and heat sinks related to gas mixing and hydrogen transport within containment compartments. A wall jet interacts with an operating containment cooler located in the middle (M-configuration and the top (T-configuration of the containment vessel. The experiments are characterized by a 3-phase injection scenario. In Phase I, pure steam is injected, while in Phase II, a helium-steam mixture is injected. Finally, in Phase III, pure steam is injected again. Results for the M-configuration show helium stratification build up during Phase II. During Phase III, a positively buoyant plume emerging from the cooler housing becomes negatively buoyant once it reaches the helium-steam layer and continuously erodes the layer. For the M-configuration, a strong degradation of the cooler performance was observed during the injection of the helium/steam mixture (Phase II. For the T-configuration, we observe a mainly downwards acting cooler resulting in a combination of forced and natural convection flow patterns. The cooler performance degradation was much weaker compared with the M-configuration and a good mixing was ensured by the operation of the cooler.

  14. Development of A Compact Severe Accident Simulator for PWR Nuclear Power Plants%压水堆核电站严重事故紧凑型仿真机开发

    Institute of Scientific and Technical Information of China (English)

    唐钢; 张森如; 江光明; 傅霄华

    2001-01-01

    为了缓解压水堆核电站可能发生的严重事故的后果,也为了满足安全分析工程师和概率风险评价人员的需求,并在与国际原子能机构合作框架协议内,研制开发了紧凑型的严重事故仿真分析机 MELSIM-PC。该仿真系统主要由仿真核心程序、同步通讯程序、人机界面程序等几个部分组成,可以工作在一台普通的微型计算机上,成功地实现 MELCOR程序变量的运行数据库管理、电站动态图形显示、仿真计算控制、再启动和仿真重演等重要功能。%In order to alleviate the consequence of a possible severe accident in PWR Nuclear Power Plants and in response to the demands of safety analysis engineers and Probabilistic Safety Assessment(PSA) specialists,a compact severe accident simulator has been developed under an IAEA TC project.The PC-based simulator consists of the database engine MELCOR code,the man-machine interface modules MANAGER & DISPLAY,the communication module SERVER and the supplementary modules.It can be used successfully to realize some very important functions,such as the variable database management of MELCOR code,the plant mimic screens,simulation computation control,restart and replay,etc.

  15. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  16. Review of the status of validation of the computer codes used in the severe accident source term reassessment study (BMI-2104). [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kress, T. S. [comp.

    1985-04-01

    The determination of severe accident source terms must, by necessity it seems, rely heavily on the use of complex computer codes. Source term acceptability, therefore, rests on the assessed validity of such codes. Consequently, one element of NRC's recent efforts to reassess LWR severe accident source terms is to provide a review of the status of validation of the computer codes used in the reassessment. The results of this review is the subject of this document. The separate review documents compiled in this report were used as a resource along with the results of the BMI-2104 study by BCL and the QUEST study by SNL to arrive at a more-or-less independent appraisal of the status of source term modeling at this time.

  17. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  18. Identification of traffic accident risk-prone areas under low lighting conditions

    Directory of Open Access Journals (Sweden)

    K. Ivan

    2015-02-01

    Full Text Available Besides other non-behavioural factors, the low lighting conditions significantly influence the frequency of the traffic accidents in the urban environment. This paper intends to identify the impact of low lighting conditions on the traffic accidents in the city of Cluj-Napoca. The dependence degree between lighting and the number of traffic accidents was analyzed by the Pearson's correlation and the relation between the spatial distribution of traffic accidents and the lighting conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injured persons rate for the 0.5 km2 equally-sized areas uniformly distributed within the study area. The results have shown a strong linear dependence between the low lighting conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accidents occurrence under the above-mentioned conditions, at the city entrances-exits, which represent also vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low lighting and the number of traffic accidents, as well as the consequences induced by their occurrence enabled us to identify the high traffic accident risk areas in the city of Cluj-Napoca.

  19. Identification of traffic accident risk-prone areas under low-light conditions

    Science.gov (United States)

    Ivan, K.; Haidu, I.; Benedek, J.; Ciobanu, S. M.

    2015-09-01

    Besides other non-behavioural factors, low-light conditions significantly influence the frequency of traffic accidents in an urban environment. This paper intends to identify the impact of low-light conditions on traffic accidents in the city of Cluj-Napoca, Romania. The dependence degree between light and the number of traffic accidents was analysed using the Pearson correlation, and the relation between the spatial distribution of traffic accidents and the light conditions was determined by the frequency ratio model. The vulnerable areas within the city were identified based on the calculation of the injury rate for the 0.5 km2 areas uniformly distributed within the study area. The results show a strong linear correlation between the low-light conditions and the number of traffic accidents in terms of three seasonal variations and a high probability of traffic accident occurrence under the above-mentioned conditions at the city entrances/exits, which represent vulnerable areas within the study area. Knowing the linear dependence and the spatial relation between the low light and the number of traffic accidents, as well as the consequences induced by their occurrence, enabled us to identify the areas of high traffic accident risk in Cluj-Napoca.

  20. PENGARUH KONDISI ATMOSFERIK TERHADAP PERHITUNGAN PROBABILISTIK DAMPAK RADIOLOGI KECELAKAAN PWR 1000-MWe

    Directory of Open Access Journals (Sweden)

    Pande Made Udiyani

    2015-10-01

    Full Text Available ABSTRAK PENGARUH KONDISI ATMOSFERIK TERHADAP PERHITUNGAN PROBABILISTIK DAMPAK RADIOLOGI KECELAKAAN PWR 1000-MWe.  Perhitungan dampak kecelakaan radiologi terhadap lepasan produk fisi akibat kecelakaan potensial yang mungkin terjadi di Pressurized Water Reactor (PWR diperlukan secara probabilistik. Mengingat kondisi atmosfer sangat berperan terhadap dispersi radionuklida di lingkungan, dalam penelitian ini akan dianalisis pengaruh kondisi atmosferik terhadap perhitungan probabilistik dari konsekuensi kecelakaan reaktor.  Tujuan penelitian adalah melakukan analisis terhadap pengaruh kondisi atmosfer berdasarkan model data input meteorologi terhadap dampak radiologi kecelakaan PWR 1000-MWe yang disimulasikan pada tapak yang mempunyai kondisi meteorologi yang berbeda. Simulasi menggunakan program PC-Cosyma dengan moda perhitungan probabilistik, dengan data input meteorologi yang dieksekusi secara cyclic dan stratified, dan disimulasikan di Tapak Semenanjung Muria dan Pesisir Serang. Data meteorologi diambil setiap jam untuk jangka waktu satu tahun. Hasil perhitungan menunjukkan bahwa frekuensi kumulatif  untuk model input yang sama untuk Tapak pesisir Serang lebih tinggi dibandingkan dengan Semenanjung Muria. Untuk tapak yang sama, frekuensi kumulatif model input cyclic lebih tinggi dibandingkan model stratified. Model cyclic memberikan keleluasan dalam menentukan tingkat ketelitian perhitungan dan tidak membutuhkan data acuan dibandingkan dengan model stratified. Penggunaan model cyclic dan stratified melibatkan jumlah data yang besar dan pengulangan perhitungan  akan meningkatkan  ketelitian nilai-nilai statistika perhitungan. Kata kunci: dampak kecelakaan, PWR 1000-MWe,  probabilistik,  atmosferik, PC-Cosyma   ABSTRACT THE INFLUENCE OF ATMOSPHERIC CONDITIONS TO PROBABILISTIC CALCULATION OF IMPACT OF RADIOLOGY ACCIDENT ON PWR-1000MWe. The calculation of the radiological impact of the fission products releases due to potential accidents

  1. Development of a feed-and-bleed operation strategy with hybrid-SIT under low pressure condition of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Seop, E-mail: jeoni@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Han, Sang Hoon, E-mail: shhan2@kaeri.re.kr [Advanced Research Group, Korea Atomic Energy Research Institute, 70 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kang, Sang Hee, E-mail: sanghee.kang@khnp.co.kr [NSSS Design Group, Korea Hydro & Nuclear Power Co., Ltd., Central Research Institute, 70, 1312-beongil, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Kang, Hyun Gook, E-mail: hyungook@kaist.ac.kr [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2017-04-01

    Highlights: • The novel F&B operation strategy with H-SIT and LPSI is developed. • The effectiveness of the H-SITs is verified using thermo-hydraulic simulations. • Success criteria considered for the new F&B operation strategy is identified. • A PSA model of APR+ reflecting the new F&B strategy with H-SIT is developed. • A risk analysis of the proposed F&B operation strategy is performed. - Abstract: While safety functions in current nuclear power plants are mainly provided by active safety systems, recently passive safety systems are being combined with the active systems to strengthen accident mitigation capability and therefore enhance overall plant safety. To this end, securing long-term cooling of the core is of particular importance. This study considers the hybrid safety injection tank (H-SIT), a passive injection system, as a target component to develop a long-term cooling strategy using active and passive systems concurrently. In the feed-and-bleed (F&B) operation, one of the important long-term cooling strategies to maintain core safety in pressurized water reactors, low pressure safety injection (LPSI) pumps are typically considered inoperable as depressurization is first required, which leads to core dry-out before reaching LPSI operable pressure. This study investigates whether H-SITs, with the important design feature of passive coolant injection under any pressure condition of the primary coolant system, can make up the core during depressurization thereby allowing LPSI pumps to be used in F&B operation as an additional means of long-term cooling. The effectiveness of the H-SITs is verified using thermal-hydraulic simulations, and based on the results a novel F&B operation strategy with H-SITs and LPSI pumps is developed. A probabilistic safety assessment (PSA) model is then developed in order to assess the risk effect of the suggested strategy. PSA results demonstrate that the proposed strategy lowers core damage frequency in the target

  2. Study on severe accident for traditional PWR based on RELAP5 and MELCOR combined analysis method%基于RELAP5与MELCOR联合分析方法的压水堆严重事故研究

    Institute of Scientific and Technical Information of China (English)

    王珏; 梁国兴

    2016-01-01

    针对严重事故的模拟研究,本文提出结合热工水力系统程序和严重事故一体化程序的分析方法,以典型三环路传统压水堆为对象,分别采用 RELAP5和 MELCOR程序建立模型,分析在全厂断电叠加汽动辅助给水泵失效事故下系统的瞬态响应.为了尽可能地利用 RELAP5计算早期热工水力响应,同时保证严重事故计算结果的准确性,以 MELCOR锆合金氧化模型开始工作温度的下限,即包壳温度达到1100 K作为程序衔接准则并利用RELAP5的大编辑功能,提取所需计算结果导入MELCOR输入卡作为初始参数继续模拟.计算结果表明,数据连接过程整体保持了连续性,两种方法计算得出的主冷却剂系统压力、堆芯和稳压器水位、燃料包壳温度等参数的数值以及堆芯传热恶化和压力容器失效等现象的时序存在不同程度的差异,例如堆芯熔毁时间延后了约538 s.由于采用了RELAP5计算严重事故前的系统暂态响应,联合分析方法的计算结果比单独使用 MELCOR 分析的结果更加准确,该方法可以提高传统严重事故分析的可靠性.%A combined analysis method utilizing thermal-hydraulic system code RELAP5 and severe accident integral code MELCOR is developed to study the transient response of a traditional three-loop PWR under the severe accident TMLB’scenario. In order to utilize RELAP5 to the maximum degree and guarantee the accuracy of system response before entering into severe accident situation,the minimum cutoff temperature for zircaloy oxidation model of MELCOR,default value of 1 100 K,is used as the criterion to switch RELAP5 transient calculation to MELCOR severe accident analysis. Required data to initiate MELCOR will be extracted through the major edit of RELAP5 output. The results show that the data transferring process is relatively continuous. As observed in combined calculation,differences to varying degree are concluded

  3. Sensitivity study for accident tolerant fuels: Property comparisons and behavior simulations in a simplified PWR to enable ATF development and design

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Kristina Yancey, E-mail: kristina.yancey@gmail.com; Sudderth, Laura; Brito, Ryan A.; Evans, Jordan A.; Hart, Clifford S.; Hu, Anbang; Jati, Andi; Stern, Karyn; McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu

    2016-12-01

    Highlights: • This study compared four accident tolerant fuels against uranium dioxide. • Material property correlations were developed to evaluate fuel performance. • The fuels’ neutronic and thermal hydraulic behaviors were studied in the AP1000. • No fuel type performed better in all areas, but each has strengths and weaknesses. • More research is needed to build a complete model of the fuel performances. - Abstract: Since the events at the Fukushima-Daiichi nuclear power plant, there has been increased interest in developing fuels to better withstand accidents for current light water reactors. Four accident tolerant fuel candidates are uranium oxide with beryllium oxide additives, uranium oxide with silicon carbide matrix additives, uranium nitride, and uranium nitride with uranium silicide composite. The first two candidates represent near-term high performance uranium oxide with high thermal conductivity and neutron transparency, and the second two represent mid-term high-density fuels with highly beneficial thermal properties. This study seeks to understand the benefits and drawbacks of each option in place of uranium dioxide. To assess the material properties for each of the fuel types, an extensive literature review was performed for material property data. Correlations were then made to evaluate the properties during reactor operation. Neutronics and thermal hydraulics studies were also completed to determine the impact of the use of each candidate in an AP1000 reactor. In most cases, the candidate fuels performed more desirably than uranium dioxide, but no fuel type performed better in all aspects. Much more research needs to be performed to build a complete model of the fuel performances, primarily experimental data for uranium silicide. Each of the fuels studied has its own benefits and drawbacks, and the comparisons discussed in this report can be used to aid in determining the most appropriate fuel depending on the desired specifications.

  4. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  5. Behavioral accident avoidance science : understanding response in collision incipient conditions

    NARCIS (Netherlands)

    Hancock, P.A.; Ridder, S.N. de

    2003-01-01

    Road traffic accidents are the single greatest cause of fatality in the workplace and the primary cause of all accidental death in the U.S. to the age of seventy-eight. However, behavioral analysis of response in the final seconds and milliseconds before collision has been a most difficult

  6. Robot dispatching Scenario for Accident Condition Monitoring of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In March of 2011, unanticipated big size of tsunami attacks Fukushima NPP, this accident results in explosion of containment building. Tokyo electric power of Japan couldn't dispatch a robot for monitoring of containment inside. USA Packbot robot used for desert war in Iraq was supplied to Fukushima NPP for monitoring of high radiation area. Packbot also couldn't reach deep inside of Fukushima NPP due to short length of power cable. Japanese robot 'Queens' also failed to complete a mission due to communication problem between robot and operator. I think major reason of these robot failures is absence of robot dispatching scenario. If there was a scenario and a rehearsal for monitoring during or after accident, these unanticipated obstacles could be overcome. Robot dispatching scenario studied for accident of nuclear power plant was described herein. Study on scenario of robot dispatching is performed. Flying robot is regarded as good choice for accident monitoring. Walking robot with arm equipped is good for emergency valve close. Short time work and shift work by several robots can be a solution for high radiation area. Thin and soft cable with rolling reel can be a good solution for long time work and good communication.

  7. Analysis of Fukushima unit 2 accident considering the operating conditions of RCIC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il, E-mail: sikim@kaeri.re.kr; Park, Jong Hwa; Ha, Kwang Soon; Cho, Song-Won; Song, JinHo

    2016-03-15

    Highlights: • Fukushima unit 2 accident was analyzed using MELCOR 1.8.6. • RCIC operating conditions were assumed and best case was selected. • Effect of RCIC operating condition on accident scenario was found. - Abstract: A severe accident in Fukushima occurred on March 11, 2011 and units 1, 2 and 3 were damaged severely. A tsunami following an earthquake made the supply of electricity power stop, and the safety systems, which use AC or DC power in plants could not operate properly. It is supposed that the degree of core degradation of unit 2 is less serious than in the other plants, and it was estimated that the operation of reactor core isolation cooling (RCIC) system at the initial stage of the accident minimized the core damage through decay heat removal. Although the operating conditions of the RCIC system are not known clearly, it can be important to analyze the accident scenario of unit 2. In this study, best case of the Fukushima unit 2 accident was presented considering the operating conditions of the RCIC system. The effects of operating condition on core degradation and fission product release rate to environment were also examined. In addition, importance of torus room flooding level in the accident analysis was discussed. MELCOR 1.8.6 was used in this research, and the geometries of plant and operating conditions of safety system were obtained from TEPCO through OECD/NEA BSAF Project.

  8. Severe accident testing of electrical penetration assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Clauss, D.B. (Sandia National Labs., Albuquerque, NM (USA))

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs.

  9. 核电厂严重事故下卸压对氢气产生的影响分析%Effect of Depressurization on Hydrogen Generation During Severe Accident in PWR Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    陶俊; 李京喜; 佟立丽; 曹学武

    2011-01-01

    研究了1 000 MWe压水堆核电厂在典型的高压严重事故序列下卸压对氢气产生的影响.分析结果表明,开启1列、2列和3列卸压阀进行一回路卸压均会在堆芯熔化进程的3个阶段导致氢气产生率的明显增大:1)堆芯温度1 500~2 100 K;2)堆芯温度2 500~2 800 K;3)从形成由硬壳包容的熔融池(2 800 K)到熔融物向压力容器下封头下落.开启卸压阀的列数越多,氢气产生率的增大越明显.%The effect of depressurization on hydrogen generation during a typical high pressure severe accident sequence in a 1 000 MWe pressurized water reactor (PWR) nuclear power plant was analyzed. Analyses results indicate that the hydrogen generation rate is obviously increased by the reactor coolant system depressurization of opening one, two or three power operated relief valves (PORVs) at three core damage states.The first is peak core temperature from 1 500 K to 2 100 K. The second is peak core temperature from 2 500 K to 2 800 K. The third is from formation of molten pool supported by crust to slumping of molten materials into reactor pressure vessel lower head.The more PORVs are opened the more increment of hydrogen generation rate.

  10. Effect of RCIC Operating Conditions on the Accident Scenario in Fukushima Unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il; Park, Jong Hwa; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study was conducted by using MELCOR 1.8.6. Fukushima unit 2 accident was analyzed using MELCOR in this study, and best estimate scenario with considering RCIC operating conditions was presented. Researches on the boiling water reactor (BWR) plant with reactor core isolation cooling (RCIC) system have been conducted. Research on the RCIC operation in Fukushima unit 2 was also conducted by Sandia National Laboratory. MELCOR analysis of the Fukushima unit 2 accident was conducted in the report and energy balance in wetwell was described by considering RCIC operation. However, the effect of RCIC operation condition on the accident scenario has not been studied. The operating conditions of RCIC system affect the pressures in wetwell and drywell, and the high pressure can make leakage path of fission product from PCV to reactor building. Thus it can be directly related with the amount of fission product which released to environment. In this study, severe accident on Fukushima unit 2 was analyzed considering the operating condition of RCIC system, and best estimated scenario was presented. In addition, the effect of RCIC turbine efficiency on the accident progression was examined. Energy balance in suppression chamber was also considered with discussion on the effect of torus room flooding level. It was found that the operating condition of RCIC turbine not only affects the variation of drywell pressure but also the amount of released fission products to environment. It was also confirmed that the RCIC turbine efficiency in the accident would be less than normal operating condition.

  11. Potential behavior of depleted uranium penetrators under shipping and bulk storage accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Parkhurst, M.A.; Scherpelz, R.I.

    1985-03-01

    An investigation of the potential hazard from airborne releases of depleted uranium (DU) from the Army's M829 munitions was conducted at the Pacific Northwest Laboratory. The study included: (1) assessing the characteristics of DU oxide from an April 1983 burn test, (2) postulating conditions of specific accident situations, and (3) reviewing laboratory and theoretical studies of oxidation and airborne transport of DU from accidents. Results of the experimental measurements of the DU oxides were combined with atmospheric transport models and lung and kidney exposure data to help establish reasonable exclusion boundaries to protect personnel and the public at an accident site. 121 references, 44 figures, 30 tables.

  12. Prediction of structural integrity of steam generator tubes under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1999-11-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating and design-basis accident conditions are reviewed. These rate-independent flow stress models are inadequate for predicting failure of steam generator tubes under severe accident conditions because the temperature of the tubes during such accidents can reach as high as 800 C where creep effects become important. Therefore, a creep rupture model for predicting failure was developed and validated by tests on unflawed and flawed specimens containing axial and circumferential flaws and loaded by constant as well as ramped temperature and pressure loadings. Finally, tests were conducted using pressure and temperature histories that are calculated to occur during postulated severe accidents. In all cases, the creep rupture model predicted the failure temperature and time more accurately than the flow stress models. (orig.)

  13. Relationship between work-related accidents and hot weather conditions in Tuscany (central Italy).

    Science.gov (United States)

    Morabito, Marco; Cecchi, Lorenzo; Crisci, Alfonso; Modesti, Pietro Amedeo; Orlandini, Simone

    2006-07-01

    Nowadays, no studies have been published on the relationship between meteorological conditions and work-related mortality and morbidity in Italy. The aim of this study was to evaluate the relationship between hot weather conditions and hospital admissions due to work-related accidents in Tuscany (central Italy) over the period 1998-2003. Apparent temperature (AT) values were calculated to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather conditions might represent a risk factor for work-related accidents in Italy during summer. In particular early warming days during June, characterized by heat discomfort, are less tolerated by workers than warming days of the following summer months. The peak of work-related accidents occurred on days characterized by high, but not extreme, thermal conditions. Workers maybe change their behaviour when heat stress increases, reducing risks by adopting preventive measures. Results suggested that days with an average daytime AT value ranged between 24.8 degrees C and 27.5 degrees C were at the highest risk of work-related accidents. In conclusion, present findings might represent the first step for the development of a watch/warning system for workers that might be used by employers for planning work activities.

  14. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  15. R and D relative to the serious accidents in the PWR type reactors: assessment and perspectives; R and D relative aux accidents graves dans les reacteurs a eau pressurisee: bilan et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bentaib, A.; Bonneville, H.; Caroli, H.; Chaumont, B.; Clement, B.; Cranga, M.; Koundy, V.; Laurent, B.; Micaelli, J.C.; Meignen, R.; Pichereau, F.; Plassart, D.; Van-Dorsselaere, P. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Ducros, G.; Journeau, Ch.; Magallon, D. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Durin, M.; Studer, E. [CEA Saclay 91 - Gif sur Yvette (France); Seiler, J.M. [CEA Grenoble, 38 (France); Ranval, W. [Electricite de France (EDF), 75 - Paris (France)

    2006-07-01

    This document presents the current state of the research relative to the grave accidents realized in France and abroad. It aims at giving the most exhaustive possible and objective vision of this original field of research. He allows to contribute to the identification and to the hierarchical organization of the needs of R and D, this hierarchical organization in front of, naturally, to be completed by a strong lighting on needs in terms of safety analyses associated with the different risks and the physical phenomena, in particular with the support of probability evaluations of safety level 2, whose the level of sharpness must be sufficient not to hide, by construction, physical phenomena of which the limited knowledge leads to important uncertainties. Let us note that neither the safety analyses, nor the E.P.S. 2 are presented in this document. This report presents the physical phenomena which can arise during a grave accident, in the reactor vessel and in the reactor containment, their chain and the means allowing to ease the effects. The corresponding scenarios are presented to the chapter 2. The chapter 3 is dedicated to the progress of the accident in the reactor vessel; the degradation of the core in reactor vessel (3.1), the behavior of the corium in bottom of reactor vessel (3.2) the break of the reactor vessel (3.3) and the fusion in pressure (3.4) are thus handled there. The chapter 4 concerns the phenomena which can lead to a premature failure of the containment, namely the direct heating of gases of the containment (4.1), the hydrogen risk (4.2) and the vapor explosion (4.3). The phenomenon which can lead to a delayed failure from the containment, namely the interaction corium-concrete, is approached on the chapter 5. The chapter 6 is dedicated to the problems connected to the keeping back and to the corium cooling in reactor vessel and out of reactor vessel, namely the keeping back in reactor vessel by re-flooding of the primary circuit or by re

  16. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  17. Instrument Fault Detection Sensitivity of an Empirical Model under Accident Condition in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan; Hur, Seop; Cheon, Se Woo; Kim, Jung Taek [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    After the recent accident in Fukushima, Japan, it has been proven that we cannot obtain fully reliable information from instruments during severe accident conditions. Although the reactor core really melted down, the RV water level indicator showed a more optimistic value than the actual conditions. Accordingly, plant operators were under the misunderstanding that the core was not exposed. This caused confusion for the incident response. Therefore, it is necessary to be equipped with a function that informs operators of the status of the instrument integrity in real time. If plant operators verify that the instruments are working properly during accident conditions, they able to make safer decisions. In an effort to solve this problem, we considered an empirical model using a Process Equipment Monitoring (PEM) tool as a method of instrument diagnosis in a nuclear power plant.

  18. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  19. Insoluble aerosol behavior inside the PCCS condenser tube under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, A.; Nemoto, K.; Akinaga, M. [Toshiba Corp., Kawasaki (Japan); Oikawa, H. [Toshiba Corp., Yokohama (Japan)

    1996-07-01

    The passive containment cooling system (PCCS), which has been incorporated into the advanced light water reactor (ALWR) design, has the capability of post accident decay heat removal by means of natural force driven condensation heat transfer. Since some uncertainties remain in the PCCS performance during a severe accident especially in the amount of aerosol deposition which causes the heat transfer degradation, the experiment had been performed previously simulating single condenser tube, postulated steam and noncondensable gas flow rate using prototypical soluble aerosol (CsI). The observed aerosol deposition rate onto the condenser tube surface was quite small under steam rich condition. However, during the severe accident, insoluble aerosols such as structural material might also be released and flow into the PCCS as well as soluble aerosol, and the deposition behavior has not been clarified. Thus, the experiment using a polystyrene LATEX was conducted under the same conditions in which the soluble aerosol test was performed. The experimental results showed similar trend as that of the soluble aerosol case, and especially in case of steam rich condition, the amount of deposition was below detection limit. The deposition rate in other cases are consistent with the prediction by existing theoretical correlation. Analytical sensitivity study varying inlet flow condition indicated no significant increase of aerosol deposition. These results suggest promising performance of PCCS under severe accident condition.

  20. High burnup effects on fuel behaviour under accident conditions: the tests CABRI REP-Na

    Science.gov (United States)

    Schmitz, Franz; Papin, Joelle

    A large, performance based, knowledge and experience in the field of nuclear fuel behaviour is available for nominal operation conditions. The database is continuously completed and precursor assembly irradiations are performed for testing of new materials and innovative designs. This procedure produces data and arguments to extend licencing limits in the permanent research for economic competitiveness. A similar effort must be devoted to the establishment of a database for fuel behaviour under off-normal and accident conditions. In particular, special attention must be given to the so-called design-basis-accident (DBA) conditions. Safety criteria are formulated for these situations and must be respected without consideration of the occurrence probability and the risk associated to the accident situation. The introduction of MOX fuel into the cores of light water reactors and the steadily increasing goal burnup of the fuel call for research work, both experimental and analytical, in the field of fuel response to DBA conditions. In 1992, a significant programme step, CABRI REP-Na, has been launched by the French Nuclear Safety and Protection Institute (IPSN) in the field of the reactivity initiated accident (RIA). After performing the nine experiments of the initial test matrix it can be concluded that important new findings have been evidenced. High burnup clad corrosion and the associated degradation of the mechanical properties of the ZIRCALOY4 clad is one of the key phenomena of the fuel behaviour under accident conditions. Equally important is the evidence that transient, dynamic fission gas effects resulting from the close to adiabatic heating introduces a new explosive loading mechanism which may lead to clad rupture under RIA conditions, especially in the case of heterogeneous MOX fuel.

  1. The Mechanical Response of Advanced Claddings during Proposed Reactivity Initiated Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N [ORNL; Brown, Nicholas R [ORNL; Terrani, Kurt A [ORNL; Lowden, Rick R [ORNL; ERDMAN III, DONALD L [ORNL

    2017-01-01

    This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of both accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.

  2. OVERVIEW OF CONTAINMENT FILTERED VENT UNDER SEVERE ACCIDENT CONDITIONS AT WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    Y.M. SONG

    2013-10-01

    Full Text Available Containment Filtered Vent Systems (CFVSs have been mainly equipped in nuclear power plants in Europe and Canada for the controlled depressurization of the containment atmosphere under severe accident conditions. This is to keep the containment integrity against overpressure during the course of a severe accident, in which the radioactive gas-steam mixture from the containment is discharged into a system designed to remove the radionuclides. In Korea, a CFVS was first introduced in the Wolsong unit-1 nuclear power plant as a mitigation measure to deal with the threat of over pressurization, following post-Fukushima action items. In this paper, the overall features of a CFVS installation such as risk assessments, an evaluation of the performance requirements, and a determination of the optimal operating strategies are analyzed for the Wolsong unit 1 nuclear power plant using a severe accident analysis computer code, ISAAC.

  3. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  4. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, M.D.; Farrell, R.F. [DOE, Carlsbad, NM (United States); Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  5. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    Science.gov (United States)

    Urquidi-Macdonald, Mirna

    2008-09-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor ( Kmax), stress intensity range (Δ Kmax), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded. Accordingly

  6. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  7. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  8. Fission product releases at severe LWR accident conditions: ORNL/CEA measurements versus calculations

    Energy Technology Data Exchange (ETDEWEB)

    Andre, B.; Ducros, G.; Leveque, J.P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique; Osborne, M.F.; Lorenz, R.A. [Oak Ridge National Lab., TN (United States); Maro, D. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations

    1995-12-31

    Experimental programs in the United States and France have followed similar paths in supplying much of the data needed to analyze severe accidents. Both the HI/VI program, conducted at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (NRC), and the HEVA/VERCORS program, supported by IPSN-Commissariat a l`Energie Atomique (CEA) and carried out at the Centre d`Etudes Nucleaires de Grenoble, have studied fission product release from light water reactor (LWR) fuel samples during test sequences representative of severe accidents. Recognizing that more accurate data, i.e., a better defined source term, could reduce the safety margins included in the rather conservative source terms originating from WASH-1400, the primary objective of these programs has been to improve the data base concerning fission product release and behavior at high temperatures. To facilitate the comparison, a model based on fission product diffusion mechanisms that was developed at ORNL and adapted with CEA experimental data is proposed. This CEA model is compared with the ORNL experimental data in a blind test. The two experimental programs used similar techniques in out-of-pile studies. Highly irradiated fuel samples were heated in radiofrequency induction furnaces to very high temperatures (up to 2700 K at ORNL and 2750 K at CEA) in oxidizing (H{sub 2}O), reducing (H{sub 2}) or mixed (H{sub 2}O+H{sub 2}) environments. The experimental parameters, which were chosen from calculated accident scenarios, did not duplicate specific accidents, but rather emphasized careful control of test conditions to facilitate extrapolation of the results to a wide variety of accident situations. This paper presents a broad and consistent database from ORNL and CEA release results obtained independently since the early 1980`S. A comparison of CORSOR and CORSOR Booth calculations, currently used in safety analysis, and the experimental results is presented and

  9. Study of the distribution of hydrogen in a PWR containment with CFD codes; Estudio de la distribucion de hidrogeno en una contencion PWR con codigos CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, G.; Martinez, R. M.; Fernandez, K.; Morato, D. J.; Bocanegra Melian, R.; Mena, L.; Queral, C.

    2014-07-01

    During the development of a severe accident in a PWR reactor can be generated, large quantities of hydrogen by the oxidation of metals present in the nucleus, mainly the zirconium fuel pods. This hydrogen, along with steam and other gases, can be released to the atmosphere of contention by a leak or break in the primary circuit and achieving conditions in which combustion may occur. Combustion causes thermal and pressure loads that can damage the security systems and the integrity of the containment building, last barrier of confinement of radioactive materials. The main condition that defines the characteristics of the combustion is the concentration of species, detailed knowledge of the distribution of hydrogen is very important to correctly predict the possible damage to the containment in the event that there is combustion. (Author)

  10. Shipping container response to severe highway and railway accident conditions: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  11. Identification of the security threshold by logistic regression applied to fuel under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Baptista Filho, Benedito; Oliveira, Fabio Branco de, E-mail: dsgomes@ipen.br, E-mail: bdbfilho@ipen.br, E-mail: fabio@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    A reactivity-initiated Accident (RIA) is a disastrous failure, which occurs because of an unexpected rise in the fission rate and reactor power. This sudden increase in the reactor power may activate processes that might lead to the failure of fuel cladding. In severe accidents, a disruption of fuel and core melting can occur. The purpose of the present research is to study the patterns of such accidents using exploratory data analysis techniques. A study based on applied statistics was used for simulations. Then, we chose peak enthalpy, pulse width, burnup, fission gas release, and the oxidation of zirconium as input parameters and set the safety boundary conditions. This new approach includes the logistic regression. With this, the present research aims also to develop the ability to identify the conditions and the probability of failures. Zirconium-based alloys fabricating the cladding of the fuel rod elements with niobium 1% were analyzed for high burnup limits at 65 MWd/kgU. The data based on six decades of investigations from experimental programs. In test, perform in American reactors such as the transient reactor test (TREAT), and power Burst Facility (PBF). In experiments realized in Japanese program at nuclear in the safety research reactor (NSRR), and in Kazakhstan as impulse graphite reactor (IGR). The database obtained from the tests and served as a support for our study. (author)

  12. Evaluating the Effectiveness of Alternate Entry Condition into the Severe Accident Management Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyung Seok; Lee, Su Won [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Min, Shin Jung [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the effectiveness of the CA as an alternate means is evaluated quantitatively by utilizing the Modular Accident Analysis Program (MAAP) 5 computer code including the MAAP5-DOSE module, which can analyze the radiation level inside the containment. The effectiveness of the CA has been investigated by utilizing the MAAP5 code including the MAAP5- DOSE. The onset of core damage is considered to be a core (fuel rod cladding) condition at the time when the core exit temperature reaches the value prescribed for transition to Severe Accident Management Guidance (SAMG), which is 1200 .deg. F. However, during a shutdown state, the core exit thermocouples measurements are unavailable after lifting reactor vessel head. Thus, an alternate means to detect the onset of core damage is necessary to cover all plant operating states. In order for that, a Computational Aid (CA), 'Radiation Level as a Functional of Time after Shutdown,' has been developed. The upper containment radiation instrumentation is a gross gamma monitor, and has a reliable instrumentation range during severe accidents. It can be used for detecting onset of core damage. Thus, the radiation level can be used as alternative means of the entry condition into the SAMG. It has been shown that the SAMG entry timings determined by using the core exit thermocouple measurements and by the radiation monitoring with the CA would not be differentiated. The time difference estimates entering SAMG would be less 15 min which would not influence the operator action significantly.

  13. Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables.

    Science.gov (United States)

    Zhang, Yingyu; Shao, Wei; Zhang, Mengjia; Li, Hejun; Yin, Shijiu; Xu, Yingjun

    2016-07-01

    Mining has been historically considered as a naturally high-risk industry worldwide. Deaths caused by coal mine accidents are more than the sum of all other accidents in China. Statistics of 320 coal mine accidents in Shandong province show that all accidents contain indicators of "unsafe conditions of the rules and regulations" with a frequency of 1590, accounting for 74.3% of the total frequency of 2140. "Unsafe behaviors of the operator" is another important contributory factor, which mainly includes "operator error" and "venturing into dangerous places." A systems analysis approach was applied by using structural equation modeling (SEM) to examine the interactions between the contributory factors of coal mine accidents. The analysis of results leads to three conclusions. (i) "Unsafe conditions of the rules and regulations," affect the "unsafe behaviors of the operator," "unsafe conditions of the equipment," and "unsafe conditions of the environment." (ii) The three influencing factors of coal mine accidents (with the frequency of effect relation in descending order) are "lack of safety education and training," "rules and regulations of safety production responsibility," and "rules and regulations of supervision and inspection." (iii) The three influenced factors (with the frequency in descending order) of coal mine accidents are "venturing into dangerous places," "poor workplace environment," and "operator error."

  14. Status report of advanced cladding modeling work to assess cladding performance under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    B.J. Merrill; Shannon M. Bragg-Sitton

    2013-09-01

    Scoping simulations performed using a severe accident code can be applied to investigate the influence of advanced materials on beyond design basis accident progression and to identify any existing code limitations. In 2012 an effort was initiated to develop a numerical capability for understanding the potential safety advantages that might be realized during severe accident conditions by replacing Zircaloy components in light water reactors (LWRs) with silicon carbide (SiC) components. To this end, a version of the MELCOR code, under development at the Sandia National Laboratories in New Mexico (SNL/NM), was modified by replacing Zircaloy for SiC in the MELCOR reactor core oxidation and material properties routines. The modified version of MELCOR was benchmarked against available experimental data to ensure that present SiC oxidation theory in air and steam were correctly implemented in the code. Additional modifications have been implemented in the code in 2013 to improve the specificity in defining components fabricated from non-standard materials. An overview of these modifications and the status of their implementation are summarized below.

  15. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  16. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    OpenAIRE

    Kil-Mo Koo; Jin-Ho Song; Sang-Baik Kim; Kwang-Il Ahn; Won-Pil Baek; Kil-Nam Oh; Gyu-Tae Kim

    2012-01-01

    Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity) occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard...

  17. PWR decontamination feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silliman, P.L.

    1978-12-18

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations.

  18. Role of Winter Weather Conditions and Slipperiness on Tourists' Accidents in Finland.

    Science.gov (United States)

    Lépy, Élise; Rantala, Sinikka; Huusko, Antti; Nieminen, Pentti; Hippi, Marjo; Rautio, Arja

    2016-08-15

    (1) BACKGROUND: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists' health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2) METHODS: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3) RESULTS: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4) CONCLUSIONS: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  19. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    Directory of Open Access Journals (Sweden)

    Élise Lépy

    2016-08-01

    Full Text Available (1 Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2 Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3 Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4 Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  20. Estimating probable flaw distributions in PWR steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, J.A.; Turner, A.P.L. [Dominion Engineering, Inc., McLean, VA (United States)

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  1. The radiological impact on the Greater London population of postulated accidental releases from the Sizewell PWR

    CERN Document Server

    Kelly, G N; Charles, D; Hemming, C R

    1983-01-01

    This report contains an assessment of the radiological impact on the Greater London population of postulated accidental releases from the Sizewell PWR. Three of the degraded core accident releases postulated by the CEGB are analysed. The consequences, conditional upon each release, are evaluated in terms of the health impact on the exposed population and the impact of countermeasures taken to limit the exposure. Consideration is given to the risk to the Greater London population as a whole and to individuals within it. The consequences are evaluated using the NRPB code MARC (Methodology for Assessing Radiological Consequences). The results presented in this report are all conditional upon the occurrence of each release. In assessing the significance of the results, due account must be taken of the frequency with which such releases may be predicted to occur.

  2. A framework for the assessment of severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  3. Estimation of droplets/wall heat transfer under LOCA conditions in a PWR; Estimation du transfert de chaleur gouttes/paroi en situation d'APRP pour un REP

    Energy Technology Data Exchange (ETDEWEB)

    GrAdeck, M.; Maillet, D. [CNRS UMR 7563 2, 54 - Vandoeuvre les Nancy (France); Lelong, F.; Seiler, N.; Repetto, G. [IRSN Cadarache, 13 - Saint Paul lez Durance (France)

    2009-07-01

    During a LOCA (Loss Of Coolant Accident) in a PWR, the fuel assemblies could be locally severely ballooned. The transient is ended by the injection of water initiated the safety system. The cooling of theses partially blocked fuel assemblies depends on the coolant flow characteristics in the blockage region. Most models for heat transfers concentrate on cooling of the ballooned walls by vapor convection. Since a two-phase mist flow occurs when reflooding, the possibility of additional cooling by direct liquid droplet impingement on the blockage surfaces must be investigated. As the temperature of the fuel assemblies is higher than the Leidenfrost temperature, the impact regime should be only the bouncing one. Up to now, no model of heat transfer of droplet impacts has been developed for that regime. As the coolability from droplet impacts must be modeled, an experimental program was proposed with droplets and wall characteristics (velocity, diameter, temperature) close to the LOCA ones. As the interaction between the droplet and the wall is very short (a few of ms), the estimation of the heat flux during the resident time of the droplet at the wall must be accurately designed. The purpose of this work is to show how such heat flux can be experimentally estimated used an adapted inverse heat conduction model. The final goal of the present collaboration between LEMTA and IRSN is to introduce the cooling model within NEPTUNE-CFD code, a joint project of CEA, EDF, AREVA and IRSN. (authors)

  4. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  5. Experiment data report for semiscale Mod-1 Test S-06-5. (LOFT counterpart test). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    Recorded test data are presented for Test S-06-5 of the Semiscale Mod-1 LOFT counterpart test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-06-5 was conducted from initial conditions of 2272 psia and 536/sup 0/F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the broken loop cold leg piping. During the test, cooling water was injected into the cold legs of the intact and broken loops to simulate emergency core coolant injection in a PWR. The purpose of Test S-06-5 was to assess the influence of the break nozzle geometry on core thermal and system response and on the subcooled and low quality mass flow rates at the break locations.

  6. RADIATION CONDITIONS IN KALUGA REGION 30 YEARS AFTER CHERNOBYL NPP ACCIDENT

    Directory of Open Access Journals (Sweden)

    A. G. Ashitko

    2016-01-01

    Full Text Available The article describes radiation conditions in the Kaluga region 30 years after the Chernobyl NPP accident. The Chernobyl NPP accident caused radioactive contamination of nine Kaluga region territories: Duminichsky, Zhizdrinsky, Kuibyshevsky, Kirovsky, Kozelsky, Ludinovsky, Meshchovsky, Ulyanovsky and Hvastovichsky districts. Radioactive fallout was the strongest in three southern districts: Zhizdrinsky, Ulyanovsky and Hvastovichsky, over there cesium-137 contamination density is from 1 to 15Ci/km. According to the Russian Federation Government Order in 2015 there are 300 settlements (S in the radioactive contamination zone, including 14 settlements with caesium-137 soil contamination density from 5 to 15 Ci/ km2 and 286 settlements with the contamination density ranging from 1 to 5 Ci/km2. In the first years after the Chernobyl NPP accident in Kaluga region territories, contaminated with caesium-137, there were introduced restrictive land usage, were carried out agrochemical activities (ploughing, mineral fertilizer dressing, there was toughened laboratory radiation control over the main doze-forming foodstuff. All these measures facilitated considerable decrease of caesium-137 content in local agricultural produce. Proceeding from the achieved result, in 2002 there took place the transition to more tough requirements SanPiN 2.3.2.1078-01. Analysis of investigated samples from Zhizdrinsky, Ulyanovsky and Hvastovichsky districts demonstrated that since 2005 meat samples didn’t exceed the standard values, same for milk samples since 2007. Till the present time, the use of wild-growing mushrooms, berries and wild animals meat involves radiation issues. It was demonstrated that average specific activity of caesium-137 in milk samples keeps decreasing year after year. Long after the Chernobyl NPP accident, the main products forming internal irradiation doses in population are the wild-growing mushrooms and berries. Population average annual

  7. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  8. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    Science.gov (United States)

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  9. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  10. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  11. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    Science.gov (United States)

    Van Uffelen, P.; Győri, C.; Schubert, A.; van de Laar, J.; Hózer, Z.; Spykman, G.

    2008-12-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events.

  12. Development of stable walking robot for accident condition monitoring on uneven floors in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seog; Jang, You Hyun [Central Research Institute of Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of)

    2017-04-15

    Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.

  13. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Tae, E-mail: ktkim@dongguk.ac.kr

    2013-10-15

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10{sup −6} on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure.

  14. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  15. Radioactive particulate release associated with the DOT specification 6M container under hypothetical accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.M.; Raney, P.J.

    1986-02-01

    A testing program was conducted to determine the leakage of depleted uranium dioxide powder (DUO) from the inner containment components of the US Department of Transportation's (DOT) specification 6M container under hypothetical accident conditions. Depleted uranium dioxide was selected as a surrogate for plutonium oxide because of the similarities in the powder characteristics, density and particle size, and because of the special handling and special facilities required for plutonium oxide. The DUO was packaged inside food pack cans in three different configurations inside the 2R vessel of the 6M container. The amount of DUO powder leakage ranged from none detectable (<2 x 10/sup -7/ g) to a high of 1 x 10/sup -3/ g. The combination of gravity, vibration and pressure produced the highest leakage of DUO. Containers that had hermetic seals (leak rates <6 x 10/sup -4/ atm cc/min) did not leak any detectable amount (<2 x 10/sup -7/ g) of DUO under the test conditions. Impact forces had no effect on the leakage of particles with the packaging configurations used. 23 refs., 24 figs., 3 tabs.

  16. Generation IV benchmarking of TRISO fuel performance models under accident conditions: Modeling input data

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison

  17. GEN-IV BENCHMARKING OF TRISO FUEL PERFORMANCE MODELS UNDER ACCIDENT CONDITIONS MODELING INPUT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise Paul [Idaho National Laboratory

    2016-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: • The modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release. • The modeling of the AGR-1 and HFR-EU1bis safety testing experiments. • The comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from “Case 5” of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. “Case 5” of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to “effects of the numerical calculation method rather than the physical model” [IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read

  18. Generation IV benchmarking of TRISO fuel performance models under accident conditions: Modeling input data

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise P. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison

  19. The Possibility of Building Nuclear Power Plant Free from Severe Accident Risk PWR NPP with advanced all passive safety cooling systems (AAP SCS)%发展无严重事故风险核电站的曙光具有完全非能动安全冷却系统的压水堆核电站

    Institute of Scientific and Technical Information of China (English)

    肖宏才

    2013-01-01

    A complete set of advanced all passive safety cooling systems (AAP SCS) for PWR NPP,actuated by natural force has been put forward in the article.Here the natural force mainly means the fore,which created by change of pressure distribution in the first loop of PWR as a result of operational regime conversion from one to another,including occurrence of accident situation.Correspondent safety cooling system will be actuated naturally and then put it into passive operation after occurring some kind of accident,so accidental situation will be mitigated right after it's occurrence and core residual heat will be naturally moved from the active core to the ultimate heat sink.There is no need to rely on automatic control system,any active equipment and human actions in all working process of the AAP SCS,which can reduce the probability of severe accident to zero,so as to exclude the need of evacuation plan around AAP nuclear power plant and eliminate the public's concern and doubt about nuclear power safety.Implementation of the AAP SCS concept is only based on use of evolutionary measures and state-of-the-art technology.So at present time it can be used for design of new-type third generation PWR nuclear power plant without severe accident risk,and for modernization of existing second generation nuclear power plant.%本文提出了用自然力直接触发启动压水堆核电站一整套完全非能动的停堆安全冷却系统.这里的自然力主要是指一回路运行工况转换时由于其压力分布变化所形成的压差力.在这一系统中,当进行停堆或发生某种一回路事故工况时,相应的安全冷却系统便自然地投入运行,立即缓解事故后果,将事故时一回路释放的能量及堆芯余热非能动地排入最终热阱.在全过程中不依靠自动控制系统、能动设备及任何人为因素的介入,即可确保对堆芯余热无限期的安全冷却能力,完全避免压水堆核电站发生向环境泄漏放射性物

  20. Analysis on distribution of freeway accidents under various conditions in China

    Directory of Open Access Journals (Sweden)

    Xiaofei Wang

    2016-08-01

    Full Text Available This study aims to provide a current survey on the situation of freeway accidents in China. The results show that the accident rate, death toll, injury toll, and direct loss of property are 3.2, 8.4, 7.2, and 24.3 times that of the average for an ordinary highway in China. Freeway accidents occur mainly in Southern (20.77% and Central (20.2% China. With detailed data from Guangdong Province, the number of accidents in freeways with 80 km/h design speed (29.58/km/103 pcu was more than three times that in freeways with design speed of 100 km/h (9.54/km/103 pcu and 120 km/h (9.42/km/103 pcu. The total accident rate increased monotonously with the decrease in horizontal radius. The results indicate that 54.54% (/km/103 pcu of accidents occurred on a steep slope (4%–5%, representing about 10 times that of 3%–4% slope and 20 times that of the less than 3% slope. Based on the data, the safety situation of China’s highway transportation is obviously grim, and improving freeway heavy traffic management in economically developed regions, strengthening the safeguarding of mountain freeways, applying small radius and large vertical grade with caution, and developing a monitoring system of tunnels and interchanges could be used as effective measures to prevent freeway accidents.

  1. Determination of optimal LWR containment design, excluding accidents more severe than Class 8

    Energy Technology Data Exchange (ETDEWEB)

    Cave, L.; Min, T.K.

    1980-04-01

    Information is presented concerning the restrictive effect of existing NRC requirements; definition of possible targets for containment; possible containment systems for LWR; optimization of containment design for class 3 through class 8 accidents (PWR); estimated costs of some possible containment arrangements for PWR relative to the standard dry containment system; estimated costs of BWR containment.

  2. A study on thimble plug removal for PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee, Jae Yong; Jun, Hwang Yong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The thermal-hydraulic effects of removing the RCC guide thimble plugs are evaluated for 8 Westinghouse type PWR plants in Korea as a part of feasibility study: core outlet loss coefficient, thimble bypass flow, and best estimate flow. It is resulted that the best estimate thimble bypass flow increases about by 2% and the best estimate flow increases approximately by 1.2%. The resulting DNBR penalties can be covered with the current DNBR margin. Accident analyses are also investigated that the dropped rod transient is shown to be limiting and relatively sensitive to bypass flow variation. 8 refs., 5 tabs. (Author)

  3. Coolability of corium debris under severe accident conditions in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saidur

    2013-11-15

    The debris bed which may be formed in different stages of a severe accident will be hot and heated by decay heat from the radioactive fission products. In order to establish a steady state of long-term cooling, this hot debris needs to be quenched at first. If quenching by water ingression into the dry bed is not rapid enough then heat-up by decay heat in still dry regions may again yield melting. Thus, chances of coolability must be investigated considering quenching against heat-up due to decay heat, in the context of reactor safety research. As a basis of the present investigations, models for simulation of two phase flow through porous medium were already available in the MEWA code, being under development at IKE. The objective of this thesis is to apply the code in essential phases of severe accidents and to investigate the chances, options and measures for coolability. Further, within the tasks, improvements to remove weaknesses in modeling and implementation of extensions concerning missing parts are included. It was identified previously that classical models without explicit considering the interfacial friction, can predict dryout heat flux (DHF) well under top fed condition but under-predict DHF values under bottom flooding conditions. Tung and Dhir introduced an interfacial friction term in their model, but this model has deficits for smaller particles considered as relevant for reactor conditions. Therefore, some modification of Tung and Dhir model is proposed in the present work to extent it for smaller particles. A significant improvement with the new friction description (Modified Tung and Dhir, MTD) is obtained considering the aim of a unified description for both top and bottom flooding conditions and for broad bandwidth of bed conditions. Calculations for reactor conditions are carried out in order to explore whether or to which degree coolability can be concluded, how strong the trend to coolability is and where major limits occur. The general

  4. Measurement of buckling load for metallic plate columns in severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp; Sagawa, Wataru, E-mail: sagawa@vis.t.u-tokyo.ac.jp; Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp

    2014-07-01

    Highlights: • Buckling load was experimentally measured in a wide range of temperature up to 1200 °C. • Two different test methods for measuring buckling failure load were suggested and compared. • Creep buckling under compressive load was performed to explain results of buckling tests. • Reduced buckling load was explained by effects of creep buckling, geometrical imperfection, and thermal stress. • Buckling processes were visualized by a high speed camera. - Abstract: In severe accidents, a reactor pressure vessel, its components, and piping have to be under extremely high temperature and high pressure conditions, which results in failure modes like rupture by internal pressure, buckling, creep, and their combinations. In this study, buckling (failure) load was experimentally measured for metallic columns under the compressive force from room temperature up to 1200 °C. A stainless steel was chosen to be a test material to measure the buckling load. Two different test methods were employed to explore the effect of thermal history of the material on the buckling load. Particularly, the effect of creep under a compressive load was considered as a reason for the reduced buckling load at high temperatures. Additionally, finite element simulations were also conducted to predict buckling load for both an ideal column and a column with geometrical imperfection as well. Moreover, buckling process was visualized using a high speed camera to understand buckling processes.

  5. Study on Transient Void Behavior During Reactivity Initiated Accidents Under Low Pressure Condition

    Science.gov (United States)

    Satou, Akira; Maruyama, Yu; Asaka, Hideaki; Nakamura, Hideo

    Series of out-of-pile experiments to obtain the knowledge on the transient void behavior during reactivity initiated accidents are in progress at JAEA. In the present series of experiments, the transient void behavior in a test section of 2 x 2 bundle geometry under atmospheric pressure condition was measured using an impedance technique. The measuring areas and the arrangement of electrodes for the impedance technique were defined on the basis of numerical analyses and scaled model experiments. The comparison was made between the impedance and differential pressure techniques for steady boiling experiments to estimate the accuracy of the impedance technique. The impedance technique showed a good agreement with the void fraction estimated from the differential pressure. The transient void behavior in the bundle geometry was measured using the impedance technique. The void fraction distribution in the bundle cross-section could be quantitatively obtained by the impedance technique. It could be properly confirmed that the transient void behavior depended on both the subcooling of inlet water and the heat generation rate of simulated fuel rods.

  6. IVR-ERVC effectiveness assessment for large size advanced PWR under severe accident%严重事故下大功率先进压水堆IVR-ERVC有效性分析

    Institute of Scientific and Technical Information of China (English)

    金越; 刘晓晶; 程旭; 陈薇

    2016-01-01

    通过压力容器外部冷却(ERVC)以实现堆内熔融物滞留(IVR)作为反应堆严重事故缓解管理的一项重要举措一直以来广泛受到关注和研究.本文使用严重事故分析程序 MELCOR,从瞬态角度对大型先进压水堆进行了 IVR-ERVC相关研究.过程中重点关注了堆芯熔毁和重新定位,熔池形成、生长及其传热过程,并且对压力容器外部流动传热进行了分析.MELCOR计算所得下封头热流密度分布的瞬态结果与临界热流密度(CHF)比较和分析表明,1700 MWe 大功率压水堆发生严重事故后在 IVR-ERVC条件下能够保证压力容器的完整性,即,IVR-ERVC 能够有效带出下封头熔融物的衰变热量,缓解严重事故后果.%As a key severe accident management strategy for light water reactors (LWRs),in-vessel retention (IVR)through external reactor vessel cooling (ERVC)has been the focus of relevant studies for decades. This paper addressed the IVR-ERVC issues from a transient perspective using the severe accident code MELCOR for large size advanced passive power plant. Current analysis was mainly focused on the transients in severe accident including core degradation and relocation,molten pool formation,growth and heat transfer within,together with external flow and heat transfer analysis. MELCOR calculations for lower head heat flux were then compared with critical heat flux (CHF)of lower head to assess the effectiveness of IVR-ERVC. The results suggest that lower head heat flux is well below the CHF value. Thus,the IVR-ERVC strategy is considered to be physically effective.

  7. ThermalGhydraulic Simulation of DEDVI Accident for Advanced Passive PWR%先进非能动核电厂DEDVI事故热工水力模拟分析

    Institute of Scientific and Technical Information of China (English)

    余健明; 曹学武

    2016-01-01

    The accident analysis model is established by the code of Relap5/Mod 3.4, which includes the Reactor Coolant System (RCS),simplified secondary system and Engineering Safety Features (ESF). A typical Small-Break LOCA(SBLOCA)accident, Double-Ended Direct Vessel Inj ection (DEDVI ), is selected to analyze the accident scenario and sensitivity analyses of entrainment models have been taken with respect to pressure,mass flow rate,liquid levels and peak cladding temperature. The results show that the break and ADS system can depressurize the RCS quickly and the coolant from CMT,ACC and IRWST can mitigate the accidental consequence of DEDVI effectively. Sensitivity analysis of entrainment models shows that homogenous flow model creates higher liquid discharge flow rate comparing to nonhomogenous flow model.%采用 Relap5/Mod3.4程序建立了先进非能动核电厂的事故分析模型,包括反应堆冷却剂系统(RCS)、简化的二回路系统和专设安全设施.针对小破口失水事故(SBLOCA)中的直接安注管双端断裂事故(DEDVI)进行分析,并着重对 SBLOCA 现象识别和排序表(PIRT)中对其影响较大的液滴夹带进行敏感性分析.分析结果表明,对直接安注管双端断裂事故,破口和自动卸压系统(ADS)能够有效地使反应堆冷却剂系统降压,堆芯补水箱(CMT)、安注箱(ACC)和安全壳内置换料水箱(IRWST)能够迅速实现堆芯补水,确保堆芯冷却.对液滴夹带的敏感性分析表明,对于位置较高的第4级 ADS,喷放流量对液滴夹带模型比较敏感,使用均相流模型计算时,其液相流量显著高于非均相流模型.

  8. Simulation of the transient processes of load rejection under different accident conditions in a hydroelectric generating set

    Science.gov (United States)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.

    2016-11-01

    Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.

  9. Evaluation of alternative descriptions of PWR cladding corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Quecedo, M.; Serna, J. J.; Weiner, R. A.; Kersting, P. J.

    1999-05-15

    A statistical procedure has been used to evaluate several alternative descriptions of pressurized water reactor (PWR) cladding corrosion behavior, using an extensive database of Improved (low tin) Zr-4 cladding corrosion measurements from fuel irradiated in commercial PWRs. The in-reactor corrosion enhancement factors considered in the model development are based on a comprehensive review of the current literature for PWR cladding corrosion phenomenology and models. In addition, because prediction of PWR cladding corrosion behavior is very sensitive to the values used for the oxide surface temperatures, several models for the forced convection and sub-cooled nucleate boiling (SNB) coolant heat transfer under PWR conditions have also been evaluated. This evaluation determined that the choice of the forced convection heat transfer has the greatest impact on the ability to fit the data. In addition, the SNB heat transfer model used must account for a continuous transition from forced convection conditions to fully developed SNB conditions. With these choices for the heat transfer models, the evaluation determined that the significant in-reactor corrosion enhancement factors are related to the formation of a hydride rim at the cladding outer diameter, the coolant lithium concentration, and the fast neutron fluence (author) (ml)

  10. Understanding of Hydriding Mechanisms of Zircaloy-4 Alloy during Corrosion in PWR Simulated Conditions and Influence of Zirconium Hydrides on Zircaloy-4 Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bisor-Melloul, C.; Tupin, M.; Bossis, P.; Chene, J.; Bechade, J.L. [CEA Saclay, 91 - Gif sur Yvette (France); Motta, A. [Pennsylvania State Univ. (United States)

    2011-03-15

    Zirconium alloys represent the first containment barrier to fission products, their mechanical integrity is essential for nuclear safety in PWR. During their corrosion in primary water, some of the hydrogen involved in the oxidation reaction with water ingresses into the alloy through the oxide layer. In the metallic matrix, once the solid solution limit is reached at the irradiation temperature, hydrogen precipitates as Zr hydrides mainly located just under the metal/oxide interface due to the thermal gradient across the cladding. As these hydrides may contribute to a larger oxide thickness and to a more fragile behaviour of the cladding, the minimization of hydrogen pick-up is required. Accordingly, since the Zircaloy-4 (Zr-1.3Sn-0.2Fe-0.1Cr) alloy is known to be sensitive to this phenomenon, the understanding of its hydriding mechanism, isotopic exchanges were carried out in D{sub 2}O environment at 360 C and led to the localization, in the oxide scales, of the limiting step for the hydrogen diffusion. To estimate an apparent diffusion coefficient of hydrogen in the oxide formed on Zircaloy-4, we based on SIMS profiles and penetration depth of deuterium in the dense part of the oxide film. Then ERDA estimation of the hydrogen content in zirconia and fusion measurement of the hydrogen content in both metal and oxide were used to estimate a hydrogen flux absorbed by the alloy and hence to deduce an apparent diffusion coefficient. Finally, these 2 methods lead to quite similar values (between 1.10{sup -14} cm{sup 2}/s and 6.10{sup -14} cm{sup 2}/s) which are in accordance with bibliography. Concerning the impact of hydrides on the corrosion of Zircaloy-4, several pre-hydrided and reference samples were corroded simultaneously at 360 C. The characterization of the pre-hydrided samples revealed some changes, as the presence of the Zr{sub 3}O sub-oxide at the inner metal/oxide interface, a lower fraction of -ZrO{sub 2} in the oxide and a faster diffusion of oxygen

  11. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  12. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    Energy Technology Data Exchange (ETDEWEB)

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  13. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    Energy Technology Data Exchange (ETDEWEB)

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  14. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Directory of Open Access Journals (Sweden)

    Kil-Mo Koo

    2012-01-01

    Full Text Available Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard requires that the normal signal level for pressure, flow, and resistance temperature detector sensors be in the range of 4~20 mA for most instruments. Whereas, in the case that an abnormal signal is expected from an instrument, such a signal should be refined through a signal validation process so that the refined signal could be available in the control room. For some abnormal signals expected under severe accident conditions, to date, diagnostics and response analysis have been evaluated with an equivalent circuit model of real instruments, which is regarded as the best method. The main objective of this paper is to introduce a program designed to implement a diagnostic and response analysis for equivalent circuit modeling. The program links signal analysis tool code to abnormal signal simulation engine code not only as a one body order system, but also as a part of functions of a PC-based ASSA (abnormal signal simulation analysis module developed to obtain a varying range of the R-C circuit elements in high temperature conditions. As a result, a special function for abnormal pulse signal patterns can be obtained through the program, which in turn makes it possible to analyze the abnormal output pulse signals through a response characteristic of a 4~20 mA circuit model and a range of the elements changing with temperature under an accident condition.

  15. A Study on Effects of Initial Conditions to the Fuel Integrity Analysis of Steam Generator Tube Rupture Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Seok; Kim, Ung Soo; Park, Min Soo; Huh, Jae Young; Lee, Gyu Cheon [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    During SGTR accident, RCS pressure continuously decreases while the core power, core flow rate and core average temperature almost do not change until reactor trip occurs. As a result, the departure from nucleate boiling ratio (DNBR) also continuously decreases, thus eroding the thermal margin to DNB. To identify no damage of the fuel cladding due to the onset of film boiling, it must be analyzed whether the heat flux is maintained below the critical heat flux or not. For this purpose, it is used to define the specified acceptable fuel design limit (SAFDL) of DNBR and evaluate that the DNBR stays above the SAFDL. Evaluating the DNBR in SGTR accident, several initial conditions are varied as that would challenge to the safety limit, or SAFDL. However, the effects of some initial conditions are complicate and difficult to be intuitively identified. The initial conditions mainly affect the minimum DNBR during SGTR accident are the initial core power, the initial RCS flow rate, the initial core inlet temperature and the initial pressurizer pressure. The conservative initial conditions for the core power and the RCS flow rate can be determined easily by qualitative evaluation. The others such as the initial core inlet temperature and the initial pressurizer pressure are complicate and difficult to be determined. From this study, it is identified that the maximum initial pressurizer pressure and the minimum initial core inlet temperature on SGTR accident most postpones the reactor trip resulting in smaller RCS inventory at the reactor trip time point. And the smaller RCS inventory at the time point of the reactor trip tends to make the DNBR undershoot larger which is a dominant factor to determine the minimum DNBR under a LOOP condition.

  16. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  17. Coupled simulation of steam line break accident; Simulation couplee d'un accident de rupture de tuyauterie vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Royer, E.; Raimond, E.; Caruge, D

    2000-07-01

    The steam line break is a PWR type reactor design accident, which concerns coupled physical phenomena. To control these problems simulation are needed to define and validate the operating procedures. The benchmark OECD PWR MSLB (Main Steam Line Break) has been proposed by the OECD to validate the feasibility and the contribution of the multi-dimensional tools in the simulation of the core transients. First the benchmark OECD PWR MSLB is presented. Then the analysis of the three exercises (system with pinpoint kinetic, three-dimensional core and whole system with three-dimensional core) are discussed. (A.L.B.)

  18. A study on nonlinear behavior of reactor containment structures during ultimate accident condition(I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hoon; Kim, Young Jin; Park, Joo Yeon [Youngdong Univ., Yeongdong (Korea, Republic of)] (and others)

    2003-03-15

    In this study, the following scope and contents are established for first year's study of determining ultimate pressure capacity of CANDU-type reactor containment. State-of-arts on the prediction of the ultimate pressure capacity of prestressed concrete reactor containment. Comparative study on structural characteristics and analysis model of CANDU-type reactor containment. State-of-arts on evaluation method of the ultimate pressure capacity of prestressed concrete reactor containment. Enhancement of evaluation method of the ultimate pressure capacity for PWR containment structure. In order to determine a realistic lower bound of a typical reactor containment structural capacity for internal pressure, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate capacity are required. Especially, the in-depth evaluation of modeling technique and analysis procedure for determining ultimate pressure capacity of CANDU-type reactor containment is required. Therefore, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate pressure capacity of CANDU-type reactor containment for internal pressure will be suggested in this study.

  19. Nuclear power plant accident simulations of gasket materials under simultaneous radiation plus thermal plus mechanical stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, K.T.; Malone, G.M.

    1997-07-01

    In order to probe the response of silicone door gasket materials to a postulated severe accident in an Italian nuclear power plant, compression stress relaxation (CSR) and compression set (CS) measurements were conducted under combined radiation (approximately 6 kGy/h) and temperature (up to 230{degrees}C) conditions. By making some reasonable initial assumptions, simplified constant temperature and dose rates were derived that should do a reasonable job of simulating the complex environments for worst-case severe events that combine overall aging plus accidents. Further simplification coupled with thermal-only experiments allowed us to derive thermal-only conditions that can be used to achieve CSR and CS responses similar to those expected from the combined environments that are more difficult to simulate. Although the thermal-only simulations should lead to sealing forces similar to those expected during a severe accident, modulus and density results indicate that significant differences in underlying chemistry are expected for the thermal-only and the combined environment simulations. 15 refs., 31 figs., 15 tabs.

  20. Hungarian surveillance of germinal mutations. Lack of detectable increase in indicator conditions caused by germinal mutations following the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Czeizel, A. (National Inst. of Hygiene, Budapest (Hungary). Dept. of Human Genetics and Teratology)

    1989-07-01

    The Hungarian surveillance of germinal mutations is based on three indicator conditions seen in offspring, i.e., 15 sentinel anomalies, Down syndrome and component anomaly pairs of unidentified multiple congenital anomalies. It is an 'opportunistic program', because the necessary data are available from the Hungarian Congenital Malformation Registry. This system is described and the criteria of a good registry are summarized. The analysis of indicator conditions caused by germinal mutations did not reveal any measurable mutagenic effects in Hungary following the accident at the Chernobyl nuclear power plant. The pros and cons of germinal mutation surveillance are discussed. (orig.).

  1. Rehabilitation of living conditions in territories contaminated by the Chernobyl accident: the ETHOS project.

    Science.gov (United States)

    Lochard, Jacques

    2007-11-01

    The ETHOS Project, supported by the radiation protection research program of the European Commission (EC), was implemented in the mid-1990's with the support of the Belarus authorities as a pilot project to initiate a new approach for the rehabilitation of living conditions in the contaminated territories of the Republic. This initiative followed a series of studies performed in the context of the EC Community of Independent States cooperation program to evaluate the consequences of the Chernobyl accident (1991-1995), which clearly brought to the fore that a salient characteristic of the situation in these territories was the progressive and general loss of control of the population on its daily life. Furthermore, due to the economic difficulties during the years following the breakdown of the USSR, the population was developing private production and, in the absence of know-how and adequate means to control the radiological quality of foodstuffs, the level of internal exposure was rising significantly. The aim of the project was primarily to involve directly the population wishing to stay in the territories in the day-to-day management of the radiological situation with the goal of improving their protection and their living conditions. It was based on clear ethical principles and implemented by an interdisciplinary team of European experts with specific skills in radiation protection, agronomy, social risk management, communication, and cooperation in complex situations, with the support of local authorities and professionals. In a first phase (1996-1999), the ETHOS Project was implemented in a village located in the Stolyn District in the southern part of Belarus. During this phase, a few tens of villagers were involved in a step-by-step evaluation of the local radiological situation to progressively regain control of their daily life. In a second phase (1999-2001), the ETHOS Project was extended to four other localities of the District with the objective to

  2. Investigations on Health Conditions of Chernobyl Nuclear Power Plant Accident Recovery Workers from Latvia in Late Period after Disaster

    Directory of Open Access Journals (Sweden)

    Reste Jeļena

    2016-10-01

    Full Text Available The paper summarises the main findings on Chernobyl Nuclear Power Plant (CNPP accident recovery workers from Latvia and their health disturbances, which have been studied by the authors during the last two decades. Approximately 6000 persons from Latvia participated in CNPP clean-up works in 1986–1991. During their work period in Chernobyl they were exposed to external as well as to internal irradiation, but since their return to Latvia they were living in a relatively uncontaminated area. Regular careful medical examinations and clinical studies of CNPP clean-up workers have been conducted during the 25 years after disaster, gathering knowledge on radiation late effects. The aim of the present review is to summarise the most important information about Latvian CNPP clean-up worker health revealed by thorough follow-up and research conducted in the period of 25 years after the accident. This paper reviews data of the Latvian State Register of Persons Exposed to Radiation due to CNPP Accident and gives insight in main health effects found by the researchers from the Centre of Occupational and Radiological Medicine (Pauls Stradiņš Clinical University Hospital and Rīga Stradiņš University in a number of epidemiological, clinical, biochemical, immunological, and physiological studies. Latvian research data on health condition of CNPP clean-up workers in the late period after disaster indicate that ionising radiation might cause premature ageing and severe polymorbidity in humans.

  3. Evaluation of Fuel Performance Uncertainty in a PWR HFP RIA Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joosuk; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Sensitivity and combined uncertainty studies based on the various kinds of uncertainty sources have been carried out in a PWR hot full power (HFP) condition. - Cladding inner diameter, fuel thermal conductivity, fuel thermal expansion and peak power have induced a significant impact to the fuel enthalpy and temperature. - Cladding hoop strain was strongly affected by the uncertainty parameters of cladding inner diameter, fuel thermal expansion, EPRI-1 CHF and peak power. - Above results are valid in the given analysis condition in this paper. Thereby, the analysis conditions, for example the peak linear heat rate before RIA or peak power and FWHM etc, are changed the results will be changed also. Approved analysis methodology for licensing application in the safety analysis of reactivity initiated accident (RIA) in Korea is based on a conservative approach. But newly introduced safety criteria, described in section 4.2 of NUREG-0800, tend to reduce the margins or depending on the reactor types rod failure is predicted due to the pellet-to-cladding mechanical interaction (PCMI) criteria. Thereby, licensee is trying to improve the margins by utilizing a less conservative approach.

  4. A study of fuel behavior under reactivity initiated accident conditions — review

    Science.gov (United States)

    Ishikawa, Michio; Shiozawa, Shusaku

    1980-11-01

    Results obtained in the 400 tests performed to simulate reactivity initiated accidents since 1975 in the Japanese Nuclear Safety Research Reactor, are described. Tests included the effects of cooling environment, defective fuel elements, fuel design parameters, the behaviour of fuel elements for various reactor types, all done for a wide range of energy deposition. Four types of basic fuel failure mechanisms have been established, and are discussed in detail: cladding melt failure, UO 2 melt failure, high temperature burst failure and low temperature burst failure. Future test plans up to 1990 are out-lined and features requiring particular attention are pointed out.

  5. Behavior of irradiated BWR fuel under reactivity-initiated-accident conditions; Results of tests FK-1, -2 and -3

    OpenAIRE

    2004-01-01

    Boiling water reactor (BWR) fuels with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident (RIA) conditions. BWR fuel segment rods of 8times8BJ (STEP I) type from Fukushima-Daiichi Unit 3 nuclear power plant were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding...

  6. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  7. A diagnostic system for identifying accident conditions in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, T.V., E-mail: santoshiitb@yahoo.co [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, M.; Thangamani, I.; Srivastava, A.; Dutta, A.; Verma, V.; Mukhopadhyay, D.; Ganju, S.; Chatterjee, B.; Rao, V.V.S.S.; Lele, H.G.; Ghosh, A.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    2011-01-15

    Research highlights: Neural networks based diagnostic system has been developed to identify transients quickly, estimate the source-term and assist the operator to take corrective actions during abnormal situations in 220 MWe PHWRs. The transient data for the break scenarios ranging from 20% to 200% has been generated using RELAP5 and CONTRAN codes. 32 break scenarios of large break LOCA in inlet and outlet reactor headers with and without ECCS have been analyzed using artificial neural networks. A few break scenarios were directly predicted without being trained earlier. Test results obtained from ANN are within the acceptable range. - Abstract: The objective of this study is to develop a system, which assists the operator in identifying an accident quickly using ANNs that diagnoses the accidents based on reactor process parameters, and continuously displays the status of the nuclear reactor. A large database of transient data of reactor process parameters has been generated for reactor core, containment, environmental dispersion and radiological dose to train the ANNs. These data have been generated using various codes e.g., RELAP5-thermal-hydraulics code for the core. The present version of this system is capable of identifying large break LOCA scenarios of 220 MWe Indian PHWRs. The system has been designed to provide the necessary information to the operator to handle emergency situations when the reactor is operating. The diagnostic results obtained from ANNs study are satisfactory.

  8. Analysis of Severe Accident for the SFP under the Condition of Drainage using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung-Min; Pack, Jae-Woo [Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    This study aims to analyze the effect of a LOCA of the spent fuel pool. We use the MECORE 1.8.6 code to compute the variation of the fuel cladding temperature after a completer loss of the cooling water in the spent fuel pool. A loss of coolant accident in a typical spent fuel pool has been simulated using the MELCOR 1.8.6 code to see the variation of key parameters such as the oxygen concentration in the fuel assembly region and the cladding temperature. In a commercial nuclear power plant, highly radioactive spent fuel assemblies unloaded from the nuclear reactor core are typically stored for a period of time in the spent fuel pool to reduce the radioactivity. The spent fuel assemblies are usually placed in long square racks. It is known that in the progress of the Fukushima nuclear power plant accident, the cooling water in the spent fuel storage was completely lost and the fuel was heated up and damaged. The simulation result shows that the cladding temperature exceeds the rupture temperature in most of the fuel rods and some part of the fuel rods suffers melting of the cladding.

  9. Radiation conditions in the Oryol region territory impacted by radioactive contamination caused by the Chernobyl NPP accident

    Directory of Open Access Journals (Sweden)

    G. L. Zakharchenko

    2016-01-01

    Full Text Available Research objective is retrospective analysis of radiation conditions in the Oryol region during 1986- 2015 and assessment of efficacy of the carried out sanitary and preventive activities for population protection against radiation contamination caused by the Chernobyl NPP accident.Article materials were own memoirs of events participants, analysis of federal state statistic surveillance forms 3-DOZ across the Oryol region, f-35 “Data on patients with malignant neoplasms, f-12 “Report on MPI activities”. Risk assessment of oncological diseases occurrence is carried out on the basis of AAED for 1986- 2014 using the method of population exposure risk assessment due to long uniform man-made irradiation in small doses. Results of medical and sociological research of genetic, environmental, professional and lifestyle factors were obtained using the method of cancer patients’ anonymous survey. Data on "risk" factors were obtained from 467 patients hospitalized at the Budgetary Health Care Institution of the Oryol region “Oryol oncology clinic”; a specially developed questionnaire with 60 questions was filled out.The article employs the method of retrospective analysis of laboratory and tool research and calculation of dose loads on the Oryol region population, executed throughout the whole period after the accident.This article provides results of the carried out laboratory research of foodstuff, environment objects describing the radiation conditions in the Oryol region since the first days after the Chernobyl NPP accident in 1986 till 2015.We presented a number of activities aimed at liquidation of man-caused radiation accident consequences which were developed and executed by the experts of the Oryol region sanitary and epidemiology service in 1986-2015. On the basis of the above-stated one may draw the conclusions listed below. Due to interdepartmental interaction and active work of executive authorities in the Oryol region, the

  10. Ruthenium release modelling in air under severe accident conditions using the MAAP4 code

    Energy Technology Data Exchange (ETDEWEB)

    Beuzet, E.; Lamy, J.S. [EDF R and D, 1 avenue du General de Gaulle, F-92140 Clamart (France); Perron, H. [EDF R and D, Avenue des Renardieres, Ecuelles, F-77818 Moret sur Loing (France); Simoni, E. [Institut de Physique Nucleaire, Universite de Paris Sud XI, F-91406 Orsay (France)

    2010-07-01

    In a nuclear power plant (NPP), in some situations of low probability of severe accidents, an air ingress into the vessel occurs. Air is a highly oxidizing atmosphere that can lead to an enhanced core degradation affecting the release of Fission Products (FPs) to the environment (source term). Indeed, Zircaloy-4 cladding oxidation by air yields 85% more heat than by steam. Besides, UO{sub 2} can be oxidised to UO{sub 2+x} and mixed with Zr, which may lead to a decrease of the fuel melting temperature. Finally, air atmosphere can enhance the FPs release, noticeably that of ruthenium. Ruthenium is of particular interest for two main reasons: first, its high radiotoxicity due to its short and long half-life isotopes ({sup 103}Ru and {sup 106}Ru respectively) and second, its ability to form highly volatile compounds such as ruthenium gaseous tetra-oxide (RuO{sub 4}). Considering that the oxygen affinity decreases between cladding, fuel and ruthenium inclusions, it is of great need to understand the phenomena governing fuel oxidation by air and ruthenium release as prerequisites for the source term issues. A review of existing data on ruthenium release, controlled by fuel oxidation, leads us to implement a new model in the EDF version of MAAP4 severe accident code (Modular Accident Analysis Program). This model takes into account the fuel stoichiometric deviation and the oxygen partial pressure evolution inside the fuel to simulate its oxidation by air. Ruthenium is then oxidised. Its oxides are released by volatilisation above the fuel. All the different ruthenium oxides formed and released are taken into consideration in the model, in terms of their particular reaction constants. In this way, partial pressures of ruthenium oxides are given in the atmosphere so that it is possible to know the fraction of ruthenium released in the atmosphere. This new model has been assessed against an analytical test of FPs release in air atmosphere performed at CEA (VERCORS RT8). The

  11. Development of a shell finite element. Application to the thermo-viscoplastic behaviour of a PWR vessel during a severe accident; Developpement d`un element fini coque. Application au comportement thermo-viscoplastique d`une cuve de reacteur nucleaire (REP) en situation d`accident grave

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, V

    1998-10-07

    The aim of this study is to develop a model for the thermo-viscoplastic behaviour of he power water reactor lower head during a severe accident, so as to implement it in codes representing the whole accident progress (scenario codes). So it has to give a precise solution in a short cpu-time. The main loadings are the internal pressure and the strong longitudinal and transverse thermal gradients. To deal with this problem, the idea is to develop a new shell element with variable mechanical parameters with the temperature. This is possible in taking advantage of the properties of the bending center line, called neutral fiber. Besides, this new shell element has the particularity to be able to melt without modifying the initial dimensions of the structure. Then, we have developed a complete program to study the mechanical resistance of the vessel. The visco-plastic behaviour is considered as a loading (so it is placed in the second member of the system to be solved) and represented by a Norton law whose parameters depend on the temperature, the law is integrated explicitly which necessitates the introduction of criteria limiting the time step. The rupture criterion by creep is defined by a damage law whereas the rupture criterion by plasticity is based on the exceeding of the mean limit stress in the thickness. Then the model was validated by comparing the results with those of a Castem 2000 volume mesh (finite element code). Finally the model was coupled with the scenario codes ICARE2 and MAAP4 and tested on two typical severe accidents. The results are very satisfactory both on accuracy and cpu-time execution. (author) 113 refs.

  12. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Heames, T.J. (Science Applications International Corp., Albuquerque, NM (USA)); Williams, D.A.; Johns, N.A.; Chown, N.M. (UKAEA Atomic Energy Establishment, Winfrith (UK)); Bixler, N.E.; Grimley, A.J. (Sandia National Labs., Albuquerque, NM (USA)); Wheatley, C.J. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1990-10-01

    This document provides a description of a model of the radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident. This document serves as the user's manual for the computer code called VICTORIA, based upon the model. The VICTORIA code predicts fission product release from the fuel, chemical reactions between fission products and structural materials, vapor and aerosol behavior, and fission product decay heating. This document provides a detailed description of each part of the implementation of the model into VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided. The VICTORIA code was developed upon a CRAY-XMP at Sandia National Laboratories in the USA and a CRAY-2 and various SUN workstations at the Winfrith Technology Centre in England. 60 refs.

  13. Angra 1 high burnup fuel behaviour under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: dsgomes@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The 16x16 NGF (Next Generation Fuel) fuel assembly, comprising of highly corrosive-resistant ZIRLO clad fuel rods, been replacing the current 16x16 Standard (16STD) fuel assembly in the Angra 1, a pressurized water reactor, with a net output of 626 MWe. The 16x16 NGF fuel assemblies are designed for a peak rod average burnup of up to 75 GWd/MTU, thus improving fuel utilization and reducing spent fuel storage issues. A design basis accident, the Reactivity Initiated Accident (RIA), became a concern for a further increase in burnup as the simulated RIA tests revealed a lower enthalpy threshold for fuel failure. Two fuel performance codes, FRAPCON and FRAPTRAN, were used to predict high burnup behavior of Angra 1, during an RIA. The maximum average linear fuel rating used was 17.62 KW/m. The FRAPCON 3.4 code was applied to simulate the steady-state performance of the 16 NGF fuel rods up to a burnup of 55 GWd/MTU. With FRAPTRAN-1.4 the fuel behavior was simulated for an RIA power pulse of 4.5 ms (FHWH), and enthalpy peak of 130 Cal/g. With FRAPCON-3.4, the corrosion and hydrogen pickup characteristics of the advanced ZIRLO clad fuel rods were added to the code by modifying the actual corrosion model for Zircaloy-4 through the multiplication of empirical factors, which were appropriate to each alloy, and by means of reducing the current hydrogen pickup fraction. (author)

  14. The influence of the crust layer on RPV structural failure under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jianfeng, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Li, Xiangqing [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Bao, Shiyi [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, Lijia [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)

    2017-05-15

    Highlights: • The crust layer greatly affects the RPV structural behavior. • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage mainly contribute to RPV failure. • An elastic core in RPV wall is essential for ensuring RPV integrity. • The multiaxial state of stress accelerates the total damage evolution. - Abstract: The so called ‘in-vessel retention (IVR)’ is regarded as a severe accident (SA) mitigation strategy, which is widely used in most of advanced nuclear power plants. The effectiveness of IVR strategy is to employ the external water flooding to cool the reactor pressure vessel (RPV). The RPV integrity has to be maintained within a required period during the IVR period. The degraded melting core is assumed to be arrested in the lower head (LH) to form the melting pool that is bounded by upper, side and lower crusts. Consequently, the existence of the crust layer greatly affects the RPV structural behavior as well as failure process. In order to disclose this influence caused by the crust layer, a detailed investigation is conducted by using numerical simulation on the two RPVs with and without crust layer respectively. Taking the RPV without crust layer as a basis for the comparison, the present study assesses the likelihood and potential failure location, time and mode of the LH under the loadings of the critical heat flux (CHF) and slight internal pressure. Due to the high temperature melt on the inside and nucleate boiling on the outside, the RPV integrity is found to be compromised by melt-through, creep, elasticity, plasticity as well as thermal expansion. Through in-depth investigation, it is found that the creep and plasticity are of vital importance to the final structural failure, and the introduction of crust layer results in a significant change on field parameters in terms of temperature, deformation, stress(strain), triaxiality factor and total damage.

  15. Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)

    Science.gov (United States)

    Rák, Zs.; Bucholz, E. W.; Brenner, D. W.

    2015-06-01

    A serious concern in the safety and economy of a pressurized water nuclear reactor is related to the accumulation of boron inside the metal oxide (mostly NiFe2O4 spinel) deposits on the upper regions of the fuel rods. Boron, being a potent neutron absorber, can alter the neutron flux causing anomalous shifts and fluctuations in the power output of the reactor core. This phenomenon reduces the operational flexibility of the plant and may force the down-rating of the reactor. In this work an innovative approach is used to combine first-principles calculations with thermodynamic data to evaluate the possibility of B incorporation into the crystal structure of NiFe2O4 , under conditions typical to operating nuclear pressurized water nuclear reactors. Analyses of temperature and pH dependence of the defect formation energies indicate that B can accumulate in NiFe2O4 as an interstitial impurity and may therefore be a major contributor to the anomalous axial power shift observed in nuclear reactors. This computational approach is quite general and applicable to a large variety of solids in equilibrium with aqueous solutions.

  16. Accidents (FARS) (National)

    Data.gov (United States)

    Department of Transportation — Accident - (1975-current): This data file (NTAD) contains information about crash characteristics and environmental conditions at the time of the crash. There is one...

  17. Analysis of ex-vessel melt jet breakup and coolability. Part 1: Sensitivity on model parameters and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Hwang, Byoungcheol; Jung, Woo Hyun

    2016-06-15

    Highlights: • Application of JASMINE code to melt jet breakup and coolability in APR1400 condition. • Coolability indexes for quasi steady state breakup and cooling process. • Typical case in complete breakup/solidification, film boiling quench not reached. • Significant impact of water depth and melt jet size; weak impact of model parameters. - Abstract: The breakup of a melt jet falling in a water pool and the coolability of the melt particles produced by such jet breakup are important phenomena in terms of the mitigation of severe accident consequences in light water reactors, because the molten and relocated core material is the primary heat source that governs the accident progression. We applied a modified version of the fuel–coolant interaction simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA) to a plant scale simulation of melt jet breakup and cooling assuming an ex-vessel condition in the APR1400, a Korean advanced pressurized water reactor. Also, we examined the sensitivity on seven model parameters and five initial/boundary condition variables. The results showed that the melt cooling performance of a 6 m deep water pool in the reactor cavity is enough for removing the initial melt enthalpy for solidification, for a melt jet of 0.2 m initial diameter. The impacts of the model parameters were relatively weak and that of some of the initial/boundary condition variables, namely the water depth and melt jet diameter, were very strong. The present model indicated that a significant fraction of the melt jet is not broken up and forms a continuous melt pool on the containment floor in cases with a large melt jet diameter, 0.5 m, or a shallow water pool depth, ≤3 m.

  18. Qualification of data obtained during a severe accident. Illustrative examples from TMI-2 evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Joy L. [Rempe and Associates, Idaho Falls, ID (United States); Knudson, Darrell L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.

  19. Study on thermal-hydraulics during a PWR reflood phase

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs.

  20. RAIM-A model for iodine behavior in containment under severe accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Chul; Cho, Yeong Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-12-15

    Following a severe accident in a nuclear power plant, iodine is a major contributor to the potential health risks for the public. Because the amount of iodine released largely depends on its volatility, iodine's behavior in containment has been extensively studied in international programs such as International Source Term Programme-Experimental Program on Iodine Chemistry under Radiation (EPICUR), Organization for Economic Co-operation and Development (OECD)-Behaviour of Iodine Project, and OECD-Source Term Evaluation and Mitigation. Korea Institute of Nuclear Safety (KINS) has joined these programs and is developing a simplified, stand-alone iodine chemistry model, RAIM (Radio-Active Iodine chemistry Model), based on the IMOD methodology and other previous studies. This model deals with chemical reactions associated with the formation and destruction of iodine species and surface reactions in the containment atmosphere and the sump in a simple manner. RAIM was applied to a simulation of four EPICUR tests and one Radioiodine Test Facility test, which were carried out in aqueous or gaseous phases. After analysis, the results show a trend of underestimation of organic and molecular iodine for the gas-phase experiments, the opposite of that for the aqueous-phase ones, whereas the total amount of volatile iodine species agrees well between the experiment and the analysis result.

  1. Containment Depressurization Capabilities of Filtered Venting System in 1000 MWe PWR with Large Dry Containment

    Directory of Open Access Journals (Sweden)

    Sang-Won Lee

    2014-01-01

    Full Text Available After the Fukushima Daiichi nuclear power plant accident, the Korean government and nuclear industries performed comprehensive safety inspections on all domestic nuclear power plants against beyond design bases events. As a result, a total of 50 recommendations were defined as safety improvement action items. One of them is installation of a containment filtered venting system (CFVS or portable backup containment spray system. In this paper, the applicability of CFVS is examined for OPR1000, a 1000 MWe PWR with large dry containment in Korea. Thermohydraulic analysis results show that a filtered discharge flow rate of 15 [kg/s] at 0.9 [MPa] is sufficient to depressurize the containment against representative containment overpressurization scenarios. Radiological release to the environment is reduced to 10-3 considering the decontamination factor. Also, this cyclic venting strategy reduces noble gas release by 50% for 7 days. The probability of maintaining the containment integrity in level 2 probabilistic safety assessment (PSA initiating events is improved twofold, from 43% to 87%. So, the CFVS can further improve the containment integrity in severe accident conditions.

  2. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  3. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  4. Experiment data report for Semiscale Mod-1 Tests S-28-7, S-28-9, and S-28-12. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, V.; Collins, B.L.; Sackett, K.E.; Coppin, C.E.

    1978-02-01

    Recorded test data are presented for Tests S-28-7, S-28-9, and S-28-12 of the Semiscale Mod-1 steam generator tube rupture test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Tests S-28-7, S-28-9, and S-28-12 were conducted from initial conditions of 15 736 kPa and 557 K, 15 754 kPa and 556 K, and 15 704 kPa and 559 K, respectively, to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the broken loop cold leg piping. The specific objective of these tests was to refine the definition of the upper limit of steam generator tube ruptures at which high peak cladding temperatures occur, as set by Test S-28-1. During these tests, cooling water was injected into the cold leg of the intact and broken loops to simulate emergency core coolant in a PWR. Thirty (Test S-28-7), 34 (Test S-28-9), and 20 (Test S-28-12) steam generator tube ruptures were simulated by a controlled injection from a heated accmulator into the intact loop hot leg.

  5. Applying Functional Modeling for Accident Management of Nucler Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...... for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented....

  6. Study of Air Ingress Across the Duct During the Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Texas A & M Univ., College Station, TX (United States)

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  7. Thermodynamic evaluation of the solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    Science.gov (United States)

    Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  8. Recent condition of Fukushima-Daiichi nuclear plant accident in Japan

    Science.gov (United States)

    Ohnishi, Takeo

    2012-07-01

    Japanese government pronounced that the second step had been succeeded in the cooling down of the reactors on the middle of Dec 2011 at Fukushima-Daiichi nuclear power plant. In future, government aims to take out fuels from 4 reactors and shields their units. The nuclear power plants in Japan are gradually decreasing, because the checking for them has been performed and the permission of the re-start of them are difficult to be gained. On January 1st 2012, only 7 units are operating in Japan, though the about 54 units were set before the accident. At the end of December 2011, most radiations are emitted from cesium. The radioactivity in air and land around the plant was daily reported in newspaper. Government often gave the information about some RI-contamination in foods. They were taken off from the markets. At now stage, the most important project is the decontamination of radioactive materials from houses, schools, public facilities and industries. Government will newly classify three evacuation areas from April 2012. At the end of March, evacuees under 20 mSv/year possibly can go back their homes (evacuation-free area). The environmental doses will be depressed by decontamination under 10 mSv/year. At the range of 20-50 mSv, people will be controlled to live these area, they can go back their houses temporally (evacuation area). Over 50 mSv/year, however, people can go back house until 5 years at least (prohibited area). In new radiation limitation for a risk of human health, government made 100 mSv and 20 mSv for life span for one year, respectively. The aim of decontamination was set up to 10 mSv for 1 year and 5 mSv for next stage. A target at school is under1 mSv for children. Government accepted a new severe limitation per1 Kg at four groups; milk of baby (100 Bq) and milk (100 Bq), drinking water (10 Bq) and food (100 Bq). Tokyo electric Power Company and government should pay the sufficient compensation to evacuees. In future, they should keep health

  9. MELCOR Modeling of Air-Cooled PWR Spent Fuel Assemblies in Water empty Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Lopez, C.

    2013-07-01

    The OECD Spent Fuel Project (SFP) investigated fuel degradation in case of a complete Loss-Of- Coolant-Accident in a PWR spent fuel pool. Analyses of the SFP PWR ignition tests have been conducted with the 1.86.YT.3084.SFP MELCOR version developed by SNL. The main emphasis has been placed on assessing the MELCOR predictive capability to get reasonable estimates of time-to-ignition and fire front propagation under two configurations: hot neighbor (i.e., adiabatic scenario) and cold neighbor (i.e., heat transfer to adjacent fuel assemblies). A detailed description of hypotheses and approximations adopted in the MELCOR model are provided in the paper. MELCOR results accuracy was notably different between both scenarios. The reasons are highlighted in the paper and based on the results understanding a set of remarks concerning scenarios modeling is given.

  10. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  11. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  12. Integrated functional modeling method for NPP plant DiD risk monitor and its application for conventional PWR

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Yang, Ming; Zhang, Zhijian [Harbin Engineering University, Harbin (China)

    2014-08-15

    The development of a new risk monitor system is introduced in this paper, which can be applied not only to severe accident prevention in daily operation but also to serve as to mitigate the radiological hazard just after severe accident happens and long term management of post-severe accident consequences. The summary of the fundamental method is summarized on how to configure the Plant Defense in-Depth (Did) Risk Monitor by object-oriented software system based on functional modeling approach. Following the authors??preceding preliminary study for AP1000, the way of realizing the proposed method of configuring the plant Did risk monitor was investigated for a safety-enhanced Japanese PWR design to meet with the tight anti-severe accident requirements set by national regulation in Japan after Fukushima Daiichi accident. The result of this example practice of the presented preliminary study for Japanese PWR was for the level 4 of the Did in case of beyond design basis accident, that is, loss of all AC power + RCP seal LOCA, against the former case of AP1000 for level 3 Did in case of large LOCA.

  13. Accident analyses in nuclear power plants following external initiating events and in the shutdown state. Final report; Unfallanalysen in Kernkraftwerken nach anlagenexternen ausloesenden Ereignissen und im Nichtleistungsbetrieb. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael

    2016-06-15

    The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.

  14. Performance and scenario evaluation of PAFS through the LOFW accident in APR1400 by using MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Won; Bae, Byoung Uhn; Yun, Byong Jo [Korea Atomic Energy Institute, Daejeon (Korea, Republic of)

    2009-07-01

    In order to enhance the safety feature of the APR1400 through the passive ways, the passive auxiliary feedwater system(PAFS) is under preliminary consideration by KAERI. For the successful adaptation of PAFS, accident scenario evaluation of PWR plant that is assumed to have the PAFS system should be performed. Condensing heat exchanger assemblies are installed at the exterior boundary of the containment building per one steam generator. The performance of the heat exchanger is designed to remove the decay heat of the fuel completely. In normal operation condition, PAFS system is not connected with the steam and feed lines. A Total Loss of Feed Water(TLOFW) accident is selected for the performance and scenario evaluation after the severity check. The PAFS connection valves are open at the signal of 25% level trip of steam generator. With the single failure assumption of PAFS open valve, the scenario propagations are calculated by using MARS code.

  15. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  16. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  17. High burnup fuel behavior related to fission gas effects under reactivity initiated accidents (RIA) conditions

    Science.gov (United States)

    Lemoine, F.

    1997-09-01

    Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup, which, under overpower conditions, can lead to solid fuel pressurization and swelling causing severe PCMI (pellet clad mechanical interaction). In order to assess the reliability of high burnup fuel under RIAs, experimental programs have been initiated which have provided important data concerning the transient fission gas behavior and the clad loading mechanisms. The importance of the rim zone is demonstrated based on three experiments resulting in clad failure at low enthalpy, which are explained by energetic considerations. High gas release in non-failure tests with low energy deposition underlines the importance of grain boundary and porosity gas. Measured final releases are strongly correlated to the microstructure evolution, depending on energy deposition, pulse width, initial and refabricated fuel rod design. Observed helium release can also increase internal pressure and gives hints to the gas behavior understanding.

  18. A neural networks based ``trip`` analysis system for PWR-type reactors; Um sistema de analise de ``trip`` em reatores PWR usando redes neuronais

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    1993-12-31

    The analysis short after automatic shutdown (trip) of a PWR-type nuclear reactor takes a considerable amount of time, not only because of the great number of variables involved in transients, but also the various equipment that compose a reactor of this kind. On the other hand, the transients`inter-relationship, intended to the detection of the type of the accident is an arduous task, since some of these accidents (like loss of FEEDWATER and station BLACKOUT, for example), generate transients similar in behavior (as cold leg temperature and steam generators mixture levels, for example). Also, the sequence-of-events analysis is not always sufficient for correctly pin point the causes of the trip. (author) 11 refs., 39 figs.

  19. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition

  20. Safety analysis methodology for Chinshan nuclear power plant spent fuel pool under Fukushima-like accident condition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hao-Tzu [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China). Research Atomic Energy Council; Li, Wan-Yun; Wang, Jong-Rong; Tseng, Yung-Shin; Chen, Hsiung-Chih; Shih, Chunkuan; Chen, Shao-Wen [National Tsing Hua Univ., HsinChu, Taiwan (China). Inst. of Nuclear Engineering and Science

    2017-03-15

    Chinshan nuclear power plant (NPP), a BWR/4 plant, is the first NPP in Taiwan. After Fukushima NPP disaster occurred, there is more concern for the safety of NPPs in Taiwan. Therefore, in order to estimate the safety of Chinshan NPP spent fuel pool (SFP), by using TRACE, MELCOR, CFD, and FRAPTRAN codes, INER (Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) performed the safety analysis of Chinshan NPP SFP. There were two main steps in this research. The first step was the establishment of Chinshan NPP SFP models. And the transient analysis under the SFP cooling system failure condition (Fukushima-like accident) was performed. In addition, the sensitive study of the time point for water spray was also performed. The next step was the fuel rod performance analysis by using FRAPTRAN and TRACE's results. Finally, the animation model of Chinshan NPP SFP was presented by using the animation function of SNAP with MELCOR analysis results.

  1. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Science.gov (United States)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  2. Cloud conditions for low atmospheric electricity during disturbed period after the Fukushima nuclear accident

    Science.gov (United States)

    Yatagai, Akiyo; Yamauchi, Masatoshi; Ishihara, Masahito; Watanabe, Akira; Murata, Ken T.

    2016-04-01

    The vertical (downward) component of the atmospheric electric field, or potential gradient (PG) under cloud generally reflects the electric charge distribution in the cloud. The PG data at Kakioka, 150 km southwest of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) suggested that this relation can be modified when the radioactive dust was floating in the air, and the exact relation between the weather and this modification could lead to new insight in plasma physics in the wet atmosphere. Unfortunately the detailed weather data was not available above Kakioka (only the precipitation data was available). Therefore, estimation of the cloud condition during March 2011 was strongly needed. We have developed various meteorological information links (http://www.chikyu.ac.jp/akiyo/firis/) and original radar and precipitation data will be released from the page. Here we present various radar images that we have prepared for March 2011. We prepared three-dimensional radar reflectivity of the C-band radar of JMA in every 10 minutes over all Kanto Plain centered at Tokyo and Fukushima prefecture centered at Sendai. We have released images of each altitude (1km interval) for 15th - 16thand 21th March (http://sc-web.nict.go.jp/fukushima/). The vertical structure of the rainfall is almost the same at 4km with the surface and sporadic high precipitation is observed at 6 km height for 15-16th. While, generally precipitation pattern that is similar to the surface is observed at 5km height on 21th. On the other hand, an X-band radar centered at Fukushima university is also used to know more localized raindrop patterns at zenith angle of 4 degree. We prepared 10-minutes/120m mesh precipitation patterns for March 15th, 16th, 17th, 18th, 20th, 21th, 22th and 23th. Quantitative estimate is difficult from this X-band radar, but localized structure, especially for the rain-band along Nakadori (middle valley in Fukushima prefecture), that is considered to determine the highly

  3. Factors contributing to driver’s condition after fatal and injury vehicle accidents in North Khorasan province- New Year 1391

    Directory of Open Access Journals (Sweden)

    Javad Rezazadeh

    2013-01-01

    Full Text Available Abstract Background and Aim: Injuries from traffic accidents are a major public health problem, and the third leading cause of mortality in people aged 1 to 40 years. Each year 31.8 persons per hundred thousands of Iranians are killed in car accidents. Neighboring of North Khorasan province with Razavi Khorasan, a province with a lot of pilgrims caused a large number of passengers travel via North Khorasan province. This study aimed to evaluate the road accidents and its related factors in the city of bojnurd in March 2012. Materials and Methods: this cross-sectional study was done from … to … 2012(the New Year vacation in Iran. All injured or victims from car accidents who referred to the emergency department of the Imam Ali Hospital formed the research community. Data was gathered by a questionnaire consisting vehicle specification, driver and injured characteristics. For victims and those were not able to answer, we used the family members or relatives for gathering the data. All data analysis was done in SPSS version 19.Results: during the study period, 148 injured people were admitted to the hospital. Drivers’ mean age were 33.9 with the SD of 11.9 years; among them 43.2% were used seat belt. One driver and three passengers were killed immediately, and two drivers and three passengers died in the first 24 hours of admission. Fastening seat belt by drivers reduce the hospitalization rate significantly (p-value<0.0001. 50.7% of the accidents were head-on collisions. Violation from the speed limit (41.3%, indiscretions (25.4% and drowsiness were the most common causes of accident respectively. Conclusion: training the drivers, obligation for using seat belt by driver and passengers, rest after long hours driving , and more control of traffic police especially in two way roads could reduce the car accident or in case of accident help to prevent severe damage and injury.

  4. Analysis of hot leg natural circulation under station blackout severe accident

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under severe accidents, natural circulation flows are important to influence the accident progression and result in a pressurized water reactor (PWR). In a station blackout accident with no recovery of steam generator (SG) auxiliary feedwater (TMLB' severe accident scenario), the hot leg countercurrent natural circulation flow is analyzed by using a severe-accident code, to better understand its potential impacts on the creep-rupture timing among the surge line, the hot leg, and SG tubes. The results show that the natural circulation may delay the failure time of the hot leg.The recirculation ratio and the hot mixing factor are also calculated and discussed.

  5. Code Development and Analysis Program: developmental checkout of the BEACON/MOD2A code. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramsthaler, J. A.; Lime, J. F.; Sahota, M. S.

    1978-12-01

    A best-estimate transient containment code, BEACON, is being developed by EG and G Idaho, Inc. for the Nuclear Regulatory Commission's reactor safety research program. This is an advanced, two-dimensional fluid flow code designed to predict temperatures and pressures in a dry PWR containment during a hypothetical loss-of-coolant accident. The most recent version of the code, MOD2A, is presently in the final stages of production prior to being released to the National Energy Software Center. As part of the final code checkout, seven sample problems were selected to be run with BEACON/MOD2A.

  6. CFD Simulation of a fall accident of a fuel element in pool This project aims at calculating the speed ratio of impact-fall height for a PWR fuel element falling freely in the fuel pool; Simulacion CFD de un accidente de caida de un elemento combustible en piscina

    Energy Technology Data Exchange (ETDEWEB)

    Montoro Garcia, B.; Corpa Masa, R.; Jimenez-Reja, C.

    2014-07-01

    It is intended to provide a methodology of analysis more realistic this accident.que referred to in calculations of the license that requires fuel catastrophic break regardless of the height of the fall, with the consequent release of inventory analysers. Accidents that occurred in the past indicate that this hypothesis could be too conservative. (Author)

  7. Evaluation of the RELAP4/MOD6 thermal-hydraulic code. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, W.S.; Margolis, S.G.; Rice, R.E.

    1978-01-01

    The NRC RELAP4/MOD6 computer code was recently released to the public for use in thermal-hydraulic analysis. This code has a unique new capability permitting analysis of both the blowdown and reflood portions of a postulated pressurized water reactor (PWR) loss-of-coolant accident (LOCA). A principal code evaluation objective is to assess the accuracy of the code for computing LOCA behavior over a wide range of system sizes and scaling concepts. The scales of interest include all LOCA experiments and will ultimately encompass full-sized PWR systems for which no experiments or data are available. Quantitative assessment of the accuracy of the code when it is applied to large PWR systems is still in the future. With RELAP4/MOD6, however, a technique has been demonstrated for using results derived from small-scale blowdown and reflood experiments to predict the accuracy of calculations for similar experiments of significantly different scale or component size. This demonstration is considered a first step in establishing confidence levels for the accuracy of calculations of a postulated LOCA.

  8. Neutron noise measurements on Bugey 2 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.; Romy, D.; Spadi, J.C.; Assedo, R.; Castello, G.

    1982-01-01

    Following Bugey 2 PWR hot functional tests, dimension measurements of internals hold down spring led to suspect that vibration levels could change with time. Neutron noise measurements runs during the first cycle enabled describing vibration behaviour of internals. Comparisons with previous analytical and experimental results gained on the Safran model as well as on similar reactors were also made.

  9. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K [ORNL; Sung, Yixing [Westinghouse Electric Company, Cranberry Township; Kucukboyaci, Vefa [Westinghouse Electric Company, Cranberry Township; Xu, Yiban [Westinghouse Electric Company, Cranberry Township; Cao, Liping [Westinghouse Electric Company, Cranberry Township

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  10. ANALISIS LAJU DOSIS NEUTRON REAKTOR PLTN PWR 1000 MWe MENGGUNAKAN PROGRAM MCNP

    Directory of Open Access Journals (Sweden)

    Amir Hamzah

    2015-03-01

    the reactor core of 1000 MWe PWR performed using MCNP program. The calculation model performed in 9 zones: reactor core, water, baffle, water, barrel, pressure vessel, concrete and the outside air. Determination of the distribution of neutron flux and spectra made to the radial direction to the outside of concrete shield with an accuracy between 10% to 30% in each energy group of 1 and 50 groups. The analysis results of neutron dose rate at the surface of the reactor biological shield of 1000 MWe PWR reactor at full power condition is lower than safety limit value. In terms of neutron radiation exposure, it can be concluded that the two meter thick concrete radiation shielding meets the safety requirements. Key words: PWR NPP, neutron flux, shielding, neutron dose rate, MCNP.

  11. Accidents at work and living conditions among solid waste segregators in the open dump of Distrito Federal.

    Science.gov (United States)

    Hoefel, Maria da Graça; Carneiro, Fernando Ferreira; Santos, Leonor Maria Pacheco; Gubert, Muriel Bauerman; Amate, Elisa Maria; dos Santos, Wallace

    2013-09-01

    The work of recycling solid waste segregators allows a precarious livelihood, but triggers a disease process that exacerbates their health and well-being. This study aimed to estimate the prevalence of occupational accidents at the open dump in the Federal District and its associated factors. Most segregators have had an accident at work (55.5%), perceived the danger of their working environment (95.0%) and claimed they did not receive personal protective equipment (51.7%). Among other findings, 55.8% ate foods found in the trash, 50.0% experienced food insecurity at home and 44.8% received Bolsa Família. There was a statistically significant relationship between work accidents and perception of dangerous work environment, household food insecurity and the presence of fatigue, stress or sadness (p < 0.05). On the other hand, the fellowship between the segregators was associated with a lower prevalence of accidents (p < 0.006). Women are the majority of the segregators (56.5%) and reported more accidents than men (p < 0.025). We conclude that the solid waste segregators constitute a vulnerable community, not only from the perspective of labor, but also from the social and environmental circumstances. To reverse this situation, effective implementation of the National Policy of Solid Wastes is imperative, in association with affirmative policies to grant economic emancipation for this population.

  12. 核电站事故后监测电离室设计方法%Designing methods for nuclear power station accident condition ionization chamber

    Institute of Scientific and Technical Information of China (English)

    孙光智; 王益元; 李亚坚; 代传波; 粱云; 左亮周

    2011-01-01

    介绍了一种用于核电站事故后γ辐射剂量率监测的电离室设计所需的模拟计算方法;用MCNP程序模拟计算了射线在不同结构、不同工作气体的电离室中灵敏度的能量响应特性,为事故后监测电离室的设计提供了理论依据.%Simulation and calculation methods for designing of ionization chamber used in nuclear power station during accident conditions were introduced in this paper. Using MCNP program,we calculated energy response of this chamber with various structures and sensitive gas,supplied theoretic dependence for designing of ionization chamber used during accident conditions.

  13. Study of colloidal particles behaviour in the PWR primary circuit conditions; Etude du comportement des particules colloidales dans les conditions physicochimiques du circuit primaire des reacteurs a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Barale, M

    2006-12-15

    EDF wants to understand, model and limit primary circuit contamination of Pressurized Water Reactors by colloidal particles resulting from corrosion. The electrostatic behaviour of representative oxide particles (cobalt ferrite, nickel ferrite and magnetite) has been studied in primary circuit conditions with the influence of boric acid and lithium hydroxide. The isoelectric point (IEP) and the point of zero charge (PZC) of particles, measured between 5 C and 320 C, exhibit a minimum towards 200 C. The thermodynamic constants of the protonation equilibrium of surface sites were calculated. When boric acid is added, zeta potential and IEP decrease because of borate ions sorption. On the contrary, there is not effect of lithium ions. The modelling of these results under conditions representative of primary circuit shows that these oxides exhibit a negative surface charge, explaining their sorption and adhesion behaviour. (author)

  14. Accidents - personal factors

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev, S.L.; Tsygankov, A.V.

    1982-03-01

    This paper evaluates influence of selected personal factors on accident rate in underground coal mines in the USSR. Investigations show that so-called organizational factors cause from 80 to 85% of all accidents. About 70% of the organizational factors is associated with social, personal and economic features of personnel. Selected results of the investigations carried out in Donbass mines are discussed. Causes of miner dissatisfaction are reviewed: 14% is caused by unsatisfactory working conditions, 21% by repeated machine failures, 16% by forced labor during days off, 14% by unsatisfactory material supply, 16% by hard physical labor, 19% by other reasons. About 25% of miners injured during work accidents are characterized as highly professionally qualified with automatic reactions, and about 41% by medium qualifications. About 60% of accidents is caused by miners with less than a 3 year period of service. About 15% of accidents occurs during the first month after a miner has returned from a leave. More than 30% of accidents occurs on the first work day after a day or days off. Distribution of accidents is also presented: 19% of accidents occurs during the first 2 hours of a shift, 36% from the second to the fourth hour, and 45% occurs after the fourth hour and before the shift ends.

  15. Modeling local chemistry in PWR steam generator crevices

    Energy Technology Data Exchange (ETDEWEB)

    Millett, P.J. [EPRI, Palo Alto, CA (United States)

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  16. Assessment of void swelling in austenitic stainless steel PWR core internals.

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling

  17. Bus drivers' mental conditions and their relation to bus passengers' accidents with a focus on the psychological stress concept.

    Science.gov (United States)

    Yamada, Yasuyuki; Mizuno, Motoki; Sugiura, Miyuki; Tanaka, Sumio; Mizuno, Yuki; Yanagiya, Toshio; Hirosawa, Masataka

    2008-06-01

    The purpose of this study was to clarify the psychological factors of bus drivers' instability that were related to bus passengers' accidents according to the hypothesis model based on the stress concept of Lazarus and Folkman (1984). This research was carried out in 2006. Participants of the study were 39 Japanese male bus drivers. Their average age was 40.2 (SD: 11.1). The average duration of employment was 4.5 (SD:6.1) years. A questionnaire was used that was composed of items concerning the frequency of bus passengers' accidents, performance of safe driving, job stressors, stress reaction and recognition from others. Based on the results, a model assuming that stress reaction caused by job stressors disturbed the bus driver's safe driving and was associated with passengers' accidents in the bus was verified to some degree. Especially, melancholy and tired feeling toward passengers showed a strong relation to the passengers' accidents in the bus. This suggested much room for intervention. Moreover, the recognition from others of their job was confirmed to act as a control factor of the stress reaction.

  18. Containment fan cooler heat transfer calculation during main steam line break for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Kao, Lain-Su, E-mail: lskao@iner.gov.tw

    2013-10-15

    Highlights: • Evaluate component cooling water (CCW) thermal response during MSLB for Maanshan. • Using GOTHIC to calculate CCW temperature and determine time required to boil CCW. • Both convective and condensation heat transfer from the air side are considered. • Boiling will not occur since T{sub B} is sufficiently longer than CCW pump restart time. -- Abstract: A thermal analysis has been performed for the Containment Fan Cooler Unit (FCU) during Main Steam Line Break (MSLB) accident, concurrent with loss of offsite power, for Maanshan PWR plant. The analysis is performed in order to address the waterhammer and two-phase flow issues discussed in USNRC's Generic Letter 96-06 (GL 96-06). Maanshan plant is a twin-unit Westinghouse 3-loop PWR currently operated at rated core thermal power of 2822 MWt for each unit. The design basis for containment temperature is Main Steam Line Break (MSLB) accident at power of 2830.5 MWt, which results in peak vapor temperature of 387.6 °F. The design is such that when MSLB occurs concurrent with loss of offsite power (MSLB/LOOP), both the coolant pump on the secondary side and the fan on the air side of the FCU loose power and coast down. The pump has little inertia and coasts down in 2–3 s, while the FCU fan coasts down over much longer period. Before the pump is restored through emergency diesel generator, there is potential for boiling the coolant in the cooling coils by the high-temperature air/steam mixture entering the FCU. The time to boiling depends on the operating pressure of the coolant before the pump is restored. The prediction of the time to boiling is important because it determines whether there is potential for waterhammer or two-phase flow to occur before the pump is restored. If boiling occurs then there exists steam region in the pipe, which may cause the so called condensation induced waterhammer or column closure waterhammer. In either case, a great amount of effort has to be spent to

  19. Bicycle accidents.

    Science.gov (United States)

    Lind, M G; Wollin, S

    1986-01-01

    Information concerning 520 bicycle accidents and their victims was obtained from medical records and the victims' replies to questionnaires. The analyzed aspects included risk of injury, completeness of accident registrations by police and in hospitals, types of injuries and influence of the cyclists' age and sex, alcohol, fatigue, hunger, haste, physical disability, purpose of cycling, wearing of protective helmet and other clothing, type and quality of road surface, site of accident (road junctions, separate cycle paths, etc.) and turning manoeuvres.

  20. Shielding design for PWR in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983.

  1. The integrated PWR; Les REP integres

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, G.M. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs

    2002-07-01

    This document presents the integrated reactors concepts by a presentation of four reactors: PIUS, SIR, IRIS and CAREM. The core conception, the operating, the safety, the economical aspects and the possible users are detailed. From the performance of the classical integrated PWR, the necessity of new innovative fuels utilization, the research of a simplified design to make easier the safety and the KWh cost decrease, a new integrated reactor is presented: SCAR 600. (A.L.B.)

  2. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-1 and TSE-2

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.

    1976-09-01

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and two thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. The PWR calculations indicated that under some circumstances crack propagation could be expected and that experiments should be conducted for cracks that would have the potential for propagation at least halfway through the wall.

  3. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  4. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V.; Rosenberg, R. [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  5. VERIFIKASI KECELAKAAN HILANGNYA ALIRAN AIR UMPAN PADA REAKTOR DAYA PWR MAJU

    Directory of Open Access Journals (Sweden)

    Andi Sofrany Ekariansyah

    2015-03-01

    Reactor Technology and Nuclear Safety as a Technical Support Organization (TSO in terms of reactor safety verification, the verification activities have been carried out for the AP1000 that begins with failure of secondary coolant accident verification. The activity started with the technical safety features modeling such as passive core cooling system consisting of a Passive Residual Heat Removal system (PRHR, Core Makeup Tank (CMT, and In-containment Refueling Water Storage Tank (IRWST. The failure of secondary coolant accident selected is the loss of main feedwater flow to one of the steam generator simulated using the calculation program RELAP5/SCDAP/Mod3.4. The objective of analysis is to obtain sequences of changes in the thermalhydraulic parameters in the reactor due to the selected event. Analysis results obtained are validated and compared with the analysis results using the calculation program LOFTRAN in the AP1000 safety design document. The verification results show that the loss of feed-water supply has no impact on core damage, the reactor coolant system, as well as secondary systems. The ability of heat exchanger PRHR has been verified to dissipate decay heat of the core after reactor trip. Validation with the AP1000 safety design document shows compliance on most thermal hydraulic parameters. In general, the advanced PWR model equipped with passive core cooling system that has been developed remains safe in the event of loss of secondary coolant flow accident. Keywords: Verification, loss of feed water flow, AP1000

  6. Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barani, Tommaso [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pizzocri, Davide [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.

  7. Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    McCardell, R.K.; MacDonald, P.E.

    1980-01-01

    This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

  8. Icare/Cathare coupling: three-dimensional thermal hydraulics of severe LWR accidents

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, V.; Fichot, F. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Recherches en Securite, DRS, 92 (France); Boudier, P.; Parent, M. [CEA Grenoble, Dir. des Reacteurs Nucleaires, DRN, 38 (France); Roser, R. [Communication et Systemes Systemes d' Information, CS SI, 38 - Fontaine (France)

    2001-07-01

    In the phenomenology of severe LWR accidents considered in safety studies, the accidental sequences can be divided into three phases: the initial phase, where no severe damage of fuel or control rods and structures occurs; the early core degradation phase, where limited material melting and relocation takes place; and the late core degradation phase during which substantial material relocation happens, molten pools and debris beds can form and corium may fall into the lower plenum and, in case of vessel failure, come into the containment. The CATHARE2 code is a system code which has been developed by CEA for IPSN, EDF and FRAMATOME to describe the thermal-hydraulics behavior of a whole PWR circuit during the first of these three phases, with a core degradation model limited to clad rupture. The ICARE2 code, developed by IPSN, allows the complete description of early and late core degradation phases, with a thermal-hydraulics model limited to the vessel, initial and boundary conditions being provided by a system code. The aim of this paper is to present the main features of the new version of the coupling, ICARE/CATHARE V2. First, the general characteristics of ICARE2 V3mod1 and CATHARE2 V1.5 standard codes, dealing with physical models and numerical aspects, are described. Second, the technical features of the coupling between the two codes are detailed. At last, some results of ICARE/CATHARE V2 calculations are presented which demonstrate the ability of the code to simulate a severe accident in a PWR and notably to describe multi-dimensional effects occurring in the core during the LOCA and degradation phases. (authors)

  9. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    Science.gov (United States)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  10. Evaluation of passive autocatalytic recombiners (PARS) performance for a PWR-konvoi containment type with Gothic 8.1 code; Evaluacion de la implementacion de recombinadores autocataliticos pasivos (PAR) en una contencion tipo Konvoi con el codigo Gothic 8.1

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Alonso Conty, E.; Papini, D.; Jimenez Varas, G.

    2016-08-01

    The study presented in this work analyses the evaluation of Passive Autocatalytic Recombiners (PARs) performance for a PWR-Konvoi containment type as a result of an international collaboration between the Paul Scherrer institute (PSI) and the Universidad Politecnica de Madrid (UPM). The implementation study analyzes the size, location and number of the PARs to minimize the risk arising from a hydrogen release and its distribution in the containment building during a hypothetical severe accident. A detailed 3D model of containment was used for the simulations developed for the Gothic 8.1 code. In the first place, the hydrogen preferential pathways and points of hydrogen accumulation were studies and identified starting from the base case scenario without any mitigation measure. The severe accident scenario chosen is a fast release of hydrogen-steam mixture from hot leg creep rupture during SBO (Station Black-Out) accident. Secondly a configuration of PARs was simulated under the same conditions of the unmitigated case. The PAR configuration offered an improvement in the chosen accident scenario, decreasing the hydrogen concentration values below the flammability limit /hydrogen concentration below 7%) in all the containment compartments. (Author)

  11. Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  12. Sports Accidents

    CERN Multimedia

    Kiebel

    1972-01-01

    Le Docteur Kiebel, chirurgien à Genève, est aussi un grand ami de sport et de temps en temps médecin des classes genevoises de ski et également médecin de l'équipe de hockey sur glace de Genève Servette. Il est bien qualifié pour nous parler d'accidents de sport et surtout d'accidents de ski.

  13. Preliminary assessment of a combined passive safety system for typical 3-loop PWR CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zijiang; Shan, Jianqiang, E-mail: jqshan@mail.xjtu.edu.cn; Gou, Junli

    2017-03-15

    Highlights: • A combined passive safety system was placed on a typical 3-loop PWR CPR1000. • Three accident analyses show the three different accident mitigation methods of the passive safety system. • The three mitigation methods were proved to be useful. - Abstract: As the development of the nuclear industry, passive technology turns out to be a remarkable characteristic of advanced nuclear power plants. Since the 20th century, much effort has been given to the passive technology, and a number of evolutionary passive systems have developed. Thoughts have been given to upgrade the existing reactors with passive systems to meet stricter safety demands. In this paper, the CPR1000 plant, which is one kind of mature pressurized water reactor plants in China, is improved with some passive systems to enhance safety. The passive systems selected are as follows: (1) the reactor makeup tank (RMT); (2) the advanced accumulator (A-ACC); (3) the in-containment refueling water storage tank (IRWST); (4) the passive emergency feed water system (PEFS), which is installed on the secondary side of SGs; (5) the passive depressurization system (PDS). Although these passive components is based on the passive technology of some advanced reactors, their structural and trip designs are adjusted specifically so that it could be able to mitigate accidents of the CPR1000. Utilizing the RELAP5/MOD3.3 code, accident analyses (small break loss of coolant accident, large break loss of coolant accident, main feed water line break accident) of this improved CPR1000 plant were presented to demonstrate three different accident mitigation methods of the safety system and to test whether the passive safety system preformed its function well. In the SBLOCA, all components of the passive safety system were put into work sequentially, which prevented the core uncover. The LBLOCA analysis illustrates the contribution of the A-ACCs whose small-flow-rate injection can control the maximum cladding

  14. Horizontal Drop of 21- PWR Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2001-04-26

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 11) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  15. Analyses of PWR boron dilution consequences with the Arrotta code

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, E.; Cheng, H.W.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-03-01

    During the past few years, major attention has been paid to analyzing the issue of reactivity initiated accidents (RIAs), of which the boron dilution event is of very special interest to the countries having pressurized water reactors (PWRs) in their nuclear power delivery systems. The scenario considered is that if an inadvertent accumulation of boron free water in one loop during reactor startup operations of a PWR and the inadvertent startup of the reactor coolant pump (RCP) in the loop. This could then lead to a rapid boron dilution in the core, which can in turn give rise to a power excursion. This report is devoted to studying the potential physical and thermal hydraulic consequences of a slug of diluted coolant entering the core after one RCP start under a couple of postulated cases. The severity of the consequences of such a scenario is primarily determined by the amount of positive reactivity insertion, and they are also related to the reactivity insertion rate. Therefore, in the report, detailed calculations and analyses have been carried out from case to case by using the well-known space-time kinetics code, ARROTTA. As a result, the spatial distribution for nodal power, fuel enthalpy, fuel temperature and clad outside temperature as well as the change in core reactivity, total core power and peak fuel temperature can be provided. In general, the maximum fuel enthalpy, peak fuel temperature, and clad outside temperature, for all the cases considered in the report, do not exceed their respective routine safety limitations because of the strong Doppler effect and moderator temperature feedback, except if the safety limitations on fuel enthalpy addition for high burnup fuel are drastically reduced.

  16. EPRI PWR Safety and Relief Value Test Program: safety and relief valve test report

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    A safety and relief valve test program was conducted by EPRI for a group of participating PWR utilities to respond to the USNRC recommendations documented in NUREG 0578 Section 2.1.2, and as clarified in NUREG 0737 Item II.D.1.A. Seventeen safety and relief valves representative of those utilized in or planned for use in participating domestic PWR's were tested under the full range of selected test conditions. This report contains a listing of the selected test valves and the corresponding as tested test matrices, valve performance data and principal observations for the tested safety and relief valves. The information contained in this report may be used by the participating utilities in developing their response to the above mentioned USNRC recommendations.

  17. Study for identification of control rod drops in PWR reactors at any burnup step

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Thiago J.; Martinez, Aquilino S.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C., E-mail: tsouza@nuclear.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: canedo@lmp.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The control rod drop event in PWR reactors induces an unsafe operating condition. Therefore, in a scenario of a control rod drop is important to quickly identify the rod to minimize undesirable effects. The objective of this work is to develop an on-line method for identification of control rod drop in PWR reactors. The method consists on the construction of a tool that is based on the ex-core detector responses. Therefore, it is proposed to recognize patterns in the neutron ex-core detectors responses and thus to identify on-line a control rod drop in the core during the reactor operation. The results of the study, as well as the behavior of the detector responses, demonstrated the feasibility of this method. (author)

  18. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  19. Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code

    Energy Technology Data Exchange (ETDEWEB)

    Beuzet, Emilie, E-mail: emilie.beuzet@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Lamy, Jean-Sylvestre, E-mail: jean-sylvestre.lamy@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Bretault, Armelle, E-mail: armelle.bretault@edf.f [EDF R and D, 1 Avenue du General de Gaulle, F-92140 Clamart (France); Simoni, Eric, E-mail: simoni@ipno.in2p3.f [Institut de Physique Nucleaire, Universite Paris Sud XI, F-91406 Orsay (France)

    2011-04-15

    In a nuclear power plant, a potential risk in some low probability situations in severe accidents is air ingress into the vessel. Air is a highly oxidizing atmosphere that can lead to an enhanced core oxidation and degradation affecting the release of Fission Products (FP), especially increasing that of ruthenium. This FP is of particular importance because of its high radio-toxicity and its ability to form highly volatile oxides. Oxygen affinity is decreasing between Zircaloy cladding, fuel and ruthenium inclusions in the fuel. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues. A review of existing data in the field of Zircaloy-4 oxidation in air-containing atmosphere shows that this phenomenon is quantitatively well understood. The cladding oxidation process can be divided into two kinetic regimes separated by a breakaway transition. Before transition, a protective dense zirconia scale grows following a solid state diffusion-limited regime for which experimental data are well fitted by a parabolic time dependence. For a given thickness, which depends mainly on temperature and the extent of pre-oxidation in steam, the dense scale can potentially breakdown. In case of breakaway combined with oxygen starvation, cladding oxidation can then be much faster because of the combined action of oxygen and nitrogen through a complex self sustaining nitriding-oxidation process. A review of the pre-existing correlations used to simulate zirconia scale growth under air atmospheres shows a high degree of variation from parabolic to accelerated time dependence. Variations also exist in the choice of the breakaway parameter based on zirconia phase change or oxide thickness. Several correlations and breakaway parameters found in the literature were implemented in the MAAP4.07 Severe Accident code. They were assessed by simulation of the QUENCH-10 test, which is a semi-integral test designed

  20. The k-[epsilon] modeling of deboration transients in a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Oosterkamp, W.J.; Termaat, K.P.; Verhagen, F.C.M. (N.V. KEMA, Arnhem (Netherlands))

    1992-01-01

    The potential for reactivity accidents is receiving more attention after the Chernobyl disaster. Boron dilution transients are one class of reactivity accidents possible in pressurized water reactors (PWRs). Severe boron dilution reactivity accidents can only occur when three conditions are met: (1) a source of nonborated water is attaached to the primary system; (2) conditions are such that this nonborated water accumulates undetected outside the core; and (3) the nonborated water is rapidly moved into the core.

  1. Characterization of Factors affecting IASCC of PWR Core Internals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Kim, Won Sam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    A lot works have been performed on IASCC in BWR. Recent efforts have been devoted to investigate IASCC in PWR, but the mechanism in PWR is not fully understood yet as compared with that in BWR due to a lack of data from laboratories and fields. Therefore it is strongly needed to review and analyse recent researches of IASCC in both BWR and PWR for establishing a proactive management technology for IASCC of core internals in Korean PWRs. This work is aimed to review mainly recent technical reports on IASCC of stainless steels for core internals in PWR. For comparison, the works on IASCC in BWR were also reviewed and briefly introduced in this report.

  2. The PWR cores management; La gestion des coeurs REP

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Rippert, D. [CEA Cadarache, Departement d' Etudes des Reacteurs, DER, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France)] [and others

    2000-01-25

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  3. A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison

    Science.gov (United States)

    Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.

    2014-06-01

    Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.

  4. Zebra: An advanced PWR lattice code

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L.; Wu, H.; Zheng, Y. [School of Nuclear Science and Technology, Xi' an Jiaotong Univ., No. 28, Xianning West Road, Xi' an, ShannXi, 710049 (China)

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  5. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  6. Validation of GAMMA+ model for Evaluating Heat Transfer of VHTR core in Accident Conditions by CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongho; Yoon, Sujong; Park, Gooncherl; Cho, Hyoungkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    KAERI has established a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. In addition the GAMMA+ code is developed to analyze VHTR thermo-fluid transients at KAERI. One of the candidate reactor designs for VHTR is prismatic modular reactor (PMR), of which reference reactor is the 600MWth GT-MHR. This type of reactor has a passive safety system. During the High Pressure Conduction Cooling (HPCC) or Low Pressure Conduction Cooling (LPCC) accident, the core heats up by decay heat and then starts to cool down by conduction and radiation cooling to the Reactor Cavity Cooling System (RCCS) through the prismatic core. In this mechanism, the solid conduction occurs in graphite and fuel blocks, and the gas conduction and radiation occurs in coolant holes and bypass gaps. It is important to predict conduction and radiation heat transfer in the core for safety analysis. Effective thermal conductivity is derived by Maxwell's far-field methodology Radiation effect is expressed as corresponding conductivity and added to gas conductivity. In this study, ETC model used in GAMMA+ code is validated with the commercial CFD code, CFX-13. In this study, the effective thermal conductivity model of the GAMMA+ was evaluated by comparison of CFD analysis. The CFD analysis was conducted for various numbers and volume fractions of coolant holes and temperatures. Although slight disagreement was shown for the cases run with small number of holes, the result of GAMMA+ model is accurate for the large numbers of holes sufficiently. Since there are 102 coolant holes and 210 fuel holes in a fuel block, it is concluded that GAMMA+ model is proper formula for predicting effective thermal conductivity of the VHTR fuel block. However, in high temperature region above 500 .deg. C, the GAMMA+ model underestimates the effective thermal conductivity since radiation heat transfer is not reflected precisely. Further researches on it seem to be necessary.

  7. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-07-15

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO{sub 2} matrix

  8. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-03-01

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  9. Estimation of thermal loads on the VVER vessel under conditions of inversion of the stratified molten pool in a severe accident

    Science.gov (United States)

    Loktionov, V. D.; Mukhtarov, E. S.

    2016-09-01

    Analysis of the thermal state of molten pools that can be formed on the vessel bottom of the VVER-600 medium-power reactor during a severe anticipated accident with melting of the core is represented. Two types of the molten pool of core materials, with the two-layer and inverse three-layer stratification, are considered. Thermal loads acting on the reactor vessel from the melt are estimated depending on its formation time. Features of the thermal state of the melt in the case of its inverse stratification are analyzed. It is shown that thermal loads on the reactor vessel exceed the critical heat flux (CHF) when forming the two-layer stratified molten pool 10 and 24 h after its shutdown, and the thermal load is close to the corresponding CHF or somewhat exceeds it in 72 h. In the case of the formation of the inverse structure of the melt, one can observe a decrease by more than 2.5 times (in comparison with the two-layer stratified structure) in the thermal load on the reactor vessel in the region of its contact with the upper layer of the steel melt. Analysis of results showed that maximum densities of heat flux to the reactor vessel from the bottom metallic layer with the melt inversion did not exceed corresponding CHFs 24 and 72 h after the reactor shutdown. Because the thermal load on the reactor vessel can be localized in the region of its bottom, where the CHF is relatively small, during the inverse stratification of the melt, there is a need to carry out further in-depth experimental and analytical investigations of conditions for formation of the stratified molten pool and to obtain corrected experimental CHFs for conditions and outlines of cooling the external surface of the VVER-600 vessel in a severe accident.

  10. BEACON/MOD2A: a computer program for subcompartment analysis of nuclear reactor containment. A user's manual. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Wells, R. A.

    1979-03-01

    The BEACON code is a Best Estimate Advanced Containment code which being developed by EG and G, Idaho, Inc., at the Idaho National Engineering Laboratory. The program is designed to perform a best estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped-parameter representations for the various parts of the system. The current version of BEACON, which is designated BEACON/MOD2A, contains mass and heat transfer models for wall film and for wall conduction. It is suitable for the evaluation of short term transients in PWR dry containment systems. This manual describes the models employed in BEACON/MOD2A and specifies code implementation requirements. It provides application information for input data preparation and for output data interpretation.

  11. Timing analysis of PWR fuel pin failures

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Straka, M. (Halliburton NUS, Idaho Falls, ID (United States))

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report.

  12. Accident: Reminder

    CERN Document Server

    2003-01-01

    There is no left turn to Point 1 from the customs, direction CERN. A terrible accident happened last week on the Route de Meyrin just outside Entrance B because traffic regulations were not respected. You are reminded that when travelling from the customs, direction CERN, turning left to Point 1 is forbidden. Access to Point 1 from the customs is only via entering CERN, going down to the roundabout and coming back up to the traffic lights at Entrance B

  13. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  14. Peace programme for evaluating the impact of accidents contaminating the environment

    Energy Technology Data Exchange (ETDEWEB)

    Brechignac, F.; Vallejo, R.; Sauras, T.; Casadesus, J.; Thiry, Y.; Waegeneers, N.; Forsberg, S.; Shaw, G.; Madoz-Escande, C.; Gonze, M.A. [CEA/Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, IPSN, 92 (France)

    2000-07-01

    The Chernobyl accident, which led to substantial release of radioactive materials in the atmosphere, demonstrated that large environmental areas may be contaminated by fall-out deposition of radioactivity. In particular, contamination by Cs and Sr of agro-ecosystems where food production is taking place is most susceptible to contribute to population radiation dose. Nuclear safety analysis shows that, although very small, the probability of an accident occurring on a pressurized water reactor (PWR) cannot be completely set aside. In such a situation, decision making and management of the contaminated agricultural surfaces largely depend on our ability to predict how, and to which extent, the initial contamination may lead to polluted foodstuffs. Furthermore, the efficiency of the prediction models relies on our level of understanding of the mechanisms governing the transfer of radionuclides in the soil-plant system. Unraveling these mechanisms from in situ observations of environmental areas contaminated by past events is difficult due to the lack of control on both, the contamination itself, which happened in a critical situation, and the natural environment, which is highly variable, temporally and spatially. Such conditions prevent a clear identification of the most relevant parameters influencing the radionuclides transfer and thereby the prediction goal. In particular, current transfer factors introduced in prediction models suffer from unresolved and poorly documented variabilities. This is why IPSN developed a unique research facility capable of generating, in closed and controlled environmental conditions, a mini-accident with release of radioactive aerosols on small-scale, but realistic, samples of crops. These crops are conducted on undisturbed soil monoliths, featuring several soil types from various European countries, managed in lysimeters with advanced water movement control, and placed in greenhouses where three typical climates can be reproduced

  15. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  16. SUBSTANTIATION OF THE CONCEPT OF TRANSFER TO CONDITIONS OF NORMAL POPULATION ACTIVITY OF THE SETTLEMENTS CONSIDERED TO BE ZONES OF RADIOACTIVE CONTAMINATION AFTER THE CHERNOBYL NPP ACCIDENT

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2016-01-01

    Full Text Available The article contains substantiation of criteria of return of territories with radioactive pollution caused by Chernobyl NPP accident to conditions of normal population activity. It is established that in 12 entities of the Russian Federation (except Bryansk and Kaluga regions all agricultural food produce, including that from the personal part-time farms, corresponds to hygienic specifications. Non- corresponding to the standard SanPiN 2.3.2.1078-01 on 137Cs are part of the milk samples produced at personal part-time farms of the Bryansk region and most of natural foodstuff samples (berries, mushrooms, fish and wild animals meat in Bryansk and Kaluga regions. The content of 137Cs both in agricultural and in wild-growing foodstuff produced at radioactively contaminated territories depends not only on the density of radioactive pollution, but also on the types of soil. The average settlement annual effective dose of population irradiation (AAED90 in the 3700 among 4413 settlements as of 2014 was below 0.3 mSv/year. Only in 713 settlements of Bryansk, Kaluga, Oryol and Tula regions the AAED90 exceeds 0.3 mSv/year. In the Bryansk region, once subject to the greatest radioactive contamination, in 276 settlements AAED90 exceeds 1 mSv/year, and in 8 of them - 5 mSv/year.The legislation of the Russian Federation defines only criteria and requirements for consideration of the suffered territories as zones of radioactive contamination. Requirements on transfer of territories polluted by radiation accidents and their population to normal life activity conditions (regarding the radiological factor are not developed.Radiological criteria are suggested for transfer of the settlements considered to be the zone of radioactive pollution to conditions of normal life activity: average irradiation dose of critical population group: 1.0 mSv per year and lower (AAED crit; decrease of radionuclide soil contamination density to the level enabling to use the territory

  17. A balance procedure for calculating the model fuel assemblies reflooding during design basis accident and its verification on PARAMETER test facility

    Science.gov (United States)

    Bazyuk, S. S.; Ignat'ev, D. N.; Parshin, N. Ya.; Popov, E. B.; Soldatkin, D. M.; Kuzma-Kichta, Yu. A.

    2013-05-01

    A balance procedure is proposed for estimating the main parameters characterizing the process of model fuel assemblies reflooding of a VVER reactor made on different scales under the conditions of a design basis accident by subjecting them to bottom reflooding1. The proposed procedure satisfactorily describes the experimental data obtained on PARAMETER test facility in the temperature range up to 1200°C. The times of fuel assemblies quenching by bottom reflooding calculated using the proposed procedure are in satisfactory agreement with the experimental data obtained on model fuel assemblies of VVER- and PWR-type reactors and can be used in developing measures aimed at enhancing the safety of nuclear power stations.

  18. Computer system for the assessment of radiation situation in the cases of radiological accidents and extreme weather conditions in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Talerko, M.; Garger, E.; Kuzmenko, A. [Institute for Safety Problems of Nuclear Power Plants (Ukraine)

    2014-07-01

    Radiation situation within the Chernobyl Exclusion Zone (ChEZ) is determined by high radionuclides contamination of the land surface formed after the 1986 accident, as well as the presence of a number of potentially hazardous objects (the 'Shelter' object, the Interim Spent Nuclear Fuel Dry Storage Facility ISF-1, radioactive waste disposal sites, radioactive waste temporary localization sites etc.). The air concentration of radionuclides over the ChEZ territory and radiation exposure of personnel are influenced by natural and anthropogenic factors: variable weather conditions, forest fires, construction and excavation activity etc. The comprehensive radiation monitoring and early warning system in the ChEZ was established under financial support of European Commission in 2011. It involves the computer system developed for assessment and prediction of radiological emergencies consequences in the ChEZ ensuring the protection of personnel and the population living near its borders. The system assesses radiation situation under both normal conditions in the ChEZ and radiological emergencies which result in considerable radionuclides emission into the air (accidents at radiation hazardous objects, extreme weather conditions). Three different types of radionuclides release sources can be considered in the software package. So it is based on a set of different models of emission, atmospheric transport and deposition of radionuclides: 1) mesoscale model of radionuclide atmospheric transport LEDI for calculations of the radionuclides emission from stacks and buildings; 2) model of atmospheric transport and deposition of radionuclides due to anthropogenic resuspension from contaminated area (area surface source model) as a result of construction and excavation activity, heavy traffic etc.; 3) model of resuspension, atmospheric transport and deposition of radionuclides during grassland and forest fires in the ChEZ. The system calculates the volume and surface

  19. Thermal analysis of a storage cask for 24 spent PWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.C.; Bang, K.S.; Seo, K.S.; Kim, H.D. [Korea Atomic Energy Research Inst., Daejeon (Korea); Choi, B.I.; Lee, H.Y.; Song, M.J. [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea)

    2004-07-01

    The purpose of this paper is to perform a thermal analysis of a spent fuel storage cask in order to predict the maximum concrete and fuel cladding temperatures. Thermal analyses have been carried out for a storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 27 {open_square} under the normal condition. The off-normal condition has an environmental temperature of 40 {open_square}. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Four of the eight inlet ducts are assumed to be completely blocked. The storage cask is designed to store 24 PWR spent fuel assemblies with a burn-up of 55,000 MWD/MTU and a cooling time of 7 years. The decay heat load from the 24 PWR assemblies is 25.2 kW. Thermal analyses of ventilation system have been carried out for the determination of the optimum duct size and shape. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. In the results of the analysis, the maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal condition and off-normal conditions.

  20. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  1. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  2. Seismic qualification of PWR plant auxiliary feedwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.C.; Tsai, N.C.

    1983-08-01

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14.

  3. Preliminary accident analysis of Flexblue® underwater reactor

    Directory of Open Access Journals (Sweden)

    Haratyk Geoffrey

    2015-01-01

    Full Text Available Flexblue® is a subsea-based, transportable, small modular reactor delivering 160 MWe. Immersion provides the reactor with an infinite heat sink – the ocean – around the metallic hull. The reference design includes a loop-type PWR with two horizontal steam generators. The safety systems are designed to operate passively; safety functions are fulfilled without operator action and external electrical input. Residual heat is removed through four natural circulation loops: two primary heat exchangers immersed in safety tanks cooled by seawater and two emergency condensers immersed in seawater. In case of a primary piping break, a two-train safety injection system is actuated. Each train includes a core makeup tank, an accumulator and a safety tank at low pressure. To assess the capability of these features to remove residual heat, the reactor and its safety systems have been modelled using thermal-hydraulics code ATHLET with conservative assumptions. The results of simulated transients for three typical PWR accidents are presented: a turbine trip with station blackout, a large break loss of coolant accident and a small break loss of coolant accident. The analyses show that the safety criteria are respected and that the reactor quickly reaches a safe shutdown state without operator action and external power.

  4. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maolong; Ryals, Matthew; Ali, Amir; Blandford, Edward; Jensen, Colby; Condie, Keith; Svoboda, John; O' Brien, Robert

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentally investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.

  5. Sub-channel Analysis on Thermal-hydraulic Characteristic of PWR under Ocean Condition%海洋条件下反应堆热工水力参数的子通道计算

    Institute of Scientific and Technical Information of China (English)

    李志威; 张小英; 陈焕栋; 白宁; 历井钢

    2015-01-01

    According to the thermal‐hydraulic analysis of sub‐channel ,additional force models of heaving ,rolling and complex movement under ocean conditions were estab‐lished and applied to the sub‐channel momentum equation in COBRA ⅢC sub‐channel analysis code .The inlet boundary of ocean conditions was also established in this paper . The critical heat flux ratio ,exit void fraction and coolant flow of the hot channel were calculated for MUTSU reactor and experiment heating tube ,and the results were com‐pared with the experiment data from literature .Calculated thermal‐hydraulic character‐istics of MUTSU reactor were studied under ocean conditions . The research results show that thermal‐hydraulic parameters are varied periodically under fluctuating of ocean conditions .The heaving motion has a large impact on pressure drop of the sub‐channel .The sub‐channel coolant flow and temperature are greatly influenced by swing motion .%针对海洋条件下反应堆的子通道热工水力分析,建立了海洋运动附加力模型和瞬态入口边界,将起伏、摇摆及复合运动的附加力关系式用于子通道模型的轴向和横向动量方程,并应用到COBRA ⅢC程序将其改造为适应海洋条件的反应堆子通道分析程序。作为验证,计算了加热实验通道和“奥陆”堆在起伏运动情况下热通道的临界热流密度比(CHFR)、出口空泡份额和冷却剂流量,并与文献结果对比。还详细计算了“奥陆”堆在起伏、不同摇摆中心和复合运动情况下,热通道的C H FR和不同位置子通道出口的热工水力参数。研究表明:海洋条件下反应堆的子通道热工水力参数随运动呈周期性变化;起伏运动对子通道的压降影响较大,摇摆运动对子通道冷却剂的流量和温度影响较大。

  6. The basic problems of bed-fence-covers in hospitals for preventing accidents based on the investigation into the actual conditions: for developing the safer bed-fence-cover for elderly patients.

    Science.gov (United States)

    Matsuoka, Megumi; Konishi, Teuko; Toyoda, Mitsuko; Maie, Kazuo

    2009-12-01

    The basic problems of bed-fence-covers in hospitals were listed for preventing relevant accidents based on the investigation into actual conditions in a hospital in Kawasaki City. There were many elderly aged patients with dementia, higher brain dysfunction or psychosis in the hospital. They sometimes fell into the gaps of bed-fences, resulting in serious accidents. It was due not only to the structure of the bed-fences, but also to the characteristics of patients. Therefore the authors listed up the problems concerning the accidents to recognize them; (i) as physical conditions, (1) they could not move by themselves because of paralysis or decrease of fitness, (2) they could not feel when they were pinched by the gaps because of decrease of sense, (3) they moved irregularly or violently without their intention, and (ii) as mental conditions, (1) they took dangerous behaviors because of dementias, (2) they could not control their behaviors because of higher brain dysfunctions, (3) they could not control their feelings and moved violently because of mental disorders. The authors intend to develop safer bed-fence-covers to prevent these accidents for the elderly patients.

  7. Fatigue Life of Stainless Steel in PWR Environments with Strain Holding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taesoon; Kim, Kyuhyung [KHNP CRI, Daejeon (Korea, Republic of); Seo, Myeonggyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Many components and structures of nuclear power plants are exposed to the water chemistry conditions during the operation. Recently, as design life of nuclear power plant is expanded over 60 years, the environmentally assisted fatigue (EAF) due to these water chemistry conditions has been considered as one of the important damage mechanisms of the safety class 1 components. Therefore, many studies to evaluate the effect of light water reactor (LWR) coolant environments on fatigue life of materials have been conducted. Many EAF test results including Argonne National Laboratory’s consistently indicated the substantial reduction of fatigue life in the light water reactor environments. However, there is a discrepancy between laboratory test data and plant operating experience regarding the effects of environment on fatigue: while laboratory test data suggest huge accumulation of fatigue damage, very limited experience of cracking caused by the low cycle fatigue in light water reactor. These hold-time effect tests are preformed to characterize the effects of strain holding on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 stainless steel in 310℃ air and PWR environments with triangular strain. In agreement with the previous reports, the LCF life was reduced in PWR environments. Also for the slower strain rate, the reduction of LCF life was greater than the faster strain rate. The LCF test conditions for the hold-time effects were determined by the references and consideration of actual plant transient. To simulate the heat-up and cooldown transient, sub-peak strain holding during the down-hill of strain amplitude was chosen instead of peak strain holding which used in the previous researches.

  8. The advanced main control console for next japanese PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, A. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Ito, K. [Mitsubishi Heavy Industries, Ltd., Nuclear Energy Systems Engineering Center, Yokohama (Japan); Yokoyama, M. [Mitsubishi Electric Corporation, Energy and Industrial Systems Center, Kobe (Japan)

    2001-07-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  9. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A

    2007-12-15

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  10. CFD Analysis of Migration Mechanism of Source Term Under Severe Accident

    Institute of Scientific and Technical Information of China (English)

    CHEN; Lin-lin; SUN; Xue-ting; JI; Song-tao

    2013-01-01

    The analysis of the migration of source term under severe accident is one of the important aspects of‘Studies on Migration Mechanism of the Source Term under Severe Accident’,which is a significant task of the National Large Advanced PWR Research Program.This research aims at building up a method for analyzing fission product behavior in the containment with CFD code.The effect of PCCS(Passive

  11. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients.

  12. Physicochemical processes taking place in the reactor core under severe accident conditions. Procesos fisicoquimicos que tienen lugar en el Nucleo de un reactor en conditiones de accidente severo

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Hernandez, J.A.; Diaz Arocas, P.P.; Carrion Martin, J.G. (1-652-450 (Spain))

    1990-01-01

    Information is provided on UO[sup 2]-ZRY, ZRY steam and UO[sup 2] steam interactions. Performance of grid spacers. Integrated codes for analysis of accidents. Damage evolution of the Central module of the experiment LP-FP-2-Fission products generation. Physicochemical state of the fission products within oxide-type fuels. Solid radionuclide migration Behaviour of volatile fission products inside the fuel rods. Fission products release out of the fuel rods. Fission products behaviour under red and simulated accidents.

  13. Self-reported accidents

    DEFF Research Database (Denmark)

    Møller, Katrine Meltofte; Andersen, Camilla Sloth

    2016-01-01

    The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals.......The main idea behind the self-reporting of accidents is to ask people about their traffic accidents and gain knowledge on these accidents without relying on the official records kept by police and/or hospitals....

  14. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Unit Nuclear Energy, Netherlands Energy Research Foundation ECN, Petten (Netherlands)); Hoogenboorm, J.E.; De Leege, P.F.A. (International Reactor Institute IRI, University of Leiden, Leiden (Netherlands)); Van de Voet, J.; Verhagen, F.C.M. (KEMA NV, Arnhem (Netherlands))

    1992-01-01

    In order to carry out reliable reactor core calculations for a boiled water reactor (BWR) or a pressurized water reactor (PWR) first reactivity calculations have to be carried out for which several calculation programs are available. The purpose of the title project is to exchange experiences to improve the knowledge of this reactivity calculations. In a large number of institutes reactivity calculations of PWR and BWR pin cells were executed by means of available computer codes. Results are compared. It is concluded that the variations in the calculated results are problem dependent. Part of the results is satisfactory. However, further research is necessary.

  15. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  16. Leak before break application in French PWR plants under operation

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  17. Advanced ion exchange resins for PWR condensate polishing

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, B. [Rohm and Haas Co. (United States); Tsuzuki, S. [Rohm and Haas Co. (Japan)

    2002-07-01

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  18. Safety against releases in severe accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I.; Berg, Oe.; Nonboel, E. [eds.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au) 39 refs.

  19. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  20. Systematics of Reconstructed Process Facility Criticality Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; McLaughlin, T.P.; Monahan, S.P.

    1999-09-19

    The systematics of the characteristics of twenty-one criticality accidents occurring in nuclear processing facilities of the Russian Federation, the United States, and the United Kingdom are examined. By systematics the authors mean the degree of consistency or agreement between the factual parameters reported for the accidents and the experimentally known conditions for criticality. The twenty-one reported process criticality accidents are not sufficiently well described to justify attempting detailed neutronic modeling. However, results of classic hand calculations confirm the credibility of the reported accident conditions.

  1. PWR circuit contamination assessment tool. Use of OSCAR code for engineering studies at EDF

    Directory of Open Access Journals (Sweden)

    Benfarah Moez

    2016-01-01

    Full Text Available Normal operation of PWR generates corrosion and wear products in the primary circuit which are activated in the core and constitute the major source of the radiation field. In addition, cases of fuel failure and alpha emitter dissemination in the coolant system could represent a significant radiological risk. Radiation field and alpha risks are the main constraints to carry out maintenance and to handle effluents. To minimize these risks and constraints, it is essential to understand the behavior of corrosion products and actinides and to carry out the appropriate measurements in PWR circuits and loop experiments. As a matter of fact, it is more than necessary to develop and use a reactor contamination assessment code in order to take into account the chemical and physical mechanisms in different situations in operating reactors or at design stage. OSCAR code has actually been developed and used for this aim. It is presented in this paper, as well as its use in the engineering studies at EDF. To begin with, the code structure is described, including the physical, chemical and transport phenomena considered for the simulation of the mechanisms regarding PWR contamination. Then, the use of OSCAR is illustrated with two examples from our engineering studies. The first example of OSCAR engineering studies is linked to the behavior of the activated corrosion products. The selected example carefully explores the impact of the restart conditions following a reactor mid-cycle shutdown on circuit contamination. The second example of OSCAR use concerns fission products and disseminated fissile material behavior in the primary coolant. This example is a parametric study of the correlation between the quantity of disseminated fuel and the variation of Iodine 134 in the primary coolant.

  2. Effect of co-free valve on activity reduction in PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, C.B.; Han, B.C.; Bum, J.S.; Hwang, I.S. [Department of Nuclear Engineering, Seoul National Univ. (Korea, Republic of); Lee, C.B. [Korea Atomic Energy Research Inst., Daejon (Korea, Republic of)

    2002-07-01

    Radioactive nuclei, such as {sup 68}Co and {sup 60}Co, deposited on out-of-core surfaces in a pressurized water reactor (PWR) primary coolant system, are major sources of occupational radiation exposure to plant maintenance personnel and act as costly impediment to prompt and effective repairs. Valve hardfacing alloys exposed to primary coolant are considered as one of the main Co sources. To evaluate the Co-free valve, such as NOREM 02 and Deloro 50, the candidates for the alternative to Stellite 6, in a simulated PWR primary condition, SNU corrosion test loop (SCOTL) was constructed. For gate valves hard-faced with made of NOREM 02 and Deloro 50 hot cycling tests were conducted for up to 2,000 on-off cycles with cold leak tests at 1,000 cycle interval. It was observed that the leak rate of NOREM 02 (Fe-base) did not satisfy the nuclear grade valve leak criteria. After 1000 cycles test, while there was no leakage in case of Deloro 50 (Ni-base). Also, Deloro 50 showed no leakage after 2000 cycles. To estimate the activity reduction effect, we modified CRUDSIM-MIT which modeled the effects of coolant chemistry on the crud transport and activity buildup in the primary system of PWR. In the new code, crud evaluation and assessment (CREAT), {sup 60}Co activity buildup prediction includes 1) Co-base valve replacement effect, 2) Co-base valve maintenance effect, and 3) control rod drive mechanism (CRDM) and main coolant pump (MCP) shaft contribution. CREAT predicted that the main contributor of Co activity buildup was the corrosion-induced release of Co from the steam generator (SG) tubing. With new SG's tubed with alloy 690, Korean Next Generation Reactor (APR-1400) is expected to have about 64% lower Co activity on SG surface. The use of all Co-free valves is expected to cut additional 8% of activity which is only marginal. (authors)

  3. PFM Analysis for Pre-Existing Cracks on Alloy 182 Weld in PWR Primary Water Environment using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Phil; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    Probabilistic Fracture Mechanics (PFM) analysis was generally used to consider the scatter and uncertainty of parameters in complex phenomenon. Weld defects could be present in weld regions of Pressurized Water Reactors (PWRs), which cannot be considered by the typical fracture mechanics analysis. It is necessary to evaluate the effects of the pre-existing cracks in welds for the integrity of the welds. In this paper, PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out using a Monte Carlo simulation. PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out. It was shown that inspection decreases the gradient of the failure probability. And failure probability caused by the pre-existing cracks was stabilized after 15 years of operation time in this input condition.

  4. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  5. Studies of a small PWR for onsite industrial power

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, O.H.; Smith, W.R.

    1977-04-19

    Information on the use of a 300 to 400 MW(t) PWR type reactor for industrial applications is presented concerning the potential market, reliability considerations, reactor plant description, construction techniques, comparison between nuclear and fossil-fired process steam costs, alternative fossil-fired steam supplies, and industrial application.

  6. PWR fuel in Japan; The changes and trend for hereafter

    Energy Technology Data Exchange (ETDEWEB)

    Yokote, Mitsuhiro (Kansai Electric Power Co., Inc., Osaka (Japan)); Kondo, Yoshiaki; Abeta, Sadaaki

    1992-07-01

    As for the PWR fuel in Japan, much efforts have been exerted aiming at the high reliability since the start of operation of Mihama No. 1 plant of Kansai Electric Power Co., Inc. At the beginning of 1970s, the fuel made by Westinghouse in USA was imported, and since then, the pursuit of the causes of troubles and the countermeasures and the domestic production of fuel have been carried out, and the improvement of design and the strengthening of quality control have been advanced. As the results, the occurrence of troubles decreased rapidly. As the fuel improvement for hereafter, the economical improvement by higher burnup, the saving and effective use of uranium resources as well as the increase of reliability are emphasized. The changes in the PWR fuel by Westinghouse, the course of improvement in the PWR fuel in Japan, the improvement against the troubles of the fuel, the improved design, the verification of the performance of the PWR fuel, the trend of development of the fuel such as the heightening of burnup, the saving and effective use of uranium resources, and the improved type pressurized water reactors are reported. (K.I.).

  7. A neutronic study of the cycle PWR-CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alberto da; Pereira, Claubia; Veloso, Maria Auxiliadora Fortini; Fortini, Angela; Pinheiro, Ricardo Brant [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear]. E-mail: albertomoc@terra.com.br; claubia@nuclear.ufmg.br; dora@nuclear.ufmg.br; fortini@nuclear.ufmg.br; rbp@nuclear.ufmg.br

    2007-07-01

    The cycle PWR-CANDU was simulated using the WIMSD-5B and ORIGEN2.1 codes. It was simulated a fuel burnup of 33,000 MWd/t for UO{sub 2} with enrichment of 3.2% and a fuel extended burnup of 45,000 MWd/t for UO{sub 2} with enrichments of 3.5%, 4.0% and 5.0% in a PWR reactor. The PWR discharged fuel was submitted to the simulation of deposition for five years. After that, it was submitted to AYROX reprocessing and used to produce a fuel to CANDU reactor. Then, it was simulated the burnup in the CANDU. Parameters such as infinite medium multiplication factor, k{sub inf}, fuel temperature coefficient of reactivity, {alpha}{sub TF}, moderator temperature coefficient of reactivity, {alpha}{sub TM}, the ratio rapid flux/total flux and the isotopic composition in the begin and the end of life were evaluated. The results showed that the fuels analyzed could be used on PWR and CANDU reactors without the need of change on the design of these reactors. (author)

  8. French nuclear plants PWR vessel integrity assessment and life management

    Energy Technology Data Exchange (ETDEWEB)

    Bezdikian, G. [Electricite de France (EDF), Div. Production Nucleaire, 93 - Saint-Denis (France); Quinot, P. [FRAMATOME, Dept. Bloc Reacteur et Boucles Primaires, 92 - Paris-La-Defence (France); Faidy, C.; Churier-Bossennec, H. [Electricite de France (EDF), Div. Ingenierie et Service, 69 - Villeurbanne (France)

    2001-07-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  9. International Standard Problems and Small Break Loss-of-Coolant Accident (SBLOCA

    Directory of Open Access Journals (Sweden)

    N. Aksan

    2008-01-01

    Full Text Available Best-estimate thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants and also used in the design of advance reactors. Evaluation of the capabilities and the performance of these codes can be accomplished by comparing the code predictions with measured experimental data obtained on different test facilities. OECD/NEA Committee on the Safety of Nuclear Installations (CSNI has promoted, over the last twenty-nine years, some forty-eight international standard problems (ISPs. These ISPs were performed in different fields as in-vessel thermal-hydraulic behaviour, fuel behaviour under accident conditions, fission product release and transport, core/concrete interactions, hydrogen distribution and mixing, containment thermal-hydraulic behaviour. 80% of these ISPs were related to the working domain of principal working group no.2 on coolant system behaviour (PWG2 and were one of the major PWG2 activities for many years. A global review and synthesis on the contribution that ISPs have made to address nuclear reactor safety issues was initiated by CSNI-PWG2 and an overview on the subject of small break LOCA ISPs is given in this paper based on a report prepared by a writing group. In addition, the relevance of small break LOCA in a PWR with relation to nuclear reactor safety and the reorientation of the reactor safety program after TMI-2 accident are shortly summarized. The experiments in four integral test facilities, LOBI, SPES, BETHSY, ROSA IV/LSTF and the recorded data during a steam generator tube rupture transient in the DOEL-2 PWR (Belgium were the basis of the five small break LOCA related ISP exercises, which deal with the phenomenon typical of small break LOCAs in Western design PWRs. Some lessons learned from these small break LOCA ISPs are identified in relation to code deficiencies and capabilities, progress in the code capabilities, possibility of scaling, and various additional aspects

  10. Accelerated IGA/SCC testing of Alloy 600 in contaminated PWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Miglin, B.P.; Sarver, J.M. [Babcock & Wilcox R& D Division, Alliance, OH (United States); Aoki, K. [NFI, Osaka (Japan); Koch, D.W. [Babcock & Wilcox Nuclear Services, Lynchburg, VA (United States); Takamatsu, H. [Kansai Electric, Osaka (Japan)

    1992-12-31

    An accelerated corrosion test (360{degrees}C for 2000 hrs) was performed on C-ring specimens machined from one heat of Alloy 600 tubing in the mill-annealed condition. The specimens were exposed to secondary-side pressurized-water-reactor (PWR) solutions contaminated with lead, sulfur, silicon, and a combination of these contaminants. Where possible, MULTEQ calculations were performed to determine the chemical concentrations so that a constant elevated-temperature pH of 4.5 was achieved. This test was designed to examine the ability of these contaminants to cause intergranular attack and/or stress corrosion in stressed Alloy 600 tubing. The results from this test demonstrated that under the test conditions used, lead-contaminated PWR secondary water induces and propagates intergranular attack (IGA) and stress corrosion cracking (SCC) in Alloy 600. Attack was intergranular; the degree of attack did not vary in the liquid or vapor portions of the test environments. Although attack was more severe at higher stresses, significant attack was observed in samples stressed to the typical operating stress. Solutions of only sulfur and only silicon displayed no initiation or propagation of either IGA or SCC. However, the solution containing all three contaminants caused attack with identical morphology to that observed in the lead-contaminated solution.

  11. Design of the control room of the N4-type PWR: main features and feedback operating experience; La salle de commande du palier N4: principales caracteristiques et retour d'experience d'exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouton, J.M.; Guillas, J.; Nougaret, Ch. [Electricite de France (EDF/DPN/CAPE), 93 - Saint-Denis (France)

    2004-07-01

    This article presents the design, specificities and innovating features of the control room of the N4-type PWR. A brief description of control rooms of previous 900 MW and 1300 MW -type PWR allows us to assess the change. The design of the first control room dates back to 1972, at that time 2 considerations were taken into account: first the design has to be similar to that of control rooms for thermal plants because plant operators were satisfied with it and secondly the normal operating situation has to be privileged to the prejudice of accidental situations just as it was in a thermal plant. The turning point was the TMI accident that showed the weight of human factor in accidental situations in terms of pilot team, training, procedures and the ergonomics of the work station. The impact of TMI can be seen in the design of 1300 MW-type PWR. In the beginning of the eighties EDF decided to launch a study for a complete overhaul of the control room concept, the aim was to continue reducing the human factor risk and to provide a better quality of piloting the plant in any situation. The result is the control room of the N4-type PWR. Today the cumulated feedback experience of N4 control rooms represents more than 20 years over a wide range of situations from normal to incidental, a survey shows that the N4 design has fulfilled its aims. (A.C.)

  12. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  13. PWR neutron ex-vessel detection calculations using three-dimensional codes; Calculs de detection neutronique externe dans un rep

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, O.; Lefebvre, J.C.; Rohart, M. [Electricite de France (EDF), 69 -Villeurbanne (France); Chiron, M. [CEA Centre d`Etudes de Saclay, 91 -Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Wouters, R. de [TRACTEBEL, Brussels (Belgium)

    1997-10-01

    During the accident of TM12, the signal delivered by source detectors was exceptionally high. This phenomenon was found out to be due to the water inventory in the primary system. Thus, in their research activity, Electricite de France (EdF) and Commissariat a l`Energie Atomique (CEA) have jointly launched a programme, whose aim was to determine to what extent the response of ex-vessel neutron detectors are representative of reactor water level (or sources positions) in a French 900 MWe PWR. In this framework, both partners developed the methods needed for each step of the calculation chain. Finally, a simulation of a LOCA indicates that the loss of coolant can be detected by existing monitoring system, and could be more efficiently found by changing the position of the source range detectors. (authors). 11 refs.

  14. PWR neutron ex-vessel detection calculations using three-dimensional codes; Calculs de detection neutronique externe dans un rep

    Energy Technology Data Exchange (ETDEWEB)

    Dekens, O.; Lefebvre, J.C.; Rohart, M. [Electricite de France (EDF), 69 -Villeurbanne (France); Chiron, M. [CEA Centre d`Etudes de Saclay, 91 -Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Wouters, R. de [TRACTEBEL, Brussels (Belgium)

    1997-10-01

    During the accident of TM12, the signal delivered by source detectors was exceptionally high. This phenomenon was found out to be due to the water inventory in the primary system. Thus, in their research activity, Electricite de France (EdF) and Commissariat a l`Energie Atomique (CEA) have jointly launched a programme, whose aim was to determine to what extent the response of ex-vessel neutron detectors are representative of reactor water level (or sources positions) in a French 900 MWe PWR. In this framework, both partners developed the methods needed for each step of the calculation chain. Finally, a simulation of a LOCA indicates that the loss of coolant can be detected by existing monitoring system, and could be more efficiently found by changing the position of the source range detectors. (authors). 11 refs.

  15. Optimization of thermal efficiency of nuclear central power like as PWR; Otimizacao da eficiencia termica de uma usina nuclear do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, Nelbia da Silva

    2005-10-15

    The main purpose of this work is the definition of operational conditions for the steam and power conservation of Pressurized Water Reactor (PWR) plant in order to increase its system thermal efficiency without changing any component, based on the optimization of operational parameters of the plant. The thermal efficiency is calculated by a thermal balance program, based on conservation equations for homogeneous modeling. The circuit coefficients are estimated by an optimization tool, allowing a more realistic thermal balance for the plans under analysis, as well as others parameters necessary to some component models. With the operational parameter optimization, it is possible to get a level of thermal efficiency that increase capital gain, due to a better relationship between the electricity production and the amount of fuel used, without any need to change components plant. (author)

  16. Thermal hydraulic investigations and optimization on the EVC system of a PWR by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Mengmeng [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China); Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China); Tang, Mao [China Nuclear Power Design Engineering Co., Ltd., 518124 Shenzhen (China); Wang, Chenglong; Zheng, Meiyin; Qiu, Suizheng [Department of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 710049 Xi’an (China)

    2015-08-15

    Highlights: • This study constructs a full CFD model for the EVC system of a PWR. • The complex fluid and solid coupling is treated in the computation. • Primary characteristics of the velocity, pressure and temperature distributions in the EVC system are investigated. • The optimization of the EVC system with different inlet boundaries are performed. - Abstract: In order to optimize the design of Reactor Pit Ventilation (EVC) system in a Pressurized Water Reactor (PWR), it is necessary to study the characteristics of the velocity, pressure and temperature fields in the EVC system. A full computational fluid dynamics (CFD) model for the EVC system is constructed by a commercial CFD code, where the complex fluid and solid coupling is treated. The Shear Stress Transport (SST) model is adopted to perform the turbulence calculation. This paper numerically investigates the characteristics of the velocity, pressure and temperature distributions in the EVC system. In particular, the effects of inlet air parameters on the thermal hydraulic characteristics and the reactor pit structure are also discussed for the EVC system optimization. Simulations are carried out with different mesh sizes and boundary conditions for sensitivity analysis. The computational results are important references to optimize the design and verify the rationality of the EVC system.

  17. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  18. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  19. Nuclear accident dosimetry intercomparison studies.

    Science.gov (United States)

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  20. Severe accident analysis using dynamic accident progression event trees

    Science.gov (United States)

    Hakobyan, Aram P.

    In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. One of the principal deficiencies lies in the static nature of conventional APETs. In the conventional event tree techniques, the sequence of events is pre-determined in a fixed order based on the expert judgments. The main objective of this PhD dissertation was to develop a software tool (ADAPT) for automated APET generation using the concept of dynamic event trees. As implied by the name, in dynamic event trees the order and timing of events are determined by the progression of the accident. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. The function of a dynamic APET developed includes prediction of the conditions, timing, and location of containment failure or bypass leading to the release of radioactive material, and calculation of probabilities of those failures. Thus, scenarios that can potentially lead to early containment failure or bypass, such as through accident induced failure of steam generator tubes, are of particular interest. Also, the work is focused on treatment of uncertainties in severe accident phenomena such as creep rupture of major RCS components, hydrogen burn, containment failure, timing of power recovery, etc. Although the ADAPT methodology (Analysis of Dynamic Accident Progression Trees) could be applied to any severe accident analysis code, in this dissertation the approach is demonstrated by applying it to the MELCOR code [1]. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a

  1. Definition of loss-of-coolant accident radiation source: summary and conclusions. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bonzon, L.L.; Lurie, N.A.; Houston, D.H.; Naber, J.A.

    1978-05-01

    The radiation energy release rates and spectra corresponding to those sources specified in USNRC Regulatory Guide 1.89 for the radiation qualification of Class 1E equipment were calculated. The effects of several parameters (some not specific in the Guide), such as reactor fuel composition, operating duration and power level, and treatment of progeny, are evaluated. The results are presented as time-dependent beta and gamma-ray energy release rates and spectra which are fundamental quantities that are not specific to a plant design but are generally applicable to any nuclear power station.

  2. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  3. MELCOR 1.8.2 assessment: Surry PWR TMLB` (with a DCH study)

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Summers, R.M.; Thompson, S.L.

    1994-02-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified.

  4. Assessment of PWR plutonium burners for nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, A J; Shapiro, N L

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible.

  5. PWR fuel in Japan; Progress and future trends

    Energy Technology Data Exchange (ETDEWEB)

    Yokote, Mitsuhiro (Kansai Electric Power Co., Inc., Osaka (Japan)); Kondo, Yoshiaki; Abeta, Sadaaki (Mitsubishi Heavy Industries Ltd., Tokyo (Japan))

    1994-06-01

    Twenty years ago, in the early years of the Japanese civil nuclear power programme, the fuel used was imported from Westinghouse in the USA. However, it was always intended that there would be a move towards fuel fabrication in Japan and by the end of 1993 around 10,000 Mitsubishi PWR fuel assemblies had been supplied to 21 PWRs in Japan. The highest burnup achieved so far is 46 GWd/t. Design changes to reduce abnormalities have been made, reliability is improving all the time and further improvements in burnup are being developed. This progress in PWR cores and fuel including MOX fuel in Japan is charted and future research and development is outlined. (UK).

  6. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  7. Control of corrosion product transport in PWR secondary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sawochka, S.G.; Pearl, W.L. [NWT Corp., San Josa, CA (United States); Passell, T.O.; Welty, C.S. [Electric Power Research Institute, Palo Alto, CA (United States)

    1992-12-31

    Transport of corrosion products to PWR steam generators by the feedwater leads to sludge buildup on the tubesheets and fouling of tube-to-tube support crevices. In these regions, chemical impurities concentrate and accelerate tubing corrosion. Deposit buildup on the tubes also can lead to power generation limitations and necessitate chemical cleaning. Extensive corrosion product transport data for PWR secondary cycles has been developed employing integrating sampling techniques which facilitate identification of major corrosion product sources and assessments of the effectiveness of various control options. Plant data currently are available for assessing the impact of factors such as pH, pH control additive, materials of construction, blowdown, condensate treatment, and high temperature drains and feedwater filtration.

  8. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes; Calculo de fuerzas laterales hidraulicas en elementos combustibles tipo PWR con codigos de dinamica de fluidos coputacional

    Energy Technology Data Exchange (ETDEWEB)

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-08-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  9. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  10. Pressure loss tests for DR-BEP of fullsize 17 x 17 PWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Chun, Se Young; Chang, Seok Kyu; Won, Soon Youn; Cho, Young Rho; Kim, Bok Deuk; Min, Kyoung Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-01-01

    This report describes the conditions, procedure and results in the pressure loss tests carried out for a double grid type debris resistance bottom end piece (DR-BEP) designed by KAERI. In this test, the pressure loss coefficients of the full size 17 x 17 PWR simulated fuel assembly with DR-BET and with standard-BEP were measured respectively, and the pressure loss coefficients of DR-BEP were compared with the coefficients of STD-BET. The test conditions fall within the ranges of loop pressure from 5.2 to 45 bar, loop temperature from 27 to 221 deg C and Reynolds number in fuel bundle from 2.17 x 10{sup 4} to 3.85 x 10{sup 5}. (Author) 5 refs., 18 figs., 5 tabs.

  11. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  12. PWR Cross Section Libraries for ORIGEN-ARP

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, Carolyn [Texas A& M University; Ilas, Germina [ORNL

    2012-01-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% 235U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time.

  13. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Science.gov (United States)

    Thiollay, Nicolas; Di Salvo, Jacques; Sandrin, Charlotte; Soldevila, Michel; Bourganel, Stéphane; Fausser, Clément; Destouches, Christophe; Blaise, Patrick; Domergue, Christophe; Philibert, Hervé; Bonora, Jonathan; Gruel, Adrien; Geslot, Benoit; Lamirand, Vincent; Pepino, Alexandra; Roche, Alain; Méplan, Olivier; Ramdhane, Mourad

    2016-02-01

    FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10-2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006-2007 in a geometry representative of 1300 MWe PWR.

  14. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  15. PWR core stablity aganst xenon-induced spatial power oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.J.; Han, K.I. (Korea Advanced Energy Research Inst., Seoul (Republic of Korea))

    1982-06-01

    Stability of a PWR core against xenon-induced axial power oscillation is studied using one-dimensional xenon transient analysis code, DD1D, that has been developed and verified at KAERI. Analyzed by DD1D utilizing the Kori Unit 1 design and operating data is the sensitivity of axial stability in a PWR core to the changes in core physical parameters including core power level, moderator temperature coefficient, core inlet temperature, doppler power coefficient and core average burnup. Through the sensitivity study the Kori Unit 1 core is found to be stable against axial xenon oscillation at the beginning of cycle 1. But, it becomes less stable as burnup progresses, and unstable at the end of cycle. Such a decrease in stability is mainly due to combined effect of changes in axial power distribution, moderator temperature coefficient and doppler power coefficient as core burnup progresses. It is concluded from the stability analysis of the Kori Unit 1 core that design of a large PWR with high power density and increased dimension can not avoid xenon-induced axial power instabilites to some extents, especially at the end of cycle.

  16. Actinides transmutation - a comparison of results for PWR benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)], e-mail: luizhenu@ieav.cta.br

    2009-07-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO{sub 2} used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k{infinity} and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  17. Car accidents determined by stopped cars and traffic flow

    Science.gov (United States)

    Yang, Xian-qing; Ma, Yu-qiang

    2002-12-01

    The product of traffic flow and the fraction of stopped cars is proposed to determine the probability Pac for car accidents in the Fukui-Ishibashi model by analysing the necessary conditions of the occurrence of car accidents. Qualitative and quantitative characteristics of the probability Pac can well be explained. A strategy for avoiding car accidents is suggested.

  18. Fukushima accident study using MELCOR

    Institute of Scientific and Technical Information of China (English)

    Randall O Gauntt

    2013-01-01

    The accidents at the Fukushima Daiichi nuclear power station stunned the world as the sequences played out over severals days and videos of hydrogen explosions were televised as they took place.The accidents all resulted in severe damage to the reactor cores and releases of radioactivity to the environment despite heroic measures had taken by the operating personnel.The following paper provides some background into the development of these accidents and their root causes,chief among them,the prolonged station blackout conditions that isolated the reactors from their ultimate heat sink — the ocean.The interpretations given in this paper are summarized from a recently completed report funded by the United States Department of Energy (USDOE).

  19. Professional experience and traffic accidents/near-miss accidents among truck drivers.

    Science.gov (United States)

    Girotto, Edmarlon; Andrade, Selma Maffei de; González, Alberto Durán; Mesas, Arthur Eumann

    2016-10-01

    To investigate the relationship between the time working as a truck driver and the report of involvement in traffic accidents or near-miss accidents. A cross-sectional study was performed with truck drivers transporting products from the Brazilian grain harvest to the Port of Paranaguá, Paraná, Brazil. The drivers were interviewed regarding sociodemographic characteristics, working conditions, behavior in traffic and involvement in accidents or near-miss accidents in the previous 12 months. Subsequently, the participants answered a self-applied questionnaire on substance use. The time of professional experience as drivers was categorized in tertiles. Statistical analyses were performed through the construction of models adjusted by multinomial regression to assess the relationship between the length of experience as a truck driver and the involvement in accidents or near-miss accidents. This study included 665 male drivers with an average age of 42.2 (±11.1) years. Among them, 7.2% and 41.7% of the drivers reported involvement in accidents and near-miss accidents, respectively. In fully adjusted analysis, the 3rd tertile of professional experience (>22years) was shown to be inversely associated with involvement in accidents (odds ratio [OR] 0.29; 95% confidence interval [CI] 0.16-0.52) and near-miss accidents (OR 0.17; 95% CI 0.05-0.53). The 2nd tertile of professional experience (11-22 years) was inversely associated with involvement in accidents (OR 0.63; 95% CI 0.40-0.98). An evident relationship was observed between longer professional experience and a reduction in reporting involvement in accidents and near-miss accidents, regardless of age, substance use, working conditions and behavior in traffic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  2. Qualification of Daiichi Units 1, 2, and 3 Data for Severe Accident Evaluations - Process and Illustrative Examples from Prior TMI-2 Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Joy Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knudson, Darrell Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This initial review focused on the set of sensors deemed most important by post-TMI-2 instrumentation evaluation programs. Instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. In addition, prior efforts focused on sensors providing data required for subsequent forensic evaluations and accident simulations. To encourage the potential for similar activities to be completed for qualifying data from Daiichi Units 1, 2, and 3, this report provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: primary system pressure; containment building temperature; and containment pressure. As described within this report, sensor evaluations and data qualification required implementation of various processes, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design to instruments easily removed from the TMI-2 plant for evaluations. As documented

  3. PRETTA:A COMPUTER PROGRAM FOR PWR PRESSURIZER’S TRANSIENT THERMODYNAMICS

    Institute of Scientific and Technical Information of China (English)

    阿谢德; 徐济鋆

    2001-01-01

    A computer program PRETTA “Pressurizer Transient Thermodynamics Analysis” was developed for the prediction of pressurizer under transient conditions. It is based on the solution of the conservation laws of heat and mass applied to the three separate and non equilibrium thermodynamic regions. In the program all of the important thermal-hydraulics phenomena occurring in the pressurizer: stratification of the hot water and incoming cold water, bulk flashing and condensation, wall condensation, and interfacial heat and mass transfer have been considered. The bubble rising and rain-out models are developed to describe bulk flashing and condensation, respectively. To obtain the wall condensation rate, a one-dimensional heat conduction equation is solved by the pivoting method. The presented computer program will predict the pressure-time behavior of a PWR pressurizer during a variety of transients. The results obtained from the proposed mathematical model are in good agreement with available data on the CHASHMA nuclear power plant's pressurizer performance.

  4. Numerical modeling of in-vessel melt water interaction in large scale PWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, N.I. [Siemens AG, KWU NA-M, Erlangen (Germany)

    1998-01-01

    This paper presents a comparison between IVA4 simulations and FARO L14, L20 experiments. Both experiments were performed with the same geometry but under different initial pressures, 51 and 20 bar respectively. A pretest prediction for test L21 which is intended to be performed under an initial pressure of 5 bar is also presented. The strong effect of the volume expansion of the evaporating water at low pressure is demonstrated. An in-vessel simulation for a 1500 MW el. PWR is presented. The insight gained from this study is: that at no time are conditions for the feared large scale melt-water intermixing at low pressure in force, with this due to the limiting effect of the expansion process which accelerates the melt and the water into all available flow paths. (author)

  5. Advanced methods for the study of PWR cores; Les methodes d'etudes avancees pour les coeurs de REP

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M.; Salvatores, St.; Ferrier, A. [Electricite de France (EDF), Service Etudes et Projets Thermiques et Nucleaires, 92 - Courbevoie (France); Pelet, J.; Nicaise, N.; Pouliquen, J.Y.; Foret, F. [FRAMATOME ANP, 92 - Paris La Defence (France); Chauliac, C. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Johner, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Cohen, Ch

    2003-07-01

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  6. The safety analysis and thermohydraulic methodologies for the power updating analyses in Spanish PWR plants; Methodologias de diseno termohidraulico y de analisis de seguridad en los aumentos de potencia de centrales PWR

    Energy Technology Data Exchange (ETDEWEB)

    Salesa, F.

    2014-02-01

    This article describes the Safety Analysis and Thermohydraulic methodologies used by ENUSA for the Power Updating analyses in Spanish PWR plants of Westinghouse design: Design tools have been developed over the first cycles resulting new correlations of DNB, fitted to the new fuel assemblies, new DNBR calculation methodology and other improvements in the design areas. Using these methodologies, the available margins between design and limit values are wider. These new margins have allowed to accomplish the design criteria under the new power updating operational conditions. (Author)

  7. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station; Simulaciones del accidente base de diseno a condiciones de aumento de potencia y del transitorio de cierre de MSIV a condiciones de sobrepresion de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Araiza M, E.; Nunez C, A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 03000 Mexico D.F. (Mexico)

    2001-07-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  8. Global estimates of fatal occupational accidents.

    Science.gov (United States)

    Takala, J

    1999-09-01

    Data on occupational accidents are not available from all countries in the world. Furthermore, underreporting, limited coverage by reporting and compensation schemes, and non-harmonized accident recording and notification systems undermine efforts to obtain worldwide information on occupational accidents. This paper presents a method and new estimated global figures of fatal accidents at work by region. The fatal occupational accident rates reported to the International Labour Office are extended to the total employed workforce in countries and regions. For areas not covered by the reported information, rates from other countries that have similar or comparable conditions are applied. In 1994, an average estimated fatal occupational accident rate in the whole world was 14.0 per 100,000 workers, and the total estimated number of fatal occupational accidents was 335,000. The rates are different for individual countries and regions and for separate branches of economic activity. In conclusion, fatal occupational accident figures are higher than previously estimated. The new estimates can be gradually improved by obtaining and adding data from countries where information is not yet available. Sectoral estimates for at least key economic branches in individual countries would further increase the accuracy.

  9. Initial Cladding Condition

    Energy Technology Data Exchange (ETDEWEB)

    E. Siegmann

    2000-08-22

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M&O 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis

  10. PWR safety and relief valve test program. Valve selection/juftification report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    NUREG 0578 required that full-scale testing be performed on pressurizer safety valves and relief valves representative of those in use or planned for use in PWR plants. To obtain valve performance data for the entire population of PWR plant valves, nine safety valves and ten relief valves were selected as a fully representative set of test valves. Justification that the selected valves represent all PWR plant valves was provided by each safety and relief valve manufacturer. Both the valve selection and justification work was performed as part of the PWR Safety and Relief Valve Test Program conducted by EPRI on behalf of the PWR utilities in response to the recommendations of NUREG 0578 and the requirements of the NRC. Results of the Safety and Relief Valve Selection and Justification effort is documented in this report.

  11. Visualization of Traffic Accidents

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong; Khattak, Asad

    2010-01-01

    Traffic accidents have tremendous impact on society. Annually approximately 6.4 million vehicle accidents are reported by police in the US and nearly half of them result in catastrophic injuries. Visualizations of traffic accidents using geographic information systems (GIS) greatly facilitate handling and analysis of traffic accidents in many aspects. Environmental Systems Research Institute (ESRI), Inc. is the world leader in GIS research and development. ArcGIS, a software package developed by ESRI, has the capabilities to display events associated with a road network, such as accident locations, and pavement quality. But when event locations related to a road network are processed, the existing algorithm used by ArcGIS does not utilize all the information related to the routes of the road network and produces erroneous visualization results of event locations. This software bug causes serious problems for applications in which accurate location information is critical for emergency responses, such as traffic accidents. This paper aims to address this problem and proposes an improved method that utilizes all relevant information of traffic accidents, namely, route number, direction, and mile post, and extracts correct event locations for accurate traffic accident visualization and analysis. The proposed method generates a new shape file for traffic accidents and displays them on top of the existing road network in ArcGIS. Visualization of traffic accidents along Hampton Roads Bridge Tunnel is included to demonstrate the effectiveness of the proposed method.

  12. Approaches to analyze the bowing of German PWR fuel assemblies; Ansaetze zur Analyse des Biegeverhaltens deutscher DWR-Brennelemente

    Energy Technology Data Exchange (ETDEWEB)

    Boeke, H.; Bauer, R.; Bloemeling, F.; Lawall, R. [TUeV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2012-11-01

    The analysis of the bowing behavior of PWR fuel elements is required in case of increased fuel element deformations that have been observed during the last years. In the contribution the following issues are discussed: fuel element properties (stiffness, constructive features), influence factors (guiding tubes, spacer), load transfer and its impact. Under consideration of external boundary conditions an evaluation scheme was developed, using analysis data (control rod drop time), friction force measurements, fuel element characteristics (fuel element deformation, bowing) and their ranking, and simulation models (fluid-structure interactions). The evaluation scheme allows the definition of appropriate measures. The suitability of the methodology was demonstrated.

  13. Development of MAAP5.0.3 Spent Fuel Pool Model for Severe Accident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    After the Fukushima accident, the severe accident phenomena in the Spent Fuel Pool (SFP) have been the great issues in the nuclear industry. Generally, during full power operation status, the decay heat of the spent fuel in the SFP is not high enough to cause the severe accident that is the say, the melting of fuel and fuel rack. In addition to this, the SFP of the PWR is not isolated within the containment like the SFP of the old BWR plant, there are so many possible measures to prevent and mitigate severe accidents in the SFP. On the other hand, in the low power shutdown status (fuel refueling), all the core is transferred into the SFP during the refueling period. At this period, if some accidents happen such as the loss of SFP cooling and the failure of SFP integrity then the accidents may be developed into severe accident because the decay heat is high enough. So, the analysis of severe accidents in the SFP during low power shutdown state is greatly affected to the establishment of the major strategies in the severe accident management guideline (SAMG). However, the status of the domestic technical background for those analyses is very weak. it is known that the decay heat of the spent fuel in the SFP is not high enough to cause the severe accident qualitatively. However, there are some possibilities that can cause the severe accidents in the SFP if the loss of SFP cooling and integrity happens simultaneously. The severe accident phenomena in SFP themselves are not much different from those in the containment. However, since the structure of SFP cannot be isolated during the accidents like the containment, the consequence can be extremely significant. So, in terms of the establishment of the severe accident management strategy, it is necessary that the quantitative analysis for the severe accident progression in the SFP should be performed. In this study, the general behavior which can be appeared during the severe accidents in the SFP was analyzed using the

  14. Study for on-line system to identify inadvertent control rod drops in PWR reactors using ex-core detector and thermocouple measures

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Thiago J.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C., E-mail: tsouza@nuclear.ufrj.br, E-mail: canedo@lmp.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Accidental control rod drops event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimize undesirable effects in such a scenario. In this event, there is a distortion in the power distribution and temperature in the reactor core. The goal of this study is to develop an on-line model to identify the inadvertent control rod dropped in PWR reactor. The proposed model is based on physical correlations and pattern recognition of ex-core detector responses and thermocouples measures. The results of the study demonstrated the feasibility of an on-line system, contributing to safer operation conditions and preventing undesirable effects, as its shutdown. (author)

  15. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code; Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt B: Druckwasserreaktor-Stoerfallanalysen unter Verwendung des Severe-Accident-Codes ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-15

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  16. Vertical Drop Of 21-Pwr Waste Package On Unyielding Surface

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-29

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only.

  17. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  18. Technical basis for the initiation and cessation of environmentally-assisted cracking of low-alloy steels in elevated temperature PWR environments

    Energy Technology Data Exchange (ETDEWEB)

    James, L.A.

    1997-10-01

    The Section 11 Working Group on Flaw Evaluation of the ASME B and PV Code Committee is considering a Code Case to allow the determination of the conditions under which environmentally-assisted cracking of low-alloy steels could occur in PWR primary environments. This paper provides the technical support basis for such an EAC Initiation and Cessation Criterion by reviewing the theoretical and experimental information in support of the proposed Code Case.

  19. Geometric and Road Environmental Effects against Total Number of Traffic Accidents in Kendari

    Science.gov (United States)

    Kurdin, M. Akbar; Welendo, La; Annisa, Nur

    2017-05-01

    From the large number of traffic accidents that occurred, the carrying of Kendari as the biggest contributor to accidents in the Southeast. The number of accidents in Kendari row since 2011 was recorded at 18 accidents due to the influence of geometric road, in 2012 registered at 13 accident and in 2013 amounted to 6 accidents, with accident data because of the influence Geometric recorded for 3 consecutive years the biggest contributor to accidents because of the influence of geometric is Abeli districts. This study aimed to determine the road which common point of accident-prone (Black spot) in Kecamatan Abeli as accident-prone areas in Kendari, analyze the influence of geometric and road environment against accidents on roads in Kecamatan Abeli, provide alternative treatment based on the causes of accidents on the location of the accident-prone points (blackspot) to reduce the rate of traffic accidents. From the results of a study of 6 curve the accident-prone locations, that the curve I, II, and VI is the “Black Spot” influenced by the amount and condition of traffic accidents, while at the curve II, a traffic accident that occurred also be caused by unsafe geometric where the type of geometric should be changed from Spiral-Spiral type to Spiral-Circle-Spiral type. This indicates geometric effect on the number of accidents.

  20. [Hanggliding accidents. Distribution of injuries and accident analysis].

    Science.gov (United States)

    Ballmer, F T; Jakob, R P

    1989-12-01

    Paragliding--a relatively new sport to Switzerland--brought 23 patients with 48 injuries (38% lower limb and 29% spinal) within a period of 8 months to the Inselspital University hospital in Berne. The aim of the study in characterizing these injuries is to formulate some guidelines towards prevention. With over 90% of accidents occurring at either take off or landing, emphasis on better training for the beginner is proposed with strict guidelines for the more experienced pilot flying in unfavourable conditions.

  1. Laser accidents: Being Prepared

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  2. Rehabilitation of the living environment in Belarus territories affected by the Chernobyl accident: the Core programme; Rehabilitation des conditions de vie dans les territoires de Bielorussie affectes par l'accident de Tchernobyl: le programme CORE

    Energy Technology Data Exchange (ETDEWEB)

    Trafimchik, Z. [Cooperation pour la Rehabilitation des Conditions de Vie dans les Territoires Contamines par la Catastrophe de Tchernobyl (Russian Federation)

    2008-07-15

    The paper is a description of the CORE Programme that is testing since 2003 in the Republic of Belarus for the duration of 5 years an innovative approach of rehabilitation of the living conditions after the Chernobyl catastrophe based on the involvement of the affected population. The background information on the Chernobyl catastrophe consequences in the Republic of Belarus is presented. The paper contains the description of the CORE organizational structures, application in practice of the participatory approach, the Programme achievements and perspectives. (author)

  3. Developing and analyzing long-term fuel management strategies for an advanced Small Modular PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aeoi.org.ir

    2017-03-15

    Highlights: • Comprehensive introduction and supplementary concepts as a review paper. • Developing an integrated long-term fuel management strategy for a SMR. • High reliable 3-D core modeling over fuel pins against the traditional LRM. • Verifying the expert rules of large PWRs for an advanced small PWR. • Investigating large numbers of safety parameters coherently. - Abstract: In this paper, long-term fuel management (FM) strategies are introduced and analyzed for a new advanced Pressurized Light Water Reactor (PWR) type of Small Modular Reactors (SMRs). The FM strategies are developed to be safe and practical for implementation as much as possible. Safety performances, economy of fuel, and Quality Assurance (QA) of periodic equilibrium conditions are chosen as the main goals. Flattening power density distribution over fuel pins is the major method to ensure safety performance; also maximum energy output or permissible discharging burn up indicates economy of fuel fabrication costs. Burn up effects from BOC to EOC have been traced, studied, and highly visualized in both of transport lattice cell calculations and diffusion core calculations. Long-term characteristics are searched to gain periodical equilibrium characteristics. They are fissile changes, neutron spectrum, refueling pattern, fuel cycle length, core excess reactivity, average, and maximum burn up of discharged fuels, radial Power Peaking Factors (PPF), total PPF, radial and axial power distributions, batch effects, and enrichment effects for fine regulations. Traditional linear reactivity model have been successfully simulated and adapted via fine core and burn up calculations. Effects of high burnable neutron poison and soluble boron are analyzed. Different numbers of batches via different refueling patterns have been studied and visualized. Expert rules for large type PWRs have been influenced and well tested throughout accurate equilibrium core calculations.

  4. IPSN expert appraisal programme on the chooz A 300 MWe PWR. Lessons learned by IPSN

    Energy Technology Data Exchange (ETDEWEB)

    Morlent, O.; Reuchet, J. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, 92 (France)

    2001-07-01

    The closure of Chooz A PWR provided an opportunity to take samples of items that had aged in situ in conditions close to those encountered in PWR in operation over a period of 140.000 hours, which is far longer than the usual time-spans of simulated laboratory tests. 4 topics have been studied: 1) effect of radiation on reactor vessel internals, 2) dissimilar metal joints of reactor coolant system: pressurizer surge line, 3) cast parts of austeno-ferritic steel: hot and cold leg primary valves, and 4) ageing of cables in high temperatures and under irradiation. The examination of the lower internals on some baffle angle bracket and core shroud screws, subjected to varying amounts of irradiation, did not reveal any cracking or corrosion, and confirmed the saturation effect between 4 and 10 dpa for the hardening of 304 austenitic steel in the low temperature range. Expert appraisal of the dissimilar metal joints on the pressurizer surge line confirmed the existence of small fabrication defects due to high temperature cracking. Expert appraisal of the 3 valve body samples from the main section of the coolant system confirmed that -) thermal ageing of the valve body on the hot leg was more advanced than that of the cold leg valve, -) the material of the valve housing on the cold leg which, in theory, was not sensitive to ageing phenomena, exhibited unexpectedly low impact strength values. As for cables, measurements confirmed that their mechanical and electrical properties remained sufficient for them to carry out their functions. (A.C.)

  5. Singular deposit formation in PWR due to electrokinetic phenomena - application to SG clogging

    Energy Technology Data Exchange (ETDEWEB)

    Guillodo, M.; Muller, T.; Barale, M.; Foucault, M. [AREVA NP SAS, Technical Centre (France); Clinard, M.-H.; Brun, C.; Chahma, F. [AREVA NP SAS, Chemistry and Radiochemistry Group (France); Corredera, G.; De Bouvier, O. [Electricite de France, Centre d' Expertise de I' inspection dans les domaines de la Realisation et de l' Exploitation (France)

    2009-07-01

    The deposits which cause clogging of the 'foils' of the tube support plates (TSP) in Steam Generators (SG) of PWR present two characteristics which put forward that the mechanism at the origin of their formation is different from the mechanism that drives the formation of homogeneous deposits leading to the fouling of the free spans of SG tubes. Clogging occurs near the leading edge of the TSP and the deposits appear as diaphragms localized between both TSP and SG tubing materials, while the major part of the tube/TSP interstice presents little or no significant clogging. This type of deposit seems rather comparable to the ones which were reproduced in Lab tests to explain the flow rate instabilities observed on a French unit during hot shutdown in the 90's. The deposits which cause TSP clogging are owed to a discontinuity of the streaming currents in the vicinity of a surface singularity (orifices, scratches ...) which, in very low conductivity environment, produce local potential variations and/or current loop in the metallic pipe material due to electrokinetic effects. Deposits can be built by two mechanisms which may or not coexist: (i) accumulation of particles stabilized by an electrostatic attraction due to the local variation of electrokinetic potential, and (ii) crystalline growth of magnetite produced by the oxidation of ferrous ions on the anodic branch of a current loop. Lab investigations carried out by AREVA NP Technical Centre since the end of the 90's showed that this type of deposit occurs when the redox potential is higher than a critical value, and can be gradually dissolved when the potential becomes lower than this value which depends on the 'Material - Chemistry' couple. Special emphasis will be given in this paper to the TSP clogging of SG in PWR secondary coolant dealing particularly with the potential strong effect of electrokinetic phenomena in low conductive environment and in high temperature conditions

  6. [Accidents with the "paraglider"].

    Science.gov (United States)

    Lang, T H; Dengg, C; Gabl, M

    1988-09-01

    With a collective of 46 patients we show the details and kinds of accidents caused by paragliding. The base for the casuistry of the accidents was a questionnaire which was answered by most of the injured persons. These were questions about the theoretical and practical training, the course of the flight during the different phases, and the subjective point of view of the course of the accident. The patterns of the injuries showed a high incidence of injuries of the spinal column and high risks for the ankles. At the end, we give some advice how to prevent these accidents.

  7. CAREM: an innovative-integrated PWR

    Energy Technology Data Exchange (ETDEWEB)

    Mazzi, R. [INVAP Nuclear Projects Div., Rio Negro (Argentina)], E-mail: mazzi@invap.com.ar

    2009-07-01

    Presented on March 1984 in an international conference for the first time, 'CAREM Concept' focused on engineering solutions from early stages of the design that minimize requirements to safety and safeguards systems making the product simpler, highly reliable and cost effective. The overall idea was widely adopted by worldwide designers, originated a new category of small a medium size nuclear power plants frequently know as 'integrated reactor' and/or 'Advanced-passive safety-reactor'. This paper describes the main design features, progress and prospects of the CAREM project as well as proliferation resistant conditions applicable to the design. (author)

  8. 2005-2014年我国不利天气条件下交通事故特征分析%Analysis of Characteristics of Traffic Accidents Under Adverse Weather Conditions in China During 2005 -20 1 4

    Institute of Scientific and Technical Information of China (English)

    宁贵财; 康彩燕; 陈东辉; 孙广林; 刘君; 王式功; 尚可政; 马敏劲

    2016-01-01

    Through analysis of the number of traffic accidents,the economic losses of traffic accident,the injured number,the deaths number due to traffic accidents under adverse weather conditions and the meteorological observations from 2005 to 2014,the results are as follows:(1 )The number of traffic accidents and the injured occurring on rainy days was most,second for snowy days and third for foggy days.The economic losses and the deaths due to traffic accidents happened on rainy day were largest,second for foggy days and third for snowy days.The average economic losses for each accident were largest on foggy days,then for snowy days and rainy days, the average injured due to traffic accidents was most on hail days,then for foggy days and snowy days,the average deaths number due to traffic accidents was most on foggy days,then for sand days and hail days.(2)Considering the related cooperation policy between the traffic administration and the meteorological department,the number of traffic accidents and their economic losses,the injured and the deaths number were reduced effectively on rainy days,snowy days and windy days.(3)Due to the unprecedented disasters of low temperature,persistent rain,snow and ice storms in 2008,the number of traffic accidents and their economic losses,the injured and the deaths number increased obviously on snowy days in this year.(4)Through analysis of the traffic death toll on eight types of road under rainy days,snowy days and foggy days from 2005 to 2014,the largest traffic death toll in recent ten years happened on the sec-ondary roads under rainy days or snowy days,but under foggy days,the traffic death toll was most on the highway.%根据2005—2014年全国不利天气条件发生的交通事故起数、其经济损失和伤亡人数及气象观测资料研究近10 a我国不利天气条件下的交通事故特征,结果表明:(1)不利天气条件造成的交通事故起数及受伤人数雨天>雪天>雾天,造成经济

  9. New instrumentation of reactor water level for PWR; Nueva Instrumentacion de nivel de agua del reactor para PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, S.

    2005-07-01

    Today, many PWR reactors are equipped with a reactor water level instrumentation system based on different measurement methods. Due to obsolescence issues, FRAMATOME ANP started to develop and quality a new water level measurement system using heated und unheated thermocouple measurements. the measuring principle is based on the fact that the heat transfer in water is considerably higher than in steam. The electronic cabinet for signal processing is based on a proven technology already developed, qualified and installed by FRAMATOME ANP in several NPPs. It is equipped with and advanced temperature measuring transducer for acquisition and processing of thermocouple signals. (Author)

  10. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  11. Iodine behaviour in severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, L.M.C.; Grindon, E.; Handy, B.J.; Sutherland, L. [NNC Ltd., Knutsford (United Kingdom); Bruns, W.G.; Sims, H.E. [AEA Technology, Harwell (United Kingdom); Dickinson, S. [AEA Technology, Winfrith (United Kingdom); Hueber, C.; Jacquemain, D. [IPSN/CEA, Cadarache, Saint Paul-Lez-Durance (France)

    1996-12-01

    A description is given of analyses which identify which aspects of the modelling and data are most important in evaluating the release of radioactive iodine to the environment following a potential severe accident at a PWR and which identify the major uncertainties which affect that release. Three iodine codes are used namely INSPECT, IODE and IMPAIR, and their predictions are compared with those of the PSA code MAAP. INSPECT is a mechanistic code which models iodine behaviour in the aqueous aerosol, spray water and sump water, and the partitioning of volatile species between the aqueous phases and containment gas space. Organic iodine is not modelled. IODE and IMPAIR are semi-empirical codes which do not model iodine behaviour in the aqueous aerosol, but model organic iodine. The fault sequences addressed are based on analyses for the Sizewell `B` design. Two types of sequence have been analysed.: (a) those in which a major release of fission products from the primary circuit to the containment occur, e.g. a large LOCAS, (b) those where the release by-passes the containment, e.g. a leak into the auxiliary building. In the analysis of the LOCA sequences where the pH of the sump is controlled to be a value of 8 or greater, all three codes predict that the oxidation of iodine to produce gas phase species does not make a significant contribution to the source term due to leakage from the reactor building and that the latter is dominated by iodide in the aerosol. In the case where the pH of the sump is not controlled, it is found that the proportion of gas phase iodine increases significantly, although the cumulative leakage predicted by all three codes is not significantly different from that predicted by MAAP. The radiolytic production of nitric acid could be a major factor in determining the pH, and if the pH were reduced, the codes predict an increase in gas phase iodine species leaked from the containment. (author) 4 figs., 7 tabs., 13 refs.

  12. VERA Core Simulator Methodology for PWR Cycle Depletion

    Energy Technology Data Exchange (ETDEWEB)

    Kochunas, Brendan [University of Michigan; Collins, Benjamin S [ORNL; Jabaay, Daniel [University of Michigan; Kim, Kang Seog [ORNL; Graham, Aaron [University of Michigan; Stimpson, Shane [University of Michigan; Wieselquist, William A [ORNL; Clarno, Kevin T [ORNL; Palmtag, Scott [Core Physics, Inc.; Downar, Thomas [University of Michigan; Gehin, Jess C [ORNL

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclear reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.

  13. SCOR 1000: an economic and innovative conceptual design PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, G.M.; Chenaud, M.S. [CEA Cadarache (DEN/DER/SESI), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Reacteurs; Tourniaire, B. [CEA Grenoble (DEN/DTN/SE2T/LPTM), 38 (France)

    2007-07-01

    Within the framework of innovative reactors studies, the Cea proposes the SCOR design (Simple COmpact Reactor) based on most of the advantages of innovative reactors. All main components are integrated in the vessel: the pressurizer, the canned pumps, the control rod mechanics of the driving system (CMD), and the dedicated heat exchangers of the passive heat removal system. The only steam generator is located above the vessel instead of the upper head. This design is featured by its compactness and by a large suppression or simplification of auxiliary systems. The first design with a 600 MWe shows its competitiveness with regard to the large loop-type PWR. To reduce the cost investment by the law sized effect, we examine the possibility of increasing the power of the reactor, while keeping the safety advantages of the medium sized SCOR. The electrical power of the new design is 1000 MWe. SCOR-1000 operates at much lower primary circuit pressure than standard PWRs (93 bars instead of the usual 155 bars), and the power density is lower (80 MW/m3 instead of 100 for the present PWRs). The reactivity is controlled by the CMD and by the burnable poison, without soluble boron. With the same safety advantages of the medium-sized SCOR, the cost reduction of the investment and of cost production could reach 18% with regard to the loop-type PWR. (authors)

  14. PWR fuel performance and burnup extension in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yokote, M. [Kansai Electric Power Co., Inc., Osaka (Japan); Kondo, Y.; Abeta, S.

    1996-10-01

    Japanese utilities and fuel manufacturers have expanded much of their resources and efforts to maintain a reliable supply of PWR fuel for Japan. In the early 1970s, since the level of knowledge and experience of using fuel was less than now, some problems were encountered. However, their causes were investigated and countermeasures implemented, the design improved and quality control enhanced. The results can already be seen by significantly improved performance of the PWR plants now in operation, frequency of problems was quickly reduced. Since fuel reliability has been improved, the emphasis has shifted to improving economics by increasing burnup and using uranium resources effectively. The maximum discharged burnup was previously limited to 39 GWd/t and STEP1 burnup extension to 48 GWd/t has been gradually developed, while STEP2 burnup extension to 55 GWd/t is started to be demonstrated from 1996. Because resources in Japan are scarce, a policy was selected of conserving and making effective use of these resources by recycling the uranium and plutonium recovered from reactors. Consequently, significant work is being done on the development of MOX fuel and utilization of recovered uranium. (author)

  15. Degradation of fastener in reactor internal of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Chung, M. K.; Han, C. H

    2000-03-01

    Main component degraded in reactor internal structure of PWR is fastener such as bolts, stud, cap screw, and pins. The failure of these components may damage nuclear fuel and limits the operation of nuclear reactor. In foreign reactors operated more than 10 years, an increasing number of incidents of degraded thread fasteners have been reported. The degradation of these components impair the integrity of reactor internal structure and limit the life extension of nuclear power plant. To solve the problem of fastener failure, the incidents of failure and main mechanisms should be investigated. the purpose of this state-of-the -art report is to investigate the failure incidents and mechanisms of fastener in foreign and domestic PWR and make a guide to select a proper materials. There is no intent to describe each event in detail in this report. This report covers the failures of fastener and damage mechanisms reported by the licensees of operating nuclear power plants and the applications of plants constructed after 1964. This information is derived from pertinent licensee event report, reportable occurrence reports, operating reactor event memoranda, failure analysis reports, and other relevant documents. (author)

  16. Analysis of SBO ATWS for Maanshan PWR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Chen, Shao-Wen [National Tsing Hua Univ., Hsinchu, Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Shih, Chunkuan [National Tsing Hua Univ., Hsinchu, Taiwan (China). Inst. of Nuclear Engineering and Science; Nuclear and New Energy Education and Research Foundation, Hsinchu, Taiwan (China); Lin, Hao-Tzu [Atomic Energy Council, Taoyuan, Taiwan (China). Inst. of Nuclear Energy Research

    2015-11-15

    Station blackout anticipated transient without scram (SBO ATWS) is considered as loss of off-site and on-site power but no credit for automatic reactor trip. SBO ATWS causes reactor coolant pump (RCP) trip, loss of all main feedwater pumps and turbine trip, then the reactor coolant system (RCS) pressure rises rapidly due to loss of heat removal paths. The ASME Code Level C service limit criteria of 22.06 MPa (3200 psig) is assumed to be an unacceptable plant condition in SECY-83-293. The simulation is performed by TRACE which is a thermal-hydraulic code developed by U.S. NRC. Three different AFW flows are modeled to ensure the pressures will not be beyond the criteria. RCP seal-leakage is concerned as a SBLOCA due to loss of RCP seal-cooling. Four possible leakage flows are modeled to examine the reactor core water level and temperature variation.

  17. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  18. TMI-2 accident: core heat-up analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ardron, K.H.; Cain, D.G.

    1981-01-01

    This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

  19. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  20. PWR reactor vessel in-service-inspection according to RSEM

    Energy Technology Data Exchange (ETDEWEB)

    Algarotti, Marc; Dubois, Philippe; Hernandez, Luc; Landez, Jean Paul [Intercontrole, 13, rue du Capricorne - SILIC 433, 94583 Rungis - Cedex (France)

    2006-07-01

    Nuclear services experience Framatome ANP (an AREVA and Siemens company) has designed and constructed 86 Pressurized Water Reactors (PWR) around the world including the three units lately commissioned at Ling Ao in the People's Republic of China and ANGRA 2 in Brazil; the company provided general and specialized outage services supporting numerous outages. Along with the American and German subsidiaries, Framatome ANP Inc. and Framatome ANP GmbH, Framatome ANP is among the world leading nuclear services providers, having experience of over 500 PWR outages on 4 continents, with current involvement in more than 50 PWR outages per year. Framatome ANP's experience in the examinations of reactor components began in the 1970's. Since then, each unit (American, French and German companies) developed automated NDT inspection systems and carried out pre-service and ISI (In-Service Inspections) using a large range of NDT techniques to comply with each utility expectations. These techniques have been validated by the utilities and the safety authorities of the countries where they were implemented. Notably Framatome ANP is fully qualified to provide full scope ISI services to satisfy ASME Section XI requirements, through automated NDE tasks including nozzle inspections, reactor vessel head inspections, steam generator inspections, pressurizer inspections and RPV (Reactor Pressure Vessel) inspections. Intercontrole (Framatome ANP subsidiary dedicated in supporting ISI) is one of the leading NDT companies in the world. Its main activity is devoted to the inspection of the reactor primary circuit in French and foreign PWR Nuclear Power Plants: the reactor vessel, the steam generators, the pressurizer, the reactor internals and reactor coolant system piping. NDT methods mastered by Intercontrole range from ultrasonic testing to eddy current and gamma ray examinations, as well as dye penetrant testing, acoustic monitoring and leak testing. To comply with the high

  1. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  2. Communication and industrial accidents

    NARCIS (Netherlands)

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational communication on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. As a link between these two levels - the organizational failures and mistakes - I suggest the conc

  3. Accident investigation and analysis

    NARCIS (Netherlands)

    Kampen, J. van; Drupsteen, L.

    2013-01-01

    Many organisations and companies take extensive proactive measures to identify, evaluate and reduce occupational risks. However, despite these efforts things still go wrong and unintended events occur. After a major incident or accident, conducting an accident investigation is generally the next ste

  4. Application of Induced Containment Therapy with adapted protocol for home care and its contributions to the motor condition and patient rehabilitation after encephalic vascular accident

    Directory of Open Access Journals (Sweden)

    Daniela Tonús

    2015-09-01

    Full Text Available Introduction: Encephalic Vascular Accident (EVA is among the most important diseases that cause physical and functional limitations. Hemiplegia is the most common physical changes post-EVA, as compromises the upper and lower limbs at the same side of the body, characterized by a rigid pattern of the flexor muscles of the upper limb and the extensor muscles of the lower limb. The Induced Containment Therapy has been a major rehabilitation technique recently aiming to promote functional improvement of the hemiplegic limb of those who suffered EVA and enable performance and quality of life of the individual. Objective: This study aimed to identify the possible contributions of Induced Containment Therapy using a protocol adapted to technique application to the hemiplegic limb. Moreover, this research points out the influence of the environment interventions, which on the present study, occurred in the participant’s home. Method: this is a case study with exploratory feature. Results and Conclusion: The results indicated improvements in functional ability at the time of execution of the tasks and increased use of hemiplegic limb, increasing motor performance after applying the Induced Containment Therapy adapted protocol compared to the start of treatment

  5. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  6. In-Plant Fission Product Behavior in SGTR Accident with Long-Term SBO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Han, Seok Jung; Ahn, Kwang Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The off-site AC power was recovered in 9 days after the accident in the NPS. Therefore safety injection by fire pump truck with fresh water or seawater is only available in the Fukushima accident. However, safety injection by fire pump truck is not always effective due to the high pressure of RPV inside or leakages of alternative water injection flow paths. In the SBO situations in pressurized water reactor plant (PWR), turbine driven auxiliary feedwater (TD-AFW) pump can inject water to the secondary side of steam generator. However, turbine inlet steam flow control valve cannot work properly when loss of vital DC power occurs. Vital DC power is designed to be maintained during 4 or 8 hours in the SBO conditions. In this paper motor-driven and turbine driven AFW pumps are all assumed to be not working at time 0 sec as a worst case assumption. Iodine pool-scrubbing can occur in the secondary side of the faulted steam generator. However, iodine pool-scrubbing in the secondary side of the faulted steam generator is assumed not to be working, due to the assumption of the loss of DC battery for turbine inlet flow control valve. Iodine pool-scrubbing is one of the long-term research issues in safety assessment of nuclear power plant severe accident. PHEBUS FPT series and THAI experiment projects are typical projects on the resolving source term issues in severe accident of nuclear power plants. However, iodine retention by pool scrubbing is still a debating issue. In such containment bypass sequences, fission products can be released out to environment directly from RCS without retention or deposition in containment structures. SGTR is one of the hazardous accident scenarios in the typical PSA, because SGTR induces a large release amount of source term to environment directly. A key operation strategy was the isolation of the broken reactor coolant system loop from the intact loop. Typical core degradation in SGTR scenarios occurs with multiple failures of the isolation

  7. Bayes classifiers for imbalanced traffic accidents datasets.

    Science.gov (United States)

    Mujalli, Randa Oqab; López, Griselda; Garach, Laura

    2016-03-01

    Traffic accidents data sets are usually imbalanced, where the number of instances classified under the killed or severe injuries class (minority) is much lower than those classified under the slight injuries class (majority). This, however, supposes a challenging problem for classification algorithms and may cause obtaining a model that well cover the slight injuries instances whereas the killed or severe injuries instances are misclassified frequently. Based on traffic accidents data collected on urban and suburban roads in Jordan for three years (2009-2011); three different data balancing techniques were used: under-sampling which removes some instances of the majority class, oversampling which creates new instances of the minority class and a mix technique that combines both. In addition, different Bayes classifiers were compared for the different imbalanced and balanced data sets: Averaged One-Dependence Estimators, Weightily Average One-Dependence Estimators, and Bayesian networks in order to identify factors that affect the severity of an accident. The results indicated that using the balanced data sets, especially those created using oversampling techniques, with Bayesian networks improved classifying a traffic accident according to its severity and reduced the misclassification of killed and severe injuries instances. On the other hand, the following variables were found to contribute to the occurrence of a killed causality or a severe injury in a traffic accident: number of vehicles involved, accident pattern, number of directions, accident type, lighting, surface condition, and speed limit. This work, to the knowledge of the authors, is the first that aims at analyzing historical data records for traffic accidents occurring in Jordan and the first to apply balancing techniques to analyze injury severity of traffic accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Investigation of feedback on neutron kinetics and thermal hydraulics from detailed online fuel behavior modeling during a boron dilution transient in a PWR with the two-way coupled code system DYN3D-TRANSURANUS

    Energy Technology Data Exchange (ETDEWEB)

    Holt, L., E-mail: lars.holt@tuev-sued.de [TÜV SÜD Energietechnik GmbH Baden-Württemberg, Gottlieb-Daimler-Str. 7, 70794 Filderstadt (Germany); Technical University München, Department of Nuclear Engineering, Boltzmannstr. 15, D-85748 Garching bei München (Germany); Rohde, U.; Kliem, S.; Baier, S. [Helmholtz-Zentrum Dresden—Rossendorf, Reactor Safety Division, PO Box 510119, D-01314 Dresden (Germany); Seidl, M. [E.ON Kernkraft GmbH, Tresckowstr. 5, D-30457 Hannover (Germany); Van Uffelen, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Macián-Juan, R. [Technical University München, Department of Nuclear Engineering, Boltzmannstr. 15, D-85748 Garching bei München (Germany)

    2016-02-15

    Highlights: • General coupling interface was developed for the fuel performance code TRANSURANUS. • With this new tool simplified fuel behavior models in codes can be replaced. • The reactor dynamics code DYN3D was coupled to TRANSURANUS at assembly level. • The feedback from detailed online fuel behavior modeling is analyzed for reactivity initiated accident (RIA). • The thermal hydraulics can be affected strongly even in fresh fuel assemblies. - Abstract: Recently the reactor dynamics code DYN3D (including an internal fuel behavior model) was coupled to the fuel performance code TRANSURANUS at assembly level. The coupled code system applies the new general TRANSURANUS coupling interface, hence it can be used for one-way or two-way coupling. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach replaces completely the internal DYN3D fuel behavior model and transfers parameters like radial fuel temperature distribution and cladding temperature back to DYN3D. For the first time results of the coupled code system are presented for a post-critical-heat-flux heat transfer. The corresponding heat transfer regime is mostly film boiling, where the cladding temperature can rise several hundreds of degrees. The simulated boron dilution transient assumed an injection of a 36 m{sup 3} slug of under-borated coolant into a German pressurized water reactor (PWR) core initiated from a sub-critical reactor state (extreme reactivity initiated accident (RIA) conditions). The feedback from detailed fuel behavior modeling was found negligible on the neutron kinetics and thermal hydraulics during the first power rise. In a later phase of the transient, the node injected energy can differ 25 J/g, even still around 20 J/g for nodes without film boiling. Furthermore, the thermal hydraulics can be affected strongly even in fresh fuel assemblies, where film boiling

  9. Pressure vessel fracture studies pertaining to a PWR LOCA-ECC thermal shock: experiments TSE-3 and TSE-4 and update of TSE-1 and TSE-2 analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Bolt, S.E.

    1977-11-04

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analyses of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for test specimens, and four thermal shock experiments with 0.53-m-OD (21-in.) by 0.15-m-wall (6-in.) cylindrical test specimens. In the first experiment, initiation was not expected and did not occur, although there was a small amount of subcritical crack growth. In the second experiment, initiation of a semicircular flaw took place as expected; the final length along the surface was about four times the initial length, but there was no radial growth. The third and fourth experiments were similar, and the long axial flaw initiated in good agreement with predictions.

  10. VOF Calculations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    M. Murase

    2012-01-01

    Full Text Available We improved the computational grid and schemes in the VOF (volume of fluid method with the standard − turbulent model in our previous study to evaluate CCFL (countercurrent flow limitation characteristics in a full-scale PWR hot leg (750 mm diameter, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa. In this paper, therefore, to evaluate applicability of the VOF method to different fluid properties and a different scale, we did numerical simulations for full-scale air-water conditions and the 1/15-scale air-water tests (50 mm diameter, respectively. The results calculated for full-scale conditions agreed well with CCFL data and showed that CCFL characteristics in the Wallis diagram were mitigated under 1.5 MPa steam-water conditions comparing with air-water flows. However, the results calculated for the 1/15-scale air-water tests greatly underestimated the falling water flow rates in calculations with the standard − turbulent model, but agreed well with the CCFL data in calculations with a laminar flow model. This indicated that suitable calculation models and conditions should be selected to get good agreement with data for each scale.

  11. Interface tracking simulations of bubbly flows in PWR relevant geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun, E-mail: jfang3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Rasquin, Michel, E-mail: michel.rasquin@colorado.edu [Aerospace Engineering Department, University of Colorado, Boulder, CO 80309 (United States); Bolotnov, Igor A., E-mail: igor_bolotnov@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-15

    Highlights: • Simulations were performed for turbulent bubbly flows in PWR subchannel geometry. • Liquid turbulence is fully resolved by direct numerical simulation approach. • Bubble behavior is captured using level-set interface tracking method. • Time-averaged single- and two-phase turbulent flow statistical quantities are obtained. - Abstract: The advances in high performance computing (HPC) have allowed direct numerical simulation (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved liquid turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for multiphase computational fluid dynamics (M-CFD). Both single- and two-phase turbulent flows were studied within a single PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter (D{sub h}) and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolve all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations, a 1% bubble volume fraction was used which resulted in 17 bubbles in

  12. [Severe parachuting accident. Analysis of 122 cases].

    Science.gov (United States)

    Krauss, U; Mischkowsky, T

    1993-06-01

    Based on a population of 122 severely injured patients the causes of paragliding accidents and the patterns of injury are analyzed. A questionnaire is used to establish a sport-specific profile for the paragliding pilot. The lower limbs (55.7%) and the lower parts of the spine (45.9%) are the most frequently injured parts of the body. There is a high risk of multiple injuries after a single accident because of the tremendous axial power. The standard of equipment is good in over 90% of the cases. Insufficient training and failure to take account of geographical and meteorological conditions are the main determinants of accidents sustained by paragliders, most of whom are young. Nevertheless, 80% of our patients want to continue paragliding. Finally some advice is given on how to prevent paragliding accidents and injuries.

  13. Research progress on assessment of reactor vessel integrity under severe accident conditions%严重事故条件下压力容器完整性评价的研究进展

    Institute of Scientific and Technical Information of China (English)

    文青龙; 陈军; 卢冬华; 赵华

    2011-01-01

    堆芯熔融物堆内滞留(In-Vessel Retention,IVR)是以AP1000为代表的第三代轻水反应堆严重事故管理的重要策略之一,也是严重事故条件下保证压力容器完整性(Reactor Vessel Integrity,RVI)的典型方法之一.该文综述了国外在严重事故条件下压力容器完整性试验研究和理论分析的现状,总结了相关的试验装置、试验方法以及基于试验数据拟合得到的经验关联式,评价了严重事故条件下压力容器完整性数值分析的工具和方法,以第三代压水堆热工水力技术为工程背景,探讨了严重事故条件下压力容器完整性热工水力基础研究的方向.%As a representative method of reactor vessel integrity (RVI) under severe accident conditions, In-vessel retention of molten core debris (IVR) is an important severe accident management strategy employed in the API000 generation-3 Pressuried Water Reactor. In this paper, research progress on the test and theoretical analysis based on RVI is reviewed. Test facilities and techniques, as well as the modeling are summarized. In addition, tools for numerical simulation for RVI are evaluated. Finally, based on the applications in thermal hydraulic technology for the generation-3 Pressuried Water Reactor in China, the potential research direction of thermal-hydraulics under RVI conditions are discussed.

  14. Persistence of airline accidents.

    Science.gov (United States)

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  15. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  16. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  17. PWR steam generator chemical cleaning, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.

  18. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  19. Identifying thermal cycling mechanisms in PWR branch line piping

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.T. [EPRI, Charlotte, NC (United States); Keller, J.D.; Bilanin, A.J. [Continuum Dynamics, Inc., Ewing, NJ (United States)

    2002-07-01

    Predicting the onset and the characteristics of thermal cycling in pressurized water reactor (PWR) branch line piping systems is critical to formulation of thermal fatigue screening tools. The complex nature of the underlying thermal-hydraulic phenomena, however, significantly complicates prediction using analytical models or direct numerical simulations. Instead, it is necessary to perform scaled experiments to identify the physical mechanisms and to gather data for formulation of semi-empirical models for the thermal cycling phenomena. Through the EPRI Materials Reliability Program a test program is underway to identify and develop semi-empirical correlations for the physical thermalhydraulic mechanisms that cause thermal cycling in dead-ended PWR branch line piping systems. Three series of tests are being performed in this test program: configuration tests on a representative up-horizontal (UH) branch line piping geometry, configuration tests on a representative down-horizontal (DH) branch line piping geometry, and high Reynolds number tests to assess penetration of secondary flow structures into a dead-ended branch line. Results from UH and DH configuration tests indicate that random turbulence penetration is not sufficient for thermal cycling to occur. Rather a swirling flow structure, representative of a large, 'corkscrew' vortical structure, is required for thermal cycling. Scale tests on the UH configuration have simulated cycling phenomena observed in full-scale plant data and have been used to determine parametric sensitivities in formulating a predictive model for the thermal cycling. Data indicate that the mechanism for thermal cycling in UH configurations is stochastic but scales with the leak rate from the valve. The critical dependent variables are reduced to several non-dimensional scaling curves, resulting in a semiempirical predictive model. This paper discusses the test program and the results obtained to date. Application of these

  20. Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack

    Energy Technology Data Exchange (ETDEWEB)

    Delliou, P. le [Electricite de France, EDF, 77 - Moret-sur-Loing (France). Dept. MTC; Julisch, P.; Hippelein, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Bezdikian, G. [Electricite de France, EDF, 92 - Paris la Defense (France). Direction Production Transport

    1998-11-01

    EDF, in co-operation with Framatome, has conducted a large research programme on the mechanical behaviour of thermally aged cast duplex stainless steel elbows, which are part of the main primary circuit of French PWR. One important task of this programme consisted of testing a full-scale PWR hot leg elbow. The elbow contained a semi-elliptical circumferential notch machined on the outer surface of the intrados as well as casting defects located on the flanks. To simulate the end-of-life condition of the component regarding material toughness, it had undergone a 2400 hours ageing heat treatment at 400 C. The test preparation and execution, as well as the material characterization programme, were committed to MPA. The test was conducted under constant internal pressure and in-plane bending (opening mode) at 200 C. For safety reasons, it took place on an open air-site: the Meppen military test ground. At the maximum applied moment (6000 kN.m), the notch did not initiate. This paper presents the experimental results and the fracture mechanics analysis of the test, based on finite element calculations. (orig.)

  1. Overview and Discussion of the OECD/NRC Benchmark Based on NUPEC PWR Subchannel and Bundle Tests

    Directory of Open Access Journals (Sweden)

    M. Avramova

    2013-01-01

    Full Text Available The Pennsylvania State University (PSU under the sponsorship of the US Nuclear Regulatory Commission (NRC has prepared, organized, conducted, and summarized the Organisation for Economic Co-operation and Development/US Nuclear Regulatory Commission (OECD/NRC benchmark based on the Nuclear Power Engineering Corporation (NUPEC pressurized water reactor (PWR subchannel and bundle tests (PSBTs. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency (NEA of OECD and the Japan Nuclear Energy Safety Organization (JNES, Japan. The OECD/NRC PSBT benchmark was organized to provide a test bed for assessing the capabilities of various thermal-hydraulic subchannel, system, and computational fluid dynamics (CFDs codes. The benchmark was designed to systematically assess and compare the participants’ numerical models for prediction of detailed subchannel void distribution and department from nucleate boiling (DNB, under steady-state and transient conditions, to full-scale experimental data. This paper provides an overview of the objectives of the benchmark along with a definition of the benchmark phases and exercises. The NUPEC PWR PSBT facility and the specific methods used in the void distribution measurements are discussed followed by a summary of comparative analyses of submitted final results for the exercises of the two benchmark phases.

  2. 极端气象条件诱发的静电火灾事故分析与防范建议%Analysis and Preventive Countermeasures for Electrostatic Fire Accidents Caused by Extreme Weather Condition

    Institute of Scientific and Technical Information of China (English)

    李家启; 李黎; 黄亚敏; 秦健; 曾理

    2012-01-01

    Taking a fire accident in at a pharmacy company in Chongqing on the September 2006 as an example, the causes of the electrostatic fire accident are analyzed by using the meteorological ground observation data and water vapor content inferred from GPS/MAT data, in combination with the production processes of the company. The results show that the extreme weather condition of high temperature and low moisture (air vapour content being 0.5 g/cm3, and surface temperature above.40℃) is the precondition for the electrostatic fire; another important cause is the incorrect measures for electrostatic prevention, which made a great deal of static electricity accumulated, produced spark discharge, and then led to the burning of a large amount of volatile petroleurn aether vapour. In order to decrease the occurrences of the like electrostatic fire accidents, some precaution suggestions are given.%针对重庆一家制药厂2006年9月3日22:00发生的一起火灾,利用GPS/MAT资料反演空气水汽含量产品和气象地面观测资料,并结合制药厂生产工艺,重点分析静电火灾事故原因.结果表明:高温低湿极端气象条件(空气中水汽含量达到0.5 g/cm3、地表温度在40℃以上)是静电火灾发生的先决条件;生产工艺中防静电措施不合理,使静电产生和大量积聚,并产生火花放电,致使大量挥发的石油醚蒸汽燃烧而引发火灾,为减少类似静电火灾事故的发生,提出了相应防范建议以供参考.

  3. Traffic Accidents on Slippery Roads

    DEFF Research Database (Denmark)

    Fonnesbech, J. K.; Bolet, Lars

    2014-01-01

    Police registrations from 65 accidents on slippery roads in normally Danish winters have been studied. The study showed: • 1 accident per 100 km when using brine spread with nozzles • 2 accidents per 100 km when using pre wetted salt • 3 accidents per 100 km when using kombi spreaders The results...

  4. LWR fuel rod behavior during reactor tests under loss-of-coolant conditions: Results of the FR2 in-pile tests

    Energy Technology Data Exchange (ETDEWEB)

    Karb, E.H.; Sepold, L.; Hofmann, P.; Petersen, C.; Schanz, G.; Zimmermann, H. (Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.))

    1982-05-01

    Results of the FR2 in-pile tests on fuel rod behavior under loss-of-coolant accident (LOCA) conditions are presented. To investigate the possible influence of a nuclear environment on fuel rod failure mechanisms, unirradiated as well as irradiated (2500 to 35,000 MWd/tsub(U)) PWR-type test fuel rods were exposed to temperature transients simulating the second heatup phase of a LOCA. Loaded by internal overpressure, the cladding ballooned and ruptured. The burst data do not indicate major differences from results obtained out-of-pile with electrically heated fuel rod simulators, and do not show an influence of burnup. The fuel pellets in previously irradiated rods, already cracked during normal operation, crumbled completely in the regions with large cladding deformation. Post-test examinations revealed cladding mechanical behavior and oxidation to be comparable to out-of-pile results, with relatively little fission gas release during the transient.

  5. Boating Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  6. Accident resistant transport container

    Science.gov (United States)

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  7. [Multicenter paragliding accident study 1990].

    Science.gov (United States)

    Lautenschlager, S; Karli, U; Matter, P

    1992-01-01

    During the period from 1.1.90 until 31.12.90, 86 injuries associated with paragliding were analyzed in a prospective study in 12 different Swiss hospitals with reference to causes, patterns, and frequencies. The injuries showed a mean score of over 2 and were classified as severe. Most frequent spine injuries (36%) and lesions of the lower extremity (35%) with a high risk of the ankles were diagnosed. One accident was fatal. 60% of the accidents happened during landing, 26% during launching and 14% during flight. Half of the pilots were affected during their primary training course. Most accidents were caused by inflight error of judgement--especially incorrect estimation of wind conditions--and further the choice of unfavourable landing sites. In contrast to previous injury-reports, only one equipment failure could be noted, but often the equipment was not corresponding with the experience and the weight of the pilot. To reduce the frequency of paragliding-injuries an accurate choice of equipment and an increased attention to environmental factors is mandatory. Furthermore an education-program regarding the attitude and intelligence of the pilot should be included in training courses.

  8. Analysis of Maximum Reasonably Foreseeable Accidents for the Yucca Mountain Draft Environmental Impact Statement (DEIS)

    Energy Technology Data Exchange (ETDEWEB)

    S.B. Ross; R.E. Best; S.J. Maheras; T.I. McSweeney

    2001-08-17

    Accidents could occur during the transportation of spent nuclear fuel and high-level radioactive waste. This paper describes the risks and consequences to the public from accidents that are highly unlikely but that could have severe consequences. The impact of these accidents would include those to a collective population and to hypothetical maximally exposed individuals (MEIs). This document discusses accidents with conditions that have a chance of occurring more often than 1 in 10 million times in a year, called ''maximum reasonably foreseeable accidents''. Accidents and conditions less likely than this are not considered to be reasonably foreseeable.

  9. The Fukushima accident; Accident nucleaire a Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, D.

    2012-02-15

    The Fukushima accident is characterized by a sequence of natural disasters: earthquake and tsunamis that deprived simultaneously 3 reactors from cooling and electrical power for quite a long time. A series of hydrogen explosion has added to the mess. Experts agree to say that certainly nuclear fuel has melt to form corium in all 3 reactors. The accident has contaminated tens of thousand acres of land around the plant and has jeopardized local coastal fishery. The human toll is unexpectedly low: no direct casualty in the population but several suicides among the people that was forced to leave their home. 5 people from the plant staff died certainly from the consequences of the tsunami. (A.C.)

  10. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  11. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Salay, Michael (U.S. Nuclear Regulatory Commission, Washington, D.C.); Gauntt, Randall O.; Lee, Richard Y. (U.S. Nuclear Regulatory Commission, Washington, D.C.); Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  12. ANALISIS SENSITIVITAS TURBULENSI ALIRAN PADA KANAL BAHAN BAKAR PWR BERBASIS CFD

    Directory of Open Access Journals (Sweden)

    Endiah Puji Hastuti

    2015-04-01

    yang sangat lama dan membutuhkan memori yang besar. Kata kunci: aliran turbulen, kanal PWR, CFD, tunak, transien   Coolant flow turbulence on heat transfer process serves to enhance the heat transfer coefficient, likewise flow in the fuel sub channel. Computational fluid dynamic program, FLUENT is a computational program based on finite element, that is able to predict and analyze the dynamics of fluid flow phenomena, accurately. CFD calculation program is selected in this study because of its accurately and it also can provide good visualization. Purpose of this research was to understand the characteristics of heat transfer, mass and momentum of the fuel rod to the coolant visually on: the temperature field, pressure field, and the kinetic energy field, as a function of the flow dynamics within fuel channel, on steady state and transient condition. Analysis of flow dynamics in the fuel channel base on CFD was done by using the PWR sample data with reactor power of 1000 MWe on 17x17 array of fuel. To examine the sensitivity of the flow equation in accordance with the model of turbulent flow on fuel channel, the turbulence equation model of k-omega (Ƙ-ω, k-epsilon (Ƙ-ε, and Reynold stress model (RSM for steady state was used, while for transient turbulence model DES and LES are applied. In the sensitivity analysis of turbulent flow, hexahedral mesh model of three cell geometry each are 0.5 mm, 0.2 mm and 0.15 mm, was selected. The analysis shows that there are similar results of turbulen model Ƙ-ε and Ƙ-ω standard, on steady state analysis. Comparing with Dittus Boelter criteria for Nusselt number, the Reynolds stress model (RSM is recommended. Sensitivity analysis of mesh geometry between cell size 0.5 mm, 0.2 mm and 0.15 mm, indicating that the cell size of 0.5 mm was sufficient. Developed flow already reached on DES and LES model, however only for short time (3 seconds for transient condition. LES model need very long computation time and big memory

  13. FUNDING OF ACCIDENT INSURANCE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    O. Gamankova

    2016-03-01

    Full Text Available The paper deals with the peculiarities of financial provision of public and private accident insurance. Analyzes the methodology of forming insurance premium rates in private accident insurance. The study examines the practice of reforming the financial security of the state social insurance against accidents. The results show need to implement scientifically proven approach to determining premium rates in the state social insurance based on mathematical statistics and actuarial calculations to ensure that such conditions on the one hand, can insure the risk, and the other - to provide the insurer the ability to perform insurance obligations' commitments. One of the promising areas of improvement Accident Insurance determines to define increasing the role of the private sector to create and attraction of investments, financing, reduce costs, and provision of insurance services on insurance against accidents at a qualitatively higher level. The results show the need to consider the usefulness of a mixed provision of services to accident insurance under state or non-state system, and the viability and effectiveness of the combination of these systems.

  14. Accident management information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-04-01

    The tables contained in this Appendix A describe the information needs for a pressurized water reactor (PWR) with a large, dry containment. To identify these information needs, the branch points in the safety objective trees were examined to decide what information is necessary to (a) determine the status of the safety functions in the plant, i.e., whether the safety functions are being adequately maintained within predetermined limits, (b) identify plant behavior (mechanisms) or precursors to this behavior which indicate that a challenge to plant safety is occurring or is imminent, and (c) select strategies that will prevent or mitigate this plant behavior and monitor the implementation and effectiveness of these strategies. The information needs for the challenges to the safety functions are not examined since the summation of the information needs for all mechanisms associated with a challenge comprise the information needs for the challenge itself.

  15. Calculation of absorbed doses to water pools in severe accident sequences

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F. [Oak Ridge National Lab., TN (United States)

    1991-12-01

    A methodology is presented for calculating the radiation dose to a water pool from the decay of uniformly distributed nuclides in that pool. Motivated by the need to accurately model radiolysis reactions of iodine, direct application is made to fission product sources dissolved or suspended in containment sumps or pools during a severe nuclear reactor accident. Two methods of calculating gamma absorption are discussed - one based on point-kernal integration and the other based on Monte Carlo techniques. Using least-squares minimization, the computed results are used to obtain a correlation that relates absorbed dose to source energy and surface-to-volume ratio of the pool. This correlation is applied to most relevant fission product nuclides and used to actually calculate transient sump dose rate in a pressurized-water reactor (PWR) severe accident sequence.

  16. ANALISIS MODEL TERAS 3-DIMENSI UNTUK EVALUASI PARAMETER KRITIKALITAS REAKTOR PWR MAJU KELAS 1000 MW

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-04-01

    Full Text Available Setelah kejadian Fukushima, penggunaan sistem keselamatan pasif menjadi persyaratan yang penting untuk PLTN. PLTN jenis PWR maju kelas 1000 yang didesain oleh Westinghouse, AP1000, memiliki fitur keselamatan pasif disamping sederhana dan modular. Sebelum memilih suatu PLTN, maka perlu dilakukan suatu evaluasi terhadap parameter desainnya. Salah satu parameter yang penting dalam keselamatan adalah kritikalitas teras. Permasalahan pokok dalam mengevaluasi parameter kritikalitas teras AP1000 tidak adanya data komposisi material SS304 dan H2O di daerah reflektor dan diameter penyerap SS304. Dengan demikian tujuan penelitian ini adalah mendapatkan model teras 3-dimensi AP1000 dan siap diaplikasikan dalam evaluasi parameter kritikalitas teras. Hasil perhitungan menunjukkan bahwa komposisi terbaik SS304 dan H2O di reflektor teras bagian atas dan bawah masing-masing 50 vol%, sedangkan diameter penyerap SS304 adalah 0,960 cm. Evaluasi konsentrasi boron kritis menunjukkan perbedaan yang signifikan dengan nilai desain. Meskipun penyebab utama dari perbedaan ini belum diketahui, akan tetapi dapat dibuktikan bahwa konsentrasi boron kritis sangat sensitif dengan densitas UO2. Untuk reaktivitas padam, reaktor AP1000 memiliki margin subkritikalitas teras yang besar untuk satu siklus operasi. Dengan demikian teras yang diusulkan dapat digunakan sebagai acuan untuk evaluasi parameter teras lainnya atau perangkat analitis lainnya dalam rangka mengevaluasi desain reaktor AP1000. Kata kunci: AP1000, kritikalitas, konsentrasi boron kritis, reaktivitas padam   After the Fukushima accident, the use of passive safety system becomes an important requirement for the nuclear power plant (NPP. The advanced PWR NPP with 1000 MW (electric class, designed by Westinghouse, AP1000, a reactor with the passive safety features as well as simple and modular. Before selecting a nuclear power plant, there should be an evaluation of the design parameter. One important parameter in

  17. Cyclical Fluctuations in Workplace Accidents

    OpenAIRE

    Boone, J.; J. C. VAN OURS

    2002-01-01

    This Paper presents a theory and an empirical investigation on cyclical fluctuations in workplace accidents. The theory is based on the idea that reporting an accident dents the reputation of a worker and raises the probability that he is fired. Therefore a country with a high or an increasing unemployment rate has a low (reported) workplace accident rate. The empirical investigation concerns workplace accidents in OECD countries. The analysis confirms that workplace accident rates are invers...

  18. Computational simulation of natural convection of a molten core in lower head of a PWR pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Camila Braga; Romero, Gabriel Alves; Jian Su, E-mail: camila@lasme.coppe.ufrj.b, E-mail: gabrielromero@lasme.coppe.ufrj.b, E-mail: sujian@lasme.coppe.ufrj.b [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program

    2010-07-01

    Computational simulation of natural convection in a molten core during a hypothetical severe accident in the lower head of a typical PWR pressure vessel was performed for two-dimensional semi-circular geometry with isothermal walls. Transient turbulent natural convection heat transfer of a fluid with uniformly distributed volumetric heat generation rate was simulated by using a commercial computational fluid dynamics software ANSYS CFX 12.0. The Boussinesq model was used for the buoyancy effect generated by the internal heat source in the flow field. The two-equation k-{omega} based SST (Shear Stress Transport) turbulence model was used to mould the turbulent stresses in the Reynolds-Average Navier-Stokes equations (RANS). Two Prandtl numbers, 6:13 and 7:0, were considered. Five Rayleigh numbers were simulated for each Prandtl number used (109, 1010, 1011, 1012, and 1013). The average Nusselt numbers on the bottom surface of the semicircular cavity were in excellent agreement with Mayinger et al. (1976) correlation and only at Ra = 109 the average Nusselt number on the top flat surface was in agreement with Mayinger et al. (1976) and Kulacki and Emara (1975) correlations. (author)

  19. Method for calculating coolant resonance frequencies under normal and accident conditions in nuclear power plants with WWER-type pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N. (Moskovskij Ehnergeticheskij Inst. (USSR))

    1983-03-01

    Mathematical models are proposed for calculating acoustic oscillation resonance frequencies in the coolant in various components of the WWER type primary circuit (core, steam generator, pressurizer, piping). Due to the correspondence between model calculations and experimental results obtained in operating nuclear power plants, the developed models can be used for practical calculations. The possibility of calculating the eigenfrequencies of the coolant oscillation under different operating conditions leads to the interpretation of operational data, to the analysis of operational conditions, to the detection of coolant boiling in the reactor, and to design changes in order to prevent resonance oscillations within the coolant.

  20. Occupational Accidents: A Perspective of Pakistan Construction Industry

    Directory of Open Access Journals (Sweden)

    Tauha Hussain Ali

    2014-07-01

    Full Text Available It has been observed that the construction industry is one of the notorious industry having higher rate of fatalities and injuries. Resulting in higher financial losses and work hour losses, which are normally faced by this industry due to occuptional accidents. Construction industry has the highest occupational accidents rate recorded throughout the world after agriculture industry. The construction work site is often a busy place having an incredibly high account of activities taking place, where everyone is moving in frenzy having particular task assigned. In such an environment, occupational accidents do occur. This paper gives information about different types of occupational accidents & their causes in the construction industry of Pakistan. A survey has been carried out to identify the types of occupational accidents often occur at construction site. The impact of each occupational accident has also been identified. The input from the different stakeholders involved on the work site was analyzed using RIW (Relative Importance Weight method. The findings of this research show that ?fall from elevation, electrocution from building power and snake bite? are the frequent occupational accidents occur within the work site where as ?fall from elevation, struck by, snake bite and electrocution from faulty tool? are the occupational accident with high impact within the construction industry of Pakistan. The results also shows the final ranking of the accidents based on higher frequency and higher impact. Poor Management, Human Element and Poor Site Condition are found as the root causes leading to such occupational accidents. Hence, this paper

  1. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Ho; Nyo, Kye Ho; Lee, Deok Hyun; Lim, Deok Jae; Ahn, Jin Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Sun Jin [Hanyang Univ., Seoul (Korea, Republic of)

    1996-01-01

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author).

  2. Computer simulation of Angra-2 PWR nuclear reactor core using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C. de; Rebello, Wilson F., E-mail: eng.cavaliere@ime.eb.br, E-mail: rebello@ime.eb.br [Instituto Militar de Engenharia - Secao de Engenharia Nuclear, Rio de Janeiro, RJ (Brazil); Oliveira, Claudio L. [Universidade Gama Filho, Departamento de Matematica, Rio de Janeiro, RJ (Brazil); Vellozo, Sergio O., E-mail: vellozo@cbpf.br [Centro Tecnologico do Exercito. Divisao de Defesa Quimica, Biologica e Nuclear, Rio de Janeiro, RJ (Brazil); Silva, Ademir X. da, E-mail: ademir@nuclear.ufrj.br [Coordenacao dos Programas de Pos Gaduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In this work the MCNPX (Monte Carlo N-Particle Transport Code) code was used to develop a computerized model of the core of Angra 2 PWR (Pressurized Water Reactor) nuclear reactor. The model was created without any kind of homogenization, but using real geometric information and material composition of that reactor, obtained from the FSAR (Final Safety Analysis Report). The model is still being improved and the version presented in this work is validated by comparing values calculated by MCNPX with results calculated by others means and presented on FSAR. This paper shows the results already obtained to K{sub eff} and K{infinity}, general parameters of the core, considering the reactor operating under stationary conditions of initial testing and operation. Other stationary operation conditions have been simulated and, in all tested cases, there was a close agreement between values calculated computationally through this model and data presented on the FSAR, which were obtained by other codes. This model is expected to become a valuable tool for many future applications. (author)

  3. Accident progression event tree analysis for postulated severe accidents at N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. (Sandia National Labs., Albuquerque, NM (USA)); Medford, G.T. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

  4. Accidents in nuclear ships

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)]|[Technical Univ. of Denmark, Lyngby (Denmark)

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).

  5. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  6. HTGR severe accident sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, R.M.; Ball, S.J.; Kornegay, F.C.

    1982-01-01

    Thermal-hydraulic, fission product transport, and atmospheric dispersion calculations are presented for hypothetical severe accident release paths at the Fort St. Vrain (FSV) high temperature gas cooled reactor (HTGR). Off-site radiation exposures are calculated for assumed release of 100% of the 24 hour post-shutdown core xenon and krypton inventory and 5.5% of the iodine inventory. The results show conditions under which dose avoidance measures would be desirable and demonstrate the importance of specific release characteristics such as effective release height. 7 tables.

  7. Criticality accident in uranium fuel processing plant. Influence of the critical accident seen to consciousness investigation of the public

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Teruaki [Kyoto Univ. (Japan)

    2000-08-01

    Here was introduced a consciousness investigation result carried out at Fukui prefecture and Osaka city after about two months of the JCO criticality accident. Peoples were disturbed by the accident, and not a little changed their individual estimations on items relating to energy. However, peoples lived in Fukui prefecture did not increase rate of opposition against nuclear energy promotion and nuclear power plant construction to their living area on comparison with a year before the accident. This reason might be understood by that the accident was not an accident of a nuclear power plant directly, and that their living area was much distant from place of the accident and was not suffered any danger. On the other hand, public opinion in Osaka city made worse on comparison with that before a year, and if such worse public opinion was thought to be due to the accident, its effect could be said to be different in each area even with no direct relation to the accident to shown a result dependent upon its various conditions. As a rough tendency on psychological disturbance due to the accident, it could be said that peoples became to have feelings of avoiding hard nuclear energy technology at a chance of the accident and to direct thoughts of soft natural energy and environment respect. (G.K.)

  8. Iodine chemistry at severe accidents. A review and evaluation of the state-of-the-art in the field. APRI 5 report. Part I: Iodine chemistry at hypothetical severe accidents. A review of the state-of-the-art 2003. Part II: A comparison of our knowledge on iodine chemistry and fission products with the current models used in MAAP 4.0.5; Jodkemi under svaara haverier. En sammanstaellnig och vaerdering av kunskapslaeget inom omraadet. APRI 5 rapport. Del I: Jodkemi vid hypotetiska svaara haverier. En genomgaang av kunskapslaeget aar 2003. Del II: Jaemfoerelse av kunskapslaeget om jodkemi och fissionsprodukter med aktuella modeller i MAAP 4.0.5

    Energy Technology Data Exchange (ETDEWEB)

    Liljenzin, Jan-Olov [Liljenzins data och kemikonsult, Goeteborg (Sweden)

    2005-01-01

    The current report tries to summarize and analyze the state-of-the-art on Iodine chemistry relevant to the conditions expected during severe accidents in nuclear power plants. This has made it necessary to compare a considerable amount of data, new as well as old, in order to try to find the reasons behind some changes in the expected chemical behaviour of Iodine. In a few cases this has been far from simple. Many numerical values are given in this report. However, me numbers given should not be used in a non-critical way because they are often deduced from measurements whose interpretation depends on various kinds of systematic differences and assumptions with regard to technique, 'known' constants, and models applied. The most important observation today is that one can no longer uncritically assume that iodine is only released and transported as cesium iodide. The considerable effect that control rod material (including other construction materials) can have on the way in which an accident develops and on its iodine chemistry is clearly seen from the results of the experiments performed within the PHEBUS FP project. The second part of the report evaluates new knowledge on Iodine chemistry and Iodine behaviour of importance in severe nuclear reactor accidents. Also some new information regarding the behaviour and chemistry of other fission products has been collected. In the light of this information, the current modelling of Iodine behaviour in the MAAP code version 4.0.5 has been investigated. No modelling errors have been found. However, some of the equations used to calculate the vapour pressure of the components in the AlC-alloy used in PWR control rods give questionable results. An error in the MAAP manual was found which should be corrected. Finally, some suggestions are given for future improvements in the modelling of severe accidents used in MAAP for both BWRs and PWRs.

  9. Cause Analysis of Wuhan Tianheng Building Pile Accident

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The geological condition and the original structure feature and foundation design of Wuhan Tianheng building are described. The accident appearance of pile foundation in the construction execution of work is illustrated. The generating source of this pile foundation accident is analyzed in great details.``

  10. Analysis of Workplace Accidents in Automotive Repair Workshops in Spain

    Directory of Open Access Journals (Sweden)

    Antonio López-Arquillos

    2016-09-01

    Conclusion: Health and safety strategies and accident prevention measures should be individualized and adapted to the type of worker most likely to be injured in each type of accident. Occupational health and safety training courses designed according to worker profile, and improving the participation of the workers in small firms creating regional or roving safety representatives would improve working conditions.

  11. A case study of electrostatic accidents in the process of oil-gas storage and transportation

    Science.gov (United States)

    Hu, Yuqin; Wang, Diansheng; Liu, Jinyu; Gao, Jianshen

    2013-03-01

    Ninety nine electrostatic accidents were reviewed, based on information collected from published literature. All the accidents over the last 30 years occurred during the process of oil-gas storage and transportation. Statistical analysis of these accidents was performed based on the type of complex conditions where accidents occurred, type of tanks and contents, and type of accidents. It is shown that about 85% of the accidents occurred in tank farms, gas stations or petroleum refineries, and 96% of the accidents included fire or explosion. The fishbone diagram was used to summarize the effects and the causes of the effects. The results show that three major reasons were responsible for accidents, including improper operation during loading and unloading oil, poor grounding and static electricity on human bodies, which accounted for 29%, 24% and 13% of the accidents, respectively. Safety actions are suggested to help operating engineers to handle similar situations in the future.

  12. Use of decision trees for evaluating severe accident management strategies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclerar Engineering; Lee, Yongjin; Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2016-07-15

    Accident management strategies are defined to innovative actions taken by plant operators to prevent core damage or to maintain the sound containment integrity. Such actions minimize the chance of offsite radioactive substance leaks that lead to and intensify core damage under power plant accident conditions. Accident management extends the concept of Defense in Depth against core meltdown accidents. In pressurized water reactors, emergency operating procedures are performed to extend the core cooling time. The effectiveness of Severe Accident Management Guidance (SAMG) became an important issue. Severe accident management strategies are evaluated with a methodology utilizing the decision tree technique.

  13. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  14. Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises

    Energy Technology Data Exchange (ETDEWEB)

    El Bakkari, B. [ERSN-LMR, Department of physics, Faculty of Sciences P.O.Box 2121, Tetuan (Morocco)], E-mail: bakkari@gmail.com; El Bardouni, T.; Merroun, O.; El Younoussi, Ch.; Boulaich, Y. [ERSN-LMR, Department of physics, Faculty of Sciences P.O.Box 2121, Tetuan (Morocco); Chakir, E. [EPTN-LPMR, Faculty of Sciences Kenitra (Morocco)

    2009-05-15

    The aim of this study is to evaluate the capabilities of a newly developed burnup code called BUCAL1. The code provides the full capabilities of the Monte Carlo code MCNP5, through the use of the MCNP tally information. BUCAL1 uses the fourth order Runge Kutta method with the predictor-corrector approach as the integration method to determine the fuel composition at a desired burnup step. Validation of BUCAL1 was done by code vs. code comparison. Results of two different kinds of codes are employed. The first one is CASMO-4, a deterministic multi-group two-dimensional transport code. The second kind is MCODE and MOCUP, a link MCNP-ORIGEN codes. These codes use different burnup algorithms to solve the depletion equations system. Eigenvalue and isotope concentrations were compared for two PWR uranium and thorium benchmark exercises at cold (300 K) and hot (900 K) conditions, respectively. The eigenvalue comparison between BUCAL1 and the aforementioned two kinds of codes shows a good prediction of the systems'k-inf values during the entire burnup history, and the maximum difference is within 2%. The differences between the BUCAL1 isotope concentrations and the predictions of CASMO-4, MCODE and MOCUP are generally better, and only for a few sets of isotopes these differences exceed 10%.

  15. PWR composite materials use. A particular case of safety-related service water pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pays, M.F.; Le Courtois, T

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during `lifetime`); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author) 2 refs.

  16. Studies of residual stress measurement and analysis techniques for a PWR dissimilar weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Naoki, E-mail: naoki2_ogawa@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 2-1-1, Shinhama, Arai-cho, Takasago 676-8686 (Japan); Muroya, Itaru; Iwamoto, Youichi; Ohta, Takahiro; Ochi, Mayumi; Hojo, Kiminobu [Mitsubishi Heavy Industries, Ltd., 2-1-1, Shinhama, Arai-cho, Takasago 676-8686 (Japan); Ogawa, Kazuo [Japan Nuclear Energy Safety Organization, 3-17-1, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2012-02-15

    For evaluation of the PWSCC crack propagation behavior, a test model was produced using the same fabrication process of Japanese PWR plants and the stress distribution change was measured during a fabrication process such as a hydrostatic test, welding a main coolant pipe to the stainless steel safe end and an operation condition test. For confirmation of validity of the numerical estimation method of the stress distribution, FE analysis was performed to calculate the stress distributions for each fabrication process. From the validation procedure, a standard residual stress evaluation method was established. Furthermore for consideration of characteristics of PWSCC's propagation behavior of the dissimilar welding joint of the safe end nozzles, the influence coefficients at the deepest point for the stress intensity factors of axial cracks with large aspect ratio a/c (crack depth/half of surface crack length) was prepared. The crack shape was assumed a rectangular shape and the stress intensity factors at the deepest point of the crack were calculated with change of crack depth using FE analysis. By using these stress distribution and influence coefficients, a behavior of a PWSCC crack propagation at the safe end nozzles can be estimated easily and rationally.

  17. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    Science.gov (United States)

    2013-06-01

    Loss of Coolant Accident LWR Light Water Reactor MOX Mixed Oxide Fuel MTC Moderator Temperature Coefficient MWd/kgIHM Megawatt days per...working only with UO2 and UO2/PuO2 mixed oxide ( MOX ) fuels. 3.1 Studsvik Core Management Software CASMO-4E and SIMULATE-3 are the primary computational

  18. Who by accident? The social morphology of car accidents.

    Science.gov (United States)

    Factor, Roni; Yair, Gad; Mahalel, David

    2010-09-01

    Prior studies in the sociology of accidents have shown that different social groups have different rates of accident involvement. This study extends those studies by implementing Bourdieu's relational perspective of social space to systematically explore the homology between drivers' social characteristics and their involvement in specific types of motor vehicle accident. Using a large database that merges official Israeli road-accident records with socioeconomic data from two censuses, this research maps the social order of road accidents through multiple correspondence analysis. Extending prior studies, the results show that different social groups indeed tend to be involved in motor vehicle accidents of different types and severity. For example, we find that drivers from low socioeconomic backgrounds are overinvolved in severe accidents with fatal outcomes. The new findings reported here shed light on the social regularity of road accidents and expose new facets in the social organization of death. © 2010 Society for Risk Analysis.

  19. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  20. Gas-liquid countercurrent two-phase flow in a PWR hot leg: A comprehensive research review

    Energy Technology Data Exchange (ETDEWEB)

    Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281 (Indonesia); Hoehne, Thomas; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Vierow, Karen [Department of Nuclear Engineering Texas A and M University, 129 Zachry Engineering Center, 3133 TAMU College Station, TX 77843-3133 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We review the scientific progress on the CCFL in a PWR hot leg. Black-Right-Pointing-Pointer It includes the experimental data, one-dimensional and CFD models in the open literatures. Black-Right-Pointing-Pointer The weak and strong points of the published works were clarified. Black-Right-Pointing-Pointer The research directions in this field were proposed. - Abstract: Research into gas-liquid countercurrent two-phase flow in a model of pressurized water reactor (PWR) hot leg has been carried out over the last several decades. An extensive experimental data base has been accumulated from these studies, leading to the development of phenomenological correlations and scaling parameters of the countercurrent flow limitation (CCFL). However, most of the proposed correlations apply under a relatively narrow range of conditions, generally limited to the test section conditions and/or geometry. Moreover the development of mechanistic models based on the underlying physical processes has been limited. In contrast to this mechanistic form of modelling, the implementation of computational fluid dynamics (CFD) techniques has also been pursued, but the considerable robust three-dimensional (3D) closure relations for this application remain an unachieved goal due to lack of detailed phenomenological knowledge and consequent application of empirical one-dimensional experimental correlations to the multidimensional problem. This paper presents a comprehensive review of research work on countercurrent gas-liquid two-phase flow in a PWR hot leg and provides direction regarding future research on this topic. In the introductory section, the problems facing current research are described. In the following sections, recent experimental as well as theoretical research achievements are overviewed. In the last section, the problems that remain unsolved are discussed, along with some concluding remarks. It was found that only limited theoretical

  1. Probes for inspections of heat exchanges installed at nuclear power plants type PWR by eddy current method; Sondas para inspecao de trocadores de calor instalados em usinas nucleares tipo PWR pelo metodo de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alonso F.O. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Enghenharia Mecanica]. E-mail: kauzz21@yahoo.com; Alencar, Donizete A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: daa@cdtn.br

    2007-07-01

    From all non destructive examination methods usable to perform integrity evaluation of critical equipment installed at nuclear power plants (NPP), eddy current test (ET) may be considered the most important one, when examining heat exchangers. For its application, special probes and reference calibration standards are employed. In pressurized water reactor (PWR) NPPs, a particularly critical equipment is the steam generator (SG), a huge heat exchanger that contains thousands of U-bend thin wall tubes. Due to its severe working conditions (pressure and temperature), that component is periodically examined by means of ET. In this paper a revision of the operating fundamentals of the main ET probes, used to perform SG inspections is presented. (author)

  2. ALICE Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The ALICE (point 2) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for ALICE are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the ALICE vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  3. LHCb Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The LHCb (point 8) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for LHCb are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the LHCb vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  4. Car accidents in cellular automata models for one-lane traffic flow

    Science.gov (United States)

    Moussa, Najem

    2003-09-01

    Conditions for the occurrence of car accidents are introduced in the Nagel-Schreckenberg model. These conditions are based on the thought that a real accident depends on several parameters: an unexpected action of the car ahead (sudden stop or abrupt deceleration), the gap between the two cars, the velocity of the successor car and its delayed reaction time. We discuss then the effect of this delayed reaction time on the probability of traffic accidents. We find that these conditions for the occurrence of car accidents are necessary for modeling realistic accidents.

  5. Optimal design of passive containment cooling system for innovative PWR

    Directory of Open Access Journals (Sweden)

    Huiun Ha

    2017-08-01

    Full Text Available Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS of an innovative pressurized water reactor (PWR. A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT geometry, PCCS heat exchanger (PCCX location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

  6. Aqueous Nanofluid as a Two-Phase Coolant for PWR

    Directory of Open Access Journals (Sweden)

    Pavel N. Alekseev

    2012-01-01

    Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.

  7. Mitsubishi PWR nuclear fuel with advanced design features

    Energy Technology Data Exchange (ETDEWEB)

    Kaua Goe, Toshiy Uki; Nuno kawa, Koi Chi [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    2008-10-15

    In the last few decades, the global warming has been a big issue. As the breakthrough in this crisis, advanced operations of the water reactor such as higher burn up, longer cycle, and up rating could be effective ways. From this viewpoint, Mitsubishi Heavy Industries (MHI) has developed the fuel for burn up extension, whose assembly burn-up limit is 55GWd/t(A), with the original and advanced designs such as corrosion resistant cladding material MDA, and supplied to Japanese PWR utilities. On the other hand, MHI intends to supply more advanced fuel assemblies not only to domestic market but to the global market. Actually MHI has submitted the application for standard design certification of USA . Advanced Pressurized Water Reactor on Jan. 2nd 2008. The fuel assembly for US APWR is 17x17 type with active fuel length of 14ft, characterized with three features, to {sup E}nhance Fuel Economy{sup ,} {sup E}nable Flexible Core Operation{sup ,} and to {sup I}mprove Reliability{sup .} MHI has also been conducting development activities for more advanced products, such as 70GWd/t(A) burn up limit fuel with cladding, guide thimble and spacer grid made from M-MDATM alloy that is new material with higher corrosion resistance, such as 12ft and 14ft active length fuel, such as fuel with countermeasure against grid fretting, debris fretting, and IRI. MHI will present its activities and advanced designs.

  8. PWR safety/relief valve blowdown analysis experience

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.Z.; Chou, L.Y.; Yang, S.H. (Gilbert/Commonwealth Engineers and Consultants, Reading, PA (USA). Speciality Engineering Dept.)

    1982-10-01

    The paper describes the difficulties encountered in analyzing a PWR primary loop pressurizer safety relief valve and power operated relief valve discharge system, as well as their resolution. The experience is based on the use of RELAP5/MOD1 and TPIPE computer programs as the tools for fluid transient analysis and piping dynamic analysis, respectively. General approaches for generating forcing functions from thermal fluid analysis solution to be used in the dynamic analysis of piping are reviewed. The paper demonstrates that the 'acceleration or wave force' method may have numerical difficulties leading to unrealistic, large amplitude, highly oscillatory forcing functions in the vicinity of severe flow area discontinuities or choking junctions when low temperature loop seal water is discharged. To avoid this problem, an alternate computational method based on the direct force method may be used. The simplicity and superiority in numerical stability of the forcing function computation method as well as its drawbacks are discussed. Additionally, RELAP modeling for piping, valve, reducer, and sparger is discussed. The effects of loop seal temperature on SRV and PORV discharge line blowdown forces, pressure and temperature distributions are examined. Finally, the effects of including support stiffness and support eccentricity in piping analysis models, method and modeling relief tank connections, minimization of tank nozzle loads, use of damping factors, and selection of solution time steps are discussed.

  9. Development of Database for Accident Analysis in Indian Mines

    Science.gov (United States)

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2016-10-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  10. Development of Database for Accident Analysis in Indian Mines

    Science.gov (United States)

    Tripathy, Debi Prasad; Guru Raghavendra Reddy, K.

    2015-08-01

    Mining is a hazardous industry and high accident rates associated with underground mining is a cause of deep concern. Technological developments notwithstanding, rate of fatal accidents and reportable incidents have not shown corresponding levels of decline. This paper argues that adoption of appropriate safety standards by both mine management and the government may result in appreciable reduction in accident frequency. This can be achieved by using the technology in improving the working conditions, sensitising workers and managers about causes and prevention of accidents. Inputs required for a detailed analysis of an accident include information on location, time, type, cost of accident, victim, nature of injury, personal and environmental factors etc. Such information can be generated from data available in the standard coded accident report form. This paper presents a web based application for accident analysis in Indian mines during 2001-2013. An accident database (SafeStat) prototype based on Intranet of the TCP/IP agreement, as developed by the authors, is also discussed.

  11. Accident tolerant fuels for LWRs: A perspective

    Science.gov (United States)

    Zinkle, S. J.; Terrani, K. A.; Gehin, J. C.; Ott, L. J.; Snead, L. L.

    2014-05-01

    The motivation for exploring the potential development of accident tolerant fuels in light water reactors to replace existing Zr alloy clad monolithic (U, Pu) oxide fuel is outlined. The evaluation includes a brief review of core degradation processes under design-basis and beyond-design-basis transient conditions. Three general strategies for accident tolerant fuels are being explored: modification of current state-of-the-art zirconium alloy cladding to further improve oxidation resistance (including use of coatings), replacement of Zr alloy cladding with an alternative oxidation-resistant high-performance cladding, and replacement of the monolithic ceramic oxide fuel with alternative fuel forms.

  12. National and regional analysis of road accidents in Spain.

    Science.gov (United States)

    Tolón-Becerra, A; Lastra-Bravo, X; Flores-Parra, I

    2013-01-01

    In Spain, the absolute fatality figures decreased almost 50 percent between 1998 and 2009. Despite this great effort, road mortality is still of great concern to political authorities. Further progress requires efficient road safety policy based on an optimal set of measures and targets that consider the initial conditions and characteristics in each region. This study attempts to analyze road accidents in Spain and its provinces in time and space during 1998-2009. First, we analyzed daily, monthly, and nationwide (NUTS 0) development of road accidents, the correlation between logarithmic transformations of road accidents and territorial and socioeconomic variables, the causality by simple linear regression of road accidents and territorial and socioeconomic variables, and preliminary frequency by fast Fourier transform. Then we analyzed the annual trend in accidents in the Spanish provinces (NUTS 3) and found a correlation between the logarithmic transformations of the mortality rate, fatalities per fatal accident, and accidents resulting in injuries per inhabitant variables and population, population density, gross domestic product (GDP), length of road network, and area. Finally, causality was analyzed by simple linear regression. The most outstanding results were the negative correlation between mortality rate and population density in Spanish provinces, which has increased over time, and that road accidents in Spain have an approximate periodicity of 57 days. The fast Fourier transform analysis of road accident frequency in Spain was useful in identifying the periodic, harmonic components of accidents and casualties. The periodicity observed both for the period 1998-2009 and by year showed that the highest intensity in road accidents was bimonthly, despite the lower number of accidents and casualties in the spectra of amplitude and power and efforts to reduce the intensity and concentration during off-season travel (summer and December).

  13. Behavior of road accidents: Structural time series approach

    Science.gov (United States)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir; Arsad, Zainudin

    2014-12-01

    Road accidents become a major issue in contributing to the increasing number of deaths. Few researchers suggest that road accidents occur due to road structure and road condition. The road structure and condition may differ according to the area and volume of traffic of the location. Therefore, this paper attempts to look up the behavior of the road accidents in four main regions in Peninsular Malaysia by employing a structural time series (STS) approach. STS offers the possibility of modelling the unobserved component such as trends and seasonal component and it is allowed to vary over time. The results found that the number of road accidents is described by a different model. Perhaps, the results imply that the government, especially a policy maker should consider to implement a different approach in ways to overcome the increasing number of road accidents.

  14. RELAP5 Analyses of ROSA/LSTF Experiments on AM Measures during PWR Vessel Bottom Small-Break LOCAs with Gas Inflow

    Directory of Open Access Journals (Sweden)

    Takeshi Takeda

    2014-01-01

    Full Text Available RELAP5 code posttest analyses were performed on ROSA/LSTF experiments that simulated PWR 0.2% vessel bottom small-break loss-of-coolant accidents with different accident management (AM measures under assumptions of noncondensable gas inflow and total failure of high-pressure injection system. Depressurization of and auxiliary feedwater (AFW injection into the secondary-side of both steam generators (SGs as the AM measures were taken 10 min after a safety injection signal. The primary depressurization rate of 55 K/h caused rather slow primary depressurization being obstructed by the gas accumulation in the SG U-tubes after the completion of accumulator coolant injection. Core temperature excursion thus took place by core boil-off before the actuation of low-pressure injection (LPI system. The fast primary depressurization by fully opening the relief valves in both SGs with continuous AFW injection led to long-term core cooling by the LPI actuation even under the gas accumulation in the SG U-tubes. The code indicated remaining problems in the predictions of break flow rate during two-phase flow discharge period and primary pressure after the gas inflow. Influences of the primary depressurization rate with continuous AFW injection onto the long-term core cooling were clarified by the sensitivity analyses.

  15. Car Accidents in the Deterministic and Nondeterministic Nagel-Schreckenberg Models

    Science.gov (United States)

    Yang, Xian-Qing; Ma, Yu-Qiang

    In this paper, we study further the probability for the occurrence of car accidents in the Nagel-Schreckenberg model. By considering the braking probability, the conditions for car accidents to occur are modified to obtain accurate results. A universal phenomenological theory will also be presented to describe the probability for car accidents to occur in the deterministic and nondeterministic models, respectively.

  16. Lessons learned from accidents investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Bello, P. [Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico City (Mexico); Croft, J. [National Radiological Protection Board (United Kingdom); Glenn, J

    1997-12-31

    Accidents from three main practices: medical applications, industrial radiography and industrial irradiators are used to illustrate some common causes of accidents and the main lessons to be learned. A brief description of some of these accidents is given. Lessons learned from the described accidents are approached by subjects covering: safety culture, quality assurance, human factors, good engineering practice, defence in depth, security of sources, safety assessment and monitoring and verification compliance. (author)

  17. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  18. simulation of a SGTR severe PWR-W with MELCOR code; Simulacion de un SGTR severo en un PWR-W con el codigo Melcor

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A. J.; Jimenez Varas, G.; Israelsson, L. C.

    2014-04-01

    Steam Generator tube Rupture (SGTR) is a small break loss of coolant accident. the issues related to this kind of transients makes them different from the classics LOCA studies. SGTR accidents in Pressurized Water Reactor are known to be one of the most demanding transients for the operating crew. It this accident is not managed in a proper way it could lead to steam generator overfill and a severe accident inside containment . To simulate this accident the MELCOR code was chosen, whose aim is the assessment of the progression of severe accidents in Light Water Reactors. (Author)

  19. Authority structure and industrial accidents

    NARCIS (Netherlands)

    As, Sicco van

    2001-01-01

    This paper deals with the influence of organizational characteristics on safety. Accidents are actually caused by individual mistakes. However the underlying causes of accidents are often organizational. The general hypothesis is that the authority structure is a main cause of accident-proneness

  20. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    Science.gov (United States)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for

  1. The spatial distribution of workplace accidents in Spain: assessing the role of workplace inspections

    OpenAIRE

    Bande, Roberto; López-Mourelo, Elva

    2014-01-01

    This paper analyses the spatial distribution of workplace accidents in Spain and analyses the role of economic and institutional variables in this geographical outcome. After estimating an econometric model that explains regional variation in job accidents incidence, we compute conditional regional distributions of workplace accidents under the assumption of no regional variation in workplace inspections. Results show that much of the regional differences in severe and fatal accidents are exp...

  2. A Study on the Operation Strategy for Combined Accident including TLOFW accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Gook Young [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University, Abu Dhabi (United Arab Emirates)

    2014-10-15

    It is difficult for operators to recognize the necessity of a feed-and-bleed (F-B) operation when the loss of coolant accident and failure of secondary side occur. An F-B operation directly cools down the reactor coolant system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. The plant is not always necessary the F-B operation when the secondary side is failed. It is not necessary to initiate an F-B operation in the case of a medium or large break because these cases correspond to low RCS pressure sequences when the secondary side is failed. If the break size is too small to sufficiently decrease the RCS pressure, the F-B operation is necessary. Therefore, in the case of a combined accident including a secondary cooling system failure, the provision of clear information will play a critical role in the operators' decision to initiate an F-B operation. This study focuses on the how we establish the operation strategy for combined accident including the failure of secondary side in consideration of plant and operating conditions. Previous studies have usually focused on accidents involving a TLOFW accident. The plant conditions to make the operators confused seriously are usually the combined accident because the ORP only focuses on a single accident and FRP is less familiar with operators. The relationship between CET and PCT under various plant conditions is important to decide the limitation of initiating the F-B operation to prevent core damage.

  3. Quantification of severe accident source terms of a Westinghouse 3-loop plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee Min [Department of Engineering and System Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec II, Kung Fu Road, Hsinchu, Taiwan (China)], E-mail: mlee@mail.ess.nthu.edu.tw; Ko, Y.-C. [Department of Engineering and System Science, and Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec II, Kung Fu Road, Hsinchu, Taiwan, ROC (China)

    2008-04-15

    Integrated severe accident analysis codes are used to quantify the source terms of the representative sequences identified in PSA study. The characteristics of these source terms depend on the detail design of the plant and the accident scenario. A historical perspective of radioactive source term is provided. The grouping of radionuclides in different source terms or source term quantification tools based on TID-14844, NUREG-1465, and WASH-1400 is compared. The radionuclides release phenomena and models adopted in the integrated severe accident analysis codes of STCP and MAAP4 are described. In the present study, the severe accident source terms for risk quantification of Maanshan Nuclear Power Plant of Taiwan Power Company are quantified using MAAP 4.0.4 code. A methodology is developed to quantify the source terms of each source term category (STC) identified in the Level II PSA analysis of the plant. The characteristics of source terms obtained are compared with other source terms. The plant analyzed employs a Westinghouse designed 3-loop pressurized water reactor (PWR) with large dry containment.

  4. Interactions of severe accident research and regulatory positions (ISARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R. (comp.) [Royal Inst. of Tech., Stockholm (Sweden). Nuclear Power Safety

    2001-12-01

    in assessment of plant safety. This work package was also designed to distinguish the differences between the attitudes and approaches followed by the various regulatory organisations in Europe, Eastern Europe, USA and Japan. Work Package 5: Relevance of example PSA results to SA research. The objective of their work package was to employ the results of some recent PSAs (preferably for a PWR and a BWR) and relate their findings to the results obtained in SA research, and to the effectiveness of the SAM measures already taken or contemplated. Work Package 6: The state of resolution of the SA issues with respect to the needs. The objective of this work package is to have another look at the state of the resolution of the severe accident issues which have been identified over the years, and relate that to what the needs of the regulatory organizations are in terms of their functions. Work Package 7: Regulatory use of the results of severe accident research. The objective is to identify the results of the SA research which the regulatory organizations, over the years, have used in either defining specific regulatory actions or in not taking specific actions. Work Package 8: Remaining issues and concerns. The objective of the work here is to review the work in the previous work package and identify what are the remaining unresolved safety issues and concerns for which sufficient results of the SA research are not available. Work Package 9: Recommendations on future directions of severe accident research. The purpose of this work package is to provide recommendations to E.U. (and to the readers) by the authors of this report on the directions that should be followed, in the future for the conduct of severe accident research. These recommendations are in essence the conclusions of this study.

  5. Simulation of the core degradation phase of the Fukushima accidents using the ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, H., E-mail: herve.bonneville@irsn.fr; Luciani, A.

    2014-06-01

    The French Institute for Nuclear Safety and Radioprotection (IRSN) attempts to simulate the Fukushima accidents using the ASTEC integral code. This paper summarizes the main results of the simulations conducted before the beginning of the OECD/NEA/CSNI Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project. The first analysis carried out concerned the unit 2 transient. Results were considered as satisfactory being quite consistent with measures reported by TEPCO and similar computations performed with MELCOR or MAAP. Knowledge gained from PWR practice and different lectures available in the open literature for BWR provided valuable technical elements to explain observations or to validate assumptions. Leakage model from the containment up to the refuelling bay through the head flange seal was very efficient to retrieve pressure evolution inside the dry well. Extension of the model to reactor number 3 gave also results quite consistent with what similar codes computed. However for both reactors some figures characteristic of the transient as hydrogen production are liable to vary a lot if models for bottom and top nozzles are added which has not been done in reference computation due to present lack of data. Uncertainties with simulation of accident on reactor number 1 are rather large due to the scarcity of data. Further, as the measurement points were quasi absent for most of the first 24 h there is no reference to compare to simulation results. Bottom vessel head failure is predicted but due to the high number of penetrations the mechanical failure models developed for PWR may not be so relevant for BWR.

  6. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  7. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  8. Chernobyl accident and its consequences

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-06-01

    The paper concerns the Chernobyl reactor accident, with emphasis on the design of the RBMK reactor and nuclear safety. A description is given of the Chernobyl nuclear power plant, including details of the RMBK reactor and safety systems. Comments on the design of the RBMK by UK experts prior to the accident are summarized, along with post-accident design changes to improve RBMK safety. Events of the Chernobyl accident are described, as well as design deficiencies highlighted by the accident. Differences between the USSR and UK approaches to nuclear safety are commented on. Finally source terms, release periods and environmental consequences are briefly discussed.

  9. Continuous firefly algorithm applied to PWR core pattern enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A.; Moghaddam, H.K. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of)

    2013-05-15

    Highlights: ► Numerical results indicate the reliability of CFA for the nuclear reactor LPO. ► The major advantages of CFA are its light computational cost and fast convergence. ► Our experiments demonstrate the ability of CFA to obtain the near optimal loading pattern. -- Abstract: In this research, the new meta-heuristic optimization strategy, firefly algorithm, is developed for the nuclear reactor loading pattern optimization problem. Two main goals in reactor core fuel management optimization are maximizing the core multiplication factor (K{sub eff}) in order to extract the maximum cycle energy and minimizing the power peaking factor due to safety constraints. In this work, we define a multi-objective fitness function according to above goals for the core fuel arrangement enhancement. In order to evaluate and demonstrate the ability of continuous firefly algorithm (CFA) to find the near optimal loading pattern, we developed CFA nodal expansion code (CFANEC) for the fuel management operation. This code consists of two main modules including CFA optimization program and a developed core analysis code implementing nodal expansion method to calculate with coarse meshes by dimensions of fuel assemblies. At first, CFA is applied for the Foxholes test case with continuous variables in order to validate CFA and then for KWU PWR using a decoding strategy for discrete variables. Results indicate the efficiency and relatively fast convergence of CFA in obtaining near optimal loading pattern with respect to considered fitness function. At last, our experience with the CFA confirms that the CFA is easy to implement and reliable.

  10. Simulation of a SGTR severe PWR-W with the MELCOR code; Simulacion de un SGTR severo en un PWR-W con el codigo MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, A. J.; Israelsson, C.; Jimenez, G.

    2013-07-01

    The type SGTR accident is a case of loss of coolant accident small features which make it necessary to differentiate and evolution of classical studies LOCA sequence type. To simulate this type of accident has chosen the MELCOR code, which aims to study the progression of severe accidents in LWR plants. It has been developed by Sandia National Laboratories for the United States Nuclear Regulatory Commission.

  11. Occupational accidents aboard merchant ships

    DEFF Research Database (Denmark)

    Hansen, H.L.; Nielsen, D.; Frydenberg, Morten

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may...... be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were...... rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious...

  12. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  13. Public transportation development and traffic accident prevention in Indonesia

    Directory of Open Access Journals (Sweden)

    Sutanto Soehodho

    2017-03-01

    Full Text Available Traffic accidents have long been known as an iceberg for comprehending the discrepancies of traffic management and entire transportation systems. Figures detailing traffic accidents in Indonesia, as is the case in many other countries, show significantly high numbers and severity levels; these types of totals are also evident in Jakarta, the highest-populated city in the country. While the common consensus recognizes that traffic accidents are the results of three different factor types, namely, human factors, vehicle factors, and external factors (including road conditions, human factors have the strongest influence—and figures on a worldwide scale corroborate that assertion. We, however, try to pinpoint the issues of non-human factors in light of increasing traffic accidents in Indonesia, where motorbike accidents account for the majority of incidents. We then consider three important pillars of action: the development of public transportation, improvement of the road ratio, and traffic management measures.

  14. [Drowning accidents in childhood].

    Science.gov (United States)

    Krandick, G; Mantel, K

    1990-09-30

    This is a report on five boys aged between 1 and 5 years who, after prolonged submersion in cold water, were treated at our department. On being taken out of the water, all the patients were clinically dead. After 1- to 3-hour successful cardiopulmonary resuscitation, with a rectal temperature of about 27 degrees C, they were rewarmed at a rate of 1 degree/hour. Two patients died within a few hours after the accident. One patient survived with an apallic syndrome, 2 children survived with no sequelae. In the event of a water-related accident associated with hypothermia, we consider suitable resuscitation to have preference over rewarming measures. The most important treatment guidelines and prognostic factors are discussed.

  15. RENEB accident simulation exercise

    OpenAIRE

    Brzozowska, Beata; Ainsbury, Elizabeth; Baert, Annelot; Beaton-Green, Lindsay; Barrios, Leonardo; Barquinero, Joan Francesc; Bassinet, Celine; Beinke, Christina; Benedek, Anett; Beukes, Philip; Bortolin, Emanuela; Buraczewska, Iwona; Burbidge, Christopher; De Amicis, Andrea; De Angelis, Cinzia

    2017-01-01

    Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. Materials and methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results ob...

  16. PREVENTION OF OCCUPATIONAL ACCIDENTS

    Directory of Open Access Journals (Sweden)

    Jovica Jovanovic

    2004-01-01

    Full Text Available Medical services, physicians and nurses play an essential role in the plant safety program through primary treatment of injured workers and by helping to identify workplace hazards. The physician and nurse should participate in the worksite investigations to identify specific hazard or stresses potentially causing the occupational accidents and injuries and in planning the subsequent hazard control program. Physicians and nurses must work closely and cooperatively with supervisors to ensure the prompt reporting and treatment of all work related health and safety problems. Occupational accidents, work related injuries and fatalities result from multiple causes, affect different segments of the working population, and occur in a myriad of occupations and industrial settings. Multiple factors and risks contribute to traumatic injuries, such as hazardous exposures, workplace and process design, work organization and environment, economics, and other social factors. With such a diversity of theories, it will not be difficult to understand that there does not exist one single theory that is considered right or correct and is universally accepted. These theories are nonetheless necessary, but not sufficient, for developing a frame of reference for understanding accident occurrences. Prevention strategies are also varied, and multiple strategies may be applicable to many settings, including engineering controls, protective equipment and technologies, management commitment to and investment in safety, regulatory controls, and education and training. Research needs are thus broad, and the development and application of interventions involve many disciplines and organizations.

  17. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  18. ASSESSMENT OF RUNWAY ACCIDENT HAZARDS IN NIGERIA AVIATION SECTOR

    Directory of Open Access Journals (Sweden)

    Akinyemi Olasunkanmi Oriola

    2015-06-01

    Full Text Available Aviation crashes all over the world have recently been on the high rise, stemming from negligence, mechanical faults, weather, ground control errors, pilot errors, taxing and maintenance crew errors as probable reasons for such accidents. This study models the probabilistic risk assessment of runway accident hazards in Nigeria aviation sector. Six categories of runway accident hazards with their corresponding basic events were identified and modeled using fault tree analysis method of probabilistic risk assessment. The six categories of runway accident hazards are runway surface conditions, weather conditions, collision risk, aircraft system failure, approach/takeoff procedures and human factors. The Fault Tree developed is a system of OR-gates and the weights for each hazard were derived through a domain/expert opinion. The estimated probability of occurrence of runway accident which is the top event of the Fault Tree model is 0.2624. Fault Tree Analysis; thus, identifies the most likely root causes of runway accident through importance measures. The results of the analysis show close relationship of runway accidents in Nigeria aviation sector with aircraft system failure, approach/takeoff procedures, human factor, weather conditions and collision risk.

  19. Do alcohol excise taxes affect traffic accidents? Evidence from Estonia.

    Science.gov (United States)

    Saar, Indrek

    2015-01-01

    This article examines the association between alcohol excise tax rates and alcohol-related traffic accidents in Estonia. Monthly time series of traffic accidents involving drunken motor vehicle drivers from 1998 through 2013 were regressed on real average alcohol excise tax rates while controlling for changes in economic conditions and the traffic environment. Specifically, regression models with autoregressive integrated moving average (ARIMA) errors were estimated in order to deal with serial correlation in residuals. Counterfactual models were also estimated in order to check the robustness of the results, using the level of non-alcohol-related traffic accidents as a dependent variable. A statistically significant (P traffic accidents was disclosed under alternative model specifications. For instance, the regression model with ARIMA (0, 1, 1)(0, 1, 1) errors revealed that a 1-unit increase in the tax rate is associated with a 1.6% decrease in the level of accidents per 100,000 population involving drunk motor vehicle drivers. No similar association was found in the cases of counterfactual models for non-alcohol-related traffic accidents. This article indicates that the level of alcohol-related traffic accidents in Estonia has been affected by changes in real average alcohol excise taxes during the period 1998-2013. Therefore, in addition to other measures, the use of alcohol taxation is warranted as a policy instrument in tackling alcohol-related traffic accidents.

  20. Prediction of vehicle traffic accidents using Bayesian networks

    Directory of Open Access Journals (Sweden)

    Seyed Shamseddin Alizadeh

    2014-06-01

    Full Text Available Every year, thousands of vehicle accidents occur in Iran and result thousands of deaths, injuries and material damage in country. Various factors such as driver characteristics, road characteristics, vehicle characteristics and atmospheric conditions affect the injuries severity of these accidents. In order to reduce the number and severity of these accidents, their analysis and prediction is essential. Currently, the accidents related data are collected which can be used to predict and prevent them. New technologies have enabled humans to collect the large volume of data in continuous and regular ways. One of these methods is to use Bayesian networks. Using the literature review, in this study a new method for analysis and prediction of vehicle traffic accidents is presented. These networks can be used for classification of traffic accidents, hazardous locations of roads and factors affecting accidents severity. Using of the results of the analysis of these networks will help to reduce the number of accidents and their severity. In addition, we can use the results of this analysis for developing of safety regulations.

  1. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of); Ha, Kwang Soon; Kim, Hwan-Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases