WorldWideScience

Sample records for pvd cr-n coatings

  1. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  2. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings

    CERN Document Server

    Genzel, C

    2003-01-01

    Physical vapour deposition (PVD) of thin hard coatings on TiN basis is usually performed at rather low temperatures (T sub D < 500 C) far from thermal equilibrium, which leads to high intrinsic residual stresses in the growing film. In contrast to the extrinsic thermal residual stresses which can easily be estimated from the difference of the coefficients of thermal expansion between the substrate and the coating, a theoretical prediction of the intrinsic residual stresses is difficult, because their amount as well as their distribution within the film depend in a very complex way on the deposition kinetics. By the example of strongly fibre-textured PVD (Ti, Cr)N coatings which have been prepared under defined variation of the deposition parameters in order to adjust the residual stress distribution within the coatings, the paper compares different X-ray diffraction techniques with respect to their applicability for detecting residual stresses which are non-uniform over the coating thickness. (orig.)

  3. The microstructure and properties of unbalanced magnetron sputtered CrN sub x coatings

    CERN Document Server

    Hurkmans, A P A

    2002-01-01

    The most widely used surface treatment to protect engineering components is the deposition of hard chromium by electroplating. The coatings are known to be quite thick (up to 20 mu m), reasonably hard (approx HV1000), but contain micro-cracks. This wet deposition process is well understood, but it has technical limitations and is under high political pressure because of the environmental pollution by hexavalent chromium. The physical vapour deposition (PVD) technique is an alternative method to produce high quality coatings. PVD is an almost pollution free technique, because the process occurs under vacuum. CrN by PVD is one of the most promising PVD coatings as a candidate to replace eventually electroplated hard chromium. The growth characteristics of CrN coatings are less understood than those of TiN, the well-known PVD coating material. This thesis anticipates to fill this technological gap. Along a wide range of experiments based on the deposition of CrN sub x coatings, XRD, SEM, SNMS and tribological an...

  4. The microstructure and properties of unbalanced magnetron sputtered CrN{sub x} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurkmans, Antonius Petrus Arnoldus

    2002-07-01

    The most widely used surface treatment to protect engineering components is the deposition of hard chromium by electroplating. The coatings are known to be quite thick (up to 20 {mu}m), reasonably hard ({approx}HV1000), but contain micro-cracks. This wet deposition process is well understood, but it has technical limitations and is under high political pressure because of the environmental pollution by hexavalent chromium. The physical vapour deposition (PVD) technique is an alternative method to produce high quality coatings. PVD is an almost pollution free technique, because the process occurs under vacuum. CrN by PVD is one of the most promising PVD coatings as a candidate to replace eventually electroplated hard chromium. The growth characteristics of CrN coatings are less understood than those of TiN, the well-known PVD coating material. This thesis anticipates to fill this technological gap. Along a wide range of experiments based on the deposition of CrN{sub x} coatings, XRD, SEM, SNMS and tribological analysis have been used to complete a thorough understanding of CrN{sub x} growth. The experiments show that there exist several different phases within the Cr-N system: bcc-Cr, hcp-Cr{sub 2}N, fcc-CrN, and mixed phases. This is not fundamentally new, but the work has resulted in two new modifications, which are highly interesting candidates for the industry, including electroplating replacements, namely high nitrogen containing metallic bcc-Cr (solid solution with up to 18 at.% nitrogen) in the hardness range up to HV1800 and a very hard fcc-CrN phase with hardness values between HV1500 and HV3000, similar to TiN. The solid solution bcc-Cr-N is very dense fine-grained, reasonably hard (almost twice as hard as electroplated hard chromium), very smooth, and with a Young's modulus very similar to that of (hardened) steel. The hard fcc-CrN phase (approximately three times harder than electroplated hard chromium) could only be obtained by the current

  5. Latest Developments in PVD Coatings for Tooling

    Directory of Open Access Journals (Sweden)

    Gabriela Strnad

    2010-06-01

    Full Text Available The paper presents the recent developments in the field of PVD coating for manufacturing tools. A review of monoblock, multilayer, nanocomposite, DLC and oxinitride coatings is discussed, with the emphasis on coatings which enables the manufacturers to implement high productivity processes such as high speed cutting and dry speed machining.

  6. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  7. Nano Cr Interlayered CrN Coatings on Steels

    Institute of Scientific and Technical Information of China (English)

    Gaoren Li; Pranav Deshpande; J. H. Li; R. Y. Lin

    2005-01-01

    CrN coated steels assisted with a nano Cr interlayer were investigated. The Cr nano-interlayers were prepared by sputter deposition with a thickness about 70-100 nm. CrN coatings were also prepared by sputter deposition on the Cr nano-interlayers. The crystal structures, microhardness, and scratch resistance of CrN/Cr coatings were determined. Results show that the Cr nano-interlayers improve scratch resistance and the microhardness of CrN coated steels. A rapid heat treatment with infrared (IR) was performed for coated specimens in the attempt to improve bonding. With IR heat treatments, the beneficial effect of the Cr nano-interlayers was clearly observed. Without the Cr nano-interlayers, severe cracks on the surface of coatings were observed after IR heat treatment. However, with a Cr interlayer, no cracks on the surface of CrN coatings were observed after the heat treatment. The scratch resistance of coatings was also affected by the Cr nano-interlayers. The scratch track was clean and showed significantly smaller amount of scratch debris for CrN coatings with Cr interlayers than those without the Cr nano-interlayers. The microhardness of coatings with the Cr nano-interlayers is higher than those without the Cr nano-interlayers after IR heat treatment. The Cr and CrN phase have been identified with X-ray diffraction analysis, and the results show that the higher the nitrogen content in the sputtering gas, the stronger the CrN peaks observed in the diffraction patterns are.

  8. Mechanical response under contact loads of AlCrN-coated tool materials

    Science.gov (United States)

    Yang, J.; Botero, C. A.; Cornu, N.; Ramírez, G.; Mestra, A.; Llanes, L.

    2013-12-01

    The mechanical behavior under contact loading of systems consisting of PVD AlCrN film deposited onto two distinct hard substrates - cemented carbides and tool steel is studied by means of indentation testing techniques, under monotonic and cyclic condition. Experimental work includes assessment of critical applied loads for emergence of circular cracks at the coating surface, as well as evaluation of both surface and subsurface damage evolution. Results indicate that both coated systems are susceptible to mechanical degradation associated with repetitive contact load. Furthermore, significant differences on contact fatigue behavior between the two studied coated systems are evidenced under consideration of cracking evolution at top surface and penetration towards the substrate. In this regard, the intrinsic mechanical properties of the substrate are pointed out as key feature for rationalizing the experimental findings.

  9. Stress gradients in CrN coatings

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Tichelaar, F.D.; Visser, C.C.G.

    2006-01-01

    Stress in hard films is the net sum of tensile stress generated at the grain boundaries, compressive stress due to ion peening, and thermal stress due to the difference in thermal expansion of the coating and substrate. The tensile part due to grain boundaries is thickness dependent. The other two c

  10. Development and characterization of Si{sub 3}N{sub 4} coated AlCrN ceramic cutting tool

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.V.C.; Nono, M.C.A.; Martins, G.V.; Machado, J.P.B., E-mail: vitor@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, O.M.M. [Instituto de Aeronautica e Espacao (CTA/IAE/AMR), Sao Jose dos Campos, SP (Brazil). Centro Tecnico Aeroespacial; Pimenta, M. [Oerlikon Balzers R. Mealicos Ltda, Jundiai, SP (Brazil)

    2009-07-01

    Nowadays, silicon nitride based cutting tools are used to machine cast iron from the automotive industry and nickel superalloys from the aero industries. Advances in manufacturing technologies (increased cutting speeds, dry machining, etc.) induced the fast commercial growth of physical vapor deposition (PVD) coatings for cutting tools, in order to increase their life time. In this work, a new composition of the Si{sub 3}N{sub 4} ceramic cutting tool was developed, characterized and subsequently coated, using a PVD process, with aluminum chromium nitride (AlCrN). The Si{sub 3}N{sub 4} substrate properties were analyzed by XRD, AFM, hardness and fracture toughness. The AlCrN coating was analyzed by AFM, grazing incidence X-ray diffraction (GIXRD) and hardness. The results showed that this PVD coating could be formed homogeneously, without cracks and promoted a higher surface hardness to the insert and consequently it can produce a better wear resistance during its application on high speed machining. (author)

  11. Electrochemical Characterization of Multilayer Cr/CrN-Based Coatings

    Directory of Open Access Journals (Sweden)

    Fabio C. Caiazzo

    2014-07-01

    Full Text Available In this work, a series of mono-and multilayer coatings were considered. They consisted of CrN and Cr prepared by physical vapor deposition with a cathodic arc. The most common steels for molds of plastics were chosen as substrates: X37CrMoV5-1 (SMV3, X2NiCoMo18-8-5 (MARVAL M1, X105CrCoMo18-2 (N690 and X40CrMo15 (X13T6. The samples were made with surface state conditions reproducing the main finishes required for molding of plastics: mirror, electro-eroded, sandblasted and ground finish. The coatings were characterized morphologically and chemically. The corrosion behavior of bare and coated steels was evaluated by electrochemical methods.

  12. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates

    Science.gov (United States)

    Barranco, José; Barreras, Félix; Lozano, Antonio; Maza, Mario

    The electrical and corrosion properties of CrN-coated aluminium alloy Magnal-45 (Al-5083) probes have been evaluated, in order to assess their viability to be used as bipolar plates in polymer electrolyte fuel cells. To this end, ceramic micro-layers of chromium nitride (CrN) with different thicknesses (3, 4, and 5 μm) have been deposited on the surface of the Al alloy (Al-5083) using the physical vapour deposition (PVD) technique. A decrease in 2 orders of magnitude of I corr values for the coated Al has been observed compared to the as-received Al-alloy when the probes have been exposed to simulated anodic conditions in a micro-reactor. On the other hand, when subjected to a cathodic-simulated environment, the Al-CrN probes with 3 μm and 4 μm coatings have shown a decrease in I corr of one order of magnitude, while a variation of two orders of magnitude has also been obtained for the 5 μm coating.

  13. Ag transport in CrN-Ag nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-09-01

    2-{mu}m-thick CrN-Ag composite coatings containing 22 at.% Ag were deposited on Si(001) by reactive co-sputtering at T{sub s} = 300, 400, and 500 Degree-Sign C. Subsequent vacuum annealing at T{sub a} = 425, 525, and 625 Degree-Sign C causes Ag transport to the surface. Auger electron spectroscopy and plan-view microscopy are used to quantify the Ag transport to the surface, which increases strongly with increasing {Delta}T = T{sub a} - T{sub s}. Compositional depth profiles and cross-sectional microscopy show that annealing causes a negligible Ag gradient through the composite layer, suggesting that the Ag transport is detachment-limited as opposed to diffusion-limited. Statistical analyses of Ag aggregate size-distributions within the matrix show that large aggregates ({>=} 50 nm) are unaffected by annealing, while the Ag in a large fraction of small aggregates (< 50 nm) moves to the surface, leaving behind 10-50 nm wide voids in the annealed composite. This indicates that the Ag from the smaller grains, with a higher chemical potential and thus a higher detachment rate, is transferred to the large grains on the surface which are 200-1000 nm wide. - Highlights: Black-Right-Pointing-Pointer CrN-Ag coatings were deposited at T{sub s} = 300-500 Degree-Sign C and annealed at T{sub a} = 425-625 Degree-Sign C. Black-Right-Pointing-Pointer Ag diffuses from aggregates in the coating to the surface, if T{sub a} > T{sub s}. Black-Right-Pointing-Pointer During annealing, aggregates < 50 nm become voids, those > 50 nm are unaffected. Black-Right-Pointing-Pointer The Ag transport is detachment rather than diffusion limited.

  14. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  15. Triboanalysis in Industry for PVD-coated Stamping Dies

    Directory of Open Access Journals (Sweden)

    E. Zdravecká

    2014-03-01

    Full Text Available The application of hard wear-resistant coatings is expanding into various sectors of industry to protect tools and other components from failure caused by wear and corrosion. However, in forming industry it is still rather an exception than a rule to find coated forming dies. This study has objectives to investigate wear behaviour of P/M Vanadis 6 ledeburitic steel with PVD-TiN and TiCN coatings. The tests were carried out in the laboratory and industrial process conditions. The obtained results under operating conditions show that the application of PVD coatings appears as a very effective method for increasing the lifetime and wear resistance of cold stamping dies.

  16. Antimicrobial titanium/silver PVD coatings on titanium

    OpenAIRE

    Thull Roger; Glückermann Susanne K; Ewald Andrea; Gbureck Uwe

    2006-01-01

    Abstract Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous ...

  17. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  18. Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating

    Directory of Open Access Journals (Sweden)

    José Vitor Candido Souza

    2011-12-01

    Full Text Available Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si3N4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6.43 MPa.m½ and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed a decrease on workpiece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN.

  19. New PVD Technologies for New Ordnance Coatings

    Science.gov (United States)

    2012-04-01

    bcc Ta coatings on A723 steel. The sample was subjected to pulse laser heating ( PLH ) test at 2.5 msec, 1.0 J/mm2, 20 cycles, simulating ~1400ºC...electroplated HC Cr deposited on A723 steel under the same PLH conditions. While HC Cr is full of cracks causing erosion of the substrate steel, the MPP Ta...untempered martensite resulting from temperatures into austenite region. 20 Fig. 6g Pulsed Laser Heating ( PLH ) adhesion test of MPP deposited Ta

  20. Oleophobic optical coating deposited by magnetron PVD

    Science.gov (United States)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  1. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    Science.gov (United States)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-12-01

    The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were recorded during the modelling process.

  2. Cavitation-erosion resistance of arc ion-plated (Ti, Cr) N coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cavitation-erosion behavior of (Ti,Cr)N multi-component coatings produced by arcion-plating on grey cast iron was studied by using an ultrasonic cavitation -erosion testing appara-tus and scanning electron microscopy. The test results indicated that surface roughness of thesubstrate, surface morphology of the coating, substrate bias voltage and the thickness of the coat-ing had certain influence on the erosion rate. Arc ion-plated (Ti,Cr)N multi-component coatingsshowed better cavitation -erosion resistance than single component coatings because of highermicrohardness and good adhesion.

  3. MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

    Directory of Open Access Journals (Sweden)

    Jakub Horník

    2015-12-01

    Full Text Available The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

  4. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  5. Comparison of the PVD gradient coatings deposited onto X40CrMoV5-1 and HS6-5-2 tool steel substrate

    OpenAIRE

    K. Lukaszkowicz; L.A. Dobrzański; M. Staszuk; M. Pancielejko

    2008-01-01

    Purpose: The main aim of this research was investigation and comparison of selected properties of gradient coatings TiCN and AlSiCrN. In this paper both coatings were deposited by cathode arc evaporation physical vapour deposition (CAE-PVD) method onto high speed steel HS6-5-2 and hot work tool steel X40CrMoV5-1.Design/methodology/approach: Observations of surface and structures of the deposited coatings were carried out on cross sections in the scanning electron microscope. The phase composi...

  6. Antimicrobial titanium/silver PVD coatings on titanium

    Directory of Open Access Journals (Sweden)

    Thull Roger

    2006-03-01

    Full Text Available Abstract Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces.

  7. Properties of TiAlCrN coatings prepared by vacuum cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    RU Qiang; HU Shejun; HUANG Nacan; ZHAO Lingzhi; QIU Xiuli; HU Xianqi

    2008-01-01

    TiAlCrN coatings were deposited by means of vacuum cathodic arc ion plating technique on TC11 (Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3Si) titanium alloy substrates. The composition, phase structure, mechanical performance, and oxidation-resistance of the nitride coatings were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron microscopy (XPS). A new process for preparing protective coatings of the titanium alloy is successfully acquired. The experimental results indicate that the added element chromium in the TiAlN coatings make a contribution to form the (220) preferred direction. The phases of the coatings are composed of (Ti, Al)N and (Ti, Cr)N. After 700℃ and 800℃ oxidation, AES analysis shows that the diffusion distribution of the TiAlCrN coatings emerges a step shape. From the outside to the inner, the concentrations of O, Al, and Cr reduce, but those of Ti and N increase. The Al-rich oxide is formed on the surface of the coatings, and the mixed structure of Ti-rich and Cr-rich oxides is formed in the internal layer. The oxidation resistance of the TiAlCrN coatings is excellent at the range of 700 to 800℃. Adhesion wear is the dominant mechanical characteristic for the titanium alloy at room temperature, and the protective coatings with high hardness can improve the mechanical properties of the titanium alloy. The wear resistance of the TC11 alloy is considerably improved by the TiAlCrN coatings.

  8. Antibacterial PVD coatings doped with silver by ion implantation

    Science.gov (United States)

    Osés, J.; Palacio, J. F.; Kulkarni, S.; Medrano, A.; García, J. A.; Rodríguez, R.

    2014-08-01

    The antibacterial effect of certain metal ions, like silver, has been exploited since antiquity. Obviously, the ways to employ the biocide activity of this element have evolved throughout time and it is currently used in a wide range of clinical applications. The work presented here reports the results of an investigation focused on combining the protective properties of PVD coatings with the biocide property of silver, applied by ion implantation. For this purpose, chromium nitride layers were doped with silver implanted at two different doses (5 × 1016 and 1 × 1017 ion/cm2) at 100 keV of energy and perpendicular incidence. Full characterization of the coatings was performed to determine its topographical and mechanical properties. The concentration profile of Ag was analyzed by GD-OES. The thickness of the layers, nano-hardness, roughness, wear resistance and coefficient of friction were measured. Finally, the anti-bacterial efficacy of the coatings was determined following the JIS Z-2801:2010 Standard. The results provide clear insights into the efficacy of silver for antibacterial purposes, as well as on its influence in the mechanical and tribological behaviour of the coatings matrix.

  9. Fracture Behavior of CrN Coatings Under Indentation and Dynamic Cycle Impact

    Institute of Scientific and Technical Information of China (English)

    TIAN Linhai; ZHU Ruihua; YAO Xiaohong; YANG Yaojun; TANG Bin

    2012-01-01

    Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetrun sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact.It is found that,for the coatings on silicon substrate,the cracks form in the indentation comers and then propagate outward under Vickers indentation.The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure.Under Rockwell indentation,only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV,radial,lateral cracks and spalling appear in the vicinity of indentation.The fracture of CrN coatings under dynamic cycle impact is similar to fatigue.The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.

  10. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  11. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    Science.gov (United States)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  12. Raman microscopic studies of PVD deposited hard ceramic coatings

    CERN Document Server

    Constable, C P

    2000-01-01

    GPa were deposited onto SS and HSS substrates. Subsequent Raman measurements found a correlation coefficient of 0.996 between Raman band position and stress (determined via XRD methods). In addition, there was also a similar correlation coefficient observed between hardness and Raman shift (cm sup - sup 1). The application of mechanical stresses on a TiAICrN coating via a stress rig was investigated and tensile and compressive shifts were observed. stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved successful. This was then expanded to real wear situatio...

  13. Thermal stability of Al-Cr-N hard coatings

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, H. [Materials Center Leoben, Franz-Josef Strasse 13, 8700 Leoben (Austria) and IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: herbert.willmann@unileoben.ac.at; Mayrhofer, P.H. [Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben (Austria); Materials Chemistry, RWTH-Aachen, 52074 Aachen (Germany); Persson, P.O.A. [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); FEI Company, 5651 GG Eindhoven (Netherlands); Reiter, A.E. [Balzers Ltd., 9496 Balzers (Liechtenstein); Hultman, L. [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); Materials Chemistry, RWTH-Aachen, 52074 Aachen (Germany); Mitterer, C. [Department of Physical Metallurgy and Materials Testing, University of Leoben, 8700 Leoben (Austria); Christian Doppler Laboratory for Advanced Hard Coatings, University of Leoben, 8700 Leoben (Austria)

    2006-06-15

    Heat treatment of arc-evaporated cubic Al{sub 0.7}Cr{sub 0.3}N hard coatings in Ar up to 1450 deg. C causes precipitation of AlN. The Cr-enriched matrix transforms into Cr via Cr{sub 2}N under N{sub 2} release. These reactions are investigated by simultaneous thermal analysis, mass spectrometry, X-ray diffraction, and analytical transmission electron microscopy.

  14. FEM application for modelling of PVD coatings properties

    Directory of Open Access Journals (Sweden)

    A. Śliwa

    2010-07-01

    Full Text Available Purpose: The general topic of this paper is problem of determining the internal stresses of composite tool materials with the use of finite element method (FEM. The chemical composition of the investigated materials’ core is corresponding to the M2 high-speed steel and was reinforced with the WC and TiC type hard carbide phases with the growing portions of these phases in the outward direction from the core to the surface. Such composed material was sintered, heat treated and deposited appropriately with (Ti,AlN or Ti(C,N coatings.Design/methodology/approach: Modelling of stresses was performed with the help of finite element method in ANSYS environment, and the experimental values of stresses were determined basing on the X-ray diffraction patterns. The computer simulation results were compared with the experimental results.Findings: Computer aided numerical analysis gives the possibility to select the optimal parameters for coatings covering in PVD process determining the stresses in coatings, employing the finite element method using the ANSYS software.Research limitations/implications: It was confirmed that using of finite element method in stresses modelling occurring in advanced composite materials can be a way for reducing the investigation costs. In order to reach this purpose, it was used in the paper a simplified model of composite materials with division on zones with established physical and mechanical properties. Results reached in this way are satisfying and in slight degree differ from results reached by experimental method.Originality/value: Nowadays the computer simulation is very popular and it is based on the finite element method, which allows to better understand the interdependence between parameters of process and choosing optimal solution. The possibility of application faster and faster calculation machines and coming into being many software make possible the creation of more precise models and more adequate ones to

  15. Tribological Behaviour of PVD Coatings Lubricated with a FAP− Anion-Based Ionic Liquid Used as an Additive

    Directory of Open Access Journals (Sweden)

    José-Luis Viesca

    2016-03-01

    Full Text Available This paper studies 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl trifluorophosphate ionic liquid ([BMP][FAP] as a 1 wt% additive to a polyalphaolefin (PAO 6 in the lubrication of CrN and TiN PVD coatings. Friction and wear behaviour were determined by using a ball-on-plate reciprocating tribometer at two loads (20 and 40 N and a reciprocating frequency of 10 Hz. The tribological behaviour of this mixture has also been compared to a traditional oil additive, like zinc dialkyldithiophosphate (ZDDP. As an additive, ionic liquid exhibited an important friction and wear reduction compared to the base oil. However, tests conducted with ZDDP show slightly better results. XPS was used to analyse wear surfaces. The interactions of each additive with the surface contributed to improving the tribological behaviour of the lubricants.

  16. CrN-Ag nanocomposite coatings: Control of lubricant transport by diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-12-01

    1-{mu}m-thick self-lubricating CrN-Ag composite coatings containing 16 at.% Ag were deposited on Si substrates by reactive co-sputtering at T{sub s} = 400 Degree-Sign C, and were covered with CrN cap layers with a columnar microstructure and a thickness d = 0-1000 nm. Vacuum annealing at T{sub a} = 500 and 600 Degree-Sign C for 1 h causes Ag transport to the sample surface and the formation of Ag surface grains. Quantitative scanning electron microscopy and energy dispersive spectroscopy analyses show that increasing d from 0 to 10 to 100 nm for T{sub a} = 500 Degree-Sign C leads to a decrease in the areal density of Ag surface grains from 0.86 to 0.45 to 0.04 {mu}m{sup -2}, while their lateral size remains constant at 360 {+-} 60 nm. However, increasing T{sub a} to 600 Degree-Sign C causes a doubling of the Ag grain size, and a 4-30 times larger overall Ag transport. These results are explained by kinetic barriers for Ag diffusion through the porous cap layer with a porosity that decreases with increasing d, resulting in an effective activation barrier for Ag transport that increases from 0.78 eV in the absence of a cap layer to 0.89 eV for d = 10 nm and 1.07 eV for d = 30 nm. Auger electron spectroscopy depth profile analyses of annealed layers reveal no detectable Ag within the CrN cap layer and a uniform depletion of the Ag reservoir throughout the composite coating thickness, indicating unhindered Ag transport within the composite. The overall results show that a CrN diffusion barrier cap layer is an effective approach to control Ag lubricant transport to the surface of CrN-Ag composite coatings. - Highlights: Black-Right-Pointing-Pointer CrN-Ag composite coatings are capped with CrN diffusion barriers. Black-Right-Pointing-Pointer Ag diffuses to the surface during annealing at 500 or 600 Degree-Sign C. Black-Right-Pointing-Pointer The Ag transport is controlled by the cap thickness d = 0-1000 nm. Black-Right-Pointing-Pointer The activation energy for Ag

  17. Surface modification of the X40CrMoV5-1 steel by laser alloying and PVD coatings deposition

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2008-04-01

    Full Text Available Purpose: The paper presents the influence of alloying with NbC powder by the use of a high-power diode laser and TiAlN, AlSiCrN and TiCN gradient coatings deposition by PVD process on microstructure and hardness of the X40CrMoV5-1 steel surface layer.Design/methodology/approach: Microstructure was characterised using optical metallography, scanning and transmission electron microscopy.Findings: In the effect of laser alloying with powders of carbide NbC occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. The structure of the PVD coatings consisted of fine crystallites while their average size fitted within the range of 15-50 nm, depending on the coating type. The coatings demonstrated columnar structure.Research limitations/implications: It is necessary to continue the research to determine alloying parameters for demanded properties of hot work tool steels surface layers. Further investigations should be concentrated on the determination of the thermal fatigue resistance of the layers.Practical implications: Good properties of the PVD coatings and the laser treatment make these layers suitable for various technical and industrial applications.Originality/value: Laser alloying by using different carbide powders and HPDL laser is a new way to improve the structure and mechanical properties of the hot work tool steels.

  18. Improving the oxidation resistance of AlCrN coatings by tailoring chromium out-diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Galindo, R., E-mail: rescobar@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Endrino, J.L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Martinez, R. [AIN-Centro de Ingenieria Avanzada de Superficies, Cordovilla, E-31191 Pamplona (Spain); Albella, J.M. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain)

    2010-11-15

    In this work, we have studied the improvement on the oxidation resistance of AlCrN-based coatings by adding a subsurface titanium nitride barrier layer. Since oxidation is interrelated with the inward diffusion of oxygen into the surface of Al{sub x}Cr{sub 1-x}N (x = 0.70) coatings and the outward diffusion of Cr to the surface, the oxidation behaviour of the aluminium-rich AlCrN coatings can be tuned by designing the coating in an appropriate layered structure. The buried depth of the embedded layer and the oxidation time were varied, and the changes in the AlCrN/TiN depth composition profiles and surface oxidation stoichiometry were analysed by means of Glow Discharge Optical Emission Spectroscopy (GDOES) and Cross Sectional SEM (X-SEM) maps. It was observed that when a TiN diffusion barrier of 300 nm was deposited near the top surface (500 nm from the surface) the inhibition of the inward diffusion of oxygen and formation of beneficial alumina surface layers was promoted and consequently an increase of the oxidation resistance is achieved. This is explained in terms of a limited surplus of chromium from the coating to the surface. This was corroborated after performing experiments using CrN as embedded barrier layer which resulted in a continuous surplus of chromium to the surface and the formation of Cr-rich oxides. GDOES, in combination with X-SEM elemental maps, was proved to be a fast and accurate technique to monitor composition in-depth changes during oxidation, providing unique information regarding the oxide structure formation.

  19. Performance of a dual-process PVD/PS tungsten coating structure under deuterium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Song, Jae-Min [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • D{sup +} irradiation performance of a dual-process PVD/PS W coating was evaluated. • Low-energy plasmas exposure of 100 eV D{sup +} with 1.17 × 10{sup 21} D/s{sup −1} m{sup 2} flux was applied. • After D ion irradiation, flakes were observed on the surface of the simple PS coating. • While, sub-μm size protrusions were observed for dual-process PVD/PS W coating. • Height of D spike in depth profile was lower for dual-process PVD/PS W coating. - Abstract: A dual-process coating structure was developed on a graphite substrate to improve the performance of the coating structure under anticipated operating condition of fusion devices. A thin multilayer W/Mo coating (6 μm) was deposited by physical vapor deposition (PVD) method with a variation of Mo interlayer thickness on plasma spray (PS) W coating (160 μm) of a graphite substrate panel. The dual-process PVD/PS W coatings then were exposed to 3.08 × 10{sup 24} D m{sup −2} of 100 eV D ions with a flux of 1.71 × 10{sup 21} D m{sup −2} s{sup −1} in an electron cyclotron resonance (ECR) chamber. After irradiation, surface morphology and D depth profiles of the dual-process coating were analyzed and compared to those of the simple PS W coating. Both changes in surface morphology and D retention were strongly dependent on the microstructure of surface coating. Meanwhile, the existence of Mo interlayer seemed to have no significant effect on the retention of deuterium.

  20. Influence of surface modification on isothermal oxidation behavior of EB-PVD NiAl coating

    Institute of Scientific and Technical Information of China (English)

    LI He-fei; TAO Shu-feng; JIANG Kuo; A. HESNAWI; GONG Sheng-kai

    2006-01-01

    The isothermal oxidation behaviors of the as-deposited NiAl coating on the nickel-based superalloy by electron beam physical vapour deposition(EB-PVD) and the NiAl coating after surface modifications of grinding and polishing were investigated. The as-deposited coating shows the least mass gain, the initially formed θ-Al2O3 scale spalls after only 1 h, and the succeeding scale formed is coarse and discontinuous and thus can not be used as protective coatings. Among the two surface-modified coatings, the ground coating results in the highest oxide growth rate, which is consistent with the SEM results where the scale spalls heavily and many voids appear between the scale and the NiAl coating. The scale spallation and void formation mechanisms during isothermal oxidation test of EB-PVD NiAl coating were also discussed.

  1. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; De Hosson, JTM

    2002-01-01

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack resis

  2. A mechanical and tribological study of Cr/CrN multilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Arias, D.F., E-mail: diegomas@gmail.com [Grupo GEMA, Universidad Católica de Pereira, Pereira (Colombia); Gómez, A. [Laboratório de Fenômenos de Superficie, Escola Politécnica, Universidade de Sao Paulo, Sao Paulo (Brazil); Pontificia Universidad Javeriana Cali (Colombia); Vélez, J.M. [Escuela de Ingeniería de Materiales, Universidad Nacional de Colombia Sede Medellín (Colombia); Souza, R.M. [Laboratório de Fenômenos de Superficie, Escola Politécnica, Universidade de Sao Paulo, Sao Paulo (Brazil); Olaya, J.J. [Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Bogotá (Colombia)

    2015-06-15

    Multilayer Cr/CrN coatings with different periodicities were grown on silicon substrates by means of a magnetron sputtering technique. Thin films with only Cr or CrN were also grown, in order to use them as reference samples. Structural, morphological, mechanical and tribological characterization were carried out by using X-ray diffraction (XRD), atomic force microscopy (AFM), nanohardness and nanoscratch techniques, respectively. The characterization results were analyzed as a function of the bilayer thickness (period). In general, the multilayer hardness value increased with the decrease in period. In addition, the validity of the Hall-Petch relationship was confirmed for grain sizes and period values greater than 146 nm and 333 nm, respectively. The coefficient of friction (COF) increased with increasing load, which indicates the contribution of the adhesion to the COF. - Highlights: • Multilayer Cr/CrN coatings with layer thickness between 200 and 1000 nm were grown. • Neither bias voltage not temperature were applied during deposition. • The hardness improves with the increase of the number of bilayers. • The wear rate decreases with the increase of the number of bilayers.

  3. Composition driven phase evolution and mechanical properties of Mo-Cr-N hard coatings

    Science.gov (United States)

    Klimashin, F. F.; Riedl, H.; Primetzhofer, D.; Paulitsch, J.; Mayrhofer, P. H.

    2015-07-01

    Although many research activities concentrate on transition metal nitrides, due to their excellent properties, only little is known about Mo-N based materials. We investigate in detail the influence of Cr on the structural evolution and mechanical properties of Mo-N coatings prepared at different nitrogen partial pressures. The chemical composition as well as the structural development of coatings prepared with N2-to-total pressure ratios ( pN2 /pT) of 0.32 and 0.44 can best be described by the quasi-binary Mo2N-CrN tie line. Mo2N and CrN are face centered cubic (fcc), only that for Mo2N half of the N-sublattice is vacant. Consequently, with increasing Cr content, also the N-sublattice becomes less vacant and the chemical composition of fcc single-phase ternaries can be described as Mo1-xCrxN0.5(1+x). These coatings exhibit an excellent agreement between experimentally and ab initio obtained lattice parameters of fcc Mo1-xCrxN0.5(1+x). When increasing the N2-to-total pressure ratio to pN2/pT = 0.69, the N-sublattice is already fully occupied for Cr-additions of x ≥ 0.4, as suggested by elastic recoil detection analysis and lattice parameter variations. The latter follows the ab initio obtained lattice parameters along the quasi-binary MoN-CrN tie line for x ≥ 0.5. The single-phase fcc coating with Cr/(Mo+Cr) of x ˜0.2, prepared with pN2 /pT = 0.32, exhibits the highest hardness of ˜34 GPa among all coatings studied.

  4. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian; Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ′ grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  5. Enhanced wear and fatigue properties of Ti-6Al-4V alloy modified by plasma carburizing/CrN coating.

    Science.gov (United States)

    Park, Y G; Wey, M Y; Hong, S I

    2007-05-01

    In this study, a newly developed duplex coating method incorporating plasma carburization and CrN coating was applied to Ti-6Al-4V and its effects on the wear resistance and fatigue life were investigated. The carburized layer with approximately150 microm in depth and CrN coating film with 7.5 microm in thickness were formed after duplex coating. Hard carbide particles such as TiC And V(4)C(3) were formed in the carburized layer. XRD diffraction pattern analysis revealed that CrN film had predominant [111] and [200] textures. The hardness (Hv) was significantly improved up to about 1,960 after duplex coating while the hardness value of original Ti-6Al-4V was 402. The threshold load for the modification and/or failure of CrN coating was measured to be 32 N using the acoustic emission technique. The wear resistance and fatigue life of duplex-coated Ti-6Al-4V improved significantly compared to those of un-treated specimen. The enhanced wear resistance can be attributed to the excellent adhesion and improved hardness of CrN coating film for the duplex-coated Ti-6Al-4V. The initiation of fatigue cracks is likely to be retarded by the presence of hard and strong layers on the surface, resulting in the enhanced fatigue life.

  6. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N. J. M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  7. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  8. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  9. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-01-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials (E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance (R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance (R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  10. Quantifying Cutting and Wearing Behaviors of TiN- and CrN-Coated AISI 1070 Steel

    Science.gov (United States)

    Cakan, Ahmet; Ozkaner, Vedat; Yildirim, Mustafa M.

    2008-01-01

    Hard coatings such as titanium nitride (TiN) and chromium nitride (CrN) are widely used in cutting and forming tools against wear and corrosion. In the present study, hard coating films were deposited onto AISI 1070 steels by a cathodic arc evaporation plating (CAVP) technique. These samples were subjected to wear in a conventional lathe for investigating the tribological behaviour of coating structure, and prenitrided subsurface composition was characterized using scanning electron microscopy (SEM), line scan analyses and X-ray diffraction (XRD). The wear properties of TiN- and CrN-coated samples were determined using an on-line monitoring system. The results show that TiN-coated samples demonstrate higher wear resistance than CrN-coated samples. PMID:27873912

  11. Optimization Of Multi-Module CrN/CrCN Coatings

    Directory of Open Access Journals (Sweden)

    Szparaga Ł.

    2015-06-01

    Full Text Available In the paper was proposed optimization procedure supporting the prototyping of the geometry of multi-module CrN/CrCN coatings, deposited on substrates from 42CrMo4 steel, in respect of mechanical properties. Adopted decision criteria were the functions of the state of internal stress and strain in the coating and substrate, caused by external mechanical loads. Using developed optimization procedure the set of optimal solutions (Pareto-optimal solutions of coatings geometry parameters, due to the adopted decision criteria was obtained. For the purposes of analysis of obtained Pareto-optimal solutions, their mutual distance in the space of criteria and decision variables were calculated, which allowed to group solutions in the classes. Also analyzed the number of direct neighbors of Pareto-optimal solutions for the purposes of assessing the stability of solutions.

  12. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  13. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test techniqu

  14. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test techniqu

  15. Improving wear resistance of magnesium alloy AZ91D by TiN-CrN multilayer coating

    Institute of Scientific and Technical Information of China (English)

    MIAO Qiang; CUI Cai-e; PAN Jun-de; ZHANG Ping-ze

    2006-01-01

    Applying a novel method of arc-glow plasma depositing, a 2 μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.

  16. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  17. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Science.gov (United States)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  18. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Science.gov (United States)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  19. Influence of different atmospheres on the thermal decomposition of Al-Cr-N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, Paul H [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, 8700 Leoben (Austria); Willmann, Herbert [Materials Center Leoben, 8700 Leoben (Austria); Hultman, Lars [IFM Material Physics, Division of Thin Film Physics, Linkoeping University, 58183 Linkoeping (Sweden); Mitterer, Christian [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, 8700 Leoben (Austria)], E-mail: paul.mayrhofer@unileoben.ac.at

    2008-08-07

    Metastable cubic (c) AlCrN coatings decompose during thermal annealing into their stable phases Cr and hexagonal (h) AlN under the release of N{sub 2}. We show that the onset temperature T{sub o} and amount of N{sub 2} release depend on the ambient atmosphere. For c-Al{sub 0.56}Cr{sub 0.44}N only a partial dissociation into h-AlN and h-Cr{sub 2}N with T{sub o} {approx} 1180 deg. C occurs during annealing in N{sub 2} up to 1450 deg. C. Experiments in synthetic air to 1450 deg. C yield a complete oxidation to (Al{sub 0.56}Cr{sub 0.44}){sub 2}O{sub 3}.

  20. Oxidation and thermal fatigue of EB-PVD thermal barrier coatings on tube superalloy substrate

    Institute of Scientific and Technical Information of China (English)

    GAO Yu; ZHANG Chun-xia; ZHOU Chun-gen; GONG Sheng-kai; XU Hui-bin

    2006-01-01

    Two-layer structure thermal barrier coatings (TBCs) (NiCoCrAlY (bond coat)+(6%-8%, mass fraction) Y2O3-stabilized ZrO2(YSZ top coat)) were deposited by electron beam physical vapor deposition (EB-PVD) on tube superalloy substrates. The samples were investigated by isothermal oxidation and thermal shock tests. It is found that the mass gains of the substrate with and without TBCs are 0.165 and 7.34 mg/cm2, respectively. So the TBCs system is a suitable protection for the substrate. In thermal shock tests the vertical cracks initiate at the top coat and grow into the bond coat, causing the oxidation of the bond coat along the cracks. Failure of the TBCs system occurs by the spallation of the YSZ from the bond coat, and some micro-cracks are found at the location where the fragment of the YSZ top coat spalled from.

  1. Development and characterization of AlCrN coated Si{sub 3}N{sub 4} ceramic cutting tool; Desenvolvimento e caracterizacao de ferramentas ceramicas de Si{sub 3}N{sub 4} revestidas com AlCrN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.V.C.; Nono, M.C.A.; Machado, J.P.B., E-mail: vitor@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, O.M.M. [Centro Tecnico de Aeronautica (CTA-IAE/AMR), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco. Div. de Materiais; Pimenta, M. [Balzers, Jundiai, SP (Brazil); Sa, F.C.L. [Centro Universitario de Volta Redonda (UNIFOA), RJ (Brazil)

    2010-07-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si{sub 3}N{sub 4} based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6,43 MPa.m{sup 1/2} and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed an improvement on work piece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN. (author)

  2. Ag surface diffusion and out-of-bulk segregation in CrN-Ag nano-composite coatings.

    Science.gov (United States)

    Incerti, L; Rota, A; Ballestrazzi, A; Gualtieri, E; Valeri, S

    2011-10-01

    CrN-Ag nanocomposite coatings are deposited on Si(100) wafers and 20MnCr5 steel disks in a mixed Ar+N2 atmosphere by reactive magnetron sputtering. Structure, composition and morphology were investigated by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), X-ray Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD) and Focused Ion Beam (FIB) cross sectional analysis. The as deposited film matrix is mainly composed by CrN phase (78%), but a relevant part (28%) is composed by Cr2N. Ag agglomerates in the CrN matrix forming elongated grains 200-400 nm wide and 50-100 nm high, which extends on the top of CrN columns. At the surface Ag aggregates into two different structures: large tetrahedral crystalline clusters, with typical dimension ranging from 200 to 500 nm, and smaller Ag nanoparticles with diameter of 15-25 nm. The annealing in N2 atmosphere up to 500 degrees C does not affect size and distribution of the Ag grains in the sub-surface region, while it induces a size increase of the bigger Ag clusters on the surface, mainly related to Ag surface diffusion and clusters coalescence. Annealing at higher temperature leads to an evident Ag out-of-bulk segregation, generating Ag depleted voids in the near-surface region, and further increasing of the Ag clusters size at the surface. Tribological tests on as deposited CrN-Ag film reveal a coefficient of friction against a steel ball reduced with respect to CrN film, probably related to the presence of Ag which acts as solid lubricant, but the coating is removed after a very short sliding distance. The poor mechanical properties of the realized Ag-based coatings are confirmed by lower hardness and Young modulus values with respect to pure CrN.

  3. High-temperature oxidation of CrN/AlN multilayer coatings

    Science.gov (United States)

    Bardi, U.; Chenakin, S. P.; Ghezzi, F.; Giolli, C.; Goruppa, A.; Lavacchi, A.; Miorin, E.; Pagura, C.; Tolstogouzov, A.

    2005-12-01

    Experiments are reported on sputter depth profiling of CrN/AlN multilayer abrasive coatings by secondary ion mass spectrometry (SIMS) coupled with sample current measurements (SCM). The coatings were deposited by a closed-field unbalanced magnetron sputtering. It is shown that after oxidation tests, performed in air at 900 °C for 2 h and at 1100 °C for 4 h, the layered structure begins to degrade but is not destroyed completely. Oxidation at 1100 °C for 20 h causes total destruction of the coatings that can be attributed to a fast diffusion of oxygen, nickel, manganese and other elements along defect paths (grain boundaries, dislocations, etc.) in the coating. There are practically no nitrides in the near-surface layer after such a treatment and all the metallic components are in the oxidized form as follows from the data obtained by X-ray photoelectron spectroscopy (XPS). According to XPS and mass-resolved ion scattering spectrometry (MARISS), the surface content of Al in the heat-treated coatings has decreased in comparison with the as-received sample and that of Cr increased. Both XPS and MARISS data exhibit real increase in superficial concentration of the substrate materials (Mn and Ni) that is controversial if using SIMS alone. SCM turned out to be an informative depth profiling method complementary to more expensive and complicated SIMS, being particularly useful for structures with different secondary electron emission properties of the layers. SCM with predetermined SIMS calibration allows a routine characterization of coatings and other multilayer structures, particularly, in situations where the expenses of analysis can be justified.

  4. 超硬纳微米 PVD 涂层技术在模具领域的发展%Development of Superhard Nano Micron PVD Coating Technology in the Field of Mold

    Institute of Scientific and Technical Information of China (English)

    张而耕; 朱州; 张体波

    2014-01-01

    介绍了 PVD 涂层技术的分类,综述了 PVD 涂层技术在冲压/成型、挤压、拉拔、塑料、铝合金等模具应用领域的研究进展。展望了随着 PVD 涂层技术的快速发展,其在模具领域的应用将会更加广泛。%This paper introduced the classification of PVD coating technology, reviewed the progress of research on application of PVD coating technology in the field of stamping/ molding, extrusion, drawing, plastic, and aluminum alloy mold and prospected the future of rapid development of PVD coating technology which will be more widely applied in the field of molding.

  5. Coatings of TiAlN/ZrN and TiCrN/ZrN multilayers by RF magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    Jong-Kook LEE; Gwon-Seung YANG

    2009-01-01

    Titanium-based nitride coatings on cutting tools, press molds and dies can be used to prolong their life cycle because of their superior corrosion and oxidation resistance. TiAlN/ZrN and TiCrN/ZrN multilayer coatings were prepared by RF magnetron sputtering, and their microstructural evolution and corrosion resistance during heat treatment were investigated. The TiAlN/ZrN and TiCrN/ZrN multilayer coatings are degraded by heating up to 600 ℃ with the formation of oxides particles on the surface. During the heat treatment, the TiCrN/ZrN and TiAlN/ZrN multilayer coatings show the lowest corrosion current density and the highest polarization resistance at temperature range of 400-500 ℃. Consequently, the TiAlN/ZrN and TiCrN/ZrN multilayer coatings show good corrosion resistance at temperature range of 400-500 ℃ during heating.

  6. Residual Stress Distribution in PVD-Coated Carbide Cutting Tools-Origin of Cohesive Damage

    Directory of Open Access Journals (Sweden)

    B. Breidenstein

    2012-09-01

    Full Text Available PVD-coatings for cutting tools mean a substantial progress for tool lifetime and cutting conditions. Such tools, however, hold the risk of cost intensive sudden process breaks as a result of cohesive damage. This damage mechanism does not consist of a coating adhesion problem, but it can be traced back to the residual stress distribution in coating and substrate. This paper shows how residual stresses develop during the process chain for the manufacturing of PVDcoated carbide cutting tools. By means of different methods for residual stress determination it is shown that the distribution of residual stresses within the tool finally is responsible for the risk of cohesive tool damage.

  7. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    Directory of Open Access Journals (Sweden)

    JIN Jie

    2016-10-01

    Full Text Available The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by electrochemical methods,contact resistance test and hydrophobic test,respectively.The results indicate that CrN coating mainly consists of CrN and Cr2N phase,CrN and Cr2N phases in the CrNiN coating are less compared to CrN film, and Ni exist as element in CrNiN coating; dynamic polarization tests show the coating is of better corrosion resistance,whereas the corrosion resistance of CrNiN coating is worse than that of CrN coating,constant potential polarization test shows the corrosion current density of CrN and CrNiN coatings are equivalent; CrN and CrNiN coatings significantly reduce the interfacial contact resistance of the 304 stainless steel,among which CrN coating has the smallest contact resistance; and CrNiN coating which has better hydrophobicity than that of CrN coating is more beneficial for the water management in proton exchange membrane fuel cell.

  8. Estudio comparativo de la evaluación a la corrosión de recubrimientos de CrN y CrN/Cr con recubrimientos de cromo electrodepositado y pinturas tipo epoxy A comparative study of corrosion resistance in CrN and CrN/Cr coatings, electrodeposited chromium and epoxy paints

    Directory of Open Access Journals (Sweden)

    Olaya Florez Jhon Jairo

    2010-12-01

    Full Text Available En este trabajo se compara la resistencia a la corrosión de recubrimientos de CrN y CrN/Cr depositados con el sistema de sputtering con magnetrón desbalanceado (UBM con recubrimientos industriales de Cr y pinturas tipo epoxy. Los recubrimientos UBM fueron optimizados y producidos a temperatura ambiente y con una corriente de descarga de 400 mA. Se utilizó un flujo de Ar de 9 sccm y para la producción de CrN se activó el nitrógeno con un flujo de 3 sccm. Los tiempos de depósito se ajustaron para producir monocapas de CrN y multicapas a escala nanométrica manteniendo un espesor total de 1 μm y un periodo de 100 nm. A los recubrimientos obtenidos se les determinó su microestructura con icroscopia electrónica de barrido (SEM, la textura y fases cristalinas con difracción de rayos X (XRD y espectroscopia infrarroja (IR, y la resistencia a la corrosión se evaluó con ensayos de polarización potenciodinámica utilizando una solución de 0,5M H2SO4 y 0,05M KSCN. En general, las multicapas anométricas mejoraron la resistencia a la corrosión de los aceros inoxidables, además se observó que los aceros A36 recubiertos con CrN pueden ser una alternativa para reemplazar a los aceros inoxidables en ambientes ácidos.Los mecanismos de corrosión para los recubrimientos producidos son discutidos en esta investigación.This work was aimed at comparing the corrosion resistance of CrN and CrN/Cr coatings deposited through unbalanced magnetron sputtering (UBM, Cr industrial coatings and epoxy paints. UBM coatings were optimised and produced at room temperature, using 400 mA discharge current. Ar and N2 flow rates were set at 9 standard cubic centimetres per minute (SCCM and 3 SCCM, respectively. Deposition times were set to produce CrN monolayers and nanometric multilayers having 1 μm total thickness and 100 nm period. Coating icrostructure was determined through scanning electron microscopy as texture and crystalline phases were determined using

  9. Oxidation and Hot Corrosion of Gradient Thermal Barrier Coatings Prepared by EB-PVD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermaloxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibitebetter resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibitesinward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid"interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence ofAl2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and Al2O3layer, due to the combined effect of sulfidation of the bond coat and thermal cycling.

  10. Failure of EB-PVD Thermal Barrier Coatings Subjected to Thermo-Mechanical Loading

    Institute of Scientific and Technical Information of China (English)

    CHEN Chen; ZHANG Chun-xia; GUO Hong-bo; GONG Sheng-kai; ZHANG Yue

    2006-01-01

    Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones.

  11. Oxidation behavior of AlN/CrN multilayered hard coatings

    Science.gov (United States)

    Tytko, Darius; Choi, Pyuck-Pa; Raabe, Dierk

    2017-06-01

    We report on the oxidation behavior of AlN/CrN multilayers at 900 °C, deposited by radio frequency magnetron sputtering. It is shown that oxidation in this system is controlled by diffusion of Cr towards the surface and formation of Cr2O3. Cr diffusion is found to mainly occur along grain boundaries. Thus, coherent cubic AlN/CrN multilayer regions with coarse columnar grain structures are found to be oxidation resistant, whereas regions decomposed into hexagonal AlN/cubic CrN are prone to oxidation.

  12. Thermal decomposition routes of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W.; Neidhardt, J. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria); Willmann, H. [Materials Center Leoben, Franz-Josef Strasse 13, 8700 Leoben (Austria); Sartory, B. [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Mayrhofer, P.H. [Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria)], E-mail: paul.mayrhofer@unileoben.ac.at; Mitterer, C. [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria); Department of Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, University of Leoben, 8700 Leoben (Austria)

    2008-11-28

    This study presents a comparison of the thermal decomposition of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering. Structural changes in the coating material were determined by in-situ high-temperature X-ray diffraction and correlated to the results of simultaneous thermal analysis. Annealing temperatures up to 1440 deg. C in Ar and a variation in heating rates gave insights to the different decomposition kinetics for the material deposited by reactive arc evaporation and magnetron sputtering. Both single-phase CrN coatings start to decompose above 925 deg. C under release of nitrogen in two major reaction steps to pure Cr via the intermediate step of Cr{sub 2}N. While the kinetics for the first decomposition reaction from CrN to Cr{sub 2}N is different for both samples, the second step from Cr{sub 2}N into Cr is similar. This behavior can be understood considering the differences in structure, composition, and morphology of both as-deposited coatings and their evolution during thermal analysis.

  13. Thermal barrier coatings of new rare-earth composite oxide by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.H., E-mail: zhxubiam@sina.com; Zhou, X.; Wang, K.; Dai, J.W.; He, L.M.

    2014-02-25

    Highlights: • 3Y-LZ7C3 coating has a cyclic lifetime longer than that of LZ7C3 coating. • Y{sub 2}O{sub 3} helps to moderate the excessive vapor pressure condition during deposition. • 3Y-LZ7C3 coating is a mixture of pyrochlore and fluorite structures. • 3Y-LZ7C3 coating has a low sintering ability as compared with LZ7C3 coating. -- Abstract: Thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) with the addition of 3 wt.% Y{sub 2}O{sub 3} (3Y-LZ7C3) were deposited by electron beam-physical vapor deposition (EB-PVD). The phase structures, surface and cross-sectional morphologies, thermal cycling behaviors of these coatings were studied in detail. The thermal cycling test at 1373 K in an air furnace indicates that the 3Y-LZ7C3 coating has a lifetime of 1134 cycles which is about 18% longer than that of LZ7C3 coating. The improvement of chemical homogeneity of the coating, the superior growth behavior of columns and the favorable mechanical properties are all very helpful to the prolongation of thermal cycling life of 3Y-LZ7C3 coating. The failure of 3Y-LZ7C3 coating is probably a result of the reduction–oxidation of cerium oxide (Ce{sub 2}O{sub 3} and CeO{sub 2}), the solid solution reactions between La{sub 2}O{sub 3} and Y{sub 2}O{sub 3} (or ZrO{sub 2}), the visible cracks initiation, propagation and extension, the abnormal oxidation of bond coat and the thermal expansion mismatch between ceramic coating and bond coat.

  14. Double Pulse LIBS of Titanium-Based PVD-Coatings with Submicron Resolution

    Directory of Open Access Journals (Sweden)

    K. Ermalitskaia

    2016-01-01

    Full Text Available The possibility for double pulse LIBS in the process of a direct layer-by-layer analysis of the titanium-based PVD-coatings on polished flat blank samples of steel and silicon and also of the TiAlN/TiN-coating on a milling cutter is considered. A method is proposed to control thickness of the radiation evaporated layer by defocusing the laser beam with respect to the surface, making it possible to attain the depth resolution of 0.1 μm. The Ti and Ti-Zr-coatings produced using the ion-assisted condensation method and subjected to streams of the nitrogen plasma in a magnetic-plasma compressor are studied.

  15. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D. [Oak Ridge National Lab., TN (United States); Nagaraj, B.A. [General Electric Co., Cincinnati, OH (United States). Aircraft Engine Group

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  16. Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model

    Directory of Open Access Journals (Sweden)

    Gregor Hauschild

    2015-01-01

    Full Text Available Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (megaprostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition- silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses.

  17. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD

    Science.gov (United States)

    Yang, Jiasheng; Zhao, Huayu; Zhong, Xinghua; Shao, Fang; Liu, Chenguang; Zhuang, Yin; Ni, Jinxing; Tao, Shunyan

    2017-01-01

    Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of 1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.

  18. Studies of the Cr-CrN coating characteristics formed by means of the magnetron sputtering method from bulk target

    Science.gov (United States)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-07-01

    The paper presents the study’s results of ion-plasma chromium based coating characteristics produced on blade steel samples 12Kh13 and EI961 by means of the magnetron sputtering method from the bulk “hot” target. A set of metallographic studies and erosion tests of coatings were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. Cr-CrN based coatings have a layered structure; thickness of intermediate Cr layers ranges from 0.7 to 1.7 μm, thickness of nitride layers CrN ranges from 1.5 to 4 μm, while the overall coating thickness is 17.0-21.5 μm coating microhardness is 1830-1880 HV0.05. The resulting coatings are found to increase 1.5 times the incubation period duration of erosion wear for steels 12Kh13 and EI961; they reduce the maximum erosion rate 1.3 times, and the steady erosion rate - 1.5 times.

  19. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C., E-mail: weber@ikv-aachen.de [Institute of Plastics Processing (IKV) at RWTH Aachen University (Germany); Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T. [Surface Engineering Institute (IOT), RWTH Aachen University, Aachen (Germany); Steger, M. [Fraunhofer Institute for Laser Technology (ILT), Aachen (Germany)

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  20. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  1. Investigation of hard gradient PVD (Ti,Al,SiN coating

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-10-01

    Full Text Available Purpose: Investigation of gradient coating of (Ti,Al,SiN deposited on the Al2O3+SiC(woxide ceramics substrate by cathodic arc evaporation CAE-PVD method.Design/methodology/approach: Structure of substrate and coating was investigated with use of scanning electron microscopy (SEM. The X-Ray Photoelectron Spectrometry (XPS examination was carried out for proving the gradient character of the (Ti,Al,SiN coating. The investigation includes also microhardness and roughness tests of the deposited coating and used substrate; The Ra surface roughness parameter measurements were made on confocal microscope.Findings: Gradient structure and main properties of the investigated materials were introduced. It has been stated, that properties of the oxide tool ceramic with gradient (Ti,Al,SiN coating increase in comparison with uncoated material.Practical implications: Depositing the wear resistant gradient coating onto the Al2O3+SiC(woxide tool ceramic results in a significant increase of the surface layer microhardness, contributing most probably in this way in machining to the decrease of the wear intensity of cutting tools’ flanks made from the Al2O3+SiC(woxide tool ceramic.Originality/value: Functionally gradient coating form is a new class of structures in which the microstructure and properties vary gradually from the surface to the interior of the material.

  2. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    Science.gov (United States)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  3. Plasma thermal performance of a dual-process PVD/PS tungsten coating on carbon-based panels for nuclear fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan; Jang, Changheui, E-mail: chjang@kaist.ac.kr

    2016-11-01

    Highlights: • Plasma thermal performance of a dual-process PVD/PS W coating was evaluated. • Steady-state heat fluxes of 1–3 MW/m{sup 2} were applied to the W coated specimens. • Less micro-pores and grain growth were observed for the dual-process coating. • Loss of coating thickness was observed for the simple PS W coating. • Dual-process PVD/PS W coating was resistant to erosion due to the surface PVD layer. - Abstract: Various tungsten (W) coating techniques have been used for the application of plasma facing material in nuclear fusion devices, which resulted in limited success. In this study, a dual-process W coating structure was developed on a graphite substrate to improve the thermal performance of the coating structure. The dual-process coating structure consisted of a thin (∼7 μm) multilayer W/Mo physical vapor deposition (PVD) coating layer deposited on top of the relatively thick (∼160 μm) plasma spray (PS) W coating on a graphite substrate panel. Then the coated sample was exposed to plasma heat flux of 1–3 MW/m{sup 2} for 300 s. With addition of a thin surface PVD coating layer, the microstructure change in underlying PS W coating was substantially reduced compared to the simple PS W coating structure. The thickness of overall coating structure was maintained for the dual-process PVD/PS coated samples after the thermal loading tests, while a significant reduction in thickness due to surface erosion was observed for the simple PS W coated samples. The improvement in surface erosion resistance in the dual-process coating structure was discussed in view of the characteristics of PVD and PS coating layers.

  4. Comparative Study of the PVD Coatings on the Plasma Nitrided Steel

    Directory of Open Access Journals (Sweden)

    Andrei SURZHENKOV

    2012-03-01

    Full Text Available In the current study, the cracking, impact and sliding wear resistance of the PVD single layer TiN (I generation, multilayer (Ti,AlN-ML (II generation, gradient (Al,TiN-G and multilayer nanocomposite FiVIc® (both – III generation coatings on the nitrided low alloy steel 42CrMo4 are analysed. The cyclic indentation test (normal load 50 N, 10 000 cycles was carried out to determine the cracking resistance of the coatings. Impact wear test was performed at the normal load 16 N, strokes’ frequency 25 Hz, 104 – 107 strokes. Sliding wear test was applied, using the block-on-plate scheme, Ø 10 mm Al2O3 ball as the counterbody, at the normal load of 10 N, the frequency 5 Hz, the amplitude 10 mm and the test duration 10 min. Best resistance to cracks’ formation is demonstrated by the gradient (Al,TiN-G coating, showing medium radial cracks’ formation, whereas delamination of the coating can be observed in other cases. 1.6 – 1.7 times higher impact wear resistance is shown by the TiN coating in comparison with the other coatings. The FiVIc® coating demonstrates lightly better resistance to sliding wear in comparison with the TiN and (Ti,AlN-ML coatings due to a lower coefficient of friction. The worst sliding wear resistance is observed in the case of the (Al,TiN-G coating due to a high affinity of the coating’s and counterbody’s materials.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1339

  5. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Directory of Open Access Journals (Sweden)

    Yu-Sen Yang

    2013-08-01

    Full Text Available Various PVD (physical vapor deposition hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN, Cr2N, (CrAl2N and Me-DLC (Si-DLC and Cr-DLC coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA measurements. The as-deposited hcp-AlN, Cr2N and (CrAl2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  6. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    Science.gov (United States)

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects.

  7. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings

    NARCIS (Netherlands)

    Carvalho, NJM; Zoestbergen, E; Kooi, BJ; De Hosson, JTM

    2003-01-01

    Two PVD titanium nitride based coatings; monolayer TiN and multilayer resulting from the stacking of TiN and (Ti,Al)N layers were evaluated with respect to their stress state and microstructure. The TiN was deposited by triode evaporation ion plating, whereas the TiN/(Ti,AI)N was deposited using a

  8. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings

    NARCIS (Netherlands)

    Carvalho, NJM; Zoestbergen, E; Kooi, BJ; De Hosson, JTM

    2003-01-01

    Two PVD titanium nitride based coatings; monolayer TiN and multilayer resulting from the stacking of TiN and (Ti,Al)N layers were evaluated with respect to their stress state and microstructure. The TiN was deposited by triode evaporation ion plating, whereas the TiN/(Ti,AI)N was deposited using a r

  9. Vanadium Alloyed PVD CrAlN Coatings for Friction Reduction in Metal Forming Applications

    Directory of Open Access Journals (Sweden)

    K. Bobzin

    2012-06-01

    Full Text Available Hard coatings deposited on forming tools are used to improve the forming process and to increase tool life. The decrease of tool wear and reduction of friction are the main motivations for the development of self-lubricating coatings for forming applications at elevated temperatures. In the present study (Cr,Al,VN (Physical Vapour Deposition coatings with 5, 11 and 20 at % vanadium were deposited via a combination of HPPMS (High Power Pulse Magnetron Sputtering technology and direct current (DC Magnetron Sputter Ion Plating (MSIP PVD. The hardness and Young’s Modulus of the coatings were investigated by nanoidentation. Furthermore, high temperature Pin-on-Disk (PoD tribometer measurements against Ck15 (AISI 1015 were realized at different temperatures and compared with a (Cr,AlN reference hard coating. The samples were analyzed by means of SEM (Scanning Electron Microscopy and XRD (X-Ray Diffraction measurements after Pin-on-Disk (PoD tests. Moreover TEM (Transmission Electron Microscopy analyses were carried out after 4 h annealing at 800 °C in ambient air to investigate the diffusion of vanadium to the coating surface. The tribological results at 800 °C show no improvement of the friction coefficient for the pure (Cr,AlN coating and for the layer with 5 at % V. A time-dependent decrease of the friction coefficient was achieved for the coatings with 11 at % V (µ=0.4 and 20 at % V (µ=0.4 at 800 °C.

  10. The Role of SiO2 Gas in the Operation of Anti-Corrosion Coating Produced by PVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-09-01

    Full Text Available This study examined theSiO2 gas present in the coatings used in corrosion industry.These layers have been created by physical vapor deposition (PVD, with an appropriate performance. Sublimation of SiO2is used to protect PVD aluminum flakes from water corrosionand to generate highly porous SiO2 flakes with holes in the nanometer range. SiOx/Al/SiOx sandwiches were made as well as Ag loaded porous SiO2 as antimicrobial filler.

  11. Failure mechanism of EB-PVD thermal barrier coatings on NiAl substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Yttria stabilized zirconia(YSZ) was deposited on the line cut β-NiAl substrate by electron-beam physical vapour deposition(EB-PVD), and the cyclic oxidation behaviors of thermal barrier coatings on β-NiAl substrate were investigated in 1 h thermal cycles at 1 200 ℃ in air. The results show that the samples fail after 80-100 cycles. Sub-interface cavitations in the substrate develop due to depletion of Al in forming thermally grown oxides(TGOs). The collapse and closing up of cavities result in the ragged YSZ/TGO/substrate interface. Since the specific crack trajectories are quite sensitive to local geometry, cracks along the YSZ/TGO/substrate interfaces ultimately lead to YSZ spallation.

  12. Multilayer stacks obtained by ion assisted EB PVD aimed at thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Lyutovich, A. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA)

    2010-07-01

    Thermal Barrier Coating (TBC) using Electron Beam Physical Vapour Deposition (EB PVD) is widely implemented, especially for aero-engine turbine blades. Generally, multilayer stacks are used for these aims. For the additional improvement of intermediate layers with graded transitions to the initial Ni-based alloy, the use of accelerated ions in the EBPVD-process is advantageous. The effect of the substrate bias potential, ion current density and deposition temperature on the structure and properties of Ti and Zr intermediate layers are investigated. The morphology of the films is studied using optical microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). It is found that the surface morphology becomes smoother with rising bias potential and decreasing ion current density. Measurements of Vicker's micro-hardness performed on these coatings have shown its increase with higher values of the bias and its reduction with the growing temperature. This effect is caused by the observed decrease in grain size and higher porosity of the films. A multilayer coating system Ni (based substrate)-Si-Si{sub x}Al{sub y}-Al with graded transitions between the layers is obtained using ion assisted EBPVD. Architecture of a multilayer stack for TBC with graded transitions is proposed. (orig.)

  13. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey); Kilinc, B. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  14. Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Anand [State University of New York, Stony Brook, NY 11794 (United States); Goland, Allen [State University of New York, Stony Brook, NY 11794 (United States); Herman, Herbert [State University of New York, Stony Brook, NY 11794 (United States)]. E-mail: hherman@ms.cc.sunysb.edu; Allen, Andrew J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Dobbins, Tabbetha [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); DeCarlo, Francesco [Argonne National Laboratory, Argonne, IL 60439 (United States); Ilavsky, Jan [Argonne National Laboratory, Argonne, IL 60439 (United States); Long, Gabrielle G. [Argonne National Laboratory, Argonne, IL 60439 (United States); Fang, Stacy [Chromalloy Gas Turbine Corporation, Orangeburg, NY 10962 (United States); Lawton, Paul [Chromalloy Gas Turbine Corporation, Orangeburg, NY 10962 (United States)

    2006-06-25

    The ongoing quest to increase gas turbine efficiency and performance (increased thrust) provides a driving force for materials development. While improved engine design and usage of novel materials provide solutions for increased engine operating temperatures, and hence fuel efficiency, reliability issues remain. Thermal barrier coatings (TBCs), deposited onto turbine components using the electron-beam physical vapor deposition (EB-PVD) process, exhibit unique pore architectures capable of bridging the technological gap between insulation/life extension and prime reliance. This article explores the potential of advanced X-ray and neutron techniques for comprehension of an EB-PVD TBC coating microstructure. While conventional microscopy reveals a hierarchy of voids, complementary advanced techniques allow quantification of these voids in terms of component porosities, anisotropy, size and gradient through the coating thickness. In addition, the derived microstructural parameters obtained both further knowledge of the nature and architecture of the porosity, and help establish its influence on the resultant thermal and mechanical properties.

  15. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S.Y.; Yan, S.J.; Han, B. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Yang, B. [School of Power and Mechanical Engineering, Wuhan University, 430072 Wuhan (China); Lin, B.Z.; Zhang, Z.D.; Ai, Z.W. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Pelenovich, V.O. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 700135 Tashkent (Uzbekistan); Fu, D.J., E-mail: djfu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China)

    2015-10-01

    Highlights: • TiBN/CrN multilayers were synthesized with varied modulation period and ratio. • The maximum hardness of 38.6 GPa is observed at Λ = 11.7 nm and R = 5:1. • The lowest multilayer COF of 0.32 is lower than that of CrN (0.56). • The wear rate of the coatings is improved and related to H/E and H{sup 3}/E{sup *2} ratios. - Abstract: TiBN/CrN multilayered superlattice coatings with modulation periods Λ (bilayer thickness) ranging from 22.5 to 4.2 nm and modulation ratio R (the thickness ratio of CrN and TiBN layers) ranging from 6:1 to 3:1 were synthesized using an industrial-scale cathodic arc ion plating system in an Ar–N{sub 2} gas mixture. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindention were employed to investigate the influence of modulation period and ratio on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by TEM. TiBN/CrN multilayer coatings were crystallized with orientations at the (1 1 1), (2 0 0) and (2 2 0) crystallographic planes and the microstructure was strengthened at (2 0 0) preferred orientation. The maximum hardness of 38.6 GPa and elastic modulus of 477 GPa were obtained at Λ = 11.7 nm and R = 5:1. The lowest value of the friction coefficient at 0.32 sliding against a WC-Co ball was obtained at a bilayer period of 11.7 nm, compared to those of the coatings with other modulation periods and monolithic coatings. The wear rate of the multilayered coatings was also lower than those of the monolithic CrN and TiBN coatings.

  16. CrN coatings deposited by magnetron sputtering: Mechanical and tribological properties

    Directory of Open Access Journals (Sweden)

    Alexander Ruden-Muñoz

    2015-01-01

    Full Text Available Se analizaron las propiedades mecánicas y tribológicas de recubrimientos de CrN crecidos sobre sutratos de aceros AISI 203 y AISI 4140 usando la técnica de pulverización catódica con magnetrón. Los recubrimietos fueron crecidos a dos presiones de trabajo, 0.4 y 4.0 Pa. Las películas crecidas sobre acero AISI 304 a 0.4 Pa mostraron la dureza más alta debido a que ésta presenta gran tamaño de grano y baja rugosidad. Para los recubrimientos sinterizados a o.4 Pa, el daño superficial fue bajo durante la prueba tribológica. Se realizaron estudios de adherencia, obteniéndose Lc1 y Lc2 para los recubrimietos producidos con ambas presiones y en abos sustratos. Se observó una mejor adherencia en las películas crecidas a baja presión debido a su mayor espesor (~890 nm.

  17. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    OpenAIRE

    JIN, Jie; HAN Sui-wu; An, Teng; Ma, Jun-Jie; ZHANG Wei

    2016-01-01

    The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC) environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by...

  18. Performance of PVD-Coated Carbide Tools When Turning Inconel 718 in Dry Machining

    Directory of Open Access Journals (Sweden)

    Gusri Akhyar Ibrahim

    2011-01-01

    Full Text Available Inconel 718 has found its niche in many industries, owing to its unique properties such as high oxidation resistance and corrosion resistance even at very high temperatures. Coated carbide tool with hard layer of PVD TiAlN is used to turn Inconel 718. Taguchi method with the orthogonal array L9 is applied in this experiment with the parameter cutting speed of 60–80 m/min, feed rate of 0.2–0.3 mm/rev, and depth of cut of 0.3–0.5 mm. The results show that depth of cut is a significant influence to the tool life. Cutting speed of 60 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm are the optimum parameters. The flank wear, crater wear, notch wear, and nose wear are the wear mechanisms on the carbide tool. Through the SEM, abrasion, attrition, and adhesion are the wear mechanisms which can be seen on the cutting tool.

  19. Surface Roughness Prediction Model in Machining of Carbon Steel by PVD Coated Cutting Tools

    Directory of Open Access Journals (Sweden)

    Yusuf Sahin

    2004-01-01

    Full Text Available The surface roughness model in the turning of AISI 1040 carbon steel was developed in terms of cutting speed, feed rate and depth of cut using response surface methodology. Machining tests were carried out using PVD-coated tools under different cutting conditions. The surface roughness equations of cutting tools when machining the carbon steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels. The established equation shows that the feed rate was found to be a main influencing factor on the surface roughness. It increased with increasing the feed rate, but decreased with increasing the cutting speed and the depth of cut, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statically insignificant. However, it could be seen that the first-order effect of feed rate was significant while cutting speed and depth of cut was insignificant. The predicted surface roughness of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.

  20. Mechanical properties of EB-PVD ZrO{sub 2} thermal barrier coatings; Mechanische Eigenschaften von EB-PVD ZrO{sub 2} Waermedaemmschichten

    Energy Technology Data Exchange (ETDEWEB)

    Held, Carolin

    2014-08-29

    In this work, the elastic properties of thermal barrier coatings which were produced by electron-beam enhanced physical vapour deposition were investigated, as well as the dependency of the properties on the sample microstructure, the thermal treatment and the test method. For this purpose, not only commercial coatings were characterized, but also special sample material was used which consists of a 1 mm thick layer of EB-PVD TBC. This material was isothermally heat treated for different times at 950 C, 1100 C and 1200 C and then tested in a specially developed miniaturized bend test and by dynamic mechanical analysis. The sample material was tested by nanoindentation in order to measure the Young's modulus on a local scale, and the porosity of the samples was determined by microstructure analysis and porosimetry. The decrease of porosity could be connected with sintering and subsequent stiffening of the material. The test results are dependent on the tested volume. A small test volume leads to larger measured Young's moduli, while a large test volume yields lower values. The test volume also has an influence on the increase of stiffness during thermal exposure. With a small tested volume, a quicker increase of the Young's modulus was registered, which could be associated to the sintering of local structures.

  1. Effects of interface morphology and TGO thickness on residual stress of EB-PVD thermal barrier coatings

    Science.gov (United States)

    Chen, Jianwei; Zhao, Yang; Ma, Jian

    2015-04-01

    The residual stress of electron beam-physical vapor deposition (EB-PVD) thermal barrier coatings (TBC) is complex and difficult to be obtained. In this paper, the interface morphology of TBCs subjected to cyclic heating and cooling was observed by SEM. Based on the thermal elastic-plastic finite method, corresponding interface model of TBCs was established. The residual stress of EB-PVD TBCs with different interface morphologies and TGO thicknesses was calculated using the FE method without regard to the presence of cracks and defects. The result shows that the distribution of residual stress is significantly affected by the interface morphology, and the growth of TGO also has influence on the residual stress of TC and TGO.

  2. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  3. Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650 °C in pure steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Hovsepian, P. Eh., E-mail: P.Hovsepian@shu.ac.uk [UK National HIPIMS Technology Centre, Materials and Engineering Research Institute, Howard Street, Sheffield Hallam University, Sheffield, S1 1WB (United Kingdom); Ehiasarian, A.P.; Purandare, Y.P.; Biswas, B. [UK National HIPIMS Technology Centre, Materials and Engineering Research Institute, Howard Street, Sheffield Hallam University, Sheffield, S1 1WB (United Kingdom); Pérez, F.J.; Lasanta, M.I.; Miguel, M.T. de; Illana, A. [Grupo de Ingeniería de Superficies y Materiales Nanoestructurados, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid (Spain); Juez-Lorenzo, M. [Fraunhofer Institut für Chemische Technologie ICT, Joseph-von-Fraunhofer-Straße 7, 76327, Pfinztal (Germany); Muelas, R. [Ingeniería de Sistemas para la Defensa de España SA, Beatriz de Bobadilla No. 3, Madrid, 28040 (Spain); Agüero, A. [Instituto Nacional de Técnica Aeroespacial (INTA), Ctra. Ajalvir Km. 4, 28850, Torrejón de Ardoz, Madrid (Spain)

    2016-08-15

    In the current work, 4 μm thick CrN/NbN coating utilising nanoscale multilayer structure with bi-layer thickness of Δ = 2.9 nm has been used to protect 9 wt% Cr steels such as P92 widely used in steam power plants. The uniquely layered coatings have a combination of nitrides of chromium and niobium which are not only resistant to aqueous corrosion and corrosion-erosion and have excellent tribological properties, but also have oxidation resistance in dry air up to a temperature of 850 °C. The novel High Power Impulse Magnetron Sputtering (HIPIMS) deposition technology has been used to deposit CrN/NbN with enhanced adhesion (critical load of scratch adhesion L{sub C2} = 80 N) and a very dense microstructure as demonstrated by Transmission Electron Microscopy (TEM) imaging. These superior coating properties are achieved due to the unique high metal ion content (up to 90%) in the HIPIMS plasma, which allows particle acceleration and trajectory control by external electrical and magnetic fields thus delivering highly energetic material flux on the condensing surface. P92 bare and coated samples were oxidised at 650 °C in 100% steam atmosphere up to 2000 h, in order to simulate the future operation conditions of steam turbines employed in power plants. The oxidation kinetics was evaluated by mass gain measurements. Under these conditions CrN/NbN provided reliable protection of the P92 steel. The paper also discusses the effect of growth defects and high temperature crack formation analysed by Scanning Electron Microscopy and Focused Ion Beam-Scanning Electron Microscopy techniques (SEM and FIB-SEM, respectively) on the high temperature corrosion resistance in pure steam atmosphere thus revealing the coatings potential failure mechanisms. - Highlights: • Benefit of highly ionised metal plasma flux for coating deposition demonstrated. • CrN/NbN coating-superior corrosion resistance against high temperature steam shown. • CrN/NbN film-steel substrate

  4. Low friction MoS2TiW Coatings Manufactured on X38CrMoV5-1 Steel Using PVD Method

    OpenAIRE

    GOLABCZAK, Marcin; Jacquet, Philippe; Nouveau, Corinne; FLITI, Romain

    2013-01-01

    In this article the friction coefficients and the wear resistances of MoS2TiW protective coatings manufactured on X38CrMoV5-1 steel samples by using PVD technology are studied. The investi- gations based on tribometer tests which were carried out in different temperature conditions. The process of deposition of PVD coatings was realized by using multisource, hybrid factory- scale equipment of type URM 079. This equipment allows for deposition of coatings by the phys- ical method...

  5. Heat treatment of CVD and PVD coated steels. Influence on coating build-up, dimensional changes, residual stress distribution and technological properties. Final report; Waermebehandlung CVD- und PVD-beschichteter Staehle. Einfluss auf Schichtaufbau, Massaenderungen, Eigenspannungsverteilung und technologische Eigenschaften. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, O.

    1993-12-31

    Coating in accordance with the CVD process offers a number of advantages as compared to other processes. CVD facilities are of a relatively simple construction, as coating is possible almost at ambient pressure. The disadvantage of the CVD process is the high coating temperature involved. Previously, this fact has led to a low volume of air-hardening steels being coated. Due to high coating temperatures, coated steel substrates require subsequent heat treatment, in order to obtain an operational material condition. Steels with different hardenabilities (Ck 45, 42 CrMo 4, 100 Cr 6, X 155 CrVmo 12.1) and different coatings (HT-CVD TiN, MT-CVD TiCN, PVD TiN) were retreated with heat under inert gas and vacuum. The following coating and substrate properties were investigated before and after retreatment with heat: chemical and phase composition, structure, hardness, residual stresses, and adhesion of the coating. It was possible to obtain the desired structures and hardnesses in the substrates. The coatings remained macroscopically unchanged during vacuum heat treatment, while the coating color changed during inert gas heat treatment. (orig./MM) [Deutsch] Die Beschichtung nach dem CVD-Verfahren weist gegenueber anderen Verfahren eine Reihe von Vorteilen auf. CVD-Anlagen sind relativ einfach aufgebaut, da nahezu bei Umgebungsdruck beschichtet werden kann. Der Nachteil des CVD-Verfahrens ist die hohe Beschichtungstemperatur. Diese Tatsache hat bisher dazu gefuehrt, dass nicht lufthaertende Staehle nur in geringem Umfang beschichtet wurden. Aufgrund der hohen Beschichtungstemperaturen beduerfen beschichtete Stahlsubstrate einer nachtraeglichen Waermebehandlung zur Erzielung eines einsatzgerechten Werkstoffzustands. Staehle mit unterschiedlichen Haertbarkeiten (Ck 45, 42 CrMo 4, 100 Cr 6, X 155 CrVMo 12.1) und verschiedenen Schichten (HT-CVD TiN, MT-CVDTiCN, PVD TiN) wurden unter Schutzgas und Vakuum nachwaermebehandelt. Folgende Schicht- und Substrateigenschaften wurden

  6. The Friction and Wear Properties of CrN, Graphit-iC and Dymon-iC Coatings in Air and under Oil-lubrication.

    Institute of Scientific and Technical Information of China (English)

    J. Stallard; S. Yang; D.G. Teer

    2004-01-01

    Hard ceramic coatings such as TiN and CrN are very successful and are widely used in improving the performance of cutting and forming tools, but they are less successful in providing protection for general machine components, such as gears and engine parts. The development of low-friction wear resistant coatings that can run dry or in a minimum amount of oil is becoming increasingly important to this industry. Two recently developed carbon-based coatings Graphit-iCTM and Dymon-iC, which are shown to exhibit very high sliding wear resistance and low friction in dry conditions, are compared to a CrN coating under oil lubricated conditions. Long term pin-on-disc tests using a chrome steel counterface ball were carried out on coated HSS test samples. All the coatings performed well at very high applied contact pressures, exceeding 1.5 GPa, but the Graphit-iCTM and Dymon-iC coatings also exhibited the desirable characteristic of protecting the counterface material. Reasons for this behaviour are discussed.

  7. Impact of residual stress on the adhesion and tensile fracture of TiN/CrN multi-layered coatings from first principles

    Science.gov (United States)

    Yin, Deqiang; Peng, Xianghe; Qin, Yi; Wang, Zhongchang

    2012-06-01

    Multilayered TiN/CrN coatings find a wide range of technological applications where their internal hetero-interfaces and corresponding residual stress have been long suspected as capable of influencing their intriguing mechanical and chemical performances such as the thermal stability, hardness, and corrosion, tribological and wear resistance. Here, we investigate, by first-principles calculations, atomic and electronic structures of the TiN/CrN interface and how the residual stress influences the adhesion and ideal tensile strength of the multilayered coatings. We find that calculated adhesion energies of the interfaces with (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase almost linearly when the residual stress is imposed, suggesting that the residual stress plays a dominant role in affecting adhesion. The strengthened adhesion affected by the residual stress is found to be attributable to the stress-induced shrinkage of bonds, which results in enhanced interactions between the bonds in the TiN/CrN coatings. Using several analytic techniques, we have characterized the electronic structure of the interface carefully and determined the interfacial bonding to be primarily ionic with a small degree of covalency. The tensile simulations reveal that the interface with the (1 1 1) texture is more brittle than that with the (0 0 1), although the former presents greater ideal tensile strength. The findings presented here shed light on the impact of residual stress on the adhesion and ideal tensile strength of the TiN/CrN multi-layers, which information could be hard to obtain by means of experiments alone but which is of practical importance for further understanding and improvement of the multi-layered coatings at atomic scale.

  8. The Study of Selected Properties of Ti EB PVD Coating Deposited Onto Inner Tube Surface at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kottfer D.

    2016-03-01

    Full Text Available This study investigates the selected properties of the thin Ti coating applied by activated evaporation EB PVD technique. This technique was used for the deposition of Ti thin coating onto inner surface of OKhN3 MFA steel tubes. Deposition process was carried out at temperature 200°C. Conventional type of coatings - monolayer Ti - was analyzed by standard techniques for surface status and quality assessment - coating thickness, chemical composition by EDX analysis, adhesion, hardness, roughness, and growth direction of columns at room temperature. Ti monolayer achieved roughness Ra equal from 0.42 μm to 0.47 μm. The resulting hardness was from 2 GPa to 8.5 GPa depending on the sample location inside the vacuum chamber. Placing of the coated surface also affected the direction of grain growth of Ti coating columns. The angles α of grain growth were found to be from 40° to 60°. Angle α increased two to three times more than the incidence angle β (from 12° to 28° of evaporated Ti particles. Values of the adhesion measured along the Ti growth direction were mostly higher (up to 10% or the same as those measured perpendicular to it.

  9. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior

    Directory of Open Access Journals (Sweden)

    German S Fox-Rabinovich, Kenji Yamamoto, Ben D Beake, Iosif S Gershman, Anatoly I Kovalev, Stephen C Veldhuis, Myram H Aguirre, Goulnara Dosbaeva and Jose L Endrino

    2012-01-01

    Full Text Available Adaptive wear-resistant coatings produced by physical vapor deposition (PVD are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a nanoscale surface layers of protective tribofilms generated during friction and (b an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality

  10. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

    Science.gov (United States)

    Wan, Zhixin; Zhang, Teng Fei; Lee, Han-Bo-Ram; Yang, Ji Hoon; Choi, Woo Chang; Han, Byungchan; Kim, Kwang Ho; Kwon, Se-Hun

    2015-12-01

    A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion.

  11. The investigations of (Ti,Al)N and (Al,Ti)N coatings obtained by PVD process onto sintered cutting tools

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; M. Pawlyta; J. Konieczny

    2010-01-01

    Purpose: The main aim of this research was an investigation of both the coatings structure and mechanical properties deposited by the cathode arc evaporation physical vapor deposition (CAE-PVD) on sintered carbides and sialon tool ceramics substrates.Design/methodology/approach: The (Ti,Al)N and (Al,Ti)N coatings were investigated. Microstructure was characterized using the scanning and transmission electron microscopy. Phases composition analysis was carried out by the XRD and GIXRD method. ...

  12. Effect of Al2O3 and AlCrN coatings on 950°C cyclic oxidation behaviours of γ-TiAl

    OpenAIRE

    J. Małecka

    2012-01-01

    Purpose: The reason for this research is to test the intermetalic alloy with coatings Al2O3 and AlCrN improved oxidation resistance in air at temperatures 950ºC, typical for working conditions of highly loaded parts of gas turbine.Design/methodology/approach: The objectives were achieved using several techniques including conventional metallography, SEM, BSE, EDX and precision measurements of mass loss. The oxides scales and their effects were investigated at temperatures 950ºC.Findings: Th...

  13. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    Science.gov (United States)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-03-01

    Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  14. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  15. AlCrN涂层的残余热应力分析%Thermal Residual Stress Analysis of AlCrN Coating

    Institute of Scientific and Technical Information of China (English)

    郑伟; 赵军; 李安海; 崔海冰

    2012-01-01

    Residual thermal stresses produced in deposition process of coating tools were calculated by using transient analysis method of finite element analysis software. The residual stress level, distribution and influence factors of AlCrN coating were studied. The results show that due to the mismatch of coefficient of thermal expansion between the coating and the substrate, there is a serious stress concentration in the interface region. Different substrates, coating thickness, deposition temperature and interlayer have great influences on the residual stress. With high-speed steel as substrate, the residual stress of AlCrN* coating is mainly compressive stress which increases with the diminution of coating thickness. While with carbide as substrate, the residual stress is relatively small and it is mainly tensile stress which decreases with the increase of cobalt content in carbide substrate and the increase of coating thickness. Adding an interlayer to the substrate can reduce the residual stress. Thus, the interface stress can be released and the interfacial bonding strength can be improved by the matching of coating and different substrates as well as adding an interlayer.%采用ANSYS有限元分析软件中的瞬态分析方法,对涂层刀具沉积过程中残余热应力进行了仿真分析.研究了AlCrN涂层残余热应力的大小、分布和影响因素.结果表明:由于涂层与基体材料的热膨胀系数不匹配,结合面区域存在严重的应力集中;基体材料、涂层厚度、沉积温度以及中间层的使用对残余应力有很大影响;基体材料为高速钢时,AlCrN涂层内残余应力大以压应力为主并随着涂层厚度的增加而减小;基体为硬质合金时,残余应力相对较小,涂层内以拉应力为主并随基体钴含量和涂层厚度的增加而减少;增加中间层可以减小残余应力.因此,通过涂层和不同基体匹配以及增加中间层可以缓和界面应力增强界面结合强度.

  16. Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Balint, D.S., E-mail: d.balint@imperial.ac.uk [Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Kim, S.-S.; Liu Yufu; Kitazawa, R.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8409 (Japan); Evans, A.G. [College of Engineering, University of California, Santa Barbara, CA 93106 (United States)

    2011-04-15

    An electron beam physical vapor deposited (EB-PVD) Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier system has been tested under in-phase thermomechanical fatigue (TMF) conditions with thermal gradient in the through-thickness direction. Undulations in the thermally grown oxide (TGO) were observed to have clear anisotropic behavior with respect to the directions parallel and perpendicular to the loading axis. It was found that undulation wavelengths were nearly the same in both directions but the amplitude in the perpendicular direction was much larger than in the parallel direction. A recent model of TGO rumpling was adapted and used to analyze and explain the origins of the observed rumpling behavior under TMF conditions. Methods for deducing variation in the coefficient of thermal expansion with temperature and in the creep properties of the substrate from the experimental strain data are also presented in the course of the derivations. Model results show that tensile stress applied in the loading direction can overcome the compression occurring from lateral expansion during oxide formation, causing undulations to flatten; undulations perpendicular to the loading axis are unaffected. However, ratcheting in the strain cycle experienced by the substrate, which occurs naturally by substrate creep, is necessary for anisotropic rumpling under cyclic stress conditions. Model predictions for constant applied stress are also presented, demonstrating a reversal in the direction of undulation alignment under compression. A threshold stress is identified, in both tension and compression, sufficient to produce appreciable anisotropic rumpling. The model predictions provide a clear mechanism for the anisotropy and further evidence that the lateral expansion strain in the oxide is the driving force for oxide rumpling.

  17. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Sakip [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Molecular Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Kok, Fatma Nese [Molecular Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Kazmanli, Kursat, E-mail: kursat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Urgen, Mustafa [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey)

    2013-10-15

    In this study, formation of magnesium substituted hydroxyapatite (Ca{sub 10−x}Mg{sub x}(PO{sub 4}){sub 6}(OH){sub 2}) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti{sub 1−x},Mg{sub x})N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF.

  18. Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxubiam@aliyun.com; Wang, Zhankao; Huang, Guanghong; Mu, Rende; He, Limin

    2015-07-15

    Highlights: • The removed ridges at the grain boundaries with grit blasting. • The ridge, oxidation and cracking are features of damage initiation in TBCs. • Spalled location either at TGO/bond coat interface or inside of TGO layer. • The lower strain energy release rate within TGO layer can prolong of TBCs life. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors and residual stresses of the TBCs were studied in detail. It was found that the fracture path traverses through the ceramic coating to TGO interface, as well as at the TGO to bond coat interface is obviously detected. The change in fracture plane occurs at grain boundaries. The ridge top spallation leads to separate of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The bond coat can undergo a volume increase upon oxidation, so that a cavity, enlarged strictly by oxidation would be full to overflowing with TGO layer. The spalled location of the TBCs probably occurs either at the interface of TGO layer and bond coat or inside of TGO layer. The lower strain energy release rate within TGO layer during thermal cycling is beneficial to prolong of TBCs life. The lower is the compressive stress within TGO layer, the longer is the lifetime of TBCs.

  19. FEM ANALYSIS OF THERMAL STRESSES IN GRADIENT THERMAL BARRIER COATINGS PRODUCED BY EB-PVD

    Institute of Scientific and Technical Information of China (English)

    H.B. Guo; H.B. Xu; S.K. Gong

    2001-01-01

    Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical models were used to investigatestress and strain states in the GTBCs and traditional two-layered TBCs as they cooledto 750℃ from a stress-free state at 850℃.

  20. Evolution of photo-stimulated luminescence of EB-PVD/(Ni, Pt)Al thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wen Mei [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Jordan, Eric H. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)]. E-mail: jordan@engr.uconn.edu; Gell, Maurice [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2005-05-25

    Experiments are described which were designed to assess the suitability of photo-stimulated luminescence piezo-spectroscopy (PLPS) measurements as a basis for non-destructive inspection (NDI) and determination of life remaining of thermal barrier coatings (TBCs). Thermal cyclic tests were conducted on 7 wt.% Y{sub 2}O{sub 3} stabilized ZrO{sub 2} (YSZ) electron beam physical vapor deposited (EB-PVD)/(Ni, Pt)Al/CMSX-4 TBCs at two temperatures 1151 and 1121 deg. C. The evolution of PLPS spectral characteristics (peak frequency shift, peak width and area ratio of peaks) was studied as a function of thermal cycles. It was observed that the average thermally grown oxide (TGO) stress and its standard deviation, and the area ratio of peaks show systematic change with thermal cycling, indicating that these characteristics can be used for NDI and determination of life remaining. The average TGO stress increases initially and then decreases monotonically with thermal cycling. The rate of change in the stress can be related to specimen life: the shallower the slope, the higher the life. The peak area ratio also decreases monotonically with cycling. The average TGO stress changes in a systematic manner versus remaining life fraction independent of temperature. Remaining life predictions were made based on average stress versus life fraction, which resulted in life assessments within {+-}13% of actual values excluding one specimen with abnormal behavior.

  1. Micro-scale Abrasion and Medium Load Multiple Scratch Tests of PVD Coatings.

    Institute of Scientific and Technical Information of China (English)

    S.Poulat; H.Sun; D.GTeer

    2004-01-01

    Micro-scale abrasion testing is widely used to determine the abrasion resistance of thin film coatings; it is a simple technique that can easily be used as part of a quality control procedure, but it has got the disadvantage of not allowing an easy study of the wear mechanisms involved: it is difficult to estimate the load applied on each abrasive particles in the contact between the loaded ball and the specimen. The possibility of using progressive loading scratch testing, a method widely used to assess the adhesion of thin film coatings, to model the abrasive wear of coatings has been studied in the past; the use of multiple scratch tests to study the wear mechanisms corresponding to a single abrasion scratch event has also been studied in the case of bulk materials (ceramics and hard metals). Two coatings, deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) on ASP23 powder metallurgy steel substrate are chosen to be representative of the use of protective coatings in industry: titanium nitride, which is widely used to prevent tool wear, and TCL Graphit-iCTM, which is widely used as a wear resistant solid lubricant coating. The two coatings are first characterised by using a standard quality control procedure: their thickness is determined by the cap grinding method, their adhesion by progressive loading scratch. Then micro-scale abrasion tests performed with a slurry at a concentration which promotes grooving wear, and medium load multiple scratch tests performed with diamond indenters are completed; the results of these tests are analysed and compared to determine if there is any correlation between the two sets of results; the multiple scratch tests wear tracks are also observed to determine the wear mechanisms involved.

  2. Thermal conductivity and thermal stability of zirconia and hafnia based thermal barrier coatings by EB-PVD for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Wolfe, D.E.; Miller, R.; Eldridge, J.; Zhu Dong-Ming [Applied Research Lab., Penn State Univ., Univ. Park, PA and NASA-GRC, Cleveland, OH (United States)

    2004-07-01

    Zirconia and hafnia based thermal barrier coating materials were produced by industrial prototype electron beam-physical vapor deposition (EB-PVD). Columnar microstructure of the thermal barrier coatings were modified with controlled microporosity and diffuse sub-interfaces resulting in lower thermal conductivity (20-30% depending up on microporosity volume fraction), higher thermal reflectance (15-20%) and more strain tolerance as compared with standard thermal barrier coatings (TBC). The novel processed coating systems were examined by various techniques including scanning electron microscopy (SEM), X-ray diffraction, and thermal conductivity by laser technique, hemispherical reflectance and thermal cyclic tests. The test results showed the tailored-microstructural TBC offered superior performance over the conventional thermal barrier coatings (ZrO{sub 2} -8 wt.% Y{sub 2}O{sub 3}). (orig.)

  3. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.

    Science.gov (United States)

    Marin, E; Offoiach, R; Lanzutti, A; Regis, M; Fusi, S; Fedrizzi, L

    2014-01-01

    Titanium alloys are nowadays used for a wide range of biomedical applications thanks to their combination of high mechanical resistance, high corrosion resistance and biocompatibility. Nevertheless, the applicability of titanium alloys is sometimes limited due to their low microhardness and tribological resistance. Thus the titanium alloys cannot be successfully applied to prosthetic joint couplings. A wide range of surface treatments, in particular PVD coatings such as CrN and TiN, have been used in order to improve the tribological behaviour of titanium alloys. However, the low microhardness of the titanium substrate often results in coating failure due to cracks and delamination. For this reason, hybrid technologies based on diffusive treatments and subsequent PVD coatings may improve the overall coating resistance. In this work, conventional PVD coatings of CrN or TiCN, deposited on Titanium Grade 5, were characterized and then combined with a standard thermal diffusive nitriding treatment in order to improve the tribological resistance of the titanium alloys and avoid coating delamination. The different treatments were studied by means of scanning electron microscopy both on the sample surface and in cross-section. In-depth composition profiles were obtained using glow discharge optical emission spectrometry (GDOES) and localized energy dispersive X-ray diffraction on linear scan-lines. The microhardness and adhesion properties of the different treatments were evaluated using Vickers microhardness tests at different load conditions. The indentations were observed by means of SEM in order to evaluate delaminated areas and the crack's shape and density. The tribological behaviour of the different treatments was tested in dry conditions and in solution, in alternate pin-on-flat configuration, with a frequency of 0.5 Hz. After testing, the surface was investigated by means of stylus profilometry and SEM both on the surface and in cross-section. The standalone PVD

  4. GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti-6Al-7Nb aimed at developing mixed oxide nanotubular arrays.

    Science.gov (United States)

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Fallahpour, A; Vadivelu, J; Musa, S N; Kaboli, S H A

    2016-08-01

    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications.

  5. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    Science.gov (United States)

    2010-12-01

    skilled in the art , can overcome many of the above listed disadvantages for the different coating techniques. Sputtering is a very flexible and...J. Pelleg, L.Z. Zevin, S. Lungo and N. Croitoru Thin Solid Films 197 (1991) 117. [32] C. Nouveau , M.A. Djouadi, O...2004) 1306. [52] A.J. Perry. Thin Solid Films 107 (1983)167. [53] M. -A. Djouadi, C. Nouveau , O. Banakh, R. Sanjinés, F. Lévy and G. Nouet

  6. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  7. Preparation and properties of CrN coating by arc ion deposition%电弧离子镀CrN涂层的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    杨娟; 陈志谦; 聂朝胤

    2009-01-01

    用电弧离子镀技术在W18Cr4V高速钢试样上制备了CrN涂层,采用X射线衍射仪、扫描电镜、能谱议、显微硬度仪、磨损试验机等对涂层的表面形貌、相结构、硬度和耐磨性进行了分析.对比研究了经工艺优化后的CrN涂层和TiN、TiAlN涂层以及未涂层钻头干式钻削7075铝合金的切削性能,得出了最佳的沉积偏压和切削转速.结果表明,偏压为-50~-150 V时,涂层均由Cr2N 相和CrN相组成,随偏压增加,涂层表面粗糙度降低,硬度和耐磨性增强;偏压过高,涂层的微观质量和性能反而下降.偏压为-100 V时,涂层的硬度和耐磨性最佳.CrN涂层可显著提高高速钢刀具的切削性能,减小刀具磨损,延长刀具寿命.其钻削性能优于TiN、TiAlN涂层,明显优于未涂层.2 230 r/min为CrN涂层的最佳切削转速,经工艺优化后的CrN涂层钻头平均寿命约为未涂层钻头的5倍,其破损机制属于粘着磨损.%CrN coating was deposited by arc ion deposition technique on W18Cr4V high-speed steel samples.The surface morphology,microstructure,hardness and wear-resistance of the CrN coating were analyzed with XRD,SEM,EDS,microhardness test and abrasion test.The cutting performances of optimized CrN,TiN,and TiAlN coated as well as uncoated high-speed steel augers drilling 7075Al alloy were studied and compared.The most proper bias voltage and turning speed were obtained.The results show that CrN coating consists of Cr2N and CrN phases when bias voltage is in the range of -50 --150 V.With bias voltage increasing,the surface roughness decreases,while the hardness and wear-resistance are improved.However,the properties and the surface quality decrease poor again with excessive high bias voltage.The coating deposited under -100 V exhibits the optimum hardness and wear resistance.The CrN coating can substantially enhance the drilling properties of high speed steel tools,reduce the abrasion and prolong the service life.The drilling

  8. Response of duplex Cr(N)/S and Cr(C)/S coatings on 316L stainless steel to tribocorrosion in 0.89% NaCl solution under plastic contact conditions.

    Science.gov (United States)

    Sun, Y; Dearnley, P A; Mallia, Bertram

    2016-04-27

    Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316 L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behavior of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89% NaCl solution at 37°C at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 μm. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  9. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    Science.gov (United States)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  10. Optimization of Wet or Dry Micro-blasting on PVD Films by Various Al2O3 Grain Sizes for Improving the Coated Tools' Cutting Performance

    Directory of Open Access Journals (Sweden)

    K. -D. Bouzakis

    2011-06-01

    Full Text Available Micro-blasting on PVD coated tools is an effective technology for improving their cutting performance. Through micro-blasting, compressive stresses are induced into the film, thus increasing the coating hardness, but its brittleness too. Simultaneously, abrasion phenomena are activated, which may lead to roughness augmentation, film thickness decrease and substrate revelation. In this way, for a successful process conduct, it is pivotal to adapt, among others, the applied micro-blasting pressure to the employed medium, air or water. The paper deals with the optimization of wet or dry micro-blasting pressure by various Al2O3 grain sizes for improving the coated tool’s wear resistance. The wear behaviour of coated and variously dry or wet micro-blasted tools was investigated in milling. Considering the grains’ penetration kinematics into the coated tool surface and the film deformation mechanisms during dry or wet microblasting by fine or coarse sharp–edged Al2O3 grains, optimum process pressures can be determined.

  11. Enhanced wear and fatigue properties of Ti-6Al-4V alloy modified by plasma carburizing/CrN coating%通过等离子渗碳/CrN覆层改性处理提高Ti-6Al-4V合金的耐磨性和抗疲劳特性

    Institute of Scientific and Technical Information of China (English)

    魏明镛

    2005-01-01

    In this study, a newly developed duplex coating method incorporating plasma carburization and CrN coating was applied to Ti-6Al-4V and its effects on the wear resistance and fatigue life were investigated. The carburized layer with approximately150 μm in depth and CrN coating film with 7.5μm in thickness were formed after duplex coating. Hard carbide particles such as TiC And V4 C3 were formed in the carburized layer. XRD diffraction pattern analysis revealed that CrN film had predominant [111] and [200] textures. The hardness (Hv) was significantly improved up to about 1960 after duplex coating while the hardness value of original Ti-6Al-4V was 402. The threshold load for the modification and/or failure of CrN coating was measured to be 32 N using the acoustic emission technique. The wear resistance and fatigue life of duplex coated Ti-6Al-4V improved significantly compared to those of un-treated specimen. The enhanced wear resistance can be attributed to the excellent adhesion and improved hardness of CrN coating film for the duplex coated Ti-6Al-4V. The initiation of fatigue cracks is likely to be retarded by the presence of hard and strong layers on the surface, resulting in the enhanced fatigue life.

  12. Failure characteristics and mechanisms of EB-PVD TBCs with Pt-modified NiAl bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Le; Mukherjee, Sriparna; Huang, Ke; Park, Young Whan; Sohn, Yongho, E-mail: Yongho.Sohn@ucf.edu

    2015-06-18

    Microstructural evolution and failure characteristics/mechanisms were investigated for thermal barrier coatings that consist of electron beam physical vapor deposited ZrO{sub 2}−8 wt% Y{sub 2}O{sub 3} (YSZ) topcoat, Pt-modified nickel aluminide, (Ni,Pt)Al bond coat, and CMSX-4 superalloy substrate with furnace cycling at 1100 °C with 1-h dwell. Photo stimulated luminescence spectroscopy, scanning electron microscopy equipped with X-ray energy dispersive spectroscopy and transmission electron microscopy were employed to examine the residual stress of the thermally grown oxide (TGO) and microstructural changes. For comparison, (Ni,Pt)Al bond coat on CMSX-4 without the YSZ topcoat was also characterized. The TGO grew faster for the YSZ-coated (Ni,Pt)Al bond coat than the (Ni,Pt)Al coating without the YSZ topcoat. Correspondingly, the β-to-γ′/martensite formation in the (Ni,Pt)Al bond coat occurred faster on the YSZ-coated (Ni,Pt)Al bond coat. However the rumpling occurred much faster and with larger amplitude on the (Ni,Pt)Al coating without the YSZ topcoat. Still, the rumpling at the TGO/bond coat interface caused crack initiation as early as 10 thermal cycles, decohesion at the YSZ/TGO interface, and eventual spallation failure primarily through the TGO/bond coat interface. The magnitude of compressive residual stress in the TGO showed an initial increase up to 3−4 GPa followed by a gradual decrease. The rate of stress relaxation was much quicker for the TGO scale without the YSZ topcoat with distinctive relief corresponding to the cracking at the top of geometrical ridges associated with the (Ni,Pt)Al bond coat. The maximum elastic energy for the TGO scale was estimated at 90 J/m{sup 2} at 50% of its lifetime (N{sub f}=545 cycles). The YSZ presence/adhesion to the TGO scale is emphasized to minimize the undulation of the TGO/bond coat interface, i.e., decohesion at the YSZ/TGO scale accelerates the rumpling and crack-coalescence at the TGO/bond coat

  13. Surface geometry and strain energy effects in the failure of a (Ni, Pt)Al/EB-PVD thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Krishnakumar; Jordan, Eric H.; Gell, Maurice

    2004-03-08

    Thermal cycling tests were conducted on a commercial yttria-stabilized zirconia electron beam-physical vapor deposited thermal barrier coating (TBC) on a platinum aluminide ({beta}-(Ni, Pt)Al) bond coat. Surprisingly, the longest life sample lasted 10 times longer than the shortest life sample. Two distinct mechanisms have been found responsible for the observed damage initiation and progression at the thermally grown oxide (TGO)/bond coat interface. The first mechanism leads to localized debonding at the TGO/bond coat interface due to increasing out-of-plane tensile stresses at ridges that form along bond coat grain boundaries. The second mechanism is driven by cyclic plasticity of the bond coat that leads to cavity formation at the TGO/bond coat interface. The primary finding of this work is that the first mechanism, involving tensile stress at ridge tops, is life limiting. Based on this mechanism, it is demonstrated that the variation in bond coat ridge aspect ratio can explain the unusual 10x variation in observed sample life. It is proposed that ridge top spallation leads to debonds of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The criticality of the flaw created by local debonding is supported by experimental determination of the strain energy available in the TGO through measurement of TGO stress and thickness combined with published fracture mechanics solutions of the relevant flaw geometry.

  14. Mechanical and Tribological Properties of PVD-Coated Cemented Carbide as Evaluated by a New Multipass Scratch-Testing Method

    Directory of Open Access Journals (Sweden)

    M. Fallqvist

    2012-01-01

    Full Text Available A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.32O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.

  15. Application of response surface methodology on investigating flank wear in machining hardened steel using PVD TiN coated mixed ceramic insert

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2013-10-01

    Full Text Available The paper presents the development of flank wear model in turning hardened EN 24 steel with PVD TiN coated mixed ceramic insert under dry environment. The paper also investigates the effect of process parameter on flank wear (VBc. The experiments have been conducted using three level full factorial design techniques. The machinability model has been developed in terms of cutting speed (v, feed (f and machining time (t as input variable using response surface methodology. The adequacy of model has been checked using correlation coefficients. As the determination coefficient, R2 (98% is higher for the model developed; the better is the response model fits the actual data. In addition, residuals of the normal probability plot lie reasonably close to a straight line showing that the terms mentioned in the model are statistically significant. The predicted flank wear has been found to lie close to the experimental value. This indicates that the developed model can be effectively used to predict the flank wear in the hard turning. Abrasion and diffusion has been found to be the dominant wear mechanism in machining hardened steel from SEM micrographs at highest parametric range. Machining time has been found to be the most significant parameter on flank wear followed by cutting speed and feed as observed from main effect plot and ANOVA study.

  16. On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert

    Directory of Open Access Journals (Sweden)

    Hessainia Zahia

    2015-04-01

    Full Text Available This paper focuses on the exploitation of the response surface methodology (RSM to determine optimum cutting conditions leading to minimum surface roughness and cutting force components. The technique of RSM helps to create an efficient statistical model for studying the evolution of surface roughness and cutting forces according to cutting parameters: cutting speed, feed rate and depth of cut. For this purpose, turning tests of hardened steel alloy (AISI 4140 (56 HRC were carried out using PVDcoated ceramic insert under different cutting conditions. The equations of surface roughness and cutting forces were achieved by using the experimental data and the technique of the analysis of variance (ANOVA. The obtained results are presented in terms of mean values and confidence levels. It is shown that feed rate and depth of cut are the most influential factors on surface roughness and cutting forces, respectively. In addition, it is underlined that the surface roughness is mainly related to the cutting speed, whereas depth of cut has the greatest effect on the evolution of cutting forces. The optimal machining parameters obtained in this study represent reductions about 6.88%, 3.65%, 19.05% in cutting force components (Fa, Fr, Ft, respectively. The latters are compared with the results of initial cutting parameters for machining AISI 4140 steel in the hard turning process.

  17. In-situ SEM indentation studies of the deformation mechanisms in TiN, CrN and TiN/CrN.

    Science.gov (United States)

    Rzepiejewska-Malyska, K; Parlinska-Wojtan, M; Wasmer, K; Hejduk, K; Michler, J

    2009-01-01

    In this study, the microstructure and the deformation mechanisms of TiN, CrN and multilayer TiN/CrN thin films on silicon substrates were investigated. Cross-sectional lamellas of nanoindents were prepared by focused ion beam milling to observe by transmission electron microscopy the microstructure of the as-deposited and deformed materials. TiN film exhibits nanocrystalline columns, whereas CrN shows large grains. The TiN/CrN multilayer presents microstructural features typical for both materials. A film hardness of 16.9GPa for CrN, 15.8GPa for TiN and 16.6GPa for TiN/CrN was found by the nanoindentation. Reduced modulus recorded for TiN and CrN reference coatings were 221.54 and 171.1GPa, respectively, and 218.6GPa for the multilayer coating. The deformation mechanisms were observed via in-situ scanning electron microscope nanoindentation. The TiN thin film showed short radial cracks, whereas CrN deformed through pile-up and densification of the material. For TiN/CrN multilayer pile-up and cracks were found. Transmission electron microscopy observations indicated that TiN deforms through grain boundary sliding and CrN via densification and material flow. The deformation mechanism observed in TiN/CrN multilayer was found to be a mixture of both modes.

  18. Research Progress and Application of Superhard Nano-Micron PVD Coating Technology in the Cutting Manufacturing Area%超硬纳微米PVD涂层技术在刀具领域的应用及研究进展

    Institute of Scientific and Technical Information of China (English)

    张而耕; 朱州; 张体波

    2015-01-01

    ABSTRACT:The paper introduced the principle, characteristics, and advantages and disadvantages of three methods of vacuum evaporation, sputtering and ion plating in physical vapor deposition ( PVD) technology, and introduced the PVD coating technology that is widely used in cutting tools by four categories of binary, multiple coatings, multilayer coatings and nano multilayer composite coating. Based on a large amount of literature, combined with the author's experience in the research and application of PVD tech-nology for many years, the paper reviewed the research progress of superhard nano-micron PVD coating technology in the field of application of cutting tool from the most important perspective of improving the cutting tool life, and further discussed the multiple coating, multilayer coating and nanometer coating in details. Cutting tool surface with application of physical vapor deposition coa-ting technology enabled the tool to obtain excellent overall performance, which significantly improved the life of cutting tools, re-duced production costs, and increased the machining efficiency substantially. Finally, the paper forecasted the wide application of physical vapor deposition coating technology in composite superhard cutting ( including milling of mold steel, hardened steel whose hardness over HRC55 ) , cutting hard processing materials ( including high-temperature alloys, titanium alloy, stainless steel, etc. ) , machining and processing composite materials of graphite and carbon fiber, etc. and high-speedily machining non-ferrous metals ( including aluminum, copper alloys, nickel, etc. ) in the future.%介绍了物理气相沉积( PVD)技术的原理、特点和真空蒸镀、溅射镀和离子镀之间的优缺点,从二元涂层、多元涂层、多层涂层和纳米多层复合涂层等4种类别上介绍了PVD涂层技术在切削刀具上的广泛应用。在查阅和整理大量文献资料的基础上,也结合笔者多年从事PVD技术的

  19. Microstructure characterization of advanced protective Cr/CrN+a-C:H/a-C:H:Cr multilayer coatings on carbon fibre composite (CFC).

    Science.gov (United States)

    Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B

    2016-06-01

    Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools.

  20. Structural analysis of multilayer metal nitride films CrN/MoN using electron backscatter diffraction (EBSD)

    Science.gov (United States)

    Postolnyi, Bogdan; Bondar, Oleksandr; Opielak, Marek; Rogalski, Przemysław; Araújo, João. Pedro

    2016-12-01

    The electron backscatter diffraction (EBSD) analysis method was used for studying structure and properties of multilayer nitride CrN/MoN coatings fabricated by cathode arc physical vapour deposition (Arc-PVD). Samples were deposited on steel substrate with different single layer thickness from tens nanometers to 1 micron and with total thickness of coatings up to 8-13 μm. Colour grains mapping, grain size distribution profiles, pole figures and texture analyses were the main research instruments. Studying of obtained coatings was performed on specially prepared polished cross-section samples. The dependence between single layer thickness and grain size of materials, which is also changing through depth profile of the coating, was observed. In addition, it was possible to study phase composition, prevailing crystals orientation, dominant texture and grains growth. Studying of grains size, as well as other indicated parameters, is a very important task because it gives an information about grains interfaces volume, which causes changes in mechanical properties of material. Obtained results were cross-checked by X-ray diffraction analysis (XRD) where it was possible.

  1. PVD 微合金化涂层AlTiSiXN在C70 S6材料连杆攻丝中的应用%Applications of PVD Coating AlTiSiXN on Threading Connecting-Rods Based on C70S6 Steel

    Institute of Scientific and Technical Information of China (English)

    邬本祥; 彭新海; 徐启明; 徐和平

    2016-01-01

    TiN and AlTiSiXN hard thin films are coated on HSSCo M8 taps with Domino L PVD coating system to test the performances of the taps on site.The results show that better performance and higher tool life are obtained with MAC (micro-alloyed coating)coating AlTiSiXN for the tapping of threads on connecting rods made of C70S6.%采用多米诺PVD涂层技术在钴高速钢丝锥M8上进行PVD涂层。选择TiN、AlTiSiXN涂层并对涂层丝锥进行性能测试。结果表明,连杆材料C70S6的攻丝加工宜选择耐磨性更好的微合金化涂层AlTiSiXN,可获得较好的切削性能和寿命。

  2. Optimization and characterization of adhesion properties of DLC coatings on different substrates

    Science.gov (United States)

    Waseem, B.; Alam, S.; Irfan, M.; Shahid, M.; Soomro, B. D.; Hashim, S.; Iqbal, R.

    2014-06-01

    The Diamond Like Carbon coatings (DLC) are gaining prime importance in the field of surface engineering especially cutting tools technology. The self lubricating property of these coatings makes them unique among other coatings like TiN, TiAlN, CrN etc. Unlike other coatings, DLC coatings give better surface finish and their self lubrication reduces the wear of a part to large extent. In present work, different substrates were selected to study the wear and adhesion behavior of DLC coatings. The coating was produced by physical Vapor Deposition (PVD) technique and the adhesive properties of DLC coatings were analyzed under ambient conditions using nano Scratch testing. Scanning electron microscope (SEM) was used to observe the scratches and their mechanisms.

  3. Cell adhesion property of cathodic arc plasma deposited CrN thin film

    Science.gov (United States)

    Kim, Sun Kyu; Pham, Vuong Hung

    2009-09-01

    The interaction between human osteoblast cells and CrN thin film was studied in vitro. CrN thin films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy. Cell adhesion on the coatings was assessed by MTT assay and visualization. Cell cytoskeleton organization was studied by analyzing microtubule and actin cytoskeleton organization. Focal contact adhesion was monitored by analyzing vinculin density. The study found that the CrN thin film is a potential candidate as a protective coating on implantable devices that require minimal cellular adhesion.

  4. Corrosion resistance appraisal of TiN, TiCN and TiAlN coatings deposited by CAE-PVD method on WC-Co cutting tools exposed to artificial sea water

    Science.gov (United States)

    Matei, A. A.; Pencea, I.; Branzei, M.; Trancă, D. E.; Ţepeş, G.; Sfăt, C. E.; Ciovica (Coman), E.; Gherghilescu, A. I.; Stanciu, G. A.

    2015-12-01

    A new advanced sintered composite cutting tool has been developed based on tungsten carbide matrix ligated with cobalt (WC-Co) additivated with tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) as grain growth inhibitors. Titanium nitride (TiN), titanium carbonitride (TiCN) and titanium aluminium nitride (TiAlN) coatings were deposited on these tools by CAE-PVD technique to find out the best solution to improve the corrosion resistance of this tool in marine environment. The electrochemical behaviours of the specimens in 3.5% NaCl water solution were estimated by potentiodynamic polarization measurements i.e. the open circuit potential (Eoc), corrosion potential (Ecorr) and corrosion current density (icorr). Wide angle X-ray diffraction (WAXD), optical microscopy (OM) and atomic force microscopy (AFM) investigations have been carried on tested and untested specimens to substantiate the corrosion resistance of the tested specimens. Based on the open circuit potential (Eoc) and corrosion potential (Ecorr) results, the tested specimens were ranked as TiN, TiAlN, TiCN and WC-Co while on corrosion current density (icorr) and protective efficiency (P) values they have been ranked as TiN, TiAlN, WC-Co and TiCN. The WAXD, MO and AFM results unambiguously show that the corrosion resistance depends on the nature and morphology of the coating.

  5. Stress in and texture of PVD deposited metal nitride films

    NARCIS (Netherlands)

    Machunze, R.

    2010-01-01

    Thin metal nitride films deposited by Physical Vapor Deposition (PVD) are used amongst many other applications as wear protective coatings in tool industry or as diffusion barriers in integrated circuit technology. Typically these films exhibit a residual in-plane stress when deposited onto rigid su

  6. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    Science.gov (United States)

    AL-Bukhaiti, M. A.; Al-hatab, K. A.; Tillmann, W.; Hoffmann, F.; Sprute, T.

    2014-11-01

    A new [Ti/TiAlN/TiAlCN]5 multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al2O3 balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10-15 m3/N m, low friction coefficients against 100Cr6 and Al2O3 balls in the range of 0.25-0.37, and good hardness in the range of 17-20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al2O3 and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al2O3 pair, while for coating/100Cr6 pair, a combination of mild adhesive wear, severe adhesive wear, and abrasive wear (extensive plowing) were the dominant wear mechanisms at different applied normal loads.

  7. PVD涂层刀具高速铣削CoCrMo合金的性能研究%Performance of PVD-coated Tool in High Speed Milling of CoCrMo Alloy

    Institute of Scientific and Technical Information of China (English)

    张而耕; 王琴雪; 张锁怀

    2017-01-01

    目的 为了提高涂层硬质合金刀具的切削性能,研究了物理气相沉积PVD法制备的涂层硬质合金铣刀在高速干式环境下的铣削性能.方法 采用阴极电弧技术制备了TiN、TiAlN以及TiAlSiN涂层硬质合金铣刀刀头,通过一同沉积涂层的硬质合金圆片,间接测量得出涂层的显微硬度、厚度和平均摩擦系数,并以CoCrMo合金为切削对象,进行了PVD涂层与无涂层刀具高速铣削下的对比试验.结果 TiAlSiN显微硬度最高达3800HV,摩擦系数达0.3,TiAlN涂层平均膜厚为2μm,间接测得TiN、TiAlN以及TiAlSiN涂层的结合力依次为60、58、42 N.在三者的切削性能中,TiAlSiN涂层的切削性能比TiAlN和TiN涂层的好,同等切削参数时,TiN刀具的高速铣削时间最短,TiAlSiN涂层的平均磨损值为0.1895,TiN的平均磨损值为0.3047.结论 涂层中添加A1、Si,极大地提高了刀具的使用性能,改善了刀具切削过程中的耐磨性、红硬性,极大地延长了刀具的使用寿命.TiAlSiN涂层的硬度高,耐磨损性好,切削性能好,适合高速铣削加工.%The work aims to improve cutting performance of coated carbide-tipped alloy cutters by studying milling performance of physical vapor deposition (PVD) coated carbide-tipped alloy cutters in at high speed and dry environment.TiN,TiAlN and TiAlSiN coated carbide-tipped alloy cutter heads were prepared on surfaces of carbide substrates by cathode arc plasma method.Microhardness,thickness and average friction coefficient were determined by indirect measurement of the cemented carbide disks deposited together with the coating system.A comparative test was performed to CoCrMo alloy at high-speed milling between PVD coatings and uncoated tools.The mechanical properties of the coating obtained were as follows,TiAlSiN micro hardness was up to 3800HV,friction coefficient 0.3,average thickness of TiAlN coating 2 μm,and adhesive force of TiN,TiAlN and TiAlSiN coatings indirectly measured

  8. Corrosion resistance of CrN thin films produced by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ruden, A. [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia); Departamento de matemáticas, Universidad Tecnológica de Pereira, Pereira (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 vía al Magdalena, Manizales (Colombia); Paladines, A.U.; Sequeda, F. [Laboratorio de Recubrimientos Duros y Aplicaciones Industriales–RDAI, Universidad del Valle, Calle 13 N° 100-00 Ciudadela Meléndez, Cali (Colombia)

    2013-04-01

    In this study, the electrochemical behavior of chromium nitride (CrN) coatings deposited on two steel substrates, AISI 304 and AISI 1440, was investigated. The CrN coatings were prepared using a reactive d.c. magnetron sputtering deposition technique at two different pressures (P1 = 0.4 Pa and P2 = 4 Pa) with a mixture of N{sub 2}–Ar (1.5-10). The microstructure and crystallinity of the CrN coatings were investigated using X-ray diffraction. The aqueous corrosion behavior of the coatings was evaluated using two methods. The polarization resistance (Tafel curves) and electrochemical impedance spectra (EIS) in a saline (3.5% NaCl solution) environment were measured in terms of the open-circuit potentials and polarization resistance (R{sub p}). The results indicated that the CrN coatings present better corrosion resistance and R{sub p} values than do the uncoated steel substrates, especially for the coatings produced on the AISI 304 substrates, which exhibited a strong enhancement in the corrosion resistance. Furthermore, better behavior was observed for the coatings produced at lower pressures (0.4 Pa) than those grown at 4 Pa.

  9. Tribological investigations of TiC+a-C:H Coatings Manufactured on X38CrMoV5-1 Steel Using PVD Technology

    OpenAIRE

    GOLABCZAK, Marcin; Jacquet, Philippe; Nouveau, Corinne; FLITI, Romain

    2013-01-01

    International audience; X38CrMoV5-1 steel is a typical tool steel commonly used in forging and plastic moulding industry for production of ejectors, slides, dies, etc. In plastics moulding a lot of these parts sustain relative movement. Because of this, some seizing or micro-welding may appear, especially when lubrication is not used. For many years, the different types of protective coatings were developed to avoid such problems. Most of the obtained solutions relate to the manufacturing of ...

  10. Computational simulation of the CrN - FCC structure; Simulación computacional de la estructura FCC del CrN

    Directory of Open Access Journals (Sweden)

    ALEXANDER RUDEN MUÑOZ

    2013-06-01

    Full Text Available CrN thin films were synthesized via Magnetron Sputtering deposition technique on (111 oriented Silicon substrates. Coatings were analyzed by using X-ray Diffraction (XRD and Raman spectroscopy, determining the cubic phase for the ceramic compound. Computational simulation of the CrN cubic crystallographic structure, performed by using Density Functional Theory (DFT, showed stability by the sum of Mulliquen charges equal to zero and compound hybridization with characteristic sp molecular orbitals and the identification of the p molecular orbital component from the nitrogen.

  11. Thin Film Deposition Techniques (PVD)

    Science.gov (United States)

    Steinbeiss, E.

    The most interesting materials for spin electronic devices are thin films of magnetic transition metals and magnetic perovskites, mainly the doped La-manganites [1] as well as several oxides and metals for passivating and contacting the magnetic films. The most suitable methods for the preparation of such films are the physical vapor deposition methods (PVD). Therefore this report will be restricted to these deposition methods.

  12. Surface parameters modification by multilayer coatings deposition for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A [Institute of Surface Engineering, 4 Zalutinskaya Str., Kharkov (Ukraine); Safonov, V [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaja Str., 61108 Kharkov (Ukraine); Virva, O; Luk' yanchenko, V [Institute of Spine and Joint Pathologies, 80 Pushkinskaya Str., 61024 Kharkov (Ukraine); Walkowich, J; Rogowska, R [Institute for Sustainable Technologies, National Research Institute, 6/10 K. Pulaskiego Str., Radom (Poland); Yakovin, S [Department of Physical Technologies, Kharkov National University, 31 Kurchatov Ave., Kharkov (Ukraine)], E-mail: zykov@bi.com.ua

    2008-05-01

    Studies are presented of the surface parameters of various multilayer coatings, namely, TiN, CrN, (Ti, Cr)N, TiN/TiC{sub 10}N{sub 90}, TiN/TiC{sub 20}N{sub 80} deposited by means of Arc-PVD on stainless steel (1H18N9), as well as of the same coatings with an additional Al{sub 2}O{sub 3} film deposited by reactive magnetron sputtering (RMS). The surface thickness, roughness and topography are estimated. Other parameters, such as the surface free energy (SFE) and fractional polarity are determined by means of the Wu and the Owens-Wendt-Rabel-Kaelble methods. Experiments are carried out on the in vitro cell/material interaction (in a fibroblasts culture) in order to determine the materials biomedical response. The results show some correlation between the surface properties and cell adhesion. The best biological response parameters (cell number, proliferation function, morphology) are obtained in the case of coatings with the highest values of the polar part component of the SFE and the fractional polarity, such as TiN, TiN/TiC{sub 10}N{sub 90} and oxide coatings.

  13. Pvd Growth Method:. Physics and Technology

    Science.gov (United States)

    Moshfegh, A. Z.

    2004-06-01

    In this review, the foundation of thin film technology namely fabrication, characterization and application is described. Classification of physical vapor deposition (PVD) is presented based on evaporation and sputtering methods. The physics and technology of three main branches of PVD deposition techniques including sputtering, pulse laser deposition (PLD) and molecular beam epitaxy (MBE) along with their characteristic differences are compared. The application of bias sputtering in producing thin films with modified properties is presented. A correlation between deposition variables and parameters of nucleation and growth is discussed. The initial stages of PVD growth modes such as layer by-layer, island, and mixed layer-island growth mechanisms are reviewed. At the end, the applications of PVD in microelectronics with several recent examples especially in the metallization process are presented.

  14. Effect of Elevated Temperature on Tribological Properties of PVD Layers

    Directory of Open Access Journals (Sweden)

    Mária HAGAROVÁ

    2016-05-01

    Full Text Available The present study investigated tribological properties of multilayer TiAlN and nanocomposite (nc-Ti1-xAlxN/a-Si3N4 coatings. Tested coatings were deposited by two PVD methods on the high speed steel Böhler S 600 Isorapid substrate. The coatings demonstrated good adhesion to the substrate and high hardness (2090 - 2510 HV0.5. Tribological properties of the coated specimens were evaluated by the Ball-on-Disc test and by metallographical analysis of the tribological track after testing at room temperature and at 450°C. The specimens with multilayer TiAlN coatings showed slightly better tribological properties, as regards the course of friction coefficient. Although the values of friction coefficient of multilayer coatings were comparable to the values determined for nanocomposite, the course of friction coefficient and analysis of tribo-tracks showed that the failure of the multilayer TiAlN coating was less pronounced compared to the nanocomposite coating.

  15. Microstructure and mechanical properties of nanocomposite coatings deposited by cathodic arc evaporation

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2010-09-01

    Full Text Available Purpose: The main aim of the this research was the investigation of the structure and the mechanical properties of the nanocomposite TiAlSiN, CrAlSiN, AlTiCrN coatings deposited by cathodic arc evaporation method onto hot work tool steel substrate.Design/methodology/approach: The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Tests of the coatings’ adhesion to the substrate material were made using the scratch test.Findings: It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 11-25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-section morphology as well as good adhesion to the substrate. The critical load LC2 lies within the range of 46-54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa.Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the nanocomposite coatings make them suitable in industrial applications.Originality/value: The investigation results will provide useful information to applying the nanocomposite coatings for the improvement of mechanical properties of the hot work tool steels.

  16. Effect of electroless nickel interlayer on wear behavior of CrN/ZrN multilayer films on Cu-alloyed ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Kwei [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan (China); Hsu, Cheng-Hsun, E-mail: chhsu@ttu.edu.tw [Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan (China); Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Kung, Shu-Chi [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China)

    2013-11-01

    This study utilized electroless nickel as an interlayer, then coated nanoscale CrN/ZrN multilayer on Cu-alloyed ductile iron through cathodic arc deposition method. Morphology and structure of the coatings were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). Moreover, Rockwell-C indentation, nanoindention, and ball-on-disk wear tests were all carried out to explore the properties of the coatings consisting of adhesion, hardness, elastic modulus, friction coefficient, and wear rate, respectively. The results showed that electroless nickel had a major amorphous phase while the CrN/ZrN multilayer coatings exhibited alternate nanocrystalline CrN and ZrN phases. Compared with single coating of electroless nickel or CrN/ZrN, the CrN/ZrN multilayer coatings with an electroless nickel interlayer exhibited higher hardness (31.1 GPa) and elastic modulus (256.4 GPa). Consequently, the ductile iron with the duplex coatings could be available to reduce both the friction coefficient and wear rate.

  17. Evaluating the corrosion resistance of UBM-deposited Cr/CrN multilayers

    Directory of Open Access Journals (Sweden)

    Yuri Lizbeth Chipatecua Godoy

    2011-05-01

    Full Text Available This work was aimed at evaluating the corrosion resistance of multilayer Cr/CrN coatings deposited by the unbalan-ced magnetron sputtering (UBM technique. Coatings were produced at room temperature using 400 mA discharge current, 9 sccm argon flow and 3 sccm nitrogen flow. The total thickness of coatings deposited on AISI 304 stainless steel and silicon (100 varied between 0.2 a 3 μm as bilayer period varied between 20 and 200 nm. Coating microstructure and chemical composition was stu-died through scanning electron microscopy (SEM and tex-ture and crystalline phases were analysed by X-ray diffraction (XRD before and after corrosion tests which were carried out by potentiodynamic polarisation using 0.5 M H2SO4 + 0.05M KSCN solution. Lower bilayer period coatings presented better corrosion resistance and their corrosion mechanism is discussed in this article.

  18. Corrosion behavior of chromium-free dacromet coating in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hu Huili [Department of Chemistry of Harbin Institute of Technology, Harbin 150001 (China); Department of Ocean of Harbin Institute of Technology at WeiHai, WeiHai 264209 (China); Li Ning [Department of Chemistry of Harbin Institute of Technology, Harbin 150001 (China) and Department of Ocean of Harbin Institute of Technology at WeiHai, WeiHai 264209 (China)], E-mail: lininghit@126.com; Cheng Jinning; Chen Lijiao [Department of Ocean of Harbin Institute of Technology at WeiHai, WeiHai 264209 (China)

    2009-03-20

    In order to overcome the environmental objection of chromium(VI) in dacromet, a novel chromium-free dacromet was developed. Electrochemical impedance spectroscopy (EIS) and d.c. potential measurements were employed to study the anticorrosion behavior of the sintered ceramic zinc-aluminum coatings in still seawater. Results of X-ray diffraction (XRD) indicate that the main corrosion products are composed of Al{sub 2}O{sub 3}, ZnCl{sub 2}, Zn(OH){sub 2} and Fe{sub 2}O{sub 3}. The scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) analysis were carried out to study the morphological appearance and the local chemical composition of run-out coatings. The results show that the evolution of open circuit potential can be divided into four stages during the lifetime of CFD/steel. The EIS behaviors of Zn-Al coatings immersion in seawater at the first day are similar to the ceramic CrN coating prepared by PVD, while the impedance data of the next days are parallel with multilayer protective coatings. The galvanic protection effect of the coating keeps active only in the first 3 days and then the physical shielding function play a dominant role.

  19. Large magneto-optical effect in low-temperature-grown GaCrN and GaCrN:Si

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.K.; Fan, P.H.; Emura, S.; Hasegawa, S.; Asahi, H. [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2012-03-15

    GaCrN layers were grown at 300 and 100 C by radio-frequency plasma-assisted molecular-beam epitaxy on sapphire substrates. X-ray diffraction results showed no obvious secondary phase in the GaCrN samples grown at 300 C with Cr concentration even up to 9%. A very sharp line was found at 356 nm in the photoluminescence spectra below 50 K, which comes from high crystalline quality regions in the GaCrN layers. All the samples grown at low temperatures exhibited ferromagnetic characteristics. Si-doped GaCrN with Cr concentration of 6% has the largest saturation magnetization. Magnetic circular dichroism (MCD) measurement was performed for these samples at 10 K to investigate magneto-optical effect. Large magneto-optical effect was confirmed in the low-temperature-grown non-doped and Si-doped GaCrN. Zeeman splitting was enhanced by Si-doping in the low-temperature-grown GaCrN (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Deposition of TiN/CrN hard superlattices by reactive d.c. magnetron sputtering

    Indian Academy of Sciences (India)

    Harish C Barshilia; K S Rajam

    2003-02-01

    Multilayer superlattice coatings of TiN/CrN were deposited on silicon substrates using a reactive d.c. magnetron sputtering process. Superlattice period, also known as modulation wavelength (), was controlled by controlling the dwell time of the substrate underneath Ti and Cr targets. X-ray diffraction (XRD), nanoindentation and atomic force microscopy (AFM) were used to characterize the films. The XRD data showed 1st and 2nd order satellite reflections along the principal reflection for films having 132 Å $\\geq \\Lambda \\geq$ 84 Å, thus confirming the formation of superlattice. The multilayer coatings exhibited hardness () as high as 3200 kg/mm2, which is 2 times the rule-of-mixtures value (i.e. $H_{TiN}$ = 2200 kg/mm2 and $H_{CrN}$ = 1000 kg/mm2). Detailed investigations on the effects of various process parameters indicated that hardness of the superlattice coatings was affected not only by modulation wavelength but also by nitrogen partial pressure and ion bombardment during deposition.

  1. Effects of Residual Stress on Quality of (Ti, Al) N Coatings Deposited by PVD Method%PVD法制备(Ti,Al)N涂层中残余应力对其质量的影响

    Institute of Scientific and Technical Information of China (English)

    吴化; 陈涛; 宋力

    2013-01-01

    The (Ti,Al)N coatings were deposited at different bias voltage by ion plating assisted with hollow cathode facility produced in China. X-ray diffraction method was used to study the composition and residual stress of the (Ti,Al)N coatings. There were macro-particles on surface of (Ti,Al)N coatings analyzed by SEM. The adhesion and hardness of (Ti,Al)N coatings were tested by universal nano/micro material tester. The research results show that the residual compressive stress existed in the (Ti,Al)N coatings. Following the augment of bias voltage, the residual stress value decreased first and then increased. The macro-particles on coatings became weaken notably, the adhesion and hardness of (Ti,Al)N coatings increased, the quality and mechanical properties of the coatings were improved when the value of bias voltage enhanced.%在国产离子镀和空心阴极离子镀复合镀膜机上,通过改变脉冲偏压值制备了(Ti,Al)N涂层.用X射线衍射仪对涂层的相组成进行了检测分析,并通过测得的衍射谱线计算了(Ti,Al)N涂层中的残余应力值;扫描电镜观察涂层表面微观形貌显示涂层表面存在“大颗粒”现象;用材料表面微纳米力学测试系统检测了涂层与基体间的结合力和涂层的硬度值.对涂层中残余应力与质量和性能之间关系的研究分析表明:(Ti,Al)N涂层中存在着残余压应力,且随脉冲偏压值的增加其值有先减小后增大的趋势;涂层中“大颗粒”现象随脉冲偏压值的提高能够显著得到减轻,涂层与基体间结合力得到提高,涂层的硬度值增大,涂层质量和力学性能均得到改善.

  2. Study of high cycle fatigue of PVD surface-modified austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.P.; Lee, S.C.; Hsu, C.H.; Ho, J.M. [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mater. Eng.

    1999-05-25

    Austempered ductile iron (ADI) is made from ductile iron by an austempering treatment, and its main microstructure is ausferrite that is composed of acicular ferrite and high carbon austenite. The purpose of this experiment is to investigate the influence of different coating layers and the size of casting (mass effect) on the high-cycle fatigue properties of ADI. Specimens in two casting sizes of the same chemical composition were subjected to a high-toughness austempering treatment, then coated with TiN or TiCN hard films by a physical vapor deposition (PVD) process. The results showed that the fatigue limit of the small casting size ADI is 292 MPa for ADI coated with TiN and 306 MPa for ADI coated with TiCN, which are 16% and 22%, respectively, higher than that of the ADI without coating (251 MPa). For the large casting size ADI, the fatigue limits are 200, 214 and 217 MPa for ADI without coating, ADI coated with TiN and ADI coated with TiCN, respectively. ADI coated with TiN and with TiCN are 7% and 9% better than the uncoated. Thus, it is concluded that TiN and TiCN coatings by PVD can improve the high-cycle fatigue strength of ADI. This is due to the high surface hardness and possibly the ADI surface compressive residual stress as well. For the small casting size ADI, TiCN-coated specimens have a bit higher fatigue strengths and this might be attributed to the higher hardness of TiCN than TiN films. As to the effect of mass, it is found that the small casting size has better fatigue properties and benefits more from the coating films. This could have stemmed from the higher nodule count and its associated benefits in thinner castings. (orig.) 24 refs.

  3. Comportamiento mecánico de ADI tratada superficialmente mediante la aplicación de recubrimientos PVD de baja temperatura

    OpenAIRE

    Colombo, Diego Alejandro; Echeverría, María D.; Massone, Juan Miguel

    2015-01-01

    En este trabajo se aplican recubrimientos PVD de TiN y CrN sobre ADI y se analiza la influencia del material del recubrimiento sobre las propiedades mecánicas del producto ADI recubierto. Se analiza también, el efecto del proceso de deposición sobre la microestructura de los sustratos. Los recubrimientos se aplican en un reactor industrial mediante la técnica de plateado iónico con arco catódico, utilizando parámetros de proceso específicamente seleccionados para este material. Se determinan ...

  4. EB-PVD热障涂层热循环性能评价方法研究%Evaluation Method of Thermal Cycling Property of EB-PVD Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    陈立强; 宫声凯; 徐惠彬

    2013-01-01

    制备8批次EB-PVD双层结构热障涂层试样,采用循环加热快速冷却实验装置模拟热障涂层服役环境,开展了热障涂层试样在不同热循环保温时间条件下的热循环性能评价实验,采用指数下降的数学模型对热循环实验数据进行拟合分析,获得了表征热障涂层试样静态氧化性能和热疲劳性能的物理量.结果表明,在本实验工艺条件下制备的不同批次热障涂层试样的静态氧化性能和热疲劳性能具有不同的匹配关系,热障涂层试样静态氧化性能总体估计值为(677±194)h,热疲劳性能总体估计值为(6789±1818)次.%Thermal cycling testing to the 8 batches of thermal barrier coating samples for different holding time was carried out by means of cycling heating and cooling apparatus to simulate TBCs service environment. Using a mathematical model of exponential decline to fit thermal cycle experimental data, characterization parameters of static oxidation performance and thermal fatigue performance of thermal barrier coated samples were obtained. The result indicates that static state oxidation performance and thermal fatigue performance of TBCs samples prepared under present experimental technology conditions have different match relation. The estimated value for static state oxidation performance is 677±194 h, and the estimated value for thermal fatigue performance is 6789±1818 times.

  5. Crystal structure of PvdO from Pseudomonas aeruginosa.

    Science.gov (United States)

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  6. Strain fields and electronic structure of antiferromagnetic CrN

    Science.gov (United States)

    Rojas, Tomas; Ulloa, Sergio E.

    2017-09-01

    We present a theoretical analysis of the role that strain plays on the electronic structure of chromium nitride (CrN) crystals. We use local spin-density approximation + U calculations to study the elastic constants, deformation potentials, and strain dependence of electron and hole masses near the fundamental gap. We consider the lowest energy antiferromagnetic models believed to describe CrN at low temperatures, and apply strain along different directions. We find relatively large deformation potentials for all models, and find increasing gaps for tensile strain along most directions. Most interestingly, we find that compressive strains should be able to close the relatively small indirect gap (≃100 meV) at moderate amplitudes ≃1.3 % . We also find large and anisotropic changes in the effective masses with strain, with principal axes closely related to the magnetic ordering of neighboring layers in the antiferromagnet. It would be interesting to consider the role that these effects may have on typical film growth on different substrates, and the possibility of monitoring optical and transport properties of thin films as strain is applied.

  7. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  8. Coatings for transport industry

    Directory of Open Access Journals (Sweden)

    Krzysztof LUKASZKOWICZ

    2014-09-01

    Full Text Available The investigations concerned structural analysis, as well as mechanical properties and wear resistant of MeN/DLC double-layer coating deposited by hybrid PVD/PACVD method. In sliding dry friction conditions, after the break-in time, the friction coefficient for the investigated elements is set in the range between 0.03-0.06.

  9. Diamond film deposition on WC-Co and steel substrates with a CrN interlayer for tribological applications

    Science.gov (United States)

    Chandran, Maneesh; Hoffman, Alon

    2016-06-01

    The most renowned property of diamond is its exceptional hardness. By depositing diamond films on tungsten carbide (WC-Co) and steel substrates, the hardness of diamond can be combined with the toughness of these materials, resulting in an excellent wear resistance material for tribological applications. However, poor adhesion of diamond coating on these substrates leads to a lesser lifetime for the diamond coated tools than expected. The prime reasons for the lack of proper adhesion are the preferential formation of graphitic layer at the interface due to the catalytic activities of cobalt/iron and the interfacial residual stresses due to the mismatch in thermal expansion coefficients of diamond (1.5  ×  10-6 K-1) and WC-Co (5.2  ×  10-6 K-1) or steel (12  ×  10-6 K-1). In this review, we discuss the possibility of using a Cr-N interlayer as a diffusion barrier to prevent the catalytic activities of cobalt/iron and also to relax the interfacial residual stresses to some extent to enhance the adhesion of diamond coatings on these substrates. An overview of the most pertinent results of the last two decades, including the recent progress is introduced. We describe in detail how the Cr-N interlayer with the desired properties is fabricated. We give a concise overview of diamond deposition process, including the methods to vary the grain size from microcrystalline to nanocrystalline, which are suitable for some tribological applications. We describe in detail on surface and interface analysis, residual stress measurements, assessment adhesion strength and tribological performance of diamond coated WC-Co and steel substrates using various characterization techniques. We conclude by highlighting the current progress and future perspectives of diamond coatings on these substrates for tribological applications.

  10. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications.

    Science.gov (United States)

    Sultana, T; Georgiev, G L; Baird, R J; Auner, G W; Newaz, G; Patwa, R; Herfurth, H J

    2009-07-01

    Biomedical devices and implants require precision joining for hermetic sealing which can be achieved with low power lasers. The effect of two different thin metal film coating methods was studied in transmission laser micro-joints of titanium-coated glass and polyimide. The coating methods were cathodic arc physical vapor deposition (CA-PVD) and electron beam evaporation (EB-PVD). Titanium-coated glass joined to polyimide film can have neural electrode application. The improvement of the joint quality will be essential for robust performance of the device. Low power fiber laser (wave length = 1100 nm) was used for transmission laser micro-joining of thin titanium (Ti) film (approximately 200 nm) coated Pyrex borosilicate 7740 glass wafer (0.5 mm thick) and polyimide (Imidex) film (0.2 mm thick). Ti film acts as the coupling agent in the joining process. The Ti film deposition rate in the CA-PVD was 5-10 A/s and in the EB-PVD 1.5 A/s. The laser joint strength was measured by a lap shear test, the Ti film surfaces were analyzed by atomic force microscopy (AFM) and the lap shear tested joints were analyzed by optical microscopy and scanning electron microscopy (SEM). The film properties and the failure modes of the joints were correlated to joint strength. The CA-PVD produced around 4 times stronger laser joints than EB-PVD. The adhesion of the Ti film on glass by CA-PVD is better than that of the EB-PVD method. This is likely to be due to a higher film deposition rate and consequently higher adhesion or sticking coefficient for the CA-PVD particles arriving on the substrate compared to that of the EB-PVD film. EB-PVD shows poor laser bonding properties due to the development of thermal hotspots which occurs from film decohesion.

  11. Effects of Shot Peening Process on Thermal Cycling Lifetime of TBCs Prepared by EB-PVD

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhao-hui; GONG Sheng-kai; LI He-fei; XU Hui-bin; ZHANG Chun-gang; WANG Lu

    2007-01-01

    Conventional two-layered thermal barrier coatings (TBCs) are prepared by electron beam physical vapor deposition (EB-PVD)with ZrO2-8 wt% Y2O3 (8YSZ) as top coat and CoCrAlY as bond coat on disk-shaped Ni based super-alloy. In this paper, three kinds of shot peening process with different lengths of operating time were adopted for bond coating. As a result, changes took place in its surface roughness and the surface micro-hardness. A thermal cycling test at 1 273 K×55 min and another at room temperature for 5 min were performed to study the effects of shot peening process on the thermal cycling lifetime of TBCs. It is found that a moderate shot peening process will be able to prolong the life time. The oxidation dynamic of the as-processed TBCs basically accords with the parabolic rule, and the oxidation test also attests to the spallation between YSZ and thermal growth oxide (TGO) responsible mainly for the failure of TBCs.

  12. Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability

    Science.gov (United States)

    Zhai, Yunyun; Xiao, Ke; Yu, Jianyong; Ding, Bin

    2016-09-01

    The x-polyethylene glycol diacrylate (x-PEGDA) coated polyetherimide/polyvinylidene fluoride (PEI/PVdF) membranes are obtained by the facile combination of dip-coating and free radical polymerization of PEGDA on the electrospun PEI/PVdF fiber membranes. Successful cross-linking of PEGDA increases the average fibers diameter from 553 to 817 nm and reduces the packing density, which not only increases the tensile strength of x-PEGDA coated PEI/PVdF membranes, but also decreases the average pore diameter. Besides, the x-PEGDA coated PEI/PVdF membranes are endowed with good wettability, high electrolyte uptake, high ionic conductivity and improved electrochemical stability window because of the good affinity of PEI and PEGDA with liquid electrolyte. Benefiting from the synergetic effect of PEI and PVdF, the x-PEGDA coated PEI/PVdF membranes exhibit excellent thermal stability and nonflammability, which are beneficial for enhancing the safety of lithium ion batteries. More importantly, the x-PEGDA coated PEI/PVdF membranes based Li/LiFePO4 cell exhibits comparable cycling stability with capacity retention of 95.9% after 70 cycles and better rate capability compared with the Celgard membrane based cell. The results clearly demonstrate that the x-PEGDA coated PEI/PVdF membranes are the promising separator candidate with improved wettability and safety for next-generation lithium ion batteries.

  13. Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries.

    Science.gov (United States)

    Pujari, Sidharam P; Li, Yan; Regeling, Remco; Zuilhof, Han

    2013-08-20

    The fabrication of chemically and mechanically stable monolayers on the surfaces of various inorganic hard materials is crucial to the development of biomedical/electronic devices. In this Article, monolayers based on the reactivity of silane, phosphonate, 1-alkene, and 1-alkyne moieties were obtained on the hydroxyl-terminated chromium nitride surface. Their chemical stability and tribology were systematically investigated. The chemical stability of the modified CrN surfaces was tested in aqueous media at 60 °C at pH 3, 7, and 11 and monitored by static water contact angle measurements, X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). The tribological properties of the resulting organic monolayers with different end groups (fluorinated or nonfluorinated) were studied using atomic force microscopy (AFM). It was found that the fluorinated monolayers exhibit a dramatic reduction of adhesion and friction force as well as excellent wear resistance compared to those of nonfluorinated coatings and bare CrN substrates. The combination of remarkable chemical stability and superior tribological properties makes these fluorinated monolayers promising candidates for the development of robust high-performance devices.

  14. Superficial characterization and nano structural of nano multilayers Cr/Cr N obtained by UBM with different unbalance grades; Caracterizacion superficial y nano estructural de nano multicapas Cr/CrN obtenidas por UBM con diferentes grados de desbalance

    Energy Technology Data Exchange (ETDEWEB)

    Piratoba, U. [Universidad Nacional de Colombia, Departamento de Fisica, Carrera 45 No. 26-85, Edificio Uriel Gutierrez, Bogota D. C. (Colombia); Arenas A, J. [UNAM, Instituto de Fisica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Olaya, J. J., E-mail: ulisesp3@hotmail.com [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Carrera 30 No. 45-03, Edificio 453, Bogota D. C. (Colombia)

    2013-10-01

    Coatings of 25 bilayers of Cr/Cr N, with total thickness between 1.32 and 1.67 microns, were deposited by reactive sputtering on silicon and H13 steel, in argon and argon with nitrogen atmospheres. A power of 160 watts, flows of argon and nitrogen of 9 and 3 sc cm respectively, and an axial unbalanced magnetron, whose coefficient of geometrical unbalance K{sub G} was varied between 0.85 and 1.37. Of these coatings, micrographs of surface and cross section scanning electron microscopy were obtained, was make a micro structural characterization with X-ray diffraction, a nano structural characterization by transmission electron microscopy, and surface characterization by atomic force microscopy in tapping mode: analysis showed uniform surface coating with globular and pyramidal formations, which contain some granular inclusions and microscopic craters. With the increase in the unbalance of the magnetic field, the grain size, the roughness and the speed of the coatings growth were increased. (Author)

  15. Tribología de nuevas capas autolubricantes producidas mediante PVD

    Directory of Open Access Journals (Sweden)

    Oñate, J. I.

    2005-12-01

    Full Text Available MoS2 coatings, deposited by PVD show a low friction under vacuum conditions, but degrade easily under atmospheric conditions. This work describes the development of a new type of MoSx, coating, modified with WC. These coatings presented a very low and stable friction coefficient lower than 0.04 when tested under vacuum at 0.75 GPa in a ball on disc tribometer. Durability was higher than 1 million wear cycles, showing a wear rate of 1.3 10-16 m3/Nm. When tested under atmospheric conditions and up to 70 % RH, friction increased to 0.15 and durability reached a lower value of up to 3 x 105 cycles. Surface analyses in these coatings showed S/Mo ratios higher than 1.2 and with oxygen levels lower than 2 %, demonstrating the lubricant character of the coating.

    Las capas de MoS2 depositadas mediante PVD tienen baja fricción en vacío pero se degradan con facilidad al aire, especialmente en presencia de humedad. Este trabajo describe el desarrollo de nuevas capas de MoSx modificadas con WC. En ensayos de "bola sobre disco" a 0,75 GPa, las capas presentaron una fricción muy baja y estable (< 0,04 en vacío. Se obtuvo una durabilidad superior a 1 millón de ciclos, mostrando un desgaste de 1,3 x 10-16 m3/Nm, mejorado respecto a otras capas de MoSx. El coeficiente de fricción aumentó a 0,15 y la durabilidad disminuyó hasta 1 a 3 x 105 ciclos en aire hasta 70 % HR. El análisis superficial mostró ratios de S/Mo superiores a 1,2, con menos del 2 % de oxígeno, demostrando carácter lubricante.

  16. Ionic Conductivity of Membranes Based on PVdF-HFP

    Science.gov (United States)

    Garcia-Bernabé, A.; Gil-Agustí, M.; González-Gutiérrez, J. P.; Quijano-López, A.

    2010-06-01

    Membranes based on PVdF-HFP have been prepared by solution-casting methode. Lithium perchlorate (LiClO4) and lithium trifluoromethane sulfonate (LiCF3SO3) were used as lithium salts, and ethylene carbonate and a mixture of ethylene and propylene carbonate (1:1 wt. %) as plasticizers. The ionic conductivity was determined by means of impedance spectroscopy. The Nyquist plot was fitted with a general equivalent circuit. The ionic conductivity increases to plastificizer content. The membrane consisting of 50 w% PVdF-HFP, 35 w% PC+EC and 15 w% LiCF3SO3 has the highest conductivity with a value of 6.892×10-3 S/cm at room temperature.

  17. Resistencia a la corrosión y desgaste de recubrinnientos deTiN obtenidos por PVD

    Directory of Open Access Journals (Sweden)

    Conde, A.

    2005-12-01

    Full Text Available Surface hardening techniques for metallic alloys are widely used to achieve layers of very high hardness and corrosion and wear resistance. In the present paper TiN coatings are obtained by PVD on a tool steel. The films are characterized by SEM, X-ray diffraction and XPS. Corrosion behaviour in NaCl solution showed the importance of the presence of defects on the PVD coating due to the different electrochemical behaviour of the steel base. Pin-on-disk measurements at approximately 40% RH against a corundum (Al2O3 ball showed a significant decrease in the wear rate compared with the results for the standard tool steel.

    Los tratamientos de endurecimiento superficial de aleaciones metálicas se utilizan para lograr capas de muy elevada dureza, resistencia a la corrosión y desgaste. En este trabajo, se estudia el comportamiento de recubrimientos de TiN obtenidos mediante PVD sobre aceros de herramientas. Las capas obtenidas se caracterizan mediante microscopía electrónica de barrido, difracción de rayos X y XPS. Se analiza el comportamiento frente a la corrosión de las capas protectoras, así como la influencia del substrato en su comportamiento en soluciones de NaCl. Finalmente, se realizan ensayos de desgaste por deslizamiento en seco mediante la técnica de pin-on-disk, comprobándose la mayor resistencia de estas capas.

  18. Structural and electrical transport studies on CrN(001) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, G. Venkat, E-mail: swamygv@nplindia.org; Rakshit, R. K.; Basheed, G. A.; Maurya, K. K.; Gupta, Anurag [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K. S. Krishnan Road, New Delhi - 110012 (India); Kumar, Dinesh; Singh, Manju [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012 (India)

    2016-05-23

    We report the structural and electrical transport studies on CrN{sub 1-x} (CrN) thin films with varying of N{sub 2} flow (5 – 25 SCCM) in an Argon environment of 25 SCCM. CrN thin films were grown at 600°C, in a multi chamber vacuum system at working pressure of 1×10{sup −2} Torr, under the base pressure of 1×10{sup −7} Torr. Structural and electrical transport measurements were carried out using X-ray diffraction (XRD), atomic force microscopy (AFM) and SQUID magnetometer, respectively. XRD (θ-2θ, ω-2θ, and ω) patterns on CrN thin films revealed a structural phase transition which is associated with the lattice parameter variation from 4.136 to 4.168 Å. The temperature dependent resistivity measurements on CrN/MgO(001) showed a clear change in slope at ≈280 K which confirms the magneto-structural transition of CrN from paramagnetic rock salt face-centered-cubic (FCC) to antiferromagnetic orthorhombic structure.

  19. CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors

    KAUST Repository

    Wei, Binbin

    2016-12-29

    Supercapacitors have been becoming indispensable energy storage devices in micro-electromechanical systems and have been widely studied over the past few decades. Transition metal nitrides with excellent electrical conductivity and superior cycling stability are promising candidates as supercapacitor electrode materials. In this work, we report the fabrication of CrN thin films using reactive DC magnetron sputtering and further their applications for symmetric supercapacitors for the first time. The CrN thin film electrodes fabricated under the deposition pressure of 3.5 Pa show an areal specific capacitance of 12.8 mF cm at 1.0 mA cm and high cycling stability with 92.1% capacitance retention after 20 000 cycles in a 0.5 M HSO electrolyte. Furthermore, our developed CrN//CrN symmetric supercapacitor can deliver a high energy density of 8.2 mW h cm at the power density of 0.7 W cm along with outstanding cycling stability. Thus, the CrN thin films have great potential for application in supercapacitors and other energy storage systems.

  20. Replication of Micro pillars by PEEK injection moulding with CrN coated Ni tool

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2015-01-01

    A micro-structured nickel insert was investigatedfor polyether ether ketone (PEEK) injection moulding. Themicro-features were circular holes 4 μm in diameter and2 μm deep, with a 2-μm edge-to-edge distance. Six thousand moulding cycles were operated. Half of the insert was coatedby approximately ...

  1. Analysis on Residual Stress in Electron Beam-Physical Vapor Deposited Thermal Barrier Coating using Hard Synchrotron X-Rays

    OpenAIRE

    鈴木, 賢治; 松本, 一秀; 久保, 貴博; 町屋, 修太郎; 田中, 啓介; 秋庭, 義明; SUZUKI, Kenji; MATSUMOTO, Kazuhide; Kubo, Takahiro; Machiya, Syutaro; Tanaka, Keisuke; Akiniwa, Yoshiaki

    2005-01-01

    The distribution of the residual stress in the thermal barrier coating, which was made by an electron beam-physical vapor deposition (EB-PVD) method, was determined using X-ray stress measurements. As the bond coating, NiCoCrAlY was low-pressure plasma sprayed on the substrate of austenitic stainless steel. The 8 mass% Y_2O_3-ZrO_2 was coated on the bond coating using the EB-PVD method as the top coating. The top coating had the preferred orientation with the axis direction perpendicular to ...

  2. Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, K.; Gell, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Metallurgy; Jordan, E. [Dept. Mechanical Engineering, University of Connecticut, CT-06269, Storrs (United States)

    2000-11-01

    Grain boundary ridges, that form on the surface of platinum aluminide [(Ni,Pt)Al] bond coats prior to the deposition of the yttria stabilized zirconia ceramic layer by the electron beam physical vapor deposition (EB-PVD) process, were shown to be the sites for spallation damage initiation in (Ni,Pt)Al/EB-PVD thermal barrier coatings. When these ridges are removed prior to deposition of the ceramic layer, a 3 x life improvement is achieved. This study compares the spallation mechanisms in specimens with and without bond coat ridges, in order to explain the improvement in spallation life. (orig.)

  3. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  4. Ionized PVD with an Inductively Coupled Plasma Source

    Science.gov (United States)

    Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-10-01

    Ionized physical vapor deposition (iPVD) is used to enhance the directionality of metal deposition. This is a potential solution to depositing into higher aspect-ratio trenches and vias for metal interconnects. A dc magnetron (Donated by Materials Research Corporation) is coupled with an inductively coupled plasma (ICP) coil to increase the ionization of the sputtered metal atoms. This allows metal ions to be accelerated across the plasma sheath to a biased substrate and deposited normally. One coil design has a wider diameter than the substrate to reduce shadowing and flaking effects. Argon and neon working gases and aluminum and copper targets are investigated at varying pressures and power levels. Deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer.

  5. Microporous PVdF gel for lithium-ion batteries

    Science.gov (United States)

    Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I. I.

    A novel ionic conductor for lithium-ion batteries was developed. This electrolyte is based on a porous polymer matrix filled and swollen by a liquid. The polymer matrix obtained by phase inversion was characterized in terms of porosity and average pore size. The microporous PVdF gel formed by impregnation of this polymer matrix with liquid electrolyte exhibited a high equivalent conductivity and a good temperature stability. Complete lithium-ion batteries using this polymer-based electrolyte were manufactured with a new process. Preliminary cycling results show a good rate capability and a capacity evolution similar to that of regular lithium-ion cells. The interest of this technology, as many other lithium-polymer ones, also lies in the possibility of designing and manufacturing new battery shapes at lower cost.

  6. Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray

    Science.gov (United States)

    Jordan, E. H.; Xie, L.; Gell, M.; Padture, N. P.; Cetegen, B.; Ozturk, A.; Ma, X.; Roth, J.; Xiao, T. D.; Bryant, P. E. C.

    2004-03-01

    A novel process, solution precursor plasma spray (SPPS), is presented for depositing thermal barrier coatings (TBCs), in which aqueous chemical precursors are injected into a standard direct current plasma spray system. The resulting coatings microstructure has three unique features: (1) ultra fine splats (1 µm), (2) nanometer and micron-sized interconnected porosity, and (3) closely spaced, through-thickness cracks. Coatings over 3 mm thick can be readily deposited using the SPPS process. Coating durability is excellent, with SPPS coatings showing, in furnace cycling tests, 2.5 times the spallation life of air plasma coatings (APS) and 1.5 times the life of electron beam physical vapor deposited (EB-PVD) coatings. The conductivity of SPPS coatings is lower than EB-PVD coatings and higher than the best APS coatings. Manufacturing cost is expected to be similar to APS coatings and much lower than EB-PVD coatings. The SPPS deposition process includes droplet break-up and material arriving at the deposition surface in various physical states ranging from aqueous solution, gel phase, to fully-molten ceramic. The relation between the arrival state of the material and the microstructure is described.

  7. Microstructural and Tribological Characterization of Duplex Coatings with Additional Ion Bombardment

    Institute of Scientific and Technical Information of China (English)

    B.(S)kori(c); D.Kaka(s); M.Rakita

    2004-01-01

    A duplex surface treatment involves the sequential application of two surface technologies to produce a surface composition with combined properties. A typical duplex process involves plasma nitriding and the PVD coating treatment of steels. In the paper are presented characteristics of hard coatings, type TiN, produced by classic technology PVD (physical vapour deposition) and IBAD (ion beam assisted deposition). Subsequent ion implantation was provided with N5+ions. The dependence of friction coefficient was investigated by means of tribometer (pin-on-ring). The sliding pair was TiN thin coating on steel pin combined with steel ring without coating. The ring was produced from hardenable steel.

  8. Microstructural and Tribological Characterization of Duplex Coatings with Additional Ion Bombardment

    Institute of Scientific and Technical Information of China (English)

    B.Skorie; D.Kakas; M.akita

    2004-01-01

    A duplex surface treatment involves the sequential application of two surface technologies to produce a surface composition with combined properties. A typical duplex process involves plasma nitriding and the PVD coating treatment of steels. In the paper are presented characteristics of hard coatings, type TiN, produced by classic technology PVD (physical vapour deposition) and IBAD (ion beam assisted deposition). Subsequent ion implantation was provided with N5+ ions. The dependence of friction coefficient was investigated by means of tribometer (pin-on-ring). The sliding pair was TiN thin coating on steel pin combined with steel ring without coating. The ring was produced from hardenable steel.

  9. Formation of nanocrystalline microstructure in arc ion plated CrN films

    Institute of Scientific and Technical Information of China (English)

    Qi-min WANG; Se-Hun KWON; Kwang-Ho KIM

    2011-01-01

    Applying negative bias voltages caused significant microstructure changes in arc ion plated CrN films. Nanocrystalline microstructures were obtained by adjusting the negative bias voltage. Structural characterizations of the films were carried out using X-ray diffractometry (XRD) and high-resolution transmission electron microscopy (HR-TEM). The results indicated that increasing ion bombardment by applying negative bias voltages resulted in the formation of defects in the CrN films, inducing microstructure evolution from micro-columnar to nanocrystalline. The microhardness and residual stresses of the films were also affected. Based on the experimental results, the evolution mechanisms of the film microstructure and properties were discussed by considering ion bombardment eftects.

  10. Cr-N CO-DOPED ZnO NANOPARTICLES: SYNTHESIS ...

    African Journals Online (AJOL)

    BCSE

    Here we report the synthesis of CrN co-doped ZnO for the first time. ... detoxification of organic dye effluents have taken an increasingly important ... the transition pH range 1.2-2.8, 7.8-9.8 is red to yellow and yellow to blue, respectively. ... 0.1 g of the photocatalyst was dispersed in 50 mL of deionized .... 54 cm-1 are due.

  11. Dynamic study of a sliding interface wear process of TiAlN and CrN multi-layers by X-ray absorption

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    studies of hard coatings by SR are possible and that the tribological wear of a multi-layer system can be monitored with an embedded CrN marker layer. This was achieved by keeping the SR energy on the chromium K-edge energy (close to 6 keV), while a drop in absorption was monitored. The absorption drop...... in France. The contact under investigation (TiAlN/CrN/TiAlN (2000nm/1000nm/2000nm) multi-layer system) was exposed to a reciprocating sliding motion under a normal load. Simultaneously, the contact zone was submitted to a direct, focused and monochromatic SR photon beam. In this way we have studied...... indicates the marker layer is worn off and thus the wear process finished. The measurements of the wear during the sliding interface wear experiments were performed in-situ, with a special portable tribo-meter designed and build at Laboratory of Tribologi and System Dynamics, Ecole Centrale de Lyon...

  12. Parameter tuning of PVD process based on artificial intelligence technique

    Science.gov (United States)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  13. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  14. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  15. Anti-friction Coating for Drilling of Green Austempered Ductile Iron (ADI) grade

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.; Mkaddem, A.

    2011-05-01

    In this paper the anti-friction performance of two types of coating, post-coated coating and PVD-TiAlN coating were investigated when drilling green austempered ductile iron (ADI) grade. The green ADI grade is produced by a new processing technology known as continuous casting-heat treatment process. The effect of coatings on tool wear and surface finish of the holes when drilling using coolant were reported. Results showed that the tool with post-coated coating has higher anti-friction properties as compared to PVD-TiAlN coating in terms of tool wear and surface roughness. Results also showed that there is a formation of preventive aluminum oxide layer during machining for both types of coating.

  16. [Cr(N)(acac)2]: A simple chromium nitride complex and its reactivity towards late transition metals

    DEFF Research Database (Denmark)

    Hedegaard, Erik Donovan; Schau-Magnussen, Magnus; Bendix, Jesper

    2011-01-01

    A new simple chromium(V) nitride complex, Cr(N)(acac)2 (1) has been prepared by nitrogen atom transfer. X-ray crystallography shows a short Cr-N bond at 1.5564(11) Å and equatorial Cr-O distances in the range 1.9387(9) – 1.9485(9) Å. 1 reacts as a p-backbonding ligand ......A new simple chromium(V) nitride complex, Cr(N)(acac)2 (1) has been prepared by nitrogen atom transfer. X-ray crystallography shows a short Cr-N bond at 1.5564(11) Å and equatorial Cr-O distances in the range 1.9387(9) – 1.9485(9) Å. 1 reacts as a p-backbonding ligand ...

  17. Adaptive PVD Steganography Using Horizontal, Vertical, and Diagonal Edges in Six-Pixel Blocks

    Directory of Open Access Journals (Sweden)

    Anita Pradhan

    2017-01-01

    Full Text Available The traditional pixel value differencing (PVD steganographical schemes are easily detected by pixel difference histogram (PDH analysis. This problem could be addressed by adding two tricks: (i utilizing horizontal, vertical, and diagonal edges and (ii using adaptive quantization ranges. This paper presents an adaptive PVD technique using 6-pixel blocks. There are two variants. The proposed adaptive PVD for 2×3-pixel blocks is known as variant 1, and the proposed adaptive PVD for 3×2-pixel blocks is known as variant 2. For every block in variant 1, the four corner pixels are used to hide data bits using the middle column pixels for detecting the horizontal and diagonal edges. Similarly, for every block in variant 2, the four corner pixels are used to hide data bits using the middle row pixels for detecting the vertical and diagonal edges. The quantization ranges are adaptive and are calculated using the correlation of the two middle column/row pixels with the four corner pixels. The technique performs better as compared to the existing adaptive PVD techniques by possessing higher hiding capacity and lesser distortion. Furthermore, it has been proven that the PDH steganalysis and RS steganalysis cannot detect this proposed technique.

  18. Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings

    NARCIS (Netherlands)

    Strondl, C.; Carvalho, N.M.; Hosson, J.Th.M. De; Kolk, G.J. van der

    2003-01-01

    A series of tungsten-containing diamond-like carbon (Me-DLC) coatings have been produced by unbalanced magnetron sputtering using a Hauzer HTC-1000 production PVD system. Sputtering from WC targets has been used to form W-C:H coatings. The metal to carbon ratio has been varied to study changes in th

  19. Crystallographic and electronic properties of AlCrN films that absorb visible light

    Science.gov (United States)

    Tatemizo, N.; Imada, S.; Miura, Y.; Nishio, K.; Isshiki, T.

    2017-05-01

    We investigate the crystallographic and electronic properties of wurtzite Cr-doped AlN (AlCrN) films (Cr ≤12.0%) that absorb visible light. We confirmed that the films consist of wurtzite columnar single crystals that are densely packed, c-axis oriented, and exhibit a random rotation along the a-axis in plane by using transmission electron microscopy. The oxidation state of Cr was found to be 3+ using Cr K-edge X-ray absorption near edge structure, which implies that Cr can be a substitute for Al3+ in AlN. The first nearest neighbor distances estimated using Cr K-edge extended X-ray absorption fine structure (EXAFS) were found to be nearly isotropic for incident light with electric fields that are parallel and perpendicular to the plane. The results of ab initio lattice relaxation calculations for the model of wurtzite Al1-xCrxN supercell where Cr replaces Al support the EXAFS results. The calculations for the model showed that additional energy bands are formed in the band gap of AlN, in which the Fermi energy (EF) is present. As expected from the calculation results, the electrical conductivity increases with increase in the Cr concentration, implying that the density of states at EF increases monotonically. From these results, we can conclude that AlCrN films are an intermediate band material with respect to their crystallographic and electric properties.

  20. Infrared study of the magnetostructural phase transition in correlated CrN

    Science.gov (United States)

    Ebad-Allah, J.; Kugelmann, B.; Rivadulla, F.; Kuntscher, C. A.

    2016-11-01

    We report on the pressure and temperature dependence of the electronic and vibrational properties of polycrystalline CrN studied by optical transmission and reflection measurements over the frequency range 0.012-2.48 eV. The optical conductivity spectrum of CrN at ambient conditions shows a phonon mode at ≈55 meV with a shoulder at ≈69 meV , a pronounced midinfrared absorption band centered at 123 ±2 meV , and a high-energy absorption band at ≈1.5 eV . The absorption bands are discussed in terms of the charge-transfer insulator picture. Following the reflectance spectrum with increasing pressure, the activation of an additional phonon mode above 0.6 GPa indicates the occurrence of a pressure-induced structural phase transition. Furthermore, the absorption spectrum exhibits significant changes in the far-infrared range with decreasing temperature: The phonon mode shows a sudden broadening followed by a splitting below 270 K. These changes observed under pressure or while cooling down can be associated with the magnetostructural phase transition reported previously.

  1. Precursor-Less Coating of Nanoparticles in the Gas Phase

    NARCIS (Netherlands)

    Pfeiffer, T.V.; Kedia, P.; Messing, M.E.; Valvo, M.; Schmidt-Ott, A.

    2015-01-01

    This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nano)particles using a type of physical vapor deposition (PVD) at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing th

  2. Multicomponent Thin Films Deposited by PVD ARC and LARC Technology

    Directory of Open Access Journals (Sweden)

    Dagmar JAKUBÉCZYOVÁ

    2014-04-01

    Full Text Available The paper is focused on a comparison of advanced layers deposited by two coating technologies – cathodic arc deposition (ARC and lateral rotating cathodes (LARC. For characterization standard analyses were selected: the determination of the layer wear resistance by Calotest method, specification of the depth concentration profiles of constituting elements from the coating surface down to the substrate, and measurement of the nanohardness at dynamic loading. The thickness of the CrTiN layer reached 1380 nm – 1740 nm and that of the multi/nanolayers AlXN3 was 2630 nm – 3160 nm. The coating nanohardness on the surface attained 39 GPa for AlXN3 (X = Cr, 33 GPa for CrTiN and 12.5 GPa for the substrate. Only at coating prepared by LARC-Technology it is possible to create the multilayers of nanometric dimensions. AlXN3 coating was formed by 48 layers with dimensions of 58 nm – 70 nm. These nanolayers lead to the increase of system toughness as they prevent the crack propagation. Their application on the tools and components promises to increase their durability under service conditions.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3716

  3. Development of wear-resistant coatings for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-03-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified.

  4. InN nanorods prepared with CrN nanoislands by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Young Sheng-Joue

    2011-01-01

    Full Text Available Abstract The authors report the influence of CrN nanoisland inserted on growth of baseball-bat InN nanorods by plasma-assisted molecular beam epitaxy under In-rich conditions. By inserting CrN nanoislands between AlN nucleation layer and the Si (111 substrate, it was found that we could reduce strain form Si by inserting CrN nanoisland, FWHM of the x-ray rocking curve measured from InN nanorods from 3,299 reduced to 2,115 arcsec. It is due to the larger strain from lattice miss-match of the film-like InN structure; however, the strain from lattice miss-match was obvious reduced owing to CrN nanoisland inserted. The TEM images confirmed the CrN structures and In droplets dissociation from InN, by these results, we can speculate the growth mechanism of baseball-bat-like InN nanorods.

  5. Evaluación de la resistencia a la corrosión de multicapas de Cr/CrN depositadas con UBM Evaluating the corrosion resistance of UBM-deposited Cr/CrN multilayers

    Directory of Open Access Journals (Sweden)

    Olaya Flórez Jhon Jairo

    2011-05-01

    ="ES-AR">nica de barrido (SEM, y la textura y fases cristalinas con difracción de rayos X (XRD, antes y después de las pruebas de corrosión, las cuales se rea-lizaron con ensayos de polarización potenciodinámica empleando una solución de 0,5M H2SO4 + 0,05M KSCN. Los recubrimientos con menor período de la bica-pa presentaron la mejor resistencia a la corrosión y su mecanismo de corrosión se discute en este estudio.

    This work was aimed at evaluating the corrosion resistance of multilayer Cr/CrN coatings deposited by the unbalan-ced magnetron sputtering (UBM technique. Coatings were produced at room temperature using 400 mA discharge current, 9 sccm argon flow and 3 sccm nitrogen flow. The total thickness of coatings deposited on AISI 304 stainless steel and silicon (100 varied between 0.2 a 3 μm as bilayer period varied between 20 and 200 nm. Coating microstructure and chemical composition was stu-died through scanning electron microscopy (SEM and tex-ture and crystalline phases were

  6. Fretting damage behavior and mechanism of tin coated zircaloy-4 tube

    Institute of Scientific and Technical Information of China (English)

    Tae-HyungKim; Ji-HyunSung; Seock-SamKim

    2001-01-01

    The fretting characteristics of TiN coated Zircaloy-4 tube were investigated experimen-tally. The fretting experiment was performed using TIN coated Zircaloy-4 tube as the fuel rod clad-ding material and uncoated Zircaloy-4 tube as one of grids. TIN coating is probably one of the mostfrequently and successfully used PVD coatings for the mitigation of fretting. In this study, TiN coat-ing by PVD was employed for improvement of Zircaloy-4 tube fretting characteristics. The frettingtester was designed and manufactured for this experiment. The number of cycles, slip amplitudeand normal load were selected as main factors of fretting. The results of this research showed thatthe wear volume of TiN coated Zircaloy-4 tube increased as number of cycles, normal load andslip amplitude increase but the quantity of volume was lower than the case of uncoated Zircaloy-4tube pairs.

  7. Formation of aligned CrN nanoclusters in Cr-delta-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y K; Kimura, S; Emura, S; Hasegawa, S; Asahi, H [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: zhou21@sanken.osaka-u.ac.jp

    2009-02-11

    Cr-delta-doped GaN layers were grown by radio-frequency plasma-assisted molecular-beam epitaxy on GaN template substrates. Cr flux was supplied without nitrogen flow during Cr-delta-doping. Cr incorporation into a narrow thin layer region was confirmed with the depth profile measured by secondary ion mass spectrometry. Structural properties and Cr atom alignments were studied with transmission electron microscopy. It was found that Cr-delta-doped GaN layers were coherently grown with Cr or CrGa nanoclusters in the delta-doped region for low temperature growth (350, 500 deg. C). It was also found that aligned CrN nanoclusters (approximately 5 nm vertical thickness) with NaCl-type structure were formed in the delta-doped region for the growth at 700 deg. C.

  8. Local electronic structure and magnetic properties of (Ga,Cr)N

    Institute of Scientific and Technical Information of China (English)

    LIN He; DUAN Haiming

    2006-01-01

    The local electronic structure and magnetic properties of diluted magnetic semiconductor (Ga,Cr)N have been studied by using discrete variational method (DVM) based on density functional theory. The magnetic moments per Cr atom vary significantly with Cr concentration, and the trend of variation is in agreement with that of the experiment.The coupling between Cr atoms in the system with two Cr atoms considered is found to be ferromagnetic,and the magnetic moment per Cr atom is similar to the case in which only one Cr atom is considered in the same doping concentration. For all doping concentrations, the coupling between Cr and the nearest neighbor N is found to be antiferromagnetic, and the Cr 3d states hybridize strongly with N 2p states,which are in agreement with the band calculations.

  9. Measurement of the 208Pb(52Cr, n)259Sg Excitation Function

    Energy Technology Data Exchange (ETDEWEB)

    Folden III, C.M.; Dragojevic, I.; Dullmann, Ch.E.; Eichler, R.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Gregorich, K.E.; Hoffman, D.C.; Nitsche, H.

    2010-03-19

    The excitation function for the 208Pb(52Cr, n)259Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from 259Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the 208Pb(52Cr, 2n)258Sg reaction was obtained, and an improved 258Sg half-life of ms was calculated by combining all available experimental data.

  10. Experimental investigation of the ultra-precision turning capability of PVD ZnSe

    Science.gov (United States)

    Li, Wei-hao; Yang, Kun; Wang, Peng; Zhang, Gao-feng; Liu, Dan-dan

    2016-10-01

    ZnSe is widely used in infrared optical systems because of the good optical characteristics in 0.5 22μm and the good processability. Physical Vapor Deposition(PVD) of ZnSe is good at no pollution in production process, lower price, etc. Infrared optical parts should be made by single point diamond turning or single point diamond fly-cutting after the experimental investigation of the ultra-precision turning capability of PVD ZnSe. The orthogonal experiment of ultra-precision turning PVD ZnSe was done at first, then the smooth turning surface and the rough turning surface were observed by metallographic microscope and 3D profilometer, and the mechanism of the defects on the turning surface was discussed. The result shows: the quality of ultra-precision turning surface of PVD ZnSe was restricted by the grain size and the distribution of the grain which could easily cause the variegated macula at the grain size, rising the spindle speed, reducing the feed rate and reducing the cut depth could make the quality of ultra-precision turning surface better and reduce the roughness Ra value lower, the roughness Ra value of the smooth turning surface was reached 3 4nm which is enough to the infrared optical image systems currently by using the optimization of parameters.

  11. Electrospun PVdF-PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Zheng [Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Cao Qi, E-mail: wjcaoqi@163.com [Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Jing Bo; Wang Xianyou; Li Xiaoyun; Deng Huayang [Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer The nanofibrous polymer electrolytes based on PVdF-PVC (8:2, w/w) prepared by electrospinning have an ionic conductivity of 2.25 Multiplication-Sign 10{sup -3} S cm{sup -1} at 25 Degree-Sign C. Black-Right-Pointing-Pointer The nanofibrous polymer electrolytes presented a good electrochemical stability up to 5.1 V (vs. Li/Li{sup +}). Black-Right-Pointing-Pointer The nanofibrous polymer electrolytes showed a very good charge/discharge and cycling performance. - Abstract: Nanofibrous membranes based on Poly (vinyl difluoride) (PVdF)-Poly (vinyl chloride) (PVC) (8:2, w/w) were prepared by electrospinning and then they were soaked in a liquid electrolyte to form polymer electrolytes (PEs). The morphology, thermal stability, function groups and crystallinity of the electrospun membranes were characterized by scanning electron microscope (SEM), thermal analysis (TG), Fourier transform infrared spectra (FT-IR) and differential scanning calorimetry (DSC), respectively. It was found that both electrolyte uptake and ionic conductivity of the composite PEs increased with the addition of PVC. The composite PVdF-PVC PEs had a high ionic conductivity up to 2.25 Multiplication-Sign 10{sup -3} S cm{sup -1} at 25 Degree-Sign C. These results showed that nanofibrous PEs based on PVdF-PVC were of great potential application in polymer lithium-ion batteries.

  12. Influence of nitrogen flow rates on materials properties of CrN films grown by reactive magnetron sputtering

    Indian Academy of Sciences (India)

    B Subramanian; K Prabakaran; M Jayachandran

    2012-08-01

    Chromium nitride (CrN) hard thin films were deposited on different substrates by reactive direct current (d.c.) magnetron sputtering with different nitrogen flow rates. The X-ray diffraction patterns showed mixed Cr2N and CrN phases. The variations in structural parameters are discussed. The grain size increased with increasing nitrogen flow rates. Scanning electron microscopy image showed columnar and dense microstructure with varying nitrogen flow rates. An elemental analysis of the samples was realized by means of energy dispersive spectroscopy. The electrical studies indicated the semiconducting behaviour of the films at the nitrogen flow rate of 15 sccm.

  13. A novel monolithic LEU foil target based on a PVD manufacturing process for (99)Mo production via fission.

    Science.gov (United States)

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    (99)Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the (99)Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. PVdF-HFP/metal oxide nanocomposites: The matrices for high-conducting, low-leakage porous polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Guey; Lu, Ming-I.; Tsai, Chung-Chih [Department of Chemistry, National Central University, Chung-Li, Taiwan 32054 (ROC); Chuang, Huey-Jan [Chung-Shan Institute of Science and Technology, Materials and Electro-Optics Research Division, Lung-Tan, Taiwan 325 (ROC)

    2006-09-13

    Highly conducting porous polymer electrolytes comprised of poly(vinylidene-fluoride-co-hexafluoropropylene) (PVdF-HFP), metal oxide (TiO{sub 2}, MgO, ZnO)/or mesoporous zeolite (MCM-41, SBA-15), ethylene carbonate (EC), propylene carbonate (PC), and LiClO{sub 4} were fabricated with a simple direct evaporation method. It was found that when metal oxide or mesoporous zeolite was mixed with PVdF-HFP, the impedance spectroscopy showed that the room temperature conductivity increased from 1.2x10{sup -3}Scm{sup -1} (for pure PVdF-HFP) to 2.1x10{sup -3}Scm{sup -1}. SEM micrographs showed that the pore size of the composite membrane was similar to that of pure PVdF-HFP membrane but the porosity decreased, nevertheless the solution uptake increased. The increasing in solution uptake is not related directly to the surface area or dielectric constant of the oxides. It may be due to the affinity of the metal oxide toward the electrolyte solution. Furthermore, the solution leakage of PVdF-HFP/MgO and PVdF-HFP/SBA-15 composite electrolytes also decreased compared to pure PVdF-HFP electrolyte. These polymer composite electrolytes were stable up to 5.5V (versus Li/Li{sup +}) and the lithium ion cells assembled with these polymer electrolyte show a good performance at a discharge rate below C/2. (author)

  15. PVdF-HFP/metal oxide nanocomposites: The matrices for high-conducting, low-leakage porous polymer electrolytes

    Science.gov (United States)

    Wu, Chun-Guey; Lu, Ming-I.; Tsai, Chung-Chih; Chuang, Huey-Jan

    Highly conducting porous polymer electrolytes comprised of poly(vinylidene-fluoride-co-hexafluoropropylene) (PVdF-HFP), metal oxide (TiO 2, MgO, ZnO)/or mesoporous zeolite (MCM-41, SBA-15), ethylene carbonate (EC), propylene carbonate (PC), and LiClO 4 were fabricated with a simple direct evaporation method. It was found that when metal oxide or mesoporous zeolite was mixed with PVdF-HFP, the impedance spectroscopy showed that the room temperature conductivity increased from 1.2 × 10 -3 S cm -1 (for pure PVdF-HFP) to 2.1 × 10 -3 S cm -1. SEM micrographs showed that the pore size of the composite membrane was similar to that of pure PVdF-HFP membrane but the porosity decreased, nevertheless the solution uptake increased. The increasing in solution uptake is not related directly to the surface area or dielectric constant of the oxides. It may be due to the affinity of the metal oxide toward the electrolyte solution. Furthermore, the solution leakage of PVdF-HFP/MgO and PVdF-HFP/SBA-15 composite electrolytes also decreased compared to pure PVdF-HFP electrolyte. These polymer composite electrolytes were stable up to 5.5 V (versus Li/Li +) and the lithium ion cells assembled with these polymer electrolyte show a good performance at a discharge rate below C/2.

  16. Tribological Testing of Some Potential PVD and CVD Coatings for Steel Wire Drawing Dies

    OpenAIRE

    Nilsson, Maria; Olsson, Mikael

    2010-01-01

    Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and...

  17. EB-PVD thermal barrier coatings for aeroengines and gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Leyens, C.; Schulz, U.; Kaysser, W.A. [DLR, Koeln (Germany). Inst. of Materials Research

    2001-04-01

    High pressure turbine blades and vanes of aeroengines are among the most highly loaded parts in engineering components. For these demanding applications only high temperature Ni-base superalloys can be considered. These alloys have matured over the years from wrought to cast, then to directionally solidified alloys, whereas in the latest generation of turbines for the most demanding applications, like the rotating turbine components, single crystal material is employed. (orig.)

  18. Wear resistance of TiAlSiN thin coatings.

    Science.gov (United States)

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions.

  19. Computer simulation of transient layer chemical composition in Cr-N films obtained by ion beam assisted deposition

    CERN Document Server

    Marchenko, I G

    2001-01-01

    The computer simulation of Cr-N film deposition by IBAD method was carried out. The implanted nitrogen content in the growing film is calculated, values of the radiation defect formation in the film are obtained. The variation of the implanted nitrogen relationship to the defect distribution in the growing film depth is analyzed.

  20. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  1. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; J. Konieczny; W. Kwaśny; M. Pawlyta

    2009-01-01

    Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD).Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS) method. Thin foils of substrates and coatings by transmission electron micr...

  2. Fretting Fatigue Improvement of Ti6Al4V by Coating and Shot Peening

    Institute of Scientific and Technical Information of China (English)

    Daoxin LIU; Xiaodong ZHU; Bin TANG; Jiawen HE

    2005-01-01

    Ion beam enhanced deposition (IBED) was employed to increase the fretting fatigue resistance of Ti6AI4V. CrN and TiN hard coatings were applied on the base material and shot peening was combined with the hard coatings to study the duplex effect on fretting fatigue resistance, The IBED coatings exhibited a good bonding strength. They did not spall off even after shot peening. However, an optimum composition of CrN showed better fretting fatigue resistance than that of TiN with the same processing parameters.

  3. Origins of electronic band gap reduction in Cr/N codoped TiO2.

    Science.gov (United States)

    Parks Cheney, C; Vilmercati, P; Martin, E W; Chiodi, M; Gavioli, L; Regmi, M; Eres, G; Callcott, T A; Weitering, H H; Mannella, N

    2014-01-24

    Recent studies indicated that noncompensated cation-anion codoping of wide-band-gap oxide semiconductors such as anatase TiO2 significantly reduces the optical band gap and thus strongly enhances the absorption of visible light [W. Zhu et al., Phys. Rev. Lett. 103, 226401 (2009)]. We used soft x-ray spectroscopy to fully determine the location and nature of the impurity levels responsible for the extraordinarily large (∼1 eV) band gap reduction of noncompensated codoped rutile TiO2. It is shown that Cr/N codoping strongly enhances the substitutional N content, compared to single element doping. The band gap reduction is due to the formation of Cr 3d3 levels in the lower half of the gap while the conduction band minimum is comprised of localized Cr 3d and delocalized N 2p states. Band gap reduction and carrier delocalization are critical elements for efficient light-to-current conversion in oxide semiconductors. These findings thus raise the prospect of using codoped oxide semiconductors with specifically engineered electronic properties in a variety of photovoltaic and photocatalytic applications.

  4. Zirconium nitride hard coatings; Revestimentos protetores de nitreto de zirconio

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira [Universidade de Caxias do Sul (UCS), Caxias do Sul, RS (Brazil)

    2010-07-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  5. Effect of nanoclay on properties of porous PVdF membranes

    Institute of Scientific and Technical Information of China (English)

    Hae-Young HWANG; Deuk-Ju KIM; Hyung-Jun KIM; Young-Taik HONG; Sang-Yong NAM

    2011-01-01

    The main requirements for battery separators are high porosity which can serve pathways of lithium ion and space for gel electrolytes to impregnate in a membrane and mechanical strength to allow easy handling for battery assembly. Generally, it appears the trade-off relationship between the porosity and mechanical strength of the membrane. PVdF composite membranes containing nano-size clays were used to improve the mechanical strength of the membrane without affecting the membrane porosity. The composite membranes were prepared by phase inversion method controlling the membrane preparation conditions such as retention time. The resultant membranes show increased mechanical properties with similar membrane porosity around 80 % compared to the pristine PVdF membrane. Incorporation of nonoclay can be considered as an effective method to improve the mechanical strength in porous membrane supports, especially in a separator.

  6. The Photovoltaic Performances of PVdF-HFP Electrospun Membranes Employed Quasi-Solid-State Dye Sensitized Solar Cells.

    Science.gov (United States)

    Gnana kumar, G; Balanay, Mannix P; Nirmala, R; Kim, Dong Hee; Raj kumar, T; Senthilkumar, N; Kim, Ae Rhan; Yoo, Dong Jin

    2016-01-01

    The PVdF-HFP nanofiber membranes with different molecular weight were prepared by electrospinning technique and were investigated as solid state electrolyte membranes in quasi solid state dye sensitized solar cells (QS-DSSC). The homogeneously distributed and fully interconnected nanofibers were obtained for all of the prepared PVdF-HFP electrospun membranes and the average fiber diameters of fabricated membranes were dependent upon the molecular weight of polymer. The thermal stability of electrospun PVdF-HFP membrane was decreased with a decrement of molecular weight, specifying the high heat transfer area of small diameter nanofibers. The QS-DSSC fabricated with the lower molecular weight PVdF-HFP electrospun nanofiber membrane exhibited the power conversion efficiency of 1 = 5.38%, which is superior over the high molecular weight membranes and is comparable with the liquid electrolyte. Furthermore, the electrospun PVdF-HFP membrane exhibited long-term durability over the liquid electrolyte, owing to the higher adsorption and retention efficiencies of liquid electrolyte in its highly porous and interconnected nanofibers. Thus the proposed electrospun PVdF-HFP membrane effectively tackled the volatilization and leakage of liquid electrolyte and provided good photoconversion efficiency associated with an excellent stability, which constructs the prepared electrospun membranes as credible solid state candidates for the application of QS-DSSCs.

  7. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Rae Kim [Hanyang University, Seoul (France). Applied Chemical Engineering Division; Korea Institute of Science and Technology, Seoul (Korea). Polymer Hybrid Research Center; Sung Won Choi [Yonsei University, Seoul (Korea). Department of Chemistry; Seong Mu Jo; Wha Seop Lee [Korea Institute of Science and Technology, Seoul (Korea). Polymer Hybrid Research Center; Byung Chul Kim [Hanyang University, Seoul (France). Applied Chemical Engineering Division

    2004-11-15

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 {mu}m have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 {mu}m, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10{sup -3} s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF{sub 6}-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD. The interfacial resistance (R{sub i}) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO{sub 2}) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 {sup o}C. (author)

  8. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Rae [Applied Chemical Engineering Division, Hanyang University, 17, Haengdang-dong, Seongdong-Ku, Seoul 133-791 (Korea, Republic of); Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Sung Won [Department of Chemistry, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Jo, Seong Mu [Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: smjo@kist.re.kr; Lee, Wha Seop [Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Byung Chul [Applied Chemical Engineering Division, Hanyang University, 17, Haengdang-dong, Seongdong-Ku, Seoul 133-791 (Korea, Republic of)

    2004-11-15

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 {mu}m have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 {mu}m, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10{sup -3} s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF{sub 6}-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R{sub i}) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO{sub 2}) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C.

  9. Controlling Dielectric and Magnetic Properties of PVdF/Magnetite Nanocomposite Fibre Webs

    Directory of Open Access Journals (Sweden)

    A. P. Venugopal

    2014-01-01

    Full Text Available The ability of filtration and separation media containing fibres to remove impurities from oil, water, and blood can be enhanced using magnetic fields. The ability to regulate the dielectric and magnetic behaviour of fibrous webs in terms of superparamagnetic or ferromagnetic properties by adjusting material composition is fundamental to meeting end-use requirements. Electrospun fibres were produced from PVdF (polyvinylidene fluoride and nanomagnetite (Fe3O4 nanoparticles from solutions of PVdF in dimethylacetamide containing Fe3O4 nanoparticle contents ranging from 3 to 10 wt%. Fibre dimensions, morphology, and nanoparticle agglomeration were characterised by environmental scanning electron microscopy (ESEM and field emission gun transmission electron microscopy (FEGTEM. Dielectric behaviour of the fibre webs was influenced by web porosity and the Fe3O4 nanoparticle content. Impedance analysis of the webs indicated an increase in dielectric constant of ∼80% by the addition of 10 wt% Fe3O4 nanoparticles compared to 100 wt% PVdF. The dielectric constants of the webs were compared with those obtained from the theoretical mixing models of Maxwell and Lichtenecker. Vibrating sample magnetometer (VSM magnetisation measurements indicated a blocking temperature above 300 K suggesting ferrimagnetic rather than superparamagnetic behaviour as a result of Fe3O4 nanoparticle agglomeration within fibres.

  10. The Effect of Cr Content on the Oxidation Behavior of Ti-Cr-N Films

    Directory of Open Access Journals (Sweden)

    James E. Krzanowski

    2014-04-01

    Full Text Available Ti1−xCrxN thin-film samples were sputter-deposited with lateral composition gradients x = 0.1–0.9 across each sample. In order to determine the effect of Cr content on oxidation, samples were air-oxidized at temperatures ranging from 650 to 950 °C. The extent and type of oxide formed was characterized using X-ray diffraction. Only minor oxidation was observed for the 650–750 °C temperature range. At 850 °C, films below x = 0.7 showed poor oxidation resistance, with the formation of TiO2 and Cr2O3 oxides, but little oxidation occurred above x = 0.7. At 950 °C, films above x = 0.7 again exhibited the best oxidation resistance. Chromium nitride films, which deposited as Cr2N, were found to begin oxidizing at 750 °C, indicating that the increased oxidation resistance of the higher-Cr Ti-Cr-N films can be attributed to the Ti-induced stabilization of the B1-structured phase. A compositionally-uniform film (x = 0.79 was also deposited and analyzed by XPS before and after oxidation. Oxidation resulted in primarily Cr2O3 at the surface, with some TiO2 also present, with the oxide richer in Cr than the starting film composition. These results suggested that at higher Cr compositions in the film, the oxidation mechanism was controlled by Cr diffusion to the surface.

  11. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition.

    Science.gov (United States)

    Devine, Declan M; Hahn, Joachim; Richards, R Geoffery; Gruner, Heiko; Wieling, Ronald; Pearce, Simon G

    2013-05-01

    Carbon fiber-reinforced polyetheretherketone (CF/PEEK) is a thermoplastic composite biomaterial exhibiting properties suitable for load-bearing orthopedic implants. However, the hydrophobic surface of CF/PEEK implants induces the deposition of a peri-implant fibrous tissue capsule preventing bone apposition. However, if bone apposition was improved, the use of CF/PEEK in orthopedics could be increased as it has many advantages compared with metallic implants. In this study, CF/PEEK screws were coated with titanium (Ti) using two different techniques, namely vacuum plasma spraying (VPS) and physical vapor deposition (PVD) with uncoated screws as controls. These coatings were characterized and implanted in a loaded sheep tibia model. In the characterization of the screw surfaces using microscopy techniques, the uncoated screws were seen to have an irregular surface. The PVD coating appeared smooth and consistent, whereas the VPS coating appeared to be a rough coating with some inhomogeneities, which did not cover the entire surface area. Nevertheless, in the ex vivo analysis the VPS-coated screws had a screw removal torque which was statistically greater than uncoated and PVD-coated screws (p ≤ 0.002 for both comparisons). Additionally, the VPS-coated screws had a statistically higher bone contact area than the uncoated screws (p = 0.006), whereas no statistical difference was detected between VPS and PVD coating types (p = 0.11). Thereby illustrating that Ti coating of CF/PEEK screws significantly improve bone apposition and removal torque compared with uncoated CF/PEEK screws.

  12. Impact of NiB Coating on the Efficiency, Scuffing, and Wear of Gear Contacts

    Science.gov (United States)

    2013-05-01

    CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 92 19a. NAME OF RESPONSIBLE PERSON Kelsen LaBerge a. REPORT...physical vapor deposition ( PVD ) techniques with some significant cost penalty. There is no study on chemically deposited coatings. This study aims to

  13. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    Science.gov (United States)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  14. Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cansizoglu, H., E-mail: hxis@ualr.edu; Yurukcu, M.; Cansizoglu, M.F.; Karabacak, T.

    2015-05-29

    Vertically aligned core/shell nanowire (nanorod) arrays are favorable candidates in many nano-scale devices such as solar cells, detectors, and integrated circuits. The quality of the shell coating around nanowire arrays is as crucial as the quality of the nanowires in device applications. For this reason, we worked on different physical vapor deposition (PVD) techniques and conducted Monte Carlo simulations to estimate the best deposition technique for a conformal shell coating. Our results show that a small angle (≤ 45°) between incoming flux of particles and the substrate surface normal is necessary for PVD techniques with a directional incoming flux (e.g. thermal or e-beam evaporation) for a reasonable conformal coating. On the other hand, PVD techniques with an angular flux distribution (e.g. sputtering) can provide a fairly conformal shell coating around nanowire arrays without a need of small angle deposition. We also studied the shape effect of the arrays on the conformality of the coating and discovered that arrays of the tapered-top nanorods and the pyramids can be coated with a more conformal and thicker coating compared to the coating on the arrays of flat-top nanowires due to their larger openings in between structures. Our results indicate that conventional PVD techniques, which offer low cost and large scale thin film fabrication, can be utilized for highly conformal and uniform shell coating formation in core/shell nanowire device applications. - Highlights: • We examined the shell coating growth in core/shell nanostructures. • We investigated the effect of physical vapor deposition method on the conformality of the shell. • We used Monte Carlo simulations to simulate the shell growth on nanowire templates. • Angular atomic flux (i.e., sputtering at high pressure) leads to conformal and uniform coatings. • A small angle (< 45°) to the directional flux needs to be introduced for conformal coatings.

  15. CEMS of nitride coatings in agressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, D. [University of Ljubljana, J. Stefan Institute (Slovenia); Agudelo, A.C.; Gancedo, J.R. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain); Lakatos-Varsanyi, M. [Eoetvoes University, Department of Physical Chemistry (Hungary); Marco, J.F. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain)

    1998-12-15

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO{sub 2} atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  16. Tribology of nitriding layer, TiN coatings and their complex on AISI D2 steel

    Institute of Scientific and Technical Information of China (English)

    WANG Ke-sheng; ZHANG De-yuan; DONG Ding-fu

    2004-01-01

    The sliding wear and impact wear resistances of D2 steel with nitriding layer, PVD titanium nitride coating and their duplex treatment were investigated. The experimental results suggest that the duplex treatment has the best sliding and impact wear resistances under experimental conditions. And the wear resistance of PVD titanium nitride is better than that of nitriding. The impact wear resistance and wear mechanism of all three surface layers remain unchanged under impact load of 0.2 J or 1 J. All samples end with the same symptom of flaking.

  17. Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weiwei [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Chen, Wanglin; Yang, Shubao; Lin, Yue [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Zhang, Shihong, E-mail: shzhang@ahut.edu.cn [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Cho, Tong-Yul [Institute of Industrial Technology, Changwon National University, Changwon, Kyungnam 641-773 (Korea, Republic of); Lee, G.H. [Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Kwon, Sik-Chol [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China)

    2015-10-01

    Highlights: • Design of the AlCrSiN multilayer and composite coating. • Tribological/mechanical properties of the coatings. • AlCrSiN coating with the special structures presented lowest F.C. • AlCrSiN coating possessed best service life and cutting performance for the application of high-speed steel (HSS) tools. - Abstract: In the present work, AlCrN coating and AlCrSiN multilayer and nanocomposite coating were designed and deposited on the surface of high speed steel (HSS) cutters. The microstructures of these coatings were investigated systematically by means of grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscope (XPS), electron probe X-ray microanalysis (EPMA), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), in association with mechanical property measurement and corresponding cutting test. The results showed that the AlCrN coating mainly composed of nanocrystalline fcc-CrN, hcp-AlN and fcc-(Cr,Al)N solid-solution. In addition to these nanocrystalline phases, a few amorphous Si{sub 3}N{sub 4} phases were observed for the AlCrSiN multilayers and nanocomposite coating with a stronger {2 0 0} preferred orientation. The modulation period (6 nm) of the AlCrSiN coating was much smaller than that of the AlCrN coating (18 nm). The service life of the AlCrSiN coated tool increased approximately 40% longer in comparison with the AlCrN coated tool because of its more excellent mechanical properties (48 GPa hardness, 1123 MPa toughness, 52 N LC2 adhesion strength and 0.25 average friction coefficient). During the cutting process, the wear mechanisms of coated tools at the early stage and mid-stage were abrasion wear and adhesion wear, respectively. And the worn loss of AlCrSiN coated tool was less than that of AlCrN coated tool.

  18. Application of hard coatings for blanking and piercing tools

    DEFF Research Database (Denmark)

    Podgornik, B.; Zajec, B.; Bay, Niels

    2011-01-01

    The aim of the present investigation was to examine the possibility of reducing lubrication and replacing expensive tungsten carbide material in blanking/piercing through introduction of hard tool coatings. Results show that hard PVD coatings can be successfully used in blanking/piercing...... critical value under dry friction conditions and leads to tool failure. Therefore, at present oxidation and temperature resistant hard coatings can give improved wear resistance of stamping tools, but elimination of lubricants in blanking and piercing processes is still not feasible....

  19. Structure and wear behavior of AlCrSiN-based coatings

    Science.gov (United States)

    Chen, Yun; Du, Hao; Chen, Ming; Yang, Jun; Xiong, Ji; Zhao, Haibo

    2016-05-01

    AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC-Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N2 mixtures. Al0.6Cr0.4, Al0.6Cr0.3Si0.1, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiNx peak were formed in the AlCrSiN/MexN coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H3/E2 ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  20. Performance evaluation of reactive direct current unbalanced magnetron sputter deposited nanostructured TiN coated high-speed steel drill bits

    Indian Academy of Sciences (India)

    Harish C Barshilia; K S Rajam

    2007-12-01

    The stainless steels, in general, are considered to be difficult-to-machine materials. In order to machine these materials the surface of the tool is generally coated with physical vapour deposition (PVD) hard coatings such as titanium nitride (TiN), titanium aluminum nitride (TiAlN), etc. The adhesion is of vital importance for the performance of tools coated with PVD coatings. Proper surface treatments (in situ and ex situ) are required to achieve highly adherent PVD coatings on tools. We have deposited nanostructured TiN coatings on high-speed steel (HSS) drill bits and mild steel substrates using an indigenously built semi-industrial fourcathode reactive direct current (d.c.) unbalanced magnetron sputtering system. Various treatments have been given to the substrates for improved adhesion of the TiN coatings. The process parameters have been optimized to achieve highly adherent thick good quality TiN coatings. These coatings have been characterized using X-ray diffraction, nanoindentation and atomic force microscopy techniques. The performance of the coated HSS drill bits is evaluated by drilling a 13 mm thick 304 stainless steel plate under wet conditions. The results show significant improvement in the performance of the TiN coated HSS drill bits.

  1. Thermal cycling behavior of YSZ and La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} as double-ceramic-layer systems EB-PVD TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua, E-mail: zhxuciac@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin; Mu Rende; Lu Feng; He Shimei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao Xueqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer DCL coating has a longer lifetime than that of single layer coating of LZ7C3 or YSZ. Black-Right-Pointing-Pointer The unique growth modes of columns within DCL coating. Black-Right-Pointing-Pointer The presence of cerium in both Ce{sup 3+} and Ce{sup 4+} oxidation states within the coating surface. Black-Right-Pointing-Pointer The spallation of DCL coating induced by transverse cracks may be the first emergence of delamination followed by spalling layer by layer. Black-Right-Pointing-Pointer The outward diffusion of Cr element (bond coat) into LZ7C3 layer. - Abstract: Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1573 K in burner-rig with a coal gas flame indicates the thermal cycling life of DCL coating is not only much longer than that of LZ7C3 coating, but also approximately 27% longer than that of YSZ coating. The superior sintering-resistance of LZ7C3 coating and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the re-crystallization of some LZ7C3 fine grains, the cracks initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t Prime -phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.

  2. Galvanostatic methods for stripping of crn coatings; Estudio para la recuperacion de herramientas recubiertas con nitrogeno de cromo mediante ensayos galvanostaticos

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal, A. B.; Conde, A.; Rodriguez, R.; Fuentes, G. G.; Montala, F.; Carreras, L.; Damborenea, J. de

    2006-07-01

    The improvements of the corrosion, wear and tribological behaviour by searching for new materials has entailed a greater expansion of PVD technology. Introduction of PVD systems in the industry is a real fact because this technique has been able to develop coatings whose response for many applications goes beyond used them until now. However the evolution of this technology requires minimize the economic costs in order to be a competitive process. A way to achieve this objective consists on recover the tool when the life time of the coating has finished or when deposition process has failed. (Author)

  3. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Gomez, M.A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Grupo de Corrosion y Proteccion, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Esteve, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Montala, F. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Carreras, L. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Grifol, M. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Lousa, A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain)]. E-mail: alousa@ub.edu

    2006-09-25

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased.

  4. Surface Modification of PVD-TiN Films Using MEVVAIon Implantation

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-hua; GONG Yun-guo; CHENG Ming-fei; ZHANG Tong-he

    2004-01-01

    Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.

  5. Study on the Ion Association in PVdF-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Gel polymer electrolytes based on the poly (vinylidene fluoride) (PVdF) and the electrolyte of LiClO4 in propylene carbonate (PC) were prepared by the solution casting technique. The ionic conductivity of the gel electrolytes was concentration of lithium salt. Because of the strong coulombiq attractions, the dissolved salt ions might aggregate into ion pairs and multiple ion aggregates. The analysis of DSC and X-ray diffraction revealed that the ions association occurred at higher concentration of lithium salt.

  6. TRIBOLOGICAL PROPERTIES AND WEAR MECHANISM OF HARD COATINGS

    OpenAIRE

    Ugues, Daniele; Maizza, Giovanni

    2013-01-01

    In the modern technology, tribologically suitable components and devices are important to increase the energy efficiency. It is possible when one can reduce the friction coefficient and wear of sliding components. The economic effectiveness can be achieved by better tribological system and therefore research in tribology is aimed at minimizing the energy losses resulting from friction and wear. In this view, hard coatings deposited by physical vapor deposition (PVD) are adequate solutions for...

  7. Ti(C,N) and (Ti,Al)N hard wear resistant coatings

    OpenAIRE

    K. Gołombek; J. Mikuła; W. Kwaśny; L.W. Żukowska; L.A. Dobrzański

    2010-01-01

    Purpose: Investigation the influence of kind of PVD coatings structure (homogenous or gradient) on properties of deposited tool materials: cemented carbides and cermets.Design/methodology/approach: Analysis of the structure, analysis of the mechanical and functional properties: surface roughness, microhardness tests, scratch tests, cutting tests. The Ti(C,N) gradient coating was investigated by XPS method with multifunctional PHI 5700/660 spectrometer. The characteristic of surface region coa...

  8. Thermal shutdown behavior of PVdF-HFP based polymer electrolytes comprising heat sensitive cross-linkable oligomers

    Science.gov (United States)

    Cheng, C. L.; Wan, C. C.; Wang, Y. Y.; Wu, M. S.

    PVdF-HFP (polyvinylidenefluoride-hexafluoropropylene) polymer electrolytes comprising cross-linkable PEGDMA (polyethylene glycol dimethacrylate) oligomers with thermal shutdown characteristic have been developed. In contrast to the melting mechanism of polyolefin, this new polymer electrolyte possesses a thermal shutdown characteristic by a rapid cross-linking reaction of PEGDMA. The cross-linked PEGDMA network inside the PVdF-HFP matrix can provide the mechanical strength for the electrolytes, while the un-cross-linked PEGDMA oligomers serve as plasticizers for PVdF-HFP to improve the mobility of lithium ions at normal operation temperatures. In addition, the un-cross-linked PEGDMA oligomers can initiate cross-linking upon a sudden rise of temperature and thus provide thermal shutdown protection at elevated temperatures.

  9. The Influence of Technological PVD Process Parameters on the Topography, Crystal and Molecular Structure of Nanocomposite Films Containing Palladium Nanograins

    Directory of Open Access Journals (Sweden)

    Rymarczyk Joanna

    2014-09-01

    Full Text Available The paper describes the preparation and characteristics of films composed of Pd nanograins placed in carbonaceous matrix. Films were obtained in PVD (Physical Vapor Deposition process from two sources containing: the first one - fullerene powder and the second one - palladium acetate. The topographical, morphological and structural changes due to different parameters of PVD process were studied with the use of Atomic Force Microscopy and Scanning Electron Microscopy, whereas the structure was studied with the application of the Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy methods. It was shown that topographical changes are connected with the decomposition ratio of Pd acetate as well as the form of carbonaceous matrix formed due to this decomposition. Palladium nanograins found in all films exhibit the fcc structure type and their diameter changes from 2 nm to 40 nm depending on the PVD process parameters.

  10. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Science.gov (United States)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-08-01

    The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  11. ELECTRICAL PROPERTIES OF Cr/CrN NANO-MULTILAYERS PRODUCED BY THE UNBALANCED MAGNETRON SPUTTERING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    DIANA MARITZA MARULANDA CARDONA

    2011-01-01

    Full Text Available Peliculas de nitruro de cromo (CrN se han aplicado como recubrimientos protectores contra el desgaste y la corrosion debido a sus excelentes propiedades mecanicas y alta resistencia a la corrosion, y en el campo electronico debido a su baja resistividad. Sin embargo, se ha encontrado que las multicapas que combinan peliculas metal/ceramico podrian mejorar las propiedades en comparacion a sus contrapartes en monocapa debido al aumento e interaccion entre interfaces. En este trabajo se produjeron nano-multicapas de Cr/CrN a traves de la tecnica de sputtering con magnetron desbalanceado con tres grados de desbalanceo diferentes para estudiar la influencia de este parametro en las propiedades electricas. Se crecieron multicapas con un espesor total de aproximadamente 1 microm y un periodo de bicapa (A de 200 nm, 100 nm y 20 nm. Las multicapas se produjeron a temperatura ambiente sobre acero H13 y silicio (100 y se estudio su microestructura y las propiedades electricas en funcion del campo magnetico. La formacion de fases se caracterizo a traves de Difraccion de Rayos X y los resultados muestran las orientaciones (111 y (200 para todas las multicapas. Se obtuvieron imagenes de la seccion transversal a traves de Microscopia Electronica de Barrido y los resultados muestran la formacion de una estructura en multicapas.

  12. Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates

    Institute of Scientific and Technical Information of China (English)

    Shi-lu Zhao; Jun Zhang; Zhen Zhang; Shuang-hong Wang; Zheng-gui Zhang

    2014-01-01

    (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-Al-Zr alloy targets and one pure Cr target. To investigate the composition, morphology, and crystalline structure of the bilayer films, a number of complementary methods of elemental and structural analysis were used, namely, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Adhesive strength and mechanical properties of the films were evaluated by scratch testing and Vickers microindentation, respectively. It is shown that the resulting films have a TiN-type face-centered cubic (FCC) structure. The films exhibit fully dense, uniform, and columnar morphology. Furthermore, as the bias voltages vary from-50 to-200 V, the microhardness (max. Hv0.01 4100) and adhesive strength (max.>200 N) of the bilayer films are superior to those of the (Ti,Al,Zr)N and (Ti,Al,Zr,Cr)N monolayer films.

  13. Erosion and high temperature oxidation resistance of new coatings fabricated by a sol-gel route for a TBC application.

    OpenAIRE

    Viazzi, Céline; Wellman , Richard; Oquab, Djar; Nicholls, John; Monceau, Daniel; Bonino, Jean-Pierre; Ansart, Florence

    2008-01-01

    This paper examines the erosion and cyclic oxidation performance of novel thermal barrier coatings produced via the sol-gel route. The ceramic top coat, with a thickness of 5-80 m, was deposited via a sol-gel route onto standard MCrAlY and PtAl bond coats. In both the erosion and the cyclic oxidation tests it was found that the bond coat had a profound affect on the results. The erosion of the sol-gel coatings were compared to standard EB PVD and PS TBCs and were found to be significantly...

  14. Investigation on the corrosion behavior of physical vapor deposition coated high speed steel

    Directory of Open Access Journals (Sweden)

    R Ravi Raja Malarvannan

    2015-08-01

    Full Text Available This work emphasizes on the influence of the TiN and AlCrN coatings fabricated on high speed steel form tool using physical vapor deposition technique. The surface microstructure of the coatings was studied using scanning electron microscope. Hardness and corrosion studies were also performed using Vickers hardness test and salt spray testing, respectively. The salt spray test results suggested that the bilayer coated (TiN- bottom layer and AlCrN- top layer substrate has undergone less amount of corrosion, and this is attributed to the dense microstructure. In addition to the above, the influence of the above coatings on the machining performance of the high speed steel was also evaluated and compared with that of the uncoated material and the results suggested that the bilayered coating has undergone very low weight loss when compared with that of the uncoated substrate depicting enhanced wear resistance.

  15. An overview on novel thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Thermal barrier coatings (TBCs) offer the potential to significantly improve efficiencies of aero engines as well as stationary gas turbines for power generation. On internally cooled turbine parts, temperature gradients of the order of 100-150℃ can be achieved. TBCs, typically consisting of an yttrium stabilized zirconia top coat and a metallic bond coat deposited onto a superalloy substrate, are mainly used to extend lifetime. Further efficiency improvements require TBCs being an integral part of the component which requires reliable and predictable TBC performance. TBCs produced by electron beam physical vapor deposition (EbPVD) or plasma spray (PS) deposition are favored for high performance applications. The paper highlights critical R&D needs for advanced TBC systems with a special focus on reduced thermal conductivity and life prediction needs. To further enhance the efficiency of gas turbines, higher temperature and a longer lifetime of the coating are needed for the next generation of TBCs. This paper presents the development of new materials, new deposition technologies, and new concept for application as novel TBCs. This paper summarizes the basic properties of conventional thermal barrier coatings. Based on our own investigation, we reviewed the progress on materials and technologies of novel thermal barrier coatings. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings. Nanostructure thermal barrier coating is presented as a new concept. This paper also summarizes the technologies for depositing the thermal barrier coatings.

  16. Rechargeable lithium battery employing a new ambient temperature hybrid polymer electrolyte based on PVK+PVdF-HFP (copolymer)

    Science.gov (United States)

    Michael, M. S.; Prabaharan, S. R. S.

    We describe here for the first time, our recent success in developing an ambient temperature Li + conducting solid polymer electrolyte (SPE) using the concept of polymer alloying upon blending two thermoplastic polymers such as poly(vinylidene) fluoride-hexafluoropropylene (PVdF-HFP-copolymer) and poly( N-vinylcarbazole), PVK and achieved the room temperature electrolytic conductivity ( σi) of 0.7×10 -3 S/cm for a typical composition of PVdF-HFP copolymer/PVK blend mixed with EC/LiBF 4 molar composition. The ionic transference number of 0.49 was deduced from combined ac-impedance and dc polarization method. High-resolution optical microscopic examination revealed the disappearance of characteristic highly porous surface structure of PVdF-HFP matrix upon blending with PVK leading to the formation of resultant PVdF-HFP/PVK blend polymer alloy. The electrochemical stability of the polymer electrolyte membrane thus obtained was found to be stable up to ˜4.7 V versus Li/Li +. The new hybrid alloy polymer electrolyte membrane was found to exhibit good interfacial properties against lithium metal and thus, it was found to aid the room temperature operation as electrolytic membrane cum separator in all-solid state rechargeable lithium polymer test cell, LiCo 0.8Ni 0.2O 2/SPE/Li.

  17. Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler

    Energy Technology Data Exchange (ETDEWEB)

    Stolarska, M.; Niedzicki, L.; Borkowska, R.; Zalewska, A.; Wieczorek, W. [Department of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2007-12-31

    Gel polymer electrolyte membranes composed of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) and surface modified aluminum or titanium oxide were prepared according to the so-called Bellcore process. Modifications were done by impregnating ceramic powder with 1-8% sulphuric acid aqueous solutions. Filler grain size varied from 10 to 12 {mu}m. The membranes were conditioned in liquid electrode - 1 mol/l LiClO{sub 4} in PC. The ionic conductivity of polymer membrane increased by more than one order of magnitude upon the addition of filler into polymer host. For electrolyte membrane containing modified aluminum or titanium oxide, the interfacial resistance is stable in time as opposed to unmodified gel electrolytes. An increase in lithium transference number is observed upon the addition of filler. Lithium transference number also increases with the fraction of acidic surface groups. (author)

  18. Surface Modification of PVD-TiN Films Using MEVVAIon Implantation

    Institute of Scientific and Technical Information of China (English)

    YANGJian-hua; GONGYun-guo; CHENGMing-fei; ZHANGTong-he

    2004-01-01

    Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 251.tA.cm2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.

  19. Non-classical crystallization of thin films and nanostructures in CVD and PVD processes

    CERN Document Server

    Hwang, Nong Moon

    2016-01-01

    This book provides a comprehensive introduction to a recently-developed approach to the growth mechanism of thin films and nanostructures via chemical vapour deposition (CVD). Starting from the underlying principles of the low pressure synthesis of diamond films, it is shown that diamond growth occurs not by individual atoms but by charged nanoparticles. This newly-discovered growth mechanism turns out to be general to many CVD and some physical vapor deposition (PVD) processes. This non-classical crystallization is a new paradigm of crystal growth, with active research taking place on growth in solution, especially in biomineralization processes. Established understanding of the growth of thin films and nanostructures is based around processes involving individual atoms or molecules. According to the author’s research over the last two decades, however, the generation of charged gas phase nuclei is shown to be the rule rather than the exception in the CVD process, and charged gas phase nuclei are actively ...

  20. Coatings for gear wheels; Beschichtungen fuer Zahnraeder

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, M.; Wittorf, R.; Thomsen, H. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, IST, Braunschweig (Germany). Transferzentrum Tribologie; Kaestner, P. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik; Kropp, J.P. [Technische Univ. Braunschweig (Germany). Inst. fuer Konstruktionstechnik

    2008-08-15

    In order to optimize the goal, steel gear wheels regarding load-carrying capacity and wear, thin film coatings were tested. Different coating systems were examined numerically with the software ELASTICA {sup registered} for their suitability. The characteristics of the coating systems were determined dependent on the material, its surface treatment as well as the diameters of relevant rolling partners. Differences were made between macroscopic rolling contacts between the teeth profiles and microscopic contacts with surface roughness and abrasion particles. First the four best suitable coating systems were deposited on simplified rollers and examined under different conditions. Two coating systems were determined, which show special suitability for the coating of the gear wheels. The first system is an a:C-H coating with an CrN interlayer. The second system is an a:C-H coating with an CrN interlayer on a plasma-nitrided substrat (Duplex-process). In order to protect the coatings on the teeth, their involute profile was provided with a tip relief. As gear wheel materials 16MnCr5, 42CrMo4 as well as the special steel ETG {sup registered} 88 were used. Two kinds of flow fats were used as lubricants and additional the unlubricated operation was examined. The gear wheels were tested at three different speeds on a test machine especially built for it. The testing routine was carried out in so-called power-stages. Each stage means a defined number of contacts and a certain Hertzian stress on the teeth profiles. With each stage the Hertzian stress was increased. The end of operation time is the beginning of cavitation pitting. The test results showed that in particular with the steel 16MnCr5 and 42CrMo4 the used Duplex-systems leads to considerable increases of the load-carrying capacity of the tooth flanks and the wear resistance. (orig.)

  1. 锂离子电池用PVdF/PMMA电纺膜的制备及电化学性能%Preparation and Electrochemical Properties of Electrospun PVdF/PMMA Membranes for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    曹琪; 李晓云; 钟正; 王先友; 陈权启; 蒋生辉

    2011-01-01

    In this paper,fibrous membranes of PVdF/PMMA were fabricated via electrospinning method.The morphology,structure and thermal behaviors of the electrospun membranes were characterized by scanning electron microscopy (SEM),fourier transform infra-red (FT-IR) spectroscopy and differential scanning calorimetry ( DSC ),respectively.Polymer electrolytes were prepared by immersing membranes into 1 mol/L LiClO4/EC + PC ( 1∶ 1,V/V).Electrochemical properties of ionic conductivity,electrochemical stability,interfacial resistance and cell performance of the electrolyte were investigated.The results suggested that the addition of PMMA increased the ionic conductivity and electrochemical stability of the polymer electrolyte.The PVdF/PMMA polymer electrolyte exhibited a high ionic conductivity of 3.5 mS/cm at room temperature and electrochemically stable up to 5.1 V.Also,the addition of PMMA into PVdF decreased the interfacial resistance with lithium electrode.In addition,Li/PE/LiFePO4 cell with PE based on electrospun PVdF/PMMA membrane exhibited excellent cycling performance.These results revealed that this new method may be very promising for preparing microporous PVdF/PMMA polymer electrolytes.%通过电纺法制备PVdF/PMMA纤维膜.电纺膜的形貌,结构和热行为分别用扫描电镜(SEM),红外(FT-IR),差热扫描量热法(DSC)表征.将电纺膜浸入1mol/L LiClO4/EC+ PC(1∶1,V/V)溶液中,从而得到聚合物电解质.对聚合物电解质的电化学性能如离子电导率,电化学稳定性,界面阻抗和电池性能也进行了研究.结果表明,PMMA的加入增加了聚合物电解质的离子电导率,提高了聚合物电解质的电化学稳定性.PVdF/PMMA聚合物电解质的室温离子电导率高达3.5 mS/cm,电化学稳定性达5.1 V.PMMA的加入降低了界面阻抗.另外,由PVdF/PMMA聚合物电解质组装的Li/PE/LiFePO4电池具有良好的循环性能.试验表明,电纺法可能很有希望应用于制备微孔PVdF/PMMA聚合物电解质.

  2. High temperature oxidation of WC-CrN Nano-multilayered film at 700 and 800 degrees C.

    Science.gov (United States)

    Lee, Dong-Bok

    2009-12-01

    Nano-multilayered WC-CrN films were deposited onto steel substrates by an arc ion plating method. The oxidation characteristics of the films were studied at 700 and 800 degrees C for up to 60 h in air. In each case, during oxidation, carbon and nitrogen escaped from the film into the air, while oxygen from the air diffused into the film. Substrate elements diffused outwards towards the oxide surface. The high-temperature oxidation resistance was not satisfactory, mainly due to the formation of a non-protective, volatile W-oxide scale, and the escape of carbon and nitrogen from the film. The scale formed was prone to cracking and spallation. The oxidation resulted in the destruction of the original nano-multilayers.

  3. Molecular dynamics simulations of the temperature effect in the hardness on Cr and CrN films

    Energy Technology Data Exchange (ETDEWEB)

    Roncancio, S. Amaya- [PCM-Computational Applications - Universidad Nacional de Colombia Sede Manizales (Colombia); Grupo GEMA, Universidad Catolica de Pereira (Colombia); Arias-Mateus, D.F.; Gomez-Hermida, M.M. [Grupo GEMA, Universidad Catolica de Pereira (Colombia); Riano-Rojas, J.C. [PCM-Computational Applications - Universidad Nacional de Colombia Sede Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [PCM-Computational Applications - Universidad Nacional de Colombia Sede Manizales (Colombia)

    2012-03-01

    Three-dimensional molecular dynamics (MD) simulations of nanoindentation technique was carried out for Cr and CrN thin films that present BCC and FCC crystalline structures respectively. Structures were oriented in the plane (1 0 0) and placed on silicon substrates. A pair wise potential was employed for simulating the interaction between atoms of each layer and a repulsive radial potential was used for representing a spherical tip indenting the sample. Mechanical properties of these two materials were obtained varying the temperature from 300 K to 1000 K with steps of 100 K. The hardness and elastic parameters were found for each temperature, showing a better mechanical response for films at low temperature. Structural changes evolution was observed presenting vacancies and slips as the temperature was increased. A temperature smoothing occurred because of the long range of slips and vacancies propagation. Then, the interatomic force decreases as the kinetic energy of the particles involved in nanoindentation process increases.

  4. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  5. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  6. High Temperature Thermal Properties of Columnar Yttria Stabilized Zirconia Thermal Barrier Coating Performed by Suspension Plasma Spraying

    Science.gov (United States)

    Bernard, B.; Schick, V.; Remy, B.; Quet, A.; Bianchi, L.

    2016-09-01

    Performance enhancement of gas turbines is a main issue for the aircraft industry. Over many years, a large part of the effort has been focused on the development of more insulating Thermal Barrier Coatings (TBCs). In this study, Yttria Stabilized Zirconia (YSZ) columnar structures are processed by Suspension Plasma Spraying (SPS). These structures have already demonstrated abilities to get improved thermal lifetime, similarly to standard YSZ TBCs performed by EB-PVD. Thermal diffusivity measurements coupled with differential scanning calorimetry analysis are performed from room temperature up to 1100 °C, first, on HastelloyX substrates and then, on bilayers including a SPS YSZ coating. Results show an effective thermal conductivity for YSZ performed by SPS lower than 1 W.m-1K-1 whereas EB- PVD YSZ coatings exhibit a value of 1.5 W.m-1K-1.

  7. Application of Hard Coatings for Improved Tribological Performance of Blanking and Piercing Tools

    DEFF Research Database (Denmark)

    Podgornik, B.; Zajec, B.; Bay, Niels

    2010-01-01

    The aim of the present investigation was to examine the possibility of reducing lubrication and replacing expensive tungsten carbide material in blanking/piercing through introduction of hard tool coatings. Results show that hard PVD coatings can be successfully used in blanking/piercing...... critical value under dry friction conditions and leads to tool failure. Therefore, at present oxidation and temperature resistant hard coatings can give improved wear resistance of stamping tools, but elimination of lubricants in blanking and piercing processes is still not feasible....

  8. Microstructural characterizations and hardness evaluation of d.c. reactive magnetron sputtered CrN thin films on stainless steel substrate

    Indian Academy of Sciences (India)

    Hetal N Shah; Vipin Chawla; R Jayaganthan; Davinder Kaur

    2010-04-01

    Chromium nitride (CrN) thin films were deposited on stainless steel (grade: SA304) substrate by using d.c. reactive magnetron sputtering and the influence of process parameters such as substrate temperature, pressure, and power on their microstructural characteristics were investigated in the present work. The CrN films were characterized with X-ray diffraction (XRD) to reveal the formation of different phases and its texture. The films showed the (111) preferred orientation but its intensity decreased, while intensity of peak (200) increased with increase in working pressure. The mixture of CrN and Cr2N phases were identified at low working pressure and temperature. The preferred orientations of CrN thin films are strongly influenced by sputtering conditions, thickness, and the induced residual stress in the films as observed in the present work. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology and surface topography of thin films, respectively. The study shows that the hardness of films strongly depends on the grain size and the film density, which are influenced by combined effect of the working pressure, temperature, and power of the sputtering process.

  9. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in [Functional Nanomaterial Research lab, Department of Physics and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand (India)

    2016-05-06

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  10. Development of a PVD-based manufacturing process of monolithic LEU irradiation targets for {sup 99}Mo production

    Energy Technology Data Exchange (ETDEWEB)

    Hollmer, Tobias

    2015-08-03

    {sup 99}Mo is the most important radioisotope in nuclear medicine. It is produced by fission of uranium in irradiation targets. The usage of cylindrical monolithic targets can ensure a safe supply of {sup 99}Mo and at the same reduce the amount of highly radioactive waste generated during production. To manufacture these targets, a novel PVD-based technique was developed. Both the feasibility and the high efficiency of this process were demonstrated in a prototype apparatus.

  11. A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2004-01-01

    Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.

  12. Blending effect of poly (ethyl methacrylate) on lithium bis(perfluoroethanesulfonyl) imide-ferroceramic PVdF-HFP composite

    Science.gov (United States)

    Vickraman, P.; Jayaraman, R.; Purushothaman, K.

    2013-06-01

    PEMA as a supportive host matrix is physically blended in five different proportions with PVdF-HFP based system containing LiBETI as a electrolyte, EC / DMC mixture in 1:1 v/v ratio as a plasticizer and BaTiO3 as a filler for improving ionic conductivity is attempted. The A.C impedance, DSC, and FTIR studies are carried out. The ionic conductivity measurements on these Polymer Blend Nano Composites(PBNC) showed that blending improved ionic conductivity, and enhancement in magnitude is observed for 22.5% PEMA blended PVdF-HFP (7.5 wt%) system with 7.5% BaTiO3. The DSC showed PEMA interaction with PVDF causing reorientation of VDF crystals and resulting conformational changes showed variations in melting endotherms, are observed. FTIR studies identified PEMA interaction with plasticizer and PVdF-HFP through the change in the C-F stretching and C=O Carbonyl bond.

  13. Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwin raj, S.; Sowmya, G.; Kalaiselvimary, J.; Ramesh Prabhu, M., E-mail: mkram83@gmail.com

    2016-03-15

    Highlights: • Polymer blends based on PVdF-HFP/PEO were prepared for Li-ion battery applications. • Structural and electrochemical studies were carried out on prepared electrolytes. • The electrolytes can be used as electrolyte in the possible device fabrications. - Abstract: Poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] 18.75 wt% blend based electrolyte films containing different concentrations (2–10) wt% of lithium salt were prepared. The miscibility studies have been performed by using X-ray diffraction and Fourier transform infrared spectroscopy. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. A room temperature conductivity of 2.3912 × 10{sup −4} S cm{sup −1} has been obtained for PEO (6.25)–PVdF-HFP (18.75)–LiClO{sub 4} (8)–PC (67) polymer complex. The temperature dependence of the conductivity of polymer electrolyte seems to obey VTF relation. Electrochemical stability (3.3 V) was observed in the prepared polymer electrolyte. Reduction process and oxidation process of the prepared electrolyte system have also been evaluated by means of cyclic voltammetry. Thermogravimetric analysis results indicate thermal stability of PEO/PVdF-HFP lithium salt complexes. Roughness parameter of the sample having maximum ionic conductivity was studied by AFM. The morphology of the polymer complex is investigated by using SEM.

  14. Corrosion Characteristics of Nano-structured Coatings for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Won; Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Coating surface using less corrosive metal is one of methods that reduce electrochemical corrosion. And metal oxide like a TiO{sub 2} is studied because it is stable, insoluble when coating is exposed severe environment. Several coating technics are used for better corrosion resistance. Pysical vapor deposition(PVD), chemical vapor deposition(CVD), thermal spray, electroplating, electroless etc. But thermal spray coating makes thermal stress to substrates because its temperature are more than 3000K. And powder's deformation can occur. And CVD makes decarburization near interface between surface and coating layer. In addition, CVD and PVD needs vacuum chamber. Electroplating is chemical reaction at surface, but it needs electric power. On the other hands, electroless plating dosen't needs electric power and it's temperature is low than thermal spray. Also the pipe dipping into the chemically solution can proceed coating easily. To reduce FAC, we have experiment about corrosion resistance of electroless Ni-P coated carbon steel in room temperature. And it has possibility of reducing corrosion and addition of TiO{sub 2} nano particles in Ni-P coating layer makes having better corrosion resistance. And results give us a possibility that electroless Ni-P coating added TiO{sub 2} nano particle can have better corrosion resistance compared carbon steel. So it needs study about high temperature corrosion experiment of electroless Ni-P coating added TiO{sub 2} nano particle.

  15. Ionic liquid-polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Sub; Park, Seung-Yeob; Choi, Sukjeong; Lee, Huen [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2006-04-21

    New ionic liquid-polymer gel electrolytes (IPGEs) are prepared from N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (Mor{sub 1,2}TFSI) and poly(vinylidene fluoride)-hexafluoropropylene copolymer (PVdF(HFP)). To investigate the effect of propylene carbonate (PC) on the ionic conductivity of the IPGEs, the preparation methods are roughly divided into two groups according to the presence or absence of PC. The ionic conductivity for each IPGE is measured with increasing temperature and changing weight ratio of Mor{sub 1,2}TFSI. The results show that the ionic conductivity increases as the temperature and weight ratio of the Mor{sub 1,2}TFSI increase, and that the added PC improves the ionic conductivity of the IPGEs. In addition, thermogravimetric analysis and the data from infrared spectroscopy demonstrate the thermal stability of each IPGE and the presence of PC in the polymer network. Although the IPGEs that contain PC display high conductivity ({approx}1.1x10{sup -2}Scm{sup -1}) at 60{sup o}C, they are thermally unstable. (author)

  16. N-Butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide-PVdF(HFP) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Sub; Park, Seung-Yeob; Yeon, Sun-Hwa; Lee, Huen [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea)

    2005-09-30

    Ionic liquid-polymer gels were prepared by incorporating N-butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (Mor{sub 1,4}TFSI) and poly(vinylidene fluoride)-hexafluoropropylene copolymer (PVdF(HFP)) using three different methods in order to observe the variation of ionic conductivities according to the presence of propylene carbonate (PC) and various weight ratios between Mor{sub 1,4}TFSI and gel polymer electrolyte (GPE). Ionic conductivities for each gel polymer electrolyte were measured with increasing temperature. Ionic conductivities of the GPEs increased with increasing temperature and weight ratio of Mor{sub 1,4}TFSI. In addition, the addition of PC into GPE led to the improvement of ionic conductivities. Thermogravimetric analysis (TGA) showed the suggested gel polymer electrolytes composed of only ionic liquid and polymer were stable up to approximately 400 C. TGA and infrared spectroscopy data indicated that residual PC remains after evaporating PC in a vacuum oven, which did not affect the ionic conductivities. The GPEs containing PC displayed high conductivity (ca. 10{sup -2} S cm{sup -1}) at 60 C. (author)

  17. Active soft solder deposition by magnetron-sputter-ion-plating (MSIP)-PVD-process

    Energy Technology Data Exchange (ETDEWEB)

    Lugscheider, E.; Bobzin, K.; Erdle, A

    2004-01-30

    In different technical areas micro electro mechanical systems (M.E.M.S.), e.g. micro pumps, micro sensors, actuators and micro dosage systems are in use today. The components of these M.E.M.S. consist of various materials, which have to be joined. To join materials like ceramics, plastics or metals to a hybrid M.E.M.S., established joining technologies have to be adjusted. For the assembling and mounting of temperature sensible micro components, a low temperature joining process, e.g. transient liquid phase (TLP) bonding or an active soft soldering process can be performed. In this article the deposition of a low melting active soft solder by magnetron-sputter (MS)-PVD deposition with an active substrate cooling will be presented. The substrate temperatures were set and controlled by an additional cooling unit, which was integrated into the sputtering facility. In the performed experiments a substrate temperature range from -40 to +20 deg. C was investigated. The effects of these different substrate temperatures to the microstructure and the soldering suitability of the solder system were investigated by scanning electron microscopy (SEM), nanoindentation and soldering tests. The chemical composition of the deposited solder systems was examined by glow discharge optical spectroscopy (GDOS)-analysis. As a suitable substrate temperature range for deposition -10 to -20 deg. C was detected. Solder systems deposited in this temperature range showed good solder abilities.

  18. Tweedracht maakt macht. De PvdA, de doorbraak en de ontluikende polarisatiestrategie (1946-1966

    Directory of Open Access Journals (Sweden)

    B. Mellink

    2011-01-01

    Full Text Available Divide and Rule: The Dutch Labour Party (PvdA, the Breakthrough and the Emerging Polarisation Strategy (1946-1966In 1966, after a lengthy debate in the Dutch parliament, the Cals cabinet came to a sudden end. As a motion proposed by Norbert Schmelzer, the parliamentary leader of the prime minister’s own Catholic party precipitated the cabinet’s fall, ‘Schmelzer’s Night’ received an iconic status in Dutch political history. Many historians have interpreted Schmelzer’s Night as the birth of a Social Democratic ‘polarisation strategy’: differences between Left and Right were exaggerated in order to divide the confessional parties along ideological lines. Established analyses ascribe the development of this polarisation strategy to the ascendancy of a younger generation in Dutch politics. This article argues instead that the polarisation strategy of the late 1960s was not so much caused by a new generation, but rather emerged as a consequence of postwar Social Democrats’ efforts to abolish pillarisation (verzuiling in Dutch society.

  19. Kinetic Monte Carlo Simulation of EB-PVD Film: Effects of Substrate Temperature

    Institute of Scientific and Technical Information of China (English)

    SHAN Ying-chun; HE Xiao-dong; LI Ming-wei; LI Yao; XU Jiu-jun

    2006-01-01

    The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor deposition (EB-PVD). In the KMC model, substrate was assumed to be a "surface" of tight-packed rows, and the simulation includes two phenomena: adatom-surface collision and adatom diffusion. While the interaction between atoms was described by the embedded atom method, the jumping energy was calculated by the molecular static (MS) calculation. The initial location of the adatom was defined by the Momentum Scheme. The results reveal that there exists a critical substrate temperature which means that the lowest packing density and the highest surface roughness structure will be achieved when the temperature is lower than the smaller critical value, while the roughness of both surfaces and the void contents keep decreasing with the substrate temperature increasing until it reaches the higher critical value. The results also indicate that the critical substrate temperature rises as the deposition rate increases.

  20. Tweedracht maakt macht. De PvdA, de doorbraak en de ontluikende polarisatiestrategie (1946-1966

    Directory of Open Access Journals (Sweden)

    B. Mellink

    2011-01-01

    Full Text Available Divide and Rule: The Dutch Labour Party (PvdA, the Breakthrough and the Emerging Polarisation Strategy (1946-1966In 1966, after a lengthy debate in the Dutch parliament, the Cals cabinet came to a sudden end. As a motion proposed by Norbert Schmelzer, the parliamentary leader of the prime minister’s own Catholic party precipitated the cabinet’s fall, ‘Schmelzer’s Night’ received an iconic status in Dutch political history. Many historians have interpreted Schmelzer’s Night as the birth of a Social Democratic ‘polarisation strategy’: differences between Left and Right were exaggerated in order to divide the confessional parties along ideological lines. Established analyses ascribe the development of this polarisation strategy to the ascendancy of a younger generation in Dutch politics. This article argues instead that the polarisation strategy of the late 1960s was not so much caused by a new generation, but rather emerged as a consequence of postwar Social Democrats’ efforts to abolish pillarisation (verzuiling in Dutch society.

  1. A Comparison of Afghanistan, Yuma, Az, and Manufactured Sands Melted on EB-PVD Thermal Barrier Coatings

    Science.gov (United States)

    2014-09-18

    16  Figure 4: Relative abundance of carbonate, mafic and ultra mafic, quartz, ferrous ...To further increase combustion temperatures without exceeding the material property limitations of the Ni-based single crystal alloy , elaborate...and ultra mafic, quartz, ferrous iron, and ferric iron minerals present in Kabul Basin, Afghanistan from ASTER imaging [13]. 18 Figure 5

  2. Effects of proton irradiation on the magnetic properties of GaGdN and GaCrN

    Energy Technology Data Exchange (ETDEWEB)

    Hite, J K; Allums, K K; Thaler, G T; Abernathy, C R; Pearton, S J [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Frazier, R M [Naval Research Laboratory, WA, DC 20375 (United States); Dwivedi, R; Wilkins, R [Center for Applied Radiation Research, Prairie View A and M University, Prairie View, TX 77446 (United States); Zavada, J M [US Army Research Office, Research Triangle Park, NC 27709 (United States)], E-mail: spear@mse.ufl.edu

    2008-05-15

    GaGdN and GaCrN films grown by gas source molecular beam epitaxy were irradiated with high energy (10 and 40 MeV) protons at a fluence of 5 x 10{sup 9} cm{sup -2} to examine the effect on magnetization. This dose is equivalent to the exposure expected in 10 years in low-earth orbit space missions. Both photoluminescence intensity and magnetization of the films showed significant decreases with irradiation. The largest response was observed with GaGdN, which experienced a 50-60% loss in band edge luminescence and 11-83% loss in magnetic saturation. After annealing the irradiated samples at 500 {sup 0} C under a nitrogen plasma ambient, both types of films experienced a complete recovery in magnetic properties. The fact that the introduction of point defects did not increase the magnetization is evidence against unpaired bonds from defects in the film being responsible for the magnetic properties in the films.

  3. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  4. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E.

    1995-12-31

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

  5. Structure and wear behavior of AlCrSiN-based coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chengdu Tool Research Institute Co., Ltd., Chengdu 610500 (China); Du, Hao [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Chen, Ming, E-mail: mchen@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Jun [Chengdu Tool Research Institute Co., Ltd., Chengdu 610500 (China); Xiong, Ji [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhao, Haibo [The Analysis and Testing Centre, Sichuan University, Chengdu 610065 (China)

    2016-05-01

    Graphical abstract: - Highlights: • AlCrSiN based coating showed amorphous structure. • AlCrSiN/Me{sub x}N coatings obtained better wear resistance. • Molybdenum and niobium increased the coating hardness and wear resistance. - Abstract: AlCrN, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings have been deposited on high-polished WC–Co cemented carbide substrate and tools by mid-frequency magnetron sputtering in Ar/N{sub 2} mixtures. Al{sub 0.6}Cr{sub 0.4}, Al{sub 0.6}Cr{sub 0.3}Si{sub 0.1}, and C/Mo/Nb targets were used during the deposition. The microstructure and mechanical properties of as-deposited coatings were investigated. Investigations of the wear behaviors of coated tools were also performed. The results showed that cubic structure was formed in the coatings. Broader CrAlN (1 1 1) and (2 0 0) peaks without SiN{sub x} peak were formed in the AlCrSiN/Me{sub x}N coatings, which showed a nanocomposited structure. Meanwhile, according to SEM micrographs, AlCrN exhibited a columnar structure, while, AlCrSiCN, AlCrSiN/MoN, and AlCrSiN/NbN coatings showed nanocrystalline morphology. The nano-multilayered coatings performed higher hardness, H/E, and H{sup 3}/E{sup 2} ratios compared with AlCrN coating. Through the Rockwell adhesion test, all the coatings exhibited adhesion strength quality HF1. After turning Inconel 718 under dry condition, the nano-multilyered coatings showed better wear resistance than AlCrN coating. Due to the molybdenum and niobium in the coating, AlCrSiN/MoN and AlCrSiN/NbN coatings showed the best wear resistance.

  6. Corrosion, friction and wear performance of diamond – like carbon (DLC coatings

    Directory of Open Access Journals (Sweden)

    M. Madej

    2016-10-01

    Full Text Available The a - C:H:W, TiN/a - C:H:W and the CrN/a - C:H:W coatings were deposited on steel surface by physical vapour deposition methods and studied for corrosion and tribological properties, after elemental and structural analysis. In friction pairs the elements coated with diamond-like carbon showed better tribological properties than the elements without coatings. The presence of interlayers in coatings contributed to an improvement in the tribological properties but decreased corrosion resistance.

  7. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  8. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  9. Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties

    Science.gov (United States)

    Gall, D.; Shin, C.-S.; Spila, T.; Odén, M.; Senna, M. J. H.; Greene, J. E.; Petrov, I.

    2002-03-01

    CrN layers, 0.5 μm thick, were grown on MgO(001) at Ts=570-775 °C by ultrahigh vacuum magnetically unbalanced magnetron sputter deposition in pure N2 discharges at 20 mTorr. Layers grown at Ts⩽700 °C are stoichiometric single crystals exhibiting cube-on-cube epitaxy: (001)CrN||(001)MgO with [100]CrN||[100]MgO. At higher temperatures, N2 desorption during deposition results in understoichiometric polycrystalline films with N fractions decreasing to 0.35, 0.28, and 0.07 with Ts=730, 760, and 775 °C, respectively. The surface morphologies of epitaxial CrN(001) layers were found to depend strongly on the incident ion-to-metal flux ratio JN2+/JCr which was varied between 1.7 and 14 with the ion energy maintained constant at 12 eV. The surfaces of layers grown with JN2+/JCr=1.7 consist of self-organized square-shaped mounds, due to kinetic roughening, with edges aligned along orthogonal directions. The mounds have an average peak-to-valley height =5.1 nm and an in-plane correlation length of =0.21 μm. The combination of atomic shadowing by the mounds with low adatom mobility results in the formation of nanopipes extending along the growth direction. Increasing JN2+/JCr to 14 leads, due to increased adatom mobilities, to much smoother surfaces with =2.5 nm and =0.52 μm. Correspondingly, the nanopipe density decreases from 870 to 270 μm-2 to JCr is increased from 1.7 to 6 to 10. The hardness of dense CrN(001) is 28.5±1 GPa, but decreases to 22.5±1 GPa for layers containing significant nanopipe densities. The CrN(001) elastic modulus, 405±15 GPa, room-temperature resistivity, 7.7×10-2 Ω cm, and relaxed lattice constant, 0.4162±0.0008 nm, are independent of JN2+/JCr.

  10. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.-C. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, S.-C. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Dai, S.-B. [Center of General Studies, National Kaohsiung Marine University, Nan-Tzu, Kaohsiung, Taiwan (China); Nano-Win Technology Co. Ltd., Tainan, Taiwan (China); Tien, S.-L. [Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan (China); Chang, C.-C. [Department of Physics, R.O.C. Military Academy, 830 Kaohsiung, Taiwan (China); Fu, Y.-S. [Department of Environment and Energy, National University of Tainan, Tainan, Taiwan (China)]. E-mail: ysfu@mail.nutn.edu.tw

    2007-02-15

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.

  11. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cerio, Frank

    2013-09-14

    was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  12. Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-jun; HE Li-ping; CHEN Zong-zhang

    2006-01-01

    A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre- and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment,the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.

  13. Development of W coatings for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania); Grigore, E. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania); Maier, H.; Neu, R.; Greuner, H.; Mayer, M. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Max-Plank Institut fuer Plasma Physik, Euratom Association, 85748 Garching (Germany); Matthews, G. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Culham Centre for Fusion Energy, Euratom Association, Abingdon (United Kingdom)

    2011-10-15

    The paper gives a short overview on tungsten (W) coatings deposited by various methods on carbon materials (carbon fibre composite - CFC and fine grain graphite - FGG). Vacuum Plasma Spray (VPS), Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques are analyzed in respect with the characteristics and performances of the W coatings. A particular attention is paid to the Combined Magnetron Sputtering and Ion Implantation (CMSII) technique, which was developed during the last 4 years from laboratory to industrial scale and it is successfully applied for W coating (10-15 {mu}m and 20-25 {mu}m) of more than 2500 tiles for the ITER-like Wall project at JET and ASDEX Upgrade. This technique involves simultaneously magnetron sputtering and high energy (tens of keV) ion implantation. Due to the ion bombardment a stress relief occurs within the coating enabling its growth without delamination to a relatively large thickness. In addition, in order to adjust the thermal expansion mismatch between CFC and W, a Mo interlayer of 2-3 {mu}m is currently used. Experimentally, W/Mo coatings with a thickness up to 50 {mu}m were produced and successfully tested in the GLADIS ion beam facility up to 23 MW/m{sup 2}.

  14. Adhesion behaviour of CrNx coatings on pre-treated metal substrates studied in situ by PBA and ESEM after annealing

    NARCIS (Netherlands)

    Galindo, RE; van Veen, A; Schut, H; Janssen, GCAM; Hoy, R; de Hosson, JTM

    2005-01-01

    In this paper we present the first combined Positron Beam Analysis (PBA) and Environmental Scanning Electron Microscopy (ESEM) adhesion study on thin chromium nitride (CrN,) coatings. Both techniques are combined with a 4-point bending stage. PBA monitors the creation of open volume in the ceramic/m

  15. Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, G. Gnana [Specialized Graduate School of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Pil [Specialized Graduate School of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); School of Chemical Engineering and Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Ae Rhan [Specialized Graduate School of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Nahm, Kee Suk [Specialized Graduate School of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); School of Chemical Engineering and Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)], E-mail: nahmks@chonbuk.ac.kr; Elizabeth, R. Nimma [Department of Physics, Lady Doak College, Madurai 625002 (India)

    2009-05-15

    Organic-inorganic hybrid membranes based on poly(vinylidene fluoride-co-hexa fluoropropylene) (PVdF-HFP)/sulfosuccinic acid were fabricated with different nanometer sizes of silica particles. Morphological images reveal the embedded ceramic filler over the membrane. Structural characterizations were made by FT-IR and XPS, ensure the inclusion of sulfosuccinic acid and silica into the PVdF-HFP polymer matrix. Sulfonic acid groups promote the IEC values and greater swelling behavior. Silica content in the hybrid membranes had a great effect on crystalline character as well as thermal properties of the membranes. Decrease in the filler size creates an effective route of polymer-filler interface and promotes the protonic conductivity of the membranes. The high conductivities in the range of 10{sup -2} to 10{sup -3} S cm{sup -1} were achieved through synergistic interactions between the organic and inorganic moieties of the hybrid membranes. Due to these splendid features, the prepared hybrid membranes can be a trademark in the field of fuel cells.

  16. Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries

    Science.gov (United States)

    Cheng, C. L.; Wan, C. C.; Wang, Y. Y.

    This study reports the development of a new system of porous, chemically cross-linked, gel polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer as a polymer matrix, polyethylene glycol (PEG) as a plasticizer, and polyethylene glycol dimethacrylate (PEGDMA) as a chemical cross-linking oligomer. The electrolytes are prepared by a combination of controlled evaporation and thermal polymerization of PEGDMA. PVdF-HFP/PEG/PEGDMA gel polymer electrolytes with a composition of 5/3/2 exhibit both high ambient ionic conductivity, viz., >1 mS cm -1, and a high tensile modulus of 52 MPa, because of their porous and network structures. All the blends of electrolytes are electrochemically stable up to 5 V versus Li/Li + in the presence of 1 M LiPF 6/ethylene carbonate-diethyl carbonate (EC-DEC). With these polymer electrolytes, rechargeable lithium batteries composed of carbon anode and LiCoO 2 cathode have acceptable cycleability and a good rate capability.

  17. Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte

    Indian Academy of Sciences (India)

    S K Tripathi; Ashish Gupta; Manju Kumari

    2012-11-01

    Polymer blend electrolytes composed of poly(vinylidene fluoride-co-hexafluoro-propylene), poly(methyl methacrylate) and 1.0 M NaI as salt have been synthesized using solution caste technique by varying the PVdF(HFP)–PMMA blend concentration ratio systematically. A.c. impedance studies were performed to evaluate the ionic conductivity of the polymer electrolyte films. The highest ionic conductivity at room temperature for [PVdF(HFP)–PMMA(4:1)](20 wt%) – [NaI(1.0M)](80 wt%) system is found to be 1.67 × 10-2 S cm-1. XRD studies reveal complete complexation of the salt in the polymeric blend systems. The temperature dependence conductivity has been performed in the range of 303–373 K and it is observed that it obeys the Arrhenius behaviour. It has been observed that the dielectric constant, r and dielectric loss, i, increases with temperature in the lower frequency region and is almost negligible in the higher frequency region. This behaviour can be explained on the basis of electrode polarization effects. Plot of real part, r and imaginary part, i vs frequency indicates that the systems are predominantly ionic conductors. The phenomenon suggests a plurality of relaxation mechanism.

  18. Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

    Indian Academy of Sciences (India)

    Amitava Majumdar; Sunirmal Jana

    2001-02-01

    Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness. Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

  19. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  20. Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries

    Science.gov (United States)

    Lee, Yunju; Lee, Hoogil; Lee, Taejoo; Ryou, Myung-Hyun; Lee, Yong Min

    2015-10-01

    To improve the safety of lithium-ion batteries (LIBs), co-polyimide (PI) P84 was introduced as a polymeric binder for Al2O3/polymer composite surface coatings on polypropylene (PP) separators. By monitoring the dimensional shrinkage of the PP separators at high temperatures, we verified a synergistic thermal stabilization effect between the Al2O3 ceramic and the PI polymeric binder. Although PI was thermally stable up to 300 °C, a coating consisting solely of PI did not impede the PP separator dimensional changes (-22% at 150 °C). On the other hand, the Al2O3/PI-coated PP separators efficiently impeded the thermal shrinkage (-10% at 150 °C). In contrast, an Al2O3/poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) combination lowered the thermal stability of the PP separators (-33% at 150 °C). As a result, the Al2O3/PI-coated PP separators remarkably suppressed the internal short-circuit of the unit half-cells associated with separator thermal shrinkage (100 min at 160 °C), whereas the PVdF-HFP retained only 40 min under identical conditions. The Al2O3/PI-coated PP separators achieved rate capabilities and cell performances similar to those of the bare PP separators.

  1. The effect of different titanium nitride coatings on the adhesion of Candida albicans to titanium.

    Science.gov (United States)

    Wang, Jing; An, Yanxin; Liang, Haifeng; Tong, Yu; Guo, Tianwen; Ma, Chufan

    2013-10-01

    The aim of the present study was an in vitro evaluation of the effects of different titanium nitride (TiNx) coatings on Candida albicans (C. albicans) adhesion to titanium and to correlate these findings to differences in specific surface characteristics (surface topography, roughness, chemical component, and surface free energy). TiNx coatings were prepared by physical vapour deposition (PVD), a plasma nitriding process or a dual nitriding process. Surface properties were analysed by the optical stereoscopic microscopy, scanning electron microscopy, roughmeter, and drop shape methods. Quantity comparisons of C. albicans on the four surfaces were assessed by cell count and XTT reduction assays. Types of adhesive C. albicans were explored by SEM and confocal laser scanning microscope. The nitrided modifications were found to influence the surface properties and fungal susceptivity of flat titanium. Compared to flat titanium, fewer adhered C. albicans in yeast form were observed on the TiN-coated surface, whereas the plasma nitrided surface did not show any reduced potential to adhere C. albicans in hyphal or yeast form. The dual nitrided coating showed anti-fungal characteristics, although a small quantity of hyphae were identified. Our findings indicate that the Ti2N phase is prone to C. albicans hyphae, while the TiN phase inhibits their adhesion. Different TiNx phases could influence the characteristics of C. albicans adhesion. TiN coating by PVD could be a potential modification to inhibit C. albicans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  3. Galvanic Corrosion Behavior of 13Cr-N80 Steel Couples in NaCl Solution with Different Concentrations%13Cr-N80油管钢在不同浓度NaCl溶液中的电偶腐蚀行为

    Institute of Scientific and Technical Information of China (English)

    吴领; 谢发勤; 姚小飞; 吴向清

    2013-01-01

    The corrosion behavior of super 13Cr-N80 steel couples in NaCl solution with different concentrations was investigated by electrochemical method.Corrosion morphologies and products of the couple were analyzed with SEM,EDS and XRD.The results showed that,in different concentrations of NaCl solution,distinct potential difference was found between 13Cr and N80,together with different levels of galvanic corrosion.As anode,N80 was accelerated to corroded,however,13Cr was protected as cathode when coupled.The super 13Cr-N80 steel couples could not be used without protection of N80.With the increasing of concentration of NaCl solution,corrosion current density of the super 13Cr-N80 steel couples reduced as well as the reduction of corrosion degree of N80,corrosion products of which was Fe3O4.%采用电化学方法,研究了超级13Cr-N80油管钢电偶对在不同浓度NaCl溶液中的电偶腐蚀行为,采用SEM分析了电偶对中被腐蚀试样的腐蚀形貌,并利用EDS和XRD分析手段分析了其腐蚀产物.结果表明,在不同浓度NaCl溶液中,13Cr与N80之间均存在明显的电位差,13Cr与N80偶接时均发生了不同程度的电偶腐蚀,电偶对中N80作为阳极被加速腐蚀,而13Cr作为阴极得到保护,超级13Cr-N80油管钢电偶对必须对N80防护后方可偶接使用;随着NaCl溶液浓度的增大,超级13Cr-N80油管钢电偶对的电偶电流密度减小,电偶对中N80的腐蚀程度降低,且其表面的腐蚀产物主要由Fe3O4组成.

  4. ADHESION OF BIOCOMPATIBLE TiNb COATING

    Directory of Open Access Journals (Sweden)

    Tomas Kolegar

    2017-06-01

    Full Text Available Preparation of a coating with a high quality requires good adhesion of the film to the substrate. The paper deals with the adhesion of biocompatible TiNb coating with different base materials. Several materials such as titanium CP grade 2, titanium alloys Ti6Al4V and stainless steel AISI 316L were measured. Testing samples were made in the shape of small discs. Those samples were coated with a TiNb layer by using the PVD method (magnetron sputtering. Onto the measured layer of TiNb an assistant cylinder was stuck using a high strength epoxy adhesive E1100S. The sample with the assistant cylinder was fixed into a special fixture and the whole assembly underwent pull-off testing for adhesion. The main result of this experiment was determining the strength needed to peel the layer and morphology and size of the breakaway. As a result, we will be able to determine the best base material and conditions where the coating will be remain intact with the base material.

  5. Update on UCO's advanced coating lab development of silver-based mirror coatings

    Science.gov (United States)

    Phillips, Andrew C.; Fryauf, David M.; Kobayashi, Nobuhiko P.; DuPraw, Brian; Cheleden, Spencer; Ratliff, Christopher; Bolte, Michael J.; Cowley, David

    2016-08-01

    We present progress in efforts underway at the University of California Observatories to develop high performance durable silver-based mirror coatings for telescope and instruments. Silver-based coatings are extremely prone to tarnish and/or corrosion, and successful coatings depend not only on the materials used but also the deposition processes employed. Our physical vapor deposition (PVD) chamber allows both sputtering and ion-assisted e-beam depositions for head-to-head comparison of deposition processes, and we present results of these comparisons. In this paper, we review the problem and discuss our recent activities and findings. We discuss a systematic study to determine which oxides, nitrides and fluorides provide the best protection in environmental tests. We present initial results into the effects of stress in our specific thin films, and thee effects of stress on mirror coating durability. We also discuss studies using Atomic Layer Deposition (ALD) over-coating of Ag, and we describe a large ALD research chamber currently under construction that will demonstrate ALD processes on larger substrates (70 cm diameter).

  6. Laveren tussen ontspanning en solidariteit: de PvdA en de FNV ten tijde van de Poolse crisis (1980-1982)

    NARCIS (Netherlands)

    Miedema, C.

    2013-01-01

    The Polish independent trade union Solidarność appeared in a time of rising tension between East and West. This created a dilemma for Western left-wing movements: maintain solidarity with the Polish workers or continue the détente policy of the 1970s? The Dutch social democratic party PvdA and the l

  7. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  8. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  9. Present and possible future applications of superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Holubar, P.; Jilek, M.; Sima, M. [SHM, Ltd., Sumperk (Czech Republic)

    2000-11-01

    Recent investigations into the multicomponent (TiAlSi)N and TiBN superhard coatings revealed that the nanostructure, properties and deposition conditions needed for their preparation are in agreement with the known generic concept for the design of novel superhard nanocomposites due to thermodynamically driven phase segregation. All coatings to be reported here were developed on a production scale plasma PVD and CVD equipment consisting of vacuum arc evaporation from a central cathode for the metals in combination with PCVD of non-metals, such as boron, from gaseous reactant. Depending on the composition and deposition conditions the hardness of the coatings is controlled in the range between 35 and 45 GPa or higher. However, for the majority of applications the highest hardness is not the primary goal. More important is the appropriate combination of high hardness with other properties, such as fracture toughness, oxidation resistance, adhesion, etc. The effect of these properties on the resulting utility value of the coated tools will be discussed with respect to the available cutting tools made of cemented carbide and coated with the nanocomposites. Presently, dry milling, drilling and possibly turning are the most important applications of such coated tools. In view of the fairly fast transition from the initial development of these coatings towards their industrial production many further applications are expected. Therefore, future possibilities will be discussed as well. (orig.)

  10. Development of Advanced Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  11. Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process

    Science.gov (United States)

    Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu

    2017-02-01

    Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.

  12. Porous PVdF-HFP/P123 electrolyte membrane containing flexible quasi-solid-state dye-sensitized solar cells produced by the compression method

    Science.gov (United States)

    Kim, Jae Hong; Jung, Hee Suk; Park, Chung Hee; Kang, Tae Jin

    2014-01-01

    Flexible quasi-solid-state dye-sensitized solar cells (DSSCs) with porous poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP)/polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (P123) electrolyte membranes were fabricated and their photocurrent-voltage (I-V) characteristics are studied. Flexible TiO2 photoelectrodes were prepared using the compression method and porous PVdF-HFP/P123 membranes, by the nonsolvent-induced phase inversion technique. To activate the electrolyte membrane, the membrane was immersed in liquid-state electrolyte. Increased compression pressure improved the interconnection between TiO2 nanoparticles, enhancing the photovoltaic performances of the flexible liquid-state DSSCs to a maximum of 3.92% efficiency. Meanwhile, the overall pore structure of the PVdF-HFP/P123 membranes was controlled by varying the blend ratio of P123 to PVdF-HFP. Membranes higher in P123 content gave larger pores and pore volume, increasing the electrolyte uptake of the porous membrane, and thus the ionic conductivity of the electrolyte membrane as well. The photovoltaic characteristics of the flexible quasi-solid-state DSSCs containing a porous PVdF-HFP/P123 electrolyte membrane showed a maximum at 50 wt% P123 content, which gave a short-circuit current density (Jsc) value of 7.28 mA/cm2, an open-circuit voltage (Voc) of 0.67 V, a fill factor (FF) of 0.61 and an energy conversion efficiency (η) of 2.98%. Furthermore, the device designed in this study showed good durability compared to those based on liquid-state electrolyte.

  13. Nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) composite electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Manuel Stephan, A.; Nahm, Kee Suk [School of Chemical Engineering and Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Prem Kumar, T.; Kulandainathan, M. Anbu [Central Electrochemical Research Institute, Karaikudi 630006 (India); Ravi, G.; Wilson, J. [Department of Physics, Alagappa University, Karaikudi 630003 (India)

    2006-09-22

    Composite polymer electrolyte (CPE) membranes, comprising poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), aluminum oxyhydroxide (AlO[OH]{sub n}) of two different sizes 7{mu}m/14nm and LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} as the lithium salt were prepared using a solution casting technique. The prepared membranes were subjected to XRD, impedance spectroscopy, compatibility and transport number studies. Also Li Cr{sub 0.01}Mn{sub 1.99}O{sub 4}/CPE/Li cells were assembled and their charge-discharge profiles made at 70{sup o}C. The incorporation of nanofiller greatly enhanced the ionic conductivity and the compatibility of the composite polymer electrolyte. The film which possesses a nanosized filler offered better electrochemical properties than a film with micron sized fillers. The results are discussed based on Lewis acid-base theory. (author)

  14. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2016-02-08

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  15. An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications

    Science.gov (United States)

    Rajendran, S.; Sivakumar, P.

    2008-03-01

    Solid polymer electrolytes (SPEs) composed of poly(vinylidene fluoride) (PVdF)-poly(vinyl chloride) (PVC) complexed with lithium perchlorate (LiClO 4) as salt and ethylene carbonate (EC)/propylene carbonate (PC) as plasticizers were prepared using solvent-casting technique, with different weight ratios of EC and PC. The amorphicity and complexation behavior of the polymer electrolytes were confirmed using X-ray diffraction (XRD) and FTIR studies. TG/DTA and scanning electron microscope (SEM) studies explained the thermal stability and surface morphology of electrolytes, respectively. The prepared thin films were subjected to AC impedance measurements as a function of temperature ranging from 302 to 373 K. The temperature-dependence conductivity of polymer films seems to obey VTF relation.

  16. Nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) composite electrolytes for lithium batteries

    Science.gov (United States)

    Manuel Stephan, A.; Nahm, Kee Suk; Prem Kumar, T.; Kulandainathan, M. Anbu; Ravi, G.; Wilson, J.

    Composite polymer electrolyte (CPE) membranes, comprising poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), aluminum oxyhydroxide (AlO[OH] n) of two different sizes 7 μm/14 nm and LiN(C 2F 5SO 2) 2 as the lithium salt were prepared using a solution casting technique. The prepared membranes were subjected to XRD, impedance spectroscopy, compatibility and transport number studies. Also Li Cr 0.01Mn 1.99O 4/CPE/Li cells were assembled and their charge-discharge profiles made at 70 °C. The incorporation of nanofiller greatly enhanced the ionic conductivity and the compatibility of the composite polymer electrolyte. The film which possesses a nanosized filler offered better electrochemical properties than a film with micron sized fillers. The results are discussed based on Lewis acid-base theory.

  17. HPPMS (Cr1-xAlx)N WSy Coatings for the Application in Dry Cold Forging of Steel: Sythesis and Raman Characterization

    OpenAIRE

    Bobzin, Kirsten

    2016-01-01

    Lubricants are applied to reduce friction between workpieces and forming tools in cold forging processes. There is a strong demand to avoid lubricants due to economic, ecological and legislative aspects. PVD coatings took over the tasks of lubricants in numerous applications in the recent years. They may enormously reduce tool and workpiece wear in cold forging or deliver special functions even in the absence of lubricants. However, the abdication of lubricants goes along with the requirement...

  18. Plasma assisted metal-organic chemical vapor deposition of hard chromium nitride thin film coatings using chromium(III) acetylacetonate as the precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arup; Kuppusami, P.; Lawrence, Falix; Raghunathan, V.S.; Antony Premkumar, P.; Nagaraja, K.S

    2004-06-15

    A new technique has been developed for depositing hard nanocrystalline chromium nitride (CrN) thin films on metallic and ceramic substrates using plasma assisted metal-organic chemical vapor deposition (PAMOCVD) technique. In this low temperature and environment-friendly process, a volatile mixture of chromium(III) acetylacetonate and either ammonium iodide or ammonium bifluoride were used as precursors. Nitrogen and hydrogen have been used as the gas precursors. By optimizing the processing conditions, a maximum deposition rate of {approx}0.9 {mu}m/h was obtained. A comprehensive characterization of the CrN films was carried out using X-ray diffraction (XRD), microhardness, and microscopy. The microstructure of the CrN films deposited on well-polished stainless steel (SS) showed globular particles, while a relatively smooth surface morphology was observed for coatings deposited on polished yittria-stabilized zirconia (YSZ)

  19. THE RESEARCH TECHNIQUES FOR ANALYSIS OF MECHANICAL AND TRIBOLOGICAL PROPERTIES OF COATING-SUBSTRATE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kinga CHRONOWSKA-PRZYWARA

    2014-06-01

    Full Text Available The article presents research techniques for the analysis of both mechanical and tribological properties of thin coatings applied on highly loaded machine elements. In the Institute of Machine Design and Exploitation, AGH University of Science and Technology students of the second level of Mechanical Engineering study tribology attending laboratory class. Students learn on techniques for mechanical and tribological testing of thin, hard coatings deposited by PVD and CVD technologies. The program of laboratories contains micro-, nanohardness and Young's modulus measurements by instrumental indentations and analysys of coating to substrate adhesion by scratch testing. The tribological properties of the coating-substrate systems are studied using various techniques, mainly in point contact load conditions with ball-on-disc and block-on-ring tribomiters as well as using ball cratering method in strongly abrasive suspensions.

  20. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  1. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  2. Overview on the Development of Nanostructured Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Thermal barrier coatings (TBCs) have successfully been used in gas turbine engines for increasing operation temperature and improving engine efficiency. Over the past thirty years, a variety of TBC materials and TBC deposition techniques have been developed. Recently, nanostructured TBCs emerge with the potential of commercial applications in various industries. In this paper, TBC materials and TBC deposition techniques such as air plasma spray (APS), electron beam physical vapor deposition (EB-PVD), laser assisted chemical vapor deposition (LACVD) are briefly reviewed. Nanostructured 7-8 wt pct yttria stabilized zirconia (7-8YSZ)TBC by air plasma spraying of powder and new TBC with novel structure deposited by solution precursor plasma spray (SPPS) are compared. Plasma spray conditions, coating forming mechanisms, microstructures,phase compositions, thermal conductivities, and thermal cycling lives of the APS nanostructured TBC and the SPPS nanostructured TBC are discussed. Research opportunities and challenges of nanostructured TBCs deposited by air plasma spray are prospected.

  3. Tribological Performance of MoS2 Coatings in Various Environments

    Directory of Open Access Journals (Sweden)

    Thomas Gradt

    2016-09-01

    Full Text Available Molybdenum disulfide (MoS2 is a well-known solid lubricant for tribosystems running in vacuum or dry gases. Problems arise due to its sensitivity to humidity, which is a drawback for its application under ambient conditions. However, by using a physical vapor deposition (PVD process, deposition parameters can be optimized not only to gain a coatings structure with favorable frictional properties but also to minimize the sensitivity to attack by water molecules. Therefore, an improved tribological behavior even under moist conditions can be achieved. MoS2 coatings are also candidates for being applied at cryogenic temperatures. They already have proven their suitability, e.g., for sliding support elements between superconducting magnets of the nuclear fusion-experiment Wendelstein 7-X. However, these coatings were exclusively produced for this particular application and the utilization for more common tribosystems may be precluded due to cost considerations. In view of a wider range of applications, pure and Cr containing PVD-MoS2 coatings with an optimized structure were tested under varying environments including hydrogen gas and cryogenic temperatures. Results of the most promising variant are presented in this paper.

  4. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  5. Tribological Properties of PVD Carbon-Copper Composite Films Reinforced by Titanium

    Directory of Open Access Journals (Sweden)

    Lungevics J.

    2016-02-01

    Full Text Available Carbon-copper composite coatings reinforced with titanium were deposited using high power magnetron sputtering technique. Tribological and metrological tests were performed using Taylor Hobson Talysurf Intra 50 measuring equipment and CSM Instruments ball-on-disk type tribometer. Friction coefficient and wear rate were determined at 2N, 4N, 6N loads. It was revealed that friction coefficient decreased at a higher Ti concentration, which was particularly expressed at bigger applied loads. However, wear volume values tended to increase in the beginning, till Ti concentration reached about 11 %, but then decreased, thus providing better nanocoating wear resistance.

  6. Radiation Stability of Triple Coatings Based on Transition-Metal Nitrides Under Irradiation By Alpha Particles and Argon Ions

    Science.gov (United States)

    Potekaev, A. I.; Kislitsyn, S. B.; Uglov, V. V.; Klopotov, A. A.; Gorlachev, I. D.; Klopotov, V. D.; Grinkevich, L. S.

    2016-05-01

    The data on the influence of irradiation of (Ti, Cr)N1-x coatings by helium and argon ions on their surface structure are presented. The (Ti, Cr)N1-x coatings 50-300 nm in thickness were formed on carbon steel substrates by vacuum-arc deposition. Irradiation of the coated specimens was performed in a DC-60 heavy-ion accelerator by low-energy 4He+1, 4He+2 and 40Ar5+ ions and high-energy 40Ar5+ ions up to the fluence 1.0·1017 ion/cm2 at the irradiation temperature not higher than 150°C. It is shown that irradiation of the (Ti, Cr)N1-x coating surface by 4He+1, 4He+2 and 40Ar5+ ions with the energy 20 keV/charge does not give rise to any noticeable structural changes nor any surface blistering, while its irradiation by 40Ar5+ ions with the energy 1.50 MeV/amu causes blistering.

  7. Precursor-Less Coating of Nanoparticles in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Tobias V. Pfeiffer

    2015-03-01

    Full Text Available This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nanoparticles using a type of physical vapor deposition (PVD at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.

  8. Tribology of nitrided-coated steel-a review

    Directory of Open Access Journals (Sweden)

    Bhaskar Santosh V.

    2017-01-01

    Full Text Available Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  9. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  10. Effect of aging on the ionic conductivity of polyvinylidenefluoride-hexafluoropropylene (PVdF-HFP) membrane impregnated with different lithium salts

    Science.gov (United States)

    Aravindan, Vanchiappan; Vickraman, Palanisamy

    2012-05-01

    The aging towards the ionic conductivity have been studied using of different lithium salts namely, lithium bis(oxalate)borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), lithium fluoroalkylphosphate (LiFAP) and LiPF6 in polyvinylidenefluoride-hexafluoropropylene (PVdF-HFP) matrix. The crystallization behavior of LiBOB and LiDFOB has been noticed for the first time during storage of such membranes within the texture of PVdF-HFP matrix. At the same time, such behavior has not been observed in the case of LiFAP and LiPF6 based membranes. The growth of such crystallites would certainly hinder the mobility mechanism of Li+ ions and it has been confirmed by ionic conductivity measurements. The formation of such crystals has been validated through scanning electron microscopic studies.

  11. High performance a-IGZO thin-film transistors with mf-PVD SiO2 as an etch-stop-layer

    NARCIS (Netherlands)

    Nag, M.; Steudel, S.; Bhoolokam, A.; Chasin, A.; Rockele, M.; Myny, K.; Maas, J.; Fritz, T.; Trube, J.; Groeseneken, G.; Heremans, P.

    2014-01-01

    In this work, we report on high-performance bottom-gate top-contact (BGTC) amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with SiO2 as an etch-stop-layer (ESL) deposited by medium frequency physical vapor deposition (mf-PVD). The TFTs show field-effect mobility (μFE) of 16.0

  12. First-Principles Study of Structural and Electronic Properties of Chromium Nitride/Gallium Nitride Multilayer (CrN/GaN Estudio por primeros principios de las propiedades estructurales y electrónicas de la multicapa CrN/GaN

    Directory of Open Access Journals (Sweden)

    Ricardo Eulises Báez Cruz

    2013-03-01

    Full Text Available In this work we perform first-principles calculations to investigate the structural and electronic properties of the 1x1 CrN/GaN multilayer. The calculations were executed in zincblende and wurtzite phase, since they are the ground states of chromium nitride CrN and gallium nitride GaN, respectively. However, we study the stability of the multilayer in the NaCl phase, in order to predict possible phase transitions. We found that the most favorable phase for the multilayer is the hexagonal wurtzite type, with possibility of passing to the NaCl phase by applying an external pressure. Our calculations indicate that the pressure of transition is 13,5 GPa. From the density of states, we found that the multilayer present a metallic behavior produced by the hybrid orbitals d-Cr and N-p that cross level Fermi.En este trabajo realizamos cálculos de primeros principios para investigar las propiedades estructurales y electrónicas de la multicapa 1x1 CrN/GaN. Los cálculos se realizan en las fases zincblenda y wurtzita, debido a que este es el estado base del nitruro de cromo CrN y el nitruro de galio GaN, respectivamente. Sin embargo, se estudia la estabilidad de la multicapa en la fase NaCl, con el fin predecir posibles transiciones de fase. Encontramos que la fase más favorable para multicapa, es la hexagonal tipo wurtzita, con posibilidad de pasar a la fase NaCl mediante la aplicación de una presión externa. Nuestros cálculos nos permiten predecir que la presión de transición es 13,5 GPa. A partir de la densidad de estados encontramos que la multicapa posee un comportamiento metálico debido a la hibridación de los orbitales Cr-d y N-p que atraviesan el nivel de Fermi.

  13. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    Science.gov (United States)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  14. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    Science.gov (United States)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A.

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA 12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO 2 (SBA-15) and (ii) a commercial nano-size one (HiSil™ T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm -1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil™-based membrane, the Li/LiFePO 4 cells with PVdF-HFP/PYRA 12O1TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.

  15. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  16. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4].

    Science.gov (United States)

    Shalu; Chaurasia, S K; Singh, R K; Chandra, S

    2013-01-24

    PVdF-HFP + IL(1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF(4)]) polymeric gel membranes containing different amounts of ionic liquid have been synthesized and characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR), differential scanning calorimetry, thermogravimetric analysis (TGA), and complex impedance spectroscopic techniques. Incorporation of IL in PVdF-HFP polymer changes different physicochemical properties such as melting temperature (T(m)), thermal stability, structural morphology, amorphicity, and ionic transport. It is shown by FTIR, TGA (also first derivative of TGA, "DTGA") that IL partly complexes with the polymer PVdF-HFP and partly remains dispersed in the matrix. The ionic conductivity of polymeric gel membranes has been found to increase with increasing concentration of IL and attains a maximum value of 1.6 × 10(-2) S·cm(-1) for polymer gel membrane containing 90 wt % IL at room temperature. Interestingly, the values of conductivity of membranes with 80 and 90 wt % of IL were higher than that of pure IL (100 wt %). The polymer chain breathing model has been suggested to explain it. The variation of ionic conductivity with temperature of these gel polymeric membranes follows Arrhenius type thermally activated behavior.

  17. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Zhou, Fei, E-mail: fzhou@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Gao, Song; Wu, Zhiwei; Wang, Qianzhi [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016 (China); Chen, Kangmin [Center of Analysis, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhifeng; Li, Lawrence Kwok-Yan [Advanced Coatings Applied Research Laboratory, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-07-30

    Highlights: • Cr-B-N coatings were deposited via adjusting the CrB{sub 2} target current. • Cr-B-N nanocomposite coatings consisted of CrN nanograins and amorphous BN phase. • The hardness of Cr-B-N coating increased firstly, and then decreased with increasing CrB{sub 2} target current. • The frictional behavior of Cr-B-N coatings deposited at different CrB{sub 2} target currents was compared in deionized water. • In comparison to CrN coatings, Cr-B-N coatings exhibited superior tribological properties in water. - Abstract: Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB{sub 2} target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB{sub 2} target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB{sub 2} target current of 2 A, and then decreased gradually with further increasing the CrB{sub 2} target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  18. Macro-microscopic morphology and phase analysis of TiAl-based alloys sheet fabricated by EB-PVD method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiAl-based alloys sheet with thickness of 0.3-0.4 mm as well as dimension of 150 mm×100 mm was fabricated successfully by using electron beam-physical vapor deposition(EB-PVD) method. The microscopic morphology and phase composition of specimens in various states were analyzed by atomic force microscope(AFM), scanning electron microscope(SEM)and X-ray diffractometer(XRD), respectively. The results indicate that the as-deposited TiAl-based alloys sheet has good surface quality and is composed of γ, α2 and τ phase. There is natural delamination inside the sheet, of which the microstructure is columnar crystal, and the component shows a gradient change along the normal direction of substrate. After the vacuum hot pressing treatment and subsequent homogenization treatment, the columnar crystal transforms into the coarse fully lamellar microstructure, the delamination phenomenon and τ phase disappear, α2 phase decreases obviously, and the composition tends to uniforrnization.

  19. Friction and Adhesion in Dry Warm Forging of Magnesium Alloy with Coated Tools

    Science.gov (United States)

    Matsumoto, Ryo; Kawashima, Hiroaki; Osakada, Kozo

    In order to develop forging process of magnesium alloys without lubrication, frictional behavior of magnesium alloy AZ31B (Mg-3%Al-1%Zn) is evaluated by a tapered plug penetration test under dry condition. The cemented tungsten carbide (WC) plugs polished to be a mirror-like surface are coated with diamond-like carbon (DLC) and TiAlN by physical vapor deposition (PVD). The cylindrical hollow billets of AZ31B are penetrated by the tapered plugs at a temperature of 200°C. The surface roughness of the hole of the billet, the adhesion length of AZ31B on the plug surface and the penetration load are measured. Compared with WC and TiAlN coating, it is found that DLC coating is effective in preventing AZ31B from adhering to the tool surface and reducing the penetration load.

  20. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  1. Substrate Effects on the High-Temperature Oxidation Behavior of Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    Limin He; Zhenhua Xu; Jianping Li; Rende Mu; Shimei He; Guanghong Huang

    2009-01-01

    The high-temperature oxidation behaviors of the NiCrAIYSi/P-YSZ thermal barrier coatings (TBCs) pro-duced by electron beam-physical vapor deposition (EB-PVD) on directionally solidified (DS) and single crys-talline (SC) Ni-based superalloy substrates were investigated. The cross-sectional microstructure investigation, isothermal and cyclic oxidation tests were conducted for the comparison of oxidation behaviors of TBCs on different substrates. Although TBC on DS substrate has a relatively higher oxidation rate, it has a longer thermal cycling lifetime than that on SC substrate. The primary factor for TBC spallation is the mismatch of thermal expansion coefficient (TEC) of the bond coat and substrate. The morphological feature of thermally grown oxide (TGO) has a strong influence on the TBC performance. By optimizing the elemental interdiffusion between bond coat and substrate, a high quality TGO layer is formed on the DS substrate, and therefore the TBC oxidation behavior is improved.

  2. Materials Coating Techniques

    Science.gov (United States)

    1980-03-01

    chemical reactions 2: !et gas ph>a;ce. These reactions may occur on, at, or ncr the substrate surface. on ti- other hand, phytical vapor deposition (PVD...z nonia is the most usua source of n togen. Nitrogen itself has beeA asid ut it reacts very much more slowly than ammonia. At temperatures greater

  3. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    Science.gov (United States)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  4. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  5. Chromium vaporization from mechanically deformed pre-coated interconnects in Solid Oxide Fuel Cells

    Science.gov (United States)

    Falk-Windisch, Hannes; Sattari, Mohammad; Svensson, Jan-Erik; Froitzheim, Jan

    2015-11-01

    Cathode poisoning, associated with Cr evaporation from interconnect material, is one of the most important degradation mechanisms in Solid Oxide Fuel Cells when Cr2O3-forming steels are used as the interconnect material. Coating these steels with a thin Co layer has proven to decrease Cr vaporization. To reduce production costs, it is suggested that thin metallic PVD coatings be applied to each steel strip before pressing the material into interconnect shape. This process would enable high volume production without the need for an extra post-coating step. However, when the pre-coated material is mechanically deformed, cracks may form and lower the quality of the coating. In the present study, Chromium volatilization is measured in an air-3% H2O environment at 850 °C for 336 h. Three materials coated with 600 nm Co are investigated and compared to an uncoated material. The effect of deformation is investigated on real interconnects. Microscopy observations reveal the presence of cracks in the order of several μm on the deformed pre-coated steel. However, upon exposure, the cracks can heal and form a continuous surface oxide rich in Co and Mn. As an effect of the rapid healing, no increase in Cr vaporization is measured for the pre-coated material.

  6. New types of coating systems for steel sheets by high-rate evaporation in combination with plasma processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, B.; Metzner, C. [Fraunhofer-Institut fuer Elektronenstrahl und Plasmatechnik (FEP), Dresden (Germany); Ehlers, K.D. [Salzgitter AG Stahl und Technologie (Germany); Schuhmacher, B. [Dortmunder Oberflaechencentrum GmbH, Dortmund (Germany); Flossdorf, F.J.; Steinbeck, G. [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany); Steffen, R. [Stahlwerke Bremen GmbH (Germany); Hagler, J. [voestalpine Stahl GmbH, Linz (Austria)

    2002-03-01

    High-rate evaporation in combination with plasma processes is a promising approach to obtain new types of steel sheet coating with improved corrosion resistance and application properties. To estimate the potential for the application of PVD-coatings (physical vapour deposition) different coating systems for steel sheet as well as for hot-dip or electro-galvanized steel sheet were designed. The samples were produced on a laboratory scale using PVD processes with very high deposition rates (in the order of 1 {mu}m s{sup -1}) as well as high-power plasma processes for the pre-treatment. The relationship between the composition, microstructure and properties of the coating systems, in particular concerning corrosion protection, abrasion during forming, phosphating and paint adhesion, were studied. It was found that the corrosion resistance of galvanized steel sheets can be considerably improved by vapour deposition of metal or inorganic films with a thickness of several hundred nanometers. Investigations on vapour deposition of titanium and stainless steel coatings on steel sheets, for applications in a severely corrosive environment, showed that the corrosion resistance in relation to the coating thickness can be significantly enhanced by means of plasma activation during the vapour deposition process. Finally, an outlook on possible industrial applications including an estimation of the process costs will be presented. For certain coating systems the results look promising. Consequently, these particular coating systems will be investigated in more detail by means of using a large-scale in-line deposition plant for metallic strips and sheets. (orig.)

  7. Wear behavior of contacting between thin film coating on SKD11 ball and 304 stainless steel disk

    Directory of Open Access Journals (Sweden)

    Sriprasird, J.

    2007-11-01

    Full Text Available Wear is a well known problem in metal stamping die, especially on the die working with stainless steel workpiece, in which wear rate is severe. This research considered various types of material coating on tool surface which were regularly practised in modern stamping industry due to the ability to increase wear resistance. The model study of friction "Ball-on-disk" technique was employed throughout this work. The disk was made from stainless steel austenitic grade (SUS304. The ball was made from cold work tool steel, SKD11 (JIS and was hardened to 60±2 HRC. Ball surface conditions selected for this work were non-coated, coated by TiC-CVD, TiCN (TiC/TiCN/TiN Multilayer-CVD and TiCN (TiN/TiCN Double layer-PVD, and treated by VC-TD. Tests were carried out without lubricant. The results show that the coating film and the surface treatment has no effect on the friction coefficient but it can reduce wear rate by 64.1-99.7% at contact pressure condition less than 1,100 MPa. At the higher level of contact pressure, only 2 types of coating, TiCN (Multilayer-CVD and TiC-CVD, can reduce wear rate. The other two, which are TiCN (Double layer-PVD coating film and a surface treatment by VC-TD process, on the contrary increase the rate of wear significantly. This is due to delamination of coating film at high contact pressure. The coating particles of high hardness accelerate wear phenomenon on the tool surface. Therefore, proper selection of tool surface condition depends on level of contact pressure generated in the process.

  8. UV-Shifted Durable Silver Coating for Astronomical Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, N.L.; Wolfe, J.

    2000-06-01

    Silver has the highest reflectance of all of the metals, but it tarnishes in the presence of sulfides, chlorides, and oxides in the atmosphere. Also, the silver reflectance is very low at wavelengths below 400 nm making aluminum more desirable mirror coating for the UV region. They have found a way to prevent silver tarnishing by sandwiching the silver layer between two thin layers of NiCrN{sub x}, and to extend the metal's high reflectance down to 200 nm by depositing the (thin) Ag layer on top of Al. Thus, the uv is transmitted through the thin Ag layer below 400 nm wavelength, and is reflected from the Al layer underneath. This UV-shifted durable coating provides a valuable alternative to the aluminum coating for telescope mirror coatings where high throughput and durability are important considerations. The throughput for a telescope with, say, six reflections from silver coatings is (0.97){sup 6} = 83% compared to (0.92){sup 6} = 60% for aluminum coatings, or 28% less. The use of silver coatings allows more photons to be collected by primary mirror. Aluminum also has a reflectance dip at 850 nm caused by inter-band transitions which is eliminated by placing the thin Ag layer on top. This paper describes a non-tarnishing silver coating having high reflectance down into the UV region. The average specular reflectance is 70%-97% in the near-UV, 95%-99% in the visible region, and {ge} 99% in the infrared region covering the total wavelength range 200 nm to 10,000 nm. Figure 1 compares the reflectance of the UVHR-LLNL silver coating to bare silver and aluminum over-coated with magnesium fluoride over the wavelength range 300 nm to 2000 nm.

  9. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2016-11-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  10. Oxidation behavior of Ni(Co)CrAlYHf(Si) coatings on DS superalloy at 1 150 ℃

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhao-hui; TAN Yong-ning; ZHAO Xi-hong; LI Jian-ping; ZHANG Qiang

    2006-01-01

    Two Ni(Co)CrAlY coatings were deposited by EB-PVD method on a DS superalloy of Ni-Al-Cr-Co-W-Mo-Ta-Hf system. SEM, XEDS and XRD were used to study the oxidation behavior of the coatings. The two coatings show a good protection for the DS superalloy. The results of the isothermal oxidation test at 1 150 ℃ for 100 h show that the oxidation tendency obeys the parabolic law, and the oxidation rate constant Kp of the coated specimens decreases to about 1/3 of that for the bare superalloy. After oxidation, a continuous alumina-based scale is formed at the surfaces of the coated samples. Y2O3, NiO and SiO2 are also detectable in the oxide scale. A large number of Al in the coating is consumed due to high-temperature diffusion and oxidation reactions, and the NiAl phases in the coating are almost completely transformed to Ni3Al phases. For the Hf-bearing coating, some HfO2 particles exist at the interface between the coating and the substrate. Although internal oxidation occurs, the coating still shows a good adhesion with the superalloy substrate even after oxidation for 100 h. For the bare DS superalloy, after 100 h oxidation at 1 150 ℃, only discontinuous alumina-based oxide particles exist on the surface. Oxide spallation occurs for the bare alloy.

  11. Using CrAlN multilayer coatings to improve oxidation resistance of steel interconnects for solid oxide fuel cell stacks

    Science.gov (United States)

    Smith, R. J.; Tripp, C.; Knospe, A.; Ramana, C. V.; Kayani, A.; Gorokhovsky, Vladimir; Shutthanandan, V.; Gelles, D. S.

    2004-06-01

    The requirements of low-cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. The performance of steel plates with multilayer coatings, consisting of CrN for electrical conductivity and CrAlN for oxidation resistance, was investigated. The coatings were deposited using large area filtered arc deposition technology, and subsequently annealed in air for up to 25 hours at 800 °C. The composition, structure, and morphology of the coated plates were characterized using Rutherford backscattering, nuclear reaction analysis, atomic force microscopy, and transmission electron microscopy techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitude. Electrical resistance was measured at room temperature.

  12. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  13. Tribological Testing of Anti-Adhesive coatings for Cold Rolling Mill Rolls—Application to TiN-Coated Rolls

    Science.gov (United States)

    Ould, Choumad; Gachon, Yves; Montmitonnet, Pierre; Badiche, Xavier

    2011-05-01

    Roll life is a major issue in cold strip rolling. Roll wear may result either in too low roll roughness, bringing friction below the minimum requested for strip entrainment; or it may degrade strip surface quality. On the contrary, adhesive wear and transfer ("roll coating", "pick up") may form a thick metallic deposits on the roll which increases friction excessively and degrades strip surface again [1]. The roll surface, with the help of a materials-adapted lubricant, must therefore possess anti-wear and anti-adhesive properties. Thus, High Speed Steeel (HSS) rolls show superior properties compared with standard Cr-steel rolls due to their high carbide surface coverage. Another way to improve wear and adhesion properties of surfaces is to apply hard metallic (hard-Cr) or ceramic coatings. Chromium is renowned for its excellent anti-wear and anti-adhesive properties and may serve as a reference. Here, as a first step towards alternative, optimised coatings, a PVD TiN coating has been deposited on tool steels, as previous attempts have proved TiN to be rather successful in cold rolling experiments [2,3]. Different tribological tests are reported here, giving insight in both anti-adhesive properties and fatigue life improvement.

  14. Analysis of the environmental and nature impacts of 'Building Bridges'. Coalition VVD-PvdA, October 29, 2012. A quick scan; Analyse van de milieu- en natuureffecten van 'Bruggen slaan'. Regeerakkoord VVD-PvdA d.d. 29 oktober 2012. Een quick-scan

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, F. (ed.)

    2012-11-15

    The coalition between the political parties VVD (liberals) and PvdA (socialists) connects the transition to a sustainable economy and green growth to strengthening the competitive capacity of the Dutch economy. The role of the Dutch government in the coalition aims at creating a framework and to provide facilities to realize the transition. In this memo the results of an analysis of the impacts of the coalition are given for the themes Energy and Climate, Nature, Transport and Traffic, and Green Growth [Dutch] Het Regeerakkoord VVD-PvdA koppelt de transitie naar een duurzame economie en groene groei aan het versterken van het concurrentievermogen van de Nederlandse economie. De rol van de rijksoverheid wordt in het regeerakkoord met name ingevuld als kaderstellend en faciliterend. De PBL-notitie analyseert de effecten van het regeringsakkoord voor de thema's Energie en Klimaat, Natuur, Verkeer en Vervoer, en Groene groei.

  15. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A. [Dept. of Physical Chemistry, University of Pavia, Via Taramelli 16, 27100 Pavia (Italy); Fagnoni, M.; Protti, S. [Dept. of Organic Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia (Italy); Gerbaldi, C. [Dept. of Material Science and Chemical Engineering, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Torino (Italy); Spinella, A. [Centro Grandi Apparecchiature - UniNetLab, University of Palermo, Via F. Marini 14, 90128 Palermo (Italy)

    2010-01-15

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA{sub 12O1}TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO{sub 2} (SBA-15) and (ii) a commercial nano-size one (HiSil trademark T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm{sup -1} are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil trademark -based membrane, the Li/LiFePO{sub 4} cells with PVdF-HFP/PYRA{sub 12O1}TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles. (author)

  16. Nano indentations studies of WC/C and TiN/(Ti,Al)N multilayer PVD coatings combined with cross-sectional electron microscopy observations

    NARCIS (Netherlands)

    Carvalho, NJM; De Hosson, JTM; Meng, WJ; Kumar, A; Doll, GL; Cheng, YT; Veprek, S; Chung, YW

    2001-01-01

    Multilayers of tungsten carbide/carbon (WC/C) with an amorphous structure and multilayers of titanium nitride/titanium-aluminum nitride (TiN/(Ti,Al)N) with a polycrystalline structure, prepared by physical vapor deposition, have been subjected to nanoindentation testing. The investigation has been a

  17. 等离子体激活电子束物理气相沉积NiCoCrAlY涂层的制备及微观组织结构研究%Microstructures of NiCoCrAlY Coatings Grown by Plasma Activated Electron Beam Physical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    常健; 郑蕾; 彭徽; 郭洪波; 宫声凯

    2012-01-01

    针对传统电子束物理气相沉积(EB-PVD)制备的柱状晶结构MCrAlY涂层存在线性缺陷的问题,本文建立了等离子体激活EB-PVD(PA EB-PVD)设备,并采用PA EB-PVD技术制备出了具有等轴晶结构的新型NiCoCrAlY涂层.结果表明,增大电弧放电电压和基板偏压均可以提高沉积粒子的能量.随着沉积粒子能量增强,涂层逐渐由柱状晶结构转变为致密等轴晶结构,晶粒尺寸增大;另一方面,涂层成份离析效应增强,主要体现在Al含量降低和Cr含量升高.%a novel technique - the plasma activated electron beam-physical vapor deposition (PAEB-PVD) - was developed by modifying the conventional electron beam physical vapor deposition (EB-PVD) to significantly reduce the columnar and linear defects of the NiCoCrAlY coatings, grown by EB-PVD. The high quality NiCoCrAlY coatings were deposited by the newly-developed technique. The impacts of the deposition conditions on microstructures and mechanical properties of the coating were evaluated, The results show that the energy of the impinging adatom strongly affects its microstructures . The energy of the adatom can be increased by increasing the arc discharge voltage and substrate bias. As the adatom energy increased, the columnar grains of the coating changed into the more compact equiaxial ones, accompanied with grain growth. Meanwhile, strong segregation was observed, resulting in an increased of Al content, a decreased Gr content, and an increase of plasticity.

  18. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  19. Microstructural characterization of electron beam-physical vapor deposition thermal barrier coatings through high-resolution computed microtomography

    Science.gov (United States)

    Kulkarni, Anand; Herman, Herbert; Decarlo, Francesco; Subramanian, Ramesh

    2004-07-01

    Thermal barrier coatings (TBCs), deposited using the electron beam-physical vapor deposition (EB-PVD) process, comprise a unique architecture of porosity capable of bridging the technological gap between insulation/life extension and prime reliance. The TBC microstructures consist of columnar structure, nucleated via vapor condensation, along with a high degree of intercolumnar porosity, thus providing enhanced stress relief on thermomechanical loading and also accommodating misfit stresses resulting from CTE mismatch. In this article, we report the characterization of these coatings using high-resolution synchrotron-based X-ray computed microtomography (XMT) at 1.3- µm resolution. Experiments focused on quantitative characterization/visualization of imperfections in these coatings and on the relative changes in microstructural features upon isothermal annealing. The influence of time/temperature of exposure was investigated and the results were correlated with elastic modulus.

  20. Tribological Characteristics of Single-phase AlMgB14 and Nanocomposite AlMgB14-TiB2 Superhard Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Zhu, Dong [Eaton Corporation; Cook, Bruce A [Ames Laboratory; Elmoursi, Alaa A [Eaton Corporation

    2008-01-01

    This study investigated the friction and wear characteristics of AlMgB14 and AlMgB14-TiB2 superhard coatings, produced by pulse laser deposition (PLD) and physical vapor deposition (PVD), respectively. Tests were conducted under unidirectional and reciprocating sliding against AISI 52100 bearing steel in both dry and oil-lubricated conditions. The AlMgB14 coating exhibited an encouraging but short-lived low friction stage (u = 0.2) in dry sliding. The AlMgB14-TiB2 coating reduced the wear rates by one order of magnitude for itself and three orders of magnitude for the counterface compared with the uncoated M2 tool steel in dry sliding. This nanocomposite coating also demonstrated significant extension (>2.5X) of the low friction (non-scuffing) stage in a lubricant starvation sliding.

  1. THE EFFECT OF DEPOSITION PARAMETERS ON THE CHEMICAL COMPOSITION AND CORROSION RESISTANCE OF TICXNY COATINGS PRODUCED ON HIGH-SPEED STEEL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Senna L.F.

    2001-01-01

    Full Text Available TiCxNy coatings deposited on high-speed steel substrates have been used to enhance the tribological properties of cutting tools (hardness, wear resistance, etc. as well as their corrosion resistance in an aggressive environment. These layers are usually produced by plasma deposition techniques (PVD or CVD, and different coating properties can be obtained with each method. In this work, TiCxNy films were deposited on AISI M2 high-speed steel substrates by the reactive magnetron sputtering technique. A series of samples with a variety of reactive gas mixtures (nitrogen and methane, substrate biases, and deposition temperatures was produced. As a result, coatings with different chemical compositions were deposited for each group of deposition parameters. Gas mixture composition and substrate bias directly affected the chemical composition of the coating, while deposition temperature influenced the chemical composition of TiCxNy layers to a very low extent.

  2. Ceramic composite separators coated with moisturized ZrO(2) nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries.

    Science.gov (United States)

    Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-28

    We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.

  3. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector

    Science.gov (United States)

    Doberdò, Italo; Löffler, Nicholas; Laszczynski, Nina; Cericola, Dario; Penazzi, Nerino; Bodoardo, Silvia; Kim, Guk-Tae; Passerini, Stefano

    2014-02-01

    In this manuscript a novel approach to enable aqueous binders for lithium ion battery (LIB) cathodes is reported. Producing LiNi1/3Mn1/3Co1/3O2 (NMC) electrodes using sodium-carboxymethylcellulose (CMC) as a binder and water as a solvent, in fact, results in serious aluminum corrosion during electrode manufacturing due to the high pH of the slurry. In order to prevent the direct contact of the corrosive slurry with aluminum foil, the latter is first coated with a thin carbon layer. The CMC-based electrodes formed on carbon coated aluminum foil show enhanced performance than those made using unprotected aluminum instead. In particular, electrodes using protected aluminum foil are able to deliver a capacity of 126 mAh g-1 at 1C rate, which is rather close to that delivered by polyvinylidene-di-fluoride (PVdF)-based electrode having the same composition.

  4. Parametric Studies Of Failure Mechanisms In Thermal Barrier Coatings During Thermal Cycling Using FEM

    Directory of Open Access Journals (Sweden)

    Srivathsa B.

    2015-12-01

    Full Text Available Thermal barrier coatings (TBCs are widely used on different hot components of gas turbine engines such as blades and vanes. Although, several mechanisms for the failure of the TBCs have been suggested, it is largely accepted that the durability of these coatings is primarily determined by the residual stresses that are developed during the thermal cycling. In the present study, the residual stress build-up in an electron beam physical vapour deposition (EB-PVD based TBCs on a coupon during thermal cycling has been studied by varying three parameters such as the cooling rate, TBC thickness and substrate thickness. A two-dimensional thermomechanical generalized plane strain finite element simulations have been performed for thousand cycles. It was observed that these variations change the stress profile significantly and the stress severity factor increases non-linearly. Overall, the predictions of the model agree with reported experimental results and help in predicting the failure mechanisms.

  5. Investigation on effect of weight ratios of PEG to BaTiO3 on PVdF-HFP nano composites for Li-ion batteries

    Science.gov (United States)

    Vickraman, P.; Ravindran, D.

    2013-06-01

    In the present study Polyethylene Glycol 2000(PEG2000)-Barium Titanate(BaTiO3) in five different weight ratios were physically blended to the plasticized PVdF-HFP/LIBETI matrix to study the ionic conductivity thermal, morphology and XRD properties was attempted. The ionic Conductivity observation show that 15:5wt% PEG:BaTiO3 only improved magnitude of conductivity 1.256×10-5 S/cm (Sample-V2) than 20:0(V1), 10:10(V3), 5:15(V4), 0:20(V5). The XRD profile show the suppression of β-phase of PVdF and presence of BaTiO3, irrespective of increase/decrease in the mass gradient of PEG, and not supportive of the conductivity beyond V2 was noted. The TGA on PEG:BaTiO3 20:0(V1), 0:20(V5) and, 15:5(V2) it was observed that V1 underwent three stages of weight losses and V5 with single stage (over the sample V2) suggest that membrane not having more weight losses due to higher aggregation of filler was observed.

  6. Characteristics of PVdF-HFP/TiO{sub 2} composite membrane electrolytes prepared by phase inversion and conventional casting methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Man; Ryu, Kwang Sun; Chang, Soon Ho [Ionics Devices Team, Basic Research Lab., Electronics and Telecommunications Research Institute (ETRI), 161 Gajong, Yusong, Daejon 305-700 (Korea, Republic of); Park, Nam-Gyu [Materials Science and Technology Division, Korea Institute of Science and Technology (KIST), 39-1 Hwaolgok, Seongbuk, Seoul 136-791 (Korea, Republic of)

    2006-08-15

    Porous poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based polymer membranes filled with various contents of titania (TiO{sub 2}) nanocrystalline particles are prepared by phase inversion technique and, along with conventional casting method for comparison. N-methyl-2-pyrrolidone (NMP) as a solvent is used to dissolve the polymer and to make the slurry with TiO{sub 2}. Cast film is obtained by spreading the slurry and evaporating NMP in a dry oven, while phase inversion membrane by promptly immersing the spread slurry into flowing water as a non-solvent. Physical and electrochemical characterizations, such as morphology, thermal and crystalline behavior, and other transport properties of lithium ionic species, are carried out for the polymer films/membranes and the polymer electrolytes with absorbing an electrolyte solution. Phase inversion polymer electrolytes are proved to show superior behaviors in electrochemical properties, such as ionic conductivity, electrochemical and interfacial stability, than cast film electrolytes. This is greatly owed to highly porous structure of phase inversion membranes. Even including the feature of interfacial resistance with lithium electrode, phase inversion polymer electrolytes of PVdF-HFP/(5-20wt.% TiO{sub 2}) can be optimized as the adequate ones in applying to the electrolyte medium of lithium rechargeable batteries. (author)

  7. Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro- and nano-sized surface-modified silicas

    Energy Technology Data Exchange (ETDEWEB)

    Zalewska, A., E-mail: aldona@ch.pw.edu.p [Warsaw University of Technology, Department of Chemistry, Noakowskiego 3, 00-664 Warszawa (Poland); Walkowiak, M. [Institute of Non-Ferrous Metals Branch in Poznan Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland); Niedzicki, L. [Warsaw University of Technology, Department of Chemistry, Noakowskiego 3, 00-664 Warszawa (Poland); Jesionowski, T. [Poznan University of Technology, Institute of Chemical Technology and Engineering, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland); Langwald, N. [Warsaw University of Technology, Department of Chemistry, Noakowskiego 3, 00-664 Warszawa (Poland)

    2010-01-25

    The aim of the presented work was to perform a preliminary study of the physicochemical and interfacial properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF/HFP polymeric matrix and surface-modified silicas. Two types of silica fillers of different grain sizes (>500 nm and approx100 nm) were used as additives. The silica particles were modified by two different functional groups, i.e. methacryloxy and vinyl ones. The gel electrolytes based on PVdF/HFP copolymer were prepared according to the so-called Bellcore two-step process. The motivation of the present work was to study more deeply those systems in terms of morphology by means of scanning electron microscopy techniques. Fillers modified with identical functional groups but differing fundamentally in the manufacturing processes were compared in terms of the impact on morphology and electrochemical performance of the resulting membranes. Interfacial properties were examined by means of impedance spectroscopy technique using Swagelok-type cells with two lithium electrodes.

  8. 用于TFT-LCD生产线的新一代PECVD和PVD系统%New PECVD & PVD System Generation used for TFT LCD Production Line

    Institute of Scientific and Technical Information of China (English)

    Julia Li; Haiyan Sun; Klaus Neubeck; Alexander Marxer; Christine Algate

    2004-01-01

    The biggest a-Si deposited substrate was introduced by Unaxis Displays at Yokohama FPD exhibition held on November, 28-31, 2003. This substrate enables up to eight 40" televisions to be produced on one substrate, thus indicating the new era of large size TFTLCD television is coming.This present paper outlines the innovative solution of PECVD and PVD systems (Generation 6 and 7) used for TFT-LCD production line: -Concept-System configuration-Substrate handling (external and internal)-Process reactors / chamber Finally, the future trend of PECVD & PVD system used for TFT LCD production is discussed.%在2003年11月28~31日于日本YoKohama举办的FPD展览会上展示了最大尺寸的aSi淀积基板,这种基板可满足在一块基板上生产40英寸电视的要求.从而表明大尺寸TFT-LCD 电视的新纪元正在来临.从原理、系统结构、基板传输(外部和内部)、工艺概述了用于TFT-LCD生产线的第6代和第7代PECVD和PVD系统的腔室等方面新技术方案.讨论了用于TFTLCD生产的PECVD和PVD系统的未来趋势.

  9. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    Science.gov (United States)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  10. Study on the effects of modified SiO2 nanoparticles on the morphologies and properties of PVdF-HFP membranes for Li-ion batteries%改性纳米SiO2对PVdF—HFP膜形态和性能影响的研究

    Institute of Scientific and Technical Information of China (English)

    孟菊雯; 张明祖; 倪沛红; 徐玲妍; 何金林; 李晓菲

    2012-01-01

    Microporous separators for Li-ion batteries were made by adding SiO2 modified with different silane- coupling agents (KH550, KH560 and KH570) to the solution of PVdF-HFP. The modified SiO2 nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA). The SEM, stretching, shrinking and AC impedance test results of membranes showed that the properties of PVdF-HFP composite membranes were improved significantly by the addition of modified SiO2 nanoparticles. The electrochemical tests showed that the discharge capacity and cycle stability of the PVdF-HFP composite membranes containing modified SiO2 nanoparticles were better than that containing the unmodified SiO2 nanoparticles. Especially for the PVdF-HFP composite membranes containing SiO2 nanoparticles treated with KH-570, the tensile strength was up to 8.63 MPa, the ionic conductivity was as high as 1.53× 10^-3 S/cm, and the discharge capacity remained above 142mAh/g within 100 charge-discharge cyeles.%利用不同硅烷偶联剂改性纳米SiO2,并将改性物分别加入聚(偏氟乙烯-六氟丙烯)共聚物(PVdF—HFP)溶液中,制备成锂离子电池隔膜。FT—IR和TGA测试表明,偶联剂已成功接枝到纳米SiO2表面;SEM、拉伸、热收缩和交流阻抗测试结果显示,电池隔膜中纳米SiO2的分散性、膜的机械强度、热收缩及电导率都有明显的改善;电化学测试结果表明,含改性纳米SiO2的PVdF—HFP电池隔膜的放电比容量和循环稳定性均比含未改性纳米SiO2的电池隔膜有所提高,尤其是含7~(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)改性SiO2的PVdF-HFP电池隔膜,各项性能均有较大的提高,其拉伸强度可达8.63MPa,离子电导率高达1.53×10^-3S/cm,放电比容量在充放电循环100次以内一直保持在142mAh/g以上。

  11. Oxidation performance of nano-scale multilayer coatings on {gamma}-TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Ross, I M; Rainforth, W M; Zhou, Z; Walker, J C [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Reinhard, C; Ehiasarian, A P; Hovsepian, P E [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB (United Kingdom); Braun, R [German Aerospace Centre, Institute of Materials Research, 51170 Koeln (Germany)], E-mail: i.ross@shef.ac.uk

    2008-08-15

    There is a major drive to introduce {gamma}-TiAl into gas turbine engines in order to reduce weight. However, this will require the development of coatings that protect against oxidation at high temperature, but do not adversely affect the mechanical properties. This work reports the high temperature degradation mechanisms of a nanoscale CrAlYN/CrN multilayer coating deposited on {gamma}-TiAl(8Nb) by a combined high power impulse magnetron sputtering / unbalanced magnetron sputtering. Detailed TEM/STEM of FIB prepared specimens from isothermal static oxidation tests at 850 deg. C for up to 1030 hours is presented. The evolution of the complex oxide structure and the implications for future coating development is discussed.

  12. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    Science.gov (United States)

    Guan, J. J.; Wang, H. Q.; Qin, L. Z.; Liao, B.; Liang, H.; Li, B.

    2017-04-01

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N2/C2H2 gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C2H2 content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CNx phases as C2H2 content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C2H2 content, due to the graphite (sp2 Csbnd C) phase embed in CrN host lattice; while the chromium carbon (Cr3C2) and diamond (sp3 Csbnd C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C2H2 content.

  13. Mechanism Study on the Wear of CrAlTiN Coated High-Speed Steel Twist Drills Under Dry Cutting Conditions

    Institute of Scientific and Technical Information of China (English)

    XIAO Ji-ming; LI Yan; WU Yu-sheng; BAI Li-jing; LI Ze-rong

    2004-01-01

    As demands about environment protection are growing up, dry cutting technology is getting more and more concerns from all over the world. Main works performed here are study on dry cutting performances and wear mechanisms of M2high-speed steel (HSS) twist drills with CrAlTiN multicomponent coatings, which was deposited using magnetron sputter ion plating system, in drilling 45 and 30CrMnSiA steel, and their comparisons to those in drilling the same steel but using monolayer CrN and commercial TiN coated drills. Drilling performances of drills are evaluated mainly through the measurements of width on outer corner flank land and the cutting forces. Results show that performances of CrAlTiN coated drills are better than those of monolayer CrN and TiN coated drills. In drilling 45 and 30CrMnSiA steel, the average tool life of the CrAlTiN coated drills are 17.2 and 11.8 times higher than those of the uncoated drills. Observing wear of the drill with scanning electronic microscope, results show that there is no crack or spallation of the CrAlTiN coatings in wear zones. Main mechanism of the wear here is adhesion.

  14. In-situ measurement of elastic modulus for ceramic top-coat at high temperature

    Institute of Scientific and Technical Information of China (English)

    齐红宇; 周立柱; 马海全; 杨晓光; 李旭

    2008-01-01

    The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus help achieve future engine low emission, high efficiency and improve the reliability goals. Currently, there are two different processes such as the plasma spraying (PS) and the electron beam-physical vapor deposition (EB-PVD) techniques. The PS coating was selected to test the elastic modulus. Using the nanoindentation and resonant frequency method, the mechanical properties of ceramic top-coat were measured in-situ. According to the theory of the resonant frequency and composite beam, the testing system was set up including the hardware and software. The results show that the accurate characterization of the elastic properties of TBCs is important for stress-strain analysis and failure prediction. The TBCs systems are multi-layer material system. It is difficult to measure the elastic modulus of top-coat by tensile method. The testing data is scatter by nanoindentation method because of the microstructure of the ceramic top-coat. The elastic modulus of the top-coat between 20?1 150 ℃ is obtained. The elastic modulus is from 2 to 70 GPa at room temperature. The elastic modulus changes from 62.5 GPa to 18.6 GPa when the temperature increases from 20 ℃ to 1 150 ℃.

  15. A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings

    Science.gov (United States)

    Tillmann, Wolfgang; Hagen, Leif; Kokalj, David; Paulus, Michael; Tolan, Metin

    2017-02-01

    The formation of thin reactive films in sliding contacts under elevated temperature provides enhanced tribological properties since the formation of Magnéli phases leads to the ability of self-lubricating behavior. This phenomenon was studied for vanadium-doped coating systems which were produced using CVD and PVD technology. Vanadium-containing arc sprayed coatings were not widely examined so far. The aim of this study was to characterize Fe-V coatings deposited by the Twin Wire Arc Spraying process with respect to their oxidation behavior at elevated temperatures and to correlate the formation of oxides to the tribological properties. Dry sliding experiments were performed in the temperature range between 25 and 750 °C. The Fe-V coating possesses a reduced coefficient of friction and wear coefficient ( k) at 650 and 750 °C, which were significant lower when compared to conventional Fe-based coatings. The evolution of oxide phases was identified in situ by x-ray diffraction for the investigated temperature range. Further oxidation of (pre-oxidized) arc sprayed Fe-V coatings, as verified by differential thermal analysis and thermo-gravimetric analysis, starts at about 500 °C.

  16. Formation and behavior of thermal barrier coatings on nickel-base superalloys

    Institute of Scientific and Technical Information of China (English)

    高阳; 解仑; 曾飞

    2004-01-01

    Plasma-sprayed thermal barrier coatings (TBCs) have been used to extend the life of combustors. Electron beam physical vapor deposited (EB-PVD) ceramic coating has been developed for more demanding rotating as well as stationary turbine components. Here 3 kW RF magnetron sputtering equipment was used to gain zirconia ceramic coatings on hollow turbine blades and vanes, which had been deposited NiCrAlY by cathodic arc deposition.NiCrAlY coating surface was treated by shot peening; the effects of shot peening on the residual stress are presented. The results show that RF sputtered TBCs are columnar ceramics, strongly bonded to metal substrates. NiCrAlY bond coat is made of β, γ′ and Cr phases, ZrO2 ceramic layer consists of t' and c phases. No degradation occursto RF ceramic coatings after 100 h high temperature oxidation at 1 150 ℃ and 500 thermal cycles at 1 150 ℃ for 2 min,air-cooling.

  17. A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings

    Science.gov (United States)

    Tillmann, Wolfgang; Hagen, Leif; Kokalj, David; Paulus, Michael; Tolan, Metin

    2017-01-01

    The formation of thin reactive films in sliding contacts under elevated temperature provides enhanced tribological properties since the formation of Magnéli phases leads to the ability of self-lubricating behavior. This phenomenon was studied for vanadium-doped coating systems which were produced using CVD and PVD technology. Vanadium-containing arc sprayed coatings were not widely examined so far. The aim of this study was to characterize Fe-V coatings deposited by the Twin Wire Arc Spraying process with respect to their oxidation behavior at elevated temperatures and to correlate the formation of oxides to the tribological properties. Dry sliding experiments were performed in the temperature range between 25 and 750 °C. The Fe-V coating possesses a reduced coefficient of friction and wear coefficient (k) at 650 and 750 °C, which were significant lower when compared to conventional Fe-based coatings. The evolution of oxide phases was identified in situ by x-ray diffraction for the investigated temperature range. Further oxidation of (pre-oxidized) arc sprayed Fe-V coatings, as verified by differential thermal analysis and thermo-gravimetric analysis, starts at about 500 °C.

  18. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  19. Electrochemical investigation of surface area effects on PVD Al-Ni as electrocatalyst for alkaline water electrolysis

    DEFF Research Database (Denmark)

    Kjartansdóttir, Cecilía Kristín; Caspersen, Michael; Egelund, Sune Daaskov;

    2014-01-01

    be manipulated by altering the time interval of the diffusion. In that way the actual electrochemical surface area and, thus, the electrocatalytic activity of the coatings towards HER and OER can be influenced. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) investigations, display...

  20. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... that graphene can still be a relevant candidate for thin coatings....

  1. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    Science.gov (United States)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  2. The effect of Si content on the fracture toughness of CrAlN/Si{sub 3}N{sub 4} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Gordon Laboratory, Department of Materials Science and Metallurgy, 27 Charles Babbage Rd., Cambridge CB3 0FS (United Kingdom); Wheeler, J. M. [Laboratory for Nanometallurgy, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Davis, C. E.; Clegg, W. J. [Gordon Laboratory, Department of Materials Science and Metallurgy, 27 Charles Babbage Rd., Cambridge CB3 0FS (United Kingdom); Zeng, X. T. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2016-01-14

    CrAlN/Si{sub 3}N{sub 4} nanocomposite coatings with different Si contents were deposited to understand how Si influences the microstructure and mechanical behaviour of the coatings, in particular, the fracture toughness. The coating composition, chemical bonding, microstructure, and mechanical properties were studied by energy dispersive spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and nanoindentation, respectively. Using a micro double cantilever beam sample, it was found that the fracture toughness of CrAlN/Si{sub 3}N{sub 4} coatings was higher than that of both the CrN and CrAlN coatings and increased with increasing Si content. Cross-sectional transmission electron microscopy suggested that this was caused by the suppression of cracking at columnar boundaries.

  3. Examination of Hybrid Metal Coatings for Mitigation of Fission Product Release and Corrosion Protection of LWR SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Joseph R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-­density energy solution to climate change. The development of accident-­tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-­SiC composite as a substitute for zircaloy-­based cladding is being considered. However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-­matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-­processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-­based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-­in-­depth as multilayers. This vapor method

  4. Charge-discharge studies on a lithium cell composed of PVdF-HFP polymer membranes prepared by phase inversion technique with a nanocomposite cathode

    Science.gov (United States)

    Manuel Stephan, A.; Teeters, Dale

    A novel polymer membrane of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) co-polymer was prepared by the phase inversion technique with two different non-solvents, 1-butanol or hexane. The prepared films were analyzed by scanning electron microscope (SEM) and nitrogen absorption/desorption techniques. The change in the morphology and pore diameter of the films prepared with different non-solvents correlates with the structure of the non-solvents used. This electrolyte membrane was coupled with a nanocomposite LiAl 0.01Co 0.99O 2 cathode which was prepared by a solid-state reaction method and subsequently by ball-milling. Lithium cells consisting of LiAl 0.01Co 0.99O 2/polymer electrolyte/Li were assembled and their charge-discharge studies were investigated.

  5. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO2 for battery application

    Science.gov (United States)

    Lee T., K.; Ahmad, A.; Hasyareeda, N.

    2014-09-01

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO2 has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  6. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO{sub 2} for battery application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. K.; Ahmad, A. [Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor D. E. Malaysia and School of Chemical Sciences and Food Technology, Faculty of Science and Technology (Malaysia); Hasyareeda, N. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology (Malaysia)

    2014-09-03

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO{sub 2} has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  7. Improvement in ductility of high strength polycrystalline Ni-rich Ni{sub 3}Al alloy produced by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.Y.; Pei, Y.L.; Li, S.S.; Zhang, H.; Gong, S.K., E-mail: gongsk@buaa.edu.cn

    2014-11-25

    Highlights: • High strength and high ductility of polycrystalline Ni-rich Ni{sub 3}Al alloy sheets were produced. • The elongation could be enhanced from ∼0.5% to ∼14.6% by microstructural control. • The fracture strength (∼820 MPa) was enhanced by the precipitation strengthening. • This work provides a general processing for repairing the worn single crystal blades. - Abstract: A 300 μm Ni-rich Ni{sub 3}Al sheet was produced by electron beam physical vapor deposition (EB-PVD) and followed by different heat treatments to obtain fine γ′/γ two-phase structures with large elongation. Tensile testing was performed at room-temperature, and the corresponding mechanisms were investigated in detail. Results indicated that the as-deposited Ni{sub 3}Al alloy exhibited non-equilibrium directional columnar crystal, and transited to equiaxed crystal with uniformly distributed tough γ phase after heat treatment. Meanwhile, the fracture mechanism transited from brittleness to a mixture of ductility and brittleness modes. With an appropriate heat treatment, high strength (ultimate tensile strength obtained 828 MPa) and high ductility (elongation obtained 14.6%) Ni{sub 3}Al alloy has been achieved, which was due to the mesh network microstructure. A series of transmission electron microscope (TEM) characterizations confirmed that the increasing flow stress of Ni{sub 3}Al alloy was attributed to the cubical secondary γ′ phase precipitates (25–50 nm) within the γ phase. This work provides a potential strategy for repairing the worn tip of single crystal engine blades using Ni-rich Ni{sub 3}Al alloy by EB-PVD.

  8. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  9. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    Science.gov (United States)

    Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.

    2016-09-01

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.

  10. Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Meng, W. J.; Tittsworth, R. C.; Rehn, L. E.; Materials Science Division; Louisana State Univ.

    2000-12-01

    Using the techniques of reactive magnetron sputter deposition and inductively coupled plasma (ICP) assisted hybrid physical vapor deposition (PVD)/chemical vapor deposition (CVD), we have synthesized a wide variety of metal-free amorphous hydrocarbon (a-C:H) and Ti-containing hydrocarbon (Ti-C:H) coatings. Coating elastic modulus and hardness have been measured by the technique of instrumented nanoindentation and related to Ti and hydrogen compositions. We show that both metal and hydrogen compositions significantly influence the mechanical properties of Ti-C:H coatings. The microstructure of Ti-C:H coatings is further characterized by transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. XANES spectroscopy and high-resolution TEM examination of Ti-C:H specimens shows that the dissolution limit of Ti atoms in an a-C:H matrix is between 0.9 and 2.5 at.%. Beyond the Ti dissolution limit, precipitation of nanocrystalline B1-TiC cluster occurs and Ti-C:H coatings are in fact TiC/a-C:H thin film nanocomposites. Measurements of the average Ti bonding environment in TiC/a-C:H nanocomposites by EXAFS spectroscopy are consistent with a microstructure in which bulk-like B1-TiC clusters are embedded in an a-C:H matrix.

  11. The Characteristics of an Antibacterial TiAgN Thin Film Coated by Physical Vapor Deposition Technique.

    Science.gov (United States)

    Kang, Byeong-Mo; Jeong, Woon-Jo; Park, Gye-Choon; Yoon, Dong-Joo; Ahn, Ho-Geun; Lim, Yeong-Seog

    2015-08-01

    In this work, we found the characteristics of an antibacterial TiAgN thin film coated on the pure titanium specimen via the physical vapor deposition process (PVD). TiAgN thin films were coated using TiAg alloy targets by arc ion plating method. Changing the process parameters, the surface analysis of TiAgN thin film was observed by FE-SEM and the force of adhesion was measured with Scratch Tester. The proliferation of human gingival fibroblast (HGF) cells was examined by XTT test assay and the antibacterial properties were investigated by culturing Streptococus Mutans (KCTC 3065) using paper disk techniques. At the result of experiment, cytotoxic effects were not found and the antibacterial effects against Streptococus Mutans were appeared over 5 wt% TiAgN specimens.

  12. Nexans advances in all CSD route for REBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Ehrenberg, J.; Hoppe, B.; Isfort, D.; Klein, M.; Rikel, M. [Nexans SuperConductors, Chemiepark Knapsack, Huerth (Germany)

    2007-07-01

    Development of REBCO coated conductors (CC) at Nexans SuperConductors (NSC) is focused on all chemical solution deposition (CSD) route that promises the best performance-to-price ratio in long lengths. The feasibility of all CSD approach is shown on the lab scale: using metalorganic deposition (MOD), NSC was able to produce YBCO/CeO{sub 2}/LZO/NiW CCs with J{sub c}(77 K,sf)=0.5 MA/cm{sup 2}. The major advance of NSC on a semi-industrial scale is the use of MOD route for production of high-quality La{sub 2}Zr{sub 2}O{sub 7} (LZO) coated NiW RABITS in lengths up to 12 m. With those substrates, it is possible to produce CCs with the simplest (one-buffer) architecture by depositing REBCO using other techniques (ISD at Theva, Ismaning; MOCVD at IOT, Braunschweig; HLPE at University of Cambridge, UK). The best short sample I{sub c}=280, 120 and 100 A/cm-width for HLPE, ISD, and MOCVD, respectively First long-length conductors show transport I{sub c}=40 A (10m-long, ISD). Further work is focused on optimisation of the already established mixed (MOD+PVD) approaches, understanding optimum architecture and processing conditions for the all-CSD route and developing tools for scaling those conditions to long-length production. (orig.)

  13. Residual stress evaluation of coating films using welding residual stress and deformation analysis system. Yosetsu zanryu oryoku/henkei kaiseki system ni yoru coating himaku no zanryu oryoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Tanaka, K.; Takahashi, M.; Okada, T.; Saito, M. (Toshiba Corp., Tokyo (Japan)); Toyoda, M. (Osaka Univ., Osaka (Japan). Faculty of Engineering)

    1992-09-25

    With the objective that anybody having the basic knowledge on a simple welding technique can do easily welding residual stress and deformation analysis in an interactive mode, the welding residual stress and deformation analysis system (WRED) using a lap-top personal computer is being developed. In this report, an analytical study as well as an experimental study have been made on applicability of this system from the viewpoint of evaluating the residual stress chararcteristics of coating members in the WRED. In particular, the residual stress characteristics of ceramic coating films and those of graded coating members are described in detail. Part of the obtained results is as follows; as a result of the analysis by the WRED system of ceramic coating members processed each by the CVD method, the PVD method and the plasma flame coating method, only the CVD method and the plasma flame coating method have agreed well with the result of the residual stress measurement by the X-ray method. 12 refs., 8 figs., 2 tabs.

  14. The Effect of Unbalanced Coefficient of Magnetron on the Structure and Properties of CNx Coatings

    Institute of Scientific and Technical Information of China (English)

    WEN Xiaobin; LI Xian; WANG Tao; JIANG Bailing

    2011-01-01

    The effect of unbalanced coefficient of magnetron (UCM) on the structure and tribological properties of CrNx hard coatings was studied. The CrNx coatings were deposited on both Si wafer and hardened tool steel substrates using a closed-field unbalanced magnetron sputtering ion plating technique in a gas mixture of Ar+N2 under different unbalanced magnetron conditions. The coatings were characterized by means of XRD, XPS, SEM, microhardness tester and pin-on-disc tribometer to study respectively their structure, chemical bonding state, microstructure, hardness and tribological properties. The experimental results show that the UCM has a profound effect on the structure, hardness and tribological properties of the CrNx coatings. With increasing the values of UCM, the dominant phases in the deposited coatings evolved from Cr+Cr2N to Cr2N+CrN, the microstructure became denser and the hardness increased; in addition, reduced coefficient of friction and improved wear resistance of CrNx coatings were also observed under a larger UCM.

  15. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    Science.gov (United States)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foilVulcan-coated graphite foil showed 5-10% higher power density than the metal mesh electrodes. From the polarization curve of the Vulcan-coated graphite foil electrode, it was found that total resistance decreased as thickness and geometric surface area of the electrode increased.

  16. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  17. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  18. Surface and sliding wear behaviour of different coatings and steels

    Energy Technology Data Exchange (ETDEWEB)

    Vera-Cardenas, E.E. [Universidad Politecnica de Pachuca, Zempoala, Hidalgo (Mexico)]. E-mail: evera@upp.edu.mx; Vite-Torres, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico)]. E-mail: drmanulvite9@hotmail.com; Lewis, R. [University of Sheffield (United Kingdom)]. E-mail: roger.lewis@sheffield.ac.uk

    2012-01-15

    In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 degrees Celsius and 45% - 50% relative humidity). The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa) and 7.84 N (Po = 1.52 GPa). Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles) where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS) was performed, as well as Scanning Electron Microscopy (SEM) and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings. [Spanish] En este trabajo se estudio el comportamiento en desgaste por deslizamiento de los recubrimientos de TiN, CrN y WC/C aplicados sobre sustratos de acero. Las pruebas se realizaron con una maquina reciprocante en condiciones secas a temperatura ambiente (20-23 grados centigrados y 45% - 50% de humedad relativa). Se empleo una velocidad promedio de 0.08 m/s y una amplitud de 2 mm. Las cargas aplicadas fueron de 11.76N (Po = 1.74 GPa) y de 7.84 N (Po = 1.52 GPa). Se realizo microscopia optica para observar las caracteristicas de las zonas de desgaste y sus posibles causas de formacion. Se obtuvo graficamente la variacion del coeficiente de friccion con el numero de ciclos. Estos datos se emplearon para determinar con mayor precision el

  19. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  20. 在双镶嵌铜互联中O.13微米器件生成用的基于PVD和ALD阻挡层的先进技术%Advanced Engineering of PVD and ALD based Barriers for Submicron Device Generations in Dual Damascene Copper Interconnects

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ 1. Introduction The requirement of minimal bottom coverageand thick sidewall coverage for PVD-based films forlow via resistance and improved stress migration isnot easy to achieve with traditional depositionmethods. Modern I-PVD techniques give high bot-tom coverage, due to the ionized component of thedeposition flux. Sidewall coverage tends to be low,which is mainly due to off-normal deposition fluxand a less than unity sticking coefficient.

  1. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  2. Thickness Measurement Methods for Physical Vapor Deposited Aluminum Coatings in Packaging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Martina Lindner

    2017-01-01

    Full Text Available The production of barrier packaging materials, e.g., for food, by physical vapor deposition (PVD of inorganic coatings such as aluminum on polymer substrates is an established and well understood functionalization technique today. In order to achieve a sufficient barrier against gases, a coating thickness of approximately 40 nm aluminum is necessary. This review provides a holistic overview of relevant methods commonly used in the packaging industry as well as in packaging research for determining the aluminum coating thickness. The theoretical background, explanation of methods, analysis and effects on measured values, limitations, and resolutions are provided. In industrial applications, quartz micro balances (QCM and optical density (OD are commonly used for monitoring thickness homogeneity. Additionally, AFM (atomic force microscopy, electrical conductivity, eddy current measurement, interference, and mass spectrometry (ICP-MS are presented as more packaging research related methods. This work aims to be used as a guiding handbook regarding the thickness measurement of aluminum coatings for packaging technologists working in the field of metallization.

  3. Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Sun; Chung, Kyung Yoon; Cho, Byung Won [Battery Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2009-04-01

    Carbon-coated Si and Si/B composite powders prepared by hydrocarbon gas (argon + 10 mol% propylene) pyrolysis were investigated as the anodes for lithium-ion batteries. Carbon-coated silicon anode demonstrated the first discharge and charge capacity as 1568 mAh g{sup -1} and 1242 mAh g{sup -1}, respectively, with good capacity retention for 10 cycles. The capacity fading rate of carbon-coated Si/B composite anode decreased as the amounts of boron increased. In addition, the cycle life of carbon-coated Si/B/graphite composite anode has been significantly improved by using sodium carboxymethyl cellulose (NaCMC) and styrene butadiene rubber (SBR)/NaCMC mixture binders compared to the poly(vinylidene fluoride, PVdF) binder. A reversible capacity of about 550 mAh g{sup -1} has been achieved at 0.05 mAm g{sup -1} rate and its capacity could be maintained up to 450 mAh g{sup -1} at high rate of 0.2 mAm g{sup -1} even after 30 cycles. The improvement of the cycling performance is attributed to the lower interfacial resistance due to good electric contact between silicon particles and copper substrate. (author)

  4. Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries

    Science.gov (United States)

    Kim, Hyung Sun; Chung, Kyung Yoon; Cho, Byung Won

    Carbon-coated Si and Si/B composite powders prepared by hydrocarbon gas (argon + 10 mol% propylene) pyrolysis were investigated as the anodes for lithium-ion batteries. Carbon-coated silicon anode demonstrated the first discharge and charge capacity as 1568 mAh g -1 and 1242 mAh g -1, respectively, with good capacity retention for 10 cycles. The capacity fading rate of carbon-coated Si/B composite anode decreased as the amounts of boron increased. In addition, the cycle life of carbon-coated Si/B/graphite composite anode has been significantly improved by using sodium carboxymethyl cellulose (NaCMC) and styrene butadiene rubber (SBR)/NaCMC mixture binders compared to the poly(vinylidene fluoride, PVdF) binder. A reversible capacity of about 550 mAh g -1 has been achieved at 0.05 mAm g -1 rate and its capacity could be maintained up to 450 mAh g -1 at high rate of 0.2 mAm g -1 even after 30 cycles. The improvement of the cycling performance is attributed to the lower interfacial resistance due to good electric contact between silicon particles and copper substrate.

  5. Load rate dependence of the mechanical properties of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Zotov, Nikolay; Eggeler, Gunther [Institut fuer Werkstoffe, Ruhr Universitaet Bochum, 44780 Bochum (Germany); Bartsch, Marion [Institut fuer Werkstoff-Forschung, DLR Koeln, 51147 Koeln (Germany)

    2009-07-01

    Thermal barrier coatings (TBC), composed of yttrium-stabilized zirconia (YSZ) ceramic top coat (TC) and intermetallic NiCoCrAlY bond coat (BC) are commonly used as protective coatings of Ni-based high temperature gas engine components. Nanoindentation techniques are increasingly applied for determining the TBC mechanical properties on a nanometre scale. However, little is known about the load-rate dependence of the mechanical properties, which is important for better understanding of cyclic thermal fatigue experiments. Nanoindentations with different load rates omega were performed on polished cross-sections of TBC, deposited by EB-PVD on IN625 substrates (S), using a XP Nanoindenter (MTS) equipped with Berkovich diamond tip. The Young's modulus (E) of the TC is independent of omega, while E for the BC and the S decreases with omega. The hardness (H) of the TC and the BC increases, while H for the S decreases with omega. From the dependence of H on omega, creep power-law exponents c = 0.24(11) and c = 0.023(6) for the TC and the BC were determined. For all TBC components, a decrease with omega of the power-law exponents n and m, describing the loading and unloading nanoindentation curves, is observed.

  6. Effect of microstructure on the mechanical, thermal, and electronic property measurement ofceramic coatings

    Institute of Scientific and Technical Information of China (English)

    Xiaojuan Lu

    2014-01-01

    Ceramic materials were investigated as thermal barrier coatings and electrolytes. Electrophoretic deposition (EPD) and physical vapor deposition (PVD) were employed to fabricate samples, and the mechanical properties and microstructure were examined by nanoin-dentation and microscopy, respectively. Yttria-stabilized zirconia/alumina (YSZ/Al2O3) composite coatings, a candidate for thermal barrier coatings, yield a kinky, rather than smooth, load–displacement curve. Scanning electron microscope (SEM) examination reveals that the kinky curve is because of the porous microstructure and cracks are caused by the compression of the indenter. Li0.34La0.51TiO2.94 (LLTO) on Si/SrRuO3 (Si/SRO) substrates, an ionic conductor in nature, demonstrates electronic performance. Although SEM images show a continu-ous and smooth microstructure, a close examination of the microstructure by transmission electron microscopy (TEM) reveals that the ob-served spikes indicate electronic performance. Therefore, we can conclude that ceramic coatings could serve multiple purposes but their properties are microstructure-dependent.

  7. Residual stress evaluation in the vicinity of ceramic coating interface using polychromatic X-ray method

    Energy Technology Data Exchange (ETDEWEB)

    Shibano, Jun-ichi; Ukai, Takayoshi; Tadano, Shigeru [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Todoh, Masahiro

    1995-06-01

    This paper presents a polychromatic X-ray method for nondestructive evaluation of residual stress distributed in the vicinity of the interface between a ceramic coating layer and a substrate metal. Since the strain is assumed to be a linear function of the depth, the strain distribution along the depth direction can be obtained from the weighted mean strain equation calculated by considering the intensity of diffracted X-rays over the penetration depth. Therefore, the distribution along the depth direction of the residual stress was determined by the strain distributions in two directions: the vertical direction and the inclined direction to the surface. SUS316 coated with TiN by the PVD process was used as the specimen. The residual stress distributions in the coating layer and the substrate of the specimen were evaluated using this method. As a result, not only compressive residual stress in the coating layer but also the stress gradient in the substrate could be confirmed simultaneously and nondestructively. (author).

  8. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  9. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  10. EFFECT OF OPERATING CONDITIONS ON THIN LAYERS OF TITANIUM POSED ON STEEL 100C6 SUBSTRATES WITH PVD METHOD

    Directory of Open Access Journals (Sweden)

    R. Gheriani

    2015-08-01

    Full Text Available We proposed to prepare hard coatings based on titanium carbides by deposition of thin layers of pure Ti by sputtering method on steel substrates 100C6 of 1 %mass carbon. The samples were annealed under vacuum in the temperature range of 400 ° C to 1000 ° C, in order to activate the reaction between the two parts of the system which results the formation of carbides of Ti due to the diffusion of carbon from the substrate towards deposited  layers. We therefore note an improvement in mechanical properties such as hardness. To demonstrate the effect of deposition parameters, we have prepared two series, the first one with a high pressure of argon and remarkable energy of extracted atoms, and in the case of the second one the pressure and kinetic energy are relatively less important. The samples of series 2 show features more important: a compact structure and good mechanical properties. The reaction between thin films and substrates is studied by x-ray diffraction (XRD, scanning electron microscopy (SEM. The measurements of microhardness were performed with the Vickers method.

  11. Effect of PbI2 deposition rate on two-step PVD/CVD all-vacuum prepared perovskite

    Science.gov (United States)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha; Fostiropoulos, Konstantinos

    2016-12-01

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI2 and chemical vapour deposition (CVD) of CH3NH3I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI2 film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH3NH3I is fostered for PbI2 films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film is also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI2 on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved.

  12. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  13. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alat, Ece, E-mail: exa179@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Motta, Arthur T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Comstock, Robert J.; Partezana, Jonna M. [Westinghouse Electric Co., Beulah Rd, Pittsburgh, PA 1332 (United States); Wolfe, Douglas E. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Applied Research Laboratory, The Pennsylvania State University, 119 Materials Research Building, University Park, PA 16802 (United States)

    2016-09-15

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO{sup ®} coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti{sub 1-x}Al{sub x}N (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm{sup 2} weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO{sup ®} which showed a weight gain of 40.2 mg/dm{sup 2}. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance. - Highlights: • The first study on multilayer TiAlN and TiN ceramic coatings on ZIRLO{sup ®} coupons. • Corrosion tests were performed at 360°C and 18.7 MPa for up to 90 days. • Coatings adhered well to the substrate, and showed no spallation/delamination. • Weight gains were six times lower than those of uncoated ZIRLO{sup ®} samples. • Longer and higher temperature corrosion tests will be discussed in a further paper.

  14. Diamond-like nanocomposite coatings for LIGA-fabricated nickel alloy parts.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Scharf, Thomas W.

    2005-03-01

    A commercial plasma enhanced chemical vapor deposition (PECVD) technique with planetary substrate rotation was used to apply a thin (200-400 nm thick) conformal diamond-like carbon (DLC) coating (known as a diamond-like nanocomposite (DLN)) on LIGA fabricated Ni-Mn alloy parts. The PECVD technique is known to overcome the drawbacks associated with the line-of-sight nature of physical vapor deposition (PVD) and substrate heating inherent with traditional chemical vapor deposition (CVD). The purpose of the present study is to characterize the coverage, adhesion, and tribological (friction and wear) behavior of DLN coatings applied to planar and sidewall surfaces of small featured LIGA Ni-Mn fabricated parts, e.g. 280 {micro}m thick sidewalls. Friction and wear tests were performed in dry nitrogen, dry air, and air with 50% RH at Hertzian contact pressures ranging from 0.3 to 0.6 GPa. The friction coefficient of bare Ni-Mn alloy was determined to be 0.9. In contrast, low friction coefficients ({approx}0.02 in dry nitrogen and {approx}0.2 in 50% RH air) and minimal amount of wear were exhibited for the DLN coated LIGA Ni-Mn alloy parts and test coupons. This behavior was due to the ability of the coating to transfer to the rubbing counterface providing low interfacial shear at the sliding contact; resultantly, coating one surface was adequate for low friction and wear. In addition, a 30 nm thick titanium bond layer was determined to be necessary for good adhesion of DLN coating to Ni-Mn alloy substrates. Raman spectroscopy and cross-sectional SEM with energy dispersive x-ray analysis revealed that the DLN coatings deposited by the PECVD with planetary substrate rotation covered both the planar and sidewall surfaces of LIGA fabricated parts, as well as narrow holes of 300 {micro}m (0.012 inch) diameter.

  15. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    Science.gov (United States)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  16. Measurement of Thin-film Coating Hardness in the Presence of Contamination and Roughness: Implications for Tribology

    Science.gov (United States)

    Demas, Nicholaos G.; Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.; Erck, Robert A.; Shareef, Iqbal

    2016-04-01

    Standard nanoindentation measurements on commercially available TiAlN, CrN, metal-containing diamond-like carbon, and TiN coatings, deposited on steel substrates were performed to determine coating hardness and elastic modulus. It was found that the coating surface roughness/morphology present after deposition can significantly affect the measurements of nanomechanical properties so that measurements of these properties on the as-deposited coating surface may be significantly different from the bulk. In addition, a surface measurement may produce a lower nanohardness due to the existence of a soft surface contamination layer. A simple method was developed to enable accurate measurement of the nanomechanical properties of coatings, while avoiding errors introduced by surface topography and the presence of superficial contamination layers on thin films. Friction and wear behavior, as well as the wear mechanisms in dry reciprocating sliding contact of the various coatings with a steel ball can be correlated to the surface attributes of each coating in terms of roughness and the presence of contamination layers, both of which are shown to also affect the nanohardness measurements.

  17. Er{sub 2}O{sub 3} coating synthesized with MOCVD process on the large interior surface of the metal tube

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Yoshimitsu, E-mail: Hishinuma.yoshimitsu@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan); Tanaka, Tsutomu [Toshima MFG Co.,Ltd., Saitama (Japan); Tanaka, Teruya; Nagasaka, Takuya [National Institute for Fusion Science, Toki (Japan); Tasaki, Yuzo [Toshima MFG Co.,Ltd., Saitama (Japan); Sagara, Akio; Muroga, Takeo [National Institute for Fusion Science, Toki (Japan)

    2011-10-15

    The electrical insulating coating on the blanket components such as ducts and walls is an attractive concept for reducing the Magneto Hydrodynamic (MHD) pressure drop. Erbium oxide (Er{sub 2}O{sub 3}) is a promising candidate coating because of its high stability in liquid lithium and high electrical resistivity according to the results of Er{sub 2}O{sub 3} bulk and Physical Vapor Deposition (PVD) thin film. We have investigated the Metal Organic Chemical Vapor Deposition (MOCVD) process for the large area and complicatedly shaped Er{sub 2}O{sub 3} coating. The Er{sub 2}O{sub 3} insulator coating formation on the various metal disk substrates was successfully carried out. The crystallinity of the Er{sub 2}O{sub 3} coating on the metal substrate increased with the decrease in the surface roughness of the metal substrate and, thus, the crystallinity of the coating can be improved by reducing the roughness of the substrate surface. Furthermore, the Er{sub 2}O{sub 3} coating into the interior surface of the honing SUS pipe, whose interior surface was polished by rotating grinding and brush, was formed stably through the MOCVD process.

  18. Tribological study of hard coatings without cobalt intended to isolation components of PWR primary cooling system; Etude tribologique de revetements durs sans cobalt destines aux organes d`isolement du circuit primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Cachon, L.

    1995-10-18

    The objective is to qualify coatings without cobalt to replace ``Stellites`` coatings in isolation valves of PWR primary cooling system, as Co is activated when passing in the reactor core and contaminated the cooling loop. Three families of coatings were tested: PVD thin films from 1 to 8 {mu}m monolayers of Cr/C{sub x} with x varying between 1.6 and 9.5 at% or multilayers of pure chromium and Cr/C{sub 1.6} at%, coatings with a thickness between 100 and 200 {mu}m of cermets NiCr{sub y} (y varying from 5 to 35 at%) matrix binding chromium or tungsten carbides, and thick coatings 2 mm thickness of cermets Nitronic 60 or Inconel 625 matrix binding 10, 20 or 30% titanium or niobium carbides. Stellite 6 (2 mm) is the reference coating for tribology. Coatings were qualified and selected by thermal shocks, corrosion and plane friction. The thin film and the thick families were disqualified by their destruction or by their high friction coefficient. Then coatings between 100 and 200 {mu}m were used in a valve mock-up working in PWR primary cooling system pressure and temperature conditions. Tests show that these coatings have better wear or tightness performances than stellite 6, except for a slightly higher friction coefficient. (A.B.).

  19. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO{sub 4} cell

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, V.; Vickraman, P. [Gandhigram Rural University, Department of Physics, Gandhigram (India); Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. [Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Karaikudi (India)

    2009-12-15

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH){sub n} nanoparticles. The prepared membranes were gelled with 0.5-M LiPF{sub 3}(CF{sub 2}CF{sub 3}){sub 3} (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young's modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from {alpha} to {beta} phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO{sub 4} coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g {sup -1} respectively for first and tenth cycles. (orig.)

  20. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell

    Science.gov (United States)

    Aravindan, V.; Vickraman, P.; Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S.

    2009-12-01

    Polyvinylidenefluoride-hexafluoropropylene-based (PVdF-HFP-based) gel and composite microporous membranes (GPMs and CPMs) were prepared by phase-inversion technique in the presence 10 wt% of AlO(OH) n nanoparticles. The prepared membranes were gelled with 0.5-M LiPF3(CF2CF3)3 (lithium fluoroalkylphosphate, LiFAP) in EC:DEC (1:1 v/v) and subjected to various characterizations; the AC impedance study shows that CPMs exhibit higher conductivity than GPMs. Mechanical stability measurements on these systems reveal that CPMs exhibit Young’s modulus higher than that of bare and GPMs and addition of nanoparticles drastically improves the elongation break was also noted. Transition of the host from α to β phase after the loading of nanosized filler was confirmed by XRD and Raman studies. Physico-chemical properties, like liquid uptake, porosity, surface area, and activation energy, of the membranes were calculated and results are summarized. Cycling performance of Li/CPM/LiFePO4 coin cell was fabricated and evaluated at C/10 rate and delivered a discharge capacity of 157 and 148 mAh g-1 respectively for first and tenth cycles.

  1. High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte.

    Science.gov (United States)

    Priya, A R Sathiya; Subramania, A; Jung, Young-Sam; Kim, Kang-Jin

    2008-09-02

    An electrospun membrane was prepared from a 16 wt % solution of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) in a mixture of acetone/ N, N-dimethylacetamide (7:3 wt %) at an applied voltage of 12 kV. It was then activated by immersing it in 0.6 M 1-hexyl-2,3-dimethylimidazolium iodide, 0.1 M LiI, 0.05 M I 2, and 0.5 M 4- tert-butylpyridine in ethylene carbonate/propylene carbonate (1:1 wt %) to obtain the corresponding membrane electrolyte with an ionic conductivity of 10 (-5) S cm (-1) at 25 degrees C. On the basis of this electrospun membrane electrolyte, quasi-solid-state dye-sensitized solar cells were fabricated, which showed an open-circuit voltage ( V oc) of 0.76 V, a fill factor of 0.62, and a short-circuit current density ( J sc) of 15.57 mA cm (-2) at an incident light intensity of 100 mW cm (-2). This yields a light-to-electricity conversion efficiency of 7.3%. Moreover, this cell possessed better long-term stability than that fabricated with conventional liquid electrolyte.

  2. Design of interpenetrated networks of mesostructured hybrid silica and nonconductive poly(vinylidene fluoride)-cohexafluoropropylene (PVdF-HFP) polymer for proton exchange membrane fuel cell applications.

    Science.gov (United States)

    Pereira, Franck; Chan, Alida; Vallé, Karine; Palmas, Pascal; Bigarré, Janick; Belleville, Philippe; Sanchez, Clément

    2011-05-02

    Organic-inorganic hybrid membranes of poly(vinylidene fluoride)-cohexafluoropropylene (PVdF-HFP) and mesostructured silica containing sulfonic acid groups were synthesized by using the sol-gel process. These hybrid membranes were prepared by in situ co-condensation of tetraethoxysilane and an organically modified silane (ormosil) by a self-assembly route using organic surfactants as templates for tuning the architecture of the hybrid organosilica component. In this paper, we describe the elaboration and characterization of hybrid membranes all the way from the precursor solution to the evaluation of the fuel cell performances. These hybrid materials were extensively characterized by using NMR and IR spectroscopy, electron microscopy, or impedance spectroscopy so as to determinate their physicochemical and electrochemical properties. Even though the ion-exchange capacity (IEC) was quite weak, the first fuel cell tests performed with these hybrid membranes show promising results relative to optimized Nafion 112 thanks to great water management of the silica inside the hydrophobic polymer.

  3. Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries

    Science.gov (United States)

    Saikia, Diganta; Wu, Hao-Yiang; Pan, Yu-Chi; Lin, Chi-Pin; Huang, Kai-Pin; Chen, Kan-Nan; Fey, George T. K.; Kao, Hsien-Ming

    2011-03-01

    A new plasticized poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP)/PPG-PEG-PPG diamine/organosilane blend-based polymer electrolyte system has been synthesized and characterized. The structural and electrochemical properties of the electrolytes thus obtained were systematically investigated by a variety of techniques including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile test, Fourier transform infrared spectroscopy (FTIR), 13C and 29Si solid-state NMR, AC impedance, linear sweep voltammetry (LSV) and charge-discharge measurements. The FTIR and NMR results provided the information about the interaction among the constituents in the blend polymer membrane. The present blend polymer electrolyte exhibits several advantageous electrochemical properties such as ionic conductivity up to 1.3 × 10-2 S cm-1 at room temperature, high value of Li+ transference number (t+ = 0.82), electrochemical stability up to 6.4 V vs. Li/Li+ with the platinum electrode, and stable charge-discharge cycles for lithium-ion batteries.

  4. Synthesis and characterization of electrospun PVdF-HFP/silane-functionalized ZrO2 hybrid nanofiber electrolyte with enhanced optical and electrochemical properties

    Science.gov (United States)

    Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2016-12-01

    A facile method to produce a hybrid of organic-inorganic nanofiber electrolyte via electrospinning is hereby presented. The incorporation of functionalized zirconium oxide (ZrO2) nanoparticles into poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and complexed with lithium trifluoromethanesulfonate (LiCF3SO3) provided an enhanced optical transmissivity and ionic conductivity. The dependence of the nanofiber's morphology, optical and electrochemical properties on the various ZrO2 loading was studied. Results show that while nanofiller content was increased, the diameter of the nanofibers was reduced. The improved bulk ionic conductivity of the nanofiber electrolyte was at 1.96 × 10-5 S cm-1. Owing to the enhanced dispersibility of the 3-(trimethoxysilyl)propyl methacrylate (MPS) functionalized ZrO2, the optical transmissivity of the nanofiber electrolyte was improved significantly. This new nanofiber composite electrolyte membrane with further development has the potential to be next generation electrolyte for energy efficient windows like electrochromic devices.

  5. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors

    Science.gov (United States)

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-01-01

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg−1 at the current density of 1Ag−1 and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors.

  6. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  7. Properties of nano structured Ag-TiO{sub 2} composite coating on stainless steel using RF sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, S. Abu; Jamuna-Thevi, K.; Abu, N.; Mohd Toff, M. R. [Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi- Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim (Malaysia)

    2012-07-02

    RF Sputtering system is one of the Physical Vapour Deposition (PVD) methods that have been widely used to produce hard coating. This technique is used to deposit thin layers of metallic substrates such as stainless steel (SS). From this process, a good adhesiveness and wear resistance coating can be produced for biomedical applications. In this study, RF sputtering method was used to deposit TiO{sub 2}-Ag composite coatings via various deposition parameters. The parameters are RF power of 350W, gas composition (Ar: O{sub 2}) 50:5 and deposition time at 1, 2, 4 and 6 hours. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize surface area of coated samples. The formation of nanocrystalline thin film and the surface morphology were examined using SEM. The crystallite size of TiO{sub 2}-Ag composite coatings were estimated between 20-60 nm based on XRD analysis using Scherer equation and SEM evaluation. The Raman and XRD results suggested that the structure of the TiO{sub 2}-Ag consist of anatase and rutile phases. It also showed that the intensity of anatase peaks increased after samples undergone annealing process at 500 Degree-Sign C.

  8. Characterising μ-AlTiN coating and assessing its performance during Ti-6Al-4V milling

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Moreno Téllez

    2012-10-01

    Full Text Available This study investigated the mechanical properties and performance of μ-AlTiN coating deposited by PVD cathodic arc technique for a specific Al0, 67Ti0, 33N composition deposited on a WC-Co and AISI D2 steel substrate. The structure of the coating was analysed using SEM, EDAX, XRD, AFM and TEM. Nano indentation measurements were used for analysing mechanical properties; the coating’s performance was evaluated during the milling of a titanium alloy (Ti6Al4V. The TiN film was initially deposited to improve adhesion between coating and substrate, where columnar grains ranging in size from 200 to 500 nm were observed having NaCl-type struc-ture. μ-AlTiN grain growth was also columnar but had ~50 nm grain size. The μ-AlTiN coated tool life was compared to an uncoated tool to determine the coating’s influence during Ti6Al4V milling. The μ-AlTiN coating improved tool life by 100% compared to that of an uncoated tool due to aluminium oxide and TiC formation on the surface and a decrease in friction coefficient between the chip and the tool.

  9. Properties of nano structured Ag-TiO2 composite coating on stainless steel using RF sputtering method

    Science.gov (United States)

    Bakar, S. Abu; Jamuna-Thevi, K.; Abu, N.; Mohd Toff, M. R.

    2012-07-01

    RF Sputtering system is one of the Physical Vapour Deposition (PVD) methods that have been widely used to produce hard coating. This technique is used to deposit thin layers of metallic substrates such as stainless steel (SS). From this process, a good adhesiveness and wear resistance coating can be produced for biomedical applications. In this study, RF sputtering method was used to deposit TiO2-Ag composite coatings via various deposition parameters. The parameters are RF power of 350W, gas composition (Ar: O2) 50:5 and deposition time at 1, 2, 4 and 6 hours. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize surface area of coated samples. The formation of nanocrystalline thin film and the surface morphology were examined using SEM. The crystallite size of TiO2-Ag composite coatings were estimated between 20-60 nm based on XRD analysis using Scherer equation and SEM evaluation. The Raman and XRD results suggested that the structure of the TiO2-Ag consist of anatase and rutile phases. It also showed that the intensity of anatase peaks increased after samples undergone annealing process at 500 °C.

  10. Development of wear-resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. (Cummins Engine Co., Inc., Columbus, IN (United States))

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  11. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  12. Coating of pumps; coating af pumper

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Hans; Moritzen, J.; Thoegersen, Jeanette

    2005-11-15

    Coating of pumps is a quite new activity. For many years pipes and containers have been coated inside in order to avoid corrosion, but the technology has only been used inside pumps for the last ten years. The technology comes from USA and is originally developed in the space technology industry as an exceptionally durable and corrosion constant coating. The project is a further development of results found in a previous R and D project in which measurements were performed before and after coating two different installations. Both installations showed large efficiency improvements. This project supplements the theory behind losses in pumps with measurements on more pumps. (BA)

  13. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-09-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  14. Study of Elemental and Structural Phase Composition of Multilayer Nanostructured TiN / MoN Coatings, their Physical and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    B.O. Postolnyi

    2014-11-01

    Full Text Available This paper presents the results of investigation multilayer TiN / MoN coatings. Coatings were fabricated using Arc-PVD method. Period thickness of nanoscale layers in coatings was λ = 8, 25, 50 and 100 nm. The total thickness of coatings was up to 8.4 m. Samples were studied using SEM, TEM, EDS, RBS, XRD, SIMS and nanoindentation. The actual thickness of the layers has a few larger values than expected (in most cases per 25 %. The formation of two phases was found: stoichiometric TiN (fcc and cubic γ-Mo2N (fcc. Maximum values of hardness and elasticity modulus were obtained for coating with λ = 8 nm: H = 47 GPa, E = 470 GPa. Plasticity index and its dependence on the thickness of layer period (λ were calculated. The most plastic coating was the sample with H / E = 0.1.

  15. Électrolytes-gels pour piles au lithium système PVdF-HFP/SiO2/VL-LiTFSI

    Science.gov (United States)

    Caillon-Caravanier, M.; Claude-Montigny, B.; Lemordant, D.; Bosser, G.

    2002-04-01

    Les électrolytes-gels étudiés sont constitués du copolymère poly (fluorure de vinylidène-hexafluoropropylène) (PVdF-HFP) contenant où non de la silice et ayant absorbé un électrolyte liquide obtenu par dissolution du (trifluorométhyl sulfone) imidure de lithium (LiTFSI) dans la gamma-valérolactone (VL) ou dans le mélange VL:EC (90:10 en moles) (EC:carbonate d'éthylène). L'influence du pourcentage en sel de lithium dans l'électrolyte liquide, de la proportion de silice dans le copolymère sec et de la température sur la capacité d'absorption est étudiée. L'évolution de la conductivité en fonction de la composition de l'électrolyte-gel et de la température ainsi que l'étude de la solvatation de l'ion Li^+ par spectroscopie RAMAN ont permis de proposer un modèle de conductivité ionique pour ces matériaux. Après avoir déterminé le domaine d'électroactivité des gels, l'évolution des spectres d'impédance à l'interface Li / gel est interprétée par le modèle “couche polymère solide" (SPL).

  16. Formation of semi-IPN membrane composed of crosslinked SPS-[PVdF-co-HFP/Nafion] for application in DMFC: A fine tuning between crosslinker and initiator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush; Kundu, Patit Paban, E-mail: ppk923@yahoo.com

    2015-08-15

    The semi-interpenetrating (semi-IPN) membrane composed of crosslinked sulfonated polystyrene (SPS) within the host blend of PVdF-co-HFP (Polyvinylidenefluoride-co-hexafluoropropylene) and Nafion has already been tested as a promising polymer electrolyte membrane (PEM) in terms of improved water uptake, proton conductivity and electrical efficiency for application in the direct methanol fuel cell (DMFC). These desired results have generated further curiosity about a fine tuning between the contents of divinyl benzene (DVB) as a crosslinker and azobisisobutyronitrile (AIBN) as an initiator for the optimization of PEM characteristics. It has been observed that an increase in AIBN content leads to an acceptable degree of water uptake, swelling ratio and proton conductivity in PEM, while higher DVB content causes declined methanol crossover, leading to higher membrane selectivity. These two opposing effects are optimized in terms of proton conductivity, tensile strength and membrane selectivity for the membrane consisting of 0.4 wt% of AIBN and 1.2 wt% of DVB. Moreover, the maximum power density obtained for the membrane having optimum selectivity is 56 mW cm{sup −2}, when analyzed at 90 °C. These results indicate that one can achieve a high power density in comparison to Nafion by fine tuning the contents of initiator and cross-linker during the synthesis of the semi-IPN membrane. - Graphical abstract: Display Omitted - Highlights: • PEM composed of 0.4/1.2 wt% of AIBN/DVB produced best result. • Lower methanol crossover (1.02 × 10{sup −6} cm{sup 2} s{sup −1}) compare to Nafion-117. • Higher membrane selectivity i.e 3.05 × 10{sup 4} Ss cm{sup −3} was obtained. • A maximum power density of 56 mW cm{sup −2} was obtained at 90 °C.

  17. Laboratory and Performance Studies of Anti-wear Coatings Deposited on Nitrided Surfaces of Tools used in an Industrial Hot Die Forging Process

    Science.gov (United States)

    Hawryluk, Marek; Widomski, Paweł; Smolik, Jerzy; Kaszuba, Marcin; Ziemba, Jacek; Gronostajski, Zbigniew

    2017-04-01

    The paper presents the results of laboratory studies performed on produced anti-wear coatings as well as the results of performance tests conducted on tools with these coatings in industrial conditions, in the process of hot die forging. Three different coatings were selected: AlCrTiSiN, Cr/CrN and AlCrTiN, deposited by means of the vacuum-arc method on test samples as well as forging tools used in the hot forging process of a lid. The first part of the paper discusses the results of the studies performed in laboratory conditions, which included: surface morphology by means of SEM, hardness and Young modulus measurements, determination of the chemical composition by means of the EDS method, adhesion tests by means of the scratch method and tribological tests by means of the ball-on-disk method. The obtained results were correlated and applied in the analysis of the performance tests on forging punches with these coatings at an early stage of their performance (up to 4000 produced forgings), which were tested on 19 tools, of which 3 representatives were selected for each coating. A thorough analysis was performed of the wear phenomena and mechanisms and the manner of wear of hybrid layers as well as their resistance to the particular destructive mechanisms. Based on the performed laboratory and performance studies as well as their analysis, it was possible to select the optimal hybrid layer, which enables an increase in the durability of forging tools used in industrial hot die forging processes. The preliminary results showed that the best results for the whole working surface of the tool were obtained for the Cr/CrN layer, which characterizes in high adhesion as well as a lower Young modulus and hardness. In the case of high pressures and the correlated friction, better results were obtained for the AlCrTiN coating, which, besides its good adhesion properties, also exhibited the highest frictional resistance.

  18. Surfaces, Coatings and Protection

    Science.gov (United States)

    Ferguson, I. F.

    1982-08-01

    Plasma sprayed ceramics, sputter ion plating, and sol-gel ceramic protective coatings for nuclear reactors are discussed. The influence of such coatings on the behavior of reactor fuel elements is noted. The investigation of such coatings by diffraction methods is described. Laser and nuclear microprobes, scanning transmission electron microscopes, neutron scattering, and image analysis are summarized.

  19. Commercial Fastener Coatings Doerken

    Science.gov (United States)

    2010-06-01

    Phosphating* *partly recommended Dip Spinning Dipping Spraying Spin coating Conveyor oven box oven Inductive drying Pretreatment Coating Preheating...Curing Cooling Application Techniques - Dip Spin Coating Gurtbnd Cross BarTranspo" Band beiCifteiE Vo12one Vent llated Pre .Zone Cros~ Bar T ransrt

  20. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  1. Hard and superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-03-01

    This article reviews the development of hard coatings from a titanium nitride film through superlattice coatings to nanocomposite coatings. Significant attention is devoted to hard and superhard single layer nanocomposite coatings. A strong correlation between the hardness and structure of nanocomposite coatings is discussed in detail. Trends in development of hard nanocomposite coatings are also outlined. (orig.)

  2. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    Science.gov (United States)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  3. On the influence of residual stress on nano-mechanical characterization of thin coatings.

    Science.gov (United States)

    Sebastiani, M; Bemporad, E; Carassiti, F

    2011-10-01

    In the present paper, the effect of residual stress on the mechanical behavior of thin hard coatings has been investigated by a new methodology based on the combined use of focused ion beam (FIB) micro-machining techniques and nanoindentation testing. Surface elastic residual stress were determined by nanoindentation testing on Focused Ion Beam (FIB) milled micro-pillars. The average residual stress present in a 3.8 microm CAE-PVD TiN coating on WC-Co substrate was calculated by the comparison of two different sets of load-depth curves, the first one obtained at centre of stress relieved pillars, the second one on the undisturbed (residually stressed) surface. Results for stress measurement were in good agreement with the estimate obtained by XRD (sin2 psi method) analysis on the same sample, adopting the same elastic constants. In addition, nanoindentation on stress relieved pillars also allowed to perform a more accurate evaluation of elastic modulus and hardness of the coating. The effect of residual stress on crack propagation modes was quantitatively analyzed by high-load nanoindentation and application of energy methods for fracture toughness evaluation. It is found that compressive residual stress plays a relevant role in determining the fracture behavior and failure modes of the coating. Finally, Microstructural observations of the deformation mechanisms of the TiN coating were performed by TEM analysis on the cross section of the indentation, obtained by FIB lamella thinning. Results showed that plastic deformation at the nanoscale essentially occurs by formation of shear bands inside the columnar grains, independently of residual stress. A transition between intra-granular shear deformation and columnar grain sliding is also observed as a function of the applied load.

  4. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  5. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  6. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, "protective" refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars......, and petrochemical plants while "marine" refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing the emission...... of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...

  7. Evaluation of HVOF coatings

    Directory of Open Access Journals (Sweden)

    Mariana Landová

    2016-07-01

    Full Text Available Attention in this paper is devoted to the evaluation of wear coatings deposited using HVOF technology (high velocity oxy-fuel. There were evaluated three types of coatings based on WC-Co (next only 1343, WC-Co-Cr (next only 1350 and Cr3C2-25NiCr (next only 1375. There was assessed adherence of coatings, micro hardness, porosity and the tribological properties of erosive, abrasive, adhesive and wear resistance of coatings in terms of cyclic thermal load. Thanks to wide variety of suitable materials and their combinations, the area of utilization thermally sprayed coatings is very broad. It is possible to deposit coatings of various materials from pure metals to special alloys. The best results in the evaluated properties were achieved at the coating with the label 1375.

  8. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  9. Determination of the fatigue behaviour of thin hard coatings using the impact test and a FEM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bouzakis, K.D. [Aristoteles Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Vidakis, N. [Aristoteles Univ., Thessaloniki (Greece). Dept. of Mech. Eng.; Leyendecker, T. [CemeCon, 52068 Aachen (Germany); Lemmer, O. [CemeCon, 52068 Aachen (Germany); Fuss, H.G. [CemeCon, 52068 Aachen (Germany); Erkens, G. [CemeCon, 52068 Aachen (Germany)

    1996-12-15

    The impact test, in combination with a finite element method (FEM) simulation, is used to determine stress values that characterise the fatigue behaviour of thin hard coatings, such as TiAlN, TiAlCN, CrN, MoN, etc. The successive impacts of a cemented carbide ball onto a coated probe induce high contact loads, which can vary in amplitude and cause plastic deformation in the substrate. In the present paper FEM calculations are used in order to determine the critical stress values, which lead to coating fatigue failure. The parametric FEM simulation developed considers elastic behaviour for the coating and elastic plastic behaviour for the substrate. The results of the FEM calculations are correlated to experimental data, as well as to SEM observations of the imprints and to microspectrum analyses within the contact region. Herewith, critical values for various stress components, which are responsible for distinctive fatigue failure modes of the coating-substrate compounds can be obtained. (orig.)

  10. Synthesis of vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts with high coverage using plasma assisted PVD approach

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Kumar, Prabhat; Reddy, G.B.

    2015-07-25

    Highlights: • This report shows the growth of α-V{sub 2}O{sub 5} on Si [1 0 0] substrate using a facile PVD route. • The presence of O{sub 2}-plasma at 500 °C is most essential for the growth of NBs with excellent coverage. • The properties of V{sub 2}O{sub 5} films are systematically studied as function of growth temperature. • The three step growth mechanism of V{sub 2}O{sub 5} NBs is discussed in this paper briefly. - Abstract: Cost-saving, easy-handling, and eco-affable plasma assisted sublimation process (PASP) is proposed to synthesize vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts (NBs) with excellent coverage on Si [1 0 0] wafer using oxygen plasma without using surfactants/catalysts. Pure orthorhombic V{sub 2}O{sub 5} NBs having average length of few hundred of microns with quite uniform width nearly of 100 nm are formed at 500 °C. No film is deposited on Si in presence of oxygen gas without exciting plasma at 500 °C. HRTEM analysis with SAED pattern confirm that all V{sub 2}O{sub 5} NBs are single crystalline in nature with the fringe width of 0.33 nm corresponding to [0 1 0] crystal plane. The XPS analysis shows the compositional purity and sub-stoichiometric nature of V{sub 2}O{sub 5} NBs. The sub-stoichiometric nature of NBs is manifested through an appearance of low intensity peak corresponding to low oxidation state of V (i.e. V{sup 4+}) at the binding energy of 514.8 eV. The micro-Raman and FTIR analysis of NBs are carried out to study the different vibrational modes exhibited by V and O atoms coordinated in distinct fashions. The nanobelts exhibit room temperature PL emission in UV–visible realm with a broad hump in the range of 450–750 nm, which confirms the presence of oxygen defects in NBs and strongly supports the XPS results as well. The possible growth mechanism of α-V{sub 2}O{sub 5} NBs is proposed in this paper briefly.

  11. Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN coating cermet tools

    Directory of Open Access Journals (Sweden)

    Ouahid Keblouti

    2017-01-01

    Full Text Available The present work concerns an experimental study of turning with coated cermet tools with TiCN-TiN coating layer of AISI 52100 bearing steel. The main objectives are firstly focused on the effect of cutting parameters and coating material on the performances of cutting tools. Secondly, to perform a Multi-objective optimization for minimizing surface roughness (Ra and maximizing material removal rate by desirability approach. A mathematical model was developed based on the Response Surface Methodology (RSM. ANOVA method was used to quantify the cutting parameters effects on the machining surface quality and the material removal rate. The results analysis shows that the feed rate has the most effect on the surface quality. The effect of coating layers on the surface quality is also studied. It is observed that a lower surface roughness is obtained when using PVD (TiCN-TiN coated insert when compared with uncoated tool. The values of root mean square deviation and coefficient of correlation between the theoretical and experimental data are also given in this work where the maximum calculated error is 2.65 %.

  12. CMAS Degradation of Environmental Barrier Coatings: Mechanisms and Mitigation

    Science.gov (United States)

    2013-09-30

    CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a NAME OF RESPONSIBLE PERSON Carlos...using electron beam physi- cal vapor deposition (EB- PVD ) and current assisted den- sification (CAD) facilities at UCSB. The research also in- volved...higher calculated ERR; as a result it was impractical to produce trilayer Gd-based architectures. The outer zirconate layers were deposited by EB- PVD

  13. Electrospark deposition coatings

    Science.gov (United States)

    Sheely, W. F.

    1986-11-01

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life.

  14. Advanced Multifunctional Coating

    Science.gov (United States)

    2011-08-17

    and UV durability of then current chrome free TT-P-2756 SPTC • Leverage APC technology into SPTC • Coating uses same fluoropolyurethane technology...as APC currently used on C-17 • Leverage recent advances in chrome free corrosion inhibitor technology • State of the art chrome free corrosion...coat exposed metal Aluminum Base Metal Original Finish System Aged APC Topcoat Conversion Coat Chromic Acid Anodize Aluminum Cladding Original Primer

  15. Surface characteristics of HA coated Ti-Hf binary alloysafter nanotube formation

    Institute of Scientific and Technical Information of China (English)

    Yong-Hoon JEONG; Won-Gi KIM; Geun-Hyeong PARK; Han-Cheol CHOE; Yeong-Mu KO

    2009-01-01

    Ti-Hf binary alloys contained 10%, 20%, 30% and 40% (mass fraction)Hf were manufactured in the vacuum furnace system. And then, specimens were homogenized for 24 h at 1 000 ℃ in argon atmosphere. The formation of oxide nanotubes was conducted by anodic oxidation on the Ti-Hf alloy in 1 mol/L H3PO4 electrolytes containing small amounts of NaF at room temperature. The hydroxyapatite (HA) coating made of tooth ash prepared by electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the specimens were examined through potentiodynamic test in 0.9% NaCl solution by potentiostat. The microstructures of the alloys were examined by field emission scanning electron microscopy (FE-SEM) and x-ray diffractometer (XRD). It was observed that the lamellar structure translated to needle-like structure with Hf contents. Nanotube formed and HA coated Ti-xHf alloys had a good corrosion resistance.

  16. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  17. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  18. Effect of titanium nitride/titanium coatings on the stress corrosion of nickel-titanium orthodontic archwires in artificial saliva

    Science.gov (United States)

    Liu, Jia-Kuang; Liu, I.-Hua; Liu, Cheng; Chang, Chen-Jung; Kung, Kuan-Chen; Liu, Yen-Ting; Lee, Tzer-Min; Jou, Jin-Long

    2014-10-01

    The purpose of this investigation was to develop titanium nitride (TiN)/titanium (Ti) coating on orthodontic nickel-titanium (NiTi) wires and to study the stress corrosion of specimens in vitro, simulating the intra-oral environment in as realistic a manner as possible. TiN/Ti coatings were formed on orthodontic NiTi wires by physical vapor deposition (PVD). The characteristics of untreated and TiN/Ti-coated NiTi wires were evaluated by measurement of corrosion potential (Ecorr), corrosion current densities (Icorr), breakdown potential (Eb), and surface morphology in artificial saliva with different pH and three-point bending conditions. From the potentiodynamic polarization and SEM results, the untreated NiTi wires showed localized corrosion compared with the uniform corrosion observed in the TiN/Ti-coated specimen under both unstressed and stressed conditions. The bending stress influenced the corrosion current density and breakdown potential of untreated specimens at both pH 2 and pH 5.3. Although the bending stress influenced the corrosion current of the TiN/Ti-coated specimens, stable and passive corrosion behavior of the stressed specimen was observed even at 2.0 V (Ag/AgCl). It should be noted that the surface properties of the NiTi alloy could determine clinical performance. For orthodontic application, the mechanical damage destroys the protective oxide film of NiTi; however, the self-repairing capacity of the passive film of NiTi alloys is inferior to Ti in chloride-containing solutions. In this study, the TiN coating was found able to provide protection against mechanical damage, while the Ti interlayer improved the corrosion properties in an aggressive environment.

  19. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  20. Pool Boiling Heat Transfer Characteristics of Chromium Coatings Deposited by RF Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Gwang Hyeok; Son, Hong Hyun; Jeong, Uiju; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Many researches have suggested fundamental changes to satisfy the safety requirements, including development of accident tolerant fuels (ATFs). The adoption of coating techniques is one of promising approaches for ATF systems because surface modification with a highly oxidation-resistant material can prevent hydrogen generation and cladding embrittlement. Compared to the development of a new cladding for the replacement of the current zirconium-based alloy cladding and new fuel forms instead of the current ceramic oxide fuels, the surface coating technique is cost-effective and easily applicable to the current LWR system with no significant design changes. Recently, a wide variety of oxidation-resistant materials have been proposed: iron-based alloys and SiC-based materials. Among them, chromium (Cr) is suggested as a coating material for fuel claddings because it is known for has oxidation-resistant characteristic. In order to assess the feasibility of coating techniques with an oxidation-resistant material, in this study chromium (Cr) film was deposited on a metal substrate via a physical vapor deposition (PVD) process. After preparing test specimens, pool boiling heat transfer experiments were carried out to investigate the boiling performance of both cases. Moreover, during a test, visualization works were conducted for a phenomenological understanding. In this study, Cr deposition on the SS316 surface was conducted using the sputtering process. Specifically, sophisticated surface characterization was performed with the wettability measurement and surface morphology analysis. Furthermore, the pool boiling heat transfer experiments were carried out to obtain the CHF value of the test heater. The major findings observed from this study can be summarized as follows. The surface wettability increased 77% after the sputtering deposition.

  1. Microstructure and properties of thick nanocomposite TiN/Si{sub 3}N{sub 4} coatings on Vanadis 23 HS steel

    Energy Technology Data Exchange (ETDEWEB)

    Moskalewicz, Tomasz; Czyrska-Filemonowicz, Aleksandra [AGH Univ. of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow (Poland); Zimowski, Slawomir [AGH Univ. of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow (Poland); Wendler, Bogdan; Progalskiy, Ivan [Lodz Univ. of Technology (Poland). Inst. of Materials Science and Engineering

    2015-07-15

    The microstructure and selected micro-mechanical properties of a 13.4 μm thick nanocomposite TiN/Si{sub 3}N{sub 4} coating deposited onto Vanadis 23 HS steel by a new gas pulsed magnetron sputtering technique were investigated. Scanning and transmission electron microscopy were employed to investigate the detailed microstructure of the coating. It was found that the coating exhibited a fully nanocrystalline structure and was composed of two zones: the outer zone with columnar structure and the inner one with equiaxed, fine columnar structure. Both zones consisted mainly of the δ-TiN nanocrystallites with a small amount of α-Si{sub 3}N{sub 4} and β-Si{sub 3}N{sub 4}. In order to increase coating adhesion to the substrate, a graded intermediate layer consisting of three different phases (pure Cr, CrN and Cr2N) was applied. The hardness of the as-deposited TiN/Si{sub 3}N{sub 4} coating was equal to 48 GPa, whereas it was equal to 40 GPa after annealing. The coatings exhibited very good adhesion to the underlying steel substrate.

  2. Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application

    Science.gov (United States)

    Zalnezhad, Erfan; Baradaran, Saeid; Bushroa, A. R.; Sarhan, Ahmed A. D.

    2014-02-01

    With the intention of improving the mechanical properties of Ti-6Al-4V, samples were first coated with pure titanium using the physical vapor deposition (PVD) magnetron sputtering technique. The Taguchi optimization method was used to attain a higher coating on substrate adhesion. Second, pure titanium-coated samples with higher adhesion were anodized to generate TiO2 nanotubes. Next, the TiO2-coated specimens were heat treated at annealing temperatures of 753.15 K and 923.15 K (480 °C and 650 °C). The XRD results indicate that the varying heat treatment temperatures produced different phases, namely, anatase [753.15 K (480 °C)] and rutile [923.15 K (650 °C)]. Finally, the coated samples' mechanical properties (surface hardness, adhesion, and fretting fatigue life) were investigated. The fretting fatigue lives of TiO2-coated specimens at 753.15 K and 923.15 K (480 °C and 650 °C) annealing temperatures were significantly enhanced compared to uncoated samples at low and high cyclic fatigue. The results also indicate that TiO2-coated samples heat treated at an annealing temperature of 753.15 K (480 °C) (anatase phase) are more suitable for increasing fretting fatigue life at high cyclic fatigue (HCF), while at low cyclic fatigue, the annealing temperature of 923.15 K (650 °C) seemed to be more appropriate. The fretting fatigue life enhancement of thin-film TiO2 nanotubular array-coated Ti-6Al-4V is due to the ceramic nature of TiO2 which produces a hard surface as well as a lower coefficient of friction of the TiO2 nanotube surface that decreases the fretting between contacting components, namely, the sample and friction pad surfaces.

  3. Effect of active screen plasma nitriding pretreatment on wear behavior of TiN coating deposited by PACVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Raoufi, M., E-mail: raoufi@iust.ac.ir [School of Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Mirdamadi, Sh. [School of Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Mahboubi, F. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ahangarani, Sh. [Advanced Materials and Renewable Energies Dep., Iranian Research Organization for Science and Technology (Iran, Islamic Republic of); Mahdipoor, M.S. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Elmkhah, H. [Department of Metallurgical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2012-08-01

    Titanium based alloys are used extensively for improving wear properties of different parts due to their high hardness contents. Titanium nitride (TiN) is among these coatings which can be deposited on surface using various techniques such as CVD, PVD and PACVD. Their weak interface with substrate is one major drawback which can increase the total wear in spite of favorite wear behavior of TiN. Disc shaped samples from AISI H13 (DIN 1.2344) steel were prepared in this study. Single TiN coating was deposited on some of them while others have experienced a TiN deposition by active screen plasma nitriding (ASPN). Hardness at the surface and depth of samples was measured through Vickers micro hardness test which revealed 1810 Hv hardness as the maximum values for a dual-layered ASPN-TiN. Pin-on-disc wear test was done in order to study the wear mechanism. In this regard, the wear behavior of samples was investigated against pins from 100Cr6 (Din 1.3505) bearing steel and tungsten carbide-cobalt (WC-Co) steel. It was evidenced that the dual-layer ASPN-TiN coating has shown the least weight loss with the best wearing behavior because of its high hardness values, stable interface and acceptable resistance against peeling during wearing period.

  4. Monitoring Delamination of Thermal Barrier Coating During Interrupted High-Heat Flux Laser Testing Using Upconversion Luminescence Imaging

    Science.gov (United States)

    Eldridge, Jeffrey I.; Zhu, Dongming; Wolfe, Douglas E.

    2011-01-01

    Upconversion luminescence imaging of thermal barrier coatings (TBCs) has been shown to successfully monitor TBC delamination progression during interrupted furnace cycling. However, furnace cycling does not adequately model engine conditions where TBC-coated components are subjected to significant heat fluxes that produce through-thickness temperature gradients that may alter both the rate and path of delamination progression. Therefore, new measurements are presented based on luminescence imaging of TBC-coated specimens subjected to interrupted high-heat-flux laser cycling exposures that much better simulate the thermal gradients present in engine conditions. The TBCs tested were deposited by electron-beam physical vapor deposition (EB-PVD) and were composed of 7wt% yttria-stabilized zirconia (7YSZ) with an integrated delamination sensing layer composed of 7YSZ co-doped with erbium and ytterbium (7YSZ:Er,Yb). The high-heat-flux exposures that produce the desired through-thickness thermal gradients were performed using a high power CO2 laser operating at a wavelength of 10.6 microns. Upconversion luminescence images revealed the debond progression produced by the cyclic high-heat-flux exposures and these results were compared to that observed for furnace cycling.

  5. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruili; Gong, Xueyuan [School of Materials Science and Engineering, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Peng, Hui [School of Materials Science and Engineering, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Ma, Yue, E-mail: mayue@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University (BUAA), No. 37, Xueyuan Road, Beijing 100191 (China)

    2015-01-30

    Highlights: • The interdiffusion behavior between the NiAlHf coating and the superalloy substrate was influenced by the crystal orientation of the substrate alloy. • The structure of TCP phases formed in SRZ and IDZ was studied. • Studying the effect of orientation crystal of substrate on the formation of SRZ. - Abstract: NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness.

  6. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat, E-mail: kursat@itu.edu.tr

    2015-02-15

    Graphical abstract: - Highlights: • The (Ti,Re)N coating (8 ± 1.9 at.% Re) consisted of TiN and ReNx (x > 1.33) phases. • TiO{sub 2} provided low friction coefficient to TiN coating at 150 °C. • Re addition to TiN drastically dropped the friction coefficients to 0.17–0.22. • Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N coating. • Re addition to TiN improved the wear behavior. - Abstract: TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReN{sub x} (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa ( ± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al{sub 2}O{sub 3} balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti{sub 2}O{sub 3} for RT tests and TiO{sub 2} for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO{sub 2}, Ti−O−N, ReO{sub 2} and Re{sub 2}O{sub 7} for both test temperatures. Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  7. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  8. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  9. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  10. Chinese Decorative Coatings Market

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Growth prospects The Chinese market for decorative coatings, excluding non-architectural products such as industrial varnishes,marine paint and other industrially applied coatings, has been growing byaround 10% annually and was estimated to be worth Eurol.3 billion a year, with an annual per capita consumption of just less than 1 liter ofpaint.

  11. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  12. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  13. Unobtrusive graphene coatings

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther

    2012-01-01

    The contact angle of water drops on substrates for which the wettability is dominated by van der Waals forces remains unchanged when the substrates are coated with a monolayer of graphene. Such 'wetting transparency' could lead to superior conducting and hydrophobic graphene-coated surfaces with tun

  14. Coated electroactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  15. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  16. Nanostructured Protective Coatings

    Science.gov (United States)

    2006-01-01

    stresses induce strain fatigue with subsequent formation of cracks. Cracking in coatings leads to materials failure observed physically as spallation or...elevated temperatures. In this test a hole is drilled into the substrate before coating it. This allows a fixed amount of air to be trapped at the

  17. The effect of ion irradiation and elevated temperature on the microstructure and the properties of C/W/C/B multilayer coating

    Science.gov (United States)

    Vlcak, Petr

    2016-03-01

    C/W/C/B multi-layer PVD coating with a layer period of 10 nm and 500 nm in thickness was irradiated with 45 keV N ions at fluence of 1 × 1017 cm-2. Ion irradiation was performed at room temperature or at an elevated temperature of 500 °C. The microstructure was investigated by X-ray diffraction, by X-ray photoelectron spectroscopy, and by Raman spectroscopy. The results showed that implanted N ions bond both with W atoms and with C atoms. N ion irradiation induced the formation of WC and WC1-x phases. The energetic ions transformed the C bonds in defect sp2 and defect sp3 hybridizations, resulting in graphitization of the carbon fraction in the multilayer coating. Ion irradiation reduced the cohesive strength of the monolayers, reduced hardness of the C/W/C/B coating, increased its surface roughness and increased its friction coefficient. An elevated temperature during ion irradiation caused a better arrangement of the WC phase and further graphitization of the carbon fraction, in comparison with a coating treated by ion irradiation at room temperature. There is discussion of the causes of the observed changes in surface properties.

  18. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  19. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    Science.gov (United States)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  20. DEFORMACIÓN ELÁSTICA RESIDUAL EN LÁMINAS DE ACERO AISI 304 RECUBIERTAS CON UNA PELÍCULA DE NITRURO DE TITANIO DEPOSITADA POR PVD-MAGNETRON SPUTTERING

    Directory of Open Access Journals (Sweden)

    H. A. COLORADO

    2009-01-01

    Full Text Available Se realizó una caracterización mediante difracción de rayos x (DRX en láminas de acero inoxidable AISI 304 recubierto con una capa de nitruro de titanio de 3 um de espesor, obtenida mediante deposición física de vapor (PVD-MAGNETRON SPUTTERING a una temperatura de 200 °C. se tomaron imágenes de microscopía electrónica de barrido (MEB, microscopía óptica (MO y microscopía de fuerza atómica (MFA para caracterizar el sustrato, la capa y la zona cercana a la intercara. adicionalmente se determinó la deformación elástica residual asociada con el ensanchamiento de los picos de DRX.

  1. DEFORMACIÓN ELÁSTICA RESIDUAL EN LÁMINAS DE ACERO AISI 304 RECUBIERTAS CON UNA PELÍCULA DE NITRURO DE TITANIO DEPOSITADA POR PVD-MAGNETRON SPUTTERING

    OpenAIRE

    COLORADO, H. A.; SALVA, H. R.; GHILARDUCCI, A. A.

    2009-01-01

    se realizó una caracterización mediante difracción de rayos x (DRX) en láminas de acero inoxidable AISI 304 recubierto con una capa de nitruro de titanio de 3 mm de espesor, obtenida mediante deposición física de vapor (PVD-magnetron sputtering) a una temperatura de 200 ˚C. se tomaron imágenes de microscopía electrónica de barrido (MEB), microscopía óptica (MO) y microscopía de fuerza atómica (MFA) para caracterizar el sustrato, la capa y la zona cercana a la intercara. adicionalmente se dete...

  2. Deformación elástica residual en láminas de acero aisi 304 recubiertas con una película de nitruro de titanio depositada por pvd-magnetron sputtering

    OpenAIRE

    H. A. COLORADO; Salva, H. R.; GHILARDUCCI, A. A.

    2010-01-01

    Se realizó una caracterización mediante difracción de rayos x (DRX) en láminas de acero inoxidable AISI 304 recubierto con una capa de nitruro de titanio de 3 um de espesor, obtenida mediante deposición física de vapor (PVD-MAGNETRON SPUTTERING) a una temperatura de 200 °C. se tomaron imágenes de microscopía electrónica de barrido (MEB), microscopía óptica (MO) y microscopía de fuerza atómica (MFA) para caracterizar el sustrato, la capa y la zona cercana a la intercara. adicionalmente se dete...

  3. Coatings to prevent frost

    DEFF Research Database (Denmark)

    Lusada, Ricardo; Holberg, Stefan; Bennedsen, Jeanette Marianne Dalgaard

    2016-01-01

    The ability of hydrophobic, organic–inorganic hybrid coatings to decelerate frost propagation was investigated. Compared to a bare aluminum surface, the coatings do not significantly reduce the freezing probability of supercooled water drops. On both surfaces, the probability for ice nucleation...... at temperatures just below 0°C, for example at −4°C, is low. Freezing of a single drop on aluminum leads, however, to instant freezing of the complete surface. On hydrophobic coatings, such a freezing drop is isolated; the frozen area grows slowly. At −4°C surface temperature in a +12°C/90% relative humidity...

  4. Advanced thermal barrier coating systems

    Science.gov (United States)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  5. Influence of Duplex Treatment on Structural and Tribological Properties of Commercially Pure Titanium

    Science.gov (United States)

    Çelik, Ilhan

    2017-01-01

    Titanium and its alloys are widely used in many fields, including aerospace and the chemical and biomedical industries. This is due to their mechanical properties, excellent corrosion resistance, and biocompatibility although they do have poor wear resistance. In this study, a duplex layer was successfully formed on the commercially pure titanium surface by duplex treatments (plasma nitriding and physical vapor deposition (PVD)). In the initial treatment, plasma nitriding was performed on the pure titanium samples and in the second treatment, the nitrided samples were coated with CrN by PVD. The friction and wear properties of the duplex-treated samples were investigated for tribological applications. Surface morphology and microstructure of the duplex-treated samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, the tribological properties were investigated using pin-on-disc tribometer. A compound layer composed of ɛ-Ti2N and δ-TiN phases and a diffusion layer formed under the compound layer were obtained on the surface of pure titanium after the nitriding treatments. CrN coated on the nitrided surface provided an increase in the surface hardness and in the wear resistance.

  6. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  7. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  8. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  9. Nanostructured Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  10. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  11. Coated 4340 Steel

    Science.gov (United States)

    2013-08-26

    alternative coatings qualified to MIL-PRE-23377 Class N and an electroplated zinc - nickel alloy passivated with a trivalent chromium solution which is...effect of a non-chromate primer and zinc - nickel plating with non-chromate passivation as alternatives to the chromate primer and cadmium plating with...NAWCADPAX/TR-2013/252 COATED 4340 STEEL by E. U. Lee C. Lei M. Stanley B. Pregger C. Matzdorf 26 August 2013

  12. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  13. Residual stresses within sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; XU Bin-shi; WANG Hai-dou

    2005-01-01

    Some important developments of residual stress researches for coating-based systems were studied. The following topics were included the sources of residual stresses in coatings: error analysis of Stoney's equation in the curvature method used for the measurement of coating residual stress, the modeling of residual stress and some analytical models for predicting the residual stresses in coatings. These topics should provide some important insights for the fail-safe design of the coating-based systems.

  14. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  15. Role of Y in the oxidation resistance of CrAlYN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Domínguez-Meister, S.; El Mrabet, S. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Escobar-Galindo, R. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco 28049 (Spain); Mariscal, A.; Jiménez de Haro, M.C.; Justo, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Brizuela, M. [TECNALIA, Mikeletegui Pasealekua, 2, Donostia-San Sebastián 20009 (Spain); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Sánchez-López, J.C., E-mail: jcslopez@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain)

    2015-10-30

    Highlights: • The oxidation behavior of CrAlYN films (Al < 10 at.%) depends on the Al/Y distribution. • ∼4 at.% Y enhances the oxidation resistance up to 1000 °C of CrAlYN-coated M2 steels. • Controlled inward oxygen diffusion affects positively the film oxidation resistance. • Mixed Al–Y oxides appear to block the diffusion of elements from the substrate. • Yttrium modifies the passivation layer composition by increasing the Al/Cr ratio. - Abstract: CrAlYN coatings with different aluminum (4–12 at.%) and yttrium (2–5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N{sub 2} mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr{sub 2}N, and a more effective Fe and C blocking.

  16. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Science.gov (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond