WorldWideScience

Sample records for pvc membranes based

  1. PVC membrane based potentiometric sensor for uranyl ion using thenoyl trifluoro acetone as ionophore

    International Nuclear Information System (INIS)

    Nanda, D.; Chouhan, H.P.S.; Maiti, B.

    2004-01-01

    Uranyl ion selective electrode based on thenoyl trifluoro acetone (TTA) incorporated into a polyvinyl chloride (PVC) membrane has been developed where dibutyl phthalate and sodium tetraphenyl borate have been used as plasticizer and anion excluder respectively. The PVC membrane containing the active ionophore, TTA, and the other ingredients has been directly cast a graphite electrode. The electrode shows near Nernstian response to UO 2 2+ in the concentration range of 10 -1 to 10 -6 mol. L -1 an average slope of 30 mV/decade. Alkali and alkaline earth ions do not interfere with the determination of uranyl ion. Interference of transition metal ions and Th (IV) is eliminated using EDTA. (author)

  2. Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors

    International Nuclear Information System (INIS)

    Yang, C.-C.; Wu, G.M.

    2009-01-01

    A microporous poly(vinyl alcohol)/poly(vinyl chloride) (PVA/PVC) composite polymer membrane was successfully synthesized by a solution casting method and a preferential dissolution method. The characteristic properties of PVA/PVC composite polymer membranes were systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), micro-Raman spectroscopy and AC impedance spectroscopy. The PVA/PVC composite polymer membrane shows excellent thermal property, dimensional stability, and the ionic conductivity; it is due to the addition of secondary PVC polymer fillers. The MnO 2 capacitors with the PVA/PVC composite polymer membrane with 1 M Na 2 SO 4 was assembled and examined. It was found that the MnO 2 capacitor based on a microporous PVA/5 wt.%PVC composite polymer electrolyte membrane exhibited the maximum specific capacitance of 238 F g -1 and the current efficiency of 99% at 25 mV s -1 after 1000 cycle test. The result demonstrates that the novel microporous PVA/PVC composite polymer membrane is a potential candidate for use on the capacitors

  3. Effect of Modified Natural Rubber on PVC-ENR Electrospun Membrane: Thermal and Morphological Studies

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd; Ratnam, C.T.; Pairu Ibrahim

    2016-01-01

    Electrospun fibers membrane (EFM) based on modified epoxidized natural rubber (ENR) and polyvinyl chloride (PVC) was successfully prepared by electro spinning technique. Epoxidized natural rubber was firstly prepared in solution by using 5 L flask and exposed to high intensity UV lamp for degradation. The PVC/ ENR mixture solution concentration were about 16 wt% and blended for 5 hours for homogeneity. The PVC/ ENR mixture were electro spun to form fibers membrane. The sample of electro spun fibers membrane were cured by electron beam. The resulting membranes were characterized for thermal and morphological studies. Thermal decomposition behavior of EFM was analyzed by thermogravimetric analysis (TGA). Thermo gram from TGA showed two stages of degradation for all formulation (90:10, 80:20, 70:30 PVC/ ENR) from 240 to 265 degree Celsius and 400 to 410 degree Celsius, respectively. From the DSC thermo gram of PVC/ ENR electro spun fibers showed that the addition of ENR resulted in the shifting of glass transition temperature (Tg) towards lower temperatures. The morphology of electro spun fibers was examined using scanning electron microscopy and it showed a variety of fiber morphologies. (author)

  4. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    Science.gov (United States)

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  5. Construction of Tb3+ PVC-MembraneElectrode Based on N,N’-Bis(pyrrolylmethylene-2-aminobenzylamine

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2011-01-01

    Full Text Available In this work, we report as new Tb3+-PVC membrane sensor based on N,N’-bis(pyrrolylmethylene- 2-aminobenzylamine (PMA as a suitable ion carrier. Poly vinylchloride (PVC-based membrane composed of PMA with oleic acid (OA as anionic additives and acetophenone (AP as plasticizing solvent mediators. The Tb3+ sensor exhibits a Nernstian slope of 19.7±0.4 mV per decade over the concentration range of 1.0×10-5 to 1.0×10-2 M and a detection limit of 4.6×10-6 M of Tb3+ ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.9–8.1. It has a very short response time, in the whole concentration range (∼5 s. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Tb(III ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations and the determination of Tb3+ ions concentration in mixtures of three different ions.

  6. Comparative Study of PVC-Free All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for the Determination of Dapoxetine Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Aziz, Azza; Khamees, Nesrin; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad

    2016-11-01

    The potentiometric response characteristics and analytical applications of a poly(vinyl chloride) (PVC)-free all-solid-state ion-selective electrode for dapoxetine hydrochloride (DAP) are examined. The Nernstian response of the electrode was evaluated by comparison with PVC-based liquid membrane and carbon paste electrodes. The PVC-free electrode is prepared by direct incorporation of dapoxetine-tetraphenyl borate (DAP-TPB) as a sensing element into a commercial nail varnish containing cellulose acetate propionate. The composite was applied onto a 3 mm diameter graphite disk electrode. The electrode exhibited a Nernstian slope of 56.0 mV/decade in the concentration range of 1 × 10-4 to 1 × 10-2 mol/L with an LOD of 2 × 10-5 mol/L. The electrode is independent of pH in the range of 2 to 6 and showed good selectivity for DAP with respect to a large number of inorganic cations and amino acids. Comparable Nernstian slope, sensitivity, pH range, and selectivity pattern were obtained with a PVC membrane and a carbon paste incorporating DAP-TPB as a sensing element and dioctylphthalate as a solvent mediator. The electrodes were used for the determination of DAP in pure solution and in tablets without extraction with high accuracy and precision (RSD ≤ 2%). The nail varnish solid-state electrode is simple, economical, and rapid when compared with PVC membrane and carbon paste electrodes.

  7. Development of pvc membrane based potentiometric pH sensor using amine type neutral carrier

    International Nuclear Information System (INIS)

    Khan, M.F.

    1999-01-01

    The glass membrane-based pH-electrode has proved its utility over decades. However some limitations are associated with these type of sensors. It can not be used for measuring pH of hydrofluoric acid solution and is difficult to miniaturize for biological applications due to its high resistance and fragility. In the present investigation modified PVC-membranes have been cast by incorporating lipophilic salt tetrabutyl ammonium tetraphenylborate and sodium tetraphenylborate along with electro active compound tri-n-octylamine as neutral carrier. The performance comparison of fabricated pH-sensitive membrane electrode has been carried out regarding their Nernstian slope and life time. The performance comparison of the membrane electrodes fabricated from laboratory grade tri-n-octylamine and those prepared from highly purified ionophore was also carried out. The slopes of the modified membrane electrodes based on pure ionophore were 59 mV/decade H/sup +/ ions and commercial ionophore 54 mV/decade H/sup +/ ions. The linear range was from pH 5-11. In the range of pH 6-10 response was excellent. The measurement of selectivity coefficients for the probable, interfering ions (anions and cations) were also carried out. (author)

  8. Immobilization of ionophore and surface characterization studies of the titanium(III) ion in a PVC-membrane sensor.

    Science.gov (United States)

    Rezayi, Majid; Heng, Lee Yook; Kassim, Anuar; Ahmadzadeh, Saeid; Abdollahi, Yadollah; Jahangirian, Hossein

    2012-01-01

    Novel ionophores comprising various hydroxide and amine structures were immobilized onto poly(vinyl chloride) (PVC) matrices, and these were examined to determine Ti(III) selectivity. To predict the selectivity of Ti(III), a PVC membrane was used to investigate the binding of Ti(III) to c-methylcalix[4]resorcinarene (CMCR). The study showed that the chelating ligand, CMCR, was coordinated selectively to Ti(III) at eight coordination sites involving the oxygen atoms at the interface of the membrane/solution. The membrane was prepared, based on CMCR as an ionophore, sodium tetrakis(4-fluorophenyl) borate (NaTFPB) as a lipophilic ionic additive, and dioctylphthalate (DOP) as a plasticizer. The immobilization of the ionophore and surface characterization studies revealed that the performance of CMCR-immobilized PVC was equivalent to that of mobile ionophores in supported liquid membranes (SLMs). The strengths of the ion-ionophore (CMCR-Ti(OH)(OH(2))(5) (2+)) interactions and the role of ionophores on membranes were studied via UV-Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and and X-ray diffraction (XRD).

  9. Effect of radiation on properties of ENR/PVC/SiO{sub 2} membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Nur Farahein Hadina; Abdullah, Ibrahim; Daik, Rusli; Ahmad, Ishak; Jamil, Suzereen; Lazim, Mohammad Azwan Mat; Othaman, Rizafizah [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan. Malaysia (Malaysia)

    2015-09-25

    In this study epoxidised natural rubber (ENR)/polyvinyl chloride (PVC) matrix was prepared by melt blending. The matrix was swelled in THF and silica as a filler was introduced to the solution to generate pore formation. The ENR/PVC/10 % SiO{sub 2} membrane was prepared using a casting knife technique. The membrane was irradiated using 2 MeV electron beam accelerator at a dose range of 10-100 kGy. The effect of electron beam irradiation of the membrane was studied by undergo characterization of Scanning electron microscope (SEM) and Fourier transform infra red (FTIR). Morphological studies showed that pores generated in ENR/PVC/10 % SiO{sub 2} membrane increased with the dosage of radiation. While FTIR analysis showed the presence of peak of Si-O-Si asymmetric stretching at 834 cm{sup −1}. There are no significant changes in the functional group before and after radiation.

  10. Strontium PVC-membrane sensor based on 2-[(2-mercaptophenylimino)methyl]phenol

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali [Young Researchers Club, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of)], E-mail: haszamani@yahoo.com; Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrine and Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Adib, Mahdi [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-01-10

    The 2-[(2-mercaptophenylimino)methyl]phenol (MPMP) was used as an excellent ionophore in the construction of a Sr{sup 2+} PVC-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 62% nitrobenzen (NB), 5.5% MPMP and 2.5% sodium tetraphenyl borate (NaTBP). This sensor demonstrates a good selectivity and sensitivity towards the strontium ion for many cations, including alkali, alkaline earth, transition and heavy metal ions. The sensor revealed a great enhancement in selectivity coefficients for strontium ions in comparison with the previously reported strontium sensors. The proposed sensor exhibits a Nernstian behavior (with a slope of 29.6 {+-} 0.3 mV per decade) for the concentration range of (1.0 x 10{sup -6}-1.0 x 10{sup -1} M) with a detection limit of 5.5 x 10{sup -7} M (48.2 ng/mL). It illustrates a relatively fast response time in the whole concentration range (< 10 s) and it can be used for at least 10 weeks in a pH range of 2.8-9.6. The developed sensor was successfully used as an indicator electrode in the Sr(II) titration with EDTA and the Sr{sup 2+} ion recovery from binary mixtures.

  11. Construction of Tm3+-PVC membrane sensor based on 1-(2-thiazolylazo)-2-naphthol as sensing material

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Nekoei, Mehdi; Mohammadhosseini, Majid; Ganjali, Mohammad Reza

    2010-01-01

    In this study, a new thulium(III) membrane sensor was constructed. The proposed membrane sensor was fabricated based on a membrane containing 2% sodium tetraphenyl borate (NaTPB) as an anionic additive, 65% benzyl acetate (BA) as solvent mediator, 3% 1-(2-thiazolylazo)-2-naphthol (TN) as ionophore, and 30% poly(vinyl chloride) (PVC). The proposed Tm 3+ electrode exhibits a Nernstian response of 19.5 ± 0.2 mV per decade of thulium concentration, and has a lower detection limit of 8.7 x 10 -7 mol L -1 . The linear range of the sensors was 1.0 x 10 -6 to 1.0 x 10 -2 mol L -1 . It works well in the pH range of 3.2-9.5. Moreover, the recommended selective sensor revealed a comparatively satisfactory selectivity regarding most of the alkali, alkaline earth, some transition and heavy metal ions. The membrane sensor was applied to the determination of fluoride ions in mouth wash samples.

  12. Cyclic Voltammetry of Biopolymer Heparin at PVC Plasticized Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk; Trojánek, Antonín; Langmaier, Jan; Samcová, E.

    2003-01-01

    Roč. 5, - (2003), s. 867-870 ISSN 1388-2481 R&D Projects: GA ČR GA203/04/0424 Institutional research plan: CEZ:AV0Z4040901 Keywords : cyclic voltammetry * PVC plasticized liquit membrane * heparin Subject RIV: CG - Electrochemistry Impact factor: 2.300, year: 2003

  13. All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for Determination of Donepezil Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Khamees, Nesreen; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad; Aziz, Azza

    2017-09-01

    All-solid-state, polyvinyl chloride (PVC) membrane, and carbon paste potentiometric ion-selective electrodes (ISEs) were proposed for the determination of donepezil hydrochloride (DON) in the drug substance and a pharmaceutical formulation. The potentiometric response toward DON was based on the existence of donepezil-tetraphenyl borate (DON-TPB) in a PVC membrane or a carbon paste in the presence of dioctylphthalate. In contrast, the solid-state electrode was prepared by direct incorporation of DON-TPB into a commercial nail varnish without external additives. The electrodes exhibited Nernstian slopes of 55.0, 57.0, and 53.0 mV/decade over the concentration ranges of 1 × 10-5 to 1 × 10-3, 1 × 10-4 to 10-2, and 1 × 10-4 to 5 × 10-3 for the solid-state, PVC membrane, and carbon paste electrodes, respectively. The response of the electrodes is independent of pH in the range of 2-≤8. The electrodes showed good selectivity for DON with respect to a number of inorganic cations and amino acids. The electrodes were used for the determination of DON in pure solution and in pharmaceutical tablets with high accuracy (±2%) and precision (RSD ≤2%). The solid-state electrode is simple, economical, and rapid when compared to the PVC membrane and carbon paste electrodes.

  14. Selective sensing of mercury(II) using PVC-based membranes incorporating recently synthesized 1,3-alternate thiacalix[4]crown ionophore.

    Science.gov (United States)

    Mahajan, Rakesh Kumar; Kamal, Ajar; Kumar, Naresh; Bhalla, Vandana; Kumar, Manoj

    2013-05-01

    The construction and electrodes characteristics of poly(vinylchloride) (PVC)-based polymeric membrane electrode (PME) and coated graphite electrode (CGE), incorporating 1,3-alternate thiacalix[4]crown as ionophore for estimation of Hg(II) ions, are reported here. The best potential response was observed for PME-1 having membrane composition of: ionophore (6.2 mg), PVC (100.0 mg), 2-nitrophenyl octyl ether (2-NPOE; 200.0 mg), and sodium tetraphenyl borate (NaTPB; 2.0 mg); for CGE-1 with the membrane composition: ionophore (3.5 mg), PVC (40.0 mg), 2-NPOE (80.0 mg), and NaTPB (2.0 mg). The electrodes exhibits Nernstian slope of 29.16 mV/decade with PME-1 and 30.39 mV/decade with CGE-1 for Hg(II) ions over wide concentration range, i.e., 1.0 × 10(-1) to 5.0 × 10(-6) M with PME-1 and 1.0 × 10(-1) to 5.0 × 10(-7) M with CGE-1. Lower detection limits were found to be 9.77 × 10(-6) M for PME-1 and 7.76 × 10(-7) M for CGE-1 with response time varying from 10 to 20 s. Also, these electrodes work within pH range of 2.0-6.0 for PME-1 and 1.5-6.5 for CGE-1. Overall, CGE-1 has been found to be better than PME-1. CGE-1 has been used as indicator electrode for the potentiometric titration of Hg(II) ions with EDTA as well as successfully applied for determination of Hg(II) content in wastewater, insecticide, dental amalgam, and ayurvedic medicines samples with very good performance (0.9974 correlation coefficient in the comparison against volumetric method).

  15. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  16. Construction of Tm{sup 3+}-PVC membrane sensor based on 1-(2-thiazolylazo)-2-naphthol as sensing material

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Quchan Branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Nekoei, Mehdi; Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Medical Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, P.O. Box, 14155-6451 (Iran, Islamic Republic of)

    2010-04-06

    In this study, a new thulium(III) membrane sensor was constructed. The proposed membrane sensor was fabricated based on a membrane containing 2% sodium tetraphenyl borate (NaTPB) as an anionic additive, 65% benzyl acetate (BA) as solvent mediator, 3% 1-(2-thiazolylazo)-2-naphthol (TN) as ionophore, and 30% poly(vinyl chloride) (PVC). The proposed Tm{sup 3+} electrode exhibits a Nernstian response of 19.5 {+-} 0.2 mV per decade of thulium concentration, and has a lower detection limit of 8.7 x 10{sup -7} mol L{sup -1}. The linear range of the sensors was 1.0 x 10{sup -6} to 1.0 x 10{sup -2} mol L{sup -1}. It works well in the pH range of 3.2-9.5. Moreover, the recommended selective sensor revealed a comparatively satisfactory selectivity regarding most of the alkali, alkaline earth, some transition and heavy metal ions. The membrane sensor was applied to the determination of fluoride ions in mouth wash samples.

  17. PVC-membrane potentiometric sensors based on a recently synthesized Schiff base for Fe(III ion

    Directory of Open Access Journals (Sweden)

    S. Yousef Ebrahimipur

    2012-12-01

    Full Text Available A potentiometric iron sensor based on the use 3-(2-diethylamino-ethylimino-1,3-dihydro-indol-2-one (DEDIO as an ionophore in poly(vinyl chloride (PVC matrix, is reported. The plasticized membrane sensor exhibits a Nernstian response for Fe(III ions over a wide concentration range (2.0 × 10-6 - 5.0 × 10-2 M with a super Nernstian slope of 26(plus or minus 1 mV per decade. It has a fast response time of less than 12 s and can be used for ten weeks without any considerable divergences in its potentials the electrode can be used in the pH range 4.5-8.0. The proposed sensor shows fairly good discriminating ability towards Fe(III ion in comparison with a large number of alkali, alkaline earth, transition and heavy metal ions. The sensor was used as indicator electrode in potentiometric titration of Fe(III ions vs. EDTA.DOI: http://dx.doi.org/10.4314/bcse.v26i1.7

  18. Potentiometric Determination of Ketotifen Fumarate in Pharmaceutical Preparations and Urine Using Carbon Paste and PVC Membrane Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Eman Y. Z. Frag

    2011-01-01

    Full Text Available This study compares between unmodified carbon paste (CPE; the paste has no ion pair and polyvinyl chloride (PVC membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF, where sodium tetraphenylborate (NaTPB was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10−7 to 10−2 mol L−1. The electrodes show Nernstian slope value of 52.51±0.20 and 51.51±0.25 mV decade−1 for CPE and PVC membrane electrodes at 30∘C, respectively. The potential is nearly stable over the pH range 3.0–6.0 and 2.0–7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets, and biological fluid (urine. The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97±0.53 and 98.62±0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.

  19. Potentiometric determination of ketotifen fumarate in pharmaceutical preparations and urine using carbon paste and PVC membrane selective electrodes.

    Science.gov (United States)

    Frag, Eman Y Z; Mohamed, Gehad G; Khalil, Mohamed M; Hwehy, Mohammad M A

    2011-01-01

    This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10(-7) to 10(-2) mol L(-1). The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade(-1) for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0-6.0 and 2.0-7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.

  20. Charge Transfer Resistance and Differential Capacity of the Plasticized PVC Membrane/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Stejskalová, Květoslava; Samec, Zdeněk

    2002-01-01

    Roč. 521, 1/2 (2002), s. 81-86 ISSN 0022-0728 R&D Projects: GA AV ČR IAA4040902 Institutional research plan: CEZ:AV0Z4040901 Keywords : impedance * PVC plasticized membrane * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 2.027, year: 2002

  1. Immobilization of tris(2 pyridyl methylamine in a PVC-Membrane Sensor and Characterization of the Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rezayi Majid

    2012-05-01

    Full Text Available Abstract Background Due to the increasing industrial use of titanium compounds, its determination is the subject of considerable efforts. The ionophore or membrane active recognition is the most important component of any polymeric membrane sensor. The sensor’s response depends on the ionophore and bonding between the ionophore and the target ion. Ionophores with molecule-sized dimensions containing cavities or semi-cavities can surround the target ion. The bond between the ionophore and target ion gives different selectivity and sensitivity toward the other ions. Therefore, ionophores with different binding strengths can be used in the sensor. Results In the present work, poly (vinyl chloride (PVC based membrane incorporating tris (2 pyridyl methylamine (tpm as an ionophore has been prepared and explored as a titanium(III selective sensor. Conclusions The strengths of the ion–ionophore (Ti(OH2+-tpm interactions and the role of ionophore on membrane were tested by various techniques such as elemental analysis, UV–vis, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and powder X-ray diffraction (XRD. All data approved the successful incorporation of organic group via covalent bond.

  2. Evaluation of the Standard Ion Transfer Potentials for PVC Plasticized Membranes from Voltammetric Measurements

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Stejskalová, Květoslava; Samec, Zdeněk

    2001-01-01

    Roč. 496, č. 1 (2001), s. 143-147 ISSN 0022-0728. [Symposium in Kyoto. Kyoto, 02.03.2000] R&D Projects: GA AV ČR IAA4040902 Institutional research plan: CEZ:AV0Z4040901 Keywords : ion voltammetry * PVC plasticized membrane * standard ion transfer potential Subject RIV: CG - Electrochemistry Impact factor: 1.960, year: 2001

  3. Comparative study of three different kinds of geo membranes (PVC-P, HDPE, EPDM) used in the waterproofing of reservoirs; Estudio comparativo de tres geomembranas de distinta naturaleza (PVC-P, PEAD, EPDM) empleadas en la impermeabilizacion de balsas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Fernandez, M.; Castillo Rubi, F.; Soriano Carrillo, J.; Noval Arango, A. M.; Touze-Foltz, N.; Pargada Iglesias, L.; Rico Arnaiz, G.; Aguilar gonzalez, E.

    2014-02-01

    This work describes the long-term behaviour of three kinds of geo membranes which are constituted by plasticised poly vinyl chloride (PVC-P), high density polyethylene (HDPE) and terpolymer rubber of ethylene-propylene-dienic monomer (EPDM) used as the waterproofing system of the reservoirs Los Llanos de Mesa, San Isidro and El Golfo, respectively. Characteristics of the three original geo membranes and their behaviour along time are presented. Thicknesses, content and nature of the plasticizers ( in PVC-P), tensile properties dynamic and static puncture, fold ability at low temperature, shore hardness, tear resistance and carbon black ( in HDPE), joint strength (shear and peeling test) and microscopy, both optical and electronic scanning tests were carried out. Results obtained conclude with a long-term durability of geo membranes, independently of their macromolecular nature. These characteristics were determined by advanced analytical techniques in PVC-P samples, such as fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography (GC) and Mass Spectrometry (MS). Spectrometry (MS). (Author)

  4. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  5. Fabrication of a PVC membrane samarium(III) sensor based on N,N′,N″-tris(4-pyridyl)trimesic amide as a selectophore

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Naghavi-Reyabbi, Fatemeh; Faridbod, Farnoush; Mohammadhosseini, Majid; Ganjali, Mohammad Reza; Tadjarodi, Azadeh; Rad, Maryam

    2013-01-01

    A new ion-selective electrode for Sm 3+ ion is described based on the incorporation of N,N′,N″-tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 ± 0.5 mV decade −1 over a wide concentration range of 1.0 × 10 −2 and 1 × 10 −6 mol L −1 , with a lower detection limit of 4.7 × 10 −7 mol L −1 and satisfactor applicable pH range of 3.6–9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm 3+ over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm 3+ . Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: ► A new Sm 3+ -PVC membrane sensor is introduced for determination of Sm 3+ ions in the solutions. ► N,N′,N″-tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. ► Detection limit of the sensor is 4.7 × 10 −7 mol L −1 with a short response time of less than 10 s.

  6. Cation Recognition: Novel Potentiometric PVC-Membrane Sensor based on Meso-octamethylcalix[4]pyrrole for the Determination of Trace Amounts of Titanium (III) Ions

    International Nuclear Information System (INIS)

    Saeid Ahmadzadeh; Anuar Kassim Majid Rezayi

    2011-01-01

    The present work deals with developing a novel high selective membrane electrode based on meso-octamethylcalix[4]pyrrole for accurate determination of trace amount of titanium (III) ions in real sample solutions. The amounts of ionophore (4 mg), PVC (33 mg), dioctyl phthalate (DOP) as plasticizer (62.8 mg) and sodium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate (NaTFPB) as an ionic additive (0.2 mg) were optimized in the preparation of the membrane. The electrode exhibited a linear response with a near Nernstian slope of 29.49±0.16 (mV per decade of activity) over the pH range from 1 to 3 with a satisfactory concentration range of 1.0 x 10 -6 to 1.0 x x10 -2 M. The developed sensor exhibited good reproducibility over a period of about 3 months with a fast response time of 15 seconds. (author)

  7. Web Based ATM PVC Management

    NARCIS (Netherlands)

    van der Waaij, B.D.; Sprenkels, Ron; van Beijnum, Bernhard J.F.; Pras, Aiko

    1998-01-01

    This paper discusses the design of a public domain web based ATM PVC Management tool for the Dutch SURFnet research ATM network. The aim of this tool is to assists in the creation and deletion of PVCs through local and remote ATM network domains. The tool includes security mechanisms to restrict the

  8. Comparative studies of neodymium (III)-selective PVC membrane sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K., E-mail: vinodfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India); Goyal, Rajendra N.; Sharma, Ram A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2009-08-04

    Sensors based on two neutral ionophores, N,N'-bis((1H-pyrrol-2-yl)methylene)cyclohexane-1,2-diamine (L{sub 1}) and 3,3'-(cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene) bis(methan-1-yl-1-ylidene)bis(5-hydroxymethyl)pyridine-2-ol) (L{sub 2}) are described for quantification of neodymium (III). Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), dibutyl butylphosphonate (DBBP), tri-n-butyl phosphates (TBP), dioctylpthalate (DOP) and chloronapthalen (CN) and anion excluder, sodiumtetraphenylborate (NaTPB) has been studied. The membrane composition of PVC:o-NPOE:ionophore (L{sub 1}):NaTPB (w/w; mg) of 150:300:5:5 exhibited best performance. The sensor with ionophore (L{sub 1}) exhibits significantly enhanced selectivity towards neodymium (III) in the concentration range 5.0 x 10{sup -7} to 1.0 x 10{sup -2} M with a detection limit of 1.0 x 10{sup -7} M and a Nernstian compliance (19.8 {+-} 0.3 mV decade{sup -1} of activity) within pH range 4.0-8.0. The response time of sensor was found as 10 s. The influence of the membrane composition and possible interfering ions has also been investigated on the response properties of the electrode. The fast and stable response, good reproducibility and long-term stability of the sensor are observed. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for neodymium. The proposed electrode shows fairly good discrimination of neodymium (III) from other cations. The application of prepared sensor has been demonstrated in the determination of neodymium (III) in spiked water samples.

  9. Fabrication of a PVC membrane samarium(III) sensor based on N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide as a selectophore

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Naghavi-Reyabbi, Fatemeh [Resident of General Surgery, Endoscopic and Minimaly Invasive Surgery Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Tadjarodi, Azadeh; Rad, Maryam [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A new ion-selective electrode for Sm{sup 3+} ion is described based on the incorporation of N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide (TPTA) in a poly(vinylchloride) (PVC) matrix. The membrane sensor comprises nitrobenzene (NB) as a plasticizer, and oleic acid (OA) as an anionic additive. The sensor with the optimized composition shows a Nernstian potential response of 19.8 {+-} 0.5 mV decade{sup -1} over a wide concentration range of 1.0 Multiplication-Sign 10{sup -2} and 1 Multiplication-Sign 10{sup -6} mol L{sup -1}, with a lower detection limit of 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} and satisfactor applicable pH range of 3.6-9.2. Having a short response time of less than 10 s and a very good selectivity towards the Sm{sup 3+} over a wide variety of interfering cations (e.g. alkali, alkaline earth, transition and heavy metal ions) the sensor seemed to be a promising analytical tool for determination of the Sm{sup 3+}. Hence, it was used as an indicator electrode in the potentiometric titration of samarium ion with EDTA. It was also applied to the direct samarium recovery in binary mixtures. - Highlights: Black-Right-Pointing-Pointer A new Sm{sup 3+}-PVC membrane sensor is introduced for determination of Sm{sup 3+} ions in the solutions. Black-Right-Pointing-Pointer N,N Prime ,N Double-Prime -tris(4-pyridyl)trimesic amide was used as a suitable selectophore for samarium sensor. Black-Right-Pointing-Pointer Detection limit of the sensor is 4.7 Multiplication-Sign 10{sup -7} mol L{sup -1} with a short response time of less than 10 s.

  10. Improving the Response of Copper(II) Selective PVC Membrane Electrode by Modification of N2S2 Donor Ligand.

    Science.gov (United States)

    Brinić, Slobodan; Buzuk, Marijo; Generalić, Eni; Bralić, Marija

    2010-06-01

    S,S'-bis(2-aminophenyl)ethanebis(thioate), (APhET), is reported as N2S2 ligand which form chelate with copper of high stability as compared to the other metals. Two modification of APhET, simpler 1,2-di-(o-aminophenylthio)ethane (DAPhTE), and the complex one 1,2-di-(o-salicylaldiminophenylthio)ethane (SAPhTE), were examined as the active material for copper(II) ion selective PVC membrane electrodes, and observed results are correlated. The obtained results with DAPhTE based electrodes show that only coordination abilities of ligand are insufficient for preparing the efficient membrane material. On the other hand, the results that are achieved with electrodes based on SAPhTE actuate interaction of ligand with polymer membrane matrix and necessity of ionophore immobilization in membrane. Optimized SAPhTE based membrane electrode has a linear range down to 10-6 mol L-1, with slope of 27.0 mV per decade, very rapid response time (under 5 seconds) and detection limit of 5.1 × 10-7 mol L-1. Such electrode is suitable for determination of copper(II) in analytical measurements by direct potentiometry and in potentiometric titrations, within pH between 2 and 7. The electrode is selective for copper(II) ions over a large number of metal ions, with the exception on Hg2+ ion when is present in concentrations above 2 × 10-5 mol L-1.

  11. Photostabilizing Efficiency of PVC in the Presence of Schiff Bases as Photostabilizers

    Directory of Open Access Journals (Sweden)

    Emad Yousif

    2015-11-01

    Full Text Available The photostabilization of polyvinyl chloride (PVC films by Schiff bases was investigated. Polyvinyl chloride films containing 0.5 wt % Schiff bases were produced using the same casting method as that used for additive-free PVC films from tetrahydrofuran (THF solvent. The photostabilization activities of these compounds were determined by monitoring the carbonyl, polyene and hydroxyl indices with irradiation time. The changes in viscosity average molecular weight of PVC with irradiation time were also monitored using THF as a solvent. The quantum yield of chain scission (Φcs for the studied complexes in PVC was estimated to range between 4.72 and 8.99 × 10−8. According to the experimental results, several mechanisms were suggested, depending on the structure of the additive. Ultra violet (UV absorption, peroxide decomposition and radical scavenging were suggested as the photostabilizing mechanisms.

  12. Flow Injection Potentiometric Determination of Cd2+ Ions Using a Coated Graphite Plasticized PVC-Membrane Electrode Based on 1, 3-Bis(2-cyanobenzene)triazene.

    Science.gov (United States)

    Shamsipur, Mojtaba; Sahari, Shokat; Payehghadr, Mahmood; Alizadeh, Kamal

    2011-09-01

    1, 3-Bis(2-cyanobenzene)triazene, L, was used as a suitable ionophore for the fabrication of a new PVC-based polymeric membrane coated graphite electrode for selective sensing of Cd2+ ion. The electrode exhibited a selective linear Nernstian response to Cd2+ ion at an optimal pH range of 6-9 with a limit of detection of 8.0 × 10-6 M and a fast response time of about 2 s. The electrode was used as a proper detection system in flow-injection potentiometry of cadmium ion and resulted in well defined peaks for cadmium ions with stable baseline, excellent reproducibility and high sampling rates of over 100 injections per hour. It showed good stability, reproducibility and fast response time. The practical utility of the proposed system has also been reported.

  13. Polymeric membrane sensors based on Cd(II) Schiff base complexes for selective iodide determination in environmental and medicinal samples.

    Science.gov (United States)

    Singh, Ashok Kumar; Mehtab, Sameena

    2008-01-15

    The two cadmium chelates of schiff bases, N,N'-bis(salicylidene)-1,4-diaminobutane, (Cd-S(1)) and N,N'-bis(salicylidene)-3,4-diaminotoluene (Cd-S(2)), have been synthesized and explored as ionophores for preparing PVC-based membrane sensors selective to iodide(I) ion. Potentiometric investigations indicate high affinity of these receptors for iodide ion. Polyvinyl chloride (PVC)-based membranes of Cd-S(1) and Cd-S(2) using as hexadecyltrimethylammonium bromide (HTAB) cation discriminator and o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), acetophenone (AP) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as iodide-selective sensors. The best performance was shown by the membrane of composition (w/w) of (Cd-S(1)) (7%):PVC (31%):DBP (60%):HTAB (2%). The sensor works well over a wide concentration range 5.3x10(-7) to 1.0x10(-2)M with Nernstian compliance (59.2mVdecade(-1) of activity) within pH range 2.5-9.0 with a response time of 11s and showed good selectivity for iodide ion over a number of anions. The sensor exhibits adequate life (3 months) with good reproducibility (S.D.+/-0.24mV) and could be used successfully for the determination of iodide content in environmental water samples and mouth wash samples.

  14. PAN-Immobilized PVC-NPOE Membrane for Environmentally Friendly Sensing of Cd(II Ions

    Directory of Open Access Journals (Sweden)

    Moersilah Moersilah

    2017-04-01

    Full Text Available A simple, cheap and environmentally friendly analytical method of Cd(II in the aqueous system has been developed by immobilization of 1-(2-pyridilazo-2-naphtol (PAN in poly vinyl chloride (PVC matrix and nitrophenyl octyl ether (NPOE as a plasticizer. Upon contact with Cd(II in solution, the color of sensor membrane changes from dark yellow to dark red, which is due to the formation of Cd(II–PAN complex. The best sensing results were obtained at pH 8.0 and λmax 558 nm. The dimension of the proposed sensor membrane was 0.8 cm x 2 cm with a thickness of 0.05 mm, the volume of sample was 2 mL with the Cd(II concentration range of  0 – 1.2 ppm. The limit of detection of the method was found to be 0.432 + 0.104 ppm, which was reversible. The proposed methods have been applied in the determination of Cd(II in water samples after addition of internal standard.

  15. The viability of PVC/Al blister reuse and PVC property studies after ionizing radiation processing

    International Nuclear Information System (INIS)

    Castro, Alex Terela Pinheiro de

    2008-01-01

    The objective of this research was to separate, by means of a process of dissolution, the PVC and the aluminum that compose blister packs, generally used for pharmaceutical pills. We also studied the effect of the ionizing radiation on the PVC, and, finally, the mechanical recycling of the separated PVC, by a process of extrusion. The material we used in this work is the surplus of the pharmaceutical industry, i.e., packs with defects or burrs. We ground the material to facilitate the handling and the homogenization of the system. After that, we chose two bases for the dissolution of the aluminum: the sodium hydroxide and the potassium hydroxide. We used a system with two concentrations (1 and 2M) for each base, and for every solution we had also an agitated and a non-agitated process. From this method resulted eight experiments. After the dissolution, the samples of the material were submitted to ionizing radiation with doses of 50, 100, 150 and 200 kGy in the Dynamitron II electron accelerator of the CTR-IPEN/CNEN-SP. In the following, these samples were submitted to traction resistance tests to analyze which modifications the irradiation caused. The last step of the research was the recycling of the PVC separated from the Aluminum. We made the recycling in industrial equipment, a PVC tube extruder. The material was combined with lubricants, heat stabilizers and pigment in an intensive mixer and processed into the form of rigid PVC electrical conduits. After the eight experiments, the system with potassium hydroxide base, concentration of 2M and agitation presented the best relation between time of dissolution and characteristics of the resulting material, without degradation of the PVC. In the irradiated samples, the color of the material changed as well as its extension that was as larger as the dose of irradiation they received, indicating the dissociation of the PVC molecules. The extrusion of the PVC was successfully realized: about 200 kg (440 pounds) of

  16. Electrospinning of PVC with natural rubber

    Science.gov (United States)

    Othman, Muhammad Hariz; Mohamed, Mahathir; Abdullah, Ibrahim

    2013-11-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber's mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  17. Electrospinning of PVC with natural rubber

    International Nuclear Information System (INIS)

    Othman, Muhammad Hariz; Abdullah, Ibrahim; Mohamed, Mahathir

    2013-01-01

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber

  18. Electrospinning of PVC with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Muhammad Hariz; Abdullah, Ibrahim [Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Mohamed, Mahathir [Radiation Processing Technology Division (BTS), Malaysian Nuclear Agency, Bangi, 43000, Kajang (Malaysia)

    2013-11-27

    Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.

  19. Effects of silica composition on gas permeability of ENR/PVC ...

    African Journals Online (AJOL)

    At higher SiO2 loadings, the mechanical strength of the membrane decreased due to the agglomeration of SiO2 particles. Gas permeation test was done on ENR/PVC/SiO2 membranes using NO2 gas and CO2 gas. The permeability of both gasses increased with the amount of SiO2 added to the membrane, which attributed ...

  20. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  1. An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.

    Science.gov (United States)

    Park, Won-Hyeong; Shin, Eun-Jae; Yun, Sungryul; Kim, Sang-Youn

    2018-01-01

    In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.

  2. The viability of PVC/Al blister reuse and PVC property studies after ionizing radiation processing; Viabilizacao do reaproveitamento dos 'blister' de PVC/Al e estudos das propriedades do PVC apos processamento por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alex Terela Pinheiro de

    2008-07-01

    The objective of this research was to separate, by means of a process of dissolution, the PVC and the aluminum that compose blister packs, generally used for pharmaceutical pills. We also studied the effect of the ionizing radiation on the PVC, and, finally, the mechanical recycling of the separated PVC, by a process of extrusion. The material we used in this work is the surplus of the pharmaceutical industry, i.e., packs with defects or burrs. We ground the material to facilitate the handling and the homogenization of the system. After that, we chose two bases for the dissolution of the aluminum: the sodium hydroxide and the potassium hydroxide. We used a system with two concentrations (1 and 2M) for each base, and for every solution we had also an agitated and a non-agitated process. From this method resulted eight experiments. After the dissolution, the samples of the material were submitted to ionizing radiation with doses of 50, 100, 150 and 200 kGy in the Dynamitron II electron accelerator of the CTR-IPEN/CNEN-SP. In the following, these samples were submitted to traction resistance tests to analyze which modifications the irradiation caused. The last step of the research was the recycling of the PVC separated from the Aluminum. We made the recycling in industrial equipment, a PVC tube extruder. The material was combined with lubricants, heat stabilizers and pigment in an intensive mixer and processed into the form of rigid PVC electrical conduits. After the eight experiments, the system with potassium hydroxide base, concentration of 2M and agitation presented the best relation between time of dissolution and characteristics of the resulting material, without degradation of the PVC. In the irradiated samples, the color of the material changed as well as its extension that was as larger as the dose of irradiation they received, indicating the dissociation of the PVC molecules. The extrusion of the PVC was successfully realized: about 200 kg (440 pounds) of

  3. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    Science.gov (United States)

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  4. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    International Nuclear Information System (INIS)

    Khamjumphol, Utisawadee; Watchasit, Sarayut; Suksai, Chomchai; Janrungroatsakul, Wanwisa; Boonchiangma, Suthasinee; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2011-01-01

    Highlights: → New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. → Synthesis and characterization data were reported. → Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. → Two TPA units on calixarene showed the best selectivity toward Cd 2+ . → Applied for sensing Cd 2+ from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd 2+ was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd 2+ . The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg -1 ) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 ± 0.6 mV decade -1 of activity for Cd 2+ ions and a working concentration range of 1.6 x 10 -6 -1.0 x 10 -2 M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd 2+ from the oxidation of CdS QDs

  5. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Khamjumphol, Utisawadee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Watchasit, Sarayut [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Suksai, Chomchai [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand); Janrungroatsakul, Wanwisa [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Boonchiangma, Suthasinee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Tuntulani, Thawatchai [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ngeontae, Wittaya, E-mail: wittayange@kku.ac.th [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2011-10-17

    Highlights: {yields} New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. {yields} Synthesis and characterization data were reported. {yields} Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. {yields} Two TPA units on calixarene showed the best selectivity toward Cd{sup 2+}. {yields} Applied for sensing Cd{sup 2+} from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd{sup 2+} was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd{sup 2+}. The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg{sup -1}) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 {+-} 0.6 mV decade{sup -1} of activity for Cd{sup 2+} ions and a working concentration range of 1.6 x 10{sup -6}-1.0 x 10{sup -2} M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed

  6. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  7. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    Science.gov (United States)

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Europium (III) PVC membrane sensor based on N-pyridine-2-carboxamido-8-aminoquinoline as a sensing material

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Kamjoo, Rahman; Mohammadhosseini, Majid; Zaferoni, Mojdeh; Rafati, Zynab; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia

    2012-01-01

    Conductometric study in acetonitrile solution shows the selectivity of PCQ toward europium ion. Therefore, a new europium PVC membrane electrode was prepared based on N-pyridine-2-carboxamido-8-aminoquinoline (PCQ) as an ion carrier. The electrode has a wide concentration range from 1.0 × 10 −2 and 1.0 × 10 −6 mol L −1 , Nernstian slope of 19.8 ± 0.3 mV per decade and a detection limit of 6.4 × 10 −7 mol L −1 . The potentiometric response is pH independent in the range of 2.4–7.4. The proposed sensor has a relatively fast response time less than 10 s and it can be used for at least 2 months without any considerable divergence in its potentials. The proposed electrode revealed good selectivity toward europium ion in comparison with variety of other metal ions. The practical utility of the electrodes has been demonstrated by their use as indicator electrodes in the potentiometric titration of Eu 3+ ions with EDTA and for determination of Eu 3+ ion concentration in mixtures of two and three different ions. - Highlights: ► A new ion carrier is introduced to preparation of a selective sensor for Eu 3+ ions. ► This technique is very simple and it's not necessary to use sophisticated equipment. ► The novelty of this work is the high affinity of the ionophore toward the Eu 3+ ions. ► The sensor is superior to the formerly reported Eu 3+ sensors in terms of selectivity.

  9. Zinc(II PVC-based membrane sensor based on 5,6-benzo-4,7,13,16,21,24- hexaoxa-1,10-diazabicyclo[8,8,8]hexacos-5-ene

    Directory of Open Access Journals (Sweden)

    Zamani Hassan Ali

    2006-01-01

    Full Text Available The 5,6-benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]hexacos-5-ene (BHDE was used as an excellent ionophore in construction of a Zn(II PVC-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride, 64.5% nitrobenzen (NB, 2.5% BHDE and 3% sodium tetraphenylborate (NaTPB. This sensor shows very good selectivity and sensitivity towards zinc ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The sensor revealed a great enhancement in selectivity coefficients for zinc ions, in comparison to the previously reported zinc sensors. The proposed sensor exhibits a Nernstian behavior (with slope of 29.1 ? 0.4 mV per decade over a wide concentration range (1.0 10-6-1.0 10-1 mol L-1 with a detection limit of 6.3 x10-7 mol L-1 (41.2 ng mL-1. It shows relatively fast response time, in the whole concentration range (< 10s, and can be used for at least 10 weeks in a pH range of 2.8-7.3. The proposed sensor was successfully used in direct determination of zinc ions in wastewater of industrial zinc electroplating companies, and also as an indicator electrode in titration with EDTA.

  10. Long-Term Performance of the Laguna de Barlovento Reservoir Water-Proofing using a PVC-P Geo membrane

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.; Leiro Lopez, A.; Soriano Carrillo, J.; Crespo Mucientes, M.; Zornberg, J.; Aguilar Gonzalez, E.; Rico Arnaiz, G.; Pargada Iglesias, L.

    2014-01-01

    The Laguna de Barlovento reservoir was one of the most important European hydraulic projects at the time of its construction because of its high capacity and challenging location. At the time, the designers decided to waterproof this reservoirs with a geo membrane of plasticized polyvinyl chloride (PVC-P). This paper documents the initial characteristics of the geo membrane and its performance since its installation until 2010. The material characterization includes a comprehensive testing program, the results of which are presented. They include quantification of the geo membrane thickness, amount and nature of plasticizers, tensile properties, fold ability under low temperatures, dynamic impact resistance, puncture resistance, welding strength (both in the manufacturing facility and in the field), as well as the use of techniques involving optical and scanning electron microscopy. In addition, advanced analytical techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography (GC) and Mass spectrometry (MS), were used in order to identify the plasticizers used in the geo membrane formulation. Fold ability tests were found to provide early indication of degradation. Results from reflection optical and electron scanning microscopy showed that, after 19 nineteen years of installation, the geo membrane remains in good conditions, particularly on the non-exposed side. (Author)

  11. Model-based performance and energy analyses of reverse osmosis to reuse wastewater in a PVC production site.

    Science.gov (United States)

    Hu, Kang; Fiedler, Thorsten; Blanco, Laura; Geissen, Sven-Uwe; Zander, Simon; Prieto, David; Blanco, Angeles; Negro, Carlos; Swinnen, Nathalie

    2017-11-10

    A pilot-scale reverse osmosis (RO) followed behind a membrane bioreactor (MBR) was developed for the desalination to reuse wastewater in a PVC production site. The solution-diffusion-film model (SDFM) based on the solution-diffusion model (SDM) and the film theory was proposed to describe rejections of electrolyte mixtures in the MBR effluent which consists of dominant ions (Na + and Cl - ) and several trace ions (Ca 2+ , Mg 2+ , K + and SO 4 2- ). The universal global optimisation method was used to estimate the ion permeability coefficients (B) and mass transfer coefficients (K) in SDFM. Then, the membrane performance was evaluated based on the estimated parameters which demonstrated that the theoretical simulations were in line with the experimental results for the dominant ions. Moreover, an energy analysis model with the consideration of limitation imposed by the thermodynamic restriction was proposed to analyse the specific energy consumption of the pilot-scale RO system in various scenarios.

  12. Enhanced Design of a Soft Thin-Film Vibrotactile Actuator Based on PVC Gel

    Directory of Open Access Journals (Sweden)

    Won-Hyeong Park

    2017-09-01

    Full Text Available We fabricated a soft thin-film vibrotactile actuator, which can be easily inserted into wearable devices, based on an electroactive PVC gel. One of the most important factors in fabricating a soft and thin vibrotactile actuator is to create vibrational force strong enough to stimulate human skin in a wide frequency range. To achieve this, we investigate the working principle of the PVC gel and suggest a new structure in which most of electric energy contributes to the deformation of the PVC gel. Due to this structure, the vibrational amplitude of the proposed PVC gel actuator could considerably increase (0.816 g (g = 9.8 m/s2 at resonant frequency. The vibrotactile amplitude is proportional to the amount of input voltage. It increased from 0.05 g up to 0.416 g with increasing applied voltages from 200 V to 1 kV at 1 Hz. The experimental results show that the proposed actuator can create a variety of haptic sensations.

  13. Europium (III) PVC membrane sensor based on N-pyridine-2-carboxamido-8-aminoquinoline as a sensing material

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Kamjoo, Rahman [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Zaferoni, Mojdeh; Rafati, Zynab [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush [Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Meghdadi, Soraia [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2012-04-01

    Conductometric study in acetonitrile solution shows the selectivity of PCQ toward europium ion. Therefore, a new europium PVC membrane electrode was prepared based on N-pyridine-2-carboxamido-8-aminoquinoline (PCQ) as an ion carrier. The electrode has a wide concentration range from 1.0 Multiplication-Sign 10{sup -2} and 1.0 Multiplication-Sign 10{sup -6} mol L{sup -1}, Nernstian slope of 19.8 {+-} 0.3 mV per decade and a detection limit of 6.4 Multiplication-Sign 10{sup -7} mol L{sup -1}. The potentiometric response is pH independent in the range of 2.4-7.4. The proposed sensor has a relatively fast response time less than 10 s and it can be used for at least 2 months without any considerable divergence in its potentials. The proposed electrode revealed good selectivity toward europium ion in comparison with variety of other metal ions. The practical utility of the electrodes has been demonstrated by their use as indicator electrodes in the potentiometric titration of Eu{sup 3+} ions with EDTA and for determination of Eu{sup 3+} ion concentration in mixtures of two and three different ions. - Highlights: Black-Right-Pointing-Pointer A new ion carrier is introduced to preparation of a selective sensor for Eu{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple and it's not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The novelty of this work is the high affinity of the ionophore toward the Eu{sup 3+} ions. Black-Right-Pointing-Pointer The sensor is superior to the formerly reported Eu{sup 3+} sensors in terms of selectivity.

  14. Effect of casting solvents and filler quantity on the preparation and physiochemical properties of PVC-bentonite based composite polymeric membranes

    International Nuclear Information System (INIS)

    Hamid, A.; Mukhtar, A.; Ghauri, M. S.; Ali, A.

    2013-01-01

    Two series of Composite Polymeric Membranes (CPMs) based on Poly (Vinyl Chloride) (PVC) and inorganic filler were prepared by solvent casting method, using Tetrahydrofuran (THF) and a mixture of THF and Dimethylsulfoxide (DMSO). The different percentages (5-35 %) of Bentonite clay (79-89 mesh, ASTM) filler were used. The physicochemical parameters of the CPMs i.e. degree of perpendicular swelling, liquid uptake (water, methanol and ethanol), density, ion adsorption capacity (IAC), porosities, electrical resistivity and conductivities were evaluated. The Type-B CPMs cast with THF and DMSO mixture have greater values of the above parameters except density than the Type-A CPMs cast with THF only. The CPMs having more filler show more liquid uptake. The uptake of Water, ethyl alcohol (EtOH), 5M methanol and methanol (MeOH) in Type-B CPMs was found 8-11, 10.12-12.83, 3.40-10.88 and 11.37-15.25 times more than Type-A CPMs. Proton ion adsorption capacity of Type-B CPMs was calculated 2.83 to 8.4 times more than Type-A CPMs. The porosity range of Type-A CPMs was observed 0.0377 to 0.093, 0.0227 to 0.0909, 0.02 to 0.0408 and 0.0476 to 0.1112; whereas porosity range in Type-B CPMs were noted 0.1955 to 0.4919, 0.1477 to 0.4835, 0.115 to 0.2554 and 0.1177 to 0.4447 in deionized water, EtOH, 5M MeOH and MeOH respectively. The conductivity of Type-B CPMs was 150-333 times greater than Type-A CPMs. These all characteristics were compared with pure Poly (Vinyl Chloride) membrane (prepared and studied by same method) cast with DMSO and without DMSO. (author)

  15. Studies of LENRA-Toughened PVC non-woven membranes prepared by electro spinning technique

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed; Khirul Hafiz mohd Yusof

    2010-01-01

    Lately research in use of so-called green chemicals draws strong interest from research community due to the climate change issues. Malaysia is in strong position to take this advantage because we are among the world biggest producers of natural rubber and palm oil - the two sources of important green renewable chemical feedstock in the near future. For the last couple of years we have shown how modified natural rubbers especially liquid natural rubber and its derivatives such as liquid epoxidized natural rubber acrylate (LENRA) could be used in various applications via among others sol-gel technique and radiation curing technology. This time around we will show another application on how non-woven membranes made from PVC can be prepared by electro spinning technique using radiation curable LENRA as toughener. The electro spinning technique has great potential in producing nano fiber materials to be used in various applications to ensure sustainable energy and environments for the future. (author)

  16. Application of N-Quinoline-2-carboxamido-8-aminoquinoline in Fabrication of a Ho(III-PVC Membrane Sensor

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2011-01-01

    Full Text Available The N-quinoline-2-carboxamido-8-aminoquinoline (QCA was used as a suitable ion carrier in the construction of a Ho(III PVC-based membrane sensor. This sensor demonstrated good selectivity and sensitivity towards the holmium ion for a broad variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The proposed electrode exhibits a linear dynamic range between 1.0×10-6 and 1.0×10-2 M, with a near Nernstian slope of 20.4±0.3 mV per decade and a detection limit of 4.2×10-7 M. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride, 56% nitrobenzene, 2% sodium tetraphenyl borate, 10% oleic acid and 2% QCA. The potentiometric response of the constructed electrode is pH independent in the range of 2.4-7.4. The sensor possesses the advantages of short conditioning time, fast response time (∼ 5 s and especially, good selectivity towards transition and heavy metal and some mono, di and trivalent cations. The Ho3+ sensor was successfully applied as an indicator electrode in the potentiometric titration of Ho(III ions with EDTA. The electrode was also used for the determination of Ho3+ ions in mixtures of different ions and the determination of the fluoride ion in mouth wash solutions.

  17. A reciclagem de PVC no Brasil Recycling of PVC Brazil

    Directory of Open Access Journals (Sweden)

    Ana Magda Piva

    1999-12-01

    Full Text Available Esta pesquisa discute as possibilidades práticas da reciclagem de PVC. Na reciclagem de polímeros, a do PVC representa uma importante parcela. PVC é um polímero que é usado em uma ampla faixa de produtos: filmes, fios, cabos, em compostos para uma variedade de formas. A reciclagem é uma técnica vantajosa, capaz de reproduzir as propriedades do polímero original, no polímero reciclado e isto em condições razoavelmente econômicas. A tecnologia brasileira, em relação a produtos reciclados, apresenta algumas diferenças da reciclagem tradicional. Métodos alternativos de reciclagens são necessários se os processos não desvalorizam os resultados finais.This research discuss the practical possibilities of recycling PVC. PVC, plays an important part in the recycleability of polymers; PVC is a polymer which is used in a very wide range of products -films, wire, cabes, in compounds for a variety of forms. Recycling is only worthwile, one is able to reproduce the original polymer properties in the polymer being recycled, and this under reasonable economics conditions. The brasilian technology that produces recycled products is a little different from the tradicional recycling. Therefore alternative methods to recycle are needed if recycling is not to devalue the end results.

  18. Improved permeation performance and fouling-resistance of Poly(vinyl chloride/Polycarbonate blend membrane with added Pluronic F127

    Directory of Open Access Journals (Sweden)

    Supateekan Pacharasakoolchai

    2014-04-01

    Full Text Available The aim of this work was to prepare and characterize poly(vinyl chloride (PVC/polycarbonate (PC blend membranes for use in ultrafiltration. Pluronic F127 was used as an additive to modify the membrane surface of the PVC/PC blended membranes. The PVC/PC blend membrane was first prepared using the phase inversion method from a casting solution of PVC with small amount of PC in N-methylpyrrolidone (NMP and water as the non-solvent. The morphologies structure and properties, such as tensile strength, water flux, and bovine serum albumin (BSA rejection of the blend membrane were studied. Increased amounts of PC resulted in an increase in the water flux and ability to reject protein. A concentration of 0.75 wt% PC provided the best improvement in tensile strength of blend membrane. Addition of different amounts of pluronic F127 to the casting solution of PVC/PC with a PC concentration of 0.75 wt% resulted in a decrease in the water contact angle that demonstrated the improvement of hydrophilicity of blend membrane. Scanning electron microscopy photographs showed that the modified PVC/PC membranes had a bigger pore volume in the porous sub-layer compared to the PVC/PC control membrane. The PVC/PC membrane with added Pluronic F127 exhibited a much higher flux and rejection of BSA in a protein filtration experiment than the PVC/PC membrane. An increase in flux recovery ratio of PVC/PC/pluronic 127 blend membrane indicated that the modified membranes could reduce membrane fouling useful for ultrafiltration.

  19. PVC Based Selective Sensors for Ni2+ Ions Using Carboxylated and Methylated Porphine

    Directory of Open Access Journals (Sweden)

    J. M. Bhatnagar

    2003-09-01

    Full Text Available Poly vinylchloride (PVC based membranes of 4,4',4'',4'''-21H,23H-porphine–5,10,15,20 –tetrayl tetrakis (benzoic acid (TBAP and 2,3,7,8,12,13,17,18-octamethyl - 21H, 23H-porphine (OMP were prepared using dibutyl phthalate (DBP, dioctylphthalate (DOP, dibutyl(butylphosphonate (DBBP and 1-chloronaphthalene (CN as plastcizing solvent mediators and sodium tetraphenylborate (NaTPB as an anion excluder for Ni2+ selective sensors. TBAP based membrane exhibits linearity over a wide concentration range 2.0x10-6–1.0x10-1M (0.12 – 5.8x103ppm with a slope of 29.6 mV/decade of activity while OMP based membrane showed linear potential response in the concentration range 1.0x10-5 –1.0x 10-1M (0.60 – 5.8x103ppm with a Nernstian slope of 29.0 mV/decade of activity. The electrode assembly works between pH 2.0 – 7.0, exhibits a fast response time of 10-15s and performed satisfactorily over a period of six months with good reproducibility. Excellent selectivity of the order of 10-3 over a number of cations and quantitative determination of Ni2+ in effluents discharged from electroplating industry demonstrates the utility of the proposed sensor. The electrode assembly was also used as an indicator electrode in the potentiometric titration of Ni2+ with EDTA.

  20. PVC gel soft actuator-based wearable assist wear for hip joint support during walking

    Science.gov (United States)

    Li, Yi; Hashimoto, Minoru

    2017-12-01

    Plasticized polyvinyl chloride (PVC) gel and mesh electrode-based soft actuators have considerable potential to provide new types of artificial muscle, exhibiting similar responsiveness to biological muscle in air, >10% deformation, >90 kPa output stress, variable stiffness, long cycle life (>5 million cycles), and low power consumption. We have designed and fabricated a prototype of walking assist wear using the PVC gel actuator in previous study. The system has several advantages compared with traditional motor-based exoskeletons, including lower weight and power consumption, and no requirement for rigid external structures that constrain the wearer’s joints. In this study, we designed and established a control and power system to making the whole system portable and wearable outdoors. And we designed two control strategies based on the characteristics of the assist wear and the biological kinematics. In a preliminary experimental evaluation, a hemiparetic stroke patient performed a 10 m to-and-fro straight line walking task with and without assist wear on the affected side. We found that the assist wear enabled natural movement, increasing step length and decreasing muscular activity during straight line walking. We demonstrated that the assistance effect could be adjusted by controlling the on-off time of the PVC gel soft actuators. The results show the effectiveness of the proposed system and suggest the feasibility of PVC gel soft actuators for developing practical soft wearable assistive devices, informing the development of future wearable robots and the other soft actuator technologies for human movement assistance and rehabilitation.

  1. A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.

    Science.gov (United States)

    Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia

    2013-03-01

    In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Preparation of Drug-loaded Chitosan Microspheres and Its Application in Paper-based PVC Wallpaper

    Science.gov (United States)

    Lin, Hui; Chen, Lihui; Yan, Guiyang; Chen, Feng; Huang, Liulian

    2018-03-01

    By screening through test, it was found that the drug-loaded chitosan microspheres with the average particle size of 615 nm may be prepared with NaF as the mold-proof drug, chitosan as the drug carrier and sodium tripolyphosphate as the cross-linking agent; and they can improve the aspergillus niger-proof effect if loaded onto the base paper surface of the paper-based PVC wallpaper. The results show that NaF and chitosan have mold-proof synergistic effects; the mold-proof effect of the wallpaper may be improved by increasing the dose of chitosan; when the mass ratio of NaF, sodium tripolyphosphate and chitosan was 2:7:28, the paper-based PVC wallpaper with good mold-proof property can be prepared.

  3. Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response.

    Science.gov (United States)

    Shishkanova, T V; Matejka, P; Král, V; Sedenková, I; Trchová, M; Stejskal, J

    2008-08-29

    Repeated depositions of polyaniline (PANI) have been used to control the thickness of the polymeric film deposited on poly(vinyl chloride) (PVC) membrane surface. The oxidation of aniline was carried out in a dispersion mode, i.e. in the presence of poly(N-vinylpyrrolidone) (PVP). Two kinds of PVC were used for this purpose: a non-plasticized PVC for the study of PANI deposition and PVC, plasticized with nitrophenyl octyl ether (NPOE), as a prototype of a liquid membrane electrode. The results of UV-visible and FTIR spectroscopies and electron microscopy showed that (1) the film thickness increased by about equal increments of approximately 40 nm after each polymerization, and (2) the interface with PVC was constituted by PANI film and adhering PANI-PVP colloidal particles. The various thicknesses of the deposited PANI films affected the potentiometric response of the NPOE/PVC membrane with and without an anion-exchanger. The potentiometric anionic response was observed with a minimal thickness of PANI film on the blank NPOE/PVC membrane. Sensitivity of the PANI film to pH occurred only with a blank NPOE/PVC membrane coated with a thick polymeric film, while it was strongly suppressed by the presence of a lipophilic anion-exchanger, tridodecylmethylammonium chloride (TDDMACl), in the membrane, regardless of the thickness of the polymer film. The thickness of the PANI film did not affect the anionic selectivity pattern of TDDMACl-based membranes to any great extent, but its presence improved and stabilized their potentiometric characteristics (sensitivity, linear-response range).

  4. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  5. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  6. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  7. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  8. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal; Kuritka, Ivo, E-mail: ivo@kuritka.net; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-08-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites.

  9. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    International Nuclear Information System (INIS)

    Machovsky, Michal; Kuritka, Ivo; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-01-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites

  10. Lanthanum(IlI) PVC membrane electrodes based on 1,3,5-trithiacyclohexane.

    Science.gov (United States)

    Shamsipur, Mojtaba; Yousefi, Mohammad; Hosseini, Morteza; Ganjali, Mohammad Reza

    2002-11-01

    Novel plasticized polymeric membrane (PPME) and membrane-coated graphite (MCGE) electrodes based on 1,3,5-trithiacyclohexane for highly selective determination of La3+ ion have been developed. The electrodes exhibit Nernstian responses over very wide concentration ranges (8.0 x 10(-6)-5.0 x 10(-2) M for PPME and 4.0 x 10(-8)-1.0 x 10(-2) M for MCGE). The limit of detections were 5.0 x 10(-6) and 2.0 x 10(-8) M for PPME and MCGE, respectively. The electrodes possess a fast response time of approximately 10 s and can be used for at least 6 months without observing any deviation. The proposed electrodes revealed excellent selectivities for La3+ over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in a pH range of 5.0-8.0. The practical utility of the electrodes has been demonstrated by their use as indicator electrodes in the potentiometric titration of La3+ ions with EDTA and in determination of F- in some mouthwash preparations.

  11. Optimization of polymeric triiodide membrane electrode based on clozapine-triiodide ion-pair using experimental design.

    Science.gov (United States)

    Farhadi, Khalil; Bahram, Morteza; Shokatynia, Donya; Salehiyan, Floria

    2008-07-15

    Central composite design (CCD) and response surface methodology (RSM) were developed as experimental strategies for modeling and optimization of the influence of some variables on the performance of a new PVC membrane triiodide ion-selective electrode. This triiodide sensor is based on triiodide-clozapine ion-pair complexation. PVC, plasticizers, ion-pair amounts and pH were investigated as four variables to build a model to achieve the best Nernstian slope (59.9 mV) as response. The electrode is prepared by incorporating the ion-exchanger in PVC matrix plasticized with 2-nitrophenyl octal ether, which is directly coated on the surface of a graphite electrode. The influence of foreign ions on the electrode performance was also investigated. The optimized membranes demonstrate Nernstian response for triiodide ions over a wide linear range from 5.0 x 10(-6) to 1.0 x 10(-2)mol L(-1) with a limit of detection 2.0 x 10(-6) mol L(-1) at 25 degrees C. The electrodes could be used over a wide pH range 4-8, and have the advantages of easy to prepare, good selectivity and fast response time, long lifetime (over 3 months) and small interferences from hydrogen ion. The proposed electrode was successfully used as indicator electrode in potentiometric titration of triiodide ions and ascorbic acid.

  12. Long-Term Performance of the Laguna de Barlovento Reservoir Water-Proofing using a PVC-P Geo membrane; Impermeabilizacion de la balsa de la Laguna de Barlovento con geomembrana de PVC-P: evolucion a lo largo del tiempo

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Fernandez, M.; Leiro Lopez, A.; Soriano Carrillo, J.; Crespo Mucientes, M.; Zornberg, J.; Aguilar Gonzalez, E.; Rico Arnaiz, G.; Pargada Iglesias, L.

    2014-02-01

    The Laguna de Barlovento reservoir was one of the most important European hydraulic projects at the time of its construction because of its high capacity and challenging location. At the time, the designers decided to waterproof this reservoirs with a geo membrane of plasticized polyvinyl chloride (PVC-P). This paper documents the initial characteristics of the geo membrane and its performance since its installation until 2010. The material characterization includes a comprehensive testing program, the results of which are presented. They include quantification of the geo membrane thickness, amount and nature of plasticizers, tensile properties, fold ability under low temperatures, dynamic impact resistance, puncture resistance, welding strength (both in the manufacturing facility and in the field), as well as the use of techniques involving optical and scanning electron microscopy. In addition, advanced analytical techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography (GC) and Mass spectrometry (MS), were used in order to identify the plasticizers used in the geo membrane formulation. Fold ability tests were found to provide early indication of degradation. Results from reflection optical and electron scanning microscopy showed that, after 19 nineteen years of installation, the geo membrane remains in good conditions, particularly on the non-exposed side. (Author)

  13. Neodymium(III PVC Membrane Electrodchemical Sensor Based on N-benzoylethylidene-2-aminobenzylamine

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2012-01-01

    Full Text Available The N-benzoylethylidene-2-aminobenzylamine (BEA was used as a suitable ionophore in construction of neodymium ion selective electrode. The electrode with composition of 30% PVC, 58% solvent mediator (NB, 2% ionophore (BEA and 10% anionic additive (OA shows the best potentiometric response characteristics. The Nd3+ sensor exhibits a Nernstian slope of 21.2 ± 0.2 mV decade-1 over the concentration range of 1.0 × 10-6 to 1.0 × 10-2 mol L-1, and a detection limit of 6.3 × 10-7 mol L-1 of Nd3+ ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.4–8.5. It has a very short response time, in the whole concentration range (~7 s, and can be used for at least eight weeks. The proposed sensor revealed high selectivity with respect to all common alkali, alkaline earth, transition and heavy metal ions, including members of the lanthanide family other than Nd3+. The Nd3+ sensor was successfully applied as an indicator electrode in the potentiometric titration of Nd3+ ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations.

  14. Studies on heat shrinkage PVC tubes

    International Nuclear Information System (INIS)

    Pyun, Hyung Chick; Kim, Ki Yup; Nho, Young Chang

    1991-01-01

    Radiation crosslinking of PVC was investigated for the purpose of obtaining a suitable formulation for heat shrinkable tube. PVC was not only compounded with various crosslinking agents and plasticizers to evaluate their effects on the radiation sensitivity, heat shrinkable property and other mechanical properties, but also mixed with NBR, crosslinking agents and plasticizers to obtain efficient crosslinking yield and suitable mechanical properties for heat shrinkable tube. Gel yield of PVC increased with increasing unsaturation levels per molecular weight of crosslinking agents. Among crosslinking agents tested, TMPTMA with three unsaturated groups showed highest gel yield, while PVC containing NBR was more sensitive to crosslinking than PVC itself regardless the types of crosslinking agents and plasticizers. Tensile strength was increased with increasing radiation dose and gel percent, but elongation decreased. It was found that gel percent was increased with increasing radiation dose, heat transformation was decreased with increasing gel percent. When NBR was mixed with PVC, the radiation dosage required for enhancing yield of gel percent and heat transformation were found to be much smaller comparing with the case containing no NBR. Therefore, the addition of NBR to PVC was very effective to increase heat-resisting property of PVC. Heat shrinkage was not much varied with radiation dose, the types of crosslinking agents and plasticizers, but it was increased remarkably with decreasing stretching temperature and increasing annealing temperature. (Author)

  15. A ROIC for Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET sensitive to histamine.

    Science.gov (United States)

    Samah, N L M A; Lee, Khuan Y; Sulaiman, S A; Jarmin, R

    2017-07-01

    Intolerance of histamine could lead to scombroid poisoning with fatal consequences. Current detection methods for histamine are wet laboratory techniques which employ expensive equipment that depends on skills of seasoned technicians and produces delayed test analysis result. Previous works from our group has established that ISFETs can be adapted for detecting histamine with the use of a novel membrane. However, work to integrate ISFETs with a readout interfacing circuit (ROIC) circuit to display the histamine concentration has not been reported so far. This paper concerns the development of a ROIC specifically to integrate with a Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET to display the histamine concentration. It embodies the design of constant voltage constant current (CVCC) circuit, amplification circuit and micro-controller based display circuit. A DC millivolt source is used to substitute the membrane modified ISFET as preliminary work. Input is histamine concentration corresponding to the safety level designated by the Food and Drugs Administration (FDA). Results show the CVCC circuit makes the output follows the input and keeps VDS constant. The amplification circuit amplifies the output from the CVCC circuit to the range 2.406-4.888V to integrate with the microcontroller, which is programmed to classify and display the histamine safety level and its corresponding voltage on a LCD panel. The ROIC could be used to produce direct output voltages corresponding to histamine concentrations, for in-situ applications.

  16. PVC pipes in gas distribution: still going strong!

    NARCIS (Netherlands)

    Hermkens, Rene; Wolters, Mannes; Weller, Jeroen; Visser, Roy; Davidovski, Z.; Belloir, P.; Fumire, J.

    2008-01-01

    In the Netherlands (impact-modified) PVC is the preferred material for low-pressure (30 and 100 mbar) gas distribution systems. More than 50% of the total length (about 122,000 km) of this system is rigid PVC or impact-modified PVC. The installation of rigid PVC (uPVC) pipelines started about 50

  17. Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid

    Science.gov (United States)

    Zulkepeli, Nik A. S. Nik; Winie, Tan; Subban, R. H. Y.

    2017-09-01

    In this work, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMCF3SO3) is employed as ionic liquid in PVC-based polymer electrolyte system with lithium triflate (LiCF3SO3) as doping salt. The samples in film form were prepared by quantitatively varying the concentration of BMIMCF3SO3 to a fixed ratio of PVC-LiCF3SO3 using solution cast technique. The highest room temperature ionic conductivity of 1.120 × 10-7 Scm-1 was exhibited by PVC-LiCF3SO3-BMIMCF3SO3 containing 3 wt. % BMIMCF3SO3. FTIR spectra of the polymer electrolytes were examined to study the complexation of the PVC-based polymer electrolytes. Intensity of free ions, ion pairs, and ion aggregates were obtained from FTIR deconvolution in an attempt to correlate with ionic conductivity results. The intensity of free ions was found to be high for sample with 3 wt. % BMIMCF3SO3.

  18. Evaluation of retail fresh meat packagings covered with stretch films of plasticized PVC and non-PVC alternatives

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Togeskov, P.; Hallas, J.

    2004-01-01

    The characteristics and performance of several non-PVC stretch films were compared to those of plasticized PVC. Initially the main polymer components Of the film were identified by infrared spectrometry and differential scanning calorimetry. The differences between films in mechanical properties......, such as puncture resistance and tensile strength, varied about a factor of two, while the differences in elongation at break were considerably higher. Plasticized PVC showed properties somewhere in the middle. The water vapour transmission was highest for PVC, while its permeability to oxygen was the lowest...

  19. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

    Science.gov (United States)

    Kou, S C; Lee, G; Poon, C S; Lai, W L

    2009-02-01

    This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.

  20. Australia slaps duties on PVC imports

    International Nuclear Information System (INIS)

    Young, I.

    1992-01-01

    The Australian Anti-Dumping Authority (ADA0) has imposed dumping duties on imports of polyvinyl chloride (PVC) resin from seven countries and on certain expanded polystyrene (EPS) beads from Korea and Singapore. The decisions come at the end of two separate investigations begun earlier this year. In its first finding, the ADA concluded that there has been dumping of PVC resin from Canada, China, France, Japan, Norway, Saudi Arabia, and Thailand, which has caused and threatens to cause material injury to the domestic PVC industry. An eighth country, Romania, was found not to have been exporting PVC to Australia. The case is the second of its kind in Australia focusing on PVC. In December 1991 the ADA found in favor of local producer sin a dumping complaint against Argentina, Brazil, Hungary, Israel, Korea, Mexico, Poland, Singapore, Taiwan, and the US

  1. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  2. Recycling of PVC Waste via Environmental Friendly Vapor Treatment

    Science.gov (United States)

    Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

    2010-11-01

    This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

  3. Novel PVC-membrane potentiometric sensors based on a recently synthesized sulfur-containing macrocyclic diamide for Cd2+ ion. Application to flow-injection potentiometry.

    Science.gov (United States)

    Shamsipur, Mojtaba; Dezaki, Abbas Shirmardi; Akhond, Morteza; Sharghi, Hashem; Paziraee, Zahra; Alizadeh, Kamal

    2009-12-30

    A new sulfur-containing macrocyclic diamide, 1,15-diaza-3,4,12,13-dibenzo-5,11-dithia-8-oxa-1,15-(2,6-pyrido)cyclooctadecan-2,14-dione, L, was synthesized, characterized and used as an active component for fabrication of PVC-based polymeric membrane (PME), coated graphite (CGE) and coated silver wire electrodes (CWE) for sensing Cd(2+) ion. The electrodes exhibited linear Nernstian responses to Cd(2+) ion in the concentration range of 3.3 x 10(-6) to 3.3 x 10(-1)M (for PME, LOD=1.2 x 10(-6)M), 2.0 x 10(-7) to 3.3 x 10(-1)M (for CWE, LOD=1.3 x 10(-7)M) and 1.6 x 10(-8) to 1.3 x 10(-1)M (for CGE, LOD=1.0 x 10(-8)M). The CGE was used as a proper detection system in flow-injection potentiometry (FIP) with a linear Nernstian range of 3.2 x 10(-8) to 1.4 x 10(-1)M (LOD=1.3 x 10(-8)M). The optimum pH range was 3.5-7.6. The electrodes revealed fairly good discriminating ability towards Cd(2+) in comparison with a large number of alkali, alkaline earth, transition and heavy metal ions. The electrodes found to be chemically inert, showing a fast response time of <5s, and could be used practically over a period of about 2-3 months. The practical utility of the proposed system has also been reported.

  4. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  5. Discoloration of plasticized PVC upon irradiation

    International Nuclear Information System (INIS)

    Kojima, Keiichi; Ueno, Keiji; Kumafuji, Hisao.

    1981-01-01

    The effects of the factors on the discoloration of PVC cross-linked by electron irradiation, such as irradiation dose, the polymerization degree of PVC resin, plasticizers and stabilizers, were studied. The composition of the plasticized PVC used for the experiment was 100 PHR of PVC, 50 PHR of plasticizer, 5 PHR of stabilizer and 5 PHR of cross-linking agent (TMPMA). Three samples with the different degree of polymerization of the PVC resin were used, namely 750, 1050 and 2600. As the plasticizers, phthalic acid esters (DBP, DOP, DIDP), trimellitic acid esters (TOTM, n-TOTM), fatty acid esters (DOS, DOZ), polyester and epoxy group plasticizers were used. The irradiation dose for the test was 3, 6 and 12 Mrad. The experimental results are summarized as follows. As the electron irradiation dose was higher, the resultant discoloration was more remarkable, and the optimum irradiation dose was below 6 Mrad. The degree of polymerization of the PVC resin did not affect the irradiation discoloration. However it was noticed that the cross-linking efficiency was better as the degree of polymerization was higher. The cross-linking efficiency was better as the content of plasticizer was more. The fatty acid esters and epoxy groups showed less discoloration and better cross-linking efficiency. Tin and barium-zinc stabilizers were good. (Kako, I.)

  6. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Liew, Chiam-Wen; Morris, Ezra; Durairaj, R.

    2010-01-01

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T g ) and melting temperature (T m ) decreased, whereas the decomposition temperature (T d ) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  7. THE STUDY OF TECHNOLOGICAL PROPERTIES OF PLASTISOLS BASED EMULSION PVC FILLED WITH CHALK GIDROFOBIZIROVANNYM

    Directory of Open Access Journals (Sweden)

    V. A. Sedykh

    2014-01-01

    Full Text Available Baby toys are made using the centrifugal molding plastisol based emulsion of polyvinyl chloride plasticized with dioctylphthalate. To reduce cost and decrease biotelemetry the dioctylphthalate on the surface of the product domestic toys than toys produced in China, there was a necessity of introduction of the filler is chalk from different manufacturers. By using a Brookfield vis-cometer PV-D was studied rheology of filled hydrophobized chalk PVC plastisols in storage conditions for up to 72 hours at temperatures of 14-20°C. It was found that the flow plastisols consistent with pseudo-plastic fluids. Given the flow rates of emulsion PVC plastisols filled to 35 % of the mass. hydrophobized chalk. The influence of the content of the plasticizer dioctylphthalate in a narrow interval (37,0 - 41,4 % of the mass. on the viscosity of polymer pastes and the kinetics of its changes during storage. Revealed a linear dependence of the viscosity of the filled hydrophobized chalk plastisols on the speed of rotation of the spindle of the viscometer and during storage. Given the rate of expansion changes the viscosity of the plastisols of the speed of rotation of the spindle of the viscometer, the rate of change in viscosity and calculation of the initial viscosity. Determined the stability of the dispersion hydrophobized chalk in a colloidal solution of PVC in dioctylphthalate during storage. We determined the variation of the content of chalk (ash with top and bottom layers plastisols height 8 cm after 24 hours storage. It is proved that the temperature of the preparation and storage of polymer pastes were determining factors in the regulation of such technological properties of PVC plastisols in the presence hydrophobized chalkas viscosity, stability of the dispersion of chalk and, consequently, the efficiency of distribution plastisols in the form of a centrifugal molding.

  8. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S., E-mail: rameshtsubra@gmail.com [Centre for Ionics University Malaya, Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Liew, Chiam-Wen; Morris, Ezra; Durairaj, R. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-11-20

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T{sub g}) and melting temperature (T{sub m}) decreased, whereas the decomposition temperature (T{sub d}) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  9. A reciclagem de PVC no Brasil

    OpenAIRE

    Piva,Ana Magda; Bahiense Neto,Miguel; Wiebeck,Hélio

    1999-01-01

    Esta pesquisa discute as possibilidades práticas da reciclagem de PVC. Na reciclagem de polímeros, a do PVC representa uma importante parcela. PVC é um polímero que é usado em uma ampla faixa de produtos: filmes, fios, cabos, em compostos para uma variedade de formas. A reciclagem é uma técnica vantajosa, capaz de reproduzir as propriedades do polímero original, no polímero reciclado e isto em condições razoavelmente econômicas. A tecnologia brasileira, em relação a produtos reciclados, apres...

  10. Construction and demolition waste as a source of PVC for recycling.

    Science.gov (United States)

    Prestes, Sabrina Moretto Darbello; Mancini, Sandro Donnini; Rodolfo, Antonio; Keiroglo, Raquel Carramillo

    2012-02-01

    Construction and demolition waste can contain considerable amounts of polyvinyl chloride (PVC). This paper describes a study of the recycling of PVC pipes collected from such waste materials. In a sorting facility for the specific disposal of construction and demolition waste, PVC was found to represent one-third of the plastics separated by workers. Pipes were sorted carefully to preclude any possible contamination by poly(ethylene terephthalate) (PET) found in the waste. The material was ground into two distinct particle sizes (final mesh of 12.7 and 8 mm), washed, dried and recycled. The average formulation of the pipes was determined based on ash content tests and used in the fabrication of a similar compound made mainly of virgin PVC. Samples of recycled pipes and of compound based on virgin material were subjected to tensile and impact tests and provided very similar results. These results are a good indication of the application potential of the recycled material and of the fact that longer grinding to obtain finer particles is not necessarily beneficial.

  11. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Vignesh; Jyothi, M.S. [Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura Ramanagaram, Bangalore, 562112 (India); Balakrishna, R. Geetha, E-mail: br.geetha@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura Ramanagaram, Bangalore, 562112 (India); Padaki, Mahesh, E-mail: sp.mahesh@jainuniversity.ac.in [Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura Ramanagaram, Bangalore, 562112 (India); National University of Science and Technology “MISIS”, Moscow, 119049 (Russian Federation); Deon, Sebastien [Institut UTINAM, UMR CNRS 6213, Université de Bourgogne-Franche-Comté,16 route de Gray, Besançon Cedex 25030 (France)

    2017-06-05

    Highlights: • Work reports the novel modification of poly vinyl chloride (PVC) using newly developed method. • Blend membranes were prepared using modified PVC and polysulfone in different compositions. • The prepared blend membranes were used for separation of different heavy metal ions. • The blend membranes showed improved rejection of heavy metal ions in comparison to Commercial NF 270 membrane. - Abstract: Herein, an attempt has been made to prepare a novel membrane with good efficiency for removal of heavy metal ions namely lead (Pb), cadmium (Cd) and chromium (Cr). 4-amino benzoic acid (ABA) was covalently grafted onto the poly vinyl chloride (PVC) backbone by C−N bond to enhance the hydrophilicity. {sup 1}H NMR and ATR-IR spectroscopy analysis confirmed the chemical modification of PVC. Further the modified polymer was blended in different compositions with polysulfone (PSf) for optimization. Morphological changes that occurred in blend membranes, due to the incorporation of modified PVC was studied by AFM and SEM techniques. The effect on hydrophilicity and performance of blends owing to incorporation of modified PVC was evaluated by water uptake, contact angle and flux studies. The density of functional groups in blends was analyzed by its ion-exchange capacity. Batch wise filtration of metal ions was carried out and the effect of pressure, feed pH and interference of ions was thoroughly investigated. Essentially, 100% rejection was obtained for all the metal ions in acidic pH with a productivity of 2.56 l/m{sup 2} h. The results were correlated with the results of commercially available NF 270 membrane under the same operating conditions.

  12. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample

    International Nuclear Information System (INIS)

    Nayak, Vignesh; Jyothi, M.S.; Balakrishna, R. Geetha; Padaki, Mahesh; Deon, Sebastien

    2017-01-01

    Highlights: • Work reports the novel modification of poly vinyl chloride (PVC) using newly developed method. • Blend membranes were prepared using modified PVC and polysulfone in different compositions. • The prepared blend membranes were used for separation of different heavy metal ions. • The blend membranes showed improved rejection of heavy metal ions in comparison to Commercial NF 270 membrane. - Abstract: Herein, an attempt has been made to prepare a novel membrane with good efficiency for removal of heavy metal ions namely lead (Pb), cadmium (Cd) and chromium (Cr). 4-amino benzoic acid (ABA) was covalently grafted onto the poly vinyl chloride (PVC) backbone by C−N bond to enhance the hydrophilicity. 1 H NMR and ATR-IR spectroscopy analysis confirmed the chemical modification of PVC. Further the modified polymer was blended in different compositions with polysulfone (PSf) for optimization. Morphological changes that occurred in blend membranes, due to the incorporation of modified PVC was studied by AFM and SEM techniques. The effect on hydrophilicity and performance of blends owing to incorporation of modified PVC was evaluated by water uptake, contact angle and flux studies. The density of functional groups in blends was analyzed by its ion-exchange capacity. Batch wise filtration of metal ions was carried out and the effect of pressure, feed pH and interference of ions was thoroughly investigated. Essentially, 100% rejection was obtained for all the metal ions in acidic pH with a productivity of 2.56 l/m 2 h. The results were correlated with the results of commercially available NF 270 membrane under the same operating conditions.

  13. Radiation crosslinking of PVC with polyfunctional monomers

    International Nuclear Information System (INIS)

    Dobo, J.; Takacs, E.; Csato, P.

    1984-01-01

    The radiation crosslinking of PVC in the presence of ethylene glycol dimethacrylate (EGDM) and of trimethylol propane trimethacrylate (TMPTM) was investigated. The effect of PVC powders of different types on the polymerization rate of these monomers was studied by a Calvet-type microcalorimeter. In the milled PVC sheets containing 50 part EGDM a high concentration of trapped free radicals was found by ESR after 16 months storage. (author)

  14. Designed biocompatible nano-inhibitor based on poly(β-cyclodextrin-ester) for reduction of the DEHP migration from plasticized PVC.

    Science.gov (United States)

    Raeisi, Ahmad; Faghihi, Khalil; Shabanian, Meisam

    2017-10-15

    The easy migration of di(2-ethylhexyl) phthalate (DEHP) from the plasticized PVC (P-PVC) poses a serious threat to human health and the ecosystems. Thus, its control migration from the P-PVC products is very important. In this work, a poly(β-cyclodextrin-ester) network (β-CDP) was synthesized via reaction of β-cyclodextrin with 3,3',4,4'-benzophenone tetracarboxylic dianhydride. As a potential inhibitor for reduction of the DEHP migration, the β-CDP was grafted to Fe 3 O 4 nanoparticles. Poly(β-cyclodextrin-ester) functionalized Fe 3 O 4 nanoparticles (MNP-CDP) has been used in PVC/DEHP system as a reactive nano-inhibitor to reduce DEHP migration. Thermal stability and mechanical properties of obtained films were investigated. DEHP migration tests of the P-PVC films were also carried out by using Gas chromatography. It was found that by incorporating the small amounts of nano-inhibitor in PVC/DEHP system, the migration of DEHP effectively reduced from the P-PVC samples about 65% without any serious changes in mechanical and thermal properties of the P-PVC films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hoechst and Wacker plan joint venture in PVC

    International Nuclear Information System (INIS)

    Young, I.

    1992-01-01

    Restructuring of Europe's petrochemical industry has taken a further step with the announcement that Hoechst (Frankfurt) and Wacker Chemie (Munich) are planning a joint venture in polyvinyl chloride (PVC). The venture would include production, R ampersand D, sales and marketing, plus both companies' PVC recycling activities. However, their vinyl chloride monomer (VCM) plants, and Hoechst's Kalle PVC film business, have been left out. Erich Schnitzler, head of Hoechst's PVC business unit, does not anticipate problems with the European Community's competition directorate. We are both among the middle-sized European PVC producers, and together we would have a 9%-10% market share. Our joint venture would not limit competition. Both partners are hoping for approval from Brussels in first-quarter 1993. Hoechst has 255,000 m.t./year of PVC capacity at Gendorfand Knapsack, while Wacker has 365,000 m.t./year at Burghausen and Cologne. All the units, except Wacker's Cologne plant, are back integrated to VCM. The joint venture would buy VCM from the two parent companies and on the merchant market

  16. Chalk effect on PVC cross-linking under irradiation

    International Nuclear Information System (INIS)

    Chudinova, V.V.; Guzeev, V.V.; Mozzhukhin, V.B.; Pomerantseva, Eh.G.; Nozrina, F.D.; Zhil'tsov, V.V.; Zubov, V.P.

    1994-01-01

    Effect of nonmodified and modified chalk on curing degree of polymer matrix was studied under-irradiation of PVC-compositions. Films of the compositions (100 mass part 7 PVC, 0-100 mas.part of chalk, 2.5 - lead sulfate, 1.5 - lead stearate and 0.3 - glycerin) were irradiated up to absorbed dose 0.1 MGy in an inert medium. Content of gel-fraction after boiling in THF was determined with use of IR spectroscopy. It was established, that intensive dehydrochlorination and polymer curing took place on chalk particle surface. Network fixed strongly chalk particles. However, chalk inhibited processes of dehydrochlorination and PVC curing, increasing amount of noncured PVC in polymer matrix

  17. Electrochemical Behaviour of Ni and Ni-PVC Electrodes for the Electroxidation of Ethanol

    International Nuclear Information System (INIS)

    Mohd Syafiq Hamdan; Norazzizi Nordin; Siti Fathrita Mohd Amir; Riyanto; Mohamed Rozali Othman

    2011-01-01

    In this study, two nickel based electrodes were prepared; nickel foil and nickel-polyvinylchloride (Ni-PVC), in order to study their electrochemical behavior using cyclic voltammetry, CV and chronocoulometry, CC. Ni electrode was prepared from Ni metal foil while Ni-PVC electrode was prepared by mixing a weighed portion of Ni powder and PVC in THF solvent, swirled until the suspension was homogeneous and drying the suspension in an oven at 50 degree Celsius for 3 h. The dry sample was then placed in a 1 cm diameter stainless steel mould and pressed at 10 ton/ cm 2 . From CV data, Ni-PVC electrode showed a better electrochemical behavior compared to Ni metal foil electrode. The use of Ni-PVC electrode at higher concentration of supporting electrolyte (1.0 M KOH) was better than at lower concentration of the same supporting electrolyte in electroxidation of ethanol. In addition to acetic acid, the oxidation of ethanol also produced ethyl acetate and acetaldehyde. (author)

  18. Studies of PVC/ENR blends: blend compositions

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2002-01-01

    Blends of poly(vinyl chloride/epoxidized natural rubber (PVC/ENR) were prepared by using Bra bender Plasticorder at compositions ranging from 0-100% PVC. They were blended at 150 degree C mixing temperature, 50 rpm rotor speed and 10 minutes mixing time. The blends were characterized for tensile strength , elongation at break, glass transition temperatures and Fourier transform infra red spectroscopy (FTIR). Results revealed that as the PVC content increases the blend behaviour changes from elastomeric to glassy. However the blends found to be compatible at all compositions. (Author)

  19. Protein valves prepared by click reaction grafting of poly(N-isopropylacrylamide) to electrospun poly(vinyl chloride) fibrous membranes

    Science.gov (United States)

    Guo, Jian-Wei; Lin, Zhen-Yu; Chang, Chi-Jung; Lu, Chien-Hsing; Chen, Jem-Kun

    2018-05-01

    In this study, poly(vinyl chloride) (PVC) was electrospun into fibrous membranes and then reacted with NaN3 to generate azido-terminated PVC fibrous membranes. A propargyl-terminated poly(N-isopropylacrylamide) (PNIPAAm) was also synthesized and then grafted, through click reactions, onto the azido-terminated PVC fiber surface. Protrusion-, scale-, and joint-like structures of the PNIPAAm grafts on the PVC fibers were formed upon increasing the molecular weight of the PNIPAAm grafts. The PNIPAAm-grafted PVC fibrous mats exhibited completely wetted surfaces at 25 °C because of their high roughness. The static water contact angle of the PNIPAAm-grafted PVC fibrous mats reached 140° when the temperature was increased to 45 °C. This thermoresponsive behavior was significantly greater than that of the PNIPAAm grafted on a flat surface. Temperature-responsive membranes were constructed having a pore size of 1.38 μm and applied as protein valves to block and release an antibody (fluorescein-conjugated AffiniPure goat anti-rabbit IgG). At 25 °C, the collection efficiency remained at 94% for antibody concentrations up to 60 ng/L. As the temperature increased to 45 °C, the collection efficiency decreased abruptly, to 4%, when the antibody concentration was greater than 20 ng/L. Accordingly, this system of PNIPAAm-grafted PVC fibers functioned as a protein valve allowing the capture and concentration of proteins.

  20. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  1. Radiation cross-linked PVC and its applications

    International Nuclear Information System (INIS)

    Lan Junming; Chen Ruyan; Jia Chaoxing; Li Min; Li Chengxin

    1990-04-01

    The radiation cross-linking technique is adopted for improving the polyvinyl chloride (PVC) heat-resistance and reducing its thermocontractibility. For examining its properties a small insulation sheath made from modified PVC material has been tested at 260 0 5 seconds. The results obtained were satisfactory

  2. Renewable urea sensor based on a self-assembled polyelectrolyte layer.

    Science.gov (United States)

    Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin

    2002-03-01

    A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.

  3. Structure and performance of ZnO/PVC nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elashmawi, I.S., E-mail: islam_shukri2000@yahoo.co [Spectroscopy department, Physics division, National Research Centre, Dokki (Egypt); Hakeem, N.A. [Spectroscopy department, Physics division, National Research Centre, Dokki (Egypt); Marei, L.K.; Hanna, F.F. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2010-10-01

    ZnO/PVC nanocomposites films have been prepared by the solvent casting method and investigated by various techniques. All results show good dispersion of ZnO nanoparticles in the polymeric matrix. XRD revealed that pure PVC films are partially crystalline with hallow peak but ZnO nanoparticles have wurtzite structure and the nanocomposite films were almost the same as those of ZnO with decrease in the degree of crystallization, causing increase in the amorphous region. FT-IR presented the same spectra for nanocomposites in the wavenumber range 700-3100 cm{sup -1}, weak band located at 500-700 cm{sup -1},which can be attributed to stretching of Zn---O bond and an increase of the bending band of O-H at 1631 cm{sup -1} was observed. The surface of the films was analyzed by SEM, which becomes rough with some small aggregates compared with pure PVC with good distribution in the entire surface region with bright spots. TEM revealed a regular crystalline lattice superimposed on an amorphous background due to carbon support and PVC matrix and the structure of these particles is hexagonal. In addition, the nanocomposites films have higher glass transition temperature, specific heat and thermal stability relative to those of pure PVC because of strong interaction among ZnO nanoparticles and PVC.

  4. Strawberries packaged with Polyvinyl Chloride (PVC film/ Morangos embalados com filme de Ppolicloreto de Vinila (PVC

    Directory of Open Access Journals (Sweden)

    Sergio Ruffo Roberto

    2006-06-01

    Full Text Available Strawberries cv. Dover with approximately 75% of their surface with red color was packaged in disposable polyethylene terephthalate (PET container and sealed with PVC film of 15mm thick. Strawberries without film serves as control. The fruits were stored at 12°C for ten days and there were determined during storage time the titratable acidity, solid soluble and vitamin C contents, color, respiration rate, texture and weight loss. After 6 days the strawberries packaged without film had decayed while the fruits packaged with PVC film were in conditions of consumption and commercialization. After 10 days all fruits were inappropriate to consumption. Packages with PVC film extended the shelf life of strawberries preserving the color characteristic of the product and vitamin C content, reducing the respiration rate and weight loss, characterizing this packaging as being adequate to this kind of product.Foram utilizados morangos cv. Dover com aproximadamente 75% de sua superfície com coloração vermelha e embalados em potes de polietileno tereftalato (PET. No tratamento CONTROLE os morangos foram acondicionados sem filme e no tratamento FILME, as embalagens foram seladas com filme de PVC de 15mm de espessura. As frutas foram armazenadas a 12°C por dez dias e foram determinadas ao longo do tempo acidez titulável, sólidos solúveis, vitamina C, cor, taxa de respiração, textura e perda de massa. Após 6 dias de armazenagem os morangos CONTROLE estavam impróprios para consumo pois apresentavam deterioração visível por bolores enquanto que os embalados com PVC estavam em condições de consumo e comercialização. Após 10 dias todos os morangos estavam impróprios para consumo. A embalagem utilizando filme de PVC aumentou a vida de prateleira de morangos em relação aos sem embalagem pois preservou melhor a coloração característica do produto e teor de vitamina C e reduziu as taxas de respiração e de perda de massa, caracterizando a

  5. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Gupta, V.K.; Singh, A.K.; Gupta, Barkha

    2007-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S 1 ) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S 1 ) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10 -8 to 1.0 x 10 -1 M Cd 2+ with limit of detection 5.0 x 10 -8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  6. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)]. E-mail: vinodfcy@iitr.ernet.in; Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Gupta, Barkha [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S{sub 1}) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S{sub 1}) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10{sup -8} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 5.0 x 10{sup -8} M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  7. Self-Plasticization of PVC via click reaction of a monooctyl phthalate derivative

    Directory of Open Access Journals (Sweden)

    Jia Puyou

    2017-09-01

    Full Text Available Modified PVC (M-PVC material with suppressed migration and low glass transition temperature was prepared via click reaction of a monooctyl phthalate derivative. Chemical structure and composition of M-PVC were characterized by FT-IR, 1H NMR and element analysis. Thermal stability, glass transition temperature and migration stability of M-PVC were studied with TGA, DSC and migration tests, respectively. The study showed that M-PVC exhibited poor thermal stability, and low glass transition temperature of 66.0°C. No migration was found in distilled water, 10% (v/v ethanol, 30% (w/vacetic acid and petroleum ether. The PVC material is expected to preparing PVC products in the areas with high migration resistance requirement.

  8. Effect of radiation on Poly Vinyl chloride (PVC)

    International Nuclear Information System (INIS)

    Massaud, F.; Haraga, S.; Benfaid, N.; Benayad, S.; Kabar, Y.; Elmesmary, Y; Elwerfeli, M.; Omran, Sh.

    1993-01-01

    Radiation crosslinking of polymeric materials is of increasing commercial importance because of the improved thermal, electrical and mechanical properties. Poly Vinylchloride (PVC) is one of the most important polymers. Many attempts were made to study the primary reactions induced by the direct effect of radiation on PVC. In this study, powder PVC was irradiated with different doses at ambient temperature. Formation of free radicals was investigated by electron spin resonance (ESR) method and molecular weight was determined by viscosity measurements. It has been observed that hydrogen chloride was evolved because of noticeable change in color. One type of radical, Poly enyl structure was trapped at room temperature. The non-symmetric singlet structure of the ESR spectra is due to the presence of oxygen. The radical concentration increased with increase of dose. The molecular weight of irradiated PVC was found to be inversely proportional to the increase of radiation dose, which is believed to be due to the occurrence of degradation. It can be concluded that gamma radiation will be the best method for crosslinking of PVC if multi-functional groups or monomers are present. (author)

  9. Strength analysis of welded corners of PVC window profiles

    Science.gov (United States)

    Postawa, P.; Stachowiak, T.; Gnatowski, A.

    2017-08-01

    The article presents the results of researches which main purpose was to define the influence of welding parameters on strength of welded corners of PVC window profile. PVC profiles of a branded name GENEO® produced by Rehau Company were used for this research. The profiles were made by using a co-extrusion method. The surface of the profile was made of PVC mixture with no additives. Its main task was to get a smooth surface resistant to a smudge. The use of an unfilled polyester provides an aesthetic look and improves the resistance of extrudate to water getting into inner layers. The profile's inner layers have been filled up with glass fibre in order to improve its stiffness and mechanical properties. Window frames with cut corners used for this research, were produced on technological line of EUROCOLOR Company based in Pyskowice (Poland). The main goal of this analysis was to evaluate the influence of the main welding parameter (temperature upsetting) on hardness of welds we received in whole process. A universal testing machine was used for the research.

  10. High Doses Gamma Radiolysis of PVC: Mechanisms of Degradation

    International Nuclear Information System (INIS)

    Colombani, J.

    2006-01-01

    PVC radiolysis leads to the formation of various degradation products: radicals, gas, oxidized products or polyenes. In order to predict the formation of the degradation products with regard to irradiation and ageing parameters, it is important to improve the understanding of the radiolysis mechanisms of PVC. Thus, we used several analytical techniques (Electron Spin Resonance, Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance, Size Exclusion Chromatography) to get information on PVC samples irradiated at high doses (up to 4MGy) under different conditions. Gamma irradiation induces the formation of various radicals into PVC. Older studies were generally focused on the effect of low dose and/or low temperature irradiations on PVC. We present here ESR signals of PVC irradiated at high doses and at room temperature. We show that peroxyl radicals are producted by radiolysis under aerobe conditions and that polyenyl radicals are formed under anaerobe conditions. PVC radiolysis induces gas production and especially hydrogen chloride. Production of hydrogen chloride is well known until 1 MGy. We have studied by FTIR, the evolution of the quantity of HCl produced until 4 MGy. We show that higher irradiation dose leads to the lower radiolytic yield of HCl (G(HCl)). Moreover, G(HCl) obtained in aerobe conditions is about fourfold as great as G(HCl) observed in anaerobe radiolysis. Propagation and termination reactions induce degradation products: polyene sequences and crosslinking reactions are observed under anaerobe conditions; oxidized products with addition of chain scissions are formed under aerobe conditions. Although the literature about PVC radiolysis is rich, the main reacting pathways are not well established. Moreover the high doses studies are almost non-existent. We show by FTIR that aerobe radiolysis induces formation of ketons and acids. NMR experiments confirme these results but also focuse on small acids formed (with 2, 3 or 4 carbons). The

  11. A highly sensitive PVC membrane iodide electrode based on complexes of mercury(II) as neutral carrier.

    Science.gov (United States)

    Chai, Y-Q; Yuan, R; Xu, L; Xu, W-J; Dai, J-Y; Jiang, F

    2004-09-01

    A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0 x 10(-8) to 2.0 x 10(-2) mol L(-1) with a detection limit of 8.0 x 10(-9) mol L(-1) and a slope of -59.0+/-0.5 mV/decade in 0.01 mol L(-1) phosphate buffer solution (pH 3.0, 20 degrees C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV-Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.

  12. Preparation of Non-Woven Fiber Mats by Mixture of PVC and Epoxidized Natural Rubber

    International Nuclear Information System (INIS)

    Muhammad Hariz Othman; Mahathir Mohamed; Dahlan Mohd

    2014-01-01

    Eletrospun non-woven fibre mats prepared from ENR modified PVC were successfully fabricated at ambient temperature by electro spinning method. Liquid epoxidized natural rubber (LENR) was used because it is easier to handle compared to dried ENR. PVC was mixed with LENR based on 3 different ratios (9:1, 8:2 and 7:3). The effect of ENR on electrospinnibality of PVC was investigated.The morphologies and thermal properties of the electro span fibre mats were characterized and assessed using scanning calorimetry (DSC). The polymer solution concentration 16 aut % formed a diameter of the fibres were mainly affected by the addition of natural rubber and weight ratio of the solution. The diameter of the fibres also decreased with increasing amount of LENR in the solution. Thermal degradation involved two-step degradation with the first degradation representing the dehydro chlorination of PVC to form polyene and followed by the decomposition of LENR and the polyene.Addition of LENR into the sample caused the T g of electro spun fibre mats of PVC/LENR to shift toward lower temperature. (author)

  13. PVC removal from mixed plastics by triboelectrostatic separation

    International Nuclear Information System (INIS)

    Park, Chul-Hyun; Jeon, Ho-Seok; Park, Jai-Koo

    2007-01-01

    Ever increasing oil price and the constant growth in generation of waste plastics stimulate a research on material separation for recycling of waste plastics. At present, most waste plastics cause serious environmental problems due to the disposal by reclamation and incineration. Particularly, polyvinyl chloride (PVC) materials among waste plastics generates hazardous HCl gas, dioxins containing Cl, and so on, which lead to air pollution and shorten the life of incinerator, and it makes difficultly recycling of other plastics. Therefore, we designed a bench scale triboelectrostatic separator for PVC removal from mixed plastics (polyvinyl chloride/polyethylene terephthalate), and then carried out material separation tests. In triboelectrostatic separation, PVC and PET particles are charged negatively and positively, respectively, due to the difference of the work function of plastics in tribo charger of the fluidized-bed, and are separated by means of splitter through an opposite electric field. In this study, the charge efficiency of PVC and PET was strongly dependent on the tribo charger material (polypropylene), relative humidity (below 30%), air velocity (over 10 m/s), and mixture ratio (PET:PVC = 1:1). At the optimum conditions (electrode potential of 20 kV and splitter position of -2 cm), PVC rejection and PET recovery in PET products were 99.60 and 98.10%, respectively, and the reproducibility of optimal test was very good (±1%). In addition, as a change of splitter position, we developed the technique to recover high purity PET (over 99.99%) although PET recovery decreases by degrees

  14. Polarizing PVC — A Discrepant Event

    Science.gov (United States)

    Headly, David; Karabatek, Mohamed

    2016-01-01

    Each year when teaching polarization phenomena and the Triboelectric Series in a unit on electrostatics, I would balance some rods (2-3 ft in length) made from wood, aluminum, PVC, and Plexiglas on an inverted watch glass and demonstrate to the class how a party balloon rubbed with fake rabbit fur (charging the balloon negative) would always attract the uncharged rods, causing them to rotate towards the balloon (see Fig. 1). The fact that a charged object always attracts a neutral object due to the induced dipole in the latter is a great way to test if something is in fact charged. Surprisingly, the PVC pipe would usually, but not always, repel the charged balloon and rotate away! Repulsion means that neither of the objects are electrically neutral. In a separate test, after rubbing together a Plexiglas rod with a polyethylene grocery bag (making the rod positively charged and the bag negatively charged), the PVC usually attracts the rod. With the help of a student as part of his senior project, I finally decided to investigate further the source of the negative charge that exists on PVC. Specifically, is it nothing more than static charge that builds up on the pipe from unavoidable contact with its surroundings, or is it somehow intrinsic to the manufacturing process?

  15. Determination of cobalt ions at nano-level based on newly synthesized pendant armed macrocycle by polymeric membrane and coated graphite electrode.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Bhattacharjee, G

    2009-12-15

    Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(1)) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(2)) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co(2+) selective electrodes. The best performance was observed with the membranes having the composition L(2):PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7x10(-8)M with a Nernstian slope of 29.7 mV decade(-1) of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8x10(-9)M with a Nernstian slope of 29.5 mV decade(-1) of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co(2+) in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.

  16. Desenvolvimento de PVC reforçado com fibras de vidro longas para fabricação de produtos moldados Long glass fiber reinforcement of PVC molding compounds

    Directory of Open Access Journals (Sweden)

    Leandro H. Grizzo

    2011-01-01

    Full Text Available Neste trabalho foi desenvolvido um método para reforçar PVC rígido com fibras de vidro longas através da incorporação pelo processo de recobrimento da fibra contínua com um composto de PVC plastificado. Posteriormente o filamento foi picotado para a formação de grânulos, com fibras de vidro já incorporadas, que foram misturados mecanicamente ao PVC rígido granulado para alimentação direta por moldagem. A moldagem por injeção direta foi realizada com sucesso não sendo necessário a compostagem prévia, o que foi considerado conveniente, pois reduziu as etapas de processamento da resina de PVC e que proporcionou, possivelmente, redução de custos, redução da degradação do comprimento médio das fibras de vidro e diminuição da possibilidade de degradação da resina de PVC. O reforçamento do PVC rígido com 20% em massa de fibras de vidro longas de comprimento inicial entre 13 e 14 mm resultou em adequadas propriedades mecânicas, bem superiores ao PVC rígido não reforçado. Os módulos (tração e flexão e a resistência ao impacto Charpy praticamente dobraram, mesmo com os compósitos apresentando grande quantidade de plastificante em sua formulação, que possibilita ao PVC ser utilizado em outras aplicações não antes possíveis como em peças técnicas de engenharia.In this paper, a method to reinforce rigid PVC with long glass fibers (LGF was developed through the incorporation of continuous glass fibers, as rovings, with plasticized vinyl matrix prepared by the wire coating technique. The plasticized vinyl rovings were pelletized. The pellets (13-14 mm were then blended to a granulated rigid PVC formulation and directly injection molded as testing specimens. The direct injection molding, eliminating the preliminary melt-compounding process, was achieved successfully, which was considered convenient because it reduced the number of processing steps, which allowed cutting expenses, reduced the deterioration of the

  17. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336

    Science.gov (United States)

    O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616

  18. Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

    Directory of Open Access Journals (Sweden)

    C. Rueda

    2007-07-01

    Full Text Available A flow-injection pulse amperometric method for determining tacrine, based onion transfer across a plasticized poly(vinyl chloride (PVC membrane, was developed. Afour-electrode potentiostat with ohmic drop compensation was used, while a flow-throughcell incorporated the four electrodes and the membrane, which containedtetrabutylammonium tetraphenylborate. The influence of the applied potential and of theflow-injection variables on the determination of tacrine was studied. In the selectedconditions, a linear relationship between peak height and tacrine concentration was foundup to 4x10-5M tacrine. The detection limit was 1x10-7M. Good repeatability was obtained.Some common ions and pharmaceutical excipients did not interfere.

  19. Estudo de propriedades de PVC modificado com grupos alquila e benzila Study of the properties of PVC modified through substitution by alkyl and benzyl groups

    Directory of Open Access Journals (Sweden)

    G. M Vinhas

    2005-07-01

    Full Text Available O poli(cloreto de vinila (PVC é o segundo termoplástico mais consumido em todo o mundo, sendo considerado o mais versátil dentre os plásticos. A grande versatilidade do PVC deve-se a suas propriedades e também a sua adequação aos mais variados processos de transformação. Uma vez que a resina de PVC é atóxica e inerte, a escolha de aditivos com essas mesmas características, permite a fabricação de filmes para embalagens de alimentos e produtos médico-hospitalares. Entretanto, suas propriedades podem se alterar quando submetido a qualquer processo de esterilização, especialmente por radiação gama. Neste trabalho foi realizado um estudo sobre a flexibilidade e estabilidade frente à radiação gama do PVC modificado quimicamente. O PVC foi modificado pela substituição de átomos de cloro por grupos alquila e benzila através de reações com reagentes de Grignard. Amostras de PVC modificado foram caracterizadas por espectroscopia de ressonância magnética nuclear de hidrogênio (RMN ¹H, espectroscopia na região do infravermelho com transformada de Fourier e calorimetria diferencial exploratória. A degradação do PVC modificado, quando submetido à radiação gama, foi avaliada por seus parâmetros viscosimétricos. De uma forma geral, o PVC modificado apresentou maior estabilidade à radiação gama que o original. O polímero modificado por substituição do cloro por grupo que contém um anel aromático foi o que apresentou maior estabilidade, quando submetido à dose de esterilização de 25 kGy. O PVC modificado apresentou temperaturas de transição vítrea ligeiramente mais baixas que o PVC original, indicando uma tendência ao aumento de flexibilidade pela presença de grupos alquila e benzila na cadeia do polímero.Poly(vinyl chloride (PVC ranks second among the most consumed thermoplastics in the world, and is considered the most versatile plastic. This versatility arises from its properties and suitability to a

  20. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Degradation studies on plasticized PVC films submited to gamma radiation

    Directory of Open Access Journals (Sweden)

    Vinhas Glória Maria

    2003-01-01

    Full Text Available Poly (vinyl chloride, PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers amongt them di(2-ethylhexyl phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticized films the one which presented the larger degradation index due to chain scission was the DEHP plasticized PVC.

  2. Degradation studies on plasticised PVC films submitted to gamma radiation

    International Nuclear Information System (INIS)

    Vinhas, Gloria Maria; Souto-Maior, Rosa Maria; Lapa, Camila Maria; Almeida, Yeda Medeiros Bastos de

    2003-01-01

    Poly (vinyl chloride), PVC, is a rigid polymer and for several of its applications must be compounded with plasticizing agents. The plasticizers minimize the dipolar interactions, which exist between the polymer's chains, promoting their mobility. In this work we studied the properties of PVC/plasticizer systems submitted to different doses of gamma radiation. We have used four commercial plasticizers among them di(2-ethylhexyl) phthalate, DEHP, which is present in a great number of commercial applications. The PVC/plasticizer systems have been studied as films made by the solvent evaporation technique. Irradiated and non-irradiated films have been characterized by viscosimetric analysis, mechanical essays and infrared spectroscopy. The results have shown that the rigid, non plasticized, PVC film presented the greatest degradation index, while among the plasticised films the one which presented the larger degradation index due to chain scission was the DEHP plasticised PVC. (author)

  3. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC

    Energy Technology Data Exchange (ETDEWEB)

    Streibel, T.; Muehlberger, F. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Adam, T.; Zimmermann, R. [Augsburg Univ. (Germany); Cao, L. [National Center for Iron and Steel, Beijing, BJ (China)

    2004-09-15

    Chlorinated benzenes and phenols generated from PVC pyrolysis are known to be precursors of PCDD/F formation. Therefore, selective and sensitive monitoring of these substances during PVC pyrolysis processes on an on-line, real-time basis could be very useful for the understanding of PCDD/F formation pathways. In this study, we investigated the pyrolysis gas from PVC samples derived from steel recycling by means of simultaneous single photon ionization/resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (SPI/REMPI-TOFMS). The application of these soft photo-ionization techniques in mass spectrometry enables a fast and comprehensive analysis of this complex matrix without generating fragment ions, which would interfere with molecule ions making interpretation of the obtained mass spectra very difficult.

  4. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Ratnam, C.T.; Nur Azrini Ramlee; Keong, C.C.

    2011-01-01

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  5. Potentiometric polymeric membrane electrodes for mercury detection using calixarene ionophores.

    Science.gov (United States)

    Tyagi, Sonika; Agarwal, Himanshu; Ikram, Saiqa

    2010-01-01

    It is here established that potentiometric polymeric membrane electrodes based on electrically neutral ionophores are a useful analytical tool for the detection of heavy metal ions from environmental and industrial waste water. PVC based membrane containing p-tert-butyl-calix[4]arenethioether derivative as active material along with sodiumtetraphenylborate (NaTPB) as solvent mediator and dibutylphthalate as a plasticizer in the ratio 45:9:460:310 (w/w%) (I:NaTPB:DBP:PVC) exhibits good properties with a Nernstian response of 29.50+/-1.0 mV per decade of activity and a working concentration range of 7.2 x 10(-8)-1.0 x 10(-1) M. The electrode gave more stable potential readings when used around pH 2.5-6.8 and exhibits fast response time of 14 s. The sensors were found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of acetone, methanol or ethanol and could be used over a period of 7-9 months. Excellent selectivity for Hg(2+) ions is indicated by match potential method and fixed interference method. The sensors could be used successfully in the estimation of mercury in different sample.

  6. Study on Preparation and Properties of PVC Film Modified by Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The transparent PVC films were prepared by tape casting. In the process of preparation, rare earth nitrate, as a kind of modifier, was added to the solution of PVC and THF. These PVC films were tested after being crosslinked by ultraviolet light. It is found that the mechanical and physical properties of all the PVC films modified by rare earth nitrate are greatly enhanced.

  7. A novel EIS field effect structures coated with TESUD-PPy-PVC-dibromoaza[7]helicene matrix for potassium ions detection

    Energy Technology Data Exchange (ETDEWEB)

    Tounsi, Moncef, E-mail: tounsi1981@live.fr [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Braiek, Mourad [Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène, Faculté des Sciences, Université de Monastir, Avenue de l' environnement, 5019, Monastir (Tunisia); Barhoumi, Houcine [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Baraket, Abdoullatif; Lee, Michael; Zine, Nadia [Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France); Maaref, Abderrazak [Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir (Tunisia); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Université de Lyon, Institut de Sciences Analytiques (ISA) – UMR 5280, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-04-01

    In this work, we describe the development of new Aza[7]helicene-containing PVC-based membranes for the K{sup +} ions quantification. Here, silicon nitride-based structures (Si-p/SiO{sub 2}/Si{sub 3}N{sub 4}) were developed and the surface was activated, functionalized with an aldehyde–silane (11-(Triethoxysilyl)undecanal (TESUD)), functionalized with polypyrrole (PPy), and coated with the polyvinylchloride (PVC)-membrane containing the Aza[7]helicene as ionophore. All stages of functionalization process have been thoroughly studied by contact angle measurements (CAMs) and atomic force microscopy (AFM). The developed ion-selective electrode (ISE) was then applied using electrochemical impedance spectroscopy (EIS) for the detection of potassium ions. A linear range was observed between 1.0 × 10{sup −8} M to 1.0 × 10{sup −3} M and a detection limit of 1.0 × 10{sup −8} M was observed. The EIS results have showed a good sensitivity to potassium ion using this novel technique. The target helicene exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td > 300 °C) and it indicates that helicene may be a promising material as ionophore for ion-selective electrodes (ISEs) elaboration. - Highlights: • Synthesis and characterization of a new derivatives of Aza[7]helicenes • Manufacture of PPy structures on the SiO{sub 2}/Si{sub 3}N{sub 4} surface using the TESUD as cross linking agent. • The PPy fabricated microstructures can be used as support matrix in biosensing. • Impedimetric K{sup +}-ISEs was developed by using dibromoaza[7]helicene as ionophore for K{sup +} ions determination.

  8. Tratamento químico superficial e metalização de ABS, PVC e blendas de PVC/ABS

    Directory of Open Access Journals (Sweden)

    Ana Paula Kurek

    2015-04-01

    Full Text Available Visando à substituição do ABS em peças cromadas, amostras de PVC e blendas de PVC/ABS, na razão mássica de 20/80, 40/60 e 60/40, foram submetidas ao pré-tratamento em solução sulfocrômica sob diferentes condições de concentração, tempo e temperatura e sendo em seguida cromadas. As modificações na superfície das peças após o condicionamento foram analisadas por microscopia eletrônica de varredura, microscopia de força atômica e rugosidade. A qualidade da deposição metálica foi avaliada por inspeção visual e teste de adesão. Os resultados mostraram que, aumentando a concentração de PVC nas peças necessitou-se de condições operacionais mais agressivas, tais como maiores temperaturas de banho, tempo de imersão e concentração de solução sulfocrômica para que ocorresse a adesão da camada metálica. De todas as condições testadas com a solução condicionante sulfocrômica no tratamento das peças de PVC e blendas PVC/ABS de 20/80 e 40/60, a concentração de 350 g/L de ácido crômico e 400 g/L de ácido sulfúrico, temperatura de 70°C e tempo de imersão de 15 minutos, ocasionou deposição do metal em toda a superfície das peças, as quais foram aprovadas nos testes de adesão e corrosão.

  9. Improvement of PVC floor tiles by gamma radiation

    International Nuclear Information System (INIS)

    Plessis, T.A. du; Badenhorst, F.

    1988-01-01

    Gamma radiation presents a unique method of transforming highly plasticized PVC floor tiles, manufactured at high speed through injection moulding, into a high quality floor covering at a cost at least 30% less than similarly rated rubber tiles. A specially formulated PVC compound was developed in collaboration with a leading manufacturer of floor tiles. These tiles are gamma crosslinked in its shipping cartons to form a dimensionally stable product which is highly fire resistant and inert to most chemicals and solvents. These crosslinked tiles are more flexible than the highly filled conventional PVC floor tiles, scratch resistant and have a longer lifespan and increased colour fastness. These tiles are also less expensive to install than conventional rubber tiles. (author)

  10. Development of a continuous flow model system for studies of biofilm formation on polymers and its application on PVC-C and PVC-P

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    could be harvested from three different combinations of flow velocity and residence time. Biofilm formation was followed by ATP analysis on test material (chlorinated polyvinylchloride, PVC-C), negative control (stainless steel) and positive control (plasticized polyvinylchloride, PVC-P) incubated......-C, while most of the very deviating values for PVC-P were between 2-13,000 pg ATP/cm2. During 43 weeks of operation of the continuous flow model systems the biofilm formation increased on all three materials, with biofilm formation on PVC-C at the same level as on the negative steel control (values of 75...... system. In this study, a continuous flow model system was developed, for investigating biofilm formation on polymers, simulating conditions in the distribution system. Commercially available pipes were used for exchangeable test pieces, which allowed for testing over prolonged time periods. Test pieces...

  11. Sustainability of thermoplastic vinyl roofing membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Graveline, S. P. [Sika Sanarfil, Canton, (United States)

    2010-07-01

    The International Council for Research and Innovation in Building and Construction (CIB-RILEM) has developed a framework for sustainable roofing based on a series of tenets divided into three key areas: preservation of the environment, conservation of energy, and extended roof life. This paper investigated the sustainability of thermoplastic vinyl roof membranes using these guidelines and the relevant tenets for roof system selection. Several tenets provided alternatives for minimizing the burden on the environment using non-renewable raw materials, conserving energy with thermal insulation, and extending the lifespan of all roof components by using long lasting membranes. A life cycle assessment was carried out to provide a quantitative framework for assessing the sustainability of roofing materials. It was found that the PVC membrane systems had a lesser impact on the environment than other competing systems.

  12. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases.

    Science.gov (United States)

    Gupta, Vinod K; Al Khayat, Maysoon; Singh, Ashok K; Pal, Manoj K

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene))bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-ylidene)diphenol (L(1)) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L(2)) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L(1)) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10(-9) to 1.0 x 10(-1)M Cd(2+) with limit of detection 3.1 x 10(-9), performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  13. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Al Khayat, Maysoon; Singh, Ashok K.; Pal, Manoj K.

    2009-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene)) bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-ylidene)diphenol (L 1 ) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L 1 ) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10 -9 to 1.0 x 10 -1 M Cd 2+ with limit of detection 3.1 x 10 -9 , performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  14. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  15. Phthalate Migration Study from PVC Grafted by Gamma Radiation

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Duarte, C.; Somesari, E.; Silveira, C.; Paes, H.A.; Manzoli, J.E.; Araujo, F.D.C.; Panzarini, L.C.G.A.

    2009-01-01

    PVC is a useful polymer used for many applications, as packaging of food, blood and in contact with body fluids. The most widely-used plasticizer, to make it flexible, is the phthalate DEHP, and its toxicity is a problem. A special radiation grafting of PVC allows an important reduction of thrombogenic properties, and it could cause changes in the DEHP migration too. In this work it is presented the methodology using gas chromatography and numerical simulation for the measurement of DEHP migration from PVC grafted with monomer DMAEMA. The grafting could be an interesting way to reduce DEHP migration

  16. Estudo do uso de plastificantes de fontes renovável em composições de PVC Study of the use of plasticizer from renewable sources in PVC compositions

    Directory of Open Access Journals (Sweden)

    Emerson Madaleno

    2009-01-01

    compositions of flexible PVC - based on two vegetable plasticizers from renewable sources (modified vegetable oil - OVM and epoxidized modified vegetable oil - OVME, in addition to two conventional petrochemical plasticizers, called di(2-ethylhexyl phthalate-(DEHP and di(2-ethylhexyl adipate-(DEHA. No significant differences were observed in the mechanical behavior of the compositions evaluated. The plasticizers affected the hardness and chemical resistance to n-heptane for the compositions. The epoxi group and the high molar mass from vegetable plasticizers showed better compatibility with the PVC resin. The analyses by SEM showed a probable exudation of OVM from the PVC matrix.

  17. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Directory of Open Access Journals (Sweden)

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  18. Study of PVC membrane grafted by Acrylic Acid, Acrylonitrile and Acrylamide using preirradiation method

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kasseri, H.

    2015-03-01

    Grafting of acrylic acid, acrylamide and acrylonitrile onto poly vinyl chloride (PVC) films using gamma radiation has been carried out by both type direct and preirradiation methods. The effect of different parameter such as monomer concentration, inhibitor concentration, reaction temperature, reaction time and irradiation dose on the grafting yield were investigated. It was found that the grafting yield depends on these parameters. The grafting yield was strongly monomer dependent and grafting method: the highest was found for AAc by the preirradiation method. The samples were characterized by tensile strength measurement, swilling and ion uptake. The highest increase in swilling was observed on samples grafted with AAc by the preirradiation method.(author)

  19. PVC makers study expansions to meet demand growth

    International Nuclear Information System (INIS)

    Hunter, D.; Coeyman, M.

    1993-01-01

    As prospects for the polyvinyl chloride (PVC) industry continue to improve, the next batch of capacity increases is being studied. Vista Chemical (Houston) sees an opportunity to achieve what company president James R. Ball calls the lowest-cost capacity addition in the market, by debottlenecking its PVC plants at Aberdeen, MS and Oklahoma City. That would increase capacity 40%, adding 300 million lbs/year to Vista's 830 million lbs/year. US demand for PVC grew 12.5% through the first 10 months of 1992, to 7.3 billion lbs, according to the latest figures available from the Society of the Plastics Industry. Alan Bailey, Oxy-Chem's executive v.p./polymers and plastics, predicts a good demand year in 1993 - better even than 1992, driven by an upward trend in housing starts and a recovering economy

  20. PET and PVC Separation with Hyperspectral Imagery

    Science.gov (United States)

    Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; La Marca, Floriana

    2015-01-01

    Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers—polyethylene terephthalate (PET) and polyvinyl chloride (PVC)—in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900–1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry. PMID:25609050

  1. PET and PVC separation with hyperspectral imagery.

    Science.gov (United States)

    Moroni, Monica; Mei, Alessandro; Leonardi, Alessandra; Lupo, Emanuela; Marca, Floriana La

    2015-01-20

    Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density). Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers--polyethylene terephthalate (PET) and polyvinyl chloride (PVC)--in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials) to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900-1700 nm) reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry.

  2. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.

    Science.gov (United States)

    Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok

    2014-11-04

    The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.

  3. Thermal stability of formulations of PVC irradiated with {gamma} of {sup 60}; Estabilidad termica de formulaciones de PVC irradiadas con {gamma} de {sup 60} Co

    Energy Technology Data Exchange (ETDEWEB)

    Martinez P, M.E.; Carrasco A, H. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: memp@nuclear.inin.mx; Castaneda F, A.; Benavides C, R.; Garcia R, S.P. [CIQA, 25100 Saltillo, Coahuila (Mexico)

    2004-07-01

    The industry of cables and wires frequently use cable isolations with base of formulations of PVC, in those that stabilizer has usually been used with the help of heavy metals, as the lead, which is toxic. To solve the problem, from the 2002 one has come studying in combined form in the National Institute of Nuclear Research ININ and the Center of Investigation in Applied Chemistry CIQA, the modifications induced by the radiation in formulations with the help of vinyl poly chloride PVC. In these formulations, prepared with cross linking agent, plastifying industrial grade, stuff and non toxic stabilizers of calcium estearate and zinc industrial grade, it is sought to replace the stabilizer of Pb. For this were irradiated it test tubes of PVC with gamma radiation of cobalt 60 to three different dose in atmospheres of air and argon. Later it was determined their thermal stability at different times of heating and it was measured the Young modulus by means of thermo mechanical analysis. Those results obtained together with other techniques of characterization suggest that the irradiated proposed formulation can substitute the one stabilized with lead. (Author)

  4. Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles

    Directory of Open Access Journals (Sweden)

    I.S. Elashmawi

    Full Text Available Novel nanocomposites based on PVDF/PVC blend containing graphene oxide nanoparticles (GO were prepare using sonicator. IR analysis revealed that the addition of GO prompts a crystal transformation of α-phase of PVDF. The change of the structural before and after adding GO to PVDF/PVC were studied by X-ray diffraction. A decrease in activation energy gap from UV data was observed with increasing GO content, implying a variation of reactivity as a result of reaction extent. The variation of ε′ with frequency is nearly the same as that of ε″. At higher frequencies, the decrease of both ε′ and ε″ becomes nearly constant. The dispersion at lower frequencies ε′ of ε′ polarization is of Maxwell–Wagner interfacial polarization but at higher frequencies, it levels off. The behavior of conductivity (σAC tends to acquire constant values approaching it DC values. The values of σAC was increased after doped GO with exponential increase after the critical value of frequency. All nanocomposites behaved the same fashion revealing that a higher number of polarons were getting added to conducting pool in composites as graphene content was increased. Conduction mechanism appeared to be getting expedited with increasing frequency due to fact that increase in frequency enhances polaron hopping frequency. Keywords: Nanocomposites, Graphene oxide, FT-IR, X-ray, AC conductivity

  5. Study on the effect of stabilizers on discoloring of PVC by irradiation

    International Nuclear Information System (INIS)

    Peng Chaorong; Wang Jingxia; Chen Zhuping; Liu Siyang

    2009-01-01

    Composites of polyvinyl chloride (PVC) filled with stabilizers was irradiated by 60 Co γ-ray. The effect of different stabilizers on the radiation-induced discoloring of PVC was investigated and the structures of irradiated PVC were characterized by ultraviolet spectrum (UV) and Fourrier transfer infrared spectrum (FT-IR). It shows that the stabilizers including calcium stearate/zinc stearate, epoxidised oil, phosphite and photostabilizer can improve the property of resistance to radiation-induced discoloring of PVC, and phosphite can improve the property of resistance to radiation-induced oxidation of PVC. Among the stabilizers, formulations with calcium stearate/zinc stearate show high transparency and excellent property of resistance to radiation at same absorbed dose. Change rate of yellow index of formulation (calcium stearate: zinc stearate=2:1) has been determined to be 8.3% at the absorbed dose of 30 kGy. It has been found that the structures of PVC with numbers of conjugated double bond or α, β-unsaturated ketone are formed after irradiation by γ-rays. (authors)

  6. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time, but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for higher temperature applications. Fundamental studies were carried out on amongst other materials, plasticised PVC compounds for use in cable applications. The results of this work, encouraged the author to investigate cross-linkable PVC in areas such as footwear soling

  7. Degradação biológica do PVC em aterro sanitário e avaliação microbiológica Biological degradation of PVC in landfill and microbiological evaluation

    Directory of Open Access Journals (Sweden)

    Ana M. C. Grisa

    2011-01-01

    Full Text Available O poli(cloreto de vinila (PVC é um dos polímeros utilizado no campo das embalagens e no setor calçadista, e, em função da sua aplicação diversificada, apresenta elevados percentuais em aterros domésticos e industriais. É um polímero amorfo podendo apresentar diferentes teores de plastificante e outros aditivos responsáveis pela sua estabilização, os quais podem influenciar no tempo de vida útil e nas propriedades do produto final. Este trabalho apresenta o estudo da degradação química e biológica de filmes de poli(cloreto de vinila flexível (PVC-f, no aterro sanitário São Giácomo, na cidade de Caxias do Sul/RS, antes e após 330 dias de disposição. As amostras de PVC-f antes e após a disposição no aterro sanitário foram avaliadas por análise térmica (TGA, estrutural (FT-IR e morfológica (MEV e MO. Observou-se que as amostras de PVC-f dispostas no aterro sanitário (PVC-fa, apresentam um único evento de perda de massa, em relação ao PVC-f não degradado ou virgem (PVC-fv, além de um maior % de perda de massa e de mudanças estruturais. Nas amostras de PVC-fa foram observadas modificações morfológicas importantes para descrever os fenômenos de degradação como erosão da superfície, bioerosão, que propiciaram a ação das leveduras, bactérias e fungos presentes no meio no polímero aterrado.The poly (vinyl chloride (PVC is one of the polymers used in the field of packing materials and footwear sector, and due its diversified applications, it has presented in a high percentage of domestic and industrial landfills It is an amorphous polymer and may present different levels of plasticizer and other additives responsible for its stabilization, which can influence the lifetime and the properties of the final product. This work presents the study of the chemical and biological degradation of poly (vinyl chloride flexible (PVC-f films, at São Giácomo landfill, in Caxias do Sul city after 330 days of

  8. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)], E-mail: vinodfcy@iitr.ernet.in; Al Khayat, Maysoon [Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (United Arab Emirates); Singh, Ashok K.; Pal, Manoj K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene)) bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-ylidene)diphenol (L{sub 1}) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L{sub 1}) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10{sup -9} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 3.1 x 10{sup -9}, performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  9. The development of PVC-laminated steel sheet by an electron beam curing method

    International Nuclear Information System (INIS)

    Masuhara, Ken-ichi; Koshiishi, Kenji; Tomosue, Takao; Mori, Koji; Honma, Nobuyuki

    1988-01-01

    Polyvinyl chloride (PVC) film-laminated steel sheets are used for household electric appliances and building materials. Those are produced usually by pressing a PVC film onto a steel sheet imediately after a themosetting adhesive has been applied to the sheet and curing. However, a major problem of this method is that the appearance of the PVC films such as gloss and embossment changes during pressing due to the heat that is required for causing bonding, therefore, the development of an adhesive which can be cured at lower temperature is necessary. Nisshin Steel Co., Ltd. has developed PVC film-laminated steel sheets for which electron beam (EB) curable adhesives are used to overcome this problem. The advantage of these adhesives is that they can be quickly cured at room temperature. The production procedure of PVC-laminated steel sheets by EB curing is outlined. But this method has encountered two problems: poor adhesion between substrates and adhesive due to the residual stress, and the deterioration of the PVC films due to EB irradiation. EB curable adhesives are mainly composed of acrylic ester oligomers and monomers, and thier adhesion was improved by organic pretreatment. On the other hand, EB-proof PVC films were developed. The general properties of PVC-laminated steel sheets produced by EB curing are reported. (K.I.)

  10. Change Spectroscopic, thermal and mechanical studies of PU/PVC blends

    Energy Technology Data Exchange (ETDEWEB)

    Hezma, A.M. [Spectroscopy Department, Physics Division, National Research Center, Giza (Egypt); Elashmawi, I.S. [Spectroscopy Department, Physics Division, National Research Center, Giza (Egypt); Physic Department, Faculty of Science, Taibah University, Al-Ula (Saudi Arabia); Rajeh, A., E-mail: a.rajeh88@yahoo.com [Physic Department, Faculty of Science, Amran University, Sa' dah (Yemen); Physics Department, Faculty of science, Mansoura University, Mansoura (Egypt); Kamal, Mustafa [Physics Department, Faculty of science, Mansoura University, Mansoura (Egypt)

    2016-08-15

    Blends of polyurethane (PU) and polyvinyl chloride (PVC) with different concentrations were prepared by casting method. The effects of PU on PVC blends was examined by Fourier transform-infrared (FTIR), Ultra-violet visible studies (UV/VIS.), X-ray diffraction (XRD), Thermogravimetric (TGA), Differential scanning calorimetry (DSC), and mechanical properties (stress–strain curve). The interaction between PU and PVC was examined by FT-IR through the absorbance of the N–H groups and was correlated to mechanical/thermal properties. Ultra-violet visible said that optical energy gap decrease with increasing concentration of PU. Differential scanning calorimetry results was observed a single glass transition temperature (T{sub g}) for blends this confirming existence miscibility within the blends. The causes for best thermal stability of some blends may be described by measurements of interactions between C=O groups of PU and the α-hydrogen of PVC or a dipole–dipole –C=O..Cl–C– interactions. Significant alterations in FTIR, X-ray and DSC examination shows an interactions between blends had good miscibility. X-ray shows some alterations in the intensity with additional PU. PU change the mechanical behavior of PVC through of the blends. When polyurethane content increase causes polyvinyl chloride tensile strength decreases and elongation at break increase.

  11. The role of chlorine and additives of PVC-plastic in combustion

    International Nuclear Information System (INIS)

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  12. Effect of complexing salt on conductivity of PVC/PEO polymer blend ...

    Indian Academy of Sciences (India)

    Administrator

    composite polymer, a blend-based polymer electrolyte, composed of two conductive ... LiClO4 electrolytes with various methacrylic and acrylic polymers used as additives .... Z real vs Z imaginary plot for PVC : PEO : LiBF4 at room temperature.

  13. Thermal stability of formulations of PVC irradiated with γ of 60

    International Nuclear Information System (INIS)

    Martinez P, M.E.; Carrasco A, H.; Castaneda F, A.; Benavides C, R.; Garcia R, S.P.

    2004-01-01

    The industry of cables and wires frequently use cable isolations with base of formulations of PVC, in those that stabilizer has usually been used with the help of heavy metals, as the lead, which is toxic. To solve the problem, from the 2002 one has come studying in combined form in the National Institute of Nuclear Research ININ and the Center of Investigation in Applied Chemistry CIQA, the modifications induced by the radiation in formulations with the help of vinyl poly chloride PVC. In these formulations, prepared with cross linking agent, plastifying industrial grade, stuff and non toxic stabilizers of calcium estearate and zinc industrial grade, it is sought to replace the stabilizer of Pb. For this were irradiated it test tubes of PVC with gamma radiation of cobalt 60 to three different dose in atmospheres of air and argon. Later it was determined their thermal stability at different times of heating and it was measured the Young modulus by means of thermo mechanical analysis. Those results obtained together with other techniques of characterization suggest that the irradiated proposed formulation can substitute the one stabilized with lead. (Author)

  14. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  15. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    Science.gov (United States)

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  16. PVC-based synthetic leather to provide more comfortable and sustainable vehicles

    Science.gov (United States)

    Maia, I.; Santos, J.; Abreu, MJ; Miranda, T.; Carneiro, N.; Soares, GMB

    2017-10-01

    Consumers are increasingly demanding the interior of cars to be comfortable even in the case of more economic commercial segments. Thus, the development of materials with thermoregulation properties has assumed renewed interest for these particular applications. An attempt has been made to prepare a multilayer PVC-based synthetic leather with paraffinic PCMs to be applied on a car seat. The thermal behaviour of the material was analysed using Alambeta apparatus, a thermo-camera and a thermal manikin. The results obtained show that the synthetic leather with incorporated PCMs gives cooler feeling and has higher reaction times regarding environmental temperature variations than the material without PCMs incorporation. Globally, the new designed material allowed greater thermal comfort to the cars´ inhabitants. In addition, the material quality was evaluated according to the standard of the customer, BMW 9,210,275; Edition / Version 4, 2010-10-01 revealing that the material meets all the requirements under test, except for the performance in terms of flexibility.

  17. Estado de mistura e dispersão da fase borrachosa em blendas PVC/NBR Phase separation and rubber phase dispersion in PVC/NBR blends

    Directory of Open Access Journals (Sweden)

    Fábio R. Passador

    2006-01-01

    Full Text Available Termoplásticos modificados com elastômeros têm despertado grande interesse de pesquisadores e de indústrias devido à atraente relação custo/benefício e a possibilidade de aumento significativo da tenacidade sob impacto de polímeros frágeis com a incorporação de uma fase borrachosa dispersa. Este artigo mostra a relação entre o estado de mistura e a dispersão da fase borrachosa em blendas de poli (cloreto de vinila (PVC com borracha nitrílica (NBR. O estado de mistura de blendas poliméricas é um fator muito importante a ser considerado no desenvolvimento destes tipos de materiais, uma vez que determina o nível de mistura molecular das blendas. A característica estrutural do PVC é responsável pela morfologia das blendas PVC/NBR, sendo que há uma otimização de propriedades mecânicas quando as partículas de borracha formam a morfologia "pseudo-network", ou seja, quando as partículas de borracha estão randomicamente dispersas entre as partículas primárias do PVC.Thermoplastics modified with elastomers have attracted great interest of researchers and industries due to the low cost/benefit relationship and the possibility of significant increase in the toughness of brittle polymers through the incorporation of a dispersed rubber phase. This article shows the relationship between the interaction between phases and rubber phase dispersion in poly (vinyl chloride/nitrile rubber blends. The interaction between components in polymer blends is an important factor to be considered in the development of this kind of materials because it determines the level of the mixture at the molecular level. The particulate nature of PVC and the degree of nitrile groups in the NBR are responsible to the PVC/NBR blends morphologies leading to an optimization of the mechanical properties when the rubber particles form a pseudo-network morphology with the rubber particles randomly dispersed in between the PVC primary particles.

  18. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  19. Bedside identification of patients at risk for PVC-induced cardiomyopathy: Is ECG useful?

    Science.gov (United States)

    Garster, Noelle C; Henrikson, Charles A

    2017-07-01

    Premature ventricular complexes (PVCs) are an underrecognized cause of cardiomyopathy. Standard 12-lead electrocardiogram (ECG) has potential to direct attention toward at-risk patients. We performed a single-center, retrospective chart review of 1,240 patients who completed ECG and Holter monitoring at Oregon Health and Science University Hospital between January 1, 2011 and December 31, 2013 to investigate the relationship of PVC frequency on ECG with burden on Holter. Primary outcome measures included PVC quantity on ECG, mean PVC quantity on Holter, and percentage of total beats on Holter recorded as PVCs. High PVC burden was defined as ≥10% of total beats. Weighted mean percentages of total beats on Holter monitor recorded as PVCs were calculated for 0, 1, 2, and ≥3 PVCs on ECG and found to be 1.4% (n = 1,128), 3.5% (n = 32), 4.3% (n = 25), and 16.6% (n = 55), respectively, which represent statistically significant differences (P ECG for ≥10% PVC Holter burden was 58%. Negative predictive value for 0 PVCs on ECG was 98%. The sensitivity and specificity of ECG to identify high PVC burden on Holter was 72% and 93.6%, respectively, when utilizing a positive ECG result as one PVC or more, and 44% and 98.9%, respectively, with ≥3 PVCs on ECG. The positive likelihood ratio corresponding to ≥3 PVCs on ECG was 40. These findings demonstrate that the number of PVCs on ECG can be utilized for quick bedside estimation of high PVC burden. © 2017 Wiley Periodicals, Inc.

  20. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions

    International Nuclear Information System (INIS)

    Wu, Chunlin; Wang, Heyun; Wei, Zhong; Li, Chuan; Luo, Zhidong

    2015-01-01

    Graphical abstract: - Highlights: • A simple and versatile approach to produce PEI-functionalized nanofibers. • Novel PEI-functionalized PVC nanofibrous membrane was prepared. • Adsorption of PVC@PDA and PVC@PDA-PEI nanofibrous membranes for Cu 2+ was tested. • Isotherms, kinetic model and thermodynamic parameters were investigated. • Adsorption mechanism of Cu 2+ on modified membranes was inferred. - Abstract: In this paper, a simple and versatile approach for the fabrication of a polyethyleneimine (PEI)-functionalized nanofibrous membrane utilizing polydopamine (PDA) as a mediator is proposed. The morphology and structure of the PDA-coated and PEI-grafted nanofibrous membranes were confirmed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Due to a large specific surface area and long fibrous morphology, the synthesized membranes were used as novel adsorbents for copper ion (Cu 2+ ) removal from aqueous solutions. The adsorption of Cu 2+ was investigated on the synthesized membranes regarding the membrane dosages, initial solution pH values, initial solution concentrations, contact times and temperatures. In addition, the adsorption equilibrium data of PEI-grafted membranes were well fitted with the Langmuir adsorption isotherm, and a maximum adsorption capacity value of 33.59 mg g −1 was determined (while it was 21.94 mg g −1 for the PDA-coated membranes). The thermodynamic parameters indicated that Cu 2+ absorption was a spontaneous and exothermic adsorption process. In addition, XPS peak differentiation imitating analysis permitted the proposal of a copper-amine coordination adsorption mechanism that can be used to explain changes in the adsorption properties compared to PDA coating nanofibrous membranes

  1. The Paradigms They Are a-Changin': past, present and future of PVC bacteria research.

    Science.gov (United States)

    Rivas-Marín, Elena; Devos, Damien P

    2018-06-01

    These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the "discovery age" of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the "illumination age" of PVC research. We follow by arguing that we are just entering the "golden age" of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.

  2. Physicomechanical properties of PVC radiation-modified by tridecaethyleneglycol methacrylic ester

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1988-01-01

    A study was made on physicomechanical properties of radiation-modified system on the basis of PVC and TGM-13 oligomer (dimethacrylic ester of tridecaethyleneglycol, 43.2%). Main physical properties of the composition (maximal stresses, softening point, double refraction value, activation energy, temperature positions of the first and the second maximums on isometric heating diagram) were used to determine its isotropic and oriented states, depending on absorbed radiation dose (0-128 kGy). It is shown that radiation PVC modification by TGM-13 oligomer results in formation of linked 'soft' plastic. In terms of strength it is on a par with isotropic linear PVC, but compare favourably with it with respect to t ρ and ε

  3. Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    1985-01-01

    Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

  4. A cerium(III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Singh, A.K.; Gupta, Barkha

    2006-01-01

    A polyvinyl chloride (PVC) based membrane sensor for cerium ions was prepared by employing N,N'-bis[2-(salicylideneamino)ethyl]ethane-1,2-diamine as an ionophore, oleic acid (OA) as anion excluder and o-nitrophenyloctyl ether (o-NPOE) as plasticizer. The plasticized membrane sensor exhibits a Nernstian response for Ce(III) ions over a wide concentration range (1.41 x 10 -7 to 1.0 x 10 -2 M) with a limit of detection as low as 8.91 x 10 -8 M. It has a fast response time (<10 s) and can be used for 4 months. The sensor revealed a very good selectivity with respect to common alkali, alkaline earth and heavy metal ions. The response of the proposed sensor is independent of pH between 3.0 and 8.0. It was used as an indicator electrode in potentiometric titration of fluoride, carbonate and oxalate anions and determination of cerium in simulated mixtures

  5. Investigation of Ice-PVC separation under Flexural Loading using FEM Analysis

    Directory of Open Access Journals (Sweden)

    H Xue

    2016-08-01

    Full Text Available This paper presents the FEM technique applied in the study of ice separation over a polyvinyl chloride (PVC surface. A two layer model of ice and PVC is analysed theoretically using Euler-Bernoulli beam theory and the rule of mixtures. The physical samples are prepared by freezing ice over the PVC surfaces. The samples are tested experimentally in a four-point loading setup. The experimental results contain strain data gathered through a data acquisition system using the LabView software. The data is collected at the rate of 1 kHz per load step. A model is also coded in MATLAB® and simulated using the finite element method (FEM in ANSYS® Multiphysics. The FEM model of the ice and PVC sample is built using solid elements. The mesh is tested for sensitively. A good agreement is found between the theoretical, experimental and numerical simulation results.

  6. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides

    Science.gov (United States)

    Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-01-01

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157

  7. A new PVC based membrane sensor of dibenzo-18-crown-6 for strontium

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Bhattacharjee, G.; Baniwal, Seema; Singh, Manendra

    1999-01-01

    Dibenzo-18-crown-6 crown ether is found to exhibit quite promising selectivity for Sr 2+ ions. It can be used to estimate strontium in the range 5.0 x 10 -6 to 1.0 x 10 -1 mol dm -3 (0.28 to 8.76 x 10 -3 mg dm -3 ) with a near-Nernstian slope of 28 mV per decade of concentration. The working pH range of the proposed sensor is 2.0-6.0 with a response time of 25 s. The sensor can be used for more than three months in aqueous as well as in partially non-aqueous media. The practical utility of the membrane sensor has also been observed in solutions contaminated with detergent matter. (author)

  8. Tetracaine – selective electrodes with polymer membranes and their application in pharmaceutical formulation control

    Directory of Open Access Journals (Sweden)

    Ahmed Khudhair Hassan

    2017-02-01

    Full Text Available The construction and electrochemical response characteristics of poly(vinyl chloride (PVC membrane electrodes for tetracaine hydrochloride (TCH are described. The sensing membranes incorporating ion-association complexes of tetracaine cation with phosphotungstic acid (PTA or phosphomolybdic acid (PMA or Sodium tetraphenyl borate (NaTPB as electroactive materials and di-n-butyl phthalate (DBPH or tri-n-butyl phosphate (TBP as a plasticizer in PVC matrixes were evaluated. The results obtained show the electrodes based on PTA or PMA as electroactive compounds and DBPH as plasticizer with a fast, stable and near-Nernstian response over a wide concentration range (1 × 10−5–5 × 10−2 M, with cationic slopes of 55.02 and 52.05 mV decade−1 over a pH range of (2.5–6.5. The electrodes show good discrimination of tetracaine from several inorganic cations and sugars. The electrodes were successfully applied for the determination of tetracaine in pharmaceutical formulations.

  9. Estudo do comportamento de compostos de PVC com adição de amido Study of the behavior of PVC compounds with added starch

    Directory of Open Access Journals (Sweden)

    Lisandra Abatti

    2011-01-01

    Full Text Available Este trabalho apresenta o estudo do comportamento de compostos de PVC com adição de amido para aplicação especialmente na indústria calçadista. As propriedades mecânicas dos compostos nas proporções de 5, 7,5 e 10% foram estudadas através de ensaios de tração. Também foram verificados os índices de fluidez, alterações de propriedades quando submetidos ao envelhecimento artificial em estufa e natural ao expor às intempéries e enterrar no solo. A viabilidade da aplicação na indústria calçadista foi feita por injeção em gáspeas e tiras de sandálias, com testes de resistência, flexão e testes de campo. Os resultados demonstraram que o acréscimo de amido ao PVC provoca perda nas propriedades mecânicas, justificado pela baixa resistência mecânica do amido em relação ao PVC. Após envelhecimento em estufa o processo de retrogradação do amido deixa os compostos mais rígidos e com menor fluidez. Quando expostos às intempéries e ao solo, o PVC pode ser degradado com perda de HCl, o que leva à acidificação do solo. Nas aplicações em calçados e sandálias a resistência mecânica não atende aos requisitos do mercado. Apesar do baixo custo, o fraco comportamento mecânico dificulta sua viabilização para substituição em escala.This paper deals with the behavior of PVC compounds with addition of starch for applications, especially in the footwear industry. The mechanical properties of the compounds in the proportions of 5, 7.5 and 10% were studied using tensile tests. Also investigated were the flow rates, in addition to changes in properties when the material was subjected to artificial aging in an oven and exposed to natural weather and buried in the soil. The feasibility of application in the industry was evaluated with tests of endurance, strength and field tests in injection uppers and straps of sandals. The results showed that the addition of starch to PVC causes loss of mechanical properties, owing to

  10. Comparative studies of praseodymium(III) selective sensors based on newly synthesized Schiff's bases

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Goyal, Rajendra N.; Pal, Manoj K.; Sharma, Ram A.

    2009-01-01

    Praseodymium ion selective polyvinyl chloride (PVC) membrane sensors, based on two new Schiff's bases 1,3-diphenylpropane-1,3-diylidenebis(azan-1-ylidene)diphenol (M 1 ) and N,N'-bis(pyridoxylideneiminato) ethylene (M 2 ) have been developed and studied. The sensor having membrane composition of PVC: o-NPOE: ionophore (M 1 ): NaTPB (w/w; mg) of 150: 300: 8: 5 showed best performances in comparison to M 2 based membranes. The sensor based on (M 1 ) exhibits the working concentration range 1.0 x 10 -8 to 1.0 x 10 -2 M with a detection limit of 5.0 x 10 -9 M and a Nernstian slope 20.0 ± 0.3 mV decade -1 of activity. It exhibited a quick response time as <8 s and its potential responses were pH independent across the range of 3.5-8.5.The influence of the membrane composition and possible interfering ions have also been investigated on the response properties of the electrode. The sensor has been found to work satisfactorily in partially non-aqueous media up to 15% (v/v) content of methanol, ethanol or acetonitrile and could be used for a period of 3 months. The selectivity coefficients determined by using fixed interference method (FIM) indicate high selectivity for praseodymium(III) ions over wide variety of other cations. To asses its analytical applicability the prepared sensor was successfully applied for determination of praseodymium(III) in spiked water samples.

  11. PVC Based Membrane of Ti(IV Iodovanadate for Pb(II Determination

    Directory of Open Access Journals (Sweden)

    Mu. Naushad

    2008-08-01

    Full Text Available Ti(IV iodovanadate has been synthesized by mixing a mixture of aqueous solutions of 0.1 M sodium vanadate and 0.1 M potassium iodate with 0.1 M solution of Ti(IV chloride at pH 1.0. Distribution coefficients (Kd of various metal ions were determined on the column of Ti(IV iodovanadate which showed the selectivity of Pb(II ions by this cation exchange material. So Ti(IV iodovanadate has been used as an electoactive material for the construction of Pb(II selective electrode. The main purpose of this study is to develop an inexpensive, simple and reliable ion-selective electrode for Pb(II determination. The sensor exhibit Nernstian response for Pb(II ions over a wide concentration range of 1 x 10-7 M to 1 x 10-1 M with a slope of 30±0.4 mV per decade of activity. The electrode is suitable for use in aqueous solution in a pH range of 2-7.2 with a response time of 10 second. The membrane electrode can be used at least for 4 months without any divergence in potential. The selectivity coefficients were determined by the mixed solution method and revealed that the electrode was selective for Pb(II ions in the presence of interfering cations. The sensor could be used as an indicator electrode in the potentiometric titration of Pb(II ions with EDTA. The practical applicability of the proposed sensor has been reported for Pb(II determination in a standard rock sample and water sample. The results are found to be in good agreement with those obtained by using conventional methods.

  12. Radiation effect on PVC/ENR blends

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan

    1997-01-01

    The effect of irradiation on the physical properties of Polyvinyl Chloride / Epoxidised Natural Rubber Blends (PVC/ENR blends) were investigated. The enhancement in tensile strength, elongation at break, hardness and aging properties of the blends have confirmed the positive effect of irradiation on the blends. It is evident from gel fraction and infra red spectroscopic studies that the blends of PVC and ENR cross-linked upon irradiation. The results also revealed that at any blend composition, the enhancement in properties depend on irradiation dose which controls the degree of radiation induced cross-linking. In an attempt to maximize the constructive effect of irradiation, the influence of various additives such as stabilizers, radiation sensitizers, fillers and processing aids on the blend properties were studied. The changes in blend properties upon irradiation with the presents of above additives were also presented in this paper

  13. Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohammad Farhat; Siddiqui, Mohammad Nahid [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-08-15

    The pyrolysis and hydropyrolysis of PVC mixed plastic waste alone and with petroleum residue was carried out at 150 and 350{sup o}C under N{sub 2} gas and at 430{sup o}C under 6.5MPa H{sub 2} gas pressure. The behavior of plastic waste during thermal and catalytic decomposition has also been studied in single- and two-stage reaction processes. In the individual pyrolysis process, both the petroleum residue and polystyrene (PS) undergo more than 90% conversion to liquid and gaseous products, whereas low-density polyethylene (LDPE) and high-density polyethylene (HDPE) yielded lower conversions products, and polypropylene (PP) and polyvinyl chloride (PVC) afforded somewhere a moderate to high conversion products. In a single-stage pyrolysis reaction, PVC was processed with petroleum residue at 150 and 430{sup o}C, under N{sub 2} gas for 1h at each temperature in a glass reactor. The model PVC and waste PVC showed slight variations in the products distribution obtained from the glass reactor. In two-stage process, model PVC, vacuum gas oil (VGO) and a number of different catalysts were used in a stainless steel autoclave micro tubular reactor at 350{sup o}C under the stream of N{sub 2} gas for 1h and at 430{sup o}C under 950psi (6.5MPa) H{sub 2} pressure for the duration of 2h. Significantly, different products distributions were obtained. Among the catalysts used, fluid catalytic cracking (FCC) and hydrocracking catalysts (HC-1) were most effective in producing liquid fuel (hexane soluble) materials. The study shows that the catalytic coprocessing of PVC with VGO is a feasible process by which PVC and VGO materials can be converted into transportation fuels.

  14. Effect of oil extracted from coffee grounds in the radiolytic stabilization of PVC

    International Nuclear Information System (INIS)

    Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S.

    2013-01-01

    Commercial Poly(vinyl chloride) (PVC) containing oil extracted from coffee grounds (OCG) at concentrations of 0.50; 1.00 and 1.50 wt% were investigated. The samples were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere. The viscosity-average molar mass (M v ) was measured for PVC systems without and with oil. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of OCG at 0.5 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 67% in PVC matrix. Results about the free radical scavenger action of the OCG were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Decrease of 7% of Young's modulus value and a decrease of 31.5% on the elongation at break value were recorded for PVC films exposed to gamma irradiation. However, no significant changes were recorded in mechanical properties of PVC with OCG. (author)

  15. Effect of oil extracted from coffee grounds in the radiolytic stabilization of PVC

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thaysa Araujo de; Aquino, Katia Aparecida da Silva; Araujo, Elmo S., E-mail: aquino@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2013-07-01

    Commercial Poly(vinyl chloride) (PVC) containing oil extracted from coffee grounds (OCG) at concentrations of 0.50; 1.00 and 1.50 wt% were investigated. The samples were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere. The viscosity-average molar mass (M{sub v}) was measured for PVC systems without and with oil. Decreases in molar mass observed when the systems were gamma irradiated reflect the random scission effects that take place in the main chain. Degradation index (DI) value was also obtained by viscosity analysis. DI results showed that the addition of OCG at 0.5 wt% into PVC matrix irradiated at dose of 25 kGy decreased the number of main chain scissions and was calculated a protection index of 67% in PVC matrix. Results about the free radical scavenger action of the OCG were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Decrease of 7% of Young's modulus value and a decrease of 31.5% on the elongation at break value were recorded for PVC films exposed to gamma irradiation. However, no significant changes were recorded in mechanical properties of PVC with OCG. (author)

  16. Penelitian pengaruh asam sulfat terhadap sifat fisika kekerasan atasan sepatu kerja PVC

    Directory of Open Access Journals (Sweden)

    Kusumo Retno Winahyu

    1996-12-01

    Full Text Available The Research of hardness aspect of PVC boot upper treated by sulfuric acid to detect influence of sulfuric acid to hardness upper on PVC boot upper. The method of the research has been done by immersing samples in sulfuric acid solution 30 % (v/v for 24 hours. After immersing samples examined connected with hardness physical property. The result of the research shown that hardness physical property become decreasing until 16,08 % has error standard 5,48. It is still agree with SNI 12 – 1848-1990. Sepatu bot dari PVC.

  17. Thermal stabilisation of pvc with jatropha seed, khaya seed and rubber seed oils. Effect of barium and cadmium soaps of the seed oils on the thermal degradation of pvc

    International Nuclear Information System (INIS)

    Okieimen, F.E.

    2003-01-01

    Polyvinyl chloride was mixed with barium and cadmium soaps of Jatropha seed, Khaya seed and rubber seed oils and mixtures of the metal soaps and degraded at 190 deg. C under oxidative and non oxidative conditions. The effectiveness of the additives in stabilizing PVC against thermal degradation was evaluated by comparing (a) the kinetic data measured at 1% conversion for the degradation of PVC in the presence of the additives with the corresponding values obtained in the absence of the additives (b) the intrinsic viscosity and level of unsaturation in the polymer samples degraded for the under graded polymer and (c) the thermogravimetric data obtained for the degradation of PVC in the presence of the additives at a constant heating rate of 10 degree C min/sup -1/ up to 500 degree C. It was found that the additives retarded the rate of dehydro chlorination of PVC (by up to about 50% and 1% conversion) and reduced the extent of decomposition of the polymer by as much as 60%. The mixtures of the metal soaps containing more than 70% (wt) cadmium soap showed marked synergistic stabilizing effect on the degradation of PVC. (author)

  18. Evaluation of the influence of water and oil derivatives absorption on PVC pipes; Avaliacao da influencia da absorcao de agua e de derivados de petroleo em tubulacoes de PVC

    Energy Technology Data Exchange (ETDEWEB)

    Carpio, D.C.F. del; D' Almeida, J.R.M., E-mail: dalmeida@puc-rio.b [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    PVC is the only polymer of large consume that is not totally obtained from petroleum, since it contains 57% of chlorine. As chlorine containing materials are resistant to bacteria rich environments, such as buried pipes, PVC is being used for fluid transportation, principally water, but it can also be considered as an alternative material for the transportation of other fluids. This work analyzes the aging behavior of PVC exposed to water, ethanol and diesel oil, using TGA, DSC, FT-IR and DR-X techniques. The results showed that the chemical structure of PVC is not affected by exposure to water and ethanol. For these fluids a dipolar interaction could be occurring, increasing at the beginning of the absorption process, the polymer thermal stability. The diesel oil caused plasticization, with reduction of the Tg since the beginning of the aging process. (author)

  19. Penelitian penggunaan minarex sebagai plasticizer untuk pembuatan kompon slang PVC

    Directory of Open Access Journals (Sweden)

    Niken Karsiati

    1995-12-01

    Full Text Available The objective of the research is to find out the maximum quantity of Minarex as plasticizer which can be added in making compound PVC hose which fulfills the requirements of JIS K. 6771-77 “Flexible Vinyl Tube. Materials used are PVC resin added by additives, i.e DOP, BaCdZn, Stearic Acid, dyes and Minarex as DOP substitution. They all must be mixed and feed to two roll mill homogenizing. Temperature of operational is within 50-800C, roll speed is approximately 10 and 8,6 rpm. Then the compound is moulded into slab form using hydraulic press machine at 1700C, pressure 150 kg/cm2for 10 minutes. The slab is tested its physical properties including tensile strength, elongation at break, tensile strength after accelerated aging, and also observed organoleptically. Based on the research, compound with Minarex substitution 10 parts still conform to JIS K. 6771-77 and the appearance is good.

  20. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  1. Preparation of modified clay with benzethonium or cetylpyridinium chloride and evaluation of their interactions with PVC

    International Nuclear Information System (INIS)

    Resende, Daniel K.; Dornelas, Camila B.; Moreira, Leonardo A.; Gomes, Ailton S.; Tavares, Maria I.B.; Cabral, Lucio M.; Simeoni, Luiz A.

    2009-01-01

    The objective of this work was the preparation of modified clays with benzethonium or cetylpyridinium to obtain organophilic silicates with good stability and evaluate the possible use of them for the preparation of nanocomposites of poly(vinyl chloride) (PVC). The reactions of modification of clays and the PVC were prepared by solution intercalation. The new clays were evaluated by X-ray diffraction (XRD) and Low field nuclear magnetic resonance (NMR). The reactions of clays with PVC were assessed by Low-field NMR, through the determination of proton spin lattice relaxation time. The stability of new organophilic clays and their reactions with PVC were evaluated by thermogravimetric analysis (TGA). High stability was observed for organophilic clays prepared. The degradation of PVC materials obtained with the organophilic clay began at temperatures above 200 deg C. If it is considered that the temperatures normally used in the processing of PVC are between 140 deg C to 180 deg C, the observed results may indicate the possibility of the use of clays for preparation of nanomaterials with PVC. (author)

  2. Estimation of life of PVC cables

    International Nuclear Information System (INIS)

    Bora, J.S.; Babar, A.K.

    1989-01-01

    Life-spans at various extrapolated temperatures corresponding to early, mid and late-stage failures of PVC are quite consistent and is about 32 years at 30degC. For every 10degC rise in ambient temperature life becomes less than half. (author). 2 tabs

  3. Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters.

    Science.gov (United States)

    Almeida, M Inês G S; Silva, Adélia M L; Coleman, Rhys A; Pettigrove, Vincent J; Cattrall, Robert W; Kolev, Spas D

    2016-05-01

    A passive sampler for determining the time-weighted average total ammonia (i.e. molecular ammonia and the ammonium cation) concentration (C TWA) in freshwaters, which incorporated a polymer inclusion membrane (PIM) as a semi-permeable barrier separating the aqueous source solution from the receiving solution (i.e. 0.8 mol L(-1) HCl), was developed for the first time. The PIM was composed of dinonylnaphthalene sulfonic acid (DNNS) as a carrier, poly (vinyl chloride) (PVC) as a base polymer and 1-tetradecanol as a modifier. Its optimal composition was found to be 35 wt% commercial DNNS, 55 wt% PVC and 10 wt% 1-tetradecanol. The effect of environmental variables such as the water matrix, pH and temperature were also studied using synthetic freshwaters. The passive sampler was calibrated under laboratory conditions using synthetic freshwaters and exhibited a linear response within the concentration range 0.59-2.8 mg L(-1) NH4(+) (0.46-2.1 mg N L(-1)) at 20 °C. The performance of the sampler was further investigated under field conditions over 7 days. A strong correlation between spot sampling and passive sampling was achieved, thus providing a proof-of-concept for the passive sampler for reliably measuring the C(TWA) of total ammonia in freshwaters, which can be used as an indicator in tracking sources of faecal contamination in stormwater drains.

  4. Migration of additives from poly(vinyl chloride) (PVC) tubes into aqueous media

    DEFF Research Database (Denmark)

    Wang, Qian; Storm, Birgit Kjærside

    2005-01-01

    The stability and migration product of medical PVC tubes plasticized with polyadipates were investigated by ageing in phosphate buffer at pH 1.679 and water at different temperatures. Changes in the PVC tubes were studied by wtaer absorption, weight loss, Fourier infrared spectroscopy (FTIR.......5% and only a small amount of adipic acid migrated when a tube was aged at 37 C in water and phosphate buffer (pH 1.679), and at 70 C in water after 56 days. However, when aged at 70 and 110 C, gradual deactivation of heat stabilizer after 21 days of ageing in buffer solution and separation of plasticizer...... from PVC matrix occurred. When the tube was aged at 110 C, significant degradation of both polyadipates and PVC were observed. Adipic acid and 1,4-butanediol monomers and oligomers of polyadipate were the major migration products from polyadipates in the water ageing solution, while only a relatively...

  5. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    International Nuclear Information System (INIS)

    Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R S; Lala, Neeta L; Ramakrishna, S

    2006-01-01

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane

  6. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    Science.gov (United States)

    Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R. S.; Lala, Neeta L.; Ramakrishna, S.

    2006-06-01

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  7. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    Energy Technology Data Exchange (ETDEWEB)

    Ramaseshan, Ramakrishnan [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Sundarrajan, Subramanian [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Liu, Yingjun [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore (Singapore); Barhate, R S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Lala, Neeta L [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore)

    2006-06-28

    A catalyst for the detoxification of nerve agents is synthesized from {beta}-cyclodextrin ({beta}-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with {beta}-CD, IBA, a blend of {beta}-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  8. Cell Adhesion to Plasma-Coated PVC

    Directory of Open Access Journals (Sweden)

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  9. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  10. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    Science.gov (United States)

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. COMPORTAMIENTO DE UN CEMENTO ASFÁLTICO MODIFICADO CON UN DESECHO DE PVC

    Directory of Open Access Journals (Sweden)

    Fredy Alberto Reyes Lizcano

    2013-06-01

    Full Text Available Las propiedades físicas y reológicas a altas temperaturas de servicio de un cemento asfáltico (CA modificado con un desecho de policloruro de vinilo (PVC fueron evaluadas y son presentadas en el artículo. Adicionalmente se presenta la influencia del tiempo de mezcla del CA con el PVC y el envejecimiento a corto plazo. Un incremento notable en la rigidez y la resistencia a fluir se reporta cuando se adiciona el desecho de PVC a un CA 80-100. De la misma forma, se reporta un incremento en la temperatura máxima de operación en servicio del ligante modificado.

  12. Evaluation of the influence of water and oil derivatives absorption on PVC pipes

    International Nuclear Information System (INIS)

    Carpio, D.C.F. del; D'Almeida, J.R.M.

    2010-01-01

    PVC is the only polymer of large consume that is not totally obtained from petroleum, since it contains 57% of chlorine. As chlorine containing materials are resistant to bacteria rich environments, such as buried pipes, PVC is being used for fluid transportation, principally water, but it can also be considered as an alternative material for the transportation of other fluids. This work analyzes the aging behavior of PVC exposed to water, ethanol and diesel oil, using TGA, DSC, FT-IR and DR-X techniques. The results showed that the chemical structure of PVC is not affected by exposure to water and ethanol. For these fluids a dipolar interaction could be occurring, increasing at the beginning of the absorption process, the polymer thermal stability. The diesel oil caused plasticization, with reduction of the Tg since the beginning of the aging process. (author)

  13. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties

    International Nuclear Information System (INIS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Rodríguez, Carmen Serra

    2017-01-01

    Research into the design of new biopolymers/polymer functionalized with nanoparticles is of tremendous interest to the medical sector, particularly with regard to blood-contacting devices. In this present study, a steady blood compatible and active antibacterial coating was fabricated by the grafting of titanium dioxide (TiO 2 )/polyvinylpyyrolidone (PVP) onto a polyvinyl chloride (PVC) film surface via the direct-current glow discharge plasma method. To enhance the chemical interaction between TiO 2 /PVP and PVC, the surfaces of the PVC films were functionalized by different plasmas (air, argon, and oxygen) before coating. In this study, the plasma parameters were varied, such as treatment time of about 5–20 min for a constant power of 100 W, potential 300 V, and a constant gas pressure of 2 Pa for air, argon, and oxygen gas environment. Then, the different plasma treatments on the PVC films, TiO 2 /PVP were grafted using a simple dip-coating method. In addition, the TiO 2 /PVP-grafted PVC films were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and x-ray photo electron spectroscopy. Importantly, TiO 2 /PVP is grafted onto the PVC surface due to the plasma-based retained functionality and demonstrates adhesive efficiency, which was observed by XPS. The bio-stability of the TiO 2 /PVP-modified PVC film was evaluated by in vitro platelet activation analysis and protein adsorption analysis. Then, the antibacterial properties were evaluated by the agar diffusion method against Escherichia coli . The result reveals that the grafting of TiO 2 /PVP was slightly higher for the 15 min oxygen plasma-functionalized PVC, which significantly decreases the platelet adhesion and protein adsorption. Moreover, the antibacterial properties of the 15 min oxygen plasma-functionalized PVC with TiO 2 /PVP-grafted film is also greatly improved compared with an air- and argon

  14. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  15. Chalk effect on PVC cross-linking under irradiation; Vliyanie mela na sshivanie PVKh pri obluchenii

    Energy Technology Data Exchange (ETDEWEB)

    Chudinova, V V; Guzeev, V V; Mozzhukhin, V B; Pomerantseva, Eh G; Nozrina, F D; Zhil` tsov, V V; Zubov, V P

    1994-12-31

    Effect of nonmodified and modified chalk on curing degree of polymer matrix was studied under-irradiation of PVC-compositions. Films of the compositions (100 mass part 7 PVC, 0-100 mas.part of chalk, 2.5 - lead sulfate, 1.5 - lead stearate and 0.3 - glycerin) were irradiated up to absorbed dose 0.1 MGy in an inert medium. Content of gel-fraction after boiling in THF was determined with use of IR spectroscopy. It was established, that intensive dehydrochlorination and polymer curing took place on chalk particle surface. Network fixed strongly chalk particles. However, chalk inhibited processes of dehydrochlorination and PVC curing, increasing amount of noncured PVC in polymer matrix.

  16. PVC Membrane Sensors for Potentiometric Determination of Acebutolol

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Majed

    2007-12-01

    Full Text Available The construction and general performance characteristics of two novelpotentiometric membrane sensors responsive to the acebutolol are described. Thesensors are based on the use of ion-association complexes of acebutolol (AC withtetraphenylborate(TPB (I and phosphomolybdate(PM (II as exchange sites in a PVCmatrix. The sensors show a fast, stable and near- Nernstian for the mono charge cationof AC over the concentration range 1×10-3 - ~10-6 M at 25 °C over the pH range 2.0 -6.0 with cationic slope of 51.5 ± 0.5 and 53.0 ± 0.5 per concentration decade for AC-Iand AC-II sensors respectively. The lower detection limit is 6×10-6 M and 4×0-6 M withthe response time 20-30 s in the same order of both sensors. Selectivity coefficients ofAC related to a number of interfering cation and some organic compounds wereinvestigated. There are negligible interferences are caused by most of the investigatedspecies. The direct determination of 3 - 370 μg/ml of AC shows an average recovery of 99.4 and 99.5% and a mean relative standard deviation of 1 . 5 % at 100.0 μg/ml forsensor I and II respectively. The results obtained by determination of AC in tablets usingthe proposed sensors which comparable favorably with those obtained by the Britishpharmacopoeia method. In the present investigation the electrodes have been utilized asend point indicator for some precipitation titration reactions.

  17. Dose Rate Effect on Grafting by Gamma Radiation of DMAEMA onto Flexible PVC

    International Nuclear Information System (INIS)

    Panzarini, L.C.G.A.; Araujo, F.D.C.; Martinello, V.C.; Somesari, E.; Manzoli, J.E.; Silveira, C.; Paes, H.A.; Moura, E.

    2009-01-01

    Intravenous tubing, blood bags and catheters stays in contact with blood and body fluids. They are normally made by flexible PVC. The contact of PVC with this fluid is not possible for long periods and there is the necessity of addition of non-thrombogenic substances into blood. This work shows the radiation grafting process to produce copolymer PVC-g-DMAEMA, a new material that allows a future grafting of Heparin on it, and will have the perspective of avoiding undesirable substances additions to blood or body fluid contact. In this preliminary work, only radiation dose rate effect on grafting was studied

  18. Blendas PVC/NBR por processamento reativo I: desenvolvimento do processo de vulcanização Dinâmica in situ PVC/NBR blends by reactive processing I: in situ dynamic vulcanization process

    Directory of Open Access Journals (Sweden)

    Fábio R. Passador

    2007-06-01

    Full Text Available Vulcanização dinâmica é o processo de vulcanização de um elastômero durante a mistura no estado fundido com um termoplástico, que resulta em uma classe de materiais denominada termoplásticos vulcanizados. Neste trabalho, um novo tipo de termoplástico vulcanizado foi obtido por vulcanização dinâmica in situ da blenda PVC/NBR, utilizando-se um sistema de cura a base de enxofre (S e combinação dos aceleradores 2,2-ditiomercaptobenzotiazol (MBTS e dissulfeto de tetrametiltiuram (TMTD. As blendas PVC/NBR (90/10, 80/20 e 70/30% em massa foram processadas em um reômetro de torque Haake (Rheomix 600 a 160 °C com rotação de 60 rpm. As blendas obtidas por processamento reativo foram caracterizadas por calorimetria diferencial de varredura (DSC para determinação do grau de cura. Observou-se aumento no grau de cura das blendas com o tempo de mistura sendo o sistema de cura considerado eficiente.Dynamic vulcanization is a process of vulcanization of an elastomer during melt mixing with a thermoplastic wich results in material called thermoplastic vulcanizates or TPVs. In this study, a new kind of TPV was obtained by in situ dynamic curing of poly(vinyl chloride (PVC/nitrile rubber (NBR blends. The crosslinking of PVC/NBR blends was accomplished using sulphur (S/tetramethylthiuram disulphide (TMTD and mercaptobenzthiazyl disulphide (MBTS curative system during the reactive processing. The blends of PVC/NBR at the ratio of 90/10; 80/20 and 70/30 wt. (% were melt mixed using a Haake Rheomix 600 at 160 °C and rotor speed of 60 rpm. The curing behavior of NBR was investigated by a Monsanto Rheometer and the degree of cure was calculated using differential scanning calorimetry (DSC for different mixing times. It was observed that the degree of cure increases with the mixing time and the crosslinking system used in this work was considered efficient.

  19. A polymeric membrane ion selective electrode based on organic-inorganic composite ion exchanger for the determination of thorium(IV)

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Agarwal, Himanshu; Chandan Kumar, Singh; Sindhu, Susheel Kumar; Pankaj Kumar

    2005-01-01

    A poly(vinyl chloride) membrane electrode based on organic- inorganic composite ion exchanger, tin(IV) tungstoselenate-pyridine, has been prepared and tested for the selective determination of thorium(IV) ions. The PVC membrane electrode comprising 16% composite ion exchanger as the electroactive phase, 50% o-dioctyl phthalate as plasticizer, 4% tetraphenyl borate as anionic excluder and 30% poly(vinylchloride) displays a linear response to thorium(IV) ions over a wide concentration range of 1.0 x 10 -1 -8.0 x 10 -6 M with a Nernstain slope of 14.2 mV/ decade. The electrode shows a very short response time (∼15 s) and may be used in the pH range 2.5-9.0. The selectivity coefficient for alkali, alkaline earth and transition is smaller than 4.0 x 10 -4 . The sensor has been successfully used as an indicator electrode in the potentiometric titration of Th 4+ with EDTA as well as also for the determination of Th 4+ in the binary mixtures. (author)

  20. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  1. Influência do tipo de agente de partição da borracha nitrílica na obtenção de blendas PVC/NBR Influence of the partitioning agent on the preparation of PVC/NBR Blends

    Directory of Open Access Journals (Sweden)

    Fábio R. Passador

    2008-09-01

    Full Text Available Borrachas nitrílicas para utilização em misturas com PVC são fornecidas em forma de pó, que são recobertas com um agente de partição para evitar compactação do produto no transporte e armazenamento, além de garantir alta fluidez e livre escoamento. Neste trabalho, buscou-se estudar a influência do tipo de agente de partição da borracha nitrílica (resina de PVC e CaCO3 na obtenção de blendas PVC/NBR. As propriedades mecânicas das blendas foram avaliadas por ensaios de tração, rasgo e dureza. As blendas com NBR com agente de partição de PVC apresentaram maior tensão na ruptura e módulo elástico que as blendas em que utilizaram NBR com agente de partição de CaCO3. A morfologia foi avaliada por microscopia eletrônica de varredura sendo bastante afetada pelo tipo de agente de partição.Nitrile rubbers used in mixture with PVC resin are supplied in powder. This kind of nitrile rubber has a partitioning agent to avoid agglomeration in the particles during the transport and storage. In this study, the influence of the partitioning agent on the preparation of PVC/NBR blends was investigated. The mechanical properties of the blends were evaluated by tensile properties, tear strength and hardness. The PVC/NBR blends with partitioning agent of PVC showed an increase in the tensile stress and Young's modulus compared to the PVC/NBR blends with partitioning agent of CaCO3. The morphology of the blends examined by scanning electron microscopy demonstrated the influence of the partitioning agent.

  2. Utilization of Agrowaste Polymers in PVC/NBR Alloys: Tensile, Thermal, and Morphological Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-01-01

    Full Text Available Poly(vinyl chloride/nitrile butadiene rubber (PVC/NBR alloys were melt-mixed using a Brabender Plasticorder at 180∘C and 50 rpm rotor speed. Alloys obtained by melt mixing from PVC and NBR were formulated with wood-flour- (WF- based olive residue, a natural byproduct from olive oil extraction industry. WF was progressively increased from 0 to 30 phr. The effects of WF loadings on the tensile properties of the fabricated samples were inspected. The torque rheometry, which is an indirect indication of the melt strength, is reported. The pattern of water uptake for the composites was checked as a function WF loading. The fracture mode and the quality of bonding of the alloy with and without filler are studied using electron scanning microscope (SEM.

  3. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup genes.

    Directory of Open Access Journals (Sweden)

    Uzma Qaisar

    Full Text Available The Pseudomonas aeruginosa fimbrial structures encoded by the cup gene clusters (cupB and cupC contribute to its attachment to abiotic surfaces and biofilm formation. The P. aeruginosa pvcABCD gene cluster encodes enzymes that synthesize a novel isonitrile functionalized cumarin, paerucumarin. Paerucumarin has already been characterized chemically, but this is the first report elucidating its role in bacterial biology. We examined the relationship between the pvc operon and the cup gene clusters in the P. aeruginosa strain MPAO1. Mutations within the pvc genes compromised biofilm development and significantly reduced the expression of cupB1-6 and cupC1-3, as well as different genes of the cupB/cupC two-component regulatory systems, roc1/roc2. Adjacent to pvc is the transcriptional regulator ptxR. A ptxR mutation in MPAO1 significantly reduced the expression of the pvc genes, the cupB/cupC genes, and the roc1/roc2 genes. Overexpression of the intact chromosomally-encoded pvc operon by a ptxR plasmid significantly enhanced cupB2, cupC2, rocS1, and rocS2 expression and biofilm development. Exogenously added paerucumarin significantly increased the expression of cupB2, cupC2, rocS1 and rocS2 in the pvcA mutant. Our results suggest that pvc influences P. aeruginosa biofilm development through the cup gene clusters in a pathway that involves paerucumarin, PtxR, and different cup regulators.

  4. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  5. Investigation of PVC physical ageing in field test specimens using ultrasonic and dielectric measurements

    NARCIS (Netherlands)

    Demcenko, A.; Ravanan, M.; Visser, Roy; Loendersloot, Richard; Akkerman, Remko

    2013-01-01

    Physical ageing in PVC is studied using two techniques: a) non-linear ultrasonic measurements based on the non-collinear wave interaction theory and b) dielectric measurements. The ultrasonic measurement results are compared with dielectric measurement results. The comparison shows that the used

  6. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  7. PVC posting bags for glove boxes

    International Nuclear Information System (INIS)

    1976-12-01

    This specification covers the materials, measurements and manufacture of unpigmented PVC posting bags for use on glove boxes, together with methods of testing the materials. These bags are used in the handling of radioactive and toxic materials of a hazardous nature and therefore must be of the highest standard of mechanical strength, leak tightness and general finish. (author)

  8. Vida útil e metabolismo de carboidratos em raízes de mandioquinha-salsa sob refrigeração e filme de PVC Shelf life and carbohydrate metabolism of arracacha roots stored under refrigeration and PVC film

    Directory of Open Access Journals (Sweden)

    Rosilene Antonio Ribeiro

    2007-04-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da temperatura de armazenamento e do uso do filme de cloreto de polivinila (PVC sobre a perda de matéria fresca e água, incidência de danos causados por frio e metabolismo pós-colheita dos carboidratos, em raízes tuberosas de mandioquinha-salsa (Arracacia xanthorrhiza. O filme de PVC reduziu a perda de matéria fresca e manteve o teor de água das raízes, durante o armazenamento por 60 dias a 5 e 10ºC. Os danos causados por frio foram inibidos nas raízes embaladas em filme de PCV, em ambas as temperaturas de armazenamento. As baixas temperaturas induziram o acúmulo de açúcares solúveis e a degradação de amido e, para as raízes armazenadas sem PVC, o aumento do conteúdo dos açúcares solúveis foi transiente e a taxa de degradação de amido foi superior à das raízes armazenadas com PVC.The objective of this work was to evaluate the influence of the storage temperature and stretch polyvinylchloride (PVC film on the loss of fresh weight and water, on the development of chilling injury symptoms, and on the postharvest metabolism of carbohydrates, in arracacha tuber roots (Arracacia xanthorrhiza. The PVC film reduced the fresh weight loss and kept water content in the roots during 60-day storage period at 5 and 10ºC. PVC film in both storage temperatures inhibited the development of external and internal chilling injury symptoms. The low temperatures induced the increase of soluble sugar content and decrease of starch concentration, where the increase in soluble sugar was transient in roots stored without PVC film, and the rate of starch degradation was higher compared to the roots stored with PVC.

  9. Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

    CERN Document Server

    Deutsches Institut für Normung. Berlin

    2003-01-01

    Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

  10. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    International Nuclear Information System (INIS)

    Wang, Ming-Qiu; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-01-01

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via N-Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni–P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni–P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  11. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming-Qiu, E-mail: mqwang1514@163.com; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-07-15

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via N-Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni–P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni–P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  12. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    Science.gov (United States)

    Wang, Ming-Qiu; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-07-01

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via Nsbnd Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni-P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni-P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  13. Degradation behavior of PVC film in aqueous solution at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Shun-Myung; Kim, Jong-Hwa; Lee, Soo [Changwon National University, Changwon(Korea)

    2001-02-28

    The heat treatment of PVC film containing PVC 65%, DOP (Dioctyl Phthalate) 32% as plasticizer, Ca-Zn stearates and surface agent was performed under several conditions to study the dehydrochlorination of PVC and char production. In the case of H{sub 2}SO{sub 4}, the dehydrochlorination was ca.100% at 250 deg.C for 3h. The char involving the smaller pores was produced with hydrothermal treatment. The pore size became small with increasing the treatment time and temperature. In the case of treatment with Ca(OH){sub 2}, the sizes of pores produced in char were about sever {approx}10 {mu}m at 225 deg.C for 12h. In the case of H{sub 2}SO{sub 4}, the size of pores were about 1 {mu}m in 5M H{sub 2}SO{sub 4} for 12h. (author). 6 refs., 3 tabs., 11 figs.

  14. The 1st EMBO workshop on PVC bacteria-Planctomycetes-Verrucomicrobia-Chlamydiae superphylum: exceptions to the bacterial definition?

    Science.gov (United States)

    Devos, Damien P; Jogler, Christian; Fuerst, John A

    2013-10-01

    The PVC superphylum is a phylogenetically supported collection of various related bacterial phyla that comprise unusual characteristics and traits. The 'PVC' abbreviation derives from Planctomycetes, Verrucomicrobia and Chlamydiae as members of this superphylum, while additional bacterial phyla are related. There has recently been increasing and exciting interest in the cell biology, physiology and ecology of members of this superphylum, including evolutionary implications of the complex cell organization of some species. It is timely that international researchers in the PVC superphylum field met to discuss these developments. The first meeting entirely dedicated to those bacteria, the EMBO workshop "PVC superphylum: Exceptions to the bacterial definition" was held at the Heidelberg University to catalyze the formation of a vital scientific community supporting PVC-bacterial research. More than 45 investigators from more than 20 countries (PIs, senior scientists and students) attended the meeting and produced a great starting point for future collaborative research. This Special Issue will focus on the EMBO-PVC meeting. This Perspective briefly summarizes the history of PVC-research, focusing on the key findings and provides a brief summary of the meeting with a focus on the major questions that arose during discussion and that might influence the research in the years to come.

  15. Synthesis of AzPhchitosan-bifenthrin-PVC to protect cables against termites.

    Science.gov (United States)

    Zhang, Lingkun; Cai, Weiwei; Chen, Wu-Ya; Zhang, Li; Hu, Kaikai; Guan, Yan-Qing

    2016-03-30

    The destruction of PVC cables by termites is a continuing and long-standing problem, which can lead to power leakage and power cut. Given the environmental demerits of insecticide overuse, alternative methods of addressing this problem are a highly desirable goal. In this study, we used photo-immobilization to develop a chitosan carrier system to help bifenthrin immobilize on the surface of the PVC substrate. The immobilization was analyzed using nuclear magnetic resonance (NMR), UV absorption, reverse-phase high-performance liquid chromatography (RP-HPLC), Raman absorption spectroscopy, and thermal gravimetric analysis (TGA). The surface structure and biological activity of the embedded and immobilized bifenthrin were examined using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photon-electron spectroscopy (XPS). Its efficacy was assessed in pest experiments. The results indicate a successful embedding and immobilization of bifenthrin. Furthermore, the chemical bonding network between AzPhchitosan, bifenthrin, and PVC is stable, guaranteeing no environmental release of bifenthrin, and also providing more efficacious protection against termites. The evidence suggests that this photo-immobilization of bifenthrin-embedded chitosan on the surface of PVC substrates is a novel and environmentally friendly technique for termite control. This paper also reports a modification of chitosan with respect to its novel application in environmental protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analysis of Phthalate Ester Content in PVC Plastics by means of FT-Raman Spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Polyvinyl chloride, PVC or [CH2-CHCl]n , is a common polymer used extensively for a wide range of industrial and household products. To achieve the proper material characteristics (e.g. softness, ductility), plasticizers such as phthalates are usually added to the otherwise hard and brittle PVC......, medical devices and toys may harm the e.g. reproductive organs of exposed infants. PVC is readily distinguished from other common polymers (e.g. polyethylene, polypropylene, polystyrene) by the use of Raman spectroscopy. By far the most commonly used phthalate plasticizer in PVC is di(2-ethylhexyl......-phenyl group, and as the relative intensities of the six bands vary only slightly from one phthalate ester to the next one we have obtained an identifiable, characteristic fingerprint of the phthalate ester group as a whole. By use of the set of six bands, which are common to all the measured Raman spectra, we...

  17. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changjun; Gong Chuqing; Peng Tianyou [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film was prepared by embedding VC modified nano-TiO{sub 2} photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO{sub 2} nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO{sub 2} film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO{sub 2} nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO{sub 2} film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO{sub 2} is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti{sup IV}-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  18. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  19. Production of PVC/Abs/Nbr blend and the study of its physical and mechanical properties, thermal behaviour and its morphology

    International Nuclear Information System (INIS)

    Mehrabzadeh, M.; Honarkar, H.

    2001-01-01

    In this research a product of triplet blend of polyvinyl chloride, acrylonitrile-butadiene-styrene, acrylonitrile butadiene rubber (PVC/Abs/Nbr) is obtained. The physical, mechanical and thermal behaviour as well as morphology of the blend were studied. Results show that optimum properties in ratio PVC/Abs: 60/40 is obtained. For substituting the Nbr by a portion of Dop to modify the migration to surface, a triplet blend of PVC/Abs/Nbr was made. Experiments with constant amount of Nbr and variable Dop and vice versa were carried out. For preparation of triplet blend from PVC/Abs, a ratio of 60/40 was used. The best results were obtained for a blend with Nbr (10%) and PVC powder, 20% Nbr and PVC granules containing 34% Dop and the thermo formability of PVC/Abs/Nbr blend was examined as well

  20. Improving the Healthiness of Sustainable Construction: Example of Polyvinyl Chloride (PVC

    Directory of Open Access Journals (Sweden)

    Emina Kristina Petrović

    2018-02-01

    Full Text Available With the increasing emphasis on sustainable construction, it has become important to better understand the impacts of common materials. This is especially paramount with the introduction of the United Nations (UN Sustainable Development Goals (SDGs which call for more comprehensive evaluations, adding many aspects of social consideration to the issues of environmental sustainability, including human health. Polyvinyl chloride (PVC/vinyl can be seen as a material with potential for significant adverse effects on a multiplicity of levels, and the construction industry is its single most significant consumer. This article presents a transdisciplinary review of adverse health impacts associated with PVC showing a number of issues: some that could be eliminated through design, but also some which appear inherent to the material itself and therefore unavoidable. The totality of issues revealed in relation to PVC presents a compelling case for a call for complete elimination of use of this material in sustainable construction.

  1. Producción y modelamiento de gliceril-ésteres como plastificantes para PVC / Production et modelisation de glycerol-esters comme plastifiants pour le PVC

    OpenAIRE

    Suárez Palacios, Oscar Yesid

    2011-01-01

    El aumento en la producción mundial de glicerina, debido al crecimiento en el uso de biodiesel, y la tendencia a reemplazar los plastificantes derivados del anhídrido ftálico en la industria del PVC, por la toxicidad de dichas sustancias, motivaron la investigación de la plastificación del PVC con gliceril-ésteres derivados de ácidos carboxílicos de cadena corta (C3 - C8) y aromáticos. En este estudio se aplicó una metodología de diseño de producto para abordar la solución a las problemáticas...

  2. Application of 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea as sensing material for construction of Tm3+-PVC membrane sensor

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Feizyzadeh, Babak; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2011-01-01

    A thulium(III) membrane sensor was made using 2% sodium tetraphenyl borate (NaTPB), 65% dibutylphthalate (DBP), 30% poly(vinyl chloride) (PVC) and 3% 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea (ET) as an ionophore. Conductometric study shows selectivity of the Et toward Tm 3+ ions. Nernstian response of 19.6 ± 0.4 mV per decade of thulium concentration was observed, and the electrode worked well in concentration range of 1.0 x 10 -6 to 1.0 x 10 -2 mol L -1 with a lower detection limit (LDL) of 7.2 x 10 -7 mol L -1 , in a pH range of 4.3-10.4. The selectivity of the sensor over alkaline, alkaline earth, transition and heavy metal ions was also found to be in a satisfactory range. To check the analytical applicability of the proposed Tm 3+ sensor, it was successfully used as an indicator electrode in analysis of thulium in certified reference materials. - Research highlights: → This work reports development of polymeric membrane sensor for Tm3+ determination in certified reference materials. → The novelty of this work is based on the high affinity of the ionophore toward the Tm3+ ions which causes the high selectivity of the sensor. → The newly developed sensor is superior to the formerly reported Tm3+ sensors in terms of selectivity and detection limit.

  3. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids.

    Science.gov (United States)

    Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S

    2018-08-01

    We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6  mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of 60 MeV C5+ ion irradiation on PmT-PVC and p-TSA doped PoT-PVC blends

    International Nuclear Information System (INIS)

    Lakshmi, G.B.V.S.; Siddiqui, Azher M.; Ali, Vazid; Kulriya, Pawan K.; Zulfequar, M.

    2008-01-01

    Poly(m-toluidine) (PmT) and Poly(o-toluidine) (PoT) have been synthesized from derivatives of aniline (m-toluidine), (o-toluidine) monomers by chemical oxidative polymerization method. After polymerization, PoT powder was doped with p-toluene sulphonic acid (p-TSA) and the polymer powders were blended with poly vinyl chloride (PVC) to achieve PmT and p-TSA doped PoT dispersed films. XRD, FTIR and UV-visible studies were carried out to get their structural changes and optical information. These blends were irradiated by 60 MeV C 5+ ions with different fluences. Post Irradiation XRD, FTIR and UV-visible spectroscopy were also performed on all films. On p-TSA doped PoT-PVC blends dc-conductivity measurements are also carried out before and after irradiation. The results show structural modifications which lead to changes in optical and electrical properties

  5. Mechanical behavior of styrene grafted PVC films by electron beam irradiation

    International Nuclear Information System (INIS)

    Cardoso, Jessica R.; Moura, Eduardo; Somessari, Elisabeth S.R.; Silveira, Carlos G.; Paes, Helio A.; Souza, Carlos A.; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2011-01-01

    The polyvinyl chloride (PVC) is a technological and low cost polymer, however it presents high sensitivity to high energy irradiation because of the weakness of carbon-chloride bond face to carbon-carbon and carbon-hydrogen bonds. Grafting is a type of co-polymerization process that can allow it an increase of mechanical characteristics. The aim of this work is to evaluate the mechanical properties of styrene grafted PVC by electron beam irradiation using mutual and pre-irradiation methods to verify the mechanical resistance changes of obtained product whether grafting process is applied from non-irradiated or from pre-irradiated substrates. The irradiation procedures were performed in atmosphere air or inert atmosphere and the irradiation conditions comprised doses from 10 kGy to 100 kGy and dose rates of 2.2 kGy/s and 22.4 kGy/s. The styrene grafted samples were analyzed by gravimetry to determinate the grafting yield; the final values have been averaged from a series of three measurements. The Mid-A TR-FTIR was the spectrophotometer technique used for qualitative/semi-quantitative analysis of grafted samples. The Young's module and tensile strength of pre-irradiated and grafted PVC samples at both methods were measured at a Lloyd LXR tensile tester at a cross-head speed of 10.00 mm/min. We observed the decrease of Young's module and tensile strength with the increase of absorbed dose at pre-irradiated PVC samples. These mechanical parameters results are discussed. (author)

  6. Electron beam processing of PVC insulating material in presence of additives

    International Nuclear Information System (INIS)

    Sharma, V.K.; Bhattacharyya, P.K.

    1994-01-01

    Using electron beam radiation flexible PVC (polyvinyl chloride) was cross linked in the dose range up to 15 Mrad. The effect of sensitizers and other additives on the cross linking and other physical properties like tensile strength have been investigated. It has been found that tri functional sensitizer like TMPTM (tri methyl propane tri methacrylate) is better sensitizer for PVC. In presence of TMPTM the physical properties related to crosslinking are found to be better than some of the other sensitizers used. The results are discussed. (author). 2 refs., 2 figs

  7. Study on the gamma radiolysis of poly (vinyl chloride). Application to the study on degradation by irradiation and leaching of industrial PVC

    International Nuclear Information System (INIS)

    Colombani, J.

    2006-01-01

    The works presented in this memory enter in the context of the management of plastic nuclear waste. This study was carried out on pure PVC and industrial PVC (formulated polymer). The radiolysis at high doses (up to 4 MGy) of pure PVC in anaerobic condition involves the formation of polyenyl radicals, polyenic sequences, hydrogen chloride and reactions of crosslinking. In aerobic condition, the radiolysis at high doses of pure PVC generates the formation of peroxyl radicals, hydrogen chloride, acid water, carboxylic acids, saturated or conjugated ketones and phenomena of scission. The production of HCl generated by irradiation of industrial PVC was carried out up to 40 MGy. The HCl formed by radiolysis is completely trapped by the calcic loads contained in industrial PVC and by the water produced by these reactions of trapping. A qualitative study on the formation of the products of radiolysis highlighted that the mechanisms of radiolysis of industrial PVC are different from those of pure PVC. This difference is due to the presence of additives belonging to the formulation of industrial PVC. The irradiation of plasticizers such as phthalic esters could induce the formation of radicals being able to react, by reaction of grafting, with the macro-radicals of PVC or with the polyenic sequences formed by radiolysis of PVC macromolecules. The results of leaching experiments tend to confirm this type of mechanism. (author)

  8. Effects of low dose gamma irradiation on PVC blood bags containing anticoagulant CPDA solution

    International Nuclear Information System (INIS)

    Mitra, D.; Varshney, Lalit; Arjun, Chanda

    2006-01-01

    PVC blood bags were exposed to 20Gy and 60Gy low gamma radiation dose to investigate possibility of change in leaching behavior of the plasticizer into CPDA solution and the blood. Reversed phase HPLC was used for the investigations on anti coagulant solution CPDA(citrate, phosphate, dextrose and adenine) contained in PVC bag before and after gamma irradiation. The studies were repeated using methanol as an extractant instead of CPDA solution, considering higher extractability of plasticizer by blood. Irradiation of PVC bags by gamma radiation for a dose up to 60Gy does not lead to change in leaching behavior of the plasticizer in CPDA solution and methanol indicating similar expected behavior in blood. (author)

  9. CONTECH(R) A-2000 polyvinyl chloride (PVC) plastic pipe.

    Science.gov (United States)

    2015-03-01

    Determine the effectiveness and long-term durability of the Contech A-2000 PVC pipe : in an irrigation application. This type of pipe may prove to be a viable alternative to : reinforced concrete pipe (RCP).

  10. Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend

    Science.gov (United States)

    Alghunaim, Naziha Suliman

    2018-06-01

    Nanocomposite films based on poly (N-vinylcarbazole)/polyvinylchloride (PVK/PVC) blend doped with different concentrations of Silicon Carbide (SiC) nanoparticles have been prepared. The X-ray diffraction, Ultra violet-visible spectroscopy, thermogravimetric analysis and electrical spectroscopic has been used to characterize these nanocomposites. The X-ray analysis confirms the semi-crystalline nature of the films. The intensity of the main X-ray peak is decreased due to the interaction between the PVK/PVC and SiC. The main SiC peaks are absent due to complete dissolution of SiC in polymeric matrices. The UV-Vis spectra indicated that the band gap optical energy is affected by adding SiC nanoparticles because the charges transfer complexes between PVK/PVC with amount of SiC. The thermal stability is improved and the estimated values of ε‧ and ε″ are increased with increasing for SiC content due to the free charge carriers which in turn increase the ionic conductivity of the doped samples. The plots of tan δ with frequency are studied. A single peak from the plot between tan δ and Log (f) is appeared and shifted towards the higher frequency confirmed the presence of relaxing dipoles moment.

  11. Experimental Investigations on Combustion Behaviors of Live PVC Cables

    Science.gov (United States)

    Wang, Liufang; Zhang, Jiaqing; Zhang, Bosi; Liu, Min; Fan, Minghao; Li, Qiang

    2018-03-01

    This paper investigated the combustion behaviors of live PVC cables with overload currents experimentally. The smoke coefficient of released smoke and the released gas concentration were examined. The results indicate that the combustion of live PVC cables can be divided into four stages, i.e., core exposed with a little smoke, obvious flame, maximum smoke and smoke depress. For most cases, using blue laser is better than using rad laser, since the extinction coefficient of the rad laser was larger than that of the blue laser. The response time of the detection of the released typical gases due to cable pyrolysis decreased and the peak values of the typical gases increased with the overload currents. In addition, the time to reach the peak value of gas concentration also decreased with the overload currents.

  12. Mechanical behavior of styrene grafted PVC films by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Moura, Eduardo; Somessari, Elisabeth S.R.; Silveira, Carlos G.; Paes, Helio A.; Souza, Carlos A.; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: jmanzoli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The polyvinyl chloride (PVC) is a technological and low cost polymer, however it presents high sensitivity to high energy irradiation because of the weakness of carbon-chloride bond face to carbon-carbon and carbon-hydrogen bonds. Grafting is a type of co-polymerization process that can allow it an increase of mechanical characteristics. The aim of this work is to evaluate the mechanical properties of styrene grafted PVC by electron beam irradiation using mutual and pre-irradiation methods to verify the mechanical resistance changes of obtained product whether grafting process is applied from non-irradiated or from pre-irradiated substrates. The irradiation procedures were performed in atmosphere air or inert atmosphere and the irradiation conditions comprised doses from 10 kGy to 100 kGy and dose rates of 2.2 kGy/s and 22.4 kGy/s. The styrene grafted samples were analyzed by gravimetry to determinate the grafting yield; the final values have been averaged from a series of three measurements. The Mid-A TR-FTIR was the spectrophotometer technique used for qualitative/semi-quantitative analysis of grafted samples. The Young's module and tensile strength of pre-irradiated and grafted PVC samples at both methods were measured at a Lloyd LXR tensile tester at a cross-head speed of 10.00 mm/min. We observed the decrease of Young's module and tensile strength with the increase of absorbed dose at pre-irradiated PVC samples. These mechanical parameters results are discussed. (author)

  13. Membrane electrodes for the determination of pyridostigmine bromide.

    Science.gov (United States)

    El-Kosasy, Amira M; Salem, Maissa Y; El-Bardicy, Mohamed G; Abd El-Rahman, Mohamed K

    2009-01-01

    Two pyridostigmine bromide (PB) selective electrodes were investigated with 2-nitrophenyl octyl ether as a plasticizer in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH), based on the interaction between the drug solution and the dissociated COOH groups in the PVC-COOH. One of the sensors was fabricated by using PVC-COOH only as anionic site without incorporation of an ionophore (sensor 1). The second sensor was constructed by using 2-hydroxy propyl beta-cyclodextrin as an ionophore (sensor 2). Linear responses of PB within a concentration range of 10(-3)-10(-2) and 10(-5)-10(-2) M, with slopes of 51.9 +/- 0.31 and 56.7 +/- 0.40 mV/decade over pH range of 5-10 were obtained using sensors 2 and 1, respectively. The proposed method displayed useful analytical characteristics for determination of PB in tablets with average recoveries of 100.22 +/- 0.62, and 100.15 +/- 0.72, and in plasma with average recoveries of 99.14 +/- 1.19 and 99.79 +/- 0.72, for sensors 2 and 1, respectively. The utility of 2-hydroxy propyl beta-cyclodextrin as an ionophore has a significant influence on increasing both membrane sensitivity and selectivity of sensor 2 in comparison with sensor 1. The methods were also used to determine the intact drug in the presence of its degradate, and thus could be used as stability-indicating methods. The results obtained by the proposed procedures were statistically analyzed and compared with those obtained by the U.S. Pharmacopeia method. No significant difference for either accuracy or precision was observed.

  14. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Shinoda, Satoshi; Tsukube, Hiroshi

    2008-01-01

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10 -1 to 1.0 x 10 -3 M, while the low detection limits of these electrodes were order of ∼10 -4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  15. Solid-phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier.

    Science.gov (United States)

    Kagaya, Shigehiro; Cattrall, Robert W; Kolev, Spas D

    2011-01-01

    The extraction of cobalt(II) from solutions containing various concentrations of lithium chloride, hydrochloric acid, and mixtures of lithium chloride plus hydrochloric acid is reported using a poly(vinyl chloride) (PVC)-based polymer inclusion membrane (PIM) containing 40% (w/w) Aliquat 336 as a carrier. The extraction from lithium chloride solutions and mixtures with hydrochloric acid is shown to be more effective than extraction from hydrochloric acid solutions alone. The solution concentrations giving the highest amounts of extraction are 7 mol L(-1) for lithium chloride and 8 mol L(-1) lithium chloride plus 1 mol L(-1) hydrochloric acid for mixed solutions. Cobalt(II) is easily stripped from the membrane using deionized water. The cobalt(II) species extracted into the membrane are CoCl(4)(2-) for lithium chloride solutions and HCoCl(4)(-) for mixed solutions; these form ion-pairs with Aliquat 336. It is also shown that both lithium chloride and hydrochloric acid are extracted by the PIM and suppress the extraction of cobalt(II) by forming ion-pairs in the membrane (i.e. R(3)MeN(+)·HCl(2)(-) for hydrochloric acid and R(3)MeN(+)·LiCl(2)(-) for lithium chloride). 2011 © The Japan Society for Analytical Chemistry

  16. Development and characterization of a synthetic PVC/DEHP myocardial tissue analogue material for CT imaging applications.

    Science.gov (United States)

    Ramadan, Sherif; Paul, Narinder; Naguib, Hani E

    2018-04-01

    A simple myocardial analogue material has great potential to help researchers in the creation of medical CT Imaging phantoms. This work aims to outline a Bis(2-ethylhexyl) phthalate (DEHP) plasticizer/PVC material to achieve this. DEHP-PVC was manufactured in three ratios, 75, 80, and 85% DEHP by heating at 110 °C for 10 min to promote DEHP-PVC binding followed by heating at 150 °C to melt the blend. The material was then tested utilizing FTIR, tensile testing, dynamic mechanical analysis and imaged with computed tomography. The FTIR testing finds the presence of C-CL and carbonyl bonds that demonstrate the binding required in this plasticized material. The tensile testing finds a modulus of 180-20 kPa that increases with the proportion of plasticizer. The dynamic mechanical analysis finds a linear increase in viscoelastic properties with a storage/loss modulus of 6/.5-120/18 kPa. Finally, the CT number of the material increases with higher PVC content from 55 to 144HU. The 80% DEHP-PVC ratio meets the mechanical and CT properties necessary to function as a myocardial tissue analogue.

  17. Analysis of Adipate Ester Contents in PVC Plastics

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2006-01-01

    Plasticizers are needed in flexible PVC (PolyVinylChloride) products. There is serious concern that commonly used phthalate esters may harm life reproduction systems. To avoid the problems, instead adipate di-esters (AEs) of C8 to C10 alcohols are used as higher prized alternatives; e.g. di-2......-ethylhexyl adipate or DEHA [103-23-1], also known as Adimoll® or di-octyl adipate, DOA, see Fig. 1. A widely used plasticizer in food (cling) films is DEHA, often in combination with polymers, epoxidized soya-bean oil, etcetera. DEHA also occurs in children toys. We have previously shown that the presence...... of phthalate esters in PVC can be rapidly analyzed by Fourier transform (FT-) Raman spectroscopy excited with a 1064 nm laser. Here in this project we report a similar study. The aim was to find out whether FT-Raman spectroscopy can be used to determine the presence of adipate esters (AEs) as plasticizers...

  18. Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of PVC

    Institute of Scientific and Technical Information of China (English)

    SUN Qing-lei; SHI Xin-gang; LIN Yun-liang; ZHU He; WANG Xiao; CHENG Chuan-ge; LIU Jian-hua

    2007-01-01

    The pyrolysis characteristics of PVC were systematically investigated using a Netzschne TG thermo-balance coupled to a quadrupole mass spectrometer. The pyrolysis conditions were 0.1 MPa of Ar, a heating rate of 10 ℃/min and a final temperature of 1000 ℃. Both the thermogravimetric properties and the simultaneous evolution of gaseous products during pyrolysis were studied. The TG/DTG results showed that as the pyrolysis temperature increases the weight loss and weight loss rate of PVC increases. Near 412 ℃ the weight loss rate attained its peak value. At higher temperatures the rate of loss gradually decreases. The gases evolved during thermogravimetric analysis were analyzed by a mass spectrometer, monitoring the relative intensity of HCl, C6H6, light hydrocarbon and chlorine-containing gases. The evolution curves showed that HCl, C6H6, light hydrocarbon and chlorine-containing gases all peak at about 416 ℃. This is consistent with the fact that the weight loss curves also peak at about 412 ℃. The extensive HCl evolution is consistent with the high chlorine content of PVC. The formation of these gases can be explained by considering these reactions: dehydrochlorination, intramolecular cyclization and the addition of HCl to unsaturated hydrocarbons.

  19. Study on application of molten salt oxidation technology (MSO) for PVC wastes treatment

    International Nuclear Information System (INIS)

    Tran Thu Ha; Nguyen Hong Quy; Pham Quoc Ky; Nguyen Quang Long; Vuong Thu Bac; Dang Duc Nhan

    2007-01-01

    The project 'Study on application of molten salt oxidation (MSO) for PVC plastic wastes treatment' aims at three followings: 1) Installation of lab-scale MSO unit with essential compositions builds up foundation for the 2) estimation of waste destruction efficiency of the technology. 3) Based on the results of testing PVC - the chlorinated organic wastes on the lab-scale unit, the ability of the technology application at pilot-scale level will be primary estimated. The adjustment and correction of some compositions in the lab-scale unit theoretically designed during experiment overcame the shortages by design and fabrication such as heat distribution regime, feeding wastes and draining spent salt. These solutions adapt to the technical requirement of operation as well as scientific requirement of the research on MSO process. PVC waste treatment was tested on the MSO lab-scale unit in different conditions of operation temperature, superficial air velocity related to air/oxygen feeding rate, waste feeding rate. The testing results showed that destruction efficiency of chlorine in MSO technology was almost absolute. HCl and Cl 2 emission were insignificant in different operation conditions. HCl and Cl 2 emission depend on resident time and nature of molten salt. However, with inherent attributes of MSO technology emission of CO is not avoided in processing waste treatment. Therefore, finding active solutions for reduction CO emission is essential to complete the technology. The experiments also were carried in conditions of single molten salt (Na 2 CO 3 ) and molten (Na 2 CO 3 - K 2 CO 3 ) eutectic. The comparison of efficiency of these tests gives idea of using molten salt eutectic to reduce operation cost in MSO technology. Based on operation parameters and scientific verification results during experiments, the introductory procedure of waste treatment by MSO process was built up. Thereby, primary estimation of development of the technology in pilot-scale is given

  20. PVC flooring at home and development of asthma among young children in Sweden, a 10-year follow-up.

    Science.gov (United States)

    Shu, H; Jönsson, B A; Larsson, M; Nånberg, E; Bornehag, C-G

    2014-06-01

    The incidence of asthma and allergy has increased throughout the developed world over the past decades. During the same period of time, the use of industrial chemicals such as phthalates, commonly used as plasticizers in polyvinylchloride (PVC) flooring material, has increased. The aim of this study was to investigate whether PVC flooring in the home of children in the age of 1-5 years is associated with the development of asthma in 5- and 10-year follow-up investigations (n = 3228). Dampness in Buildings and Health Study (DBH Study) commenced in 2000 in Värmland, Sweden. The current analyses included subjects who answered all baseline and follow-up questionnaires. Logistic regression analyses were applied to questionnaire results. Children who had PVC floorings in the bedroom at baseline were more likely to develop doctor-diagnosed asthma during the following 10-year period when compared with children living without. There were indications that PVC flooring in the parents' bedrooms was strongly associated with the new cases of doctor-diagnosed asthma when compared with child's bedroom. Our results suggest that PVC flooring exposure during pregnancy could be a critical period in the development of asthma in children at a later time; prenatal exposure and measurements of phthalate metabolites should be included in the future. This study has found that PVC flooring material in early life was related to incidence of asthma during the following 10 years when compared with other flooring materials and especially when comparing with wood flooring type.The study has further indicated that PVC flooring in the parents’ bedroom (proxy for prenatal exposure) was more associated with the development of asthma than PVC in the child’s bedroom was. Our results suggest that PVC flooring exposure during pregnancy could be a critical period in the development of asthma in children at a later time. In future prospective cohort study, prenatal exposure and measurements of

  1. Comparative scanning electron microscope study of the degradation of a plasticized polyvinyl chloride waterproofing membrane in different conditions

    International Nuclear Information System (INIS)

    Pedrosa, A.; Del Río, M.

    2017-01-01

    This paper discusses the analysis of several samples of a plasticized polyvinyl chloride (PVC-P) waterproofing membrane. The samples were extracted from different areas of the same flat roof, which was in service for over 12 years. An original sample of an identical PVC-P membrane that was not installed on the roof was also analyzed. The analysis of the materials was carried out using a scanning electron microscope (SEM). An elemental analysis of every sample was also performed by energy dispersive X-ray spectroscopy (EDS). Micrographs and the elemental composition of the samples were compared with the data obtained in the analysis of the original sample. The results show dehydrochlorination of the polymer in two of the samples studied and great deterioration that was not visible to the naked eye in the sample that was totally exposed to the weather. [es

  2. Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer

    International Nuclear Information System (INIS)

    Wang, Gongling; Yang, Mei; Li, Zhiwen; Lin, Kaifeng; Jin, Quan; Xing, Chaojian; Hu, Zhudong; Wang, Dan

    2013-01-01

    Zn-doped MgAl-layered double hydroxides (LDHs) with M 2+ /M 3+ = 2 and different molar ratios of Mg/Zn have been synthesized by modified homogeneous co-precipitation method and characterized by powder X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectrum and thermogravimetry, and differential thermal analysis techniques. The thermal stabilizing effects of different LDHs on PVC were studied by Congo red test and thermal aging test. All of the nanoparticles show plate-like morphology and the average diameter of particles is around 90 nm. Results show that the introduction of Zn increased the average bond length and area of the layers of LDHs, therefore enhanced the adsorption ability on HCl gas which was generated during degradation of PVC to improve the thermal stability of PVC. LDHs with molar ratio of Mg/Zn = 1.0 shows the best thermal stabilizing effect on PVC

  3. Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongling; Yang, Mei [Chinese Academy of Sciences, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (China); Li, Zhiwen; Lin, Kaifeng [Harbin Institute of Technology, Academy of Fundamental Interdisciplinary Sciences (China); Jin, Quan; Xing, Chaojian; Hu, Zhudong [Chinese Academy of Sciences, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (China); Wang, Dan, E-mail: danwang@mail.ipe.ac.cn [Harbin Institute of Technology, Academy of Fundamental Interdisciplinary Sciences (China)

    2013-09-15

    Zn-doped MgAl-layered double hydroxides (LDHs) with M{sup 2+}/M{sup 3+} = 2 and different molar ratios of Mg/Zn have been synthesized by modified homogeneous co-precipitation method and characterized by powder X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectrum and thermogravimetry, and differential thermal analysis techniques. The thermal stabilizing effects of different LDHs on PVC were studied by Congo red test and thermal aging test. All of the nanoparticles show plate-like morphology and the average diameter of particles is around 90 nm. Results show that the introduction of Zn increased the average bond length and area of the layers of LDHs, therefore enhanced the adsorption ability on HCl gas which was generated during degradation of PVC to improve the thermal stability of PVC. LDHs with molar ratio of Mg/Zn = 1.0 shows the best thermal stabilizing effect on PVC.

  4. A PVC/polypyrrole sensor designed for beef taste detection using electrochemical methods and sensory evaluation.

    Science.gov (United States)

    Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia

    2018-03-01

    An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Porphyrin Based Potentiometric Sensor for Zn2+ Determination

    Directory of Open Access Journals (Sweden)

    H. Lang

    2003-07-01

    Full Text Available PVC based membranes of disodium salt of porphyrin 3,7,12,17-tetramethyl-8, 13-divinyl 2,18-porphine dipropionic acid (I as ionophore with sodium tetra phenyl borate (NaTPB as anion excluder and dibutyl phthalate (DBP, dioctyl phthalate (DOP, dibutyl butyl phosphonate (DBBP, tris(2- ethyl hexylphosphate (TEP, tri-n-butylphosphate (TBP and 1- chloronaphthalene (CN as plasticizing solvent mediators were prepared and constructed for determination of Zn(II. The PVC based membrane of (I with DBBP as plasticizer and having anion excluder, NaTPB in the ratio PVC: I: NaTPB: DBBP (150: 10: 2: 200 gave the best results in terms of working concentration range (1.3×10-5-1.0 ×10-1M with a Nernstian slope (30.0 mV/decade of activity. The useful pH range of the sensor is 3.0 –7.4, beyond which a drift in potential was observed. The response time of the sensor is 10s and the lifetime was about 2 months during which it could be used without any measurable divergence. It had good stability and reproducibility. The membrane worked satisfactorily in non-aqueous medium up to 40% (v/v non-aqueous content. The selectivity coefficient values indicate that the electrode is highly selective for Zn2+ over a number of other cations except Na+ and Cd2+. Although Na+ and Cd2+ are likely to cause some interference, they would not interfere if present at the concentrations < 1 ×10-5 and < 5 ×10-5 M, respectively. The electrode has been used as an indicator electrode to determine the end point in the potentiometric titration of Zn2+ with EDTA.

  6. Platelet storage in Fresenius/NPBI polyolefin and BTHC-PVC bags: a direct comparison.

    Science.gov (United States)

    Hornsey, V S; McColl, K; Drummond, O; Macgregor, I R; Prowse, C V

    2008-08-01

    New platelet storage systems, such as changes in the plastic of the storage bags, require validation. In this study, pooled buffy coat platelets stored in Fresenius/NPBI polyolefin bags were compared with those stored in Fresenius/NPBI butyryl-trihexyl citrate (BTHC) plasticized polyvinyl chloride (PVC). The CompoSelect thrombocyte polishing filter system (1000 mL polyolefin bag) and the CompoStop F730 system (1300 mL BTHC-PVC bag) were used to prepare paired, plasma-suspended, buffy coat platelet concentrates. Samples were taken up to day 7 for in vitro analysis. In a separate experiment, 12 units were prepared using the CompoStop F730 system and samples taken after leucofiltration for FXIIa assay. By day 7, platelet concentrates stored in BTHC-PVC demonstrated significantly higher pH levels (7.32 +/- 0.05 vs. 7.26 +/- 0.05) and a greater degree of cell lysis as shown by increased lactate dehydrogenase levels (497 +/- 107 vs. 392 +/- 81 U L(-1)). The supernatants contained higher concentrations of soluble P-selectin and the chemokine 'regulated on activation, normal T-cell expressed and presumably secreted', which are released from the alpha-granules during activation. The ATP concentrations were significantly lower in BTHC-PVC. Platelet counts, mean platelet volume and hypotonic shock response were similar for both bags. FXIIa antigen concentrations were 0.6 +/- 0.2 ng mL(-1) indicating that activation of the contact factor pathway had not occurred. Although the CompoStop F730 leucoreduction filter did not activate the contact system, platelets stored in 100% plasma in BTHC-PVC bags demonstrated different in vitro characteristics from those stored in polyolefin. Further work is required to demonstrate whether these differences will affect in vivo recovery and survival.

  7. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    Science.gov (United States)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  8. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    International Nuclear Information System (INIS)

    Singh, A.K.; Jain, A.K.; Mehtab, Sameena

    2007-01-01

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10 -7 to 1.0 x 10 -2 M (detection limit 5.5 x 10 -8 M) with a Nernstian slope of 19.7 mV decade -1 of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb 3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples

  9. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier.

    Science.gov (United States)

    Singh, A K; Jain, A K; Mehtab, Sameena

    2007-08-06

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  10. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)], E-mail: akscyfcy@iitr.ernet.in; Jain, A.K.; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-08-10

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10{sup -7} to 1.0 x 10{sup -2} M (detection limit 5.5 x 10{sup -8} M) with a Nernstian slope of 19.7 mV decade{sup -1} of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb{sup 3+} ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  11. PVC-membrane potentiometric sensors based on a recently ...

    African Journals Online (AJOL)

    It has a fast response time of <12 s and can be used for ten weeks without any considerable divergences in its potentials .the electrode can be used in the pH range 4.5-8.0. The proposed sensor shows fairly good discriminating ability towards Fe(III) ion in comparison with a large number of alkali, alkaline earth, transition ...

  12. Residual lifetime assessment of uPVC gas pipes

    NARCIS (Netherlands)

    Visser, H.A.

    2010-01-01

    The Dutch gas distribution network consists of about 20% (22,500 km) of unplasticised poly(vinyl chloride) (uPVC) pipes, most of which have been installed from the mid-sixties up to the mid-seventies of the previous century and have been in service ever since. In the next decade the specified

  13. In vitro quality of apheresis platelets divided into paediatric-sized units and stored in PVC bags plasticised with TOTM, BTHC or DINCH.

    Science.gov (United States)

    Bashir, S; Meli, A; Cardigan, R

    2018-04-11

    Two of the predictive factors of the quality of small volumes of platelets suitable for paediatric use are bag size and material. This study evaluated the storage properties of paediatric platelet aliquots in TOTM-, BTHC- or DINCH-PVC bags. (i) Three apheresis platelet concentrates (PC) were pooled and split into three units. One was retained as an adult unit (control; polyolefin bag). The second and third units were split into four MacoPharma TOTM-PVC and BTHC-PVC paediatric bags, respectively. (ii) Two apheresis PC were pooled and split into two units. One PC was retained as an adult unit, and the other was split into four Fresenius DINCH-PVC paediatric bags. Testing was performed on storage for pH, blood gases, hypotonic shock response, soluble CD62P, LDH, glucose and lactate, ATP, CD62P, CD63, platelet-derived microparticles and annexin V. The volumes, platelet yields and pH of all paediatric units met local specifications. The TOTM-PVC bag showed no worse quality than the adult bag up to day 7 for all parameters studied, and it maintained pH higher than BTHC-PVC and DINCH-PVC over storage. The BTHC-PVC bag was shown to be the most gas permeable; however, it had the highest glucose consumption rates and the highest platelet activation. All bags showed an acceptable in vitro quality. Overall, the TOTM-PVC paediatric bag showed better platelet quality compared to the other storage bags, whereas storage in the BTHC-PVC bag resulted in poorer platelet quality. © 2018 British Blood Transfusion Society.

  14. Aging and characterization of PVC compound used as flat-panel of a low cost solar collector; Envelhecimento e caracterizacao de compostos de PVC usado em placas de coletores solares de baixo custo

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Bruna R.; Pinto, Tatiana T.; Bartoli, Julio R. [Depto. de Tecnologia de Polimeros, Faculdade de Engenharia Quimica/Universidade Estadual de Campinas. FEQ/UNICAMP, SP (Brazil)], e-mail: bartoli@feq.unicamp.br; Fernandes, Elizabeth G. [Tezca P and D Celulas Solares (Brazil)

    2011-07-01

    Regardless the excellent amount of solar irradiation in Brazil, the development and production of solar water heating systems did not reach the low-income families yet. The relatively high cost of conventional solar water heaters is still the main reason to prevent it. The development of a low cost solar water heater (around US$ 200), easy technology, was the scope of previous work. All-plastic solar collector prototypes were developed using unplasticized Poly (vinyl chloride) ceiling panels and tubes, commodities from building engineering. Nevertheless, the main thermal and photo degradation mechanisms for PVC are well known; the unusual application of PVC as solar collector materials should need a specific investigation on environmental aging. This work presents a study on outdoor aging and characterization of PVC flat-plate absorber of solar collectors after 5 years on use. (author)

  15. Spectroscopic analysis of PMMA/PVC blends containing CoCl2

    Directory of Open Access Journals (Sweden)

    N.S. Alghunaim

    2015-01-01

    Full Text Available Composites of polymethyl methacrylate (PMMA and polyvinyl chloride (PVC polymer blend containing different concentrations (⩽10 wt. of cobalt chloride (CoCl2 were prepared by casting techniques. The changes of the structural, spectroscopic, optical and thermal parameters of the samples are studied using different tools. FT-IR spectroscopy confirmed the complexation between the blends and Co+2-ions. The decrease or increase of IR band intensity with some shifts of other bands suggests an interaction and compatibility between PMMA/PVC blends with CoCl2 take place. The Ultra violet and visible (UV/Vis spectra indicated that the presence of band gap energy depends on increasing of CoCl2 contents. The absorption intensity of the samples doped with CoCl2 becomes faint lower than the pure blend. The values of energy gap for direct and indirect transition decreases with the increase of CoCl2 due to the presence of charge transfer between PMMA/PVC and CoCl2. The thermogravimetric analysis (TGA curves for all the samples have the same behavior and more steps of decomposition were observed. The reduction of mass loss for samples containing CoCl2 compared to the pure blend was observed and it was attributed to crosslink formation between the blend and CoCl2.

  16. Application of 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea as sensing material for construction of Tm{sup 3+}-PVC membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Feizyzadeh, Babak [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-10-10

    A thulium(III) membrane sensor was made using 2% sodium tetraphenyl borate (NaTPB), 65% dibutylphthalate (DBP), 30% poly(vinyl chloride) (PVC) and 3% 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea (ET) as an ionophore. Conductometric study shows selectivity of the Et toward Tm{sup 3+} ions. Nernstian response of 19.6 {+-} 0.4 mV per decade of thulium concentration was observed, and the electrode worked well in concentration range of 1.0 x 10{sup -6} to 1.0 x 10{sup -2} mol L{sup -1} with a lower detection limit (LDL) of 7.2 x 10{sup -7} mol L{sup -1}, in a pH range of 4.3-10.4. The selectivity of the sensor over alkaline, alkaline earth, transition and heavy metal ions was also found to be in a satisfactory range. To check the analytical applicability of the proposed Tm{sup 3+} sensor, it was successfully used as an indicator electrode in analysis of thulium in certified reference materials. - Research highlights: {yields} This work reports development of polymeric membrane sensor for Tm3+ determination in certified reference materials. {yields} The novelty of this work is based on the high affinity of the ionophore toward the Tm3+ ions which causes the high selectivity of the sensor. {yields} The newly developed sensor is superior to the formerly reported Tm3+ sensors in terms of selectivity and detection limit.

  17. Selective flotation of PVC using gelatin and lignin alkali.

    Science.gov (United States)

    Yenial, Unzile; Kangal, Olgaç; Güney, Ali

    2013-06-01

    Recycling has become one of the most important issues as a result of increasing waste mass in present day. This is especially important for polymer wastes as they are hard to degenerate in nature. Today, most of the practical methods used for the recycling of waste mass, such as hand sorting, gravity separation, etc., cannot be performed successfully owing to close densities of polymers. Froth flotation can be used successfully and economically for this purpose. The main objective of this study was to investigate the effect of plasticizer reagents and the success of froth flotation at plastic recycling. In this study, lignin alkali and gelatin were used as plasticizer reagents. The effect of these reagents was searched with the parameters of pH, concentration, conditioning and flotation time. In the case of post-consumed polyethylene terephthalate and polyvinyl chloride (PVC), 98.9% purity of PVC was obtained at optimum conditions.

  18. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  19. A novel sensor for monitoring of iron(III) ions based on porphyrins.

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  20. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  1. Use of marker ion and cationic surfactant plastic membrane electrode for potentiometric titration of cationic polyelectrolytes.

    Science.gov (United States)

    Masadome, Takashi; Imato, Toshihiko

    2003-07-04

    A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.

  2. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae and Lentisphaerae of Bacteria Provide Insights into their Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Radhey S. Gupta

    2012-09-01

    Full Text Available The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia and Chlamydiae, along with the Lentisphaerae, Poribacteria and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, 6 conserved signature indels (CSIs in the proteins Cyt c oxidase, UvrD helicase, urease and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms.

  3. PVC flooring is related to human uptake of phthalates in infants.

    Science.gov (United States)

    Carlstedt, F; Jönsson, B A G; Bornehag, C-G

    2013-02-01

    Polyvinyl chloride (PVC) flooring material contains phthalates, and it has been shown that such materials are important sources for phthalates in indoor dust. Phthalates are suspected endocrine-disrupting chemicals (EDCs). Consecutive infants between 2 and 6 months old and their mothers were invited. A questionnaire about indoor environmental factors and family lifestyle was used. Urinary metabolites of the phthalates diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBzP), and dietylhexyl phthalate (DEHP) were measured in the urine of the children. Of 209 invited children, 110 (52%) participated. Urine samples were obtained from 83 of these. Urine levels of the BBzP metabolite monobenzyl phthalate (MBzP) was significantly higher in infants with PVC flooring in their bedrooms (P flooring material may increase the human uptake of phthalates in infants. Urinary levels of phthalate metabolites during early life are associated with the use of PVC flooring in the bedroom, body area, and the use of infant formula. This study shows that the uptake of phthalates is not only related to oral uptake from, for example, food but also to environmental factors such as building materials. This new information should be considered when designing indoor environment, especially for children. © 2012 John Wiley & Sons A/S.

  4. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(1)) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(2)) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L(2):PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3x10(-8) mol L(-1) for PME and 7.7x10(-9) mol L(-1) for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples. 2010 Elsevier B.V. All rights reserved.

  5. Optimization of a new polymeric chromium (III) membrane electrode based on methyl violet by using experimental design.

    Science.gov (United States)

    Kazemi, Sayed Yahya; Hamidi, Akram sadat; Asanjarani, Neda; Zolgharnein, Javad

    2010-06-15

    Plackett-Burman and Box-Behnken designs were applied as experimental design strategies to screen and optimize the influence of membrane ingredients on the electrode performance. A new poly(vinyl chloride) membrane sensor for Cr(III) based on methyl violet as an ionophore was planned. The major variables to find a model for achieving the best Nernstian slope as response were: PVC, plasticizers, methyl violet, KpClTPB, pH, conditioning time and internal solution concentration. Plackett-Burman design was used to screen the main factors and Box-Behnken response surface was led to find a model for optimizing the response. The optimized membrane electrode shows a Nernstian slope for chromium (III) ions over a wide linear range from 1.99x10(-6) to 3.16x10(-2)molL(-1) and a slope of 19.5+/-0.1mVdecade(-1) of activity. It would be successfully applied in the pH range from 3.5 to 6.5 with detection limit of 1.77x10(-6)molL(-1) (0.092mgL(-1)). The response time of the sensor is about 8s and the membrane can be used for more than 6 weeks without any deviation. The relative standard deviations (R.S.D.) for six replicate the measurements of 1.0x10(-4) and 1.0x10(-3)molL(-1) of Cr(III) were 3.2 and 3%, respectively. The electrode revealed comparatively good selectivity with respect to many cations including alkali earth, transition and heavy metal ions. The electrode was successfully used as an indicator in the potentiometric titration of Cr(III) with EDTA and was also applied to the direct determination chromium (III) content of spiked water and soil samples.

  6. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K., E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India); Singh, Prerna [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 1}) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 2}) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L{sub 2}:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L{sub 2} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10{sup -8} mol L{sup -1} for PME and 7.7 x 10{sup -9} mol L{sup -1} for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  7. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna

    2010-01-01

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 1 ) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 2 ) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L 2 :PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L 2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10 -8 mol L -1 for PME and 7.7 x 10 -9 mol L -1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  8. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  9. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  10. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  11. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  12. Practical problems in radiation sterilization of medical devices made from plasticized PVC

    International Nuclear Information System (INIS)

    Beenen, J.H.

    1990-01-01

    The following three methods for sterilizing medical devices made from plasticised PVC are used in the Netherlands. 1. sterilization by steam, steam-air or superheated water. 2. sterilization by electron beam or gamma irradiation. 3. ethylene oxide sterilization. IV-bags, blood bags and other bag types for similar applications made from plasticized PVC are mostly sterilized by steam-air or super heated water, especially when filled or partly filled containers are considered. More complicated products or products with components that cannot resist steam sterilization of 121 0 C are sterilized by ethylene oxide or irradiation. These last two methods also are favoured for sterilizing empty bags where sticking of the surfaces at the sterilization temperature creates a serious handicap. Moreover, steam sterilization may cause a permanent opacity of some plastics. However, we have to add that due to developments in formulations steam sterilization of empty bags is going to be of an increasing importance. proven carcinogenity of the gas ethylene oxide, difficult deaeration and retention of the gas in plasticized PVC has increased the demand for better radiation resistant plastics as an alternative for steam sterilization. (author)

  13. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  14. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  15. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  16. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  17. Polymer membrane electrodes for sensitive potentiometric determination of beta-blockers.

    Science.gov (United States)

    Wassil, Anwar A; Farag, Abd El-Ftaah Bastawy; Moukdad, Fatma A

    2007-01-01

    The construction of PVC matrix-type beta-blockers (sotalol, carvedilol, and betaxolol) ion selective electrodes and their use for direct potentiometry of their respective species are described. The proposed sensors are based on the complex ion associates of beta-blockers with tungstophosphate (TP) and Ammonium Reineckate (Rein) ionophoris in poly vinyl chloride membrane (PVC) with Dioctylphthalate (DOP) plasticizer. The four electrodes (Beta-TP), (Sota-TP), (Carve-TP), and (Cave-Rein) show stable potential response with near Nernstian slope of 50.8, 33.7, 32.35, and 33 mv per decade, range of concentration 10-2-10-7 M beta-blockers. Selectivity coefficients data obtained for 11 different organic and inorganic ions are presented. The electrodes have fast response time (30 and 40 s) and were used over wide range of pH 4.5-8.5. Validation of the method according to the quality assurance standers shows suitability of proposed sensors for use in the quality control assessment of these drugs. The results obtained for the determination of beta-blockers with the proposed electrodes show average recoveries of 100.78% and a mean standard deviation of +/-1.2. The nominal are obtained. The data agree well with those obtained by standard methods.

  18. Photoetching of Immobilized TiO2-ENR50-PVC Composite for Improved Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    M. A. Nawi

    2012-01-01

    Full Text Available Commercially acquired TiO2 photocatalyst (99% anatase powder was mixed with epoxidized natural rubber-50 (ENR50/polyvinyl chloride (PVC blend by ultrasonication and immobilized onto glass plates as TiO2-ENR50-PVC composite via a dip-coating method. Photoetching of the immobilized TiO2-ENR50-PVC composite was investigated under the irradiation of a 45 W compact fluorescent lamp and characterized by chemical oxygen demand (COD analysis, scanning electron microscopy-energy dispersive X-ray (SEM-EDX spectrometry, thermogravimetry analysis (TGA, and fourier transform infrared (FTIR spectroscopy. The BET surface area of the photoetched TiO2 composite was observed to be larger than the original TiO2 powder due to the systematic removal of ENR50 while PVC was retained within the composite. It also exhibited better photocatalytic efficiency than the TiO2 powder in a slurry mode and was highly reproducible and reusable. More than 98% of MB removal was consistently achieved for 10 repeated runs of the photo-etched photocatalyst system. About 93% of the 20 mg L−1 MB was mineralized over a period of 480 min. The presence of SO42−, NO3−, and Cl− anions was detected in the mineralized solution where the solution pH was reduced from 7 to 4.

  19. Carneiro hidráulico com tubulação de alimentação em aço galvanizado e em PVC Hydraulic ram pump perfomance with PVC and steel pipes

    Directory of Open Access Journals (Sweden)

    Caroline Abate

    2002-03-01

    Full Text Available A recente crise da energia convencional tem ocasionado a exploração de fontes alternativas de energia. O bombeamento de água utilizando carneiro hidráulico é amplamente empregado em propriedades onde a energia elétrica é escassa ou inexistente. Procurando dar subsídios técnicos para a utilização do PVC nos sistemas de alimentação de um carneiro hidráulico, foi desenvolvido um experimento com objetivo de avaliar o desempenho de um carneiro hidráulico quando alimentado por uma tubulação de PVC e outra de aço galvanizado, sob três alturas de queda (2,1, 3,8 e 4,7 m. Foi utilizada a equação de D'Aubussion's para a avaliação do rendimento, calculado a partir de leituras de altura de recalque, vazão de escape, vazão de recalque e altura de alimentação. Pode-se conseguir o máximo rendimento com o carneiro hidráulico utilizando-se de tubulação de PVC com até 4,2 m de desnível; além desse valor a tubulação de aço galvanizado é mais eficiente.The recent conventional energy crisis is leading to the exploration of alternative energy sources. The pumping of water using ram pumps is widely used in farms where electric energy is scarce or inexistent. This experiment was carried out to evaluate the performance of an hydraulic ram pump utilizing two kinds of supply pipes (PVC and steel using three different supply heads (2.1, 3.8 and 4.7. Delivery head, delivery discharge, waste discharge and supply head were utilized to calculate the yield of the hydraulic ram by the equation of D'Aubussion. The maximum yield of the hydraulic ram was obtained for the PVC pipe for the 4.2 m head; for heads higher than 4.2 m the steel pipe was more efficient.

  20. MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES OF MALEIC ANHYDRIDE MODIFIED RICE HUSK FILLED PVC COMPOSITES

    OpenAIRE

    Navin Chand; Bhajan Das Jhod

    2008-01-01

    Unmodified and modified rice husk powder filled PVC composites were prepared having different amounts of rice husk powder. Mechanical, thermal, and electrical properties of these composites were determined. The tensile strength of rice husk powder PVC composites having 0, 10, 20, 30, and 40 weight percent of rice husk powder was found to be 33.9, 19.4, 18.1, 14.6, and 9.5 MPa, respectively. Adding of maleic anhydride- modified rice husk powder improved the tensile strength of rice husk powder...

  1. Stabilizing effect of epoxidized sunflower oil as a secondary stabilizer for Ca/Hg stabilized PVC

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available Unsaturated triglyceride oil sunflower was epoxidized and characterized by chemical and spectroscopic methods. Epoxidized sunflower oil (ESO was used as an organic thermal co-stabilizer for rigid poly(vinyl chloride (PVC in the presence of tricalcium dicitrate (Ca3(C6H5O72 and mercury (II acetate (Hg(CH3COO2. The thermo-oxidative degradation of PVC was studied in the presence of these ternary stabilizer systems at 170, 180, 190 and 200°C in N2 atmosphere. The effects of metal carboxylate combination Ca/Hg in the absence and in the presence of epoxidized sunflower oil on static heat treatment of PVC have been studied. The formation of polyene sequences was investigated by UV-visible and FT-IR spectroscopy and by comparing viscosity data obtained in the presence and in the absence of the additives. It was found that the additives retard the rate of degradation and reduce the extent of polymer chain scission associated with the thermal degradation of poly(vinyl chloride. Synergistic effects were found when stabilizer was blended in 50:50 weight ratios with either. It was found that ESO exerted a stabilizing effect on the degradation of PVC. The activation energy for degraded PVC in absence of stabilizers was 38.6 kJ•mol–1 and in the presence of Ca/Hg and Ca/Hg/ESO were 53.3 and 64.7 kJ•mol–1 respectively. In order of compare the efficiency of the epoxidized sunflower oil with these metal soap stabilizers, thermal stabilities were evaluated on the basis of evolved hydrogen chloride determined by conductometry technique and degree of discoloration are discussed.

  2. Properties of Commercial PVC Films with Respect to Electron Dosimetry

    DEFF Research Database (Denmark)

    Miller, Arne; Liqing, Xie

    The properties of three commercially available polyvinyl chloride (PVC) film supplies and one made without additives were tested with respect to their application as routine dose monitors at electron accelerators. Dose fractionation was found to increase the response and the post-irradiation heat...

  3. Composite phase change materials prepared by encapsuling paraffin in PVC macrocapsules

    International Nuclear Information System (INIS)

    Chen, Yingbo; Zhang, Shifeng; Zhang, Qi; Chen, Yusheng; Zhang, Yufeng

    2014-01-01

    Highlights: • PVC macrocapsules coated with SiO 2 were synthesized. • Paraffin was encapsuled in the capsules. • The composite PCM has high heat capacity. • The composite PCM has no surpercooling. - Abstract: A novel phase change material capsules with SiO 2 in their surface was prepared by absorbing paraffin into PVC hollow capsules and by the polycondensation reaction of TEOS in different conditions. X-ray photoelectron spectroscopy (XPS) analysis and scanning electronic microscope (SEM) were used to determine chemical composition and microstructure of the composite capsules, respectively. Enthalpy capacity and thermal stability of the composite capsules are systematically characterized by using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA) and thermocycling tests. The composite has high heat capacity with good stability and absence of supercooling phenomena

  4. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Narayanan, C.M.

    1993-01-01

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  5. Degradation of polyvinyl chloride (PVC) / hydrolyzed collagen (HC) blends active sludge test.

    Science.gov (United States)

    Agafiţei, Gabriela-Elena; Pascu, Mihaela; Cazacu, Georgeta; Vasile, Cornelia

    2008-01-01

    Biodegradable polymers represent a solution for the environment protection: they decrease the landfill space, by declining the petrochemical sources, and offer also an alternative solution for the recycling. The behavior during degradation in the presence of active sludge of some polyvinyl chloride (PVC) based blends with variable content of hydrolyzed collagen (HC) has been followed. Some samples were subjected to UV irradiation, for 30 hours. The modifications induced in the environment by the polymer systems (pH variation, bacterial composition), as well as the changes of the properties of the blends (weight losses, aspect etc.) were studied. During the first moments of degradation in active sludge, all the samples absorbed water, behavior which favored the biodegradation. The bacteriological analysis of the sludge indicates the presence of some microbiological species. Generally, the populations of microorganisms decrease, excepting the sulphito-reducing anaerobic bacteria, the actinomycetes and other anaerobic bacteria. PVC/HC blends are degraded with a significant rate in active sewage sludge. More susceptible for the degradation are the UV irradiated blends. After the migration of the components with a small molecular mass in the environment, the natural polymer is degraded. The degradation effect increases with the content in the natural polymer.

  6. Satisfactory reliability among nursing students using the instrument PVC ASSESS to evaluate management of peripheral venous catheters.

    Science.gov (United States)

    Ahlqvist, Margary; Berglund, Britta; Nordström, Gun; Klang, Birgitta; Johansson, Eva

    2014-01-01

    Nursing students should be given opportunities to participate in clinical audits during their education. However, audit tools are seldom tested for reliability among nursing students. The aim of this study was to present reliability among nursing students using the instrument PVC assess to assess management of peripheral venous catheters (PVCs) and PVC-related signs of thrombophlebitis. PVC assess was used to assess 67 inserted PVCs in 60 patients at ten wards at a university hospital. One group of nursing students (n=4) assessed PVCs at the bedside (inter-rater reliability) and photographs of these PVCs were taken. Another group of students (n=3) assessed the PVCs in the photographs after 4 weeks (test-retest reliability). To determine reliability, proportion of agreement [P(A)] and Cohen's kappa coefficient (κ) were calculated. For bedside assessment of PVCs, P(A) ranged from good to excellent (0.80-1.0) in 55% of the 26 PVC assess items that were tested. P(A) was poor (satisfactory reliability among nursing students. However, students need training in how to use the instrument before assessing PVCs.

  7. Study of ion separation through solid-supported liquid membrane

    International Nuclear Information System (INIS)

    Kang, Young Ho; Kim, Jung Do; Kim, Kyoung Ho

    1990-01-01

    The membranes used in this study consist of a microporous polymeric support with the solvent contraining alamine 336, Tri-N-Octyl phosphine oxide, Tri-N-butyl phosphate, Di-(2-ethylhexyl) phosphoric acid as a carrier within the pores by the capillary forces. When this liquid membrane is interposed between aqueous feed and product solutions, the carrier serving as a complexing agent, can pick up the uranium ions on the feed side of the membrane and carry them across the membrane by diffusion. In this study, the uranium flux through the solid-supported liquid membrane was analyzed as a function of carrier concentration and acidity of the feed solution for the carrier species. Also, the Gel-liquid extraction of uranium ions from aqueous solution was performed. The adsorbents were prepared by casting the polymer solution composed of polyvinyl chloride, TOPO, and additions. The extraction of uranyl nitrate ions has been investigated as a function of TOPO/PVC ratio, evaporation time, and the stability. The results show that is maybe possible to develop an alternative uranium purification process. (author)

  8. Print Quality of Ink Jet Printed PVC Foils

    Directory of Open Access Journals (Sweden)

    Nemanja Kašiković

    2015-09-01

    Full Text Available Digital printing technique is used for a wide variety of substrates, one of which are PVC foils. Samples used in this research were printed by digital ink jet printing technique using Mimaki JV22 printing machine and J-Eco Subly Nano inks. As printing substrates, two different types of materials were used (ORACAL 640 - Print Vinyl and LG Hausys LP2712. A test card consisting of fields of CMYK colours was created and printed, varying the number of ink layers applied. Samples were exposed to light after the printing process. Spectrophotometric measurements were conducted before and after the light treatment. Based on spectrophotometricaly obtained data, colour differences ΔE2000 were calculated. Results showed that increasing number of layers, as well as the right choice of substrates, can improve the behaviour of printed product during exploitation.

  9. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  10. Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination

    Science.gov (United States)

    El-Gendi, Ayman; Abdallah, Heba; Amin, Ashraf; Amin, Shereen Kamel

    2017-10-01

    The pollution of water resources, severe climate changes, rapid population growth, increasing agricultural demands, and rapid industrialization insist the development of innovative technologies for generating potable water. Polyvinylchloride/cellulose acetate (PVC/CA) membranes were prepared using phase inversion technique for seawater reverse osmosis (SWRO). The membrane performance was investigated using Red Sea water (El-Ein El-Sokhna-Egypt). The membrane performance indicated that the prepared membranes were endowed to work under high pressure; increasing in feeding operating pressure led to increase permeate flux and rejection. Increasing feed operating pressure from zero to 40 bar led to increase in the salt rejection percent. Salt rejection percent reached to 99.99% at low feed concentration 5120 ppm and 99.95% for Red Sea water (38,528 ppm). The prepared membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, and mechanical properties. SEM, FTIR and mechanical results were used to distinguish the best membrane for desalination. According to characterization results, one prepared membrane was selected to run performance test in desalination testing unit. The membrane (M3) showed excellent performance and stability under different operating conditions and during the durability test for 36 days.

  11. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method

    International Nuclear Information System (INIS)

    Burat, Firat; Gueney, Ali; Olgac Kangal, M.

    2009-01-01

    More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle. Both polyethylene terephthalate (PET) and PVC have densities of 1.30-1.35 g/cm 3 and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity. The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.

  12. PVC--as flooring material--and its association with incident asthma in a Swedish child cohort study.

    Science.gov (United States)

    Larsson, M; Hägerhed-Engman, L; Kolarik, B; James, P; Lundin, F; Janson, S; Sundell, J; Bornehag, C G

    2010-12-01

    The Dampness in Buildings and Health study (DBH) started in the year 2000 in Värmland, Sweden, with a baseline questionnaire sent to all children (n = 14,077) aged 1-6. Five years later, a follow-up questionnaire was sent to the children who were 1-3 years at baseline. A total of 4779 children participated in both the baseline and the follow-up studies and constitute the study population in this cohort study. The aim of this study was to examine the association between exposure to PVC-flooring in the child's and parent's bedroom in homes of children aged 1-3 and the incidence of asthma, rhinitis, and eczema during the following 5-year period. Adjusted analyses showed that the incidence of asthma among children was associated with PVC-flooring in the child's bedroom (AOR 1.52; 95% CI 0.99-2.35) and in the parent's bedroom (1.46; 0.96-2.23). The found risks were on borderline of significance and should therefore be interpreted with caution. There was further a positive relationship between the number of rooms with PVC-flooring and the cumulative incidence of asthma. PVC-flooring was found to be a stronger risk factor for incident asthma in multifamily homes when compared with single-family houses and in smoking families compared with non-smoking families and in women. These longitudinal data from the DBH study found an association between the presence of PVC-flooring in the home and incident asthma in children. However, earlier results from the DBH study have shown that PVC-flooring is one important source for phthalates in indoor dust, and exposure to such phthalates was found to be associated with asthma and allergy among children. This emphasizes the need for prospective studies that focus on the importance of prenatal and neonatal exposure to phthalates in the development of asthma and allergy in children. © 2010 John Wiley & Sons A/S.

  13. The influence of soil and landfill leachate microorganisms in the degradation of PVC/PCL films cast from DMF

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2012-01-01

    Full Text Available While the use of plastics continues to increase in our daily lives in a growing range products, these materials are very persistent in the environment. The blending of aliphatic polyesters with other thermoplastic polymers is a profitable way of producing materials with changed physical properties and biodegradability, which can facilitate microbial adhesion to the polymer matrix and help to reduce (post-consumer degradation time of these materials in landfills. This study was an investigation of the biodegradation of films of blends of poly(vinyl chloride (PVC and poly(ε-caprolactone (PCL by soil microorganisms and leachate, by means of respirometry, infrared absorption spectroscopy (FTIR, differential calorimetry scanning (DSC, scanning electron microscopy (SEM, contact angle and weight loss. The results showed that in the soil, the films suffered oxidative biodegradation. The PCL promoted degradation of the PVC in the film of PVC/PCL and the PVC inhibited the rapid degradation of the PCL.

  14. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate

    International Nuclear Information System (INIS)

    Ameen, Sadia; Ali, Vazid; Zulfequar, M.; Mazharul Haq, M.; Husain, M.

    2008-01-01

    Polyaniline is doped with sodium thiosulphate in aqueous tetrahydrofuran (THF) and the blended films have been prepared by changing the amount of doped polyaniline (PANI) in the fixed amount of polyvinyl chloride (PVC). The electrical conductivity of various samples of polyaniline-polyvinyl chloride (PANI-PVC) blends has been studied to see the effect of dopant in the temperature range 300-400 K. Mott's parameters are used to explain the conduction mechanism. Different parameters such as pre-exponential factor (σ 0 ), activation energy (ΔE) and T 0 have also been calculated to see the effect of chemical doping. The crystallinity of the blends is explained on the basis of T 0 . The calculated values of T 0 show that crystallinity increases with an increase of doped PANI in PANI-PVC blends. Fourier transform-infrared (FTIR) spectroscopy is done to explore the nature and interaction of dopant into the polymeric chain

  15. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  16. Study on the interactions PVC/plasticizers by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Maria I.B.; Monteiro, Elisabeth E.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Harris, Robin [Durham Univ. (United Kingdom). Dept. of Chemistry

    1992-12-31

    The nature of the interactions between PVC and plasticizers as di-butyl phthalate and di-2-ethyl-hexyl phthalate can be investigated using proton/carbon-13 NMR techniques. The measurements of T{sub 1} for protons and carbon-13 and T{sub 1} P for protons can provide a good source of information about the complex behaviour for those two systems which were investigated. (author) 14 refs., 5 figs., 1 tab.

  17. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties

    Science.gov (United States)

    Hajibeygi, Mohsen; Maleki, Mahdiye; Shabanian, Meisam; Ducos, Franck; Vahabi, Henri

    2018-05-01

    New ternary nanocomposite systems containing polylvinyl chloride (PVC), chitosan modified ZnO (CMZN) nanoparticles and new synthesized polyamide (PA) were designed and prepared by solution casting method. As a potential reinforcement, CMZN was used in PVC system combined with and without PA. Morphology, mechanical, thermal and combustion properties of the all PVC systems were studied. In the presence of the CMZN, PA showed a synergistic effect on improvement of the all investigated properties of PVC. The 5 mass% loss temperature (T5) was increased from 195 °C to 243 °C in PVC/CMZN-PA nanocomposite containing 1 mass% of each PA and CMZN (PZP 2). The peak of heat release rate was decreased from 131 W/g for PVC to 104 W/g for PVC/CMZN-PA nanocomposite containing 3 mass% of each PA and CMZN (PZP 6). According to the tensile tests, compared to the neat PVC, the tensile strength was increased from 35.4 to 53.4 MPa for PZP 6.

  18. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-01-01

    , the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes

  19. Polymeric membrane neodymium(III)-selective electrode based on 11,13-diaza-4,7,12-trioxo-2(3),8(9)-dibenzoyl- cyclotetridecane-1,11-diene

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sulekh [Department of Chemistry, Zakir Husain College, University of Delhi, J.L.N. Marg, New Delhi, 110002 (India)], E-mail: schandra_00@yahoo.com; Singh, Dev Raj [Department of Chemistry, Zakir Husain College, University of Delhi, J.L.N. Marg, New Delhi, 110002 (India)

    2009-02-25

    We found that 11, 13-diaza-4, 7, 12-trioxo-2(3), 8(9)-dibenzoyl-cyclotetridecane-1, 11-diene (DATODBCT) can be used as an excellent ionophore in the construction of a novel neodymium(III) poly(vinylchloride) (PVC)-based membrane sensor. A membrane composition of 29% poly(vinylchloride), 59% dibutylphthalate (DBP), 9% DATODBCT and 3% sodiumtetrakis (p-chlorophenyl) borate (NaTpClPB), led to the optimum results. The Nd(III)-selectivity of the sensor, is relatively better as compared to a large number of lanthanide metal ions, such as lanthanum, gadolinium, samarium, dysprosium, praseodymium and ytterbium ions. The sensor response is Nernstian (with slope of 19.4 {+-} 0.3 mV per decade for the triply charged ion) over a wide concentration range (1.0 x 10{sup -8} to 1.0 x 10{sup -1} mol L{sup -1}) with a detection limit of 8.0 x 10{sup -7} mol L{sup -1}, a relatively fast response time, in the whole concentration range (<15 s), and a considerable life time at least for seven weeks in the pH range of 3.0-7.0.

  20. Polymeric membrane neodymium(III)-selective electrode based on 11,13-diaza-4,7,12-trioxo-2(3),8(9)-dibenzoyl- cyclotetridecane-1,11-diene

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Singh, Dev Raj

    2009-01-01

    We found that 11, 13-diaza-4, 7, 12-trioxo-2(3), 8(9)-dibenzoyl-cyclotetridecane-1, 11-diene (DATODBCT) can be used as an excellent ionophore in the construction of a novel neodymium(III) poly(vinylchloride) (PVC)-based membrane sensor. A membrane composition of 29% poly(vinylchloride), 59% dibutylphthalate (DBP), 9% DATODBCT and 3% sodiumtetrakis (p-chlorophenyl) borate (NaTpClPB), led to the optimum results. The Nd(III)-selectivity of the sensor, is relatively better as compared to a large number of lanthanide metal ions, such as lanthanum, gadolinium, samarium, dysprosium, praseodymium and ytterbium ions. The sensor response is Nernstian (with slope of 19.4 ± 0.3 mV per decade for the triply charged ion) over a wide concentration range (1.0 x 10 -8 to 1.0 x 10 -1 mol L -1 ) with a detection limit of 8.0 x 10 -7 mol L -1 , a relatively fast response time, in the whole concentration range (<15 s), and a considerable life time at least for seven weeks in the pH range of 3.0-7.0

  1. Desenvolvimento de PVC reforçado com resíduos de Pinus para substituir madeira convencional em diversas aplicações Development of PVC/wood composites for the replacement of conventional wood products

    Directory of Open Access Journals (Sweden)

    Antonio Rodolfo Jr.

    2006-03-01

    Full Text Available Este trabalho avalia a viabilidade técnica da obtenção de compósitos lignocelulósicos de PVC, utilizando-se resíduo de Pinus elliottii e Pinus taeda como carga reforçativa. Foi desenvolvido um processo simples e economicamente viável de tratamento de resíduos industriais desta madeira, processo este baseado na secagem e revestimento das partículas com lubrificantes funcionais e agentes de acoplamento utilizados como aditivos na indústria do PVC, bem como no uso de equipamentos tradicionais da indústria de processamento deste termoplástico. Foram avaliados os efeitos da incorporação da farinha de madeira em concentrações variáveis e do tipo de agente de tratamento superficial utilizado na processabilidade do composto de PVC, bem como em propriedades finais do compósito. Os resultados mostram que o desenvolvimento deste tipo de material compósito é uma alternativa viável para a substituição da madeira convencional em diversas aplicações.This work evaluates the technical viability of lignocellulosic vinyl composites, using residues of Pinus elliottii and Pinus taeda as the reinforcement fiber. A simple and economically viable process for the treatment of these industrial residues was developed. The process includes sieving, drying and treating the wood particles. Treatment is made with functional lubricants and coupling agents used as additives in the PVC industry. Extrusion was performed using traditional equipment available in the Brazilian PVC processing industry. The effect on the processability of the variable concentrations of the residues incorporated and the type of agent used for the treatment had been evaluated, as well as in the final properties of the composite. The results show that the development of this kind of composite material is a viable alternative for the substitution of conventional wood in diverse applications.

  2. Resistance of particleboard panels made of agricultural residues and bonded with synthetic resins or PVC plastic to wood-rotting fungi

    Directory of Open Access Journals (Sweden)

    Divino Eterno Teixeira

    2009-12-01

    Full Text Available This study aims to evaluate the resistance of three types of particleboard panel to biodeterioration, two of which bonded with synthetic resins and one bonded with PVC plastic. Composite panels were made using sugar cane straw particles as raw material which were bonded together with urea-formaldehyde (UF, tannin-formaldehyde (TANI and PVC plastic (PVC resins. Decay tests were performed following procedures outlined in the ASTM D2017-81/1994 standard, whereby sample specimens were subjected to attack by white rot fungus Trametes versicolor and brown rot fungus Gloeophyllum trabeum using pine (Pinus sp. and embaúba (Cecropia sp. as reference timber. Panels bonded with PVC resin were rated ‘resistant’ to attack by both fungi while those bonded with UF and TANI resins were rated ‘slightly resistant’ to their attack.

  3. Karakteristik sifat mekanik, ketahanan api dan pembakaran, dan morfologi nanokomposit campuran PVC dan LDPE

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2014-06-01

    Full Text Available The purpose of the study was to determine the effect of addition of low density polyethylene (LDPE and flame retardant on mechanical properties, resistant to fire and burning and morphology from the mixture of polyvinyl chloride (PVC, LDPE, flame retardant, and nanoprecipitated calcium carbonate (NPCC as filler. The materials were mixed in laboplastomill at 215 ºC, torque speed 50 rpm, for 10 minutes. Nanocomposite was prepared by PVC/LDPE variations of 100/15; 100/20; 100/25; and 100/30 phr and flame retardant variations of 30 and 35 phr. The results showed that the hihger of LDPE in nanocomposite increased the hardness and impact resistance, however, it decreased the tensile strength, elongation at break, and density. Addition of flame retardant to the nanocomposites showed good resistance to fire and burning, and optimum mechanical properties were found in using of 35 phr flame retardant.The morphology of the nanocomposite, were observed by Scanning Electron Microscope (SEM confirmed that homogeneous mixture of LDPE dispersed in the PVC matrix.

  4. Chilled water optimization at Beek INEOS PVC Plant : ammonia cycle

    NARCIS (Netherlands)

    Karami Alaghinloo, B.

    2012-01-01

    In BEEK INEOS PVC plant, polymerization takes place in a suspension process in twenty reactors in five lines. As the reaction is exothermic, a 17MW chilled water unit (CWU) removing heat from reactors which are producing different grades in batch processes. The objective of the project was to

  5. Excellent impact performance of PVC pipeline materials in gas distribution networks after many years of service (CD-rom)

    NARCIS (Netherlands)

    Visser, Roy; Hermkens, R.M.J.; Wolters, Mannes; Weller, J.; Warnet, Laurent; Beckervordersandforth, C.; Verberg, G.H.B.; Kramer, M.

    2008-01-01

    It has been about fifty years ago since the first unplasticized poly(vinyl chloride) (uPVC) pipes were installed for use in gas distribution purposes. Currently, about 22,500 km of uPVC is still in use in the Dutch gas distribution network. The pipes were originally designed for a lifetime of 50

  6. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  7. Dosimetry of the JS-6500 industrial irradiator for the irradiation of the PVC graduated flasks; Dosimetria del irradiador industrial JS-6500 para la irradiacion de probetas de PVC

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda F, A.; Carrasco A, H.; Martinez P, M.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The dosimetry of the JS-6500 AECL irradiator was realized, outside of the industrial transportation rails to know the dose distribution, as well as its dose speed. This one with the intention of exposing to gamma radiation; plastified PVC graduated flasks and evaluating their interweavement or degradation or both. This study of dosimetry was carried out by means of a theoretical and experimental evaluation in air atmosphere. The results allow to know the irradiation conditions of the PVC graduated flasks as well as those results prove that has not a significant difference among the obtained result as theoretical as experimentally due to that the obtained result in the theoretical evaluation is 2.62 KGy/h and the result for the case of the experimental evaluation is 2.74 KGy/h. (Author)

  8. New Developments in Membrane-Based Chemical Separations

    National Research Council Canada - National Science Library

    Jirage, Kshama

    1998-01-01

    Membrane based chemical separations is an emerging field of research. This is because membrane-based separations are potentially less energy intensive and more cost effective than competing separation methods...

  9. Production of pre-basic potato seed by polyvinyl chloride PVC: articulate gutters hydroponic system

    Directory of Open Access Journals (Sweden)

    Jonny Everson Scherwinski-Pereira

    2009-10-01

    Full Text Available The development of more efficient and productive systems for pre-basic seed potato production would improve the quality of the propagative material used by the potato growers, directly affecting the crop yields. A two-year experiment was carried out to evaluate the potato pre-basic seed production by two types of hydroponic systems (fibrocement tiles and articulated PVC gutters, two cultivars (`Baronesa` and `Eliza` and two types of propagative material (plants coming from in vitro culture and minitubers. The PVC gutters system was highly efficient. When using minitubers, this system reached multiplication rates up to 74 tubers per plant. Minitubers were more productive than in vitro plants, independent of cultivar and hydroponic system utilized.Um experimento realizado por dois anos consecutivos avaliou a produção de sementes pré-básicas de batata por meio de sistemas de cultivo hidropônico. O trabalho testou a combinação de dois sistemas de cultivo (telha de fibrocimento e calhas de PVC articuladas, duas cultivares (Baronesa e Eliza e dois tipos de material propagativo (plântulas oriundas do cultivo in vitro e minitubérculos. O sistema de calhas de PVC foi altamente eficiente. Quando foi utilizado minitubérculos, este sistema alcançou taxas de multiplicação de até 74 tubérculos por planta. De modo geral, o uso de minitubérculos como material propagativo apresentou os melhores resultados de produtividade quando comparada ao material in vitro, independentemente da cultivar e sistemas hidropônicos utilizados.

  10. New ETFE-based membrane for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Saarinen, V.; Kallio, T.; Paronen, M.; Tikkanen, P.; Rauhala, E.; Kontturi, K.

    2005-01-01

    The investigated membranes are based on 35-bar μ m thick commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films. The films were made proton conductive by means of irradiation treatment followed by sulfonation. These membranes have exceptionally low water uptake and excellent dimensional stability. The new membranes are investigated widely in a laboratory-scale direct methanol fuel cell (DMFC). The temperature range used in the fuel cell tests was 30-85-bar o C and the measurement results were compared to those of the Nafion ( R)115 membrane. Also methanol permeability through the ETFE-based membrane was measured as a function of temperature, resulting in values less than 10% of the corresponding values for Nafion ( R)115, which was considerably thicker than the experimental membrane. Methanol crossover was reported to decrease when the thickness of the membrane increases, so the ETFE-based membrane compares favourably to Nafion ( R) membranes. The maximum power densities achieved with the experimental ETFE-based membrane were about 40-65% lower than the corresponding values of the Nafion ( R)115 membrane, because of the lower conductivity and noticeably higher IR-losses. Chemical and mechanical stability of the ETFE-based membrane appeared to be promising since it was tested over 2000-bar h in the DMFC without any performance loss

  11. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  12. Properties of commercial PVC-films with respect to electron dosimetry

    International Nuclear Information System (INIS)

    Miller, A.; Liqing, X.

    1985-05-01

    The properties of three commercially available polyvinyl chloride (PVC) film supplies and one made without additives were tested with respects to their application as routine dose monitors at electron accelerators. Dose fractionation was found to increase the response and the post-irradiation heat treatment was very critical for some of the films. (author)

  13. AN INVESTIGATION OF THE IMPACT OF IMPURITIES ON THE MECHANICAL PROPERTIES OF RECYCLED PVC EXTRUSION PIPES

    OpenAIRE

    Adamu Alhaji Umar; Raji Olalere Fatai

    2007-01-01

    This work studied the effect of using recycled scraps in the production of rigid PVC extrusion pipe. Different formulations with varied percentages of scraps were extruded and various tests carried out on the sample specimen to determine their corresponding mechanical properties. It was finally discovered that among the two sources of scraps, the in-house scraps contained less impurities and blending about 10% of it with virgin PVC material in the production gave improved mechanical propertie...

  14. Armazenamento de atemoias (Annona squamosa x Annona cherimola recobertas com filme PVC

    Directory of Open Access Journals (Sweden)

    P. A. de Souza

    2015-12-01

    Full Text Available A atemoia, assim como todos os frutos climatéricos, apresenta uma elevada perecibilidade, tornando-se importante a adoção de técnicas pós-colheita. Este trabalho teve como objetivo avaliar o armazenamento de atemoias recobertas com filme PVC. Os frutos utilizados foram da variedade ‘Gefner’ apresentando-se em estado de maturação verde-maduro. Estes foram transferidos para o laboratório de Química de Alimentos do IFCE, submetidos à higienização e divididos nos devidos tratamentos. O primeiro tratamento constou no armazenamento de cinco frutos em bandejas de isopor recobertos com filme PVC. O segundo, do recobrimento individual dos frutos em filme PVC, sendo estes acondicionados em bandejas de isopor e os frutos do controle. Estes foram armazenados durante 8 dias. O delineamento utilizado foi o DIC em esquema fatorial 3x4 com quatro repetições de cinco frutos por parcela. A cada tempo de armazenamento foram avaliadas: perda de massa, sólidos solúveis, acidez titulável, Ratio, pH e índice de rachaduras. O uso de filme plástico reduz a perda de massa, porém retarda o amadurecimento de frutos de atemoia. As rachaduras estão diretamente associadas ao amadurecimento dos frutos, ao aumento dos teores de sólidos solúveis e possivelmente a cultivar avaliada. Storage of atemoyas (Annona squamosa x Annona cherimola covered with PVC filmAbstract: The atemoya, as well as all climacteric fruits, is highly perishable, becoming important to adopt post-harvest techniques. This work aimed to evaluate the atemoyas storage covered with plastic wrap. The fruits used were of the variety 'Gefner' presenting itself in a state of green-mature aging. These were transferred to the Food Chemistry Lab IFCE submitted to cleaning and divided in appropriate treatments. The first treatment consisted in five fruit storage in styrofoam trays covered with plastic wrap. The second, the individual coating of the fruits in PVC film, which are packed in

  15. Dysprosium selective potentiometric membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N Prime -((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 {+-} 0.6 mV per decade in a wide concentration range of 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -2} mol L{sup -1}, a detection limit of 5.5 Multiplication-Sign 10{sup -7} mol L{sup -1}, a short conditioning time, a fast response time (< 10 s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F{sup -} ion indirect determination of some mouth washing solutions and to the Dy{sup 3+} determination in binary mixtures. Highlights: Black-Right-Pointing-Pointer The novelty of this work is based on the high affinity of the ionophore toward the Dy{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple, fast and inexpensive and it is not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The newly developed sensor is superior to the formerly reported Dy{sup 3+} sensors in terms of selectivity.

  16. A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn{sup 2+} ion in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Aziz, Ayman A., E-mail: aymanaziz31@gmail.com [Chemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo (Egypt); Chemistry Department, Faculty of Science, University of Tabuk, 71421, Tabuk (Saudi Arabia)

    2013-11-15

    A novel prepared Zn{sup 2+} ion PVC membrane sensor based on a novel Schiff base; N,N′bis(salicylaldehyde)2,3-diaminonaphthalene (SDN) for the determination of Zn{sup 2+} ion was described. The chemosensor was synthesized under microwave irradiation via condensation of 2,3-diaminonaphthalene and salicylaldehyde. Photoluminescence characteristics of the novel Schiff base ligand were investigated in different solvents including dicholoromethane (DCM), tetrahydrofuran (THF) and ethanol (EtOH). SDN was found to have higher emission intensity and Stoke’s shift value (Δλ{sub ST}) in EtOH solution. The sensor exhibited a specific fluorescent on response to Zn{sup 2+}. The response of the sensor is based on the fluorescence enhancement of SDN (LH{sub 2}) by Zn{sup 2+} ion as a result of formation the rigid structure L-Zn complex. The experiment results also show that the response behavior of SDN to Zn{sup 2+} is pH independent in the range of pH 6.0–8.0. At pH 7.0, the proposed sensor displays a calibration response for Zn{sup 2+} over a wide concentration range of 1.0×10{sup −9}–2.0×10{sup −3} mol L{sup −1} with a limit of detection (LOD) 8.1×10{sup −10} mol L{sup −1} (0.0529659 μg L{sup −1}). The sensor shows excellent selectivity toward Zn{sup 2+} with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to detect Zn{sup 2+} in human hair samples, different brands of powdered milk and some pharmaceuticals. -- Highlights: • A novel Zn(II) chemosensor has been developed. • Wide linear concentration range of 1.0×10{sup −9}–2.0×10{sup −3} mol L{sup −1}. • Application for determination of Zn(II) in real samples.

  17. Proteins Related to the Type I Secretion System Are Associated with Secondary SecA_DEAD Domain Proteins in Some Species of Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi.

    Directory of Open Access Journals (Sweden)

    Olga K Kamneva

    Full Text Available A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary origins and functions of these membranes are unknown. Some proteins putatively associated with the presence of intracellular membranes in PVC bacteria contain signal peptides. Signal peptides mark proteins for translocation across the cytoplasmic membrane in prokaryotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly conserved Sec machinery. This suggests that proteins might be targeted to intracellular membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal peptides are significantly over-represented in proteins preferentially present in PVC bacteria possessing intracellular membranes, indicating involvement of Sec translocase in their cellular targeting. We also characterized Sec proteins using comparative genomics approaches, focusing on the PVC super-phylum. While we were unable to detect unique changes in Sec proteins conserved among membrane-bearing PVC species, we identified (1 SecA ATPase domain re-arrangements in some Planctomycetes, and (2 secondary SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD domain proteins suggests that the presence of these proteins is not related to the occurrence of PVC endomembranes. Further genomic analysis showed that secondary SecA_DEAD domain proteins are located within genomic neighborhoods that also encode three proteins possessing domains specific for the Type I secretion system.

  18. PET and PVC Separation with Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2015-01-01

    Full Text Available Traditional plants for plastic separation in homogeneous products employ material physical properties (for instance density. Due to the small intervals of variability of different polymer properties, the output quality may not be adequate. Sensing technologies based on hyperspectral imaging have been introduced in order to classify materials and to increase the quality of recycled products, which have to comply with specific standards determined by industrial applications. This paper presents the results of the characterization of two different plastic polymers—polyethylene terephthalate (PET and polyvinyl chloride (PVC—in different phases of their life cycle (primary raw materials, urban and urban-assimilated waste and secondary raw materials to show the contribution of hyperspectral sensors in the field of material recycling. This is accomplished via near-infrared (900–1700 nm reflectance spectra extracted from hyperspectral images acquired with a two-linear-spectrometer apparatus. Results have shown that a rapid and reliable identification of PET and PVC can be achieved by using a simple two near-infrared wavelength operator coupled to an analysis of reflectance spectra. This resulted in 100% classification accuracy. A sensor based on this identification method appears suitable and inexpensive to build and provides the necessary speed and performance required by the recycling industry.

  19. Utilização de um eletrodo de grafite-epóxi recoberto com [Zn(FEN3][tetratris(4-clorofenil borato]2 sensível a zinco(II em meio 1,10-fenantrolina como eletrodo indicador em titulações potenciométricas de precipitação

    Directory of Open Access Journals (Sweden)

    Teixeira Marcos F. S.

    2005-01-01

    Full Text Available The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen3][tetrakis(4-chlorophenylborate]2 incorporated into a poly(vinylchloride (PVC matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m DBPh, 30% (m/m PVC and 5% (m/m of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane. It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II ions.

  20. Flame treatment for the selective wetting and separation of PVC and PET.

    Science.gov (United States)

    Pascoe, R D; O'Connell, B

    2003-01-01

    Flame treatment has been used for many years to modify the surface of plastics to allow coatings to be added. The effect of the treatment is to produce hydrophilic species on the surface of the plastic making it water-wettable. The production of hydrophilic plastic surfaces is also required in the selective separation of plastics by froth flotation. For the process to be selective one plastic must be rendered hydrophilic while another remains hydrophobic. In this study the potential for separation of PVC and PET has been investigated. Flame treatment was shown to be very effective in producing a hydrophilic surface on both plastics, although the process was not selective under the conditions investigated. Raising the temperature of the plastics above their softening point produced a hydrophobic recovery. As the softening point of PVC was significantly lower than for PET it was possible to produce a significant difference in hydrophobicity, as judged using contact angle measurement. When immersed in water the contact angle of the PVC was found to be strongly dependent on the pH. Good separation efficiency of the two plastics was achieved by froth flotation from pH 4 to 9. One particular advantage of the technique is that no chemical reagents may be required in the flotation stage. The practicalities of designing a flake treatment system however have to be addressed before considering it to be a viable industrial process.

  1. Flame treatment for the selective wetting and separation of PVC and PET

    International Nuclear Information System (INIS)

    Pascoe, R.D.; O'Connell, B.

    2003-01-01

    Flame treatment has been used for many years to modify the surface of plastics to allow coatings to be added. The effect of the treatment is to produce hydrophilic species on the surface of the plastic making it water-wettable. The production of hydrophilic plastic surfaces is also required in the selective separation of plastics by froth flotation. For the process to be selective one plastic must be rendered hydrophilic while another remains hydrophobic. In this study the potential for separation of PVC and PET has been investigated. Flame treatment was shown to be very effective in producing a hydrophilic surface on both plastics, although the process was not selective under the conditions investigated. Raising the temperature of the plastics above their softening point produced a hydrophobic recovery. As the softening point of PVC was significantly lower than for PET it was possible to produce a significant difference in hydrophobicity, as judged using contact angle measurement. When immersed in water the contact angle of the PVC was found to be strongly dependent on the pH. Good separation efficiency of the two plastics was achieved by froth flotation from pH 4 to 9. One particular advantage of the technique is that no chemical reagents may be required in the flotation stage. The practicalities of designing a flake treatment system however have to be addressed before considering it to be a viable industrial process

  2. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  3. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  4. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    Science.gov (United States)

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  5. Migration from PVC cling films compared with their field of application

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Lillemark, L.; Lund, L.

    1997-01-01

    Samples of PVC cling films were taken at importers, wholesalers and retail shops, and their overall migration to the alternative food simulant iso-octane was measured, after establishment of a correlation between overall migration to olive oil at 40 degrees C in 10 days and to iso-octane in 2 h...

  6. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis

    International Nuclear Information System (INIS)

    ToczyIowska, Renata; Pokrop, RafaI; Dybko, Artur; Wroblewski, Wojciech

    2005-01-01

    Back-side contact Au and Ag microelectrodes were used as transducers to construct planar all-solid-state electrodes suitable for flow-through analysis. The microsensors were based on plasticized PVC potassium-selective membranes containing ion-electron conducting polymer-polypyrrole doped with di(2-ethylhexyl) sulfosuccinate. The proposed technique allowed simple construction of microsensors in one step, by membrane solution casting directly on the surface of the planar metallic transducers. The performance of the microsensors based on Au and Ag transducers were determined and compared with planar sensors based on internal electrolyte immobilized in polyHEMA. The addition of the polypyrrole to the membrane composition did not influence on the selectivity, reproducibility and long-term stability of the microsensors but improved their standard potential stability in time in comparison with coated-wire type sensors. Moreover, all-solid-state microsensors based on Au transducers exhibited better signal stability than Ag based sensors

  7. Mechanical properties of oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend

    International Nuclear Information System (INIS)

    Gunasunderi Raju Nor Azowa Ibrahim; Mohammad Zaki Abd Rahman; Wan Md Zin Wan Yunus; Chantara Thevy Ratnam

    2004-01-01

    The effect of OPEFB fiber on the mechanical properties of the 50/50 PVC/ENR was investigated over a range of fiber loadings (0 to 30%). The OPEFB fiber reinforced PVC/ENR blend was prepared by using Haake Rheomixer at 150 degree C mixing temperature, 20 minutes total mixing time and 50 rpm rotor speed. The changes in tensile strength (Ts), Young's modulus, elongation break (Eb), flexural modulus, hardness and impact strength with the OPEFB fiber loadings were investigated. The results revealed that the flexural modulus, Young's modulus and hardness increased with the fiber loading. However, the impact strength, Ts and Eb found to decrease with the increase in fiber loading. (Author)

  8. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  9. Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors.

    Science.gov (United States)

    Hefnawy, Mohammed M; Homoda, Atef M; Abounassif, Mohammed A; Alanazi, Amer M; Al-Majed, Abdulrahaman; Mostafa, Gamal A

    2014-01-01

    The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 × 10(-2) - 4.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6) M), with detection limits of 3 × 10(-6), 4 × 10(-6) and 4.0 × 10(-6) M for sensor 1, 2 and 3, respectively over a pH range of 6.0 - 9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 μg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6% and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2 and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

  10. Mycelial fungi completely remediate di(2-ethylhexyl)phthalate, the hazardous plasticizer in PVC blood storage bag

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep, S. [Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635 (India); Benjamin, Sailas, E-mail: sailasben@yahoo.co.in [Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala 673 635 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Three novel phthalate utilizing fungi: A. parasiticus, F. subglutinans and P. funiculosum. Black-Right-Pointing-Pointer Fungi utilize DEHP in PVC plastics in situ, in simple mineral salt medium. Black-Right-Pointing-Pointer Employing these fungi, a batch process can remediate phthalates in plastics. Black-Right-Pointing-Pointer Phthalate-free PVC can be recycled afresh. Black-Right-Pointing-Pointer Mineral salt and phthalate remediated into fungal biomass. - Abstract: This pioneering work describes how simply, inexpensively and efficiently novel fungi utilize the alarming plasticizer, di(2-ethylhexyl)phthalate (DEHP) blended in PVC blood storage bags (BB). In order to quantify total DEHP (33.5%, w/w) present in BB, it was extracted using n-hexane and confirmed by GC-MS. Three mycelial fungi, viz., Aspergillus parasiticus, Fusarium subglutinans and Penicillium funiculosum isolated in our laboratory form heavily plastics-contaminated soil - either singly or in consortium - completely consumed intact DEHP physically bound to BB by static submerged growth (28 Degree-Sign C) in simple basal salt medium (BSM). A two-stage cultivation strategy was adopted for the complete removal of DEHP from BB in situ. During the first growth stage, almost 70% DEHP contained in the BB was consumed in 2 weeks, accompanied by increased fungal biomass ({approx}0.15-0.35 g/g BB; OD {approx}7 at 600 nm) and a sharp declining (3.3) of initial pH (7.2). Spent BSM was replaced at this stagnant growth state (low pH), thus in the second stage, remaining DEHP bound to BB utilized completely (over 99%). Furthermore, A. parasiticus and F. subglutinans also grew well on scrapes of PVC water pipes in BSM. F. subglutinans was as efficient independently as consortium in completely utilizing the DEHP bound to BB, and these fungi offer great potentials for the inexpensive and eco-friendly bioremediation of phthalates in medical and allied PVC wastes on a large

  11. Mycelial fungi completely remediate di(2-ethylhexyl)phthalate, the hazardous plasticizer in PVC blood storage bag

    International Nuclear Information System (INIS)

    Pradeep, S.; Benjamin, Sailas

    2012-01-01

    Highlights: ► Three novel phthalate utilizing fungi: A. parasiticus, F. subglutinans and P. funiculosum. ► Fungi utilize DEHP in PVC plastics in situ, in simple mineral salt medium. ► Employing these fungi, a batch process can remediate phthalates in plastics. ► Phthalate-free PVC can be recycled afresh. ► Mineral salt and phthalate remediated into fungal biomass. - Abstract: This pioneering work describes how simply, inexpensively and efficiently novel fungi utilize the alarming plasticizer, di(2-ethylhexyl)phthalate (DEHP) blended in PVC blood storage bags (BB). In order to quantify total DEHP (33.5%, w/w) present in BB, it was extracted using n-hexane and confirmed by GC–MS. Three mycelial fungi, viz., Aspergillus parasiticus, Fusarium subglutinans and Penicillium funiculosum isolated in our laboratory form heavily plastics-contaminated soil – either singly or in consortium – completely consumed intact DEHP physically bound to BB by static submerged growth (28 °C) in simple basal salt medium (BSM). A two-stage cultivation strategy was adopted for the complete removal of DEHP from BB in situ. During the first growth stage, almost 70% DEHP contained in the BB was consumed in 2 weeks, accompanied by increased fungal biomass (∼0.15–0.35 g/g BB; OD ∼7 at 600 nm) and a sharp declining (3.3) of initial pH (7.2). Spent BSM was replaced at this stagnant growth state (low pH), thus in the second stage, remaining DEHP bound to BB utilized completely (over 99%). Furthermore, A. parasiticus and F. subglutinans also grew well on scrapes of PVC water pipes in BSM. F. subglutinans was as efficient independently as consortium in completely utilizing the DEHP bound to BB, and these fungi offer great potentials for the inexpensive and eco-friendly bioremediation of phthalates in medical and allied PVC wastes on a large scale through a batch process in alleviating the plactics waste management issue.

  12. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    International Nuclear Information System (INIS)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Wan Md Zin Wan Yunus

    2007-01-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 deg. C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate

  13. Tubo de PVC liso com diferentes envoltórios como material alternativo na drenagem subterrânea Smooth PVC tube with different envelopes as an alternative material in the subsurface drainage

    Directory of Open Access Journals (Sweden)

    Florício P. de Almeida

    2003-04-01

    Full Text Available Em regiões áridas e semi-áridas irrigadas a drenagem é, freqüentemente, necessária para prevenir o encharcamento do solo e o controle da salinidade. Um dos principais obstáculos na instalação de um sistema de drenagem subterrânea é o alto custo do investimento inicial. Assim, alguma contribuição que reduza o custo da instalação dos drenos e também do material usado, é altamente vantajosa. Diante disso, o objetivo desta pesquisa foi avaliar, em condições de laboratório, o desempenho hidráulico do sistema drenante constituído pelo tubo de PVC liso, próprio para esgoto doméstico, de 50,0 mm de diâmetro nominal e área aberta de 23,0 cm² m-1, e por três tipos de envoltório. O desempenho do tubo drenante de PVC liso demonstrou que esse material é tecnicamente viável para drenagem agrícola, principalmente com o uso de brita como envoltório.In irrigated arid and semi-arid regions the drainage is, frequently, necessary to prevent the waterlogging of the soil and to control the salinity. One of the main obstacles in the installation of a subsurface drainage system is the high cost of the initial investment. Thus, some contribution that reduces the cost of the installation of the drains and also of the material used is highly advantageous. The objective of this research was to evaluate, under laboratory conditions, the hydraulic performance of the drainage system constituted by smooth PVC tube used for sewer with 50.0 mm of nominal diameter and open area of 23.0 cm² m-1 and different types of envelopes, as an alternative material for subsurface drainage. The performance of the smooth PVC tube demonstrated that this material is technically viable for agricultural drainage principally when used with single stones as envelope.

  14. Deterioration of plasticized PVC components in Apollo spacesuits

    DEFF Research Database (Denmark)

    Shashoua, Yvonne; Schnell, Ulrich; Young, Lisa

    2002-01-01

    Spacesuits from the Apollo era are unique in their history, materials and construction. This project involved the first detailed examination of the condition of the spacesuits since their acquisition by the National Air and Space Museum in the 1970s. Plasticized polyvinyl chloride (PVC) tubing...... in the Life Support System, used to transport air and water to the astronaut, and in the Liquid Cooling Garment, used to cool the wearer of the spacesuit, exhibited high levels of deterioration. Tubing was unacceptably discoloured, tacky to the touch and surfaces were obscured by crystals. Visual examination...

  15. MEASUREMENT AND MODELLING OF SORPTION EQUILIBRIUM CURVE OF WATER ON PA6, PP, HDPE AND PVC BY USING FLORY-HUGGINS MODEL

    Directory of Open Access Journals (Sweden)

    Suherman Suherman

    2012-02-01

    Full Text Available The sorption of water on granular polyamide-6 (PA6, granular polypropylene (PP, and powdery high density polyethylene (HDPE and powdery polyvinyl chloride (PVC were measured using a gravimetric method in a magnetic suspension balance (MSB. The Flory-Huggins model was successfully applied on the sorption equilibrium curve of all investigated polymers. The influence of temperature is low. The value of Flory-Huggins parameters(c of PA6, PVC, PP and HDPE were 1.8, 5.8, 6.3, and 8.1, respectively. The water in PA6 is mainly bound moisture, while in PP, HDPE and PVC it is mainly surface moisture.

  16. Cerium(III-Selective Membrane Electrode Based on Dibenzo-24-crown-8 as a Neutral Carrier

    Directory of Open Access Journals (Sweden)

    Susheel K. Mittal

    2010-01-01

    Full Text Available Cerium(III-selective membrane electrodes have been prepared using dibenzo-24-crown-8 (DB24C8 as an electroactive material. A membrane having a composition: DB24C8 (4.5%, plasticizer (NPOE, 62.5% and PVC (33% gives the best performance. It works well over a wide Ce(III ion-concentration range of 1x10-5 M to 1x10-1 M with a Nernstian slope of 19.0 mV/decade and a detection limit of 3x10-5 M. It has a fast response time of 20 seconds and has an average lifetime of four months. The internal solution concentration does not have a significant effect on the response of the electrode except for a change in intercept of the calibration curves. The working pH range for Ce(III solutions (1x10-2 M and 1x10-3 M is 3.5-8.0. The proposed sensor shows a good selectivity for cerium(III with respect to alkali, alkaline earth, some transition and rare earth metal ions that are normally present along with cerium in its ores. The proposed sensor was investigated in partially non-aqueous media using acetone, methanol and DMSO mixtures with water. The electrode was further used as an indicator electrode for the potentiometric titration of Ce(III solution against oxalic acid solution.

  17. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    International Nuclear Information System (INIS)

    Rezaei, B.; Meghdadi, S.; Zarandi, R. Fazel

    2008-01-01

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf 4+ (Hafnium(IV)) over a wide concentration range (2.0 x 10 -7 to 1.0 x 10 -1 M) with the determination coefficient of 0.9966 and slope of 15.1 ± 0.1 mV decades -1 . The limit of detection is 1.9 x 10 -7 M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf 4+ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf 4+ in solutions by standard addition method for real sample analysis

  18. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha

    2013-08-02

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized, and an experimental ethylene/ethane polymeric upper bound based on literature data is presented. A theoretical prediction of the ethylene/ethane upper bound is also presented, and shows good agreement with the experimental upper bound. Further, two ways to overcome the ethylene/ethane upper bound, based on increasing the sorption or diffusion selectivity, is also discussed, and a review on advanced membrane types such as facilitated transport membranes, zeolite and metal organic framework based membranes, and carbon molecular sieve membranes is presented. Of these, carbon membranes have shown the potential to surpass the polymeric ethylene/ethane upper bound performance. Furthermore, a convenient, potentially scalable method for tailoring the performance of carbon membranes for ethylene/ethane separation based on tuning the pyrolysis conditions has also been demonstrated. © 2013 American Institute of Chemical Engineers.

  19. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  20. Treatment of PVC using an alternative low energy ion bombardment procedure

    Science.gov (United States)

    Rangel, Elidiane C.; dos Santos, Nazir M.; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Rangel, Rita de Cássia C.; Cruz, Nilson C.

    2011-12-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  1. Treatment of PVC using an alternative low energy ion bombardment procedure

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Santos, Nazir M. dos; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Cássia C Rangel, Rita de; Cruz, Nilson C.

    2011-01-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  2. The use of artificial neural networks for mathematical modeling of the effect of composition and production conditions on the properties of PVC floor coverings

    Directory of Open Access Journals (Sweden)

    Radovanović Rajko M.

    2017-01-01

    Full Text Available The application of PVC floor coverings is strongly connected with their end-use properties, which depend on the composition and processing conditions. It is very difficult to estimate the proper influence of the production parameters on the characteristics of PVC floor coverings due to their complex composition and various preparation procedures. The effect of different processing variables (such as time of bowling, temperature of bowling and composition of PVC plastisol on the mechanical properties of PVC floor coverings was investigated. The influence of different input parameters on the mechanical properties was successfully determined using an artificial neural network with an optimized number of hidden neurons. The Garson and Yoon models were applied to calculate and describe the variable contributions in the artificial neural networks. [Projekat Ministarstva nauke Republike Srbije, br. III 45022

  3. Optical acetylcholine sensor based on free base porphyrin as a chromoionophore.

    Science.gov (United States)

    Mroczkiewicz, Monika; Pietrzak, Mariusz; Górski, Łukasz; Malinowska, Elżbieta

    2011-09-21

    In this work, the possibility of application of free base porphyrin as a lipophilic pH chromoionophore for the preparation of optical cation-selective sensors was investigated. The properties of polymeric membranes, containing porphyrins of different structures, namely tetraphenylporphyrin (TPP) and octaethylporphyrin (OEP), were compared. Changes in equilibrium between protonated and deprotonated form of porphyrin, resulting from variations in ACh concentration, were evaluated. The influence of various factors (kind and quantity of anionic additive and porphyrin in the membrane phase, pH of sample solution) on initial equilibrium was studied. The best membrane composition was chosen as: TPP 3 wt.%, KTFPB 175 mol.% relative to ionophore, PVC:o-NPOE (1 : 4) and measuring buffer solution: 0.05 M MES, pH 4.5. Selectivity, response stability, reversibility and repeatability tests were carried out for chosen sensor. Developed sensor allowed for the determination of a model analyte, acetylcholine, at the concentration range of 10(-5) to 10(-2) M, both in stationary and flow-injection system. Sensor response was reversible and repeatable in the mentioned concentration range.

  4. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  5. Composite Membranes Based on Polyether Sulfone

    Directory of Open Access Journals (Sweden)

    A. Soroush

    2010-12-01

    Full Text Available The role of polymeric additives such as PVP and PEG is studied with respect to the morphology of PES porous layer as a sublayer of nanofiltration composite membranes based on PES/PA. Results show that by phase inversionprocess of quaternary systems comprised of four components of polymer/solvent/non-solvent/additive and the diffusion of intertwined polymers some changes occur in membrane morphology with changes in their concentration. With addition of PVP, tear-like pores, finger-like and channel-like morphology change to enlarged channel cavities and by adding more PVP, membrane morphology changes further and spongy regions are extended in the membrane. Presence of PEG in casting solution delayed the precipitation time. By adding PEG, the solution viscosity is increased which is followed by decreases in diffusion rates of solvent/non-solvent in coagulation bath.Therefore, membrane morphology shifts to small pores and spongier region. Another effect of increased PEG content would be deformed PA layer formation in PES sublayer which affects membrane performance. However, PVP as an additive does not change membrane salt rejection very much while it leads to higher fluxes. A membrane with 2.5 percent PVP would perform by 40 percent flux increases, while a membrane with 5% PVP shows flux reductions even below the initial value. Contrary to PVP, the PEG content of 20 percent leads to 4 folds flux increases and in a membrane with 50 percent PEG, there is a flux increase by 7 folds and drop in salt rejection occurs by 50 percent and 70 percent, respectively.

  6. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe.

    Science.gov (United States)

    Heim, Timothy H; Dietrich, Andrea M

    2007-02-01

    Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.

  7. Determination of the Composition and Quantity of Phthalate Ester Additives in PVC Children's Toys. Greenpeace Research Laboratories Technical Note 06/97.

    Science.gov (United States)

    Stringer, Ruth; Labounskaia, Irina; Santillo, David; Johnston, Paul; Siddorn, John; Stephenson, Angela

    Polyvinyl chloride (vinyl or PVC) is widely used in toys and other children's products. This study, conducted by Greenpeace, examined the composition and quantity of phthalate ester additives in children's PVC toys, used to give the toys added flexibility. Drawn from 17 countries, a total of 71 toys designed to be chewed by babies and young…

  8. SYNTHESIS OF ACETIC ACID FROM ETHANOL BY ELECTROOXIDATION TECHNIQUE USING Ni-Cu-PVC ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2017-11-01

    Full Text Available A usage of Ni-Cu-PVC electrode for the oxidation of ethanol by electrochemical technique will be reported in this paper. In this work, the effect of electrodes on the yields of acetic acid was determined. Electrode used was made of the mixtures of Ni powder, Cu powder and of polyvinyl chloride (PVC with various percentages. Electrooxidation of 0.20 M ethanol in 0.16 M KOH  (24 mL were carried out using chrono coulometry (CC at a potential of 1050 mV for 6 hours with continious stirring. Electrooxdation result obtained was analyzed using High Performance Liquid Chromatography (HPLC. The test result shows that the composition of  Ni:Cu:PVC  at 75:20:5 have higher efficiency in the electrooxidation of ethanol to acetic acid.

  9. Comparative study of three different kinds of geomembranes (PVC-P, HDPE, EPDM) used in the waterproofing of reservoirs

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.; Castillo Rubi, F.; Soriano Carrillo, J.; Noval Arango, A. M.; Touze-Foltz, N.; Pargada Iglesias, L.; Rico Arnaiz, G.; Aguilar gonzalez, E.

    2014-01-01

    This work describes the long-term behaviour of three kinds of geomembranes which are constituted by plasticized poly vinyl chloride (PVC-P), high density polyethylene (HDPE) and terpolymer rubber of ethylene-propylene-dienic monomer (EPDM) used as the waterproofing system of the reservoirs Los Llanos de Mesa, San Isidro and El Golfo, respectively. Characteristics of the three original geomembranes and their behaviour along time are presented. Thicknesses, content and nature of the plasticizers ( in PVC-P), tensile properties dynamic and static puncture, foldability at low temperature, shore hardeness, tear resistance and carbon black ( in HDPE), joint strength (shear and peeling test) and microscopy, both optical and electronic scanning tests were carried out. Results obtained conclude with a long-term durability of geomembranes, independently of their macromolecular nature. These characteristics were determined by advanced analytical techniques in PVC-P samples, such as fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography (GC) and Mass Spectrometry (MS). Spectrometry (MS). (Author)

  10. Biosensors Based on Ultrathin Film Composite Membranes

    Science.gov (United States)

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  11. Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shahzad; Malekie, Shahryar; Ziaie, Farhood [Nuclear Science and Technology Research Institute (NSTRI), Karaj (Iran, Islamic Republic of). Radiation Application Research School; Rahighi, Reza; Tayyebi, Ahmad [Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Physics

    2017-04-01

    Graphene oxide-polyvinyl chloride composite was prepared using tetrahydrofuran solvent-assisted dispersion of characterized nano flakes of graphene oxide in polymer matrix. Electrical percolation threshold of GO/PVC nanocomposite was determined via a finite element simulation method with a 2D model and compared with experimental results. A conductive cell with two silver coated walls was designed and fabricated for exploring dosimetric properties of the composite. Some characteristics of the new nanocomposite such as linearity of dose response, repeatability, sensitivity and angular dependence are investigated. According to 2D proposed method, obtained data associated to electrical conductivity of the GO/polymer composite for PVC matrix plotted in different GO weight percentages and had good compatibility (validity) with experimental data. The dose response is linear in the 17-51 mGy dose range and it can be introduced for gamma radiation dosimetry in diagnostic activities.

  12. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  13. Membrane-based seawater desalination: Present and future prospects

    KAUST Repository

    Amy, Gary L.

    2016-10-20

    Given increasing regional water scarcity and that almost half of the world\\'s population lives within 100 km of an ocean, seawater represents a virtually infinite water resource. However, its exploitation is presently limited by the significant specific energy consumption (kWh/m) required by conventional desalination technologies, further exasperated by high unit costs ($/m) and environmental impacts including GHG emissions (g CO-eq/m), organism impingement/entrainment through intakes, and brine disposal through outfalls. This paper explores the state-of-the-art in present seawater desalination practice, emphasizing membrane-based technologies, while identifying future opportunities in step improvements to conventional technologies and development of emerging, potentially disruptive, technologies through advances in material science, process engineering, and system integration. In this paper, seawater reverse osmosis (RO) serves as the baseline conventional technology. The discussion extends beyond desalting processes into membrane-based salinity gradient energy production processes, which can provide an energy offset to desalination process energy requirements. The future membrane landscape in membrane-based desalination and salinity gradient energy is projected to include ultrahigh permeability RO membranes, renewable-energy driven desalination, and emerging processes including closed-circuit RO, membrane distillation, forward osmosis, pressure retarded osmosis, and reverse electrodialysis according various niche applications and/or hybrids, operating separately or in conjunction with RO.

  14. Preparation and characterization of a sulindac sensor based on PVC/TOA-SUL membrane.

    Science.gov (United States)

    Lenik, Joanna

    2014-04-01

    A potentiometric sulindac sensitive sensor based on tetraoctylammonium (Z)-5-fluoro-2-methyl-1-[[p-(methylsulfinyl)phenyl]methylene]-1H-indene-3-acetate (TOA-SUL) was described. The electrode responded with sensitivity of 57.5±1.6mV decade(-1) over the linear range 5×10(-5)-1×10(-2)mol L(-1) at pH6.0-9.0. It had the limit of detection 1.4×10(-5)mol L(-1), a fast response time of 13s and showed clear discrimination of sulindac ions from several inorganic and organic compounds and also amino acids. This electrode did not contain any inner solutions, so it was easy and comfortable to use. The proposed sensor was used to determine sulindac in clear solution and in urine sample solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Complicações determinadas por placas de cloreto de polivinila (PVC na estabilização da porção cervical caudal da coluna vertebral de cães Complications determined by polyvinylchloride (PVC plates in the stabilization of caudal cervical vertebral column of dogs

    Directory of Open Access Journals (Sweden)

    Mônica Vicky Bahr Arias

    2003-12-01

    Full Text Available Em 10 cães com peso médio de 14,6kg, as vértebras cervicais 5 e 6 foram cirurgicamente desestabilizadas através da secção do disco intervertebral e, em seguida, estabilizadas com placas ortopédicas confeccionadas com PVC de 2mm de espessura, para após 180 dias, proceder-se ao estudo histológico do tecido ósseo e conjuntivo circunvizinho. Constatou-se que o PVC causou alterações ósseas que podem ter favorecido o afrouxamento dos parafusos e a falha do implante. O material induziu ainda à formação de granuloma de corpo estranho e a reações inflamatórias locais que podem ter causado degradação do material implantado. Assim, placas de PVC, apesar de proporcionarem estabilidade e alinhamento da coluna vertebral, não satisfazem a maioria das propriedades necessárias a um biomaterial, não sendo recomendadaa a sua utilização em ortopedia veterinária.In ten dogs with an average mean weight of 14,6 kg, the cervical vertebra 5 and 6 were destabilized and fixed with plates of 2mm of thickness. The purpose of this work was to verify the effect of orthopedic PVC plates on the internal stabilization of the caudal cervical spine of dogs by studying the occurrence of alterations in the bone tissue and fibrous tissue adjacent to the plate after 180 days of permanence of the material in the dogs' organism. PVC causes progressive bone alterations, which, in the long term, could promote the loosening of the screws and failure of the implant. It also induces the formation of foreign body granuloma and inflammatory reactions which could cause degradation of the implant. Thus, PVC plates do not satisfy the majority of properties required of a biomaterial, its use not being recommended in veterinary orthopedics.

  16. The Effect of Zn-Al-Hydrotalcites Composited with Calcium Stearate and β-Diketone on the Thermal Stability of PVC

    Directory of Open Access Journals (Sweden)

    Runjuan Wen

    2011-03-01

    Full Text Available A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM. The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC mixed with Zn-Al-LDHs, calcium stearate (CaSt2 and β-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt2 and β-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt2 and 0.25 g β-diketone in 5 g PVC.

  17. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    Science.gov (United States)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  18. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    Science.gov (United States)

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  19. Application of electrostatic separation to the recycling of plastic wastes: separation of PVC, PET, and ABS.

    Science.gov (United States)

    Park, Chul-Hyun; Jeon, Ho-Seok; Yu, Hyo-Shin; Han, Oh-Hyung; Park, Jai-Koo

    2008-01-01

    Plastics are widely used in everyday life as a useful material, and thus their consumption is growing at a rate of about 5% per year in Korea. However, the constant generation of plastic wastes and their disposal generates environmental problems along with economic loss. In particular, mixed waste plastics are difficult to recycle because of their inferior characteristics. A laboratory-scale triboelectrostatic separator unit has been designed and assembled for this study. On the basis of the control of electrostatic charge, the separation of three kinds of mixed plastics, polyvinyl chloride (PVC), poly(ethylene terephthalate) (PET), and acrylonitrile-butadiene-styrene (ABS), in a range of similar gravities has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET, and ABS. The charge-to-mass ratio (nC/g) of plastics increased with increasing air velocity in the tribo charger. In the first stage, using the PP cyclone charger, the separation efficiency of particles considerably depended on the air velocity (10 m/s), the relative humidity ( 20 kV), and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At this time, a PVC grade of 99.40% and a recovery of 98.10% have successfully been achieved. In the second stage, using the HIPS cyclone charger, a PET grade of 97.80% and a recovery of 95.12% could be obtained under conditions of 10 m/s, over 25 kV, a central splitter position, and less than 40% relative humidity. In order to obtain 99.9% PVC grade and 99.3% PET grade, their recoveries should be sacrificed by 20.9% and 27%, respectively, with moving the splitter from the center to a (+)6 cm position.

  20. Software package to automate the design and production of translucent building structures made of pvc

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2016-08-01

    Full Text Available The article describes the features of the design and production of translucent building structures made of PVC. The analysis of the automation systems of this process currently existing on the market is carried out, their advantages and disadvantages are identified. Basing on this analysis, a set of requirements for automation systems for the design and production of translucent building structures made of PVC is formulated; the basic entities are involved in those business processes. The necessary functions for the main application and for dealers’ application are specified. The main application is based on technological platform 1C: Enterprise 8.2. The dealers’ module is .NET application and is developed with the use of Microsoft Visual Studio and Microsoft SQL Server because these software products have client versions free for end users (.NET Framework 4.0 Client Profile and Microsoft SQL Server 2008 Express. The features of the developed software complex implementation are described; the relevant charts are given. The scheme of system deployment and protocols of data exchange between 1C server, 1C client and dealer is presented. Also the functions supported by 1C module and .NET module are described. The article describes the content of class library developed for .NET module. The specification of integration of the two applications in a single software package is given. The features of the GUI organization are described; the corresponding screenshots are given. The possible ways of further development of the described software complex are presented and a conclusion about its competitiveness and expediency of new researches is made.

  1. Safety and effectiveness evaluation of a domestic peritoneal dialysis fluid packed in non-PVC bags: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Zhou, Jianhui; Cao, Xueying; Lin, Hongli; Ni, Zhaohui; He, Yani; Chen, Menghua; Zheng, Hongguang; Chen, Xiangmei

    2015-12-29

    Peritoneal dialysis is an important type of renal replacement therapy for uremic patients. In peritoneal dialysis, fluids fill in and flow out of the abdominal cavity three to five times per day. Usually, the fluid is packed in a polyvinyl chloride (PVC) bag. Safety concerns have arisen over di-(2-ethylhexyl) phthalate, which is essential in the formation of PVC materials. In 2011, the National Development and Reform Commission of China released a catalog of industrial structural adjustments, mandating the elimination of PVC bags for intravenous infusion and food containers. Although bags for peritoneal dialysis fluid were not included in the elimination list, several manufacturers began to develop new materials for fluid bags. HUAREN peritoneal dialysis fluid consists of the same electrolytes and buffer agent as in Baxter fluid, but is packed in bags that do not contain PVC. This multicenter randomized controlled trial was designed to compare peritoneal dialysis fluid packed in non-PVC-containing and PVC-containing bags. Further, the study sought to determine the proper dose of peritoneal dialysis fluid and the actual survival rates of Chinese patients undergoing peritoneal dialysis. The study participants are adults undergoing continuous ambulatory peritoneal dialysis for 30 days to 6 months. All eligible patients are randomized (1:1) to peritoneal dialysis with Baxter and HUAREN dialysis fluids (initial dose, 6 l/day), with dosages adjusted according to a unified protocol. The primary outcomes are the 1-, 2-, 3-, 4-, and 5-year overall survival rates. Secondary outcome measures include technique survival rates, reductions in estimated glomerular filtration rate, nutritional status, quality of life, cardiovascular events, medical costs and drop-out rates. Safety outcome measures include adverse events, changes in vital signs and laboratory parameters, peritonitis, allergies, and quality of products. This study is the first to evaluate the long-term safety and

  2. Mechanical, Spectroscopic and Micro-structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material

    Directory of Open Access Journals (Sweden)

    B. Dan-asabe

    2016-06-01

    Full Text Available A banana particulate reinforced polyvinyl chloride (PVC composite was developed with considerabley low cost materials having an overall light-weight and good mechanical properties for potential application as piping material. The specimen composite material was produced with the banana (stem particulate as reinforcement using compression molding. Results showed that density and elastic Modulus of the composite decreases and increases respectively with increasing weight fraction of the particulate reinforcement. The tensile strength increased to a maximum of 42 MPa and then decreased steadily. The composition with optimum mechanical property (42 MPa was determined at 8, 62 and 30 % formulation of banana stem particulates (reinforcement, PVC (matrix and Kankara clay (filler respectively with corresponding percentage water absorption of 0.79 %, Young’s Modulus of 1.3 GPa, flexural strength of 92 MPa and density of 1.24 g/cm3. Fourier Transform Infrared (FTIR analysis of the constituents showed identical bands within the range 4000–1000 cm-1 with renown research work. Scanning Electron Microscopy (SEM result showed fairly uniform distribution of constituents’ phases. X-Ray Fluorescence (XRF confirms the X-ray diffraction (XRD result of the presence of minerals of kaolinite, quartz, rutile and illite in the kaolin clay. Comparison with conventional piping materials showed the composite offered a price savings per meter length of 84 % and 25 % when compared with carbon steel and PVC material.

  3. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance

    Science.gov (United States)

    Allan, Jesse

    are better suited for sensor applications. The commercially used porous poly-vinyl chloride (PVC) membrane was investigated and modified to improve performance of this material. As PVC does not contain any natural hydroscopic properties, the addition of various hydrophilic groups to the PVC would aid in water management. It was found that while chemical modification could improve water retention, optimization of the modifications would be required to ensure flooding was not an issue. Composites of PVC and sulfonated silica showed performance that matched that of the commercial PVC, whilst using significantly less water to achieve those results. By reducing the water required for sensing, leaching of acid, as well as flooding could be reduced. Finally, the catalyst layer and gas diffusion layer (GDL) were investigated to understand what properties of these would impart the best performance increases for the sensor. For the catalyst layer, it was found that platinum black and 20% platinum supported on carbon achieved similar results. Platinum black has excellent catalytic activity for the ethanol oxidation reaction, while the surface area of the 20% platinum supported on carbon would allow for more ethanol to react, increasing the overall sensor capability. The choice of catalyst was less of an issue than the choice of GDL. It was found that using carbon fiber paper GDLs lead to greater retention of water in the MEA compared to carbon cloth GDLs due to the lower air permeability. This came at a cost however in that with a lower air permeability, less ethanol vapour would reach the catalytic sites, reducing sensing performance. Depending on the choice of membrane, removal of the GDL could impart performance increases, but could also cause detrimental failure in the case of Nafion based systems.

  4. Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd²⁺ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle.

    Science.gov (United States)

    Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha

    2015-02-20

    Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.

  5. Dosimetry of the JS-6500 industrial irradiator for the irradiation of the PVC graduated flasks

    International Nuclear Information System (INIS)

    Castaneda F, A.; Carrasco A, H.; Martinez P, M.E.

    2002-01-01

    The dosimetry of the JS-6500 AECL irradiator was realized, outside of the industrial transportation rails to know the dose distribution, as well as its dose speed. This one with the intention of exposing to gamma radiation; plastified PVC graduated flasks and evaluating their interweavement or degradation or both. This study of dosimetry was carried out by means of a theoretical and experimental evaluation in air atmosphere. The results allow to know the irradiation conditions of the PVC graduated flasks as well as those results prove that has not a significant difference among the obtained result as theoretical as experimentally due to that the obtained result in the theoretical evaluation is 2.62 KGy/h and the result for the case of the experimental evaluation is 2.74 KGy/h. (Author)

  6. Experimental and numerical analysis of water hammer in a large-scale PVC pipeline apparatus

    NARCIS (Netherlands)

    Bergant, A.; Hou, Q.; Keramat, A.; Tijsseling, A.S.; Gajic, A.; Benisek, M.; Nedeljkovic, M.

    2011-01-01

    This paper investigates the effects of the pipe-wall viscoelasticity on water-hammer pressures. A large-scale pipeline apparatus made of polyvinyl chloride (PVC) at Deltares, Delft, The Netherlands, has been used to carry out waterhammer experiments. Tests have been conducted in a

  7. Materials-Product chains. Theory and an application to zinc and PVC gutters

    Energy Technology Data Exchange (ETDEWEB)

    Kandelaars, P.; Van den Bergh, J. [Tinbergen Inst., Rotterdam (Netherlands)

    1995-12-31

    A framework is presented for the analysis of economic and environmental impacts of policies applied to materials-product (MP) chains. This is based on material flows, product flows, costs, prices and optimal management of an MP chain. The main difference with other studies focusing on materials flows is that in this study the link between products of services and materials is explicitly dealt with. The framework is developed on the basis of materials balance conditions, production functions allowing for substitution, and recycling of both materials and products. After presenting theoretical MP chain-models and analytical results, an application to the problem of choosing between zinc and PVC gutters is discussed. Here optimal MP chain management decisions are presented for various policy and strategy scenarios. 3 figs., 5 tabs., 12 refs., 3 appendices

  8. Understanding Hydrothermal Dechlorination of PVC by Focusing on the Operating Conditions and Hydrochar Characteristics

    Directory of Open Access Journals (Sweden)

    Tian Li

    2017-03-01

    Full Text Available To remove chlorine from chlorinated wastes efficiently, the hydrothermal treatment (HT of PVC was investigated with a lower alkaline dosage in this work. Some typical operating conditions were investigated to find out the most important factor affecting the dechlorination efficiency (DE. The FTIR technique was employed to detect the functional groups in PVC and hydrochars generated to reveal the possible pathways for chlorine removal. The results show that the HT temperature was a key parameter to control the dechlorination reaction rate. At a HT temperature of 240 °C, about 94.3% of chlorine could be removed from the PVC with 1% NaOH. The usage of NaOH was helpful for chlorine removal, while a higher dosage might also hinder this process because of the surface poisoning and coverage of free sites. To some extent, the DE was increased with the residence time. At a residence time of 30 min, the DE reached a maximum of 76.74%. A longer residence time could promote the generation of pores in hydrochar which is responsible for the reduction in DE because of the re-absorption of water-soluble chlorine. According to the FTIR results, the peak intensities of both C=CH and C=C stretching vibrations in hydrochar were increased, while the peak at around 3300 cm−1 representing the –OH group was not obvious, indicating that the dehydrochlorination (elimination reaction was a main route for chlorine removal under these conditions studied in this work.

  9. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Science.gov (United States)

    Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.

    2007-04-01

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  10. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  11. Introduction to solid supported membrane based electrophysiology.

    Science.gov (United States)

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-05-11

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.

  12. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems...

  13. Mercury(II) selective sensors based on AlGaN/GaN transistors

    International Nuclear Information System (INIS)

    Asadnia, Mohsen; Myers, Matthew; Akhavan, N.D.; O'Donnell, Kane; Umana-Membreno, Gilberto A.; Mishra, U.K.; Nener, Brett; Baker, Murray; Parish, Giacinta

    2016-01-01

    This work presents the first polymer approach to detect metal ions using AlGaN/GaN transistor-based sensor. The sensor utilised an AlGaN/GaN high electron mobility transistor-type structure by functionalising the gate area with a polyvinyl chloride (PVC) based ion selective membrane. Sensors based on this technology are portable, robust and typically highly sensitive to the target analyte; in this case Hg 2+ . This sensor showed a rapid and stable response when it was introduced to solutions of varying Hg 2+ concentrations. At pH 2.8 in a 10 −2  M KNO 3 ion buffer, a detection limit below 10 −8  M and a linear response range between 10 −8  M-10 −4  M were achieved. This detection limit is an order of magnitude lower than the reported detection limit of 10 −7  M for thioglycolic acid monolayer functionalised AlGaN/GaN HEMT devices. Detection limits of approximately 10 −7  M and 10 −6  M in 10 −2  M Cd(NO 3 ) 2 and 10 −2  M Pb(NO 3 ) 2 ion buffers were also achieved, respectively. Furthermore, we show that the apparent gate response was near-Nernstian under various conditions. X-ray photoelectron spectroscopy (XPS) experiments confirmed that the sensing membrane is reversible after being exposed to Hg 2+ solution and rinsed with deionised water. The success of this study precedes the development of this technology in selectively sensing multiple ions in water with use of the appropriate polymer based membranes on arrays of devices. - Highlights: • This work is the first polymer approach to detect metal ions using AlGaN/GaN transistor-based sensor. • The sensor utilised an AlGaN/GaN transistor by functionalising the gate area with a polyvinyl chloride (PVC) based membrane. • The sensor showed a rapid and linear response between 10 −8 M-10 −4 M for Hg 2+ detection at pH 2.8 in a 10 −2 M KNO 3 ion buffer. • Detection limits of approximately 10 −7 M and 10 −6 M in 10 −2 M Cd(NO 3 ) 2 and 10 −2 M Pb(NO 3 ) 2 ion buffers

  14. PVC esaslı CTP kesme atığı dolgulu malzemelerin termal özelliklerinin incelenmesi

    Directory of Open Access Journals (Sweden)

    Arzu Özüyağlı

    2016-08-01

    Full Text Available Bu çalışmada, PVC üretiminde kullanılan CaCO3 dolgu malzemesi yerine, sanayi atığı kullanılması sonucu termal özelliklerdeki değişim araştırılmıştır. Kullanılan sanayi atığı CTP boru üretiminden sulu kesim sırasında çıkmakta ve SiO2, cam elyaf ve polyester reçine içermektedir. Sulu çamur halinde filtre presten çıkan atık fabrikadan alındıktan sonra kurutma ve eleme işlemleri uygulanarak toz formuna getirilmiştir. Numuneler PVC, CTP atık tozu ve prosese yardımcı maddeler mikserde karıştırılarak ekstrüzyon yöntemi ile profil şeklinde üretilmiştir. Atık toz PVC’ye oranla ağırlıkça %5-%70 oranlarında dolgu malzemesi olarak kullanılmıştır. Kalsit (CaCO3 katkılı ve katkısız PVC numuneleri de benzer proses parametreleri kullanılarak üretilmiştir. Üretilen numuneler, seramik krozeler kullanılarak DTA-TG analizleri yapılmıştır.

  15. State-of-the-art synthetic membrane for capping landfills

    International Nuclear Information System (INIS)

    Kriofske, K.P.; Gagle, D.W.

    1991-01-01

    Very Low Density Polyethylene (VLDPE) has emerged as a superior capping material for landfill closures. Landfills must be capped by a material which will undergo substantial deformation in areas of localized settlement prior to rupture. Methane and hydrogen sulfide gases must be contained and directed to collection points without permeating the landfill cap. Vegetative growth in the cover sods will be protected by the gas impermeability of the geosynthetic membrane. VLDPE compounded with carbon black is minimally affected by radiation and is inert to ultraviolet rays. This property sustains VLDPE's ability to retard gas permeation at levels superior to other geosynthetics. Cover soil stability on long cap slopes in all weather conditions is crucial. It has been demonstrated in the laboratory and in full-scale, on-site test conditions that VLDPE exhibits friction characteristics equaling or exceeding other synthetics used for this purpose without diminishing physical and chemical properties. Large-scale, multiaxial stress tests have demonstrated the ability of VLDPE to deflect substantially in all directions of a potential settlement area. Only PVC can equal the elastic deformation properties of VLDPE, but PVC is more gas-permeable susceptible to degradation due to natural soil radiation or ultraviolet light and heat. Test results are presented to illustrate these points. The geosynthetic cap membrane must prevent water percolation into the landfill to prevent the formation of hazardous leachates. The use of a VLDPE cap reduces the depth of cap soils, thus increasing landfill volume. The economics and reduction in long-term liabilities of closure costs are enhanced by the use of VLDPE in the cap system. Since the expected half-life of polyethylene exceeds hundreds of years, the inclusion of VLDPE in the cap system will provide pollution security for many generations

  16. Estudo Comparativo dos custos e aquisição de PVC no Brasil: mercado interno versus importação

    Directory of Open Access Journals (Sweden)

    André Bueno Borges

    2015-10-01

    Full Text Available A pesquisa tem por objetivo mapear o processo de aquisição analisando os custos para venda de PVC no Brasil. Portanto, foi realizado um estudo comparativo dos custos e tributações dos processos de importação. As cotações do preço do PVC são extraídas do site ICIS Pricing que é o maior fornecedor de informações de mercado petroquímico do mundo. A produção nacional do PVC é menor do que o consumo, fazendo com que a importação do produto seja frequente pelas empresas transformadoras de plástico. Pelo trabalho exposto, observa-se que os benefícios resultantes da pesquisa de preço do produto no mercado mundial. Foi demonstrado que o produto importado da China ou dos Estados Unidos apresenta valores em torno de 20% menores do que o praticado no mercado nacional.

  17. Membrane-based removal of volatile methylsiloxanes from biogas

    Energy Technology Data Exchange (ETDEWEB)

    Ajhar, Marc

    2011-12-16

    This work investigates the removal of volatile methylsiloxanes (VMS) from biogas using dense, rubbery membranes. It consists of the following: a) thorough overview of already established and still developing siloxane removal technologies, b) detailed investigation of a viable sampling and analytical method, c) screening of different elastomers to identify siloxane-selective membrane materials, d) design of a suitable membrane structure, i.e. theoretical considerations about the thicknesses of the active separation layer and the porous support layer, e) assessment of the siloxane separation performance of a silicone membrane module using both synthetic gas under laboratory conditions and real landfill gas, f) comparison between the state-of-the-art technology (adsorption on activated carbon) and membrane-based processes. Suitable polymers for siloxane removal from biogas exist, however, they are not commercially available as membranes. Among the elastomers studied, Pebax registered 2533 is particularly promising. The use of a membrane made of this material could potentially become new state-of-the-art technology.

  18. Analysis of Polyadipate Ester Content in PVC Plastics by Means of FT-Raman Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2006-01-01

    Plasticizers are needed in flexible PVC (PolyVinylChloride) products. There is serious concern that commonly used phthalate esters may harm life reproduction systems. To avoid the problems, instead adipate di-esters (AEs) of C8 to C10 alcohols are used as higher prized alternatives; e.g. di-2......-ethylhexyl adipate or DEHA [103-23-1], also known as Adimoll or di-octyl adipate, DOA. A widely used plasticizer in food (cling) films is DEHA, often in combination with polymers, epoxidized soya-bean oil, etcetera. DEHA also occurs in children toys. We have previously shown that the presence of phthalate...... esters in PVC can be rapidly analyzed by Fourier transform (FT-) Raman spectroscopy excited with a 1064 nm laser. Here in this project we report a similar study. The aim was to find out whether FT-Raman spectroscopy can be used to determine the presence of adipate esters (AEs) as plasticizers...

  19. Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC)

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.A.; Bhaskar, T.; Kaneko, J.; Muto, A.; Sakata, Y.; Matsui, T. [Okayama University, Okayama (Japan). Dept. of Applied Chemistry, Faculty of Engineering

    2002-09-01

    Dehydrohalogenation during pyrolysis of brominated flame retardant containing polystyrene (brominated high impact polystyrene (HIPS-Br)) mixed with polyvinylchloride (PVC) was carried out in a laboratory scale batch process. Thermal and catalytic degradation of HIPS-Br mixed with PVBC on carbon composite of iron oxide (TR-00301) catalyst was investigated. The thermal degradation of waste plastics (HIPS-Br/PVC) yielded liquid products with 55,000 ppm bromine and 4300 ppm chlorine content in oil. Catalytic degradation (4 g; TR-00301) of HIPS-Br/PVC waste plastics at 430{degree}C produced halogen-free clean oil, which can be used as a fuel oil or chemical feedstock. The main liquid products during catalytic degradation were benzene, toluene, styrene, ethyl benzene, {alpha}-methyl styrene, butyl benzene, 1,2-dimethyl benzene etc. The average carbon number of the liquid products produced during catalytic degradation (9.3) of waste plastics was less than that of the thermal degradation (10.4) and the density of liquid products was found to be lower during the catalytic degradation than the thermal degradation. The possibility of a single step catalytic process for the conversion of halogenated waste plastics into fuel oil with the simultaneous removal of chlorine and bromine content form the oil was demonstrated. 21 refs., 7 figs., 2 tabs.

  20. A physical probabilistic model to predict failure rates in buried PVC pipelines

    International Nuclear Information System (INIS)

    Davis, P.; Burn, S.; Moglia, M.; Gould, S.

    2007-01-01

    For older water pipeline materials such as cast iron and asbestos cement, future pipe failure rates can be extrapolated from large volumes of existing historical failure data held by water utilities. However, for newer pipeline materials such as polyvinyl chloride (PVC), only limited failure data exists and confident forecasts of future pipe failures cannot be made from historical data alone. To solve this problem, this paper presents a physical probabilistic model, which has been developed to estimate failure rates in buried PVC pipelines as they age. The model assumes that under in-service operating conditions, crack initiation can occur from inherent defects located in the pipe wall. Linear elastic fracture mechanics theory is used to predict the time to brittle fracture for pipes with internal defects subjected to combined internal pressure and soil deflection loading together with through-wall residual stress. To include uncertainty in the failure process, inherent defect size is treated as a stochastic variable, and modelled with an appropriate probability distribution. Microscopic examination of fracture surfaces from field failures in Australian PVC pipes suggests that the 2-parameter Weibull distribution can be applied. Monte Carlo simulation is then used to estimate lifetime probability distributions for pipes with internal defects, subjected to typical operating conditions. As with inherent defect size, the 2-parameter Weibull distribution is shown to be appropriate to model uncertainty in predicted pipe lifetime. The Weibull hazard function for pipe lifetime is then used to estimate the expected failure rate (per pipe length/per year) as a function of pipe age. To validate the model, predicted failure rates are compared to aggregated failure data from 17 UK water utilities obtained from the United Kingdom Water Industry Research (UKWIR) National Mains Failure Database. In the absence of actual operating pressure data in the UKWIR database, typical

  1. Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes.

    Science.gov (United States)

    Brändén, Magnus; Tabaei, Seyed R; Fischer, Gerhard; Neutze, Richard; Höök, Fredrik

    2010-07-07

    Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  3. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: rezaei@cc.iut.ac.ir; Meghdadi, S.; Zarandi, R. Fazel [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2008-08-30

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf{sup 4+} (Hafnium(IV)) over a wide concentration range (2.0 x 10{sup -7} to 1.0 x 10{sup -1} M) with the determination coefficient of 0.9966 and slope of 15.1 {+-} 0.1 mV decades{sup -1}. The limit of detection is 1.9 x 10{sup -7} M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf{sup 4+} ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf{sup 4+} in solutions by standard addition method for real sample analysis.

  4. Performance of synthetic geo membrane installed in the experimental field of el Saltadero; Comportamiento de geomembranas sinteticas instaladas en el campo experimental de El Saltadero

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Aguiar, E.; Vara, Ta.; Garcia, F.; Soriano, J.; Castillo, F.

    2009-07-01

    El Saltadero is a covered reservoir located in a place of strong insolation in the South of the Island of Tenerife, where and artificial slop has been constructed directed to the south in which some sheets were applied to be used like geo membranes in hydraulic work waterproofing. In this experimental field of research they have been placed perfectly anchored sheets of new materials and other traditional ones, but whose manufacturers were not sufficiently implanted in our country. In all the cases sheets were solded with the aim of showing not only the performance of the geo membranes but their one the joint. Initial tests have been made. besides samples have been taken to determinate their technical properties and to see their evolution as well as behaviour one time installed. considerated materials were PVC, HDPE, CSM, EVA/C, EPDM, PP and polyolefines. Important characteristics were evaluated: tensile properties, tear resistance (in HDPE), yield point (in HDPE), impact resistance, static perforation, low temperature folding, joint strength, joint peel resistance plasticizer content (in PVC-P), carbon black; content and dispersion (in HDPE), optic microscopy and electron microscopy scanner. The most significant results with the different materials from this experimental field are presented an they can be considered pioneer for geo membranes to use in hydraulic work waterproofing. (Author) 29 refs.

  5. Possibility of the use of PVC plastics as a ray dosemeter

    International Nuclear Information System (INIS)

    Amri Ayat; Sutrisno Puspodikoro.

    1978-01-01

    The use of plastics as a radiation dosemeter for measurement of γ-rays is very attractive to be studied. In the work presented here commercial PVC film with the trade-mark ''Takiron'' is used for Co-60 radiation dosimetry. According to the experiments the useful dose range extends over 0.15-1.2 Mrads. Fading of the coloration with time after radiation exposure can be stabilised by heat treatment (60 deg C for 30 minutes). (author)

  6. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    Science.gov (United States)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  7. Membrane materials based on polyheteroarylenes and their application for pervaporation

    International Nuclear Information System (INIS)

    Pulyalina, A Yu; Polotskaya, G A; Toikka, A M

    2016-01-01

    Studies on the transport properties of membrane materials are topical in connection with the need to solve the fundamental problems and to analyze the applied aspects of the theory of membrane separation processes including, in particular, the development of the energy- and resource-saving, environmentally safe technologies. The aim of the review is to generalize the experimental data on the separation of practically valuable mixtures using membranes based on polyheteroarylenes (thermally stable and mechanically strong polymers). First of all, our analysis covers publications that give a detailed description of the physicochemical properties of the membranes and an interpretation of the specific features of mass transfer during pervaporation of liquid mixtures using membrane materials based on polyheteroarylenes. The dependences of the transport parameters of pervaporation on the process conditions and on the methods for production of membrane materials are discussed. The data presented may be useful for the development of the theory of membrane processes taking into account the chemical nature and physicochemical features of polymeric membrane materials. The bibliography includes 151 references

  8. Review of the use of rigid and high-impact PVC pipes in natural gas distribution systems in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Mutter, F; Benjamin, P

    1974-08-01

    Because of a number of instances of stress corrosion cracking or crazing occurring in PVC pipes used in Dutch gas distribution systems, VEG-GASINSTITUUT began an intensive investigation of rigid PVC pipes and high-impact pipes in distribution use under various conditions and with varying service lives. The work led to an investigation of laboratory testing techniques in which the stress-cracking phenomenon found in practice could be duplicated under controllable conditions. Pipes of various materials were examined for their resistance to stress cracking, then this resistance was compared with other long- and short-term physical properties of the material.

  9. Preparação de argila modificada com cloreto de cetilpiridíneo e avaliação da interação desta com o PVC Preparation of modified clay with cetylpyridinium chloride and evaluation of their interaction with PVC

    Directory of Open Access Journals (Sweden)

    Daniel K. Resende

    2010-09-01

    Full Text Available Foi preparada uma argila modificada com cloreto de cetilpiridíneo a partir da argila sódica por troca de cátions em solução. Foi avaliada a quantidade de agente de modificação em relação à argila sódica e o tempo reacional. Os materiais obtidos foram caracterizados por difração de raio X (XRD, análise termogravimétrica (TGA e ressonância magnética nuclear (RMN de baixo campo. Após a caracterização foi confirmada a modificação da argila e, também, foi verificado que o produto obtido pode ser empregado na preparação de nanocompósitos de PVC, considerando que o início da degradação do material preparado ocorreu em temperatura superior às comumente utilizadas no processamento do polímero. A adição da argila modificada apresentou uma dispersão adequada no PVC e manteve o início da degradação do material em temperatura compatível com o processamento do polímero, gerando um nanocompósito com parte esfoliada e intercalada.A modified silicate with cetylpyridinium was prepared from sodium clay with cation exchange in solution. The amount of modification agent for clay and the reaction time were evaluated. The materials produced were characterized using X ray diffraction (XRD, termogravimetric analysis (TGA and low field nuclear magnetic resonance (NMR. The formation of new organic clay was confirmed, which was introduced in PVC for the formation of nanocomposites. The beginning of degradation of the new clay occurred at temperatures higher than commonly used in the processing of PVC. The nanocomposites were partially exfoliated and partially intercalated.

  10. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  11. Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes.

    Science.gov (United States)

    Nasir, Mehmet Nail; Crowet, Jean-Marc; Lins, Laurence; Obounou Akong, Firmin; Haudrechy, Arnaud; Bouquillon, Sandrine; Deleu, Magali

    2016-11-01

    Glycolipids constitute a class of molecules with various biological activities. Among them, sugar-based bolaamphiphiles characterized by their biocompatibility, biodegradability and lower toxicity, became interesting for the development of efficient and low cost lipid-based drug delivery systems. Their activity seems to be closely related to their interactions with the lipid components of the plasma membrane of target cells. Despite many works devoted to the chemical synthesis and characterization of sugar-based bolaamphiphiles, their interactions with plasma membrane have not been completely elucidated. In this work, two sugar-based bolaamphiphiles differing only at the level of their sugar residues were chemically synthetized. Their interactions with membranes have been investigated using model membranes containing or not sterol and with in silico approaches. Our findings indicate that the nature of sugar residues has no significant influence for their membrane interacting properties, while the presence of sterol attenuates the interactions of both bolaamphiphiles with the membrane systems. The understanding of this distinct behavior of bolaamphiphiles towards sterol-containing membrane systems could be useful for their applications as drug delivery systems. Copyright © 2016. Published by Elsevier B.V.

  12. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  13. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  14. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  15. Proton Conductivity and Operational Features Of PBI-Based Membranes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; Precht Noyé, Pernille

    2005-01-01

    As an approach to high temperature operation of PEMFCs, acid-doped PBI membranes are under active development. The membrane exhibits high proton conductivity under low water contents at temperatures up to 200°C. Mechanisms of proton conduction for the membranes have been proposed. Based on the me...... on the membranes fuel cell tests have been demonstrated. Operating features of the PBI cell include no humidification, high CO tolerance, better heat utilization and possible integration with fuel processing units. Issues for further development are also discussed....

  16. Estudo do efeito da incorporação de plastificante de fonte renovável em compostos de PVC

    Directory of Open Access Journals (Sweden)

    Derval dos Santos Rosa

    2013-01-01

    Full Text Available O acúmulo de resíduos poliméricos tem crescido nos últimos anos e os subsolos dos lixões já estão saturados com resíduos plásticos. Isso possivelmente se deve à elevada produção de resíduos sólidos de plásticos (cerca de 25 mil t/dia em 2008, segundo a Lei de Resíduos. Em vista disso, este trabalho apresenta uma análise comparativa do estudo do potencial de (biodegradação de compostos de PVC utilizando um plastificante de origem vegetal renovável (PFR com estrutura de éster de milho com massa molar 296,5 g.mol- 1 e dois plastificantes sintéticos, ftalato de dioctila (DOP e adipato de dioctila (DOA, buscando inovar na obtenção de um composto de PVC com um plastificante de fonte renovável. Os resultados de FTIR evidenciaram maior interação do PFR com a resina de PVC para o teor de 30 phr, e para o teor de 40 phr observou-se que os plastificantes DOP e PFR apresentaram os mesmos valores de variação da banda atática. Já os ensaios mecânicos reforçaram os resultados de FTIR com maior compatibilidade para as composições contendo PFR. Uma maior estabilidade térmica no composto de PVC foi observada por TGA para a amostra contendo 40 phr de DOA, o que foi confirmado por RMN, e para a amostra com PFR nos teores de 30 e 40 phr. Por fim, uma perda significativa de massa foi observada nos ensaios de resistência à extração por solvente para os compostos contendo DOA, sendo que a amostra com 30 phr mostrou menor valor de extração. A biodegradação em solo simulado mostrou maior perda de massa para as amostras plastificadas com DOA (40phr e PFR (40phr. Isso indica que é viável usar plastificante de fonte renovável nos compostos de PVC, devido à compatibilidade deste com esta resina.

  17. Novel membrane-based electrochemical sensor for real-time bio-applications

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Dimaki, Maria

    2014-01-01

    This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity...... of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes...

  18. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  19. Radiation crosslinking of highly plasticized PVC

    Science.gov (United States)

    Mendizabal, E.; Cruz, L.; Jasso, C. F.; Burillo, G.; Dakin, V. I.

    1996-02-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolelcules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield ( Gc) and molecular weight of interjunctions chains ( Mc), were calculated for different systems studied. Addition of ethylene glycol dimethacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment.

  20. Radiation crosslinking of highly plasticized PVC

    International Nuclear Information System (INIS)

    Mendizabal, E.; Cruz, L.; Jasso, C.F.; Burillo, G.; Dakin, V.I.

    1996-01-01

    To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolecules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield (G c ) and molecular weight of interjunctions chains (M c ), were calculated for different systems studied. Addition of ethylene glycol dimethyacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment. (author)

  1. Avaliação e caracterização de tubos fabricados com PVC reciclado

    Directory of Open Access Journals (Sweden)

    Luiz Carlos G. Pennafort Jr

    2013-01-01

    Full Text Available Neste trabalho foram caracterizados dois polímeros utilizados na fabricação de tubos de PVC, tendo como diferencial o uso de resina de policloreto de vinila virgem e reciclada. O uso da resina reciclada, derivada do reprocessamento de resíduos aterrados (sanitários ou industriais, foi avaliado com o objetivo de compará-la a produtos fabricados com resina virgem, os quais foram submetidos aos ensaios de Fluorescência de Raios X (FRX, Difração de Raios X (DRX e resistência à tração e alongamento. Os resultados demonstraram que houve alteração estatisticamente significativa, conforme ANOVA (5%, nas características mecânicas do produto final, tendo os tubos fabricados com PVC reciclado apresentado uma resistência mecânica menor que os fabricados com resina virgem, além da presença de metais pesados como Pb (chumbo e Cd (cádmio.

  2. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.

    Science.gov (United States)

    Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang; Zhang, Feng; Jin, Jian

    2018-03-09

    Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    Science.gov (United States)

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2018-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co......-dopant have an ionic size ratio between 0.5 and 1. These materials can thereby improve the performance and extend the range of operating conditions of oxygen permeation membranes (OPM) for different high temperature membrane reactor applications. The invention also relates to the manufacturing of supported...

  5. Phase separation and rubber phase dispersion in PVC/NBR blends

    OpenAIRE

    Passador, Fábio R.; Pessan, Luiz A.; Rodolfo Jr., Antonio

    2006-01-01

    Termoplásticos modificados com elastômeros têm despertado grande interesse de pesquisadores e de indústrias devido à atraente relação custo/benefício e a possibilidade de aumento significativo da tenacidade sob impacto de polímeros frágeis com a incorporação de uma fase borrachosa dispersa. Este artigo mostra a relação entre o estado de mistura e a dispersão da fase borrachosa em blendas de poli (cloreto de vinila) (PVC) com borracha nitrílica (NBR). O estado de mistura de blendas poliméricas...

  6. Palladium based membranes and membrane reactors for hydrogen production and purification : An overview of research activities at Tecnalia and TU/e

    NARCIS (Netherlands)

    Fernandez, E.; Helmi Siasi Farimani, A.; Medrano Jimenez, J.A.; Coenen, K.T.; Arratibel Plazaola, A.; Melendez Rey, J.; de Nooijer, N.C.A.; Viviente, J.L.; Zuniga, J.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D.A.

    2017-01-01

    In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such

  7. Miniaturized membrane sensors for potentiometric determination of metoprolol tartrate and hydrochlorothiazide.

    Science.gov (United States)

    Ramadan, Nesrin K; Mohamed, Heba M; Mostafa, Azza A

    2012-06-01

    Four microsized graphite and platinum wire poly(vinyl chloride) matrix membrane electrodes responsive to some drugs affecting cardiovascular system, Metoprolol tartrate (MT) and Hydrochlorothiazide (HZ) were developed, described and characterized. These sensors were constructed by using (2-Hydroxypropyl)-β-cyclodextrin (2HP β-CD) as an ionophore which has a significant influence on increasing both membrane sensitivity and selectivity. The four sensors were fabricated in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH) and dioctylphthalate (DOP) as a plasticizer, based on the interaction between the drugs and the dissociated COOH groups in the PVC-COOH. Fast and stable Nernstian responses of 1.0 × 10-6-1.0 × 10-2 M for MT (sensors 1 and 2) and of 1.0 × 10-7-1.0 × 10-3 M for HZ (sensors 3 and 4) over pH range 3.0-9.0 and 3.0-7.0 for the MT and HZ sensors respectively were obtained. Nernstian slopes of 56.2, 54.6, 19.0 and 20.8 mV/decade for electrodes 1-4 respectively were observed. The proposed method displayed useful analytical characteristics for the determination of MT and HZ in their pure powder forms with average recoveries of 99.11 ± 0.357, 99.21 ± 0.389, 100.08 ± 0.459 and 100.28 ± 0.438% for sensors 1-4 respectively. The lower limit of detection (LOD) were 5.5 × 10-6, 4.5 × 10-6, 4.8 × 10-8 and 5.0 × 10-8 M for sensors 1-4 respectively indicated high sensitivity. The four sensors displayed a good stability over a period of 6 weeks. The selectivity coefficients of the developed sensors indicated excellent selectivity. Results obtained by the four electrodes revealed the performance characteristics of these electrodes which evaluated according to IUPAC recommendations. The method was successively applied for the determination of MT and HZ in presence of each other, in presence of Salamide (SA), the main degradation product of HZ, in their pharmaceutical formulations and in human plasma samples. Statistical comparison between the

  8. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-01-01

    Full Text Available We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor’s performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm. The working electrode consists of a taste-sensing site comprising a poly(hydroxyethylmethacrylate (pHEMA hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor’s response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research.

  9. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  10. Membranes of 5,10,15,20-Tetrakis(4-Methoxyphenyl Porphyrinatocobalt (TMOPP-Co (I as MoO42- - Selective Sensors

    Directory of Open Access Journals (Sweden)

    R. Mangla

    2002-05-01

    Full Text Available Polyvinyl chloride (PVC membrane electrodes based on porphyrin 5,10,15,20-tetrakis(4methoxyphenylporphyrinatocobalt (TMOPP-Co (I incorporating sodium tetra phenyl borate (NaTPB as anion excluder and dibutyl phthalate (DBP, dioctyl phthalate (DOP, dibutyl butyl phosphonate (DBBP, tri-n-butyl phosphate (TBP, and 1-chloronaphthalene (CN as plasticizing solvent mediators were prepared and tested for selective detection of molybdate ions. The membrane having anion excluder, NaTPB and DBP as plasticizer (membrane no. 2 proved to be best in terms of working concentration range 5.0×10-5 – 1.0×10-1M with a near – Nernstian slope of 32.0±1.0 mV/decade of activity over the pH range 5.4- 10.5. The response time of this sensor is 18s with a lifetime of about 4 months. The sensor can be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of MoO42- in solutions having up to 25% (v/v non-aqueous fraction.

  11. Polymeric matrix membrane sensors for stability-indicating potentiometric determination of oxybutynin hydrochloride and flavoxate hydrochloride urogenital system drugs.

    Science.gov (United States)

    Heba, Mohamed; Ramadan, Nesrin; El-Laithy, Moustafa

    2008-01-01

    Four polyvinyl chloride (PVC) matrix membrane electrodes responsive to 2 drugs affecting the urogenital system--oxybutynin hydrochloride (OX) and flavoxate hydrochloride (FX)--were developed, described, and characterized. A precipitation-based technique with tungstophosphate (TP) and ammonium reineckate (R) anions as electroactive materials in a PVC matrix with an OX cation was used for electrode 1 and 2 fabrication, respectively. Electrode 3 and 4 fabrication was based on use of the precipitation technique of FX cation with tetrakis (4-chlorophenyl) borate and R anions as electroactive materials. Fast and stable Nernstian responses in the range 1 x 10(-2)-1 x 10(-6) M for the 2 drugs over the pH range 5-8 revealed the performance characteristics of these electrodes, which were evaluated according to International Union of Pure and Applied Chemistry recommendations. The method was applied to FX and OX in their pharmaceutical formulations and in human plasma samples. The 4 proposed sensors were found to be specific for the drugs in the presence of up to 60% of their degradation products. Validation of the method according to the quality assurance standards showed suitability of the proposed electrodes for use in the quality control assessment of these drugs. The recoveries for determination of the drugs by the 4 proposed selective electrodes were 99.5 +/- 0.5, 100.0 +/- 0.4, 99.9 +/- 0.4, and 100.1 +/- 0.4% for sensors 1-4, respectively. Statistical comparison between the results obtained by this method and the official method of the drugs was done, and no significant difference found.

  12. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  13. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement

    Science.gov (United States)

    Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  14. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for high temperature applications such as under-bonnet wiring, stove wiring, post office telecommunication wire and shrink tubing. In South Africa interest in developing commercial applications for cross-linkable polymeric materials was initially stimulated through the work of the Atomic Energy Board at Pelindaba in late 1971 using a cobalt - 60 gamma radiation unit

  15. Studies Regarding the Membranous Support of a Glucose Biosensor Based on Gox

    Directory of Open Access Journals (Sweden)

    Otilia Bizerea-Spiridon

    2010-05-01

    Full Text Available To obtain glucose biosensors based on glucose oxidase (GOx, the enzyme can be immobilized on the sensitive surface of a glass electrode by different techniques: deposition on membranous support (cellophane or other macromolecular material or entrapment in a matrix. Deposition on membranous support also involves cross-linking with glutaraldehyde or entrapment in silica gel, following the sol-gel procedure. The aim of this preliminary work was to study the influence of cellophane replacement with a PVA based membranous support on the glucose biosensor performance. The data obtained at pH measurements of buffer solutions with cellophane and PVA membranous supports respectively, show that the PVA based membrane assures superior performances of the biosensor for low glucose concentrations determination (about 10-4 M. These results allow the transition to an improved immobilization technique, namely the enzyme entrapment in membranous material.

  16. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    Science.gov (United States)

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  17. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs-Based Composite Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Lining Ma

    2017-03-01

    Full Text Available Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  18. Mercury(II) selective sensors based on AlGaN/GaN transistors

    Energy Technology Data Exchange (ETDEWEB)

    Asadnia, Mohsen, E-mail: mohsen.asadnia@mq.edu.au [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Department of Engineering, Macquarie University, NSW 2109 (Australia); Myers, Matthew [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); CSIRO Energy Flagship, Kensington, Western Australia 6151 (Australia); Akhavan, N.D. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); O' Donnell, Kane [Department of Imaging and Applied Physics, Curtin University, Bentley, Western Australia 6102 (Australia); Umana-Membreno, Gilberto A. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Mishra, U.K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93106 (United States); Nener, Brett [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Baker, Murray [School of Chemistry and Biochemistry, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia); Parish, Giacinta [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Hwy., Crawley, Western Australia 6009 (Australia)

    2016-11-02

    This work presents the first polymer approach to detect metal ions using AlGaN/GaN transistor-based sensor. The sensor utilised an AlGaN/GaN high electron mobility transistor-type structure by functionalising the gate area with a polyvinyl chloride (PVC) based ion selective membrane. Sensors based on this technology are portable, robust and typically highly sensitive to the target analyte; in this case Hg{sup 2+}. This sensor showed a rapid and stable response when it was introduced to solutions of varying Hg{sup 2+} concentrations. At pH 2.8 in a 10{sup −2} M KNO{sub 3} ion buffer, a detection limit below 10{sup −8} M and a linear response range between 10{sup −8} M-10{sup −4} M were achieved. This detection limit is an order of magnitude lower than the reported detection limit of 10{sup −7} M for thioglycolic acid monolayer functionalised AlGaN/GaN HEMT devices. Detection limits of approximately 10{sup −7} M and 10{sup −6} M in 10{sup −2} M Cd(NO{sub 3}){sub 2} and 10{sup −2} M Pb(NO{sub 3}){sub 2} ion buffers were also achieved, respectively. Furthermore, we show that the apparent gate response was near-Nernstian under various conditions. X-ray photoelectron spectroscopy (XPS) experiments confirmed that the sensing membrane is reversible after being exposed to Hg{sup 2+} solution and rinsed with deionised water. The success of this study precedes the development of this technology in selectively sensing multiple ions in water with use of the appropriate polymer based membranes on arrays of devices. - Highlights: • This work is the first polymer approach to detect metal ions using AlGaN/GaN transistor-based sensor. • The sensor utilised an AlGaN/GaN transistor by functionalising the gate area with a polyvinyl chloride (PVC) based membrane. • The sensor showed a rapid and linear response between 10{sup −8} M-10{sup −4} M for Hg{sup 2+} detection at pH 2.8 in a 10{sup −2} M KNO{sub 3} ion buffer. • Detection limits of

  19. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Thallada; Kaneko, Jun; Muto, Akinori; Sakata, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, 700-8530 Okayama (Japan); Jakab, Emma [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest (Hungary); Matsui, Toshiki [Toda Kogyo Co. Ltd., Hiroshima 739-0652 (Japan); Uddin, Md. Azhar [Process Safety and Environment Protection Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2004-08-01

    Pyrolysis of polypropylene (PP)/polyethylene (PE)/polystyrene (PS)/poly(vinyl chloride) (PVC)/high impact polystyrene with brominated flame retardant (HIPS-Br) plastics mixed with poly(ethylene terephthalate) (PET) was performed at 430C under atmospheric pressure using a semi-batch operation. The presence of PET in the pyrolysis mixture of PP/PE/PS/PVC/HIPS-Br affected significantly the formation of decomposition products and the decomposition behavior of the plastic mixture. We observed the following effects of PET on the pyrolysis of PP/PE/PS/PVC/HIPS-Br mixed plastics: (1) the yield of liquid product decreased and the formation of gaseous products increased; (2) a waxy residue was formed in addition to the solid carbon residue; (3) the formation of SbBr{sub 3} was not detected in liquid products; (4) the yield of chlorinated branched alkanes increased as well as vinyl bromide and ethyl bromide were formed. The use of calcium carbonate carbon composite (Ca-C) completely removed the chlorine and bromine content from the liquid products during PP/PE/PS/PVC/HIPS-Br pyrolysis, however in the presence of PET, the catalytic experiment (Ca-C, 8g) yielded liquid products containing 310ppm of Br and 20ppm of Cl. In addition, the Ca-C increased the yield of liquid products about 3-6wt.%, as well as enhanced the gaseous product evolution and decreased the yield of residue. The halogen free liquid hydrocarbons can be used as a feedstock in a refinery or as a fuel.

  20. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2016-10-01

    Full Text Available A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre (CHF membrane and compare with a commercially available polymeric membrane (polyimide through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO2, O2, N2. The CHF membrane was modified through oxidation, chemical vapour deposition (CVD and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres (PORCHFs significantly exceeded CHF performance showing higher CO2 permeance (0.021 m3(STP/m2 h bar and CO2/CH4 selectivity of 246 (5 bar feed vs 50 mbar permeate pressure. The highest performance recorded through experiments (CHF and PORCHF was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS. A 300 Nm3/h mixture of CO2/CH4 containing 30–50% CO2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover 99.5% CH4 with 97.5% purity. Net present value (NPV was calculated for base case and optimal pressure (50 bar for CHF and PORCHF. The results indicated that recycle ratio (recycle/feed ranged from 0.2 to 10, specific energy from 0.15 to 0.8 (kW/Nm3feed and specific membrane area from 45 to 4700 (m2/Nm3feed. The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm3 and a lifetime of 15 years, the techno-economic analysis showed that payback time for

  2. Migration of plasticisers from PVC and other polymers

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus

    ). In this work it is shown how diffusion coefficients can be obtained by regression of experimental migration data plotted as the square root of time. This was done from plasticiser migration data of GRINDSTEDr SOFT-N-SAFE, GRINDSTEDr ACETEM 95 CO (Acetem) and Epoxidised Soybean Oil (ESBO) migrating from......The main purpose of this thesis is to investigate, from a modeling point of view, the migration of GRINDSTEDr SOFT-N-SAFE (SNS) and other plasticisers from polyvinyl chloride (PVC) and polyolefin food package materials and into foodstuff (specifically the four food simulants set by EU legislation...... coefficients at 20◦C, except at higher temperatures. Using the finite element mesh method in Matlab and COMSOL environments the migration was modeled with a diffusion coefficient able to change with local plasticiser concentration. Three different models for this plasticiser concentration dependence...

  3. Processing of nanocomposites EVA/PVC/MMT in twin-screw extruder; Processamento de nanocompositos EVA/PVC/MMT em extrusora dupla rosca

    Energy Technology Data Exchange (ETDEWEB)

    Gehlen, A.; Barbutti Filho, W.R.; Francisquetti, E.L.; Andrade, M.Z.; Zattera, A.J., E-mail: ajzatter@ucs.b [Universidade de Caxias do Sul (UCS), RS (Brazil). Lab. de Polimeros

    2010-07-01

    Polymeric nanocomposites have some superior properties when compared to conventional polymer composites and is one of the most promising fields in the nanotechnology research. In a EVA (ethylene vinyl acetate) /PVC (poly vinyl chloride) matrix was incorporated different types of montmorillonite clays (an inorganic (Na{sup +}) and two organic modified (15A and 30B nanoclays). The mixtures were processed in a co-rotating twin-screw extruder at processing speeds of 200 and 400 rpm. Thermogravimetric analysis (TGA) shown that the inorganic and organic modified clays promoted a shift to higher temperatures in the degradation temperature., X-ray diffraction (XRD) and transmission electronic microscopy (TEM) shows a possible intercalation with the 15A clay, exfoliation with the 30B clay and formation of clusters in the Na{sup +} clay. For all clays studied, the increase in shear rate does not promote significant changes. (author)

  4. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  5. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature.

    Science.gov (United States)

    Jeon, Seunghwan; Kim, Ki-Tae; Choi, Kyungho

    2016-03-15

    Phthalates are important endocrine disrupting chemicals that have been linked to various adverse human health effects. Phthalates are ubiquitously present in indoor environment and could enter humans. Vinyl or PVC floorings have been recognized as one of important sources of phthalate release to indoor environment including house dust. In the present study, we estimated the migration of di(2-ethylhexyl)phthalate (DEHP) and di-isononyl phthalate (DINP) from the flooring materials into the dust under different heating conditions. For this purpose, a small chamber specifically designed for the present study and a Field and Laboratory Emission Cell (FLEC) were used, and four major types of PVC flooring samples including two UV curing paint coated, an uncoated residential, and a wax-coated commercial type were tested. Migration of DEHP was observed for an uncoated residential type and a wax-coated commercial type flooring. After 14 days of incubation, the levels of DEHP in the dust sample was determined at room temperature on average (standard deviation) at 384 ± 19 and 481 ± 53 μg/g, respectively. In contrast, migration of DINP was not observed. The migration of DEHP was strongly influenced by surface characteristics such as UV curing coating. In the residential flooring coated with UV curing paint, migration of DEHP was not observed at room temperature. But under the heated condition, the release of DEHP was observed in the dust in the FLEC. Migration of DEHP from flooring materials increased when the flooring was heated (50 °C). In Korea, heated flooring system, or 'ondol', is very common mode of heating in residential setting, therefore the contribution of PVC flooring to the total indoor DEHP exposure among general population is expected to be greater especially during winter season when the floor is heated. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Organophosphorus pesticide exposure in agriculture: effects of temperature, ultraviolet light and abrasion on PVC gloves

    Science.gov (United States)

    ISMAIL, Ismaniza; GASKIN, Sharyn; PISANIELLO, Dino; EDWARDS, John W.

    2017-01-01

    Elbow length PVC gloves are often recommended for protection against organophosphorus pesticide (OP) exposure in agriculture. However, performance may be reduced due to high temperature, UV exposure and abrasion. We sought to assess these impacts for two OPs under normal use and reasonable worst-case scenarios. Glove permeation tests were conducted using ASTM cells with two PVC glove brands at 23°C and 45°C for up to 8 h. Technical grade dichlorvos and formulated diazinon were used undiluted and at application strength. Breakthough of undiluted dichlorvos occurred at both 23°C and 45°C, but only at 45°C for application strength. Breakthrough of diazinon was not achieved, except when undiluted at 45°C. UV-exposed and abraded gloves showed reduced performance, with the effect being approximately two-fold for dichlorvos. Only small differences were noted between glove brands. Extra precautions should be taken when handling concentrated OPs at high temperature, or when using abraded or sunlight-exposed gloves. PMID:29199264

  7. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes

    NARCIS (Netherlands)

    Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F.

    2017-01-01

    AIM: To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS: Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and

  8. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    Science.gov (United States)

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  9. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena

    2009-02-02

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetramethylacrylate-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-di ene (L(1)) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L(2)) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L(1): PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L(1) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb(3+) ions with limits of detection of 3.4 x 10(-8)mol L(-1) for PME and 5.7 x 10(-9)mol L(-1) for CGE. The response time for PME and CGE was found to be 10s and 8s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb(3+) ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb(3+) ions in tap water and various binary mixtures with quantitative results.

  10. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)], E-mail: akscyfcy@iitr.ernet.in; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2009-02-02

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11, 15-tetramethyl-1,7,10,16-tetramethylacrylate -1,4,7,10,13, 16-hexaazacyclooctadeca-3,13-di ene (L{sub 1}) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L{sub 2}) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L{sub 1}: PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L{sub 1} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb{sup 3+} ions with limits of detection of 3.4 x 10{sup -8} mol L{sup -1} for PME and 5.7 x 10{sup -9} mol L{sup -1} for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb{sup 3+} ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb{sup 3+} ions in tap water and various binary mixtures with quantitative results.

  11. Development of electrochemical sensors for nano scale Tb(III) ion determination based on pendant macrocyclic ligands

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna; Banerjee, Shibdas; Mehtab, Sameena

    2009-01-01

    The two macrocyclic pendant ligands 3,4,5:12,13,14-dipyridine-2,6,11, 15-tetramethyl-1,7,10,16-tetramethylacrylate -1,4,7,10,13, 16-hexaazacyclooctadeca-3,13-di ene (L 1 ) and 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetra(2-cyano ethane)-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (L 2 ) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Tb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L 1 : PVC:1-CN:NaTPB in the ratio of 6: 32: 58: 4 (w/w; mg). The performance of the membrane based on L 1 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Tb 3+ ions with limits of detection of 3.4 x 10 -8 mol L -1 for PME and 5.7 x 10 -9 mol L -1 for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-7.5 for PME and 2.0-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Tb 3+ ions with EDTA and in determination of fluoride ions in various samples. It can also be used in direct determination of Tb 3+ ions in tap water and various binary mixtures with quantitative results

  12. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Science.gov (United States)

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  13. Effect of Palm Oil Bio-Based Plasticizer on the Morphological, Thermal and Mechanical Properties of Poly(Vinyl Chloride

    Directory of Open Access Journals (Sweden)

    Kar Min Lim

    2015-10-01

    Full Text Available Flexible poly(vinyl chloride (PVC was fabricated using a palm oil-based alkyd as a co-plasticizer to di-octyl phthalate (DOP and di-isononyl phthalate (DiNP. The effects of the incorporation of the palm oil-based alkyd on morphological, thermal and mechanical properties of PVC compounds were studied. Results showed the incorporation of the alkyd enhanced the mechanical and thermal properties of the PVC compounds. Fourier transform infrared spectroscopy (FTIR results showed that the polar –OH and –C=O groups of alkyd have good interaction with the –C–Cl group in PVC via polar interaction. The morphological results showed good incorporation of the plasticizers with PVC. Improved tensile strength, elastic modulus, and elongation at break were observed with increasing amount of the alkyd, presumably due to chain entanglement of the alkyd with the PVC molecules. Thermogravimetric analysis results confirmed that the alkyd has improved the thermostability of the PVC compounds.

  14. Identification of ftalates used as additives in the geo membrane of a la Florida reservoir through gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Blanco, M.; Rico, G.; Pargada, L.; Aguiar, E.; Castillo, F.

    2009-01-01

    This article studies the behaviour of the plastified poly (vinyl chloride) (PVC-P) applied as synthetic geo membrane for the waterproofing of the La Florida reservoir. We show the results of the initial examen of its properties and its most significant characteristics eighteen years after being applied. Furthermore we isolate and identify the quantitative and qualitative aspects of the plasticizers used in its formula through infrared spectroscopy, gas chromatography and mass spectrometry technic. We have identified as the said plasticizers di-n-octyl phthalate, di-n-decyl phthalate and n-decyl n-octyl phthalate, and we calculate the joint average molecular weight using Wilsons equation. The results found that the geo membranes we have studied has shown an excellent behaviour along through time. (Author) 53 refs

  15. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com [Department of Chemistry, Bandung Institute of Technology (Indonesia); Syoni [Department of Metallurgy Engineering, Bandung Institute of Technology (Indonesia)

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  16. SELECTED PHYSICAL PROPERTIES OF EXTRUDED COMPOSITES TYPE OF POROUS PVC-METAL

    Directory of Open Access Journals (Sweden)

    Aneta Tor-Świątek

    2014-09-01

    Full Text Available The article presents studies of selected physical and mechanical properties of hybrid materials type of polymer-metal. In the frame of this work modification of PVC with the iron and copper powder in amount of 0, 1.5 and 3% and blowing agent in amount of 0, 0.5, 1% was done. Extrudates in a form of pipe were tested to determine density, porosity, maximum tensile stress, stress at break, modulus of elasticity and elongation with break. The samples were also observed in a microscope. The studies have shown significant influence of the added components on the properties tested.

  17. Tandem malonate-based glucosides (TMGs) for membrane protein structural studies

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Mortensen, Jonas S.; Du, Yang

    2017-01-01

    class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate...

  18. Eletrodo íon-seletivo para determinação potenciométrica de alumínio(III em meio de fluoreto Ion-selective electrode for potentiometric determination of aluminium(III in fluoride medium

    Directory of Open Access Journals (Sweden)

    Evandro Piccin

    2004-12-01

    Full Text Available The construction and analytical evaluation of a coated graphite Al(III ion-selective electrode, based on the ionic pair formed between the Al(Fn3-n anion and tricaprylylmethylammonium cation (Aliquat 336S incorporated on a poly(vinylchloride (PVC matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m of DBPh and 15% (m/m of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III ion-selective electrode showed a linear response ranging from 1.4 x 10-4 to 1.0 x 10-2 mol L-1, a detection limit of 4.0 x 10-5 mol L-1, aslope of -54.3±0.2mV dec-1 and a lifetime of more than 1 year (over 3000 determinations for each membrane. The slope indicates that the ion-selective electrode responds preferentially to the Al(F4- species. Application of this electrode for the aluminium(III determination in stomach anti-acid samples is reported.

  19. Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites

    Directory of Open Access Journals (Sweden)

    Geilich BM

    2013-03-01

    Full Text Available Benjamin M Geilich,1 Thomas J Webster21Program in Bioengineering, 2Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USAAbstract: In hospitals and clinics worldwide, medical device surfaces have become a rapidly growing source of nosocomial infections. In particular, patients requiring mechanical ventilation (and, thus, intubation with an endotracheal tube for extended lengths of time are faced with a high probability of contracting ventilator-associated pneumonia. Once inserted into the body, the endotracheal tube provides a surface to which bacteria can adhere and form a biofilm (a robust, sticky matrix that provides protection against the host immune system and antibiotic treatment. Adding to the severity of this problem is the spread of bacterial genetic tolerance to antibiotics, in part demonstrated by the recent and significant increase in the prevalence of methicillin-resistant Staphylococcus aureus. To combat these trends, different techniques in biomaterial design must be explored. Recent research has shown that nanomaterials (materials with at least one dimension less than 100 nm may have the potential to prevent or disrupt bacterial processes that lead to infections. In this study, polyvinyl chloride (PVC taken from a conventional endotracheal tube was embedded with varying concentrations of zinc oxide (ZnO nanoparticles. S. aureus biofilms were then grown on these nanocomposite surfaces during a 24-hour culture. Following this, biofilms were removed from the surfaces and the number of colony forming units present was assessed. Bacterial proliferation on the samples embedded with the highest concentration of ZnO nanoparticles was 87% less when compared to the control, indicating that this technique is effective at reducing biofilm formation on PVC surfaces without the use of antibiotics.Keywords: nanomaterials, endotracheal tube, biofilm, zinc oxide, nanoparticles, Staphylococcus aureus

  20. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  1. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.......In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional...

  2. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy

    Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...... using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice....

  3. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  4. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Ribeiro, Orquidea

    2017-01-01

    were generally better at stabilizing membrane proteins than short alkyl chain agents. Furthermore, use of one well-behaving NBM enabled us to attain a marked stabilization and clear visualization of a challenging membrane protein complex using electron microscopy. Thus, this study not only describes......Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties....... Here, a novel class of diastereomeric agents with a preorganized conformation, designated norbornane-based maltosides (NBMs), were prepared and evaluated for their ability to solubilize and stabilize membrane proteins. Representative NBMs displayed enhanced behaviors compared to n...

  5. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  6. Recent developments in membrane-based separations in biotechnology processes: review.

    Science.gov (United States)

    Rathore, A S; Shirke, A

    2011-01-01

    Membrane-based separations are the most ubiquitous unit operations in biotech processes. There are several key reasons for this. First, they can be used with a large variety of applications including clarification, concentration, buffer exchange, purification, and sterilization. Second, they are available in a variety of formats, such as depth filtration, ultrafiltration, diafiltration, nanofiltration, reverse osmosis, and microfiltration. Third, they are simple to operate and are generally robust toward normal variations in feed material and operating parameters. Fourth, membrane-based separations typically require lower capital cost when compared to other processing options. As a result of these advantages, a typical biotech process has anywhere from 10 to 20 membrane-based separation steps. In this article we review the major developments that have occurred on this topic with a focus on developments in the last 5 years.

  7. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  8. Controle Sanitário de Filmes Flexíveis de PVC Comercializados no Estado do Rio de Janeiro | Sanitary Control of Flexible PVC films Commercialized in the State of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Fabio Silvestre Bazilio

    2015-08-01

    Full Text Available Foram analisadas trinta e sete amostras de filme flexível de PVC quanto à migração específica dos plastificantes ftalato de di-(2-etil-hexila – DEHP (Nº CAS 117-81-7 e adipato de di-(2-etil-hexila – DEHA (Nº CAS 103-23-1 da embalagem para alimentos gordurosos, utilizando-se simulante. A Resolução nº 17, de 17 de março de 2008, publicada pela ANVISA, estabelece limite de migração específica para DEHP de 1,5 mg kg-1 do simulante e para o DEHA em 18 mg kg-1 do simulante. O teste de migração foi realizado por meio do contato entre 1 dm2 do filme de PVC e 100 mL de simulante de alimento, solução de etanol a 95% (v/v, por 48 h a 20ºC. As migrações dos plastificantes DEHP e DEHA foram determinadas por cromatografia a gás com detecção por ionização em chama e coluna de sílica fundida recoberta internamente com fase estacionária constituída de 5% fenilmetilsilicone. As amostras apresentaram resultados para a migração específica de DEHP entre não detectável (< 0,35 mg kg-1 e 304 mg kg-1 de simulante de alimentos e entre não detectável (< 2,23 mg kg-1 e 231 mg kg-1 de simulante de alimentos para o DEHA. Dentre as amostras ensaiadas, 95% apresentaram resultado insatisfatório para pelo menos um dos plastificantes. ----------------------------------------------------------------------------------------------- In total, 37 samples of flexible PVC films were analyzed for specific migration of di-(2-ethylhexyl phthalate (DEHP and di-(2-ethylhexyl adipate (DEHA from packaging to fatty foods, using simulant. The Resolution n. 17, of March 17, 2008, published by ANVISA, establishes specific migration limits for DEHP in 1.5 mg kg−1 of simulant and for DEHA in 18 mg kg−1 of simulant. The migration test was performed through contact between a 1-dm2 PVC film cutout and 100 mL of food simulant, ethanol 95% (v/v, for 48 h at 20ºC. The migrations of DEHP and DEHA were determined by gas chromatography with a flame ionization

  9. Alternatif Panel Mobilya Malzemesi Olarak Polivinil Klorür (Pvc) Levhalardan Üretilmiş Kutu Mobilya Köşe Birleştirmelerinin Moment Kapasiteleri

    OpenAIRE

    KASAL, Ali; BAYINDIR, Fatih; DİLER, Harun; KUŞKUN, Tolga

    2014-01-01

    In this study, bending moment capacities of L-type corner joints farbricated from polyvinyl chloride (PVC) panels that are commonly produced and used and expected to be an alternative material for case (panel) furniture manufacturing were analyzed under the test loads and compared to the conventional wood based panels. Corner joints were connected with various techniques that encountered in case type furniture. For this purpose, in preparing the specimens, 3 different density and qualities of...

  10. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nano-level monitoring of Yb(III) by fabrication of coated graphite electrode based on newly synthesized hexaaza macrocyclic ligand

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna

    2009-01-01

    The two macrocyclic ligands 2,12-(2-methoxyaniline) 2 -4,14-Me 2 -[20]-1,4,11,14-tetraene-1,5,8,11,15,18-N 6 (L 1 ) and 2,12-(2-methoxyaniline) 2 -4,14-Me 2 -8,18-dimethylacrylate-[20] -1,4,11,14-tetraene-1,5,8,11,15,18-N 6 (L 2 ) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Yb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L 2 :PVC:BA:NaTPB in the ratio of 5: 40: 52: 3 (w/w; mg). The performance of the membrane based on L 2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Yb 3+ ions with limits of detection of 4.3 x 10 -8 M for PME and 5.8 x 10 -9 M for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-8.0 for PME and 2.5-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Yb 3+ ions with EDTA and in determination of fluoride ions in mouthwash samples. It can be used for determination of sulfite in red and white wine samples and also in determination of Yb 3+ in various binary mixtures with quantitative results.

  12. Nano-level monitoring of Yb(III) by fabrication of coated graphite electrode based on newly synthesized hexaaza macrocyclic ligand

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K., E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Singh, Prerna [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2009-06-08

    The two macrocyclic ligands 2,12-(2-methoxyaniline){sub 2}-4,14-Me{sub 2}-[20]-1,4,11,14-tetraene-1,5,8,11,15,18-N{sub 6} (L{sub 1}) and 2,12-(2-methoxyaniline){sub 2}-4,14-Me{sub 2}-8,18-dimethylacrylate-[20] -1,4,11,14-tetraene-1,5,8,11,15,18-N{sub 6} (L{sub 2}) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Yb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L{sub 2}:PVC:BA:NaTPB in the ratio of 5: 40: 52: 3 (w/w; mg). The performance of the membrane based on L{sub 2} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Yb{sup 3+} ions with limits of detection of 4.3 x 10{sup -8} M for PME and 5.8 x 10{sup -9} M for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-8.0 for PME and 2.5-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Yb{sup 3+} ions with EDTA and in determination of fluoride ions in mouthwash samples. It can be used for determination of sulfite in red and white wine samples and also in determination of Yb{sup 3+} in various binary mixtures with quantitative results.

  13. The influence of temperature on the emission of volatile organic compounds from PVC flooring, carpet, and paint

    NARCIS (Netherlands)

    Wal, J.F. van der; Hoogeveen, A.W.; Wouda, P.

    1997-01-01

    The influence of temperature on the emission rate of volatile organic compounds (VOC) from four indoor materials was investigated in a small dynamic test chamber. The materials investigated were two carpets, a PVC flooring and a paint; the temperature range investigated was 23-50°C. The general

  14. Simulation-based partial volume correction for dopaminergic PET imaging. Impact of segmentation accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Ye; Winz, Oliver H. [University Hospital Aachen (Germany). Dept. of Nuclear Medicine; Vernaleken, Ingo [University Hospital Aachen (Germany). Dept. of Psychiatry, Psychotherapy and Psychosomatics; Goedicke, Andreas [University Hospital Aachen (Germany). Dept. of Nuclear Medicine; High Tech Campus, Philips Research Lab., Eindhoven (Netherlands); Mottaghy, Felix M. [University Hospital Aachen (Germany). Dept. of Nuclear Medicine; Maastricht University Medical Center (Netherlands). Dept. of Nuclear Medicine; Rota Kops, Elena [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine-4

    2015-07-01

    Partial volume correction (PVC) is an essential step for quantitative positron emission tomography (PET). In the present study, PVELab, a freely available software, is evaluated for PVC in {sup 18}F-FDOPA brain-PET, with a special focus on the accuracy degradation introduced by various MR-based segmentation approaches. Methods Four PVC algorithms (M-PVC; MG-PVC; mMG-PVC; and R-PVC) were analyzed on simulated {sup 18}F-FDOPA brain-PET images. MR image segmentation was carried out using FSL (FMRIB Software Library) and SPM (Statistical Parametric Mapping) packages, including additional adaptation for subcortical regions (SPM{sub L}). Different PVC and segmentation combinations were compared with respect to deviations in regional activity values and time-activity curves (TACs) of the occipital cortex (OCC), caudate nucleus (CN), and putamen (PUT). Additionally, the PVC impact on the determination of the influx constant (K{sub i}) was assessed. Results Main differences between tissue-maps returned by three segmentation algorithms were found in the subcortical region, especially at PUT. Average misclassification errors in combination with volume reduction was found to be lowest for SPM{sub L} (PUT < 30%) and highest for FSL (PUT > 70%). Accurate recovery of activity data at OCC is achieved by M-PVC (apparent recovery coefficient varies between 0.99 and 1.10). The other three evaluated PVC algorithms have demonstrated to be more suitable for subcortical regions with MG-PVC and mMG-PVC being less prone to the largest tissue misclassification error simulated in this study. Except for M-PVC, quantification accuracy of K{sub i} for CN and PUT was clearly improved by PVC. Conclusions The regional activity value of PUT was appreciably overcorrected by most of the PVC approaches employing FSL or SPM segmentation, revealing the importance of accurate MR image segmentation for the presented PVC framework. The selection of a PVC approach should be adapted to the anatomical

  15. Membrane morphological study nanostructured based hydrophobic/hydrophilic applied in devices of PEMFC

    International Nuclear Information System (INIS)

    Loureiro, Felipe Augusto M.; Dahmouche, K; Rocco, Ana Maria

    2015-01-01

    The increasingly high energy demand generated by the increase of world population and consumption of fuels based on non-renewable sources has stimulated, in recent decades, the development of alternatives with less environmental impact and are based on renewable sources. Among these, the fuel cells (FC) have extremely promising possibilities. For the development of FC with market viability, it is necessary to obtain materials with optimized properties, among which the proton conducting membranes. In this work, we developed semi-interpenetrating polymer membranes (SIPN) based on diglycidyl ether of bisphenol-A (DGEBA) and polyethyleneimine (PEI), aiming their application in PEMFC. The membranes nanostructure was studied by AFM and SAXS means and it was identified ordinate hydrophobic/hydrophilic nano domains, which have determined the membrane properties, specially the proton conductivity. (author)

  16. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  17. Fabrication of miniaturised Si-based electrocatalytic membranes

    International Nuclear Information System (INIS)

    D'Arrigo, G.; Spinella, C.; Arena, G.; Lorenti, S.

    2003-01-01

    The increasing interest for light and movable electronic systems, cell phones and small digital devices, drives the technological research toward integrated regenerating power sources with small dimensions and great autonomy. Conventional batteries are already unable to deliver power in more and more shrunk volumes maintaining the requirements of long duration and light weight. A possible solution to overcome these limits is the use of miniaturised fuel cell. The fuel cell offers a greater gravimetric energy density compared to conventional batteries. The micromachining technology of silicon is an important tool to reduce the fuel cell structure to micrometer sizes. The use of silicon also gives the opportunity to integrate the power source and the electronic circuits controlling the fuel cell on the same structure. This paper reports preliminary results concerning the micromachining procedure for fabricating a Si-based electrocatalytic membrane for miniaturised Si-based proton exchange membrane fuel cells (PEMFC)

  18. Lignin-based membranes for electrolyte transference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Benavente, Juana [Department of Applied Fisics, Faculty of Science, University of Malaga, Malaga (Spain)

    2005-08-18

    Homogeneous PSf-LS membranes are formed by incorporating Lignosulfonate (LS) into the Polysulfone (PSf) network. LS obtained from sulfite pulping process contains sulfonic acid groups that will act as proton transport media. PSf-LS membranes were characterized by reflectance Infrared and scanning electron microscopy. LS showed significant influence on membrane morphology. Higher LS concentration caused a decrease in macrovoid formation and induced larger pores. Precipitation temperature was investigated as influencing parameter. Proton fluxes through PSf-LS membranes were measured by transport experiments. Impedance analysis confirmed that PSf-LS membranes possess ion conductivity. The selected PSf-LS membranes exhibited high selectivity for proton over methanol, which indicates their potential applicability in direct methanol fuel cell (DMFC). (author)

  19. PVC-Membrane Potentiometric Electrochemical Sensor Based on 2-(4-Oxopentan-2-ylideneaminoisoindoline-1,3-dione for Selective Determination of Holmium(III

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2011-01-01

    Full Text Available 2-(4-Oxopentan-2-ylideneamino isoindoline-1,3-dione (OID was found to be a suitable neutral ionophore in the fabrication of a highly selective Ho3+ membrane sensor. The electrode has a near-Nernstian slope of 19.6±0.5 mV per decade with a wide concentration range between 1.0×10-6 and 1.0×10-2 mol/L in the pH range of 3.5–8.8, having a fast response time (∼5 s and a detection limit of 5.8×10-7 mol/L. This electrode presented very good selectivity and sensitivity towards the Ho3+ ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The practical utility of the electrode has been demonstrated by its use as an indicator electrode for the potentiometric titration of a Ho3+ solution with EDTA and for the determination of Ho3+ ions concentration in mixtures of two and three different ions.

  20. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yongzhu Fu

    2012-10-01

    Full Text Available Fuel cells hold great promise for wide applications in portable, residential, and large-scale power supplies. For low temperature fuel cells, such as the proton exchange membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs, proton-exchange membranes (PEMs are a key component determining the fuel cells performance. PEMs with high proton conductivity under anhydrous conditions can allow PEMFCs to be operated above 100 °C, enabling use of hydrogen fuels with high-CO contents and improving the electrocatalytic activity. PEMs with high proton conductivity and low methanol crossover are critical for lowering catalyst loadings at the cathode and improving the performance and long-term stability of DMFCs. This review provides a summary of a number of novel acid-base blend membranes consisting of an acidic polymer and a basic compound containing N-heterocycle groups, which are promising for PEMFCs and DMFCs.

  1. Metalophthalocyanine complexes as ion-carriers in membrane-selective electrodes for detection of thiosalicylic acid

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Souri, Ali

    2004-01-01

    The potentiometric response properties of several PVC-based membrane electrodes using phthalocyanine complexes of aluminum (AlPc), nickel (NiPc) and copper (CuPc) as anion carriers, toward thiosalicylic acid (TSA) were investigated. The influences of lipophilic ionic additives (cationic and anionic) and the pH of the buffered solutions were used for the interpretation of the mechanism of the potentiometric response of sensors. The sensitivity, linear range, detection limit, and potentiometric selectivity of the membrane sensors show a considerable dependence on the nature of central metal of the ionophore. The membrane electrodes based on AlPc demonstrate sub-Nernstian responses toward TSA over the range of 0.01 to 1x10 -5 M. In the case of NiPc and CuPc as ionophores and in the presence of trioctylmethyl ammonium (TOMA + ) as a cationic additive, a Nernstian response could be established in a range of 4 orders of magnitudes of TSA concentration (0.01 to 1x10 -6 M). The results of potentiometric investigations revealed that from thermodynamic point of view, the axial coordination of thiosalicylate with the central metal of NiPc and CuPc is more efficient with respect to AlPc. This preference in response to TSA was discussed on the basis of the softness nature of NiPc and CuPc and more affinity for coordination with the thiolate group of thiosalicylate as a soft anion. These potentiometric sensors manifest prominent advantages of high selectivity for TSA over the various inorganic and organic anions, fast response times and micromolar detection limits and can be used over a wide pH range of 4.0-8.0. The prepared electrodes based on NiPc and CuPc were successfully applied in the potentiometric titration of sub-milimolar quantities of Hg 2+ in aqueous solutions and very good recovery results were obtained in these measurements. The results of complexometric studies between Hg 2+ and TSA using electrodes based on NiPc and CuPc as indicator electrodes were compared with

  2. Monitoring of praseodymium(III) ions in aqueous solutions, soil and sediment samples by a PVC membrane sensor based on a furan-triazole derivative

    Energy Technology Data Exchange (ETDEWEB)

    Pourjavid, Mohammad Reza [Islamic Azad University, Tehran (Iran, Islamic Republic of). Dept. of Medicinal Chemistry. Nuclear Science and Technology Research Institute; Rezaee, Mohammad; Hosseini, Majid Haji [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Razavi, Taherehsadat, E-mail: pourjavid@gmail.com [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of). Instrumental Analysis Dept.

    2012-07-01

    A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2 x 10{sup -8}M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples. (author)

  3. Study of the use of plasticizer from renewable sources in PVC compositions

    OpenAIRE

    Madaleno, Emerson; Rosa, Derval dos S.; Zawadzki, Sonia F.; Pedrozo, Tiago H.; Ramos, Luiz P.

    2009-01-01

    Polímeros sintéticos são largamente utilizados em diversos produtos devido às suas propriedades físicas, químicas e facilidade de transformação. O poli(cloreto de vinila), conhecido como PVC, é um dos polímeros mais versáteis desenvolvidos pelo homem, de grande utilidade para a sociedade moderna. Suas aplicações incluem: janelas, calhas de chuva, revestimentos de paredes, portas, papel de parede, mangueiras, brinquedos, calçados, bolsas de sangue e tubos para condução de água. Em todas estas ...

  4. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  5. Blendas PVC/NBR por processamento reativo II: caracterização físico-mecânica e morfológica PVC/NBR blends by reactive processing II: physical-mechanical and morphological characterization

    Directory of Open Access Journals (Sweden)

    Fábio R. Passador

    2008-06-01

    Full Text Available Vulcanização dinâmica é o processo de vulcanização de um elastômero durante a mistura no estado fundido com um termoplástico. Por este processo, o elastômero adquire resistência mecânica através do aumento do módulo de elasticidade, dureza, resistência à fadiga e abrasão. Neste trabalho, buscou-se avaliar as propriedades físico-mecânicas e as características morfológicas de blendas poliméricas constituídas de Poli(cloreto de Vinila e borracha nitrílica, PVC/NBR, obtidas por processamento reativo. A vulcanização dinâmica melhorou o desempenho mecânico destas blendas, notadamente pelo aumento da rigidez desses sistemas, sendo obtido um aumento de 205% no módulo elástico de blendas vulcanizadas com 10% em massa de NBR em comparação com blendas convencionais. Através de análises de MEV, revelou-se uma morfologia bifásica, sendo que a formação de ligações cruzadas deve ocorrer preferencialmente no interior das partículas do elastômero, contribuindo para o aumento na resistência mecânica final das blendas obtidas por processamento reativo.Dynamic vulcanization is a process of vulcanization of an elastomer during melt mixing with a thermoplastic. This process increases the mechanical resistance of elastomers through the increase of elastic modulus, hardness and abrasion/fatigue resistance. In this study, it was evaluated the physical-mechanical and morphological behaviors of the PVC/NBR blends obtained by reactive processing. The dynamic vulcanized blends have a better performance compared to the similar conventional ones. It was observed an increase of 205% in the elastic modulus to the dynamic vulcanized blend PVC/NBR (90/10 compared with the conventional blends. The morphology of the blends examined by scanning electron microscopy evidenced the crosslinking formation only in the elastomeric phase. The vulcanized rubber particles are responsible by the increase of stiffness and consequently displayed better

  6. PVC cling film in contact with cheese: health aspects related to global migration and specific migration of DEHA

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Naamansen, Ebbe Tubæk; Nielsen, Preben Aagård

    1995-01-01

    experiment samples of cheese of the types most commonly consumed in Denmark were wrapped in this 'low migration' PVC film using a procedure simulating the actual pattern of use in retail shops. After a storage time of 2 h at 5 degrees C the level of DEHA was 45 mg/kg of cheese, which after 10 days increased...... of DEHA close to or above the tolerable daily intake of 0.3 mg/kg body weight as defined by the EEC Scientific Committee for Food. Furthermore, it is stressed that measurements of global migration followed by uncritical use of reduction factors may result in erroneous evaluation of the suitability of DEHA-plasticized......Following exposure to the food simulant olive oil for 10 days at 5, 20 or 40 degrees C a global migration ranging from 20 to 30 mg/dm(2) was detected from a common 'low migration' PVC film plasticized with a mixture of di-(ethylhexyl)adipate (DEHA) and a polymeric plasticizer. In a laboratory...

  7. An Umeclidinium membrane sensor; Two-step optimization strategy for improved responses.

    Science.gov (United States)

    Yehia, Ali M; Monir, Hany H

    2017-09-01

    In the scientific context of membrane sensors and improved experimentation, we devised an experimentally designed protocol for sensor optimization. Two-step strategy was implemented for Umeclidinium bromide (UMEC) analysis which is a novel quinuclidine-based muscarinic antagonist used for maintenance treatment of symptoms accompanied with chronic obstructive pulmonary disease. In the first place, membrane components were screened for ideal ion exchanger, ionophore and plasticizer using three categorical factors at three levels in Taguchi design. Secondly, experimentally designed optimization was followed in order to tune the sensor up for finest responses. Twelve experiments were randomly carried out in a continuous factor design. Nernstian response, detection limit and selectivity were assigned as responses in these designs. The optimized membrane sensor contained tetrakis-[3,5-bis(trifluoro- methyl)phenyl] borate (0.44wt%) and calix[6]arene (0.43wt%) in 50.00% PVC plasticized with 49.13wt% 2-ni-tro-phenyl octylether. This sensor, along with an optimum concentration of inner filling solution (2×10 -4 molL -1 UMEC) and 2h of soaking time, attained the design objectives. Nernstian response approached 59.7mV/decade and detection limit decreased by about two order of magnitude (8×10 -8 mol L -1 ) through this optimization protocol. The proposed sensor was validated for UMEC determination in its linear range (3.16×10 -7 -1×10 -3 mol L -1 ) and challenged for selective discrimination of other congeners and inorganic cations. Results of INCRUSE ELLIPTA ® inhalation powder analyses obtained from the proposed sensor and manufacturer's UPLC were statistically compared. Moreover the proposed sensor was successfully used for the determination of UMEC in plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  9. Influence of potassium fluoride on the syntheses of methylpiperazine-modified poly(vinyl chloride)s for use as fixed-site proton carrier membranes.

    Science.gov (United States)

    Roudman, A R; Kusy, R P

    1998-03-15

    Aminated poly(vinyl chloride) (PVC) membranes were prepared that had a Nernstian response over a wide range of pH. The reaction between PVC and methyl-piperazine (MePIP) in dimethylformamide (DMF) was studied over a wide range of time and temperature, and in the presence of the catalyst, potassium fluoride (KF). Time, temperature, and KF increased the nitrogen (N) content of the resulting polymers, but sometimes at the expense of decreasing their specific viscosities (molecular weights). Activation energies of processes that occurred in different temperature ranges were estimated assuming an Arrhenius relationship. A Nernstian response occurred once the N content approached to about 0.3 w/w %, and was accelerated by the presence of KF at elevated temperatures. Increasing the N content above about 3% led to a loss of the Nernstian response either because of an increase in the double bond content and a subsequent decrease in polymer mobility, or because of a decrease in the molecular weight of the copolymer and concomitant difficulties in film preparation.

  10. Investigation of the primary plasticisers present in polyvinyl chloride (PVC) products currently authorised as food contact materials.

    Science.gov (United States)

    Carlos, Katherine S; de Jager, Lowri S; Begley, Timothy H

    2018-03-15

    PVC is a common food contact material that is usually plasticised to increase its flexibility. Phthalates are one class of chemical compounds that are often used as plasticisers in PVC in a wide range of industries. They may be used in packaging materials for foods and can also be found in components of certain food processing equipment such as conveyor belts and tubing. Transfer of plasticisers from packaging to foods can occur. In recent years, there has been increased interest in understanding the health effects of phthalates, as well as the possible human exposure levels. However, there is limited information available about the routes of exposure to phthalates. In July 2014, the Chronic Hazard Advisory Panel (CHAP) produced a report for the U.S. Consumer Product Safety Commission detailing the potential health hazards of phthalates and phthalate alternatives. This report listed diet as one factor contributing greater than or equal to 10% of total phthalate exposure. As a result of this report, the U.S. Food and Drug Administration (FDA) is interested in determining the types of the primary plasticiser present in food packaging and processing materials as well as their concentrations. An investigation was conducted of 56 different samples of PVC food packaging and food processing materials available in the US market using a solvent extraction and GC-MS analysis. Nine different plasticisers including three phthalates, di(2-ethylhexyl) phthalate, diisononyl phthalate and diisodecyl phthalate, were identified in the products tested. The plasticiser concentrations ranged from 1 to 53% depending on the types of food contact materials and the type of plasticiser. Overall, it appears that manufacturers are switching away from phthalates as their primary plasticiser to alternate compounds such as ESBO, ATBC, DEHT, DINCH, DEHA and DINA.

  11. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    Science.gov (United States)

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  12. Extraction or adsorption? Voltammetric assessment of protamine transfer at ionophore-based polymeric membranes.

    Science.gov (United States)

    Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru

    2015-01-01

    Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.

  13. Preparation of a new gamma irradiated PVC-Olive oil cake plastic composite material

    International Nuclear Information System (INIS)

    Messaud, F.A.; Almsmary, Y.A.; Elwerfalli, S.M.; Benayad, S.M.; Haraga, S.O.; Benfaid, N.A.; Kabar, Y.M.

    2003-01-01

    This paper dealt with the investigation on preparing new plastic composite material, utilizing polyvinyl chloride polymer (a commercial product in abu-kammash chemical complex) and olive oil cake (a waste of many olive oil production factories), followed by gamma irradiation (26.3 Kg ry) o induce crosslinking of the polymer. The new material possess good, electrical and mechanical properties as compared to plastic products of (PVC plastic pipe factory), and which could be used as new construction anti corrosive material, such as special roofing and partitioning or household goods

  14. Understanding and coming through PVC-tape-induced stress corrosion cracking in PWR piping system

    International Nuclear Information System (INIS)

    Shibayama, Motoaki; Shigemoto, Naoya; Noguchi, Shinji; Hirano, Shin-ichi; Takagi, Toshimitsu

    2003-01-01

    In October 2000, the 24 years old Ikata-1 PWR-type nuclear power plant suffered cracking in pipes of special two lines, where poly vinyl chloride (PVC) tape had been placed and had become baked over time. The existence of residual stress over 100 MPa in the pipes, a bit of chlorine and a feather like-pattern on the crack faces suggested the event was one of stress corrosion cracking. Residual chlorine on the pipes of special two lines was estimated to be 1100 mg/m 2 . A four points bending stress test was performed on the steel plates with the baked on PVC tape in humid air at 80degC. Taking the actual temperature, stress and chlorine on the pipes of the special two lines into consideration, cracking times were estimated to be 12 years and 15 years respectively, which were close to the actual cracking time of 24 years. The authors calculated damage to pipes with fluids of various temperature and duration, and graphed damage contour with a fluid temperature ordinate and a flow duration abscissa. The fluid conditions of major pipes at the Ikata-1 nuclear power plant, which had not received the full inspection, were positioned on so low area on the damage contour that the plant was estimated to be safe for the coming forty years. (author)

  15. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.

    Science.gov (United States)

    Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir

    2003-04-01

    High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.

  16. Study on emission of decomposed chemicals of esters contained in PVC flooring and adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Chino, Satoko; Ataka, Yuji [R and D Center, Yoshino Gypsum Co., Ltd., 2-1-1 Kohoku, Adachi-ku, Tokyo, 123-0872 (Japan); Kato, Shinsuke; Seo, Janghoo [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2009-07-15

    2-Ethyl-1-hexanol (2E1H) is sometimes detected in indoor air at relatively high concentrations. The emission mechanism for 2E1H is considered to be that moisture with a high pH in concrete slabs and self-leveling sub-flooring material reacts with di-2-ethylhexyl phthalate (DEHP) in the polyvinyl chloride (PVC) flooring and compounds containing the 2-ethyl-1-hexyl group in the adhesive. 2E1H is considered to be one of the causes of odor in indoor air and sick building syndrome, so it is important to clarify the 2E1H emission mechanism for IAQ. However, there are few reports on any experimentation into 2E1H emission by chemical reaction involving building materials. In this study, PVC floorings are attached using various adhesives to a self-leveling sub-flooring material that contains water, and their 2E1H emission rates are measured. Furthermore, the components of the adhesives are determined using chemical analysis. It is found that 2E1H emission rates from the floor are affected by the type of adhesive used. On the other hand, some components in the adhesives may suppress the hydrolysis of esters. The hydrolysis of polymers and residual monomers in the adhesive causes 2E1H emission from the adhesive. (author)

  17. Comparative study on the migration of di-2-ethylhexyl phthalate (DEHP) and tri-2-ethylhexyl trimellitate (TOTM) into blood from PVC tubing material of a heart-lung machine.

    Science.gov (United States)

    Eckert, Elisabeth; Münch, Frank; Göen, Thomas; Purbojo, Ariawan; Müller, Johannes; Cesnjevar, Robert

    2016-02-01

    Medical devices like blood tubing often consist of PVC material that requires the addition of plasticizers. These plasticizers may migrate into the blood leading to an exposure of the patients. In this study the migration behavior of three different blood tubing sets (PVC material with two different plasticizers and silicone as control material) applied on a heart-lung machine standardly used for cardiopulmonary bypass (CPB) in children was studied. We analyzed the total plasticizer migration by analysis of both, the parent compounds as well as their primary degradation products in blood. Additionally, the total mass loss of the tubing over perfusion time was examined. The PVC tubing plasticized with DEHP (di-2-ethylhexyl phthalate) was found to have the highest mass loss over time and showed a high plasticizer migration rate. In comparison, the migration of TOTM (tri-2-ethylhexyl trimellitate) and its primary degradation products was found to be distinctly lower (by a factor of approx. 350). Moreover, it was observed that the storage time of the tubing affects the plasticizer migration rates. In conclusion, the DEHP substitute TOTM promises to be an effective alternative plasticizer for PVC medical devices particularly regarding the decreased migration rate during medical procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    OpenAIRE

    Kanchapogu Suresh; G. Pugazhenthi

    2017-01-01

    The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived fro...

  19. Model decontamination of PVC flooring specimens by wet method

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.; Bar, J.

    1981-01-01

    PVC flooring samples of 29 mm in diameter were used in experiments. The samples were degreased. Tested were the dependence of the degree of contamination on the duration of contact with the contaminant and the efficacy of decontamination by wiping with tampons and immersing in solutions. A mixture of fission products of 80 kBq/ml in specific activity was used for contamination. Higher decontamination efficacy was achieved by immersing the samples in decontamination solutions. Water was found to be the least efficacious medium; a high degree was only attained in the case when decontamination was effected within 1 minute after contamination. The highest decontamination values were achieved using solutions containing a chelating agent and a surfactant. The most efficacious solutions contained 0.5% of citric acid and 0.5% of detergents which are very potent at a concentration as low as 2 g/l. (J.P.)

  20. The overall heat transfer of greenhouses covered with PE [polyethylene film] and PVC [polyvinyl chloride film] single layer: The heat insulation efficiency of greenhouses and their covering materials (1)

    International Nuclear Information System (INIS)

    Minagawa, H.; Tachibana, K.

    1982-01-01

    Overall heat transfer of polyethylene film (PE) and polyvinyl chloride film (PVC) were measured in the experimental greenhouses with hot-air heaters on the clear and on the cloudy nights during the period Nov. 1979 to Jan. 1980. Both films are 0.1 mm thick and have different physical properties for long-wave radiation. The heat insulation efficiency of the greenhouses covered with PE and PVC single layer was investigated, and the ratio of floor area to covering area for the experimental greenhouses, which is one of the indices for the heat insulation efficiency of greenhouses, was also taken into consideration. The results are as follows: 1. Using the ratio of the overall heat transfer and the overall heat transfer coefficients for the heat insulation efficiency, the PE-house revealed to be less efficient than the PVC-house. This can be due to PE being more transparent to long-wave radiation than PVC. The advantage in the PVC-house, however, decreased with the increasing of the inside-outside air temperature difference (Figs. 3 and 5). 2. The overall heat transfer coefficients of both greenhouses depended on the inside-outside temperature difference. As the temperature difference increased, the overall heat transfer coefficients decreased (Fig. 5). 3. The overall heat transfer coefficients of both greenhouses were smaller on the cloudy nights than that on the clear nights. When the condensation occurred at the interior film surface, the heat insulation efficiency of both greenhouses was increased, resulting in the decrease of the coefficient. The efficiency of the PE-house was more affected than the PVC-house when the condensation occurred (Figs. 6 and 7). 4. When the inside-outside air temperature difference was small, convective heat transferred from the outside air to the outside cover surface. With an increase in the inside-outside air temperature difference, convective heat flow occurred from the outside cover surface to the outside air. This phenomenon was

  1. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  2. Equilibrium Relationship between SVOCs in PVC Products and the Air in Contact with the Product.

    Science.gov (United States)

    Eichler, Clara M A; Wu, Yaoxing; Cao, Jianping; Shi, Shanshan; Little, John C

    2018-03-06

    Phthalates and phthalate alternatives are semivolatile organic compounds (SVOCs) present in many PVC products as plasticizers to enhance product performance. Knowledge of the mass-transfer parameters, including the equilibrium concentration in the air in contact with the product surface ( y 0 ), will greatly improve the ability to estimate the emission rate of SVOCs from these products and to assess human exposure. The objective of this study was to measure y 0 for different PVC products and to evaluate its relationship with the material-phase concentrations ( C 0 ). Also, C 0 and y 0 data from other sources were included, resulting in a substantially larger data set ( N total = 34, T = 25 °C) than found in previous studies. The results show that the material/gas equilibrium relationship does not follow Raoult's law and that therefore the assumption of an ideal solution is invalid. Instead, Henry's law applies, and the Henry's law constant for all target SVOCs consists of the respective pure liquid vapor pressure and an activity coefficient γ, which accounts for the nonideal nature of the solution. For individual SVOCs, a simple partitioning relationship exists, but Henry's law is more generally applicable and will be of greater value in rapid exposure assessment procedures.

  3. Detection of active noise control on the standard motorcycle exhaust Supra X 125 D using PVC pipe technique form Y

    Science.gov (United States)

    Isranuri, I.; Alfisyahrin; Nasution, A. R.

    2018-02-01

    This detection aims to obtain noise reduction on the supra X 125D motorcycle exhaust by using the Active Noise Control Method. The technique is done using a Y-shaped PVC pipe to be bolted on the exhaust, which then branch Y PVC is placed loudspeaker with impermeable conditions. The function of this loudspeaker is as a secondary noise to counter the primary noise of the sound of exhaust motorcycle Supra X 125D. The sound generator in this study is the ISD 4004 module, which serves to generate noise to counter the source noise. How this ISD 4004 module works is by recording source noise then recording the source noise and then reversed the phase 180° by phase reversing circuit. So that, the noise generated by the sound generator will hit the source noise and encounter or such as addition of two different phase of sound will result in noise reduction when detected at the end of the Y-shaped PVC pipe. Inverted phase reversed using feed-back resistor 1 kΩ and 2 kΩ input resistors, 16V capacitor 2500μf and as amplifier using ICL 7660 and TL 702 CP. Test results on the highest 1000 rpm rotation engine speed on the Z axis of 2 dB, and at the highest 2000 rpm rotation engine speed also occurs on the Z axis of 1.5 dB.

  4. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  5. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    Science.gov (United States)

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  6. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation.

    Science.gov (United States)

    Liu, Yupu; Shen, Dengke; Chen, Gang; Elzatahry, Ahmed A; Pal, Manas; Zhu, Hongwei; Wu, Longlong; Lin, Jianjian; Al-Dahyan, Daifallah; Li, Wei; Zhao, Dongyuan

    2017-09-01

    Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m 2 g -1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  8. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Bucs, Szilard; Fortunato, Luca; Hé lix-Nielsen, Claus; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Leiknes, TorOve; Amy, Gary

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  9. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  10. Blends of nitrile butadiene rubber/poly (vinyl chloride: The use of maleated anhydride castor oil based plasticizer

    Directory of Open Access Journals (Sweden)

    Indiah Ratna Dewi

    2016-06-01

    Full Text Available Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH to produce bioplasticizer named maleated anhydride castor oil (MACO, and used in nitrile butadiene rubber (NBR/poly vinyl chloride (PVC blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0 showed the highest cure rate index (CRI. MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1 based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.

  11. Ultrathin nanoporous membranes for insulator-based dielectrophoresis

    Science.gov (United States)

    Mukaibo, Hitomi; Wang, Tonghui; Perez-Gonzalez, Victor H.; Getpreecharsawas, Jirachai; Wurzer, Jack; Lapizco-Encinas, Blanca H.; McGrath, James L.

    2018-06-01

    Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force ({F}{{D}{{E}}{{P}}}) exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances {F}{{D}{{E}}{{P}}}. By numerically assessing the gradient of the electric field square ({{\

  12. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    Science.gov (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  13. Recast Nafion{sup R}-based membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, Penka; Friedrich, Kaspar A.; Stimming, Ulrich; Vogt, Brunhilde [Department of Physics, Technische Universitaet Muenchen, D-80333 Munich (Germany)

    2001-07-01

    Commercially available Nafion{sup R} membranes at present do not meet the requirements for direct methanol fuel cell (DMFC) applications, amongst others factors because of their high methanol permeability. With the aim of improving this undesirable characteristic, a modification procedure has been applied to recast Nafion-based membranes. Membranes, containing different additives, are assessed with regard to their conductivity and methanol permeation rate. The preparation of the samples involves the introduction of a small amount of a high boiling point solvent to the as-received Nafion solution and then shaping the membranes by a recasting procedure (drying at room temperature and heating up to 150{sup o}C). An enhancement of the conductivity of the thermally treated membranes in comparison to the commercial Nafion 117 is found. The thickness-normalised methanol permeation rate of the samples, containing inorganic additives (Aerosil and molybdophosphoric acid) decreases compared to the pure recast and as-received Nafion membranes. The observed results are discussed in terms of the membrane structure and preparation. (author)

  14. Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

    International Nuclear Information System (INIS)

    Wang, Zhining; Wang, Xida; Ding, Wande; Wang, Miaoqi; Gao, Congjie; Qi, Xin

    2015-01-01

    Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l −1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (R MO = 5/5) < DOPC/MO (R MO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes. (paper)

  15. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  16. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  18. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    Science.gov (United States)

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels

    International Nuclear Information System (INIS)

    Kim, Sang-Youn; Yeo, Myoung; Shin, Eun-Jae; Park, Won-Hyeong; Jang, Jong-Seok; Nam, Byeong-Uk; Bae, Jin Woo

    2015-01-01

    In this paper, we propose a variable focus microlens module based on a transparent, electroactive, and non-ionic PVC/DBA gel. A non-ionic PVC/DBA (nPVC) gel on an ITO glass was confined beneath a rigid annular electrode, and applied pressure squeezed a bulge of the nPVC gel into the annular electrode, resulting in a hemispherical plano-convex nPVC gel microlens. The proposed nPVC gel microlens was analyzed and optimized. When voltage is applied to the circular perimeter (the annular electrode) of this fabricated microlens, electrically induced creep deformation of the nPVC gel occurs, changing its optical focal length. The focal length remarkably increases from 3.8 mm up to 14.3 mm with increasing applied voltages from 300 V to 800 V. Due to its compact, transparent, and electroactive characteristics, the proposed nPVC gel microlens can be easily inserted into small consumer electronic devices, such as digital cameras, camcorders, cell phones, and other portable optical devices. (paper)

  20. Coated limestone as a filler for the production of PVC-products

    Directory of Open Access Journals (Sweden)

    Mihajlović Slavica

    2005-01-01

    Full Text Available The results of laboratory investigations of the possibility to obtain coated limestone for the production of PVC-products are presented in this paper. Limestone from the "Venčac" deposit (Aranđelovac, Serbia and Montenegro was used as the raw material. The investigations were carried out in two phases: obtaining the coated limestone and determination of the degree of coating. The results of the investigations showed that successful coating of the surface of the limestone particles with Ca-stearate (Ca-stearate content 3% was achieved in a vibro mill with rings and the obtained degree of coating was higher than 95%. The coating degree was determined in transmitted light by a polarization microscope applying the immersion method (water immersion.