WorldWideScience

Sample records for pva-modified kaolinite clay

  1. Fracture in Kaolinite clay suspensions

    Science.gov (United States)

    Kosgodagan Acharige, Sebastien; Jerolmack, Douglas J.; Arratia, Paulo E.

    2017-11-01

    Clay minerals are involved in many natural (landslides, river channels) and industrial processes (ceramics, cosmetics, oil recovery). They are plate shaped charged colloids and exhibit different flow properties than simpler colloids when suspended in a liquid such as thixotropy and shear-banding. kaolinite platelets are non-swelling, meaning that the stacks formed by the platelets do not have water layers, and thus the suspension does not have a sol-gel transition. However, it has been shown that kaolinite suspensions possesses a non-zero yield stress even at low concentrations, indicating that the particles arrange themselves in a structure through attractive interactions. Here, we experimentally investigate the sedimentation of kaolinite suspensions in a Hele-Shaw cell. The sedimentation of these dilute suspensions can display solid behavior like fracture, revealed in cross-polarized light, which is linked to the failure of the weakly-bonded structure (typical yield stress 10-2 Pa). By changing the interaction potential of the particles (by sonication or introducing salts), we show through these sedimentation experiments, how the fracture pattern can be avoided. Research was sponsored by the Army Research Laboratory and was accomplished under Grant Number 569074.

  2. Kaolinitic clay-based grouting demonstration

    International Nuclear Information System (INIS)

    McCloskey, A.L.; Barry, C.J.; Wilmoth, R.

    1997-01-01

    An innovative Kaolinitic Clay-Based Grouting Demonstration was performed under the Mine Waste Technology Program (MWTP), funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by the EPA and the U.S. Department of Energy (DOE). The objective of the technology was to demonstrate the effectiveness of kaolinitic clay-based grouting in reducing/eliminating infiltration of surface and shallow groundwater through fractured bedrock into underground mine workings. In 1993, the Mike Horse Mine was selected as a demonstration site for the field implementation and evaluation of the grouting technology. The mine portal discharge ranged between 114 to 454 liters per minute (30 to 120 gpm) of water containing iron, zinc, manganese, and cadmium at levels exceeding the National Drinking Water Maximum Contaminant Levels. The grout formulation was designed by the developer Morrison Knudsen Corporation/Spetstamponazhgeologia (MK/STG), in May 1994. Grout injection was performed by Hayward Baker, Inc. under the directive of MSE Technology Applications, Inc. (MSE-TA) during fall of 1994. The grout was injected into directionally-drilled grout holes to form a grout curtain at the project site. Post grout observations suggest the grout was successful in reducing the infiltration of the surface and shallow groundwater from entering the underground mine workings. The proceeding paper describes the demonstration and technology used to form the subsurface barrier in the fracture system

  3. Calcination of kaolinite clay particles for cement production

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2014-01-01

    Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO2 intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model...

  4. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

  5. {alpha}-Pinene conversion by modified-kaolinitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C. [CETMIC-Centro de Tecnologia de Recursos Minerales y Ceramica-(CONICET-CIC), C.C. 49, Cno. Centenario y 506 (1897) M.B. Gonnet, Prov., Buenos Aires (Argentina)]. E-mail: volzcris@netverk.com.ar; Masini, O. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Comelli, N.A. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Grzona, L.M. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Ponzi, E.N. [CINDECA (CONICET-UNLP) calle 47 No. 257 (1900) La Plata, Prov., Buenos Aires (Argentina); Ponzi, M.I. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina)

    2005-10-15

    The isomerization of {alpha}-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions.

  6. α-Pinene conversion by modified-kaolinitic clay

    International Nuclear Information System (INIS)

    Volzone, C.; Masini, O.; Comelli, N.A.; Grzona, L.M.; Ponzi, E.N.; Ponzi, M.I.

    2005-01-01

    The isomerization of α-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions

  7. Hydrometallurgical extraction of Al and Si from kaolinitic clays

    Directory of Open Access Journals (Sweden)

    Eliana G. Pinna

    Full Text Available Abstract Herein is presented the results of a study on the hydrometallurgic extraction and recovery of aluminum and silicon by leaching of kaolinitic clays with HF. The studied extraction parameters were: temperature, reaction time, solid/liquid ratio, concentration, and precipitating agent mass. In the leaching process, mineral dissolutions near 100% were obtained when working at 348 K, solid/liquid ratio 2% w/v, HF 12% v/v, for 120 minutes. The HF leach liquor generated from the dissolution of kaolinitic clays contains H2SiF6and H3AlF6. Studies were conducted to recover the two valuable fluorides as K2SiF6and Na3AlF6by precipitation with alkaline salts from the leach liquor. Phases of precipitated fluorides were identified by XRD and surface morphology by SEM. The purity of the K2SiF6precipitate was 98.8%, whereas for Na3AlF6, it was 89.3%. Also, both synthesized solids are of high commercial value due to their industrial applications.

  8. Intensified Pozzolanic Reaction on Kaolinite Clay-Based Mortar

    Directory of Open Access Journals (Sweden)

    Yang-Hee Kwon

    2017-05-01

    Full Text Available The objective of this study is to develop and characterize kaolinite clay-based structural mortar. The pozzolanic reaction induced from two mineral additives, i.e., calcium hydroxide and silica fume (SF, and the physical filling effect from SF, were found to be effective on the enhancement of structural properties. Based on several preliminary experiments, 7:3 ratio of kaolinite clay/calcium hydroxide was selected as a basic binder. Then, the amount of SF was chosen as 0%, 7.5%, and 15% of the total binder to consider both the chemical and physical effects. The results showed that compressive strengths of samples with 7.5% and 15% SF are significantly increased by approximately 200% and 350%, respectively, at 28 days compared to the sample without SF. However, based on the results of the sample with 15% SF, it is found that excessive addition of SF causes long-term strength loss, possibly owing to micro cracks. With the careful consideration on this long-term behavior, this suggested new mix design can be further extended to develop sustainable structural materials using natural minerals or waste materials with nonbinding properties.

  9. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  10. Characterization of Zeolite in Zeolite-Geopolymer Hybrid Bulk Materials Derived from Kaolinitic Clays

    Directory of Open Access Journals (Sweden)

    Hayami Takeda

    2013-05-01

    Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.

  11. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay

    International Nuclear Information System (INIS)

    Jiang Mingqin; Wang Qingping; Jin Xiaoying; Chen Zuliang

    2009-01-01

    Modified kaolinite clay with 25% (w/w) aluminium sulphate and unmodified kaolin were investigated as adsorbents to remove Pb(II) from aqueous solution. The results show that amount of Pb(II) adsorbed onto modified kaolin (20 mg/g) was more than 4.5-fold than that adsorbed onto unmodified kaolin (4.2 mg/g) under the optimized condition. In addition, the linear Langmuir and Freundlich models were used to describe equilibrium isotherm. It is observed that the data from both adsorbents fitted well to the Langmuir isotherm. The kinetic adsorption of modified and unmodified kaolinite clay fitted well to the pseudo-second-order model. Furthermore, both modified and unmodified kaolinite clay were characterized by X-ray diffraction, Fourier transform infrared (FT-IR) and scanning electron microscope (SEM). Finally, both modified and unmodified kaolinite clay were used to remove metal ions from real wastewater, and results show that higher amount of Pb(II) (the concentration reduced from 178 to 27.5 mg/L) and other metal ions were removed by modified kaolinite clay compared with using unmodified adsorbent (the concentration reduced from 178 to 168 mg/L).

  12. The Influence of Temperature on Kaolinite Fired Clay- Cement Materials Used as Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    El-Dakroury, A.

    2008-01-01

    The decay of encapsulated radioactive nuclides may cause elevation of the temperature in the waste form. Cement has been used for immobilization of low and intermediated level radioactive waste. The unstable component of concrete is the ordinary Portland cement (OPC). This study aimed to investigate experimentally the change occurring in the compressive strength and physico- chemical properties of ordinary Portland cement (OPC) matrices in comparable with other matrices which (OPC) were partially substituted by 0, 10, 20 and 30% of thermally-activated kaolinite clay by weight (the kaolinite clay activated by firing at 750 degree C for 5 hr then quenched by tap water). If all matrices mentioned before, are being exposed to the treatment temperature were varied from 100 degree C to 600 degree C by increment of 100 degree C for period of 3 hr without any load. The phase composition was performed by mean of differential thermal analysis and X-R-D. The results show that the replacements of (OPC) by 20 wt % thermal-activated Kaolinite clay improve the compressive properties by 30 %. The results of this investigation cleared that the recrystallization and carbonation of Ca(OH) 2 ; they also show a deformation of C-H-S and C 4 Ah 13 phases, besides the matrices have more stable resistance at 600 degree C. Meanwhile, this new immobilization matrix 20 % by wt thermally activated Kaolinite - clay showed the lowest leaching rate of simulated radioactive waste of Sr or Cs compared to the ordinary Portland cement (OPC) matrix

  13. Hybrid materials of kaolinite clay with polypyrrole and polyaniline.

    Science.gov (United States)

    Burridge, Kerstin A; Johnston, James H; Borrmann, Thomas

    2009-12-01

    Composites of the alumino silicate mineral kaolinite, with the conducting polymers polypyrrole and polyaniline have been successfully synthesised. In doing so hybrid materials have been produced in which the high surface area of the mineral is retained, whilst also incorporating the desired chemical and physical properties of the polymer. Scanning electron microscopy shows polypyrrole coatings to comprise of individual polymer spheres, approximately 10 to 15 nm in diameter. The average size of the polymer spheres of polyaniline was observed to be approximately 5 nm in diameter. These spheres fuse together in a continuous sheet to coat the kaolinite platelets in their entirety. The reduction of silver ions to metallic silver nanoparticles onto the redox active surface of the polymers has also been successful, and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterization of the hybrid materials has been undertaken through scanning electron microscopy, energy dispersive spectroscopy, electrical conductivity, cyclic voltammetry, X-ray diffraction, infra red spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and the testing of their anti-microbial activity.

  14. Vitrification and neomineralisation of bentonitic and kaolinitic clays ...

    African Journals Online (AJOL)

    ... metamorphic and/or igneous rocks. Resultant fired mineral phases depicted mineral compositions of ceramic bodies, and the study suggested that these clays could be gainfully utilized in the making of ceramic wares, subject to selected beneficiation processes. Keywords: kaolin, bentonite, vitrification, neomineralization, ...

  15. Flocculation and dispersion behaviour of two kaolinitic soil clays as ...

    African Journals Online (AJOL)

    This showed that crystalline Fe oxides were important in stabilizing the structure of the soils studied. The amorphous Fe oxides, however, did not play a stabilizing role. The clays whose crystalline Fe oxides, amorphous Fe oxides and organic matter were successively removed were the most flocculated and therefore had ...

  16. The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite)

    International Nuclear Information System (INIS)

    Pastorková, K.; Jesenák, K.; Kadlečíková, M.; Breza, J.; Kolmačka, M.; Čaplovičová, M.; Lazišťan, F.; Michalka, M.

    2012-01-01

    The suitability of clay minerals - kaolinite, nontronite and sepiolite - is studied for synthesis of nanocomposites based on carbon nanotubes. Particles of iron were used as catalysts. Prior to synthesis, kaolinite and sepiolite were doped by the catalytically active metal, whereas in the case of nontronite the presence was used of this metal in the matrix of this mineral. Synthesis of CNTs was performed by hot filament chemical vapor deposition method. The produced nanocomposites were examined by transmission and scanning electron microscopies and energy dispersive X-ray spectroscopy. The experiment verified the potential of the three microcrystalline phyllosilicates for the growth of carbon nanotubes. Under the same technology conditions, the type of catalyst carrier affects the morphology and structure of the nanotube product markedly.

  17. Analysis and characterization of kaolinitic clay Rio Grande do Norte for use in refractory

    International Nuclear Information System (INIS)

    Medeiros, A.L.; Souza Junior, C.F.; Silva, C.L. Mendes da

    2011-01-01

    This work aims to characterize clays from the State of Rio Grande do Norte for use in the manufacture of refractory bricks. Initially, we analyzed the X-ray fluorescence and X-ray diffraction on samples of clay to obtain the components of the starting materials and their microstructures. The test samples were fabricated by uniaxial pressure of 20 MPa, and then were sintered between 1000 ° C and 1200 ° C, with a landing sintering for 1 hour. Tests including thermal shrinkage, water absorption and apparent porosity. Initial results of the analysis indicate the presence of clay minerals kaolinite, montmorillonite and muscovite, as well group minerals of quartz, dolomite, calcite and calcium silicate in the samples tested. (author)

  18. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    Science.gov (United States)

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall.

  19. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    Science.gov (United States)

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Kinetics and Thermodynamics of Sorption of 4-Nitrophenol on Activated Kaolinitic Clay and Jatropha Curcas Activated Carbon from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Samsudeen Olanrewaju Azeez

    2016-06-01

    Full Text Available Adsorption behaviour of 4-nitrophenol (4-NP on activated kaolinitic clay and Jatropha curcas activated carbon was investigated. The kaolinitic clay and Jatropha curcas were activated with 1 M HNO3 and 0.5 M NaOH respectively and were characterized by XRF, XRD, BET, SEM and FTIR techniques. The effects of processing parameters, such as initial 4-NP concentration, temperature, pH, contact time and adsorbent dosage on the adsorption process were investigated. The results obtained showed that Jatropha curcas activated carbon exhibited higher performance than activated kaolinitic clay for the removal of 4-nitrophenol from aqueous solution. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models were used to describe the adsorption isotherms. The adsorption data were best fitted with Freundlich model. The experimental data of the two adsorbate-adsorbent systems fitted very well with the pseudo-second order kinetic model with r2 values of 0.999 respectively. Adsorption thermodynamic parameters were also estimated. The results revealed that the adsorption of 4-nitrophenol onto both adsorbents were exothermic processes and spontaneous for Jatropha curcas activated carbon but non spontaneous for activated kaolinitic clay.

  1. Kinetics and thermodynamics of sorption of 4-nitrophenol on activated kaolinitic clay and jatropha curcas activated carbon from aqueous solution

    International Nuclear Information System (INIS)

    Azeez, S.O.; Adekola, F.A.

    2016-01-01

    Adsorption behaviour of 4-nitrophenol (4-NP) on activated kaolinitic clay and Jatropha curcas activated carbon was investigated. The kaolinitic clay and Jatropha curcas were activated with 1 M HNO/sub 3/ and 0.5 M NaOH respectively and were characterized by XRF, XRD, BET, SEM and FTIR techniques. The effects of processing parameters, such as initial 4-NP concentration, temperature, pH, contact time and adsorbent dosage on the adsorption process were investigated. The results obtained showed that Jatropha curcas activated carbon exhibited higher performance than activated kaolinitic clay for the removal of 4-nitrophenol from aqueous solution. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models were used to describe the adsorption isotherms. The adsorption data were best fitted with Freundlich model. The experimental data of the two adsorbate-adsorbent systems fitted very well with the pseudosecond order kinetic model with r2 values of 0.999 respectively. Adsorption thermodynamic parameters were also estimated. The results revealed that the adsorption of 4-nitrophenol onto both adsorbents were exothermic processes and spontaneous for Jatropha curcas activated carbon but non spontaneous for activated kaolinitic clay. (author)

  2. Adsorption of some heavy metals on sulphate and phosphate modified kaolinite clay

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Unuabonah, I.E.; Olu-Owolabi, B.I.

    2003-12-01

    Kaolinite clay, in bright white lumps collected from from Ubulu-Ukwu, Delta State, Nigeria, was modified with 200μ.ml -1 of phosphate and sulphate anion and thereafter used to adsorb some heavy metals viz. lead (Pb), Cadmium (Cd), Zinc (Zn) and Copper (Cu) from aqueous solution of the metals. The metal ions showed the greatest affinity for the P-modified (P-mod) sorbents. The order of adsorption of P-mod follows the order: P-mod Pb > P-mod Cu > P-mod Zn > P-mod Cd . Desorption studies showed that the P-modified sorbents exhibited a very strong ability to specifically adsorb lead, copper and zinc and are therefore poorly desorbed. All the metals were easily desorbed from the unmodified sorbent. The potential of the modified sorbents are enumerated. (author)

  3. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type

    International Nuclear Information System (INIS)

    Davila R, J.I.; Solache R, M.

    2006-01-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  4. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay

    International Nuclear Information System (INIS)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-01-01

    The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 deg. C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics

  5. Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study.

    Science.gov (United States)

    Kang, Fuxing; Ge, Yangyang; Hu, Xiaojie; Goikavi, Caspar; Waigi, Michael Gatheru; Gao, Yanzheng; Ling, Wanting

    2016-12-15

    In current adsorption studies of biotoxins to phyllosilicate clays, multiply weak bonding types regarding these adsorptions are not well known; the major attractive forces, especially for kaolinite and illite, are difficult to be identified as compared to smectite with exchangeable cations. Here, we discriminated the bonding types of aflatoxin B1 (AFB1) contaminant to these clays by combined batch experiment with model computation, expounded their bonding mechanisms which have been not quantitatively described by researchers. The observed adsorbent-to-solution distribution coefficients (K d ) of AFB1 presented in increasing order of 18.5-37.1, 141.6-158.3, and 354.6-484.7L/kg for kaolinite, illite, and smectite, respectively. Normalization of adsorbent-specific surface areas showed that adsorption affinity of AFB1 is mainly dependent on the outside surfaces of clay aggregates. The model computation and test of ionic effect further suggested that weakly electrostatic attractions ((Si/Al-OH) 2 ⋯(OC) 2 ) are responsible for AFB1-kaolinite adsorption (K d , 18.5-37.1L/kg); a moderate electron-donor-acceptor attraction ((CO) 2 ⋯K + ⋯(O-Al) 3 ) is related to AFB1-illite adsorption (K d , 141.6-158.3L/kg); a strong calcium-bridging linkage ((CO) 2 ⋯Ca 2+ ⋯(O-Si) 4 ) is involved in AFB1-smectite adsorption (K d , 354.6-484.7L/kg). Changes in Gibbs free energy (ΔG°) suggested that the computed result is reliable, providing a good reproduction of AFB1-clay interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluation of mineral kaolinite present in portuguese clays for use in porcelain stoneware; Avaliacao do mineral caulinita presente em argilas portuguesas para uso em gres porcelanato

    Energy Technology Data Exchange (ETDEWEB)

    Luna da Silveira, G.C. [Instituto Federal do Rio Grande do Norte (IFRN), RN (Brazil); Acchar, W.; Gomes, U.U.; Luna da Silveira, R.V. [Universidade Federal do Rio Grnde do Norte (UFRN), RN (Brazil); Labrincha, A.; Miranda, C.M.P., E-mail: glebacoelli@hotmail.com [Universidade de Aveiro (Portugal)

    2016-07-01

    Kaolinite is a mineral from the kaolin, product resulting from transformation in depth of alumino silicate mineral type, such as feldspars, plagioclase and feldspars contained in the rocks. Clays are raw materials that have as main characteristic the plasticity property, which gives the product, after applying a certain pressure, a defined shape and an increase in the mechanical resistance when they become from green to dry and then to sintered. Given these characteristics, this paper analyzes the presence of the existing mineral kaolinite in two portuguese clays who are used in the preparation of formulations of porcelain stoneware tiles. The analyzes of the two clays were made by fluorescence x-ray diffraction of x-rays, thermal analysis, particle size and scanning electron microscopy, to better use of this mineral in the formulations. In both clays were found aluminum oxide, as well as mineral quartz, kaolinite and illite. (author)

  7. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2016-01-01

    Use of properly calcined kaolinite rich clay (i.e., metakaolin) to offset part of CO2-intensive clinkers not only reduces CO2 footprint from cement industry but also improves the performance of concrete. However, calcination under inappropriately high temperatures or long retention times may...... suspension calciner. The model is validated by the experimental data (e.g., the degree of dehydroxylation and the density of the calcines). Based on the model, the impacts of process conditions and feed properties on the quality of the calcination products are thoroughly examined....

  8. Effect of composition and physical properties of. natural kaolinitic clays on their strong acid weathering rates

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hostomský, Jiří

    2002-01-01

    Roč. 49, 1-2 (2002), s. 171-181 ISSN 0341-8162 R&D Projects: GA ČR GA203/98/P203 Institutional research plan: CEZ:AV0Z4032918 Keywords : kaolinite * illite * dissolution Subject RIV: CA - Inorganic Chemistry Impact factor: 1.035, year: 2002

  9. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  10. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  11. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ríos Reyes

    2013-04-01

    Full Text Available The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR and thermogravimetric analysis (TGA. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase occurring as a minor phase, compared with the presence of sodalite and cancrinite.

  12. Application of Brazilian kaolinite clay as adsorbent to removal of U(VI) from aqueous solution: Kinetic and thermodynamic of cation-basic interactions

    International Nuclear Information System (INIS)

    Guerra, Denis L.; Leidens, Victor L.; Viana, Rubia R.; Airoldi, Claudio

    2010-01-01

    The compound N 1 -[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of 29 Si and 13 C. The well-defined peaks obtained in the 13 C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k 2 values 16.0 and 25.1 mmol g -1 min -1 ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations. - Graphical abstract: This investigation reports the use of original and modified kaolinites as alternative absorbents. The compound N-[3-trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route.

  13. Sensors properties of an alkylamine-intercalated kaolinite material towards the voltammetric preconcentration of [Ru(CN)6]4- at a clay-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tonle, I.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation; Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Dschang Univ. (Cameroon). Dept. de Chimie; Bouwe, B.; Rose, G.; Ngameni, E. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Detellier, C. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences

    2008-07-01

    This study discussed the sensor properties of a kaolinite material in relation to the voltammetric preconcentration of ruthenium (Ru) anions in a clay-modified electrode. An organoclay was intercalated at room temperature with a layer of hexylamine. Dimethylsulfoxide (DMSO) was intercalated between the clay layers and displaced in wet conditions by the akylamine. The modified clay was then characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The analyses confirmed the incorporation of the hexylamine between the kaolinite platelets. The organokaolinite was then studied for use as a preconcentration agent when coated on the active surface of a glassy carbon electrode for the accumulation of [Ru(CN)6]4- anions in a hydrochloric acid medium. Factors that influenced the conductivity of the film and the diffusion of the electroactive species within the film included the concentration of the electrolyte, and the redox probe. The study showed that kaolinite can be used as a material in electrochemical sensors.

  14. Study and technological characterization of kaolinitic clays from the region of Parnaiba Basin

    International Nuclear Information System (INIS)

    Luz, J.C.; Paskocimas, C.A.; Silva, L.B.

    2011-01-01

    A major problem of the structural ceramics industry is that there is the practice of characterizing and controlling the raw materials, thus the materials used and products obtained are not known as to their physical-chemical and mechanical. Structural ceramic industries are still using 'home recipes' for mass preparation, since this activity is a cultural heritage. In this context, the main purpose of this study was to characterize four clays originating from Parnaiba Basin. In the evaluation tests were performed and used ceramic techniques of analysis by x-ray fluorescence (XRF), x-ray diffraction (XRD), dilatometric analysis (DA), thermal gravimetric analysis (TGA) and its derivative (DTG) sieve analysis (FA) and rational analysis (RA). The results showed that the raw materials studied are technically feasible and have great potential to be used in the formulation of clear-burning ceramic components, improving their qualities and properties. (author)

  15. Crystallization kinetic of clear burning kaolinitic clay; Cinetica de cristalizacao de argila caulinitica de queima clara

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Medeiros, J.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencias e Tecnologia. Dept. de Fisica, Quimica e Biologia

    2009-07-01

    It was studied the crystallization kinetics of one caulinitic clay of clear burning, from Teodoro Sampaio (SP) region. Differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF) had been used in the development of the work. Non-isothermal methods had been used for attainment of the kinetic data and in the determination of the crystallization mechanisms. The exothermic peak associate to the crystallization is located between 900 and 1000 deg C, varying in accordance with the heating rate of the sample. The activation energies were taken using the data of thermal analysis (DTA) and the methods of Kissinger (700 kJ/mol) and Ligero (721 kJ/mol). The Avrami constant n was calculated using Ligero and the m parameter was obtained using Matusita method and the n and E of Ligero. Both values (1.17) are close to 1, indicating growth in two dimensions with morphology of plates and nucleation of surface as dominant mechanism. (author)

  16. Mineralogical and crystallochemical transformations originated from thermal essays on ferruginous kaolinitic clays; Transformacoes mineralogicas e cristaloquimicas decorrentes dos ensaios termais em argilas cauliniticas ferruginosas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.M.; Varajao, A.F.D.C.; Morales-Carrera, A.M.; Peralta-Sanchez, M.G.; Costa, G.M. da, E-mail: angelica@degeo.ufop.br [Universidade Federal de Ouro Preto, Campus Universitario, Morro do Cruzeiro s/n, Ouro Preto, MG (Brazil)

    2012-01-15

    Mineralogical and crystallochemical transformations of representative ferruginous kaolinitic clay samples were investigated in specimens burned at 800, 1000 and 1200 deg C. X-ray diffraction and differential thermal and thermogravimetric analyses showed that kaolinite was the predominant mineral in the raw samples. The Moessbauer spectroscopy results showed that the high iron content (22.5 wt.%), as determined by X-ray fluorescence, is related to the presence of goethite (18 wt.%) and hematite (16 wt.%). However, after Fe was extracted using a dithionite-citrate system buffered with sodium bicarbonate, a residue of this element (Fe{sup 3+} and Fe{sup 2+}) was found in the structure of the kaolinite. The sintering process showed the destruction of kaolinite, as well as the transformation of the goethite into hematite, the crystals growing as the temperature increases. The hematite crystal size at 1200 deg C is five times larger than in the raw sample. The mullite formation at 1000 deg C is comprised of a solid solution of Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3},which results in a resistant product with a higher thermal stability (author)

  17. Application of Brazilian kaolinite clay as adsorbent to removal of U(VI) from aqueous solution: Kinetic and thermodynamic of cation-basic interactions

    Science.gov (United States)

    Guerra, Denis L.; Leidens, Victor L.; Viana, Rúbia R.; Airoldi, Claudio

    2010-05-01

    The compound N 1-[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of 29Si and 13C. The well-defined peaks obtained in the 13C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k2 values 16.0 and 25.1 mmol g -1 min -1 ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations.

  18. Heterogeneous reactions of dioctahedral smectites in illite-smectite and kaolinite-smectite mixed-layers: applications to clay materials for engineered barriers

    International Nuclear Information System (INIS)

    Meunier, A.; Proust, D.; Beaufort, D.; Lajudie, A.; Petit, J.-C.

    1992-01-01

    The clay materials selected for use in the engineered barriers of the French nuclear waste isolation programme are mainly composed of dioctahedral smectite, either bentonite of Wyoming type or kaolinite-smectites most often consist of randomly stacked layers with low and high charges. In the case of the Wyoming-type bentonite, these two differently charged layers do not react in the same way when subjected to hydrothermal alteration. Overall, the low-charge smectite layers react to form high-charge smectite layers + quartz + kaolinite. Then, fixing K ions, the high-charge smectite layers are transformed into illite-smectite mixed-layers (I/S) when the temperature conditions increase. A symmetrical process is observed in natural or experimental hydrothermal conditions when the high-charge smectite layers of I/S minerals react with quartz and/or kaolinite to produce low-charge smectite layers. The chemical properties of the bentonite-engineered barriers clearly depend on the low charge/high charge smectite layer proportion, which is in turn controlled by the temperature-dependent reactions in the vicinity of the waste disposal. Although there are fewer published data on the kaolinite-smectite mixed-layered minerals (K/S), a similar low charge-high charge reaction appears to affect their smectite component. The experimental alteration of K/S leads to the formation of a low-charge beidellite with an increase in the cation-exchange capacity and in the expandability of the clay material. Thus, the properties of the engineered barrier seems to be improved after hydrothermal alteration. (Author)

  19. Kaolinite Mobilisation in Sandstone

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Kets, Frans

    2013-01-01

    suggest that this effect is due to kaolinite clay mobilisation from the quartz grain surface; the mobilised particles subsequently plug the pore throats and reduce the permeability irreversibly. The expected hysteresis is observed when the salinity is reduced and increased; however, in contradiction...... the mobilised kaolinite particles either remain suspended and thereby increase the fluid viscosity, or form porous aggregates that can be destabilized by hydrodynamic forces. To address how the pore scale distribution of kaolinite relates to the permeability of the entire sample, we relate permeability...

  20. Characterization of bentonite, fibrous and kaolinite clays with regard to their use in pelotherapy; Caracterizacion de bentonitas, arcillas fibrosas y arcillas caoliniferas para su empleo en peloterapia

    Energy Technology Data Exchange (ETDEWEB)

    Pozo Martin, E.; Martin Rubi, J. A.; Pozo Rodriguez, M.

    2011-07-01

    We have characterized the mineralogical and chemical contents of several Spanish special clays (bentonite, fibrous clays and kaolin). Mineralogical analyses revealed that the samples were composed mainly of phyllosilicates (78 %-99 %) with a notable presence of dioctahedral and trioctahedral smectites in the bentonite, kaolinite in the kaolin and sepiolite or palygorskite in the fibrous clays. Illite was the common subordinate mineral in the bentonite, kaolin and palygorskite. Quartz, calcite, dolomite and feldspars were found as associate minerals with the occasional presence of zeolites and amphiboles. The chemical analysis was consistent with the mineralogy. With regard to trace elements (V, Cr, Ni, Co, Cu, Zn, As, Mo, Ba, Sb, Pb, U), the whole samples of the magnesium bentonite and sepiolite were found to have the lowest trace-element contents (<257,28 ppm ), whilst the aluminium bentonite, kaolin and particularly the palygorskite had higher contents than the other clays, with some elements occasionally exceeding the contents of previously studied common clays. Nevertheless, all the trace elements were found in lower quantities than the recommended toxicity levels and those quantities currently used in pelotherapy in Spanish spas. (Author)

  1. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  2. CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich Clay Particles - An Effort towards Green Concrete

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay

    Cement industry is one of the major industrial emitters of greenhouse gases, generating 5-7% of the total anthropogenic CO2 emissions. Consequently, use of supplementary cementitious materials (SCM) to replace part of the CO2-intensive cement clinker is an attractive way to mitigate CO2 emissions...... from cement industry. SCMs based on industrial byproducts like fly ashes and slags are subject to availability problems. Yet clays are the most ubiquitous material on earth's crust. Thus, properly calcined clays are a very promising candidate for SCMs to produce green cements. Calcination...... property of the calcined clay material, among which is the density of calcines. By using the variation in density of calcines, an optimum residence time has been marked. At this time the calcines display a minimum density that corresponds to the most dehydroxylated calcines. The behavior of flash calcined...

  3. Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2015-01-01

    gas suspension calciner, with the aim to derive useful guidelines on smart calcination for obtaining products of the best pozzolanic properties. Calcination tests are performed in the calciner under six different operation conditions. The raw feed and the calcined clay samples are all characterized...

  4. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type; Sorcion de cobalto en zeolitas y arcillas naturales del tipo clinoptilolita y caolinita

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, J.I.; Solache R, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  5. Characterization of exfoliated/delamination kaolinite

    International Nuclear Information System (INIS)

    Sun, Dewen; Li, Bin; Li, Yanfeng; Yu, Cui; Zhang, Bo; Fei, Huafeng

    2011-01-01

    A novel and facile approach for the preparation of exfoliated/delamination kaolinite was reported in this study. Kaolinite was mechanochemically activated by grinding with dimethylsulfoxide in a globe mill for different periods of time, and then the activated samples were treated for several hours at 120 o C to obtain the precursors of kaolinite. The resulting materials were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The experimental data indicated that the clay layers were well exfoliated/delamination under mechanochemical effect in a significantly short intercalation time. The expansion of the basal spacing (d 001 ) of raw kaolinite by 0.40 nm pointed out that the hydrogen bonds between adjacent kaolinite layers were partially broken as a result of the intercalation with dimethylsulfoxide.

  6. Discoloration of fired kaolinitic clays (Study of Fe+3 coordination by Mössbauer and UV-ViS-NIR spectroscopy)

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Nižňanský, D.; Dědeček, Jiří; Steinerová, Michaela; Straka, Pavel; Třísková, J.

    2007-01-01

    Roč. 90, č. 9 (2007), s. 2843-2848 ISSN 0002-7820 R&D Projects: GA AV ČR IAA300460702 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z40400503 Keywords : kaolin * clay * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 1.792, year: 2007 www.blackwell- synergy .com

  7. Characterisation of kaolinite and adsorption of europium on kaolinite

    International Nuclear Information System (INIS)

    Olin, M.; Puhakka, E.; Lehikoinen, J.; Puukko, E.; Hakanen, M.; Lindberg, A.

    2007-10-01

    Kaolinite is a common fracture mineral in many crystalline rocks and, thus, a potential sorbent for groundwater solutes. The low cation-exchange capacity makes kaolinite a good mineral to study sorption by inner-sphere complexation of multivalent ions, such as trivalent actinides or their analogues, the trivalent lanthanides. The sorption of europium and americium on kaolinite has been studied previously by Puukko and Hakanen using a natural kaolinite, KGa-1b (from the Clay Minerals Society, USA). This work describes the determination of surface-charging mechanism and surface acidity constants for KGa-1b kaolinite, and adsorption of Eu(III) on both the natural (KGa-1b) and its acid-conditioned form (HKGa). The ionic strength of the background NaNO 3 electrolyte used in these titrations was 0.05 M, 0.1 M and 0.5 M. The surface acidity of kaolinite was explained using the FITEQL software by applying the 1-pK model. The optimized concentration of surface sites was close to a value previously reported for KGa-1b kaolinite. The adsorption modelling of europium was carried out by adopting one surfacecomplexation and one cation-exchange reaction. In the acidic pH range, sorption of europium decreased with increasing ionic strength of the NaNO 3 solution, which is an indication of the dominance of cation exchange or outer-sphere complexation. At the lowest ionic strength, the sorption was reversible. In the 0.1 M and 0.5 M NaNO 3 solutions, the sorption of europium in the basic pH range was only partly reversible, or desorption kinetically slow. The degree of irreversibility increased with increasing pH and ionic strength. A diffuse-layer model was readily fitted on the per-cents sorbed scale (default in FITEQL), but the results were not as good on a Kd scale, especially at circumneutral pH values. In the water analysis of the batch titration of KGa-1b kaolinite, the main observed elements were aluminium and zinc. The concentrations of Al and Zn decreased with p

  8. Transformações mineralógicas e cristaloquímicas decorrentes dos ensaios termais em argilas cauliníticas ferruginosas Mineralogical and crystalochemical transformations originated from thermal essays on ferruginous kaolinitic clays

    Directory of Open Access Journals (Sweden)

    M. M. Ferreira

    2012-03-01

    Full Text Available Transformações mineralógicas e cristaloquímicas foram investigadas em amostras de argilas cauliníticas ferruginosas aquecidas a temperaturas de 800, 1000 e 1200 °C. As análises de difração de raios X e térmica diferencial e gravimétrica mostraram ser a caulinita o argilomineral predominante nas amostras naturais. Os resultados da espectroscopia Mössbauer mostraram que o alto conteúdo em Fe (22,5% em peso, determinado por fluorescência de raios X, é relacionado à presença de goethita (18% em peso e hematita (16% em peso. Entretanto um resíduo deste elemento (Fe3+ e Fe2+ foi constatado após a extração do ferro usando solução de ditionito-citrato-bicarbonato, e possivelmente se deve à presença de ferro na estrutura da caulinita. O processo de sinterização mostra uma desestruturação da caulinita, assim como a transformação da goethita em hematita, cujo tamanho dos cristais cresce com o incremento da temperatura. O tamanho do cristal de hematita a 1200 °C é 5 vezes maior do que na amostra natural. A mulita formada a 1000 °C é constituída da solução sólida de Fe2O3, com Al2O3, o que resulta em produto resistente e de maior estabilidade térmica.Mineralogical and crystallochemical transformations of representative ferruginous kaolinitic clay samples were investigated in specimens burned at 800, 1000 and 1200 °C. X-ray diffraction and differential thermal and thermogravimetric analyses showed that kaolinite was the predominant mineral in the raw samples. The Mössbauer spectroscopy results showed that the high iron content (22.5 wt.%, as determined by X-ray fluorescence, is related to the presence of goethite (18 wt.% and hematite (16 wt.%. However, after Fe was extracted using a dithionite-citrate system buffered with sodium bicarbonate, a residue of this element (Fe3+ and Fe2+ was found in the structure of the kaolinite. The sintering process showed the destruction of kaolinite, as well as the transformation of

  9. Efeito da adição de fonolito na sinterização de argila caulinítica Effect of phonolite addition on sintering kaolinitic clay

    Directory of Open Access Journals (Sweden)

    P. M. Andrade

    2005-12-01

    Full Text Available Este trabalho tem por objetivo avaliar o comportamento de queima de uma argila caulinítica incorporada com fonolito visando à obtenção de revestimento cerâmico prensado do tipo semiporoso. Foram preparadas composições com adição de fonolito a uma argila caulinítica nas proporções de 20 e 40% em peso. Para efeito comparativo, avaliou-se uma massa cerâmica industrial proveniente do pólo cerâmico de Santa Gertrudes. Foram preparados corpos de prova cilíndricos por prensagem uniaxial a 25 MPa para queima em temperaturas variando de 1050 a 1200 ºC. Nas amostras queimadas, foram realizados ensaios tecnológicos para determinação da retração linear e absorção de água em função da temperatura de queima. A avaliação microestrutural das composições estudadas foi realizada por difração de raios X e microscopia eletrônica de varredura. Os resultados mostraram que a adição de fonolito melhora significativamente a sinterização da argila caulinítica, sobretudo, em temperaturas acima de 1150 ºC, onde ocorre uma redução brusca da porosidade. Apesar do maior teor de óxidos alcalinos em comparação com uma massa industrial de revestimento cerâmico, as misturas argila/fonolito só alcançaram uma absorção de água de 10% , máxima para revestimentos semiporosos, em temperaturas cerca de 80 ºC superior à massa industrial.This work had as its objective to evaluate the firing behavior of a kaolinitic clay incorporated with phonolite aiming at semiporous pressed ceramic tiles. Compositions were prepared with addition of 20 and 40 wt.% of phonolite to a kaolinitic clay. For comparison, an industrial ceramic body from Santa Gertrudes, State of S. Paulo, was also evaluated. Cylindrical specimens were prepared by uniaxial pressure at 25 MPa followed by firing at temperatures varying from 1050 to 1200 ºC. The fired specimens were submitted to the following tests: linear shrinkage and water absorption as function of the firing

  10. Polypropylene-modified kaolinite composites: Effect of chemical ...

    African Journals Online (AJOL)

    PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. The thermogravimetric analysis thermograms (TGA) ...

  11. Characterization of the natural kaolinite KGa-1b

    International Nuclear Information System (INIS)

    Puukko, E.; Hakanen, M.

    2003-05-01

    Kaolinite is a common mineral on the surfaces of fractures in the rock. The sorption of europium and americium on kaolinite has been studied in a previous study (Puukko and Hakanen, 2001) using a natural kaolinite, KGa-1b (from the Clay Mineral Society, USA). Before experiments the kaolinite was washed with acid (HCl). The washing with acid removed iron but not TiO 2 . Surface complexation model has been applied to model the acid base reactions of kaolinite and the sorption of americium and europium on the kaolinite. In the present work the sorption of europium on the natural kaolinite KGa-1b was studied. The characterization of the natural kaolinite KGa- 1b is needed in the modelling of the sorption experiments. The iron impurities in the kaolinite were extracted with phase selective solutions to determine if the iron was amorphous and crystalline. The dissociation constants of kaolinite KGa-1b were determined by acid base titration in 0.05 M, 0.1 M and 0.5 M NaNO 3 solutions by two methods: a continuous titration and a batch titration. The solutions of the batch titrations were analysed for dissolved cations and silica and lanthanides at the laboratory of the Geological Survey of Finland (GSF). The loss in ignition of the KGa-1b was 14.3 w-% according to the Clay Mineral Society. The possible presence of humic acids was investigated at the GSF using thermogravimetry, X-ray diffraction and IR spectrometry and in the Laboratory of Physical Chemistry by measuring IR-absorption of gases released from a heated sample. The kaolinite KGa-1b contains a small quantity of iron. The phase selective extraction of amorphous iron gave almost same results as crystalline iron. The quantities of pure iron oxide phases of the total iron content was very low. The thermogravimetry and XRD analysis of the kaolinite KGa-1b indicated no presence of organic impurities, especially humic acids. The sensitivity of the IR analysis was not high enough to detect humic acids in the kaolinite

  12. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  13. Molecular Treatment of Nano-Kaolinite Generations.

    Science.gov (United States)

    Táborosi, Attila; Szilagyi, Robert K; Zsirka, Balázs; Fónagy, Orsolya; Horváth, Erzsébet; Kristóf, János

    2018-06-18

    A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.

  14. Effect of high-energy ball milling in the structural and textural properties of kaolinite

    Directory of Open Access Journals (Sweden)

    E. C. Leonel

    2014-06-01

    Full Text Available Through the process of high-energy ball milling it is possible to obtain solid materials with higher surface area and different particle sizes. These characteristics are very important for some application such as adsorption. Besides, applications of some clays depend on the functionalization which, for kaolinite, takes place in the aluminol groups. Modification in the structural and textural properties of kaolinite by high-energy milling can improve functionalization of kaolinite due to the exposure of aluminol groups. In this work studies were done on the influence of high-energy ball milling on the morphological properties of kaolinite, taking into account parameters such as filling of the miller, number of balls and amount of mass to be milled. Moreover, studies involving milling kinetics of purified kaolinite were carried out to verify modification in the morphology of kaolinite with milling time.

  15. Bibliometric analysis on kaolinite flotation

    Directory of Open Access Journals (Sweden)

    Gabriela Lieberknecht

    Full Text Available Abstract The current work presents a bibliometric discussion on articles published worldwide concerning kaolinite flotation in international journals from 1992 to 2015. In total, 39 articles were selected from Elsevier's database, SciVerse ScienceDirect. This work allowed to recognize and identify which are the thematic and methodological trends that are being used, in addition to the main collectors used in kaolinite flotation. The results show that a significant amount of articles is produced by Chinese authors, especially from 2013, as China is the second highest aluminum producer in the world, and kaolinite is the reject in the reverse flotation process of diaspore. The results showed the difficulty of working with kaolinite flotation individually and confirmed that there is scientific collaboration among authors. Bibliometric analysis showed that the reagents used in kaolinite flotation tests are mostly derived from cationic nitrogenated compounds. Additionally, best recovery results from kaolinite flotation occurred in acidic media.

  16. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  17. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, A., E-mail: annette.pietzsch@helmholtz-berlin.de [Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Nisar, J. [Pakistan Atomic Energy Commission (PAEC), P.O. Box 2151, Islamabad (Pakistan); Jämstorp, E. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Gråsjö, J. [Department of Pharmacy, Uppsala University, Box 580, 75123 Uppsala (Sweden); Århammar, C. [Coromant R& D, S-126 80 Stockholm (Sweden); Ahuja, R.; Rubensson, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-07-15

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed.

  18. Kaolinite: Defect defined material properties – A soft X-ray and first principles study of the band gap

    International Nuclear Information System (INIS)

    Pietzsch, A.; Nisar, J.; Jämstorp, E.; Gråsjö, J.; Århammar, C.; Ahuja, R.; Rubensson, J.-E.

    2015-01-01

    Highlights: • The respective electronic structure of synthetic and natural kaolinite is compared. • The size of the band gap and thus many important material properties are defined by defect states in the band gap. • The oxygen-based defect states are identified and analyzed. • The band gap of kaolinite decreases significantly due to the forming of defects. - Abstract: By combining X-ray absorption spectroscopy and first principles calculations we have determined the electronic structure of synthetic and natural kaolinite as a model system for engineered and natural clay materials. We have analyzed defect states in the band gap and find that both natural and synthetic kaolinite contain defects where oxygen replaces hydrogen in one of the Al (0 0 1)-hydroxyl groups of the kaolinite clay sheets. The band gap of both synthetic and natural kaolinite is found to decrease by about 3.2 eV as this defect is formed

  19. Mean residence time of soil organic matter associated with kaolinite and smectite

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.; Buurman, P.; Plicht, van der J.; Wattel, J.T.; Breemen, van N.

    2003-01-01

    To gain insight into the effect of clay mineralogy on the turnover of organic matter, we analysed the C-14 activity of soil organic matter associated with clay in soils dominated by kaolinite and smectite in natural savanna systems in seven countries. Assuming that carbon inputs and outputs are in

  20. Mean residence time of soil organic matter associated with kaolinite and smectite

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.; Buurman, P.; Plicht, J. van der; Wattel, E.; Breemen, N. van

    To gain insight into the effect of clay mineralogy on the turnover of organic matter, we analysed the C-14 activity of soil organic matter associated with clay in soils dominated by kaolinite and smectite in natural savanna systems in seven countries. Assuming that carbon inputs and outputs are in

  1. Bibliometric analysis on kaolinite flotation

    OpenAIRE

    Lieberknecht, Gabriela; Matai, Patrícia Helena Lara dos Santos; Leal Filho, Laurindo de Salles

    2017-01-01

    Abstract The current work presents a bibliometric discussion on articles published worldwide concerning kaolinite flotation in international journals from 1992 to 2015. In total, 39 articles were selected from Elsevier's database, SciVerse ScienceDirect. This work allowed to recognize and identify which are the thematic and methodological trends that are being used, in addition to the main collectors used in kaolinite flotation. The results show that a significant amount of articles is produc...

  2. Preparation of Composite Hydrogel Based on Polyacrylamide and the Effect of Kaolinite on Its Properties in the Reservoir Conditions

    OpenAIRE

    Farhad Salimi; Mohsen Vafaie; Mehdi Razzaghi Kashani; Majid Rafipoor

    2013-01-01

    A gel composite (based on polyacrylamide and crosslinker Cr(III) acetate) was prepared by solvent method (distillate and water formation) and nanoclay particle (kaolinite). Using XRD tests, d001 was evaluated for kaolinite nanoparticles in gel composite. Kaolinite modification using dimethyl-sulfoxide led to increase interlamellar spacing from 7.21 to 10.82 o A. Based on the results obtained for samples prepared from unmodified clay besides the pure clay, there is a wide peak at 2θ = 8o; whic...

  3. Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S Y [Univ. of Wisconsin, Madison; Jackson, M L; Brown, J L

    1975-01-01

    The layer structure of kaolinite from Twiggs, Georgia, and fire-clay type kaolinite (Frantex B, from France, particle size separates 2 0.2 ..mu..m was studied by high resolution electron microscopy after embedment in Spurr low-viscosity Epoxy media and thin sectioning normal to the (001) planes by an ultramicrotome. Images of the (001) planes (viewed edge-on) of both kaolinites were spaced at 7 A and generally aligned in parallel, with occasional bending into more widely spaced images of about 10 A interval. Some of the 10 A images converged to 7 A at one or both ends, forming ellipse-shaped islands 80 to 130 A thick and 300 to 500 A long. The island areas and interleaved 10 A layers between 7 A layers may represent a residue of incomplete weathering of mica to kaolinite. The proportions of micaceous occlusions were too small and the layer sequences too irregular to be detected by X-ray diffraction. The lateral continuity of the layers through the 7-10-7 A sequence in a kaolinite particle would partially interrupt or prevent expansion in dimethyl sulfoxide (DMSO) and other kaolinite intercalating media. Discrete mica particles were also observed with parallel images at 10 A, as impurities in both kaolinites. The small K content of the chemical analyses of the kaolinite samples is accounted for as interlayer K, not only in discrete mica particles but also in the micaceous occlusions.

  4. Preparation of Composite Hydrogel Based on Polyacrylamide and the Effect of Kaolinite on Its Properties in the Reservoir Conditions

    Directory of Open Access Journals (Sweden)

    Farhad Salimi

    2013-01-01

    Full Text Available A gel composite (based on polyacrylamide and crosslinker Cr(III acetate was prepared by solvent method (distillate and water formation and nanoclay particle (kaolinite. Using XRD tests, d001 was evaluated for kaolinite nanoparticles in gel composite. Kaolinite modification using dimethyl-sulfoxide led to increase interlamellar spacing from 7.21 to 10.82 o A. Based on the results obtained for samples prepared from unmodified clay besides the pure clay, there is a wide peak at 2θ = 8o; which is a representative of polymer diffusion between the clay layers. For the sample prepared from modified clay, no increase in interlamellar space was observed. Addition of 15% clay (modified and unmodified caused the syneresis to reduce by 20%. The gelation time for composites prepared from both types of clays increased due to increases in clay concentration, which this increase for the sample prepared from unmodified clay was greater. The viscosity of gel for samples prepared from modified clay increased due to increased clay concentration, which reached its maximum for 15% clay concentration. However for unmodified clay the maximum value of viscosity was observed for 30% clay concentration.

  5. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  6. Optimization of uranyl ions removal from aqueous solution by natural and modified kaolinites

    Energy Technology Data Exchange (ETDEWEB)

    Elhefnawy, O.A.; Elabd, A.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.

    2017-10-01

    The paper addresses the modifications of the most common mineral clay ''kaolinite'' for U(VI) removal from aqueous solutions. A new modified Egyptian natural kaolinite (Ca-MK) was prepared by coating kaolinite with calcium oxide. Another modification process was utilized by calcination and acid activation of kaolinite (E-MK). The Egyptian natural kaolinite (E-NK) and the two modified kaolinites were characterized by different techniques SEM, EDX, XRD, and FTIR. The removal process were investigated in batch experiments as a function of pH, contact time, initial U(VI) concentration, effect of temperature, and recovery of U(VI) were studied. The equilibrium stage was achieved after 60 min and the kinetic data was described well by pseudo-second order model. Isothermal data was better described by the Langmuir isotherm model, indicating the homogeneous removal process. Also the removal process was studied on different temperature 293, 313, and 323 K. The thermodynamic parameters ΔH , ΔS , and ΔG were calculated. The thermodynamic results pointed to the endothermic and favorable nature of the U(VI) removal process in the three kaolinite adsorbents. This study indicated that (Ca-MK) has higher CEC and can be used as a new adsorbent for highly efficient removal of U(VI) from aqueous solutions.

  7. Hydrogen isotope ratios of clay minerals constituting clay veins found in granitic rocks in Hiroshima Prefecture

    International Nuclear Information System (INIS)

    Kitagawa, Ryuji; Kakitani, Satoru; Kuroda, Yoshimatsu; Matsuo, Sadao; Suzuoki, Tetsuro.

    1980-01-01

    The deuterium content of the constitutional and interlayer water extracted from the clay minerals (illite, montmorillonite, interstratified illite-montmorillonite mineral, kaolinite, halloysite) constituting the clay veins found in the granitic rocks in Hiroshima Prefecture was measured. The clay minerals were heated at 270 deg C to extract the interlayer water, then heated to 1,400 or 1,500 deg C to extract the constitutional water. The deuterium content of the local surface water collected from sampling points was measured. In the clay veins formed along perpendicular joints, the constituent clay minerals change from lower to upper part: illite → montmorillonite → kaolinite → halloysite. The deuterium content values of the constitutional water for illite and montmorillonite were estimated to be -67 to -69% and -86 to -89%, respectively. The deuterium content values of the constitutional water for halloysite range from -68 to -80% and for kaolinite from -63 to -67%. (J.P.N.)

  8. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    Science.gov (United States)

    2012-12-01

    Kaolinite, a member of the kaolin family, is a 1:1 clay, consisting of a single silicon-containing tetrahedral sheet linked to a single aluminum...14,15,18,19 The kaolinite is a white-firing, plastic kaolinite mined from claystone deposits in Georgia. This clay, identified as no. 6 tile kaolin , was...Validation of Model Predictions for the Dispersion and Fate of Reactive Chemical Releases in a Sub- Estuary of the Chesapeake Bay. Presented at the 2011

  9. Characterization of clay used for red ceramic fabrication

    International Nuclear Information System (INIS)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  10. Clay mineralogy, grain size distribution and their correlations with trace metals in the salt marsh sediments of the Skallingen barrier spit, Danish Wadden Sea

    DEFF Research Database (Denmark)

    He, Changling; Bartholdy, Jesper; Christiansen, Christian

    2012-01-01

    metals. The clay assembly of the sediment consists of illite, kaolinite and much less chlorite and smectite. The major clay minerals of illite, kaolinite as well as chlorite correlate very poorly with all the trace metals investigated, due probably to the weak competing strength of these clays compared...

  11. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  12. Effect of water on methane adsorption on the kaolinite (0 0 1) surface based on molecular simulations

    Science.gov (United States)

    Zhang, Bin; Kang, Jianting; Kang, Tianhe

    2018-05-01

    CH4 adsorption isotherms of kaolinite with moisture contents ranging from 0 to 5 wt% water, the effects of water on maximum adsorption capacity, kaolinite swelling, and radial distribution function were modelled by the implementing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at 293.15 K (20 °C) and a pressure range of 1-20 MPa. The simulation results showed that the absolute adsorption of CH4 on both dry and moist kaolinite followed a Langmuir isotherm within the simulated pressure range, and both the adsorption capacity and the rate of CH4 adsorption decreased with the water content increases. The adsorption isosteric heats of CH4 on kaolinite decreased linearly with increasing water content, indicating that at higher water contents, the interaction energy between the CH4 and kaolinite was weaker. The interaction between kaolinite and water dominates and was the main contributing factor to kaolinite clay swelling. Water molecules were preferentially adsorbed onto oxygen and hydrogen atoms in kaolinite, while methane showed a tendency to be adsorbed only onto oxygen. The simulation results of our study provide the quantitative analysis of effect of water on CH4 adsorption capacity, adsorption rate, and interaction energy from a microscopic perspective. We hope that our study will contribute to the development of strategies for the further exploration of coal bed methane and shale gas.

  13. Hydrothermal field test with french candidate clay embedding steel heater in the Stripa mine

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.; Lajudie, A.; Lechelle, J.; Bouchet, A.

    1992-12-01

    Field experiments with French kaolinite/smectite clay heated up to 170 degrees C in boreholes in granite were conducted for 8 months and 4 years. The clay heated for 8 months has a considerably higher water content and it had undergone much less changes in mineralogy and physical properties than the clay exposed to heating for 4 years. The drying of the latter clay was probably caused by hydrogen gas from corrosion of the heater. The clay next to the heater turned into clay-stone despite conversion of the kaolinite component to smectite. (42 refs)

  14. Characterization of clay of Vitoria da Conquista - BA - Brazil

    International Nuclear Information System (INIS)

    Oliveira, O.M.; Zandonadi, A.R.; Martins, M.V. Surmani; Carrio, J.A.G.; Munhoz Junior, A.H.

    2011-01-01

    Kaolinitic clays are vastly used in ceramic industry. Kaolinitic clay that are not coloured after firing are very useful in the production of ceramics because of their aesthetic aspect after firing. In this work clay material from Vitoria da Conquista (South- West Bahia, Brazil) was characterized by several techniques. The differential Scanning Calorimetry (DSC) shows a kaolinite characteristic curve with an endothermic peak at 492 deg C, which corresponds to the kaolinite - metakaolinite transformation. The transformation of alpha to beta quartz characterized by a 573 deg C peak was also observed in DSC. The samples were also characterized by water absorption and x rays powder diffraction. The 1100 deg C burned samples were tested by flexural strength. (author)

  15. Clay-associated organic matter in kaolinitic and smectitic soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.

    2002-01-01

    The primary source of soil organic matter is plant debris of all kinds, such as dead roots, leaves and branches that enter into the soil and are then biologically decomposed at variable rates. Organic matter has many different important functions on a local and global scale. Soil organic matter is

  16. organic template free synthesis of zsm11 from kaolinite clay

    African Journals Online (AJOL)

    user

    diffusion assistance and tortuosity, as depicted in Figure. 1. Hongyuan and others [6] .... characterized by nearly equal peak height of Al and Si, another means to ..... method for nanocrystalline zeolite synthesis. Chemical communication.

  17. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    Barral, S.; Villa-Garcia, M.A.; Rendueles, M.; Diaz, M.

    2008-01-01

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  18. Interactions between whey proteins and kaolinite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barral, S. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Villa-Garcia, M.A. [Department of Organic and Inorganic Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: mavg@uniovi.es; Rendueles, M. [Project Management Area, University of Oviedo, Independencia 13, 33004 Oviedo (Spain); Diaz, M. [Department of Chemical Engineering and Environmental Technology, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2008-07-15

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered.

  19. Adsorption and thermodynamic studies of Cu(II) and Zn(II) on organofunctionalized-kaolinite

    International Nuclear Information System (INIS)

    Guerra, Denis Lima; Airoldi, Claudio; Sousa, Kaline S. de

    2008-01-01

    Kaolinite-bearing clay samples from Perus, Sao Paulo state, Brazil, were used for chemical modification process with dimethyl sulfoxide and organofunctionalized with the silyating agent (RO) 3 Si(CH 2 ) 3 NH(CH 2 ) 2 NH 2 in the present study. The resulting material and natural kaolinite were subjected adsorpion process with Cu(II) and Zn(II) from aqueous solution at pH 6.0 and controlated temperature of 298 K. The Langmuir adsorption isotherm model has been applied to fit the experimental data. The results showed that the chemical modification process increases the basal spacing of the natural kaolinite from 0.711 to 0.955 nm. The energetic effects caused by Cu(II) and Zn(II) interactions were determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant

  20. Neptunium(V) sorption onto kaolinite in the absence and presence of CO2

    International Nuclear Information System (INIS)

    Amayri, S.; Reich, Ta.; Reich, T.

    2005-01-01

    Full text of publication follows: The adsorption of heavy metals on clay minerals such as kaolinite is an important process that affects the migration and retardation of neptunium and other actinides in the geosphere. The sorption of Np(V) onto the reference clay mineral kaolinite KGa-1b was investigated both by batch experiments and EXAFS measurements. The aim of our study was to combine macroscopic studies (batch experiments) with microscopic techniques (EXAFS) to study the Np(V) speciation at the kaolinite surface. The batch experiments were done under relevant environmental conditions with Np(V) concentrations of 10 -11 and 10 -12 mol/L. Sorption samples were prepared in 0.1 mol/L NaClO 4 , 4 g/L kaolinite, pH 6.0 to 10.5, presence and absence of ambient CO 2 , and 60-h equilibration. The sorption curves for 10 -11 and 10 -12 mol/L Np(V) obtained in the presence and absence of CO 2 , respectively, show that the adsorption edge occurs at pH 8.5. The uptake of Np(V) by kaolinite strongly increased above pH 7.0 and reached its sorption maximum (70 %) at pH 9.0. Above pH 9.0, the amount of Np(V) sorbed onto kaolinite decreased and reached ca. 30 % at pH 10.5 due to the formation of Np(V) carbonato species in the aqueous solution. In the CO 2 -free system, the sorption of Np(V) increased continuously with pH until the sorption maximum of 100 % was reached at pH 10.5. The same sorption behavior was found in batch experiments in the CO 2 equilibrated system with Np concentrations ranging from 1 μmol/L to 10 μmol/L. EXAFS experiments on some of these batch samples indicated the formation of Np(V) carbonato species at the kaolinite surface at pH 9.0 where the uptake of Np(V) by kaolinite reaches its maximum [1]. [1] T. Reich, S. Amayri, Ta. Reich, J. Drebert, A. Jermolajev, P. Thoerle, N. Trautmann, C. Hennig, S. Sachs, Feasibility of EXAFS experiments at the Np L-edge to investigate neptunium sorption on kaolinite, Institut fuer Kernchemie, Universitaet Mainz, Annual

  1. Characterization of a clay from Vitoria da Conquista, Bahia, Brazil, by thermal analysis

    International Nuclear Information System (INIS)

    Oliveira, O.M.; Zandonadi, A.R.; Martins, M.V. Surmani; Carrio, J.A.G.; Munhoz Junior, A.H.

    2010-01-01

    Kaolinitic clays are vastly used in ceramic industry. Light coloration burned clays are very useful in the coatings production because of their aesthetic. In this work clay material from Vitoria da Conquista (south-west Bahia, Brazil) was characterized by various techniques. Differential Scanning Calorimetry (DSC) shows a kaolinite characteristic curve with an endothermic peak at 492 deg C, which corresponds to the kaolinite - metakaolinite transformation. Transformation alpha to beta quartz is characterized by a 573 deg C peak. The samples were also characterized by water absorption and x rays powder diffraction. The 1100 deg C burned samples were tested by rupture tension with acceptable results. (author)

  2. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-11-20

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  3. A role for subducted super-hydrated kaolinite in Earth's deep water cycle

    Science.gov (United States)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-12-01

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  4. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    Science.gov (United States)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  5. POLYPROPYLENE-MODIFIED KAOLINITE COMPOSITES: EFFECT ...

    African Journals Online (AJOL)

    Meziane O, Bensedira A, Guessoum M and Haddaoui N

    2016-05-01

    May 1, 2016 ... prepared by the melt intercalation method. ... several beneficial variations on stiffness, hardness, toughness and heat ..... Polypropylene/ untreated and treated kaolinite composites have been prepared via direct melt.

  6. Contrast in clay mineralogy and their effect on reservoir properties in ...

    African Journals Online (AJOL)

    Adigrat sandstone formation in the Blue Nile Basin is dominated by quartz arenite and subarkosic arenite, and cemented by carbonate, clay minerals and quartz overgrowths. Clay minerals in the Adigrat sandstone formation are dominated by kaolinite, illite and chlorite. Illite is the common grain-coating clay mineral.

  7. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  8. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  9. Acidity of edge surface sites of montmorillonite and kaolinite

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  10. Clay mineralogy of innershelf sediments off Cochin, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, N.V.N.D.; Dora, Y.L.

    Kaolinite, montmorillonite and illite are the clay minerals occurring in decreasing order of abundance in the Holocene sediments of inner shelf and adjacent coastal environments of Cochin Region. Southern part of Vembanad Lake, estuarine part...

  11. Clay mineral distribution from Bhimunipatnam to Pudimadaka along cental eastern continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, K.M.

    Forty eight sediment samples, collected from 50-100m depth, have been analysed for their clay mineral composition and distribution. Kaolinite with chlorite (K + C) is the predominant mineral followed by illite and montmorillonite. K + C and illite...

  12. Structural Modification of Egyptian Kaolinite for Paper Coating

    International Nuclear Information System (INIS)

    Mohamed, H.F.; Hassan, M.S.; Morsy, F.A.; El-Sherbiny, S.

    2013-01-01

    The aim of this work is surface modification of Egyptian kaolinite for paper coating. Kaolinite < 2 fraction (KF) obtained using sedimentation and centrifuging techniques. Organo-kaolinite was prepared via inserting Urea (NH 2 CO NH 2 ) within the gallery of kaolinite using grinding technique for different times. Nano kaolinite was prepared from dispersion of organo-kaolinite in paper coating. The kaolinite (K), kaolinite /urea (KU) and kaolinite urea with binder (KU/Binder) were characterized using X-ray diffractometry (XRD), Infrared spectroscopy (IR) and Scanning Electron Microscopy (SEM). XRD studies revealed shifting of basal space of kaolinite from 0.714 to 1.11 nm upon grinding of kaolinite with urea for 5 h. On the other hand, the characteristic peak of kaolinite completely disappeared during dispersion of KU in paper coating suspension, which revealed the exfoliation of organo-kaolinite layers through the binder. Meanwhile, IR spectra show that NH-CO molecule exists in the intercalated kaolinite. The SEM images of KU revealed that kaolinite is intercalated U and fully exfoliation of KU achieved in KU/Binder and revealed by thin flakes with particle size ranged from 500 nm and 300 nm respectively. The modified kaolinite for paper coating increased the optical properties in terms of ISO brightness, opacity and gloss of the coated paper. There was a significant decrease in coated paper roughness compared to untreated kaolinite. Air permeance of the KF decreased in comparison with K sample, but increased sharply by intercalation of kaolinite (KU). Burst strength also started to increase with untreated kaolinite but decreased sharply with urea KU.

  13. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  14. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    Science.gov (United States)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  15. Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants

    International Nuclear Information System (INIS)

    D'Souza, T.J.

    1980-10-01

    Studies were undertaken to examine the influence of interaction of clay minerals and organic matter on the uptake of radiocesium by two pasture plants, namely, ryegrass (Lolium italicum L) and red clover (Trifolium pratense L). The clay minerals used were bentonite (2.1 layer type) and kaolinite (1/1 layer type). Mixtures of clay and sand were prepared with 0.5, 10, 20 and 40 per cent clay and treated with organic matter (forest turf) at 0,5 and 10 per cent of the clay-sand mixtures. Results indicated that 134 Cs uptake by plants grown on the kaolinite-clay medium was greater than that on the bentonite-clay medium at a given organic matter level. Increasing the clay content of mixtures resulted in reduction in 134 Cs uptake by both plant species. The plant uptake of 134 Cs increased with additions of organic matter at a given clay content. (author)

  16. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin

    Science.gov (United States)

    Gibson, T.G.; Bybell, L.M.; Mason, D.B.

    2000-01-01

    Kaolinite usually is present in relatively small amounts in most upper Paleocene and lower Eocene neritic deposits of the northern US Atlantic Coastal Plain. However, there is a short period (less than 200,000 k.y.) in the latest Paleocene (upper part of calcareous nannoplankton Zone NP 9) when kaolinite-dominated clay mineral suites replaced the usual illite/smectite-dominated suites. During this time of global biotic and lithologic changes, kaolinite increased from less than 5% of the clay mineral suite to peak proportions of 50-60% of the suite and then returned to less than 5% in uppermost Paleocene/lowermost Eocene strata. This kaolinite pulse is present at numerous localities from southern Virginia to New Jersey. These sites represent both inner and middle neritic depositional environments and reflect input from several river drainage systems. Thus, it is inferred that kaolinite-rich source areas were widespread in the northeastern US during the latest Paleocene. Erosion of these source areas contributed the kaolinite that was transported and widely dispersed into shelf environments of the Salisbury embayment. The kaolinite increase, which occurred during a time of relatively high sea level, probably is the result of intensified weathering due to increased temperature and precipitation. The southern extent of the kaolinite pulse is uncertain in that uppermost Paleocene beds have not been identified in the southern Atlantic Coastal Plain. The late Paleocene kaolinite pulse that consists of an increase to peak kaolinite levels followed by a decrease can be used for detailed correlation between more upbasin and more downbasin sections in the Salisbury embayment. Correlations show that more upbasin Paleocene/Eocene boundary sections are erosionally truncated. They have varying portions of the kaolinite increase and, if present at all, discontinuous portions of the subsequent kaolinite decrease. As these truncated sections are disconformably overlain by lower

  17. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Directory of Open Access Journals (Sweden)

    Vernon Reynolds

    Full Text Available Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  18. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  19. Fe(0)-Kaolinite (KGA2) interactions at 90° C under anoxic conditions

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Montarges-Pelletier, E.; Michot, L.; Villieras, F.; Abdelmoula, M.; Karunakaran, C.; Ventelon, D.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. Because of the use of steel containers for geological deposit of nuclear waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian argillite, and the steel container. In order to evidence the individual role of each different clay phase entering in the mineralogy of the Callovo-Oxfordian argillite, the iron-clay interactions were studied by the use of reference clays. The Georgia Kaolinite (KGa2) supplied by the Clay Mineral Society was selected to represent kaolinite minerals; as it has been extensively characterized in our laboratory. To reproduce the repository conditions, raw kaolinite was put in contact with powder metallic iron with a weight ratio fixed at 1/3 and a solid/liquid ratio of 1/20. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. Similar experiments without iron were carried out to show up the influence of iron on mineralogical transformations in such conditions. After, one, three or nine months, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses, X-ray diffraction, Fourier Transform Infrared spectroscopy, scanning and transmission electron microscopy, XPS and Moessbauer analyses. Supplementary observation tools, based on the use of synchrotron radiation were used to reinforce the information about iron localisation and its status in individualized clay particles (Scanning Transmission X-ray Microscopy (STXM) and Micro-Xray Absorption Spectroscopy (μ-XAS)). Without iron, kaolinite KGa2 remains unchanged, from a mineralogical point of view, even after nine months in suspension. With iron, first results from one month experiments showed a decrease of pristine metallic iron as well as the apparition

  20. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study.

    Science.gov (United States)

    Cheng, Hongfei; Yang, Jing; Liu, Qinfu; Zhang, Jinshan; Frost, Ray L

    2010-11-01

    Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant minerals of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm⁻¹ between kaolinite and halloysite. It cannot obviously differentiate the kaolinite and halloysite, leaving alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, gives us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in all range of their spectra, and they also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite - A mid-infrared and near-infrared study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.F.; Yang, J.; Liu, Q.F.; Zhang, J.S.; Frost, R.L. [Queensland University of Technology, Brisbane, Qld. (Australia). Faculty of Science & Technology

    2010-11-15

    Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant minerals of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm{sup -1} between kaolinite and halloysite. It cannot obviously differentiate the kaolinite and halloysite, leaving alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, gives us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in all range of their spectra, and they also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.

  2. Kaolinite removal from bauxite by flotation

    Directory of Open Access Journals (Sweden)

    Otávia Martins Silva Rodrigues

    Full Text Available Abstract This paper presents a potential condition to separate kaolinite through flotation when it is present in bauxite ore. This research anticipates a Brazilian industry requirement, considering the tendency towards the need for aluminosilicates removal from bauxite ores, as has already occurred in China. Kaolinite is the most abundant aluminosilicate, and gibbsite is the main aluminum bearing mineral in Brazilian bauxite ores. The first step was a fundamental study involving microflotation experiments with pure samples of kaolinite and gibbsite. Ammonium quaternary salts and amines were used as the collector and corn starch as the depressant. In a fundamental study, the best conditions determined in the first step were evaluated for the flotation of kaolinite from bauxite ore using laboratory scale experiments. Tests with AQ142/starch (pH 10 and CTAB (pH 7 led to satisfactory results. In general, the highest values of alumina/silica mass ratio were obtained with AQ142/starch and the highest values of mass recovery and metallurgical recovery were achieved with CTAB.

  3. Kaolinite and Silica Dispersions in Low-Salinity Environments: Impact on a Water-in-Crude Oil Emulsion Stability

    Directory of Open Access Journals (Sweden)

    Vladimir Alvarado

    2011-10-01

    Full Text Available This research aims at providing evidence of particle suspension contributions to emulsion stability, which has been cited as a contributing factor in crude oil recovery by low-salinity waterflooding. Kaolinite and silica particle dispersions were characterized as functions of brine salinity. A reference aqueous phase, representing reservoir brine, was used and then diluted with distilled water to obtain brines at 10 and 100 times lower Total Dissolved Solid (TDS. Scanning Electron Microscope (SEM and X-ray Diffraction (XRD were used to examine at the morphology and composition of clays. The zeta potential and particle size distribution were also measured. Emulsions were prepared by mixing a crude oil with brine, with and without dispersed particles to investigate emulsion stability. The clay zeta potential as a function of pH was used to investigate the effect of particle charge on emulsion stability. The stability was determined through bottle tests and optical microscopy. Results show that both kaolinite and silica promote emulsion stability. Also, kaolinite, roughly 1 mm in size, stabilizes emulsions better than larger clay particles. Silica particles of larger size (5 µm yielded more stable emulsions than smaller silica particles do. Test results show that clay particles with zero point of charge (ZPC at low pH become less effective at stabilizing emulsions, while silica stabilizes emulsions better at ZPC. These result shed light on emulsion stabilization in low-salinity waterflooding.

  4. Characterization of clay used for red ceramic fabrication; Caracterizacao de argila utilizada para fabricacao de ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, P.S.; Morais, A.S.C.; Caldas, T.C.C.; Monteiro, S.N.; Vieira, C.M.F. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Laboratorio de Materiais Avancados; Ribeiro, M.M., E-mail: patriciasp_@hotmail.com [Instituto Federal Fluminense (IFF), Campos dos Goytacazes, RJ (Brazil)

    2011-07-01

    The objective of this work is to characterize a clay used in the red ceramics fabrication, from Campos dos Goytacazes north of the State of Rio de Janeiro. The clay was submitted for physical, chemical and mineralogical tests. The results showed that the clay has a high content of clay minerals with kaolinitic predominance, high loss on ignition and low flux oxides. It is recommended that this clay is mixed with non-plastic materials. (author)

  5. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Bascetin, Elvan [Cekmece Nuclear Research and Training Center, P.K.1 34149, Atatuerk Airport, Istanbul (Turkey); Atun, Guelten [Engineering Faculty, Chemistry Department, Istanbul University, 34850 Avcilar, Istanbul (Turkey)]. E-mail: gultena@istanbul.edu.tr

    2006-08-15

    The adsorption behavior of kaolinite and montmorillonite minerals and their mixtures in respect of Sr ion were studied by means of a batch method using {sup 90}Sr as a radio tracer. The effect of several parameters such as temperature, pH, Sr concentration and supporting electrolyte were investigated. Experimentally measured distribution coefficients showed a good agreement to within 98.5-99.7% with theoretically calculated values. The values of adsorption capacity of adsorbents and mean adsorption energy of adsorption were calculated by fitting the adsorption data to Dubinin-Radushkevich isotherm. The adsorption capacity of clay mixtures decreased as kaolinite fractions increased. The mean adsorption energy values of 8.0-9.5 kJ mol{sup -1} showed that adsorption was governed by ion exchange. The Freundlich parameters were used to characterize a site distribution function for binary exchange between Sr and Na.

  6. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite

    International Nuclear Information System (INIS)

    Bascetin, Elvan; Atun, Guelten

    2006-01-01

    The adsorption behavior of kaolinite and montmorillonite minerals and their mixtures in respect of Sr ion were studied by means of a batch method using 90 Sr as a radio tracer. The effect of several parameters such as temperature, pH, Sr concentration and supporting electrolyte were investigated. Experimentally measured distribution coefficients showed a good agreement to within 98.5-99.7% with theoretically calculated values. The values of adsorption capacity of adsorbents and mean adsorption energy of adsorption were calculated by fitting the adsorption data to Dubinin-Radushkevich isotherm. The adsorption capacity of clay mixtures decreased as kaolinite fractions increased. The mean adsorption energy values of 8.0-9.5 kJ mol -1 showed that adsorption was governed by ion exchange. The Freundlich parameters were used to characterize a site distribution function for binary exchange between Sr and Na

  7. Influence of leachate on the Oligocene-Miocene clays of the İstanbul area, Turkey

    OpenAIRE

    ÖZTOPRAK, SADIK; LAÇİN, DAVUT

    2018-01-01

    Oligo-Miocene clay outcrops on the European side (west and northwest part) of İstanbul were analysed. Formerly, a landfill and sanitary landfill were built on the clay. Mineral liners of the current and extending parts of the İstanbul landfill consist of these clays, since they include a considerable amount of smectite, illite, and kaolinite. With this feature, these clays are also an important candidate for the buffer material of repositories for nuclear wastes of newly planned nuclear power...

  8. Water-clay interactions. Experimental study

    International Nuclear Information System (INIS)

    Gaucher, Eric

    1998-01-01

    Clay minerals contribute to the chemical composition of soil and sediment groundwaters via surface and dissolution/precipitation reactions. The understanding of those processes is still today fragmentary. In this context, our experimental purpose is to identify the contribution of each reaction in the chemical composition of water in a water/clay System. Kaolinite, illite, montmorillonite are the reference clays. After a fine mineralogical study, the exchange equilibria between K + and H + are characterised. Different exchange sites are identified and the exchange capacities and selectivity coefficients are quantified. Then, mixtures of the three clays are equilibrated with acidic and basic (I≤10 -2 M) solutions at 25 deg. C, 60 deg. C, 80 deg. C, during 320 days. The System evolution is observed by chemical analysis of the solutions and mineralogical analysis by TEM. We show that montmorillonite is unstable compared to the kaolinite/amorphous silica assemblage for solutions of pH<7. Aqueous silica is probably controlled by the kinetics of dissolution of the montmorillonite in moderate pH media. In more acidic solutions, amorphous silica precipitates. Al is under control of 'kaolinite' neo-formations. The use of the selectivity coefficients in a numerical simulation shows that K + concentration depends on exchange reactions. The pH has a more complicated evolution, which is not completely understood. This evolution depends on both exchange equilibria and organic acid occurrence. In this type of experiments, we have demonstrated that the equilibrium equations between smectite and kaolinite are inexact. The problem of the thermodynamic nature of clays remains and is not resolved by these solubility experiments. (author) [fr

  9. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  10. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  11. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  12. Evaluation of the nanoparticle treatment effect on the development of nanocomposite resin epoxy/kaolinite;Avaliacao do efeito do tratamento da nanoparticula no desenvolvimento de nanocomposito resina epoxi/caulinita

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Tharsia C.C.; Mendonca, Rannier M., E-mail: tharsia@gmail.co [Universidade Federal do Rio Grande do Norte (PPGCEM/UFRN), Natal (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Ito, Edson N; Melo, Jose D.D.; Paskocimas, Carlos A., E-mail: ito@ufrnet.b [Universidade Federal do Rio Grande do Norte (DEMat/UFRN), Natal (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    The nanocomposites formed from polymer matrices and mineral clays have been studied since the decade of 60s when Blumstein demonstrated the intercalation the polymer molecules between lamellae of montmorillonite. The application of the kaolinite in nanocomposite polymeric is rare, however the kaolinite is expandable and it is possible to do the process of the superficial functionalization. The present work demonstrates that after leaching process of the kaolinite through a chemical treatment with hydrogen peroxide combined with acid solutions the kaolinite inside presents a surface activated with good resulted of dispersion of a polymers matrix by a mechanical agitation, in high-energy mill. The samples had been characterized by x-ray diffraction, thermogravimetry (TGA) and transmission electron microscopy (TEM). The results showed the potential of using the functionalized kaolinite as an agent of reinforcement in polymer nanocomposites. (author)

  13. Characterization of a clay from Vitoria da Conquista, Bahia, Brazil, by thermal analysis; Caracterizacao de uma argila de Vitoria da Conquista, BA, por analise termica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, O.M.; Zandonadi, A.R.; Martins, M.V. Surmani; Carrio, J.A.G.; Munhoz Junior, A.H. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil)

    2010-07-01

    Kaolinitic clays are vastly used in ceramic industry. Light coloration burned clays are very useful in the coatings production because of their aesthetic. In this work clay material from Vitoria da Conquista (south-west Bahia, Brazil) was characterized by various techniques. Differential Scanning Calorimetry (DSC) shows a kaolinite characteristic curve with an endothermic peak at 492 deg C, which corresponds to the kaolinite - metakaolinite transformation. Transformation alpha to beta quartz is characterized by a 573 deg C peak. The samples were also characterized by water absorption and x rays powder diffraction. The 1100 deg C burned samples were tested by rupture tension with acceptable results. (author)

  14. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. EXAFS study of plutonium sorption onto kaolinite

    International Nuclear Information System (INIS)

    Reich, T.Y.; Banik, L.; Buda, R.A.; Amayri, S.; Drebert, J.; Kratz, J.V.; Trautmann, N.; Reich, T.; Ageev, A.L.; Korshunov, M.E.

    2007-01-01

    The uptake mechanism of plutonium by kaolinite was investigated by applying X-ray absorption spectroscopy to batch sorption samples (total Pu concentrations 1 and 10 μM; 4 g kaolinite/L in 0.1 M NaClO 4 ; 1 ≤ pH ≤ 9; presence and absence of ambient CO 2 ). For XAFS measurements, one sample was prepared from a Pu(III) solution at pH 6 under argon atmosphere. Three samples were obtained by sorption of Pu(IV) at pH I, 4, and 9 in an air-equilibrated system. The Pu L III -edge XANES spectra indicated that in all samples, including the Pu(III) sample, plutonium is sorbed at the kaolinite surface as Pu(IV). The Pu L III -edge k 3 -weighted EXAFS spectra showed eight oxygen atoms at an average Pu-O distance of 2.3 angstrom. Two Pu atoms were detected at ∼ 3.7 angstrom in all spectra, indicating the formation of polynuclear Pu(IV) species at the kaolinite surface. For the sample prepared from Pu(III) solution, an additional Pu-O shell at 3.2 angstrom was observed. The spectra of samples prepared from Pu(IV) included a Pu-Al/Si co-ordination shell at approximately 3.6 angstrom, indicating formation of inner-sphere sorption complexes. The structural models used in the least-squares fits were confirmed by an alternative EXAFS data analysis approach based on a modified Tikhonov regularization method. (authors)

  16. Simulation of flash dehydroxylation of clay particle using gPROMS

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Bøjer, Martin; Adelsward, Anicka

    2014-01-01

    The use of SCMs (supplementary cementitious materials) to replace part of the clinker in cement industry is gaining an increasing interest in order to reduce the CO2 footprint. The abundantly available clay minerals are potential sources of SCMs. Thermal treatment of kaolinite clay under moderate...

  17. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis L., E-mail: denis@cpd.ufmt.br [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 78060 900 (Brazil); Leidens, Victor L.; Viana, Rubia R. [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 78060 900 (Brazil); Airoldi, Claudio [Chemistry Institute, State University of Campinas, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2010-08-15

    The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N{sub 2} adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of {sup 29}Si and {sup 13}C. The well-defined peaks obtained in the {sup 13}C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT{sub MPDET}) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10{sup -3} and 13.87 x 10{sup -3} mmol g{sup -1} for KLT and KLT{sub MPDET} at 298 K, respectively. The energetic effects ({Delta}{sub int}H, {Delta}{sub int}G, and {Delta}{sub int}S) caused by metal cations adsorption were determined through calorimetric titrations.

  18. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions

    International Nuclear Information System (INIS)

    Guerra, Denis L.; Leidens, Victor L.; Viana, Rubia R.; Airoldi, Claudio

    2010-01-01

    The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N 2 adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of 29 Si and 13 C. The well-defined peaks obtained in the 13 C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT MPDET ) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10 -3 and 13.87 x 10 -3 mmol g -1 for KLT and KLT MPDET at 298 K, respectively. The energetic effects (Δ int H, Δ int G, and Δ int S) caused by metal cations adsorption were determined through calorimetric titrations.

  19. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation occ...

  20. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  1. Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions

    Science.gov (United States)

    Tokarčíková, Michaela; Tokarský, Jonáš; Kutláková, Kateřina Mamulová; Seidlerová, Jana

    2017-09-01

    Magnetically modified clays containing iron oxides nanoparticles (FexOy NPs) are low-cost and environmentally harmless materials suitable for sorption of pollutants from wastewaters. Stability of this smart material was evaluated both experimentally and theoretically using molecular modelling. Original kaolinite and prepared FexOy/kaolinite nanocomposite were characterized using X-ray fluorescence spectroscopy, X-ray powder diffraction, infrared spectroscopy, and transmission electron microscopy, and the stability was studied using leaching tests performed according to the European technical standard EN 12457-2 in deionized water and extraction agents with varying pH (2, 4, 9, and 11). The influence of pH on amount of FexOy NPs released from the composite and amount of the basic elements released from the kaolinite structure was studied using inductively coupled plasma atomic emission spectroscopy. All experiments proved that the magnetic properties of the nanocomposite will not change even after leaching in extraction agents with various pH.

  2. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  3. Adsorption of barium on kaolinite, illite and montmorillonite at various ionic strengths

    International Nuclear Information System (INIS)

    Atun, G.; Bascetin, E.

    2003-01-01

    The sorption behaviour of Ba 2+ in three different clay minerals from various regions of Turkey has been investigated by means of a tracer technique using 133 Ba in batch experiments. Sorption of Ba 2+ on montmorillonite, kaolinite and illite has been studied in mixed solutions of BaCl 2 and NaCl at ionic strengths ranging from 1 x 10 -3 M to 1 x 10 -1 M. The L-shape exchange isotherms for Ba 2+ -Na + systems are well defined by a Langmuir type equation. The exchange capacity of Ba 2+ ions for all three clay minerals increased with decreasing ionic strength. The adsorption data were fitted to a Freundlich isotherm and empirical Freundlich parameters enabled to the generation of a site distribution function. The selectivity coefficients were nearly constant at low Ba loading and decreased as loading increased. This behavior was an indication of an ion exchange process between Ba 2+ and Na + ions

  4. Comparative EXAFS study of uranium(VI) and neptunium(V) sorption onto kaolinite

    International Nuclear Information System (INIS)

    Reich, T.; Amayri, S.; Reich, Ta.; Jermolajev, J.

    2005-01-01

    Full text of publication follows: We investigated the surface sorption process of U(VI) and Np(V) on kaolinite by extended X-ray absorption fine structure (EXAFS) spectroscopy in the 10 μM concentration range. Batch experiments with kaolinite in CO 2 -equilibrated systems showed that the adsorption edge of U(VI) occurs at pH 5.5, i.e., near the pH PZC of kaolinite. The adsorption edge of Np(V) occurs well above the pH PZC value at pH 8.5. This may indicate that the bonds between Np(V) and the surface functional groups of kaolinite are not as strong as in the case of U(VI). U(VI) and Np(V) have in common that the amount which is adsorbed decreases when the pH is increased beyond the absorption maximum. This behavior can be attributed to the formation of U(VI) and Np(V) carbonato complexes in the aqueous solutions. The aim of this comparative EXAFS study was to investigate the reason for the different affinities of U(VI) and Np(V) for kaolinite by measuring their local environments at the clay surface. Samples were prepared from 4 g/L kaolinite, 0.1 M NaClO 4 , pH 3.0 - 10.5, presence and absence of ambient CO 2 . The U L 3 - and Np L 2 -edge EXAFS spectra of the wet paste samples were measured at room temperature in fluorescence mode at the Rossendorf Beamline (ROBL) at the European Synchrotron Radiation Facility. The measured U-O and U-Al/Si distances indicate inner-sphere sorption of U(VI) on kaolinite. There was no evidence of uranium neighbors in the EXAFS spectra, suggesting that the adsorbed U(VI) complexes were predominantly monomeric. The average distance between uranium and its equatorial oxygen atoms, O eq , increased from 2.32 to 2.38 Angstrom in the presence of atmospheric CO 2 when the pH was increased from 5.0 to 8.5. In the CO 2 -free system, the U-O eq distance was independent from pH and equal to 2.32 Angstrom. The lengthening of the average U-O eq distance in the presence of carbonate (or bicarbonate) suggests the formation of ternary U

  5. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    Science.gov (United States)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  6. Effects of Organic Acids on Adsorption of Cadmium onto Kaolinite, Goethite, and Bayerite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals(kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.

  7. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers

    International Nuclear Information System (INIS)

    Uribe I, A.; Badillo A, V.E.; Monroy G, F.

    2005-01-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope 24 Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  8. Characterization of Sr2+ uptake on natural minerals of kaolinite and magnesite using XRPD, SEM/EDS, XPS, and DRIFT

    International Nuclear Information System (INIS)

    Shahwan, T.; Erten, H.N.

    2005-01-01

    The sorption behavior of Sr 2+ ions on natural minerals rich in kaolinite and magnesite was studied using SEM/EDS, XPS, XRPD, AAS/AES and DRIFT techniques. Quantitative analysis of the XPS data shows that magnesite is more effective in Sr 2+ uptake than kaolinite. DRIFT spectra and XRPD patterns indicate that the structures of both minerals were not affected upon Sr 2+ sorption. Intercalation of DMSO in kaolinite lamellae aiming at increasing the interlayer space did not significantly enhance the sorption capacity of the clay towards Sr 2+ probably due to the lack of a negative charge on the accessible sites. EDS mapping indicated that while the sorbed Sr is equally distributed on surface of natural kaolinite, it was associated - to a larger extent - with the regions richer in Mg in the case of natural magnesite. Comparing the uptake mechanisms of natural magnesite with that of pure MgCO 3 , it was seen that while natural magnesite sorbed Sr 2+ mainly through an ion exchange type mechanism, the formation of SrCO 3 coprecipitate was detected on the surface of the MgCO 3 at higher loadings. (orig.)

  9. Separation of oil palm shell and kernel by using kaolinite media

    Directory of Open Access Journals (Sweden)

    Sukpong Sirinupong

    2003-05-01

    Full Text Available The objective of this research is to investigate the possibility of using kaolinite from Ranong province as media in the oil palm shell and kernel separation process by means of heavy media separation. The effect of specific gravity of the slurry, type and amount of dispersant and type of clays on suspension of media and efficiency of separation were studied. It was found that the specific gravity of oil palm shell and kernel are 1.40 and 1.20 respectively. While the average specific gravity of kaolinite grade MRD-B85, RANONG-325 and commercial clay from Univanich Group. PCL., are 2.54, 2.65 and 2.46 respectively. It was apparent that the viscosity of clay slurry increased with the specific gravity of the slurry. For MRD-B85 and RANONG- 325 clays which have the average particle sizes of 10 and 12 microns, the pH of their slurries of about 5.84 and 6.33 respectively were obtained and at these conditions stability of the slurry rarely occurred and they could not be used for separation. However, these clays can also be utilized as media when dispersant such asCalgon or sodium silicate is applied to their slurries. It was found that the efficiency of separation depends on specific gravity and viscosity of the slurry, type and particle size of kaolinite and dosage of dispersant. The optimum separating conditions for MRD-B85 clay were the dosage of Calgon of 0.15% (or 1.5 kg/t of clay at the specific gravity of the slurry of 1.20-1.24 (27-32% Solids in which a pH of 6.14 and viscosity of 104 cP to very low value (could not be measured were obtained. Thus, kernel yielded 97.57-100% and shell contamination of 1.48-6.32% was achieved. While sodium silicate was applied to the slurry about 0.15% at the specific gravity of 1.22, pH of 6.74 and viscosity of 238 cP were obtained and kernel could be recovered 100% with shell contamination of 8.36%. When 0.15% Calgon or 0.25% sodium silicate was introduced to the RANONG-325 clay slurry at the specific gravity

  10. Strontium adsorption and penetration in kaolinite at low Sr

    NARCIS (Netherlands)

    Ning, Zigong; Ishiguro, Munehide; Koopal, Luuk K.; Sato, Tsutomu; Kashiwagi, Junichi

    2017-01-01

    Behavior of radioactive strontium (Sr2+) in contaminated soils is an important issue in relation to nuclear power plant accidents. The Sr2+ adsorption on kaolinite and its migration in a kaolinite soil were investigated because toxic effects of radioactive Sr2+ have been found to be very severe for

  11. Theoretical study for the interlamellar aminoalcohol functionalization of kaolinite

    International Nuclear Information System (INIS)

    Hou, Xin-Juan; Li, Huiquan; Liu, Qinfu; Cheng, Hongfei; He, Peng; Li, Shaopeng

    2015-01-01

    Graphical abstract: - Highlights: • The results indicated that aminoalcohols exist with a mixing of intercalation and grafting. • Aminoalcohols can form strong hydrogen bonds with Al octahedral sheet. • The interaction between aminoalcohols and Si tetrahedral sheet are mainly attributed by vdW force. • Aminoalcohols grafting or intercalating on kaolinite have strong reactivity as electron donors. - Abstract: Fundamental problems related to aminoalcohols intercalating on kaolinite were investigated by using density functional theory method. This study examines the adsorption modes of diethanolamine and triethanolamine on kaolinite, the role of hydrogen bonds and van der Waals (vdW) forces between aminoalcohols and interlayer of kaolinite, and the change of molecular orbital occupancies of functionalized kaolinite. Results show that functionalized kaolinite is physically intercalated and covalently grafted by aminoalcohols. Non-covalent interaction analysis provides a visualized description that intercalated aminoalcohols form strong hydrogen bonds with Al octahedral sheet, and the interaction between aminoalcohols and Si tetrahedral sheet is mainly attributed to weak vdW force. The analysis of molecular orbital occupancies for kaolinite complex showed that the functionalized kaolinite has strong chemical reactivity as electron donors on the sites of grafted or intercalated aminoalcohols for further chemical reaction with other materials

  12. Clay characterization of Monte Alegre-RN, Brazil

    International Nuclear Information System (INIS)

    Alencar, M.I.; Ferreira, O.F.; Ren, D.G.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study aimed to characterize the clay from the municipality of Monte Alegre in Rio Grande do Norte. Clay (popularly known as tabatinga) is used in brick kilns for producing bricks and tiles. This study also verified the possibility of using this for industrial ceramics and ceramic tiles. The following techniques were used for characterization: chemical and mineralogical analysis which found the composition of this material the presence of quartz and kaolinite, plasticity index where the result was that the clay has plasticity null; solid residue content was 60, 19%, the determination of loss on ignition was 8.70% on checking the color of the burning got creamy clear. (author)

  13. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  14. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  15. Radiation-Induced Defects in Kaolinite as Tracers of Past Occurrence of Radionuclides in a Natural Analogue of High Level Nuclear Waste Repository

    Science.gov (United States)

    Allard, T.; Fourdrin, C.; Calas, G.

    2007-05-01

    Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U

  16. Interactions between kaolinite Al−OH surface and sodium hexametaphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yonghua, E-mail: hyh19891102@163.com [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Liu, Wenli; Zhou, Jia [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Jianhua [College of Resources and Metallurgy, Guangxi University, Nanning 530004 (China)

    2016-11-30

    Highlights: • Sodium hexametaphosphate (NaHMP) can adsorb on kaolinite Al−OH terminated (001) surface easily. • The oxygen atoms of hexametaphosphate form strong hydrogen bonds with the hydrogen atoms of kaolinite Al−OH surface. • The electrostatic force is the main interaction between NaHMP and Al−OH surface. • The linear hexaphosphate −[PO{sub 3}]{sub m}− chains adsorb stably than −[HPO{sub 3}]{sub m}− chains. - Abstract: To investigate the dispersion mechanism of sodium hexametaphosphate on kaolinite particles, we simulated the interaction between linear polyphosphate chains and kaolinite Al−OH terminated surface by molecular dynamics, as well as the interaction between the [HPO{sub 4}]{sup 2−} anion and kaolinite Al−OH surface by density functional theory (DFT). The calculated results demonstrate that hexametaphosphate can be adsorbed by the kaolinite Al−OH surface. The oxygen atoms of hexametaphosphate anions may receive many electrons from the Al−OH surface and form hydrogen bonds with the hydrogen atoms of surface hydroxyl groups. Moreover, electrostatic force dominates the interactions between hexametaphosphate anions and kaolinite Al−OH surface. Therefore, after the adsorption of hexametaphosphate on kaolinite Al−OH surface, the kaolinite particles carry more negative charge and the electrostatic repulsion between particles increases. In addition, the adsorption of −[PO{sub 3}]{sub m}− species on the Al−OH surface should be more stable than the adsorption of −[HPO{sub 3}]{sub m}− species.

  17. Mineralogy of the Tertiary Clay Deposits in Makkah and Rabigh Quadrangles, West Central Arabian Shield, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M.H. Basyoni

    2002-06-01

    Full Text Available The mineralogy of the Tertiary clay deposits in Makkah and Rabigh quadrangles was thoroughly investigated by X-ray diffraction and differential thermal and thermogravimetric analyses in addition to other techniques. Results show that the investigated samples are predominantly composed of montmorillonite (Ca++ and/or Mg++ rich variety and kaolinite, associated with subordinate illite and minor chlorite. Mixed layer montmorillonite-illite is recorded only in two samples. The relative abundance of these minerals by X-ray diffraction analysis showed that the studied clay deposits are of three types. The first, which is the most common, is highly montmorillonitic, the second is made up of a mixture of montmorillonite followed by kaolinite and illite and the third is highly kaolinitic with some montmorillonite. Generally, kaolinite shows a southward increase in Makkah quadrangle while chlorite, as a minor component, shows a northward increase in Rabigh quadrangle.

  18. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  19. Hyperspectral analysis of clay minerals

    Science.gov (United States)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  20. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea

    DEFF Research Database (Denmark)

    Røgen, Birte; Fabricius, Ida Lykke

    2002-01-01

    specific surface area. Fifty-nine Tor and Ekofisk Formation chalk samples from five North Sea chalk reservoirs were investigated. All contain quartz and clay minerals, most commonly kaolinite and smectite, with trace amounts of illite. The contents of calcite and quartz are inversely correlated and both......)): calcite between 0.5 and 3.5, quartz about 5, kaolinite about 15, and smectite about 60....

  1. Growth mechanisms, polytypism, and real structure of kaolinite microcrystals

    International Nuclear Information System (INIS)

    Samotoin, N. D.

    2008-01-01

    The mechanisms of growth of kaolinite microcrystals (0.1-5.0 μm in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ in sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as ∼10 9 cm -2 . Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.

  2. Intercalation and Exfoliation of Kaolinite with Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Xiaochao Zuo

    2018-03-01

    Full Text Available Kaolinite (Kaol was intercalated with dimethyl sulfoxide (DMSO and subsequently methanol (MeOH to prepare intercalation compounds Kaol-DMSO and Kaol-MeOH. Kaol-MeOH was used as an intermediate to synthesize Kaol-sodium dodecyl sulfate (SDS intercalation compound (Kaol-SDS via displacement reaction. The ultrasonic exfoliation of Kaol-SDS produced a resultant Kaol-SDS-U. The samples were characterized by X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FTIR, thermal analysis, scanning electronic microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. The results revealed that the intercalation of sodium dodecyl sulfate into kaolinite layers caused an obvious increase of the basal spacing from 0.72–4.21 nm. The dehydroxylation temperature of Kaol-SDS was obviously lower than that of original kaolinite. During the intercalation process of sodium dodecyl sulfate, a few kaolinite layers were exfoliated and curled up from the edges of the kaolinite sheets. After sonication treatment, the kaolinite layers were further transformed into nanoscrolls, and the exfoliated resultant Kaol-SDS-U possessed a smaller particle size close to nanoscale.

  3. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  4. Ceramic qualities of industrial clay deposits at Vimtim in Mubi ...

    African Journals Online (AJOL)

    Their average chemical composition includes 70.5% SiO2, 17.04% Al2O3, 2.58% Total Fe oxides, 0.26% Na2O, 0.92% K2O, 0.89% MgO and appreciable kaolinite content. These parameters suggest good clay raw materials for the manufacture of coarse ceramic products like earthenware, kitchenware, ornamental wares ...

  5. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    Science.gov (United States)

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  6. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  7. Mineralogy of the clay fraction of Alfisols in two slope curvatures: III - spatial variability

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2013-04-01

    Full Text Available A good knowledge of the spatial distribution of clay minerals in the landscape facilitates the understanding of the influence of relief on the content and crystallographic attributes of soil minerals such as goethite, hematite, kaolinite and gibbsite. This study aimed at describing the relationships between the mineral properties of the clay fraction and landscape shapes by determining the mineral properties of goethite, hematite, kaolinite and gibbsite, and assessing their dependence and spatial variability, in two slope curvatures. To this end, two 100 × 100 m grids were used to establish a total of 121 regularly spaced georeferenced sampling nodes 10 m apart. Samples were collected from the layer 0.0-0.2 m and analysed for iron oxides, and kaolinite and gibbsite in the clay fraction. Minerals in the clay fraction were characterized from their X-ray diffraction (XRD patterns, which were interpreted and used to calculate the width at half height (WHH and mean crystallite dimension (MCD of iron oxides, kaolinite, and gibbsite, as well as aluminium substitution and specific surface area (SSA in hematite and goethite. Additional calculations included the goethite and hematite contents, and the goethite/(goethite+hematite [Gt/(Gt+Hm] and kaolinite/(kaolinite+gibbsite [Kt/(Kt+Gb] ratios. Mineral properties were established by statistical analysis of the XRD data, and spatial dependence was assessed geostatistically. Mineralogical properties differed significantly between the convex area and concave area. The geostatistical analysis showed a greater number of mineralogical properties with spatial dependence and a higher range in the convex than in the concave area.

  8. Sedimentological and clay mineral studies in Kakinada Bay, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, K.M.

    are of sandy sediments (2.9 to 3.05 phi). Interrelationships of size statistical parameters and the CM diagram of the bay sediments suggest a mechanism of slow deposition from quiet water. Montmorillonite is the predominant clay mineral followed by kaolinite...

  9. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  10. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  11. Adsorption behavior of strontium on kaolinite and montmorillonite and their mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atun, G. [Istanbul Univ. (Turkey). Engineering Faculty, Chemistry Dept.; Bascetin, E. [Cekmece Nuclear Research and Training Center, Istanbul (Turkey)

    2004-07-01

    {sup 90}Sr, with a long half-life of 28.5 years, is the most dangerous strontium isotope. The adsorption behavior of radionuclides in the environment are closely related to the safe disposal of radioactive wastes. Since various types of minerals may exist in and around the repositories used for ultimate disposal of nuclear waste, the adsorption behavior of certain radionuclides onto and from these minerals and similar adsorbents should be studied in order to estimate the rates of transport of the nuclides in the event of water penetration into and through the repository. Information on the adsorption properties of the purified individual clay minerals may not be sufficient to predict the adsorption properties of a corresponding mixture, because these clay minerals may interact with each other and lead to modification of the adsorption properties of the mixture as compared to the pure minerals. The adsorption behavior of strontium on kaolinite and montmorillonite minerals and their mixtures was studied by means of a batch method and a tracer technique. (orig.)

  12. Adsorption of barium on kaolinite, illite and montmorillonite at various ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Atun, G.; Bascetin, E. [Istanbul Univ., Dept. of Chemistry, Istanbul (Turkey)

    2003-07-01

    The sorption behaviour of Ba{sup 2+} in three different clay minerals from various regions of Turkey has been investigated by means of a tracer technique using {sup 133}Ba in batch experiments. Sorption of Ba{sup 2+} on montmorillonite, kaolinite and illite has been studied in mixed solutions of BaCl{sub 2} and NaCl at ionic strengths ranging from 1 x 10{sup -3}M to 1 x 10{sup -1}M. The L-shape exchange isotherms for Ba{sup 2+}-Na{sup +} systems are well defined by a Langmuir type equation. The exchange capacity of Ba{sup 2+} ions for all three clay minerals increased with decreasing ionic strength. The adsorption data were fitted to a Freundlich isotherm and empirical Freundlich parameters enabled to the generation of a site distribution function. The selectivity coefficients were nearly constant at low Ba loading and decreased as loading increased. This behavior was an indication of an ion exchange process between Ba{sup 2+} and Na{sup +} ions.

  13. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals

    International Nuclear Information System (INIS)

    Goetze, J.; Ploetze, M.; Goette, T.; Neuser, R.D.; Richter, D.K.

    2002-01-01

    Sheet silicates of the serpentine-kaolin-group (serpentine, kaolinite, dickite, nacrite, halloysite), the talc-pyrophyllite-group (talc, pyrophyllite), the smectite-group (montmorillonite), and illite (as a mineral of the mica-group) were investigated to obtain information concerning their cathodoluminescence behavior. The study included analyses by cathodoluminescence (CL microscopy and spectroscopy), electron paramagnetic resonance (EPR), x-ray diffraction (XRD), scanning electron microscopy (SEM) and trace element analysis. In general, all dioctahedral clay minerals exhibit a visible CL. Kaolinite, dickite, nacrite and pyrophyllite have a characteristic deep blue CL, whereas halloysite emission is in the greenish-blue region. On the contrary, the trioctahedral minerals (serpentine, talc) and illite do not show visible CL. The characteristic blue CL is caused by an intense emission band around 400 nm (double peak with two maxima at 375 and 410 nm). EPR measurements indicate that his blue emission can be related to radiation induced defect centers (RID), which occur as electron holes trapped on apical oxygen (Si-O center) or located at the Al-O-Al group (Al substituting Si in the tetrahedron). Additional CL emission bands were detected at 580 nm in halloysite and kaolinite, and between 700 and 800 nm in kaolinite, dickite, nacrite and pyrophyllite. Time-resolved spectral CL measurements show typical luminescence kinetics for the different clay minerals, which enable differentiation between the various dioctahedral minerals (e.g. kaolinite and dickite), even in thin section. (author)

  14. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    Document available in extended abstract form only. Frequency-domain induced polarization (IP) measurements consist of imposing an alternative sinusoidal electrical current (AC) at a given frequency and measuring the resulting electrical potential difference between two other non-polarizing electrodes. The magnitude of the conductivity and the phase lag between the current and the difference of potential can be expressed into a complex conductivity with the in-phase representing electro-migration and a quadrature conductivity representing the reversible storage of electrical charges (capacitive effect) of the porous material. Induced polarization has become an increasingly popular geophysical method for hydrogeological and environmental applications. These applications include for instance the characterization of clay materials used as permeability barriers in landfills or to contain various types of contaminants including radioactive wastes. The goal of our study is to get a better understanding of the influence of the clay content, clay mineralogy, and pore water salinity upon complex conductivity measurements of saturated clay-sand mixtures in the frequency range ∼1 mHz-12 kHz. The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite in the frequency range 1.4 mHz - 12 kHz. Four different types of samples were used, two containing mainly kaolinite (80% of the mass, the remaining containing 15% of smectite and 5% of illite/muscovite; 95% of kaolinite and 5% of illite/muscovite), and the two others containing mainly Na-smectite or Na-Ca-smectite (95% of the mass; bentonite). The experiments were performed with various clay contents (1, 5, 20, and 100% in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). In total, 44 saturated clay or clay-sand mixtures were prepared. Induced polarization measurements

  15. Adsorption properties of stearic acid onto untreated kaolinite | Sari ...

    African Journals Online (AJOL)

    The focus of the study is to investigate adsorption property and determine thermodynamic parameters for the adsorption of stearic acid onto untreated kaolinite at the temperatures of 25, 35 and 45 oC. The equilibrium adsorption isotherms were analyzed by linear Langmuir and Freundlich models. Adsorption experiments ...

  16. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2017-06-01

    Full Text Available In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C.

  17. Adsorption of some radionuclides on kaolinite mineral surface

    International Nuclear Information System (INIS)

    Hafez, M.B.; Said, F.I.A.

    1986-01-01

    Fixation of 187 Cs(I), 144 Ce(III), 90 Sr(II), 233 U(VI), 239 Pu(IV) and 211 Am(III) from aqueous and phosphate media on kaolinite was studied. The fixation of the nuclides on the mineral was found to depend on the pH and the hydrolytic behaviour of the elements

  18. Characterization of sands and mineral clays in channel and floodplain deposits of Portuguesa river, Venezuela

    Directory of Open Access Journals (Sweden)

    Orlando José González Clemente

    2013-11-01

    Full Text Available In the main channel and floodplain of Portuguesa River were studied the mineralogical characteristics of sand and clay minerals respectively. The methodology consisted of X-ray diffraction (XRD analysis, for both mineral fractions. The results indicated the presence of mainly of quartz sands with minor amounts of chlorite, muscovite, calcite and feldspar which are considered quartz sand mature. Its origin is related to the source area and rework of soils and sediments of the floodplain. The clay fraction is characterized by the presence of 13 mineral crystalline phases consisting mainly of quartz, muscovite and chlorite, and clay minerals such as kaolinite, vermiculite, montmorillonite and nontronita. Its detrital origin may be due to mineral neoformation and inheritance. Therefore both mineral fractions consist mainly of quartz and kaolinite, which are essential components of the source area as well as the Quaternary alluvial deposits and the soils that make up the region.

  19. X-ray diffraction analysis of clay stones, Muglad Sedimentary Basin, Sudan

    International Nuclear Information System (INIS)

    Ali, A. E.

    1997-01-01

    This study deals with the theoretical and experimental aspects of X-ray diffraction (XRD) technique. Moreover the XRD technique has been used to investigate the clay mineral types and their distribution for samples obtained from exploration wells in the Mugald Sedimentary Basin in Western Sudan. The studied samples range in depth from 1524 m to 4572 m. The XRD analysis of samples shows that they consist of kaolinite, smectite, illite, chlorite and the mixed-layer smectite/illite. Kaolinite has higher abundance (15 - 72 %) followed by illite (7 - 34 %), smectite (11 - 76 %) and the less abundance of chlorite and the mixed-layer smectite/illite. Non-clay minerals found include quartz and cristabolite. The clay mineral types and their vertical distribution reflect various controls such as environmental, burial diagenesis, source rocks and climatic influences in the Muglad Sedimentary Basin. (author). 19 refs., 11 figs., 3 tabs

  20. Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite

    International Nuclear Information System (INIS)

    Dogan, Mehmet; Karaoglu, M. Hamdi; Alkan, Mahir

    2009-01-01

    Kaolinite, a low-costly material, is the most abundant phyllosilicate mineral in highly weathered soils. In this work, the adsorption kinetics of maxilon yellow 4GL (MY 4GL) and maxilon red GRL (MR GRL) dyes on kaolinite from aqueous solutions was investigated using the parameters such as contact time, stirring speed, initial dye concentration, initial pH, ionic strength, acid-activation, calcination and solution temperature. The equilibrium time was 150 min for both dyes. The results showed that alkaline pH was favorable for the adsorption of MY 4GL and MR GRL dyes and physisorption seemed to play a major role in the adsorption process. It was found that the rate of adsorption decreases with increasing temperature and the process is exothermic. The adsorption kinetics followed the pseudo-second-order equation for both dyes investigated in this work with the k 2 values lying in the region of 1.79 x 10 4 to 107.87 x 10 4 g/mol min for MY 4GL and 3.44 x 10 4 to 72.09 x 10 4 g/mol min for MR GRL. The diffusion coefficient values calculated for the dyes were in the range of 3.76 x 10 -9 to 62.50 x 10 -9 cm 2 /s for MY 4GL and 1.98 x 10 -9 to 44.00 x 10 -9 cm 2 /s for MR GRL, and are compatible with other studies reported in the literature. The thermodynamic activation parameters such as the enthalpy, entropy and free energy were determined. The obtained results confirmed the applicability of this clay as an efficient adsorbent for cationic dyes.

  1. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  2. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  3. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  4. Studying the Effect of Crystal Size on Adsorption Properties of Clay

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    Sorption of radionuclides on mineral surfaces strongly affects their fate and mobility in the geosphere. Therefore using of clay minerals as a barrier In LLW repositories can delay the dispersion of radionuclides into environment. That is of fundamental importance for maintaining environmental quality and for the safety and long-term performance of waste repositories. In this study XRD analysis was applied to investigate three different types of clay minerals for quantitative analysis of each type and the Mud Master program for the measurement of the crystallite thickness distribution (CTD) according to of the BWA (Bertaut-Warren Averbach) technique. Six sample s of the three types of clay (Kaolin, Aswan clay and Ball clay) were studied. XRD and Mud Master were used to investigate the relation between CTD and Cs -137 uptake mechanism onto the clay. It was found that the best adsorption capacity related to the kaolinite content and the lowest CTD

  5. Commercial demonstration of kaolinitic clay for protection of Flavobacterium columnaris in sportfish

    Science.gov (United States)

    Sportfish farms in Arkansas routinely battle Columnaris disease, which is caused by Flavobacterium columnare. Columnaris is especially prevalent during the feed training of centrarchids such as largemouth bass and immediately following harvest of crappie, redear sunfish, and bluegill while they are ...

  6. Organic template free synthesis of ZSM11 from kaolinite clay | Ajayi ...

    African Journals Online (AJOL)

    They were both subjected to beneficiation, calcinations, dealumination and the gels formed, had molar composition of 9Na2OX30SiO2XAl2O3X225H2O. The raw, intermediate and final products were fully characterized using XRD, XRF, BET and SEM/EDX. The prominent XRD peaks for ZSM11 were noticed for Kankara ...

  7. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  8. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  9. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  10. Preparation of Synthetic Zeolites from Myanmar Clay Mineral

    International Nuclear Information System (INIS)

    Phyu Phyu Win

    2004-04-01

    Faujasite type zeolite X was successfully synthesized from Myanmar clay mineral kaolinite, by treating with sodium hydroxide at 820 C followed by dissolution in water and hydrothermal treatment. It was found that the solution of fused clay powder can be crystallized at 90C under ambient pressure to synthesize faujasite type zeolite X. The effects of aging time and the amount of water on the formation of the product phase and Si/ Al ratios of the resulting products were investigated. Most of the Si and Al components in kaolinite might be dissolved into an alkaline solution and reacted to form ring-like structures. Then it was effectively transformed into zeolite materials. The maximum relative crystallinity of faujasite zeolite obtained was found to be 100%. Zeolite P was found to be a competitive phase present in some resulting products during hydrothermal treatment. The cation exchange capacity of kaolinite is very low, but increased after a proper treatment. It was found that the prepared faujasite type zeolite X, zeolite P and hydrogen zeolite (HZ) can reduce the hardness, the alkalinity, the total dissolved solid and the dissolved iron of raw water in the batch wise operation of water treatment. Therefore, it can be used as the cation exchanged resin for water treatment

  11. Release of cadmium from clays and plant uptake of cadium from soil as affected by potassium and calcium amendments

    International Nuclear Information System (INIS)

    Haghiri, F.

    1976-01-01

    The effects of percent K and/or Ca saturations on the release of Cd from Cd-treated H-clays (kaolinite and illite) and on the Cd availability to plants from Cd-treated Canfield silt loam soil were determined. The concentration of Cd in the dialyzates from both kaolinite and illite clays increased as the percent of Ca or K saturation of the clays in the suspension decreased. The release of Cd from both clays was greater in the presence of Ca than K. In a separate experiment, the concentration of Cd in soybean shoots (Glycine max L. Merr.) ''Corsoy'' decreased with increasing percent Ca or K saturation of the soil. The results indicated that Cd uptake by soybeam shoots could be impaired to a great extent by K application

  12. Application of short-wave infrared (SWIR) spectroscopy in quantitative estimation of clay mineral contents

    International Nuclear Information System (INIS)

    You, Jinfeng; Xing, Lixin; Pan, Jun; Meng, Tao; Liang, Liheng

    2014-01-01

    Clay minerals are significant constituents of soil which are necessary for life. This paper studied three types of clay minerals, kaolinite, illite, and montmorillonite, for they are not only the most common soil forming materials, but also important indicators of soil expansion and shrinkage potential. These clay minerals showed diagnostic absorption bands resulting from vibrations of hydroxyl groups and structural water molecules in the SWIR wavelength region. The short-wave infrared reflectance spectra of the soil was obtained from a Portable Near Infrared Spectrometer (PNIS, spectrum range: 1300∼2500 nm, interval: 2 nm). Due to the simplicity, quickness, and the non-destructiveness analysis, SWIR spectroscopy has been widely used in geological prospecting, chemical engineering and many other fields. The aim of this study was to use multiple linear regression (MLR) and partial least squares (PLS) regression to establish the optimizing quantitative estimation models of the kaolinite, illite and montmorillonite contents from soil reflectance spectra. Here, the soil reflectance spectra mainly refers to the spectral reflectivity of soil (SRS) corresponding to the absorption-band position (AP) of kaolinite, illite, and montmorillonite representative spectra from USGS spectral library, the SRS corresponding to the AP of soil spectral and soil overall spectrum reflectance values. The optimal estimation models of three kinds of clay mineral contents showed that the retrieval accuracy was satisfactory (Kaolinite content: a Root Mean Square Error of Calibration (RMSEC) of 1.671 with a coefficient of determination (R 2 ) of 0.791; Illite content: a RMSEC of 1.126 with a R 2 of 0.616; Montmorillonite content: a RMSEC of 1.814 with a R 2 of 0.707). Thus, the reflectance spectra of soil obtained form PNIS could be used for quantitative estimation of kaolinite, illite and montmorillonite contents in soil

  13. Pb-Zn mineralization of the Ali ou Daoud area (Central High Atlas, Morocco): characterisation of the deposit and relationships with the clay assemblages; Mineralisation Pb-Zn du type MVT de la region d'Ali ou Daoud (Haut Atlas Central, Maroc): caracterisations du gite et relations avec les corteges de mineraux argileux

    Energy Technology Data Exchange (ETDEWEB)

    Mouguina, E. M.; Daoudi, L.

    2008-07-01

    Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas) are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., syn sedimentary faults) played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralizations would result from the same hydrothermal fluid. (Author) 55 refs.

  14. [Mechanism of tritium persistence in porous media like clay minerals].

    Science.gov (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  15. Late-Quaternary variations in clay minerals along the SW continental margin of India: Evidence of climatic variations

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Sukhija, B.S.; Gujar, A.R.; Nagabhushanam, P.; Paropkari, A.L.

    Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two sup(14)C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20-17, 12.5, 11-9.5, and 5...

  16. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    International Nuclear Information System (INIS)

    Jia Xin; Li Yanfeng; Zhang Bo; Cheng Qiong; Zhang Shujiang

    2008-01-01

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement

  17. Clay-based materials for engineered barriers: a review

    International Nuclear Information System (INIS)

    Lajudie, A.; Raynal, J.; Petit, J.C.; Toulhoat, P.

    1994-01-01

    The potential importance of backfilling and plugging in underground radioactive waste repositories has led different research institutions to carry out extensive studies of swelling clay materials for the development of engineered barriers in underground conditions. These materials should combine a variety of hydro-thermo-mechanical and geochemical properties: impermeability, swelling ability in order to fill all void space, heat transfer and retention capacity for the most noxious radionuclides. Smectite clays best exhibit these properties and most of the research effort has been devoted to this type of materials. In this paper, mineralogical composition, sodium or calcium content, thermo-hydro-mechanical properties, swelling pressure, hydraulic and thermal conductivity, and chemical properties of five smectite clays selected by five major nuclear countries are reviewed: Avonseal montmorillonite (Canada), MX 80 montmorillonite (Sweden), Montigel montmorillonite (Switzerland), S-2 montmorillonite (Spain), and Fo-Ca inter stratified kaolinite/beidellite (France). (J.S.). 29 refs., 5 figs., 3 tabs

  18. Clay characterization of Boa Saude-RN, Brazil

    International Nuclear Information System (INIS)

    Ren, D.G.; Alencar, M.I.; Ferreira, O.F.; Cunha, J.M.R.; Harima, E.

    2011-01-01

    This study characterized a sample of clay from the City of Boa Saude of Rio Grande do Norte. Clay is burning clear and used in Monte Alegre in the brick kilns for producing bricks and tiles. This study also verified the possibility of using these in the field of industrial ceramics. The following techniques were used for characterization: chemical and mineralogical analysis, which determined the presence of the following minerals, muscovite, quartz and kaolinite, the plasticity index can be said that the clay has an average plasticity index, also was made organic matter content, residue content, determination of loss on ignition was found that a loss of 9.38%, checking the color of burning gave a gradient of cream to orange with increasing temperature. (author)

  19. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    Science.gov (United States)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  20. Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite

    International Nuclear Information System (INIS)

    Shuji Tamamura; Takahiro Takada; Seiya Nagao; Masayoshi Yamamoto; Keisuke Fukushi

    2014-01-01

    The effect of NaCl concentration (10.0-1,000 mM) on 226 Ra adsorption was investigated in the presence of montmorillonite and kaolinite. A positive correlation was observed between the dissolved 226 Ra and NaCl concentrations in the presence of these adsorbents. Distribution coefficients decreased from the order of 10 4 to 10 0 (mL g -1 ) with an increase in NaCl concentration. Although the coefficients were higher for montmorillonite than kaolinite at lower NaCl concentrations, the trend was reversed at higher NaCl concentrations (≥500 mM) owing to the sharper reduction of the coefficient for montmorillonite with the increase in NaCl concentration. The rapid reduction was ascribed to higher negative charge density of montmorillonite, which leads the Ra 2+ adsorption mechanism to approach charge-compensating ion exchange. (author)

  1. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    Science.gov (United States)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures

  2. Flocculation kinetics of kaolinite : role of aqueous phase species

    Energy Technology Data Exchange (ETDEWEB)

    House, P.; Wang, C.; Dhadli, N. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    Flocculation kinetics were used to study the rate-based processes that lead to aggregate growth and breakage of kaolinite in oil sands tailings. The role of aqueous phase species on aggregate growth, breakage and flocculant de-activation was studied. Collision efficiency and deactivation parameters were presented. The study showed that collisions can be efficient when the adsorption of the polymer is thermodynamically favorable. Up to 94 percent of adsorption takes place at the kaolinite edge. Studies have shown that hydrogen bonding sites on the kaolinite disappear with increases in pH values. The impact of molecular level interactions on flocculation kinetics were assessed in order to determine collision efficiencies and aggregate breakage rates. A focused beam reflectance model was used to monitor flocculation kinetics in situ. The period over which reflectance was observed was coupled with the laser velocity to determine the chord length of the particle. The kinetics of flocculation were observed for a 10 minute period. The effects of pH, calcium additions, and EDTA chelating agent additions were investigated. The study showed that calcium additions accelerate the rate of flocculant growth dramatically, and provide a much higher collision efficiency. Flocculants formed in the presence of calcium were weaker. The presence of salts promoted polymer adsorption by non-specific Van der Waals forces. tabs., figs.

  3. Migration of leachate solution through clay soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Warith, M M

    1987-01-01

    The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate, and the efficiency of natural clay barriers as an expedient economic lining material is assessed. Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins. Data for companion tests on laboratory columns are also presented. Chemical analysis on samples from the basins and leachates from the columns measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO/sub 3/, and CO/sub 3/) (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity. Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model). Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite). The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favorable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used.

  4. New kaolinite phases expanded through intercalation with potassium acetate

    International Nuclear Information System (INIS)

    Frost, R.L.; Kristof, J.; Kloprogge, J.T.

    1998-01-01

    Full text: Changes in the hydroxyl surfaces of potassium acetate-intercalated kaolinite have been studied over the ambient to predehydroxylation temperature range using a combination of X-ray diffraction and Raman spectroscopy. Upon intercalation, the kaolinite expanded along the c-axis direction to 13.88 Angstroms. Upon heating the intercalation complex over the 50 to 300 deg C range, X-ray diffraction shows the existence of three additional intercalation phases with d-spacings of 9.09, 9.60, and 11.47 Angstroms. The amount of each phase is temperature dependent. These expansions are reversible and upon cooling the intercalation complex returned to its original spacing. The 13.88 Angstroms phase only existed in the presence of water. It is proposed that the expanded kaolinite intercalation phases result from the orientation of the acetate within the intercalation complex. The Raman spectra of the hydroxyl-stretching region (Frost and van der Gaast, 1997) of potassium acetate-intercalated kaolinite has been obtained under an atmosphere of both air and nitrogen using a thermal stage over the 25 to 300 deg C temperature range (Johansson et al., 1998). Raman spectra of the C-C, C=O stretching and O-C-O bending modes show that at least two types of acetate are present in the intercalation complex. These are assigned to two different orientations of the acetate. At 25 deg C, a new band at 3606 cm -1 attributed to the inner surface hydroxyl hydrogen bonded to the acetate ion is observed with a concomitant loss of intensity in the bands attributed to the inner surface hydroxyls (Frost and Kristof, 1997, Frost et al.,1997). Heating the intercalation complex to 50 deg C results in two hydroxyl-stretching frequencies at 3594 and 3604 cm -1 . This change in frequencies is ascribed to phase changes of the potassium acetate-intercalated kaolinite. At 100 deg C, the bands shift to 3600 and 3613 cm -1 . These shifts in frequencies are assigned to new kaolinite expanded phases. At

  5. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  6. Rational analysis and index of plasticity of clays for extrusion evaluation

    International Nuclear Information System (INIS)

    Silva, A.R.; Guimaraes Filho, M.A.S.; Santos, C.V.P.; Fagury Neto, E.; Rabelo, A.A.

    2011-01-01

    In the microregion Maraba, in the southeast paraense, there's a important industrial park in the area of red ceramic due to the quality of the extracted clays in the proximities of their rivers. With the intention of collaborating for the production of tiles and structural blocks of quality, in this work the rational analysis of clays was accomplished, through the relationship of the qualitative X-ray diffraction and X-ray fluorescence results. Was possible to quantify the present phases in the collected clays and these results were correlated to the Atterberg's limits - plasticity and liquidity limitsand the respective plasticity indexes - making possible to classify the clays in areas of great and acceptable extrusion. The results of the rational analysis demonstrated that the analyzed clays are plastic kaolinites and don't present quantitative differences very accentuated among the present phases detected besides they possess an area of acceptable extrusion naturally. (author)

  7. Crystal chemistry and Moessbauer spectroscopic analysis of clays around Riyadh for brick industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mutasim I., E-mail: mkhalil@ksu.edu.sa [King Saud University, Department of Chemistry, College of Science (Saudi Arabia)

    2013-04-15

    A total of 30 clay samples were collected from the area around Riyadh city, Saudi Arabia. A complete chemical analysis was carried out using different techniques. X-ray diffraction studies showed that the clay samples were mainly of the smectite group with traces of the kaolinite one. The samples studied were classified as nontronite clay minerals. One of the clay fraction has been studied by Moessbauer spectroscopy as raw clay fraction and after being fired at 950-1,000 Degree-Sign C. The Moessbauer spectra showed accessory iron compounds in the form of hematite and goethite. The structural iron contents disintegrate on firing transforming into magnetic iron oxide and a paramagnetic small particles iron oxide.

  8. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  9. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  10. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  11. Experimental study and mathematical model on remediation of Cd spiked kaolinite by electrokinetics

    International Nuclear Information System (INIS)

    Mascia, Michele; Palmas, Simonetta; Polcaro, Anna Maria; Vacca, Annalisa; Muntoni, Aldo

    2007-01-01

    An experimental study on electrokinetic removal of cadmium from kaolinitic clays is presented in this work, which is aimed to investigate the effect of surface reactions on the electrokinetic process. Enhanced electrokinetic tests were performed in which the pH of the compartments was controlled. Cadmium spiked kaolin was adopted in the experimental runs. On the basis of the experimental results, a numerical model was formulated to simulate the cadmium (Cd) transport under an electric field by combining a one-dimensional diffusion-advection model with a geochemical model: the combined model describes the contaminant transport driven by chemical and electrical gradients, as well as the effect of the surface reactions. The geochemical model utilized parameters derived from the literature, and it was validated by experimental data obtained by sorption and titration experiments. Electrokinetic tests were utilized to validate the results of the proposed model. A good prediction of the behaviour of the soil/cadmium ions system under electrical field was obtained: the differences between experimental and model predicted profiles for the species considered were less than 5% in all the examined conditions

  12. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  13. The sorption behavior of Cs and Cd onto oxide and clay surfaces

    International Nuclear Information System (INIS)

    Westrich, H.R.; Cygan, R.T.; Brady, P.V.; Nagy, K.L.; Anderson, H.L.; Kirkpatrick, R.J.

    1995-01-01

    The sorption of Cs and Cd on model soil minerals was examined by complementary analytical and experimental procedures. X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical and physical nature of Cs-reacted soil minerals. Cd and Cs adsorption isotherms for kaolinite were also measured at variable pH and temperature to establish likely reaction stoichiometries, while atomic force microscopy (AFM) was used to characterize the microtopography of the clay surface. XPS analyses of Cs-exchanged samples show that Cs is sorbed at mineral surfaces and at the interlayer site of smectite clays, although the spectral resolution of XPS analyses is insufficient to differentiate between basal, edge or interlayer sites. 133 Cs MAS-NMR results also show that Cs is adsorbed primarily in an interlayer site of montmorillonite and on edge and basal sites for kaolinite. Cd adsorption isotherms on kaolinite were found to be additive using Al 2 0 3 + Si0 2 Cd binding constants. AFM quantification of kaolinite crystallites suggest that edges comprise up to 50% of the BET surface area, and are consistent with NMR and surface charge results that Cs an Cd adsorption occur primarily at edge sites

  14. Distribution of clay minerals in the process streams produced by the extraction of bitumen from Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W.; Etsell, T.H.; Ivey, D.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Omotoso, O. [Natural Resources Canada, Devon, AB (Canada). CETC

    2009-02-15

    The clay minerals present in the oil sands were studied with particular reference to how they are partitioned in bitumen ore during the extraction process. Bitumen production from surface-mined oil sands accounts for nearly two-thirds of the total bitumen production in Alberta. Every cubic meter of mined ore results in 1.3 cubic meters of mature fine tailings (MFT). The characteristic differences between the clay minerals that report to the froth versus the tailings streams were also examined to determine which minerals could impact different unit operations in the bitumen extraction process. X-ray diffraction and random powder samples were used to quantify the clay minerals. Particle size distribution and clay activity balances were also conducted. The degree of partitioning during the conditioning and flotation stages in a batch extractor was determined by the surface properties of the clay minerals. The water-continuous tailings stream was separated into fine and coarse tailings fractions through sedimentation. The study showed that bitumen-clay interactions may be dominated by kaolinite or iron oxides. Clays are responsible for the poor settling behaviour of MFTs. The clay minerals present in the oil sands include illite, illite-smectite, kaolinite, kaolinite-smectite, and chlorite. The close proximity of the tailings ponds to the Athabasca River and volatile organic compounds (VOCs) emission require that the ponds be reclaimed to a natural landscape before mine closure. In addition to its impact on fine tailings reclamation, clay mineralogy plays a role in extraction froth flotation and emulsion stability during froth treatment. The mineralogy of the froth solids was found to be different from the mineralogy of the middlings and tailings solids. 39 refs., 6 tabs., 6 figs.

  15. Characterization of bentonite clay from “Greda” deposit

    Directory of Open Access Journals (Sweden)

    Nadežda Stanković

    2011-06-01

    Full Text Available Based on mineralogical and technological investigations of the deposit “Greda” important characteristics of bentonite clay were determined. Representative samples of the deposit were characterized with X-ray diffraction, low-temperature nitrogen adsorption, chemical analysis, differential thermal analysis and scanning electron microscopy. It was determined that the main mineral is montmorillonite and in subordinate quantities kaolinite, quartz and pyrite. The chemical composition generally shows high silica and alumina contents in all samples and small quantities of Fe3+, Ca2+ and Mg2+ cations. Based on technological and mineralogical research, bentonite from this deposit is a high-quality raw material for use in the ceramic industry.

  16. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  17. Extraction of selected heavy metals using modified clays.

    Science.gov (United States)

    Krikorian, Nadine; Martin, Dean F

    2005-01-01

    In the present study, attapulgite, kaolinite, and montmorillonite KSF were modified using azeotropic distillation to condense 2-mercaptoethanol with the clay material. The resulting product was used as a coordinating agent to remove selected metal ions, e.g., copper(II), cadmium(II), silver(I), nickel(II), and lead(II) ions from standard aqueous solutions. Batch systems were used, and samples were shaken for two hours, and following filtration, metal content of the filtrate was measured by atomic absorption spectrometry. Without adjusting the pH, better than 90% of the metal ions could be removed.

  18. Geothermal alteration of clay minerals and shales: diagenesis

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes

  19. Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW?

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Four commercial clays, saponite, mixed-layer smectite-mica, kaolinite, and palygorskite, have been examined as possible alternatives to MX-80 buffer. General estimates based on the microstructural constitution and hydration potential as well as actual laboratory testing show that except for normally graded kaolinite, they would all serve acceptably in a repository. MX-80 is, however, superior with respect to hydraulic conductivity and retardation of diffusive transport of relevant cations and, like saponite and palygorskite, it has a high swelling pressure, that may in fact be too high. The mixed-layer clay is less but sufficiently expandable and is concluded to have better thermal and rheological properties as well as gas release capacity. It is hence the number one competitor to MX-80

  20. Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW?

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R [Geodevelopment AB, Lund (Sweden)

    1999-12-01

    Four commercial clays, saponite, mixed-layer smectite-mica, kaolinite, and palygorskite, have been examined as possible alternatives to MX-80 buffer. General estimates based on the microstructural constitution and hydration potential as well as actual laboratory testing show that except for normally graded kaolinite, they would all serve acceptably in a repository. MX-80 is, however, superior with respect to hydraulic conductivity and retardation of diffusive transport of relevant cations and, like saponite and palygorskite, it has a high swelling pressure, that may in fact be too high. The mixed-layer clay is less but sufficiently expandable and is concluded to have better thermal and rheological properties as well as gas release capacity. It is hence the number one competitor to MX-80.

  1. Influence of the barite tenors of the Jaicos, Piaui, Brazil, clays on the ceramic properties of electric insulator porcelains

    International Nuclear Information System (INIS)

    Correa, W.L.P.; Lima, M.B.; Carvalho, F.M.S.

    2009-01-01

    The clays of the Municipality of Jaicos, Piaui, has been used as raw materials for the manufacture of insulators for company located in the municipality of Pedreira - Sao Paulo. It can be noticed in the clay blocks and consolidated, 'lenses' of barite. The mineralogical composition of clay and the nature of these 'lenses' were studied by chemical analysis, X-ray diffraction for mineralogical characterization. The clays are composed primarily by kaolinite, quartz, and some amount of illite and orthoclase. The presence of orthoclase does believe in a recent deposition of these clays. The 'lenses' were characterized as barite, BaSO 4 . To check the influence of barite in the composition of bodies of porcelain to insulators made up six compositions with different levels of barite, obtained their own clay. It applies, then the tests of ceramic fracture to bending, water absorption, apparent porosity to determine the effect of the introduction of barite in the compositions. (author)

  2. Clay mineralogical studies on Bijawars of the Sonrai Basin: palaeoenvironmental implications and inferences on the uranium mineralization

    International Nuclear Information System (INIS)

    Jha, Surendra Kumar; Shrivastava, J.P.; Bhairam, C.L.

    2012-01-01

    Clays associated with the Precambrian unconformity-related (sensu lato) uranium mineralization that occur along fractures of Rohini carbonate, Bandai sandstone and clay-organic rich black carbonaceous Gorakalan shale of the Sonrai Formation from Bijawar Group is significant. Nature and structural complexity of these clays have been studied to understand depositional mechanism and palaeoenvironmental conditions responsible for the restricted enrichment of uranium in the Sonrai basin. Clays ( chlorite> illite > smectite mineral assemblages, whereas, Solda Formation contains kaolinite > illite > chlorite clays. It has been found that the former mineral assemblage resulted from the alteration process is associated with the uranium mineralization and follow progressive reaction series, indicating palaeoenvironmental (cycles of tropical humid to semi-arid/arid) changes prevailed during maturation of the Sonrai basin. The hydrothermal activity possibly associated with Kurrat volcanics is accountable for the clay mineral alterations

  3. Kaolinite flocculation induced by smectite addition - a transmission X-ray microscopic study.

    Science.gov (United States)

    Zbik, Marek S; Song, Yen-Fang; Frost, Ray L

    2010-09-01

    The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Adsorption of Cs+, Ni2+ and lanthanides onto a kaolinite and Na-montmorillonite up to 1500C: an experimental and modeling study

    International Nuclear Information System (INIS)

    Tertre, E.

    2005-10-01

    The motivation for this study is to assess the temperature effect on the clay minerals sorption properties. Sorption and desorption of Cs + , Ni 2+ et Ln 3+ onto a montmorillonite and a kaolinite were performed by batch experiments between 25 and 150 C, and in different pH and ionic strengths conditions. Sorption enthalpies varying between 0 and 80 kJ/mol were then calculated. For europium, surface spectroscopic analyses confirmed that the mechanism involved is adsorption, including at 150 C. Moreover, this method allowed us to obtain qualitatively the different adsorption equilibrium occurring during the reaction. An acid/base study of the clay surfaces was performed in order to assess the temperature effect on the surface charge of these minerals. Then, a surface complexation model including edge sites and structural sites was proposed to interpret the acid/base data and the europium sorption data. (author)

  5. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers; Obtencion de la capacidad de intercambio cationico de una kaolinita natural con trazadores radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Uribe I, A.; Badillo A, V.E. [Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Monroy G, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: Adrya81@hotmail.com

    2005-07-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope {sup 24} Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  6. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    Science.gov (United States)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  7. Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Liu, Qinfu, E-mail: lqf@cumtb.edu.cn [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083 (China); Zeng, Fangui [Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-03-15

    Graphical abstract: Snapshot of the kaolinite–DMSO system after equilibrium is reached. - Highlights: • Dimethyl sulfoxide arranges a monolayer structure between kaolinite layers. • Weak hydrogen bonds exist between methyl groups of dimethyl sulfoxide and kaolinite silica layer. • Intercalated dimethyl sulfoxide forms strong hydrogen bonds with kaolinite alumina layer. - Abstract: Kaolinite intercalation complex with dimethyl sulfoxide (DMSO) was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry–differential scanning calorimetry (TG–DSC) combined with molecular dynamics simulation. The bands assigned to the OH stretching of inner surface of kaolinite were significantly perturbed after intercalation of DMSO into kaolinite. Additionally, the bands attributed to the vibration of gibbsite-like layers of kaolinite shifted to the lower wave number, indicating that the intercalated DMSO were strongly hydrogen bonded to the alumina octahedral surface of kaolinite. The slightly decreased intensity of 1031 cm{sup −1} and 1016 cm{sup −1} band due to the in-plane vibration of Si−O of kaolinite revealed that some DMSO molecules formed weak hydrogen bonds with the silicon tetrahedral surface of kaolinite. Based on the TG result of kaolinite–DMSO intercalation complex, the formula of A1{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}(DMSO){sub 0.7} was obtained, with which the kaolinite–DMSO complex model was constructed. The molecular dynamics simulation of kaolinite–DMSO complex directly confirmed the monolayer structure of DMSO in interlayer space of kaolinite, where the DMSO arranged almost parallel with kaolinite basal surface with all methyl groups being distributed near the interlayer midplane and oxygen atoms orienting toward to the alumina octahedral surface. The radial distribution function between kaolinite and intercalated DMSO verified the strong hydrogen bonds forming between hydroxyl hydrogen

  8. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield

    NARCIS (Netherlands)

    Carvalho, M.T.M.; Madari, B.E.; Bastiaans, L.; Oort, van P.A.J.; Leal, W.G.O.; Heinemann, A.B.; Silva, da M.A.S.; Maia, A.H.N.; Parsons, D.; Meinke, H.

    2016-01-01

    We assessed the impact of a single application of wood biochar on soil chemical and physical properties and aerobic rice grain yield on an irrigated kaolinitic clay Ferralsol in a tropical Savannah. We used linear mixed models to analyse the response of soil and plant variables to application

  9. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  10. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties

    International Nuclear Information System (INIS)

    Factorovich, J.C.; Badino, D.; Cravero, F.; Dominguez, E.

    1997-01-01

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2μ fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author)

  11. Naphtha interaction with bitumen and clays : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Afara, M.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation described a preliminary study conducted to characterize naphtha interactions with bitumen and clays. Coarse tailings, fluid-fine tailings, and froth treatment tailings are produced as a result of surface mine oil sands operations. Solvents are used to produce the bitumens, but the actual fraction of the solvent that evaporates and contributes to VOCs from tailing ponds is poorly understood. This study examined the interactions between the solvent, bitumen and mineral components in froth treatment tails. The study was conducted with aim of quantifying the VOC or solvent escaping from the froth treatment tailings. Samples containing bitumen, clay, a bitumen-clay mixture, or MFT were spiked with 3000 ppm of solvent. The amount of naphtha released was monitored by gas chromatography, mass spectrometry, and flame ionization detection of the evolved gases. The results were expressed as a percentage of the total hydrocarbon peak area of the sample versus a control. Results of the study showed that the naphtha interacted more strongly with the bitumen than with kaolinite and the clay minerals from the oil sands. Although initial solvent evaporation was reduced in the presence of bitumens and clays, long-term solvent releases will need to be quantified. tabs., figs.

  12. Preparation and Characterization of Acid and Alkaline Treated Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-06-01

    Full Text Available Kaolin was refluxed with HNO3, HCl, H3PO4, CH3COOH, and NaOH of 3M concentration at 110 °C for 4 hours followed by calcination at 550 °C for 2 hours. The physico-chemical characteristics of resulted leached kaolinite clay were studied by XRF, XRD, FTIR, TGA, DTA, SEM and N2 adsorption techniques. XRF and FTIR study indicate that acid treatment under reflux conditions lead to the removal of the octahedral Al3+ cations along with other impurities. XRD of acid treated clay shows that, the peak intensity was found to decrease. Extent of leaching of Al3+ ions is different for different acid/base treatment. The acid treatment increased the Si/Al ratio, surface area and pore volume of the clay. Thus, the treated kaolin clay can be used as promising adsorbent and catalyst supports. © 2013 BCREC UNDIP. All rights reservedReceived: 1st March 2013; Revised: 9th April 2013; Accepted: 19th April 2013[How to Cite: Kumar, S., Panda, A. K., Singh, R.K. (2013. Preparation and Characterization of Acids and Alkali Treated Kaolin Clay. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 61-69. (doi:10.9767/bcrec.8.1.4530.61-69][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4530.61-69] |View in  |

  13. Permeability response of oil-contaminated compacted clays

    International Nuclear Information System (INIS)

    Silvestri, V.; Mikhail, N.; Soulie, M.

    1997-01-01

    This paper presents the results of a laboratory investigation on the behavior of motor oil-contaminated, partially saturated compacted clays. For the study, both a natural clay and an artificially purified kaolinite, contaminated with 0 to 8% of motor oil, were firstly compacted following the ASTM standard procedure. Secondly, permeability tests were carried out in a triaxial cell on 10 cm-diameter compacted clay specimens. The results of the investigation indicate that increasing percentages of motor oil decrease both the optimum water content and the optimum dry density of the two clays. However, whereas the optimum water content on the average decreases by about 6% when the percentage contamination increases from 0 to 8%, the corresponding decrease in the optimum dry density is less than 3%. Even though the optimum dry density decreases as the percentage of oil increases from 0 to 8%, there is, however, a range in oil content varying between 2 and 4% for which the optimum dry density is slightly greater than that of the untreated soils. As far as the permeability tests are concerned, the results indicate that as the percentage of oil increases, the coefficient of permeability decreases substantially, especially for clay specimens which were initially compacted on the dry side of optimum

  14. Clay fraction mineralogy of a Cambisol in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Anastacio, A. S.; Fabris, J. D., E-mail: jdfabris@ufmg.br [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Stucki, J. W. [Department of Natural Resources and Environmental Sciences (United States); Coelho, F. S.; Pinto, I. V. [Federal University of Minas Gerais, Campus - Pampulha, Department of Chemistry (Brazil); Viana, J. H. M. [Embrapa Milho e Sorgo (Brazil)

    2005-11-15

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite ({gamma}Fe{sub 2}O{sub 3}) and superparamagnetic goethite ({alpha}FeOOH). Kaolinite (Al{sub 2}Si{sub 2}O{sub 5}(OH){sub 4}), smectite, and minor portions of anatase (TiO{sub 2}) were identified in the CBD-treated sample.

  15. Clay fraction mineralogy of a Cambisol in Brazil

    International Nuclear Information System (INIS)

    Anastacio, A. S.; Fabris, J. D.; Stucki, J. W.; Coelho, F. S.; Pinto, I. V.; Viana, J. H. M.

    2005-01-01

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Moessbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite (γFe 2 O 3 ) and superparamagnetic goethite (αFeOOH). Kaolinite (Al 2 Si 2 O 5 (OH) 4 ), smectite, and minor portions of anatase (TiO 2 ) were identified in the CBD-treated sample.

  16. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization

    Directory of Open Access Journals (Sweden)

    Sidarta A. Lima

    2010-03-01

    Full Text Available A new three-scale model to describe the coupling between pH-dependent flows and transient ion transport, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by three separate nano/micro and macroscopic length scales. The pore (micro-scale is characterized by micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles surrounded by thin electrical double layers. The movement of the ions is governed by the Nernst-Planck equations, and the influence of the double layers upon the flow is dictated by the Helmholtz-Smoluchowski slip boundary condition on the tangential velocity. In addition, an adsorption interface condition for the Na+ transportis postulated to capture its retention in the electrical double layer. Thetwo-scalenano/micro model including salt adsorption and slip boundary condition is homogenized to the Darcy scale and leads to the derivation of macroscopic governing equations. One of the notable features of the three-scale model is there construction of the constitutive law of effective partition coefficient that governs the sodium adsorption in the double layer. To illustrate the feasibility of the three-scale model in simulating soil decontamination by electrokinetics, the macroscopic model is discretized by the finite volume method and the desalination of a kaolinite sample by electrokinetics is simulated.Neste artigo propomos um modelo em três escalas para descrever o acoplamento entre o fluxo eletroosmótico e o transporte de íons incluindo fenômenos de adsorção em uma caulinita. A argila é caracterizada por três escalas nano/micro e macroscópica. A escala microscópica é constituída por micro-poros saturados por uma solução aquosa contendo quatro íons monovalentes e partículas sólidas carregadas eletricamente circundadas por uma dupla camada elétrica fina. O movimento dos íons é governado pelas equações de Nernst-Planck e a

  17. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  18. Association of actinides with microorganisms and clay: Implications for radionuclide migration from waste-repository sites

    International Nuclear Information System (INIS)

    Ohnuki, T.; Francis, A.; Kozai, N.; Sakamoto, F.; Ozaki, T.; Nankawa, T.; Suzuki, Y.

    2010-01-01

    We conducted a series of basic studies on the microbial accumulation of actinides to elucidate their migration behavior around backfill materials used in the geological disposal of radioactive wastes. We explored the interactions of U(VI) and Pu(VI) with Bacillus subtilis, kaolinite clay, and within a mixture of the two, directly analyzing their association with the bacterium in the mixture by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The accumulation of U by the mixture rose as the numbers of B. subtilis cells increased. Treating the kaolinite with potassium acetate (CH 3 COOK) removed approximately 80% of the associated uranium while only 65% was removed in the presence of B. subtilis. TEM-EDS analysis confirmed that most of the U taken from solution was associated with B. subtilis. XANES analyses revealed that the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both was U(VI). The amount of Pu sorbed by B. subtilis increased with time, but did not reach equilibrium in 48 h; in kaolinite alone, equilibrium was attained within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and to the mixture had changed to Pu(V), whereas the oxidation state of the Pu associated with both was Pu(IV). In contrast, there was no change in the oxidation state of Pu in the solution nor on kaolinite after exposure to Pu(VI). SEM-EDS analysis indicated that most of the Pu in the mixture was associated with the bacteria. These results suggest that U(VI) and Pu(VI) preferentially are sorbed to bacterial cells in the presence of kaolinite clay, and that the mechanism of accumulation of U and Pu differs. U(VI) is sorbed directly to the bacterial cells, whereas Pu(VI) first is reduced to Pu(V) and then to Pu(IV), and the latter is associated with the cells. These results have important implications on the migrations of radionuclides around the repository sites of

  19. Investigation of mineral composition of differently treated devonian, quaternary and triassic clays of Latvia

    International Nuclear Information System (INIS)

    Kosorukovs, A.; Viss, R.

    1999-01-01

    Clayey fractions (particle size less than 5 μm )of the Latvian Devonian (Kuprava and Liepa deposits), Quaternary (Laza and Ugale deposits) and Triassic (Akmene deposit, Republic of Lithuania) clays have been obtained. The clayey fractions were converted in the form in which all the cations were exchanged for magnesium ions. After the ion exchange the fractions were treated with dimethyl sulfoxide or glycerol in the course for two days, one sample being subjected to thermal treatment at 550±110 C for two hours. Diffractograms for the treated samples have been obtained using a DRON-2,0 diffractometer (Co-radiation). Analysis of the obtained diffractograms show that: 1) the main clayey minerals of the Devonian clays occur to be hydromicas (mainly hydromuscovite) containing admixtures of kaolinite and quartz; 2) the main clayey minerals of the Quarternary clays also occur to be hydromicas - mixtures of hydrobiotite and hydromuscovite containing admixtures of kaolinite and iron-containing chlorite; 3) smectite occurs to be the main mineral of the Triassic clay; it contains admixtures of hydromica and chlorite; 4) the Triassic and Quaternary clays contain fine- and coarse-grained carbonates, mainly calcite, in quantities of 10-16%; 5) iron and titanium are included in fine grained minerals. (author)

  20. Polyacrylamide sorption opportunity on interlayer and external pore surfaces of contaminant barrier clays.

    Science.gov (United States)

    Inyang, Hilary I; Bae, Sunyoung

    2005-01-01

    Physico-chemical interactions among polymer molecules in aqueous solution and clay mineralogical/textural characteristics influence the sorption of polymer molecules on clay barrier minerals. Amendment of potentially unstable barrier clays with aqueous polymers can improve barrier material resistance to environmental stresses during service. In this research, the ability of molecular coils of polyacrylamide (PAM) to overlap in solution and to enter interlayer space in Na-montmorillonite (specific surface=31.82+/-0.22 m2 g(-1)) and kaolinite (specific surface=18+/-2 m2 g(-1)) were analyzed theoretically and experimentally, using solution viscosity measurements, and X-ray diffractometry. Experimental data on two theoretical indices: relative size ratio (RSR); and molecular availability (Ma) that are formulated to scale polymer molecular sorption on clay interlayer, indicate that the sorption of PAM A (Mw=4000000) and PAM B (Mw=7000000) does not produce any significant change in the d-spacing of both clay minerals. Although the negative Ma values of -3.51 g l(-1) for PAM A and -3.88 g l(-1) for PAM B indicate high levels of entanglement of polymer molecular coils in solution, sorption data confirm that the entangled coils are still able to sorb onto Na-montmorillonite highly and kaolinite to a lesser extent.

  1. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.

    Science.gov (United States)

    Chen, Chong; Zhao, Kang; Shang, Jianying; Liu, Chongxuan; Wang, Jin; Yan, Zhifeng; Liu, Kesi; Wu, Wenliang

    2018-05-07

    Natural aquifers typically exhibit a variety of structural heterogeneities. However, the effect of mineral colloids and natural organic matter on the transport behavior of uranium (U) in saturated heterogeneous media are not totally understood. In this study, heterogeneous column experiments were conducted, and the constructed columns contained a fast-flow domain (FFD) and a slow-flow domain (SFD). The effect of kaolinite, humic acid (HA), and kaolinite/HA mixture on U(VI) retention and release in saturated heterogeneous media was examined. Media heterogeneity significantly influenced U fate and transport behavior in saturated subsurface environment. The presence of kaolinite, HA, and kaolinite/HA enhanced the mobility of U in heterogeneous media, and the mobility of U was the highest in the presence of kaolinite/HA and the lowest in the presence of kaolinite. In the presence of kaolinite, there was no difference in the amount of U released from the FFD and SFD. However, in the presence of HA and kaolinite/HA, a higher amount of U was released from the FFD. The findings in this study showed that medium structure and mineral colloids, as well as natural organic matter in the aqueous phase had significant effects on U transport and fate in subsurface environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Formation and Transformation of Iron Oxide-Kaolinite Associations in the Presence of Iron(II)

    NARCIS (Netherlands)

    Wei, S.Y.; Liu, F.; Feng, X.H.; Tan, W.F.; Koopal, L.K.

    2011-01-01

    Iron oxide-kaolinite associations are important components of tropical and subtropical soils and have significant influence on the physical and chemical properties of soils. In this study, the formation and transformation of Fe oxide-kaolinite associations as a function of pH, temperature, and time

  3. Estimation of silver in Ag-meta kaolinite by neutron activation

    International Nuclear Information System (INIS)

    Daniels, E.A.; Rao, S.M.

    1981-01-01

    The present work is based on the neutron activation of Ag-meta kaolinite for the determination of its silver content from the β-activity of the compound using standard tables which showed the percentage of silver in mixtures of silver nitrate and meta kaolinite of known composition against β-activity of the mixture activated under identical conditions. (author)

  4. Halloysite Clay Nanotubes for Enzyme Immobilization.

    Science.gov (United States)

    Tully, Joshua; Yendluri, Raghuvara; Lvov, Yuri

    2016-02-08

    Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.

  5. Halloysite nanotubule clay for efficient water purification.

    Science.gov (United States)

    Zhao, Yafei; Abdullayev, Elshad; Vasiliev, Alexandre; Lvov, Yuri

    2013-09-15

    Halloysite clay has chemical structure similar to kaolinite but it is rolled in tubes with diameter of 50 nm and length of ca. 1000 nm. Halloysite exhibits higher adsorption capacity for both cationic and anionic dyes because it has negative SiO2 outermost and positive Al2O3 inner lumen surface; therefore, these clay nanotubes have efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolin. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. The equilibrium adsorption data were described by Langmuir and Freundlich isotherms. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Development of ceramic with clays from Campos dos Goytacazes and Itaborai

    International Nuclear Information System (INIS)

    Ribeiro, A.P.; Babisk, M.P.; Monteiro, S.N.; Vieira, C.M.F.

    2012-01-01

    The county of Campos dos Goytacazes, located in the north region of the State of Rio de Janeiro, currently is the leading red ceramic pole of the State. However, the clays are kaolinitic predominance with low amount of flux oxides as well as elevated loss on ignition. In this work compositions were investigated using of a clay from the county of Itaborai, that is approximately 200 km away from Campos, to correct the deficiencies of the clay from Campos and so to improve the the technological properties of the ceramic. Rectangular specimens were prepared by uniaxial mold-press at 18 MPa and then fired at 800 deg C. The evaluated physical and mechanical properties were: plasticity, linear shrinkage, water absorption and flexural rupture strength. The results indicated that the clay from Itaborai significantly improves the evaluated properties of the ceramic. (author)

  7. Clay Mineralogy of Brazilian Oxisols with Shrinkage Properties

    Directory of Open Access Journals (Sweden)

    Samara Alves Testoni

    2017-08-01

    Full Text Available ABSTRACT Shrinkage capacity (caráter retrátil in Portuguese is a new diagnostic characteristic recently introduced in the Brazilian System of Soil Classification (SiBCS to indicate shrink and swell properties observed in subtropical soils from highland plateaus in southern Brazil, specifically in Oxisols with brown colors. In soils located in road cuts exposed to drying for some weeks, strong shrinkage of soil volume is observed in these soils, resulting in the formation of pronounced vertical cracks and large and very large prismatic structures, which crumble in blocks when handled. We hypothesize that such properties are related to their clay mineralogy, although there are no conclusive studies about this, the motive for the present study. Samples of the A and B horizons from six Oxisols with expansive capacity from the states of Santa Catarina and Rio Grande do Sul were analyzed. One Rhodic Hapludox, from the state of Paraná, without expansive capacity, was used for comparison. All the soils are very clayey, originated from basalt, and have similar iron oxide content. For identification of clay mineralogy, X-ray diffraction techniques were employed, together with the use of NEWMOD® software to investigate and describe the interstratified minerals. The results showed that most expansive soils have a similar mineralogical composition, with kaolinite, interstratified kaolinite-smectite (K-S, and hydroxy-Al interlayered smectites (HIS, unlike the non-expansive Rhodic Hapludox, which exhibited kaolinite with significant amounts of gibbsite and low amount of interstratified K-S. According to the mineralogical assemblage identified in the expansive soils, we can affirm that the mechanism of smectite expansion and contraction is related to the shrinkage capacity of the soil, considering that the level of hydroxy-Al intercalation is low. In addition, these mechanisms also are related to the presence of quasicrystals and domains that control the

  8. Use of clay-mineral alteration patterns to define syntectonic permeability of joints (cleat) in Pennsylvania anthracite coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, E.J.; Marshak, S.; Altaner, S.P. [Chevron Oil Field Research Company, La Habra, CA (United States)

    1996-10-15

    Joints (cleat) in Pennsylvania anthracite contain two distinct clay-mineral assemblages, both of which formed by alteration of preexisting kaolinite at peak metamorphic conditions during the Alleghanian orogeny. The first assemblage, NH{sub 4} - illite or pyrophyllite {+-} quartz, formed by reaction of kaolinite with methane-rich fluids derived from within the coal. The second assemblage, sudoite {+-} tosudite {+-} rectorite {+-} berthierine, formed by the reaction of kaolinite with ferromagnesian-bearing hydrothermal fluids which must have come from outside the coal. In an earlier paper, the authors suggested that the first assemblage indicated clay diagenesis in low-permeability environments, and that the second assemblage indicated clay diagenesis in high-permeability environments. If this premise is correct, then the distribution of clay-mineral alteration assemblages serves to define syntectonic permeability variations in coal cleat. The first assemblage dominates in the coal matrix itself, in isolated cleat, in cleat that parallel the regional trend of Alleghanian folds, and in the mirror portions of cleat oriented perpendicular to the fold trends, suggesting that these regions are low-permeability environments. The second assemblage dominates in the hackle fringe of interconnected cleat that trend perpendicular to the strike of the Appalachian orogen, suggesting that these regions are high-permeability environments. These results emphasize that syntectonic cleat permeability is a function of cleat orientation, macroscopic cleat interconnetivity and orientation, as well as microscopic cleat-surface morphology.

  9. Irradiation effects in clays. Environmental and geological applications

    International Nuclear Information System (INIS)

    Fourdrin, Ch.

    2009-01-01

    Irradiation defects in minerals present at the earth surface gave rise to an important number of studies. Among these minerals, clays possessed properties (cationic exchange capacity, swelling properties) which make them suitable candidate for the retention of actinides in the context of high level radioactive waste storage. In order to insure the stability of the clay located around the waste, it is necessary to study their physico-chemical properties after irradiation. This thesis is divided in three parts that are related to this thematic. In the first part, we will discuss the effect of ionizing irradiation of alpha particles on the specific surface area of kaolinite and the consequences of such an irradiation on the observed spectra by IRTF. The second part is dealing with the solubility of amorphized smectite in alkaline conditions and more especially with the dissolution kinetics. We will present new results on this process. Finally, in the third part, we studied a natural analogue geo-system Nopal which is located in Chihuahua (Mexico). We will discuss how the kaolinite dosimeter can be a powerful tool to asses' ancient uranium migration in the U-deposit. (author)

  10. Adsorption of Cs{sup +}, Ni{sup 2+} and lanthanides onto a kaolinite and Na-montmorillonite up to 150{sup 0}C: an experimental and modeling study; Adsorption de Cs{sup +}, Ni{sup 2+} et des lanthanides sur une kaolinite et une smectite jusqu'a 150{sup 0}C: etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Tertre, E

    2005-10-15

    The motivation for this study is to assess the temperature effect on the clay minerals sorption properties. Sorption and desorption of Cs{sup +}, Ni{sup 2+} et Ln{sup 3+} onto a montmorillonite and a kaolinite were performed by batch experiments between 25 and 150 C, and in different pH and ionic strengths conditions. Sorption enthalpies varying between 0 and 80 kJ/mol were then calculated. For europium, surface spectroscopic analyses confirmed that the mechanism involved is adsorption, including at 150 C. Moreover, this method allowed us to obtain qualitatively the different adsorption equilibrium occurring during the reaction. An acid/base study of the clay surfaces was performed in order to assess the temperature effect on the surface charge of these minerals. Then, a surface complexation model including edge sites and structural sites was proposed to interpret the acid/base data and the europium sorption data. (author)

  11. Clay Mineralogy of Basaltic Hillsides Soils in the Western State of Santa Catarina

    Directory of Open Access Journals (Sweden)

    Jaime Antonio de Almeida

    2018-02-01

    Full Text Available ABSTRACT A commonly accepted concept holds that highly fertile, shallow soils are predominant in the Basaltic Hillsides of Santa Catarina State, in southern Brazil, but their agricultural use is restricted, either by excessive stoniness, low effective depth or steep slopes. Information about soil properties and distribution along the slopes in this region is, however, scarce, especially regarding genesis and clay fraction mineralogy. The objective of this study was to evaluate soil properties of 12 profiles distributed in three toposequences (T of the Basaltic Hillsides in the State of Santa Catarina, two located in the valley of the Peixe River (Luzerna - T1 and Ipira - T2 and one in Descanso, in the far West of the state (T3. The main focus was the mineralogical composition of the clay fraction, identified by X-ray diffractometry (XRD, and its relations with the soil chemical properties. The morphological, chemical, and mineralogical properties of the soils of the toposequences differed from each other. In most soils, the position of the most intense XRD reflections indicated predominance of kaolinite (K however, for being broad and asymmetric, a participation of interstratified kaolinite-smectite (K-S was assumed. Soils of T2 and T3, located in regions with higher temperatures, lower water surplus, and lower altitude than those of T1, were more fertile, mostly redder, and contained higher proportions of smectites (S and interstratified K-S mineral, accounting for a higher activity of the clay fraction of most soils. The T1 soils were generally less fertile, with lower clay activity and, aside from kaolinite, contained smectites with interlayered hydroxy-Al polymers (HIS. The low estimated smectite contents of the most fertile soils of all toposequences disagree with the high values of cation exchange capacity (CEC and clay activity related to pure kaolinite soils. The broad and asymmetric reflections of most of the supposed kaolinites

  12. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites; Caracterizacao estrutural de argilas bentoniticas para utilizacao como nanocargas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera, E-mail: carlosivanr@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Silva, Ana Lucia Nazareth da [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano; Bertolino, Luiz Carlos [Centro de Tecnologia Mineral (CETEM/MCTI), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  13. Pengaruh Proses Pelapukan Clay Shale terhadap Perubahan Parameter Rasio Disintegritas (DR

    Directory of Open Access Journals (Sweden)

    Idrus M Alatas

    2017-04-01

    Full Text Available The background of this research because of the frequent occurrence of the failure in the geotechnical design of clay shale caused by weathering. Disintegration ratio is a comparison of physical changes due to weathering at certain times of the initial conditions. Changes in physical properties due to clay shale weathering determined by the disintegration ratio (DR.Clay shale weathering will occur more quickly as a result of wetting and drying cycles when compared with the drying process. While due to the increased number of cycles of wetting at the same time, causing weathering on clay shale will be faster again. Until the 80th day of drying time, the magnitude DRof Semarang-Bawenclay shaleand Hambalang are the same, namely DR = 0.916 (completelly durable. However, due to wetting and drying cycles on day 32, samples of Semarang-Bawenclay shale is DR = 0.000 or non durable completelly, while on Hambalang clay shale in same day DR between 0.2117 to 0.3344. Generally Semarang-Bawen clay shale will be faster weathered than Hambalang clay shale. It is caused by the mineralogy content of Semarang-Bawen clay shale has dominated by Smectite, and Hambalangclay shalehas dominated mineral Kaolinite and Illlite.

  14. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    Science.gov (United States)

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Characterization of clays used in the fabrication of traditional brazilian ceramic pans: culture and technique

    International Nuclear Information System (INIS)

    Borlini, Monica Castoldi; Aguiar, Mariane Costalonga de; Vieira, Carlos Mauricio Fontes; Monteiro, Sergio Neves

    2009-01-01

    The fabrication process of clay pans in the state of Espirito Santo, southeast of Brazil, is a recognized part of the country's popular culture. In Goiabeiras, a district of the state capital Vitoria, the traditional production of these pans is the source of income for many families. The technique used in these ceramic pans is of indigenous origin, characterized by manual molding, outdoor burning and application of tannin dye. The clay pans are distributed to several Brazilian states and are nowadays conquering the external market. In producing these pans, two types of, yellow and gray, clays are used. The actual source of raw material comes from the deposit of the Mulemba valley, where a concern on the possibility of exhaustion exists. The objective of this study was then to characterize these two types of clays and so contribute to the continuity of traditional clay pan production by knowing the characteristics of the local clays in case of an eventual need for their replacement. Chemical analysis, X-ray diffraction, particle size distribution, plasticity and thermal analysis of the clays were performed. The results showed that the clays are high plasticity kaolinite with considerable amounts of SiO 2 and Al 2 O 3 as well as of alkaline oxides, earth alkaline oxides and Fe 2 O 3 . (author)

  16. Study of Adsorption of Phenanthrene on Different Types of Clay Minerals

    International Nuclear Information System (INIS)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-01-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay minerals also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represents ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs

  17. Characterization of karak clay from pakistan for pharmaceutical and cosmetic applications

    International Nuclear Information System (INIS)

    Shah, L.A.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.; Sayeg, I.J.; Carvalho, F.M.S.

    2012-01-01

    Full text: Clay, the most important, plentiful, and low cost naturally occurring mineral, is widely used in variety of industrial application including Pharmaceutical and cosmetic. Clay is the fine grained aluminosilicate mineral which shows the property of plasticity at appropriate water content, and becomes hard upon drying. In Pakistan there are different types of clay but till now neither of them properly identified nor characterize for specific industrial application. The objective of this work is to characterize Karak clay for pharmaceutical and cosmetic applications collected from deposit located at Shagai region, District Karak, Pakistan. The clay was characterized through Xray diffractometry (XRD), X-ray Fluorescence (XRF), trace elemental Analysis, Microbiological analysis, Cation exchange capacity (CEC), pH and swelling assays according to European, United States of America and Brazilian Pharmacopeias. Bulk Chemical analysis shows that the Aluminum oxide and silica oxide are present in large quantity which was confirmed by XRD that this sample has montmorillonite as a major while illite and kaolinite as minor clay minerals. Quartz of small quantity was also found as a non-clay mineral. After analyzing the results for sample it was concluded that the clay is a strong candidate for cosmetic purposes. (author)

  18. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    Science.gov (United States)

    Bout-Roumazeilles, V.; Riboulleau, A.; du Châtelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  20. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  1. Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea

    Science.gov (United States)

    Cho, Hyen Goo; Kim, Soon-Oh; Kwak, Kyeong Yoon; Choi, Hunsoo; Khim, Boo-Keun

    2015-12-01

    The Heuksan mud belt (HMB), located in the southeastern Yellow Sea, runs parallel to the southwest coast of Korea. In this study, the distribution and relative contribution of four major clay minerals are investigated using 101 surface sediment samples collected in the course of KIOST (2001, 2010, 2011) and KIGAM (2012) cruises, as well as 33 river sediment samples (four from the Huanghe River, three from the Changjiang River, and 26 from Korean rivers) in order to clarify the provenance of fine-grained sediments in the HMB. Based on this currently largest and most robust dataset available for interpretation, the clay mineral assemblages of the fine-grained sediments in the HMB are found to be on average composed of 64.7% illite, 17.9% chlorite, 11.4% kaolinite, and 5.9% smectite. Overall, the clay mineral assemblages are similar in both the northern and the southern parts of the HMB, although smectite seems to be relatively enriched in the southern part, whereas kaolinite is slightly more dominant in the northern part. This clearly indicates that the clays are mostly derived from Korean rivers and, in the southern part of the HMB, partly also from the Huanghe River in China. The new data thus confirm and strengthen the tentative interpretation of some earlier work based on a more limited dataset.

  2. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    Science.gov (United States)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment

  3. Clay minerals as palaeoenvironment indicators exemplified on a Karoo sequence from the Bothaville area, South Africa

    International Nuclear Information System (INIS)

    Buehmann, C.; Buehmann, D.

    1990-01-01

    The whole-rock and clay mineral composition of 74 samples from a 184 m borehole core from the Ecca Group and Dwyka Formation from the vicinity of Bothaville, 100 km southwest of Johannesburg, South Africa, has been determined by means of X-ray diffractometry. The objective was to establish the salinity and pH of the water of the original environments of deposition. The sediment investigated was subjected to a low degree of diagenesis. Clay mineral associations display characteristic variations while distinctive vertical trends in kaolinite occurrence have been established. Mineralogical trends are ascribed to fundamental changes, which must have existed in the pore fluid composition during deposition (palaeoenvironment setting) which have been maintained through the early stages of diagenesis. Conditions were alkaline-marine during the Dwyka and in the lower section of the Vryheid Formation, as indicated by the dominance of 2:1 layer silicates. From the middle section of the Vryheid Formation the entire brackish water mixing range is recorded mineralogically by kaolinite contents which increase progressively at the cost of 2:1 layer silicates. Acid-freshwater conditions, characterised by the dominance of kaolinite are interpreted for the upper section of the Vryheid Formation. 26 refs., 6 figs., 2 tabs

  4. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  5. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  6. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav

    1997-12-31

    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  7. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  8. Sorption of Eu(III) to Kaolinite in the Presence of Humic Acids

    International Nuclear Information System (INIS)

    Shin, Hyun Sang; Harn, Yoon I; Oh, Se Jin

    2010-05-01

    The sorption of europium(Eu(III)) onto kaolinite and the influence of humic acids over a range of pH 3 ∼ 11 has been studied by batch adsorption experiment (V/m = 250:1 mL/g, CEu(III) = 1x10 -5 mol/L, C HA = 5 ∼ 50 mg/L, PCO 2 = 10 -3.5 atm). The concentrations of HA and Eu(III) in aqueous phase were measured by UV absorbance at 254 nm(e.g., UV 254 ) and ICP-MS after microwave digestion for HA removals, respectively. Results showed that the HA sorption onto kaolinite was decreased with increasing pH and their sorption isotherms fit well with the Langmuir adsorption model (except pH 3). Maximum amount(q max ) for the HA sorption at pH 4 to 11 was ranged from 4.73 to 0.47 mg/g. Europium adsorption onto the kaolinite in the absence of HA was typical, showing an increases with pH and a distinct adsorption edge at pH 3 to 5. However in the presence of HA, Eu adsorption to kaolinite was significantly affected. HA was shown to enhance Eu adsorption in the acidic pH range (pH 3 ∼ 4) due to the formation of additional binding sites for Eu coming from HA adsorbed onto kaolinite surface, but reduce Eu adsorption in the intermediate and high pH above 6 due to the formation of aqueous Eu-HA complexes. The results on the ternary interaction of kaolinite-Eu-HA are compared with those on the binary system of kaolinite-HA and kaolinite-Eu and adsorption mechanism with pH was discussed

  9. Flotation of kaolinite from tailings of kaolin-washing plants by cationic collectors

    OpenAIRE

    Barani Kianoush

    2016-01-01

    Traditional processing of kaolin is achieved by dispersion of the mined ore and classification by means of multistage hydrocyclones. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back to the quarry. In this research recovery of kaolinite from tailings of the Zonoupz kaolin washing plant, which is located in Iran, was investigated by cationic flotation. Flotation experiments showed that flotation of kaolinite from tailings was much better in an ac...

  10. Recovery of kaolinite from tailings of Zonouz kaolin-washing plant by flotation-flocculation method

    OpenAIRE

    Kianoush Barani; Masoud Kalantari

    2018-01-01

    The traditional processing of kaolin is achieved by dispersion of the mined ore and classification by multistage hydrocyclone plants. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back into the quarry. In this research, recovery of kaolinite from tailings of Zonouz kaolin washing plant, which is located in Iran was investigated by flotation and flotation- flocculation. Flotation experiments show that the flotation of kaolinite from the tailings i...

  11. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    Li Yuxiang; Qian Guangren; Yi Facheng; Shi Rongming; Fu Yibei; Li Lihua; Zhang Jun

    1999-01-01

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr 2+ , Cs + leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  12. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Pieter Samyn

    2015-07-01

    Full Text Available A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects.

  13. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Huelya [Forensic Medicine Foundation, Nasuhpasa Bath Street, No. 12, 16010 Heykel, Bursa (Turkey)]. E-mail: hkoyuncu@yyu.edu.tr; Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: alirizakul@yyu.edu.tr; Yildiz, Nuray [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: nyildiz@eng.ankara.edu.tr; Calimli, Ayla [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: calimli@eng.ankara.edu.tr; Ceylan, Hasan [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: hceylan@yyu.edu.tr

    2007-03-06

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy ({delta}G), the enthalpy ({delta}H) and the entropy change of sorption ({delta}S) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k {sub a} and k {sub d}) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K {sub geo} (k {sub a}/k {sub d}) from geometric approach.

  14. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    International Nuclear Information System (INIS)

    Koyuncu, Huelya; Kul, Ali Riza; Yildiz, Nuray; Calimli, Ayla; Ceylan, Hasan

    2007-01-01

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy (ΔG), the enthalpy (ΔH) and the entropy change of sorption (ΔS) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k a and k d ) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K geo (k a /k d ) from geometric approach

  15. Hydrophobicity study of kaolinite from La Unión, Antioquia

    Directory of Open Access Journals (Sweden)

    Liliana M. Usuga-Manco

    2015-07-01

    Full Text Available In this research three methodologies to convert the hydrophilic surface of kaolinite into a hydrophobic surface are proposed, this condition is required to recover this mineral by means of froth flotation. Taking into account the anisotropy, zeta potential and complex surface electrical properties of the kaolinite, three surface chemical treatments based on the interacting and absorption of anionic collectors onto the mineral surface, causing an increase in the contact angle and thus increased hydrophobicity of kaolinite were applied. The methodologies proposed were interactions of kaolinite particles with: sodium dodecyl sulfate solutions with concentration 1x10-3M, 1x10-4M, 1x10-5M; sodium dodecyl sulfate solutions 1x10-3M, 1x10-4M, 1x10-5M with further interaction with kerosene solutions 127000 ppm; and oleic acid solutions 1x10-3M, 1x10-4M, 1x10-5M, each one with a five minutes of interaction. The experimental results obtained by zeta potential and contact angle of the kaolinite before and after applying chemical treatments indicate that larger the chain length of the collector and its concentration, bigger the contact angle and so, more hydrophobic the surface (edge or face. In order to optimize, control and understand this solid-liquid interaction phenomenon is suggested to find out about the hydrophobization mechanism of kaolinite with oleic acid and its percentage of hydrophobization.

  16. Characterization of clays used in the red ceramics industry at Itabaianinha-SE (Brazil)

    International Nuclear Information System (INIS)

    Azevedo, T.F.; Andrade, C.E.C. de; Santos, C.R. dos; Barreto, L.S.

    2011-01-01

    The Local Cluster of red ceramic industry in the state of Sergipe comprises Itabaianinha-SE, Itabaiana and Baixo Sao Francisco municipalities (Propria and Santana do Sao Francisco). The city of Itabaianinha concentrates a large number of ceramics and potteries producing ceramic bricks and tiles. The study was conducted in a red ceramic industry of the region. The focus of this work was an incremental innovation in the process and product. It was analyzed three types of clays used for manufacturing of ceramic bricks (barro preto, diamante and jardim). The samples were prepared by pressing and heat treated between 600 ° C - 1100 C °. The samples characterization was by thermogravimetry, X-ray diffraction and physical tests (water absorption, linear retraction and three points flection). The clays are composed mainly of kaolinite, illite-muscovite and quartz. The results showed that the Barro Preto clay showed better results in retraction, absorption and mechanical strain. (author)

  17. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    Science.gov (United States)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  18. Characterization of some archaeological ceramics and clay samples from Zamala - Far-northern part of Cameroon (West Central Africa)

    Energy Technology Data Exchange (ETDEWEB)

    Ntah, Z.L. Epossi; Sobott, R.; Bente, K., E-mail: zoilaepossi@yahoo.fr [Institute of Mineralogy, Crystallography and Materials Science, University of Leipzig (Germany); Fabbri, B. [Institute of Science and Technology for Ceramics, National Research Council (CNR) of Italy, Faenza (Italy)

    2017-07-15

    Seventeen ceramics samples (515±95 BP, about 580 years old) and two clay raw materials from Zamala (Far-northern, Cameroon) were characterized by X-ray diffraction (XRD), thermal analysis (DTA/TG) and X-ray fluorescence spectroscopy. The aim of the work was the deduction of the production technology and provenance of these ceramics. With the exception of one sample the analysed ceramics formed a homogeneous chemical and mineralogical group. The observed mineralogical phases were quartz, mica (biotite), potassium feldspar (microcline) and plagioclase (albite and oligoclase). The XRD study of two local clays yielded the presence of quartz, kaolinite, mica, feldspar and plagioclase. The presence of the broad endothermic peak in the DTA/TG curves of the clays and its absence in the curves of the ceramics indicated that the firing temperature of the ceramics was above 550-600 °C, which is the temperature of the kaolinite-metakaolinite transformation. The firing experiments of the clay between 400-1200 °C in oxidizing atmosphere showed that mica disappeared above 900 °C. Therefore, the firing temperature of the sherds should have been between 600-900 °C. The chemical correlation between ceramics and local clay materials pointed out to a local production of these ceramics. (author)

  19. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  20. Contribution in the study of the stability of Callovo-Oxfordian clay rock minerals in the presence of iron at 90 deg C

    International Nuclear Information System (INIS)

    Rivard, Camille

    2011-01-01

    In the context of underground disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between Callovo-Oxfordian clay rock (COx), selected as a potential host-rock by Andra (French national radioactive waste management agency) and metallic iron, that enters the composition of containers and disposal cells. Interactions between metallic iron and COx clay-rock, COx Callovo-Oxfordian clay fraction (SCOx) and pure clay phases (kaolinite, illite, smectites) were investigated at 90 deg. C under anoxic atmosphere in chlorine solution. In order to study the role of COx non clay minerals, the reactivity of mixtures between SCOx and quartz, calcite, dolomite or pyrite, was also studied. Liquid and solid by-products were characterised by chemical analyses, mineralogical and morphometric techniques, at different scales. In our experimental conditions, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid. The release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe-serpentines (odinite or berthierite mainly) or precipitates under the form of magnetite in low amount. Fe-serpentine stability is controlled by the redox conditions as the introduction of dioxygen into the system leads to iron exsolution under the form of iron oxides and hydroxides and precipitation of clay particles with composition close to the initial ones. Whereas carbonates and pyrite do not significantly influence SCOx-metallic iron interactions, reaction pathways are modified in the presence of quartz. Indeed, in such conditions one observes a slight decrease of pH, an increase in Eh, the absence of magnetite and differences in the crystal chemistry of Fe-serpentines that are silica enriched, in comparison with those formed without any quartz

  1. Study of the feasibility of the utilization of clays from Poco Fundo (MG) for its use in bricks fabrication

    International Nuclear Information System (INIS)

    Gaspar Junior, L.A.; Souza, M.H.O.; Moreno, M.M.T.

    2012-01-01

    This work aimed to make an analysis of mineralogical (Macroscopic Description and X-Ray Diffraction), chemical (X-Ray Fluorescence and Organic Carbon Analysis) and ceramic (Particle Size Distribution, Mechanical Resistance, Water Absorption, Apparent Porosity, among others) properties of the alluvial clays collected in Poco Fundo county - Minas Gerais State, Brazil - in order to confirm the feasibility of these clays for bricks manufacturing. There were collected 4 samples from the main potteries of the county, and they were nominated PF-01, PF-02, PF-03 and MAC-01. The clays from these region display high content of quartz, kaolinite and present refractory behavior, and the alkalis content (Na 2 O and K 2 O) is low, because the studied area suffered an intense weathering process. The sample PF-03 presented the most promising ceramic results, mainly due to the lower content in silica and higher amounts of organic matter, denoting a clay coming from a swampy area. (author)

  2. Comparison among chemical, mineralogical and physical analysis from alluvial clays from counties of Southwest of Minas Gerais state (Brazil)

    International Nuclear Information System (INIS)

    Gaspar Junior, L.A.; Varajao, A.F.D.C.; Souza, M.H.O.; Moreno, M.M.T.

    2011-01-01

    The studied area is located in the southwestern portion of Minas Gerais State, encompassing the counties of Alfenas, Areado, Machado, Poco Fundo, Campestre, Serrania, Monte Belo, Bandeira do Sul, Botelhos and Cabo Verde. This region is dominated by strongly weathered pre-cambrian rocks in association with colluvial-alluvial sediments. The present work consisted in a comparison among the mineralogical (X-Ray Diffraction), textural (Laser Granulometry), chemical (X-Ray Fluorescence) and technological (mechanical resistance, water absorption, etc, made in specimen tests) properties of the clays collected on potteries located in these counties. The mineralogical and chemical analysis displayed the kaolinitic nature of the clays from this region, showing also small amount of interlayered clays and large amount of quartz. The best results of physical analysis were obtained for clays from the counties of Cabo Verde and Monte Belo due to the presence of lower values of SiO 2 (quartz) associated with a finer particle size distribution. (author)

  3. Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: Kinetics, energy consumption, and application of pulse current

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Pamukcu, Sibel; Ottosen, Lisbeth M.

    2015-01-01

    the dependency of reaction rate on energy consumption. A modified electrophoresis cell with platinum wires as working electrodes was used to run experiments. Results showed that the reduction rate of Cr(VI) was significantly increased by application of current with the pseudo-first-order rate constant kpse from......,Fe)(OH)3] precipitates. XRD analysis suggested that the [(Cr,Fe)(OH)3] formed at the clay surface and grew into the pore fluid. SEM-EDX results indicated that the overall Fe(III):Cr(III) ratio of the precipitates was approximately 1.26:1. Application of pulse current decreased the non-productive energy......Electrochemically enhanced reduction of Cr(VI) in clay medium is a technique based on inputting extra energy into the clay to drive the favorable redox reaction. In this study, the reducing reagent Fe(II) was transported into Cr(VI) spiked kaolinite clay by direct current to investigate...

  4. Unraveling climatic changes from intra-profile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: An integrated study from Yaou, French Guiana

    Science.gov (United States)

    Girard, Jean-Pierre; Freyssinet, Philippe; Chazot, Gilles

    2000-02-01

    An integrated study of O and H isotopes in the lateritic profile of Yaou, French Guiana, was undertaken to investigate the usefulness of stable isotopes as tracers of climatic changes in continental environments. The studied profile is composed of a 27 m thick saprolite, mostly developed in the past under wet-and-dry tropical climate in association with a duricrust, overlain by a 3 m thick yellow latosol formed more recently under present equatorial hot and humid climate. δ 18O-δD values determined for weathering goethite (pseudomorphs after pyrite) and kaolinite (microcrystalline clay groundmass) throughout the 30 m deep profile reflect formation temperatures consistent with present (25°C) and realistic past climatic temperatures (20°C-30°C), indicating that weathering minerals formed in isotopic equilibrium with their genetic environment and were not subjected to significant isotope exchange after formation. A distinct shift downward (2‰ for δ 18O, 15‰ for δD) from low to high δ 18O-δD values occurs around 20 m depth in the saprolite. It is interpreted as recording the change from the past tropical to the present equatorial climate. Goethite and kaolinite in the 5-10 m thick saprolite interval immediately above the active basement weathering front are in isotopic equilibrium with modern water and must have formed under present equatorial-humid conditions. In contrast, goethite and kaolinite found higher up in the saprolite and in the duricrust formed in the past under tropical wet and dry climate from waters distinctly depleted in 18O and D relative to modern water. The marked depletion of paleo-meteoric water at Yaou most likely reflects a more contrasted or "monsoonal" character of the ancient tropical climate. The present study shows that ancient weathering minerals in lateritic profiles preserve their δ 18O-δD values and carry a time signal. The time signal is best expressed in minerals formed rapidly at the weathering front and not subjected

  5. Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: An integrated study from Yaou, French Guiana

    Energy Technology Data Exchange (ETDEWEB)

    Girard, J.P.; Freyssinet, P.; Chazot, G.

    2000-02-01

    An integrated study of O and H isotopes in the latertic profile of Yaou, French Guiana, was undertaken to investigate the usefulness of stable isotopes as tracers of climatic changes in continental environments. The studied profile is composed of a 27 m thick saprolite, mostly developed in the past under wet-and-dry tropical climate in association with a duricrust, overlain by a 3 m thick yellow latosol formed more recently under present equatorial hot and humid climate. {delta}{sup 18}O-{delta}D values determined for weathering goethite (pseudomorphs after pyrite) and kaolinite (microcrystalline clay groundmass) throughout the 30 m deep profile reflect formation temperatures consistent with present (25 C) and realistic past climatic temperatures (20 C--30 C), indicating that weathering minerals formed in isotopic equilibrium with their genetic environment and were not subjected to significant isotope exchange after formation. A distinct shift downward from low to high {delta}{sup 18}O-{delta}D values occurs around 20 m depth in the saprolite. It is interpreted as recording the change from the past tropical to the present equatorial climate. Goethite and kaolinite in the 5--10 m thick saprolite interval immediately above the active basement weathering front are in isotopic equilibrium with modern water and must have formed under present equatorial-humid conditions. In contrast, goethite and kaolinite found higher up on the saprolite and in the duricrust formed in the past under tropical wet and dry climate from waters distinctly depleted in {sup 18}O and D relative to modern water. The marked depletion of paleo-meteoric water at Yaou most likely reflects a more contrasted or monsoonal character of the ancient tropical climate. The present study shows that ancient weathering minerals in lateritic profiles preserve their {delta}{sup 18}O-{delta}D values and carry a time signal. The time signal is best expressed in minerals formed rapidly at the weathering front and

  6. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  7. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  8. A spectroscopic study of mechanochemically activated kaolinite with the aid of chemometrics.

    Science.gov (United States)

    Carmody, Onuma; Kristóf, János; Frost, Ray L; Makó, Eva; Kloprogge, J Theo; Kokot, Serge

    2005-07-01

    The study of kaolinite surfaces is of industrial importance. In this work we report the application of chemometrics to the study of modified kaolinite surfaces. DRIFT spectra of mechanochemically activated kaolinites (Kiralyhegy, Zettlitz, Szeg, and Birdwood) were analyzed using principal component analysis (PCA) and multicriteria decision making (MCDM) methods, PROMETHEE and GAIA. The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz, are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1)OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). With the MCDM methods, it was shown that useful information on the basis of chemical composition, physical properties and grinding time can be obtained. For example, the effects of the minor chemical components (e.g., MgO, K(2)O, etc.) indicated that the Birdwood kaolinite is arguably the most pure one analyzed. In another MCDM experiment, some support was obtained for the apparent trend with grinding time noted in the PC plot of the OH spectral region.

  9. Enrofloxacin uptake and retention on different types of clays

    Science.gov (United States)

    Wan, Miao; Li, Zhaohiu; Hong, Hanlie; Wu, Qingfeng

    2013-11-01

    The adsorption and retention of enrofloxacin (EN) on different types of clays was studied in batch tests under different pH, contact time, and initial concentration conditions. XRD and FTIR analyses were utilized to characterize EN adsorption and to elucidate mechanisms of EN adsorption. The EN adsorption equilibrium followed the Langmuir isotherm and reached capacities of 667, 228 and 20 mmol/kg at pH 4-5 on the montmorillonite (SWy-2), illite (IMt-2), and kaolinite (KGa-1b), respectively. The pseudo-second-order model fitted the EN sorption kinetics well. Although EN had a much lower adsorption capacity on KGa-1b compared to that on the other two clays, the adsorption rate constant was the fastest at 0.73 kg/mmol-h. Cation exchange interaction was attributed to the major mechanism for EN adsorption on SWy-2 and IMt-2, and non-electrostatic interactions attributed to EN adsorption when solution pH was above 7. Intercalation of EN molecules into the interlayer space of SWy-2 was confirmed by the XRD patterns after EN adsorption. In contrast, the basal spacing and intensity remained the same after EN adsorption on IMt-2 and KGa-1b, indicating that the EN adsorption on the non-swelling clays were limited to the external surfaces.

  10. Synthesis of Zeolite A from Kaolin (Shwe Taung Clay)

    International Nuclear Information System (INIS)

    Mie Mie Han Htun; Mu Mu Htay

    2010-12-01

    The synthesis of Zeolite A from locally available kaolin clay (Shwe Taung) in Myanmar has been attempted. The kaolinite was converted to metakaoli, by treating with NaOH at 820C for 1hr, and hydrothermal treatment.It was found that the solution of fused clay powder can be crystallized at 100C under ambient pressure to synthesize Zeolite A. The process variables for synthesis have been optimized in order to produce Zeolite A at a lower price. The mole ratio of SiO2/Al2O3 for kaolin was fixed at 2.54. The effects of various factors (aging time and agitation time) on the structure of the sample were extensively investigated. The Shwe Taung clay was characterized by X-ray Diffraction (XRD), X-ray fluorescence (XRF) and Scanning Electron Microscopy (SEM). The samples were characterized by XRD. The results show that the pure form Zeolite A can be prepared with a molar composition of (2.54 SiO3: Al2O3: 5.8Na2O: 256 H2O) by agitation at room temperature for 30min. The mixture was aged for 24 hour at the same temperature and crystallized at 100C for 48 hour.

  11. Estimation of bitumen and clay content in fine tailings

    International Nuclear Information System (INIS)

    Motta Cabrera, S.C.; Bryan, J.; Kantzas, A.

    2007-01-01

    Fine tailings are the components of tailings ponds and the by-product of the oil sand extraction process, consisting mostly of water with small amounts of bitumen, sand, silts and clays. Because of the large volumes of tailings, an important environmental and production process issue involves the reduction of the remaining bitumen in the tailings stream. This paper presented the results of a study that used low field nuclear magnetic resonance (NMR) in order to estimate the bitumen, clay and water content of synthetic tailings samples. NMR is a non-destructive technique that is utilized to determine compositions of oil and brine emulsions and the viscosity of heavy oil and bitumen as well as in reservoir characterization, measuring properties such as permeability, porosity, mobile and immobile fluids, and fluid saturations. The study prepared and tested numerous samples with variable water, bitumen, sand and clay concentrations in the NMR tool under ambient conditions. Two qualities of water and bitumen were used to prepare the synthetic samples. Each type of water and bitumen was analyzed as a single substance and in a mixture with the typical solids found in tailings composition. These included kaolinite, illite, sodium montmorillonite and sand. These synthetic samples were analyzed using different mixing configurations, as a function of time and in two different NMR tools. It was concluded that NMR is a potential application for on-line determination of tailings streams composition. 18 refs., 3 tabs., 17 figs

  12. Characterization of bentonite clay from Cubati, PB, Brazil

    International Nuclear Information System (INIS)

    Batista, A.P.; Marques, L.N.; Campos, L.A.; Neves, G.A.; Ferreira, H.C.; Menezes, R.R.

    2009-01-01

    The bentonite of the State of Paraiba are commercially used in numerous technological sectors, particularly in oil drilling muds. However, these bentonite deposits are becoming exhausted after decades of exploitation. Thus, the aim of this work was to characterize physically, mineralogically and technologically bentonite clays from Cubati city, PB. The samples were dried at 60 deg C and characterized through X-ray fluorescence, particle size distribution, X-ray diffraction, differential thermal and gravimetric analyzes and scanning electronic microscopy. The natural bentonite clays were transformed into sodium bentonite by Na_2CO_3 solution treatment. It was estimated the rheological properties of the suspensions: apparent and plastic viscosities and water loss. The results showed that the samples are polycationic bentonite clays, containing amounts of MgO, CaO and K_2O similar to those of bentonite from Boa Vista, PB, and are composed of smectite, kaolinite and quartz. The samples presented fractions of particles size under 2 μm of 30 and 32%. The rheological properties showed that the samples presented technological potential to be used in drilling muds. (author)

  13. Clay mineralogy of selected borehole sediments from the Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Smith, D.K.; Peifer, D.W.; Rood, C.K.

    1992-04-01

    Smectite, 90 to 100% interstratified illite-smectite, chlorate, and kaolinite are identified in boreholes drilled in fluvial and alluvial fan deposits of the Plio-Pleistocene Livermore Formation in the vicinity of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), Livermore. X-ray diffraction, scanning electron microscopy, and electron microprobe studies indicate the clays persist through 150 ft of gravels, sands, silts, and mudstones of the vadose zone to total drilling depths of 200 ft in the saturated zone. Scanning electron microscopy indicates that true clays (layer silicate only) comprise between 2 and 15 modal percent of the Livermore Formation. Authigenic and detrital smectite, 90% interlayered illite-smectite, and chlorate persist throughout the stratigraphic section; kaolinite occurs only in the upper 100 ft of the section and is absent below. Smectite comprises between 60 to 90% of the true (layer silicate only) clay fraction. Illite and kaolinite±chlorite abundances fluctuate between 10 to 30% and 10 to 20% of this fraction, respectively. Authigenic smectite, illite, and chlorate crystallize together with detrital phases; the authigenic component increases with depth. The relative percentages of clay minerals define unique mineralogical intervals, which can be correlated between boreholes. Pervasive microfractures and interconnected porosity are inherent in the finer sediments; the microfractures typically are 1 mm or less in width and are variably spaced. Voids and microfractures are conspicuously lined by clays. Porosity for the argillaceous sediments ranges between 23 and 40%; Brunauer, Emmett, and Teller (BET) specific surface area decreases variably from 40 m 2 /g near the surface to 15 m 2 /g at the 115-ft depth. Within the pelitic matrix, iron, iron-titanium, chromium, and manganese oxides are pervasive

  14. Rational analysis and index of plasticity of clays for extrusion evaluation; Analise racional e indices de plasticidade para avaliacao de extrusao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.R.; Guimaraes Filho, M.A.S.; Santos, C.V.P.; Fagury Neto, E.; Rabelo, A.A., E-mail: adilton25rs@hotmail.com [Universidade Federal do Para (FEMAT/UFPA), Maraba, PA (Brazil). Laboratorio de Materiais Ceramicos

    2011-07-01

    In the microregion Maraba, in the southeast paraense, there's a important industrial park in the area of red ceramic due to the quality of the extracted clays in the proximities of their rivers. With the intention of collaborating for the production of tiles and structural blocks of quality, in this work the rational analysis of clays was accomplished, through the relationship of the qualitative X-ray diffraction and X-ray fluorescence results. Was possible to quantify the present phases in the collected clays and these results were correlated to the Atterberg's limits - plasticity and liquidity limitsand the respective plasticity indexes - making possible to classify the clays in areas of great and acceptable extrusion. The results of the rational analysis demonstrated that the analyzed clays are plastic kaolinites and don't present quantitative differences very accentuated among the present phases detected besides they possess an area of acceptable extrusion naturally. (author)

  15. Preferred Orientation and Anisotropy of Clay minerals and Pores in Posidonia Shales

    Science.gov (United States)

    Kanitpanyacharoen, W.; Chen, K.; Wenk, H.

    2010-12-01

    Shales compose a large part of sedimentary basins and form the seal and source rocks for hydrocarbon reservoirs. They are also of great interest in context of repositories for nuclear waste and carbon sequestration. A comprehensive study of shale properties is thus crucial for seismic prospecting, particularly due to high elastic anisotropy that is contributed by the alignment of constituent clay minerals during compaction and diagenesis. In this study, we quantitatively analyze composition, crystal preferred orientation (or texture), and the 3D porosity structure in four Posidonia shales from Germany using high energy synchrotron x-rays. We can infer texture information from x-ray diffraction images relying on the Rietveld method, as well as determine the 3D porosity structure from tomography images. We observed that quartz and calcite are dominating phases while illite-smectite, illite-mica and kaolinite are the major clay minerals. The texture strength of clays range from 4.22 to 6.12 m.r.d. A comparison of shallow Posidonia shales with deep shales from the North Sea, Saudi Arabia, and the Gulf of Mexico documents that P-wave anisotropy increases with increasing phyllosilicate content (mainly illite-smectite and kaolinite) and increasing burial. Low absorption features in microtomography images indicate porosity (including kerogen and fractures), which is estimated at 1 vol% and observed to be anisotropic, mainly organized parallel to bedding with little connectivity of flat pores in direction perpendicular to the bedding plane.

  16. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  17. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    Science.gov (United States)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  18. EFFECTS OF INORGANIC SALT SOLUTION ON SOME PROPERTIES OF COMPACTED CLAY LINERS

    Directory of Open Access Journals (Sweden)

    KHALID R. MAHMOOD AL-JANABI

    2017-12-01

    Full Text Available Processed and natural clays are widely used to create impermeable liners in solid waste disposal landfills. The engineering properties of clay liners can be significantly affected by the leachate from the waste mass. In this study, the effect of inorganic salt solutions will be investigated. These solutions used at different concentrations. Two type of inorganic salt MnSO4 and FeCl3 are used at different concentration 2%,5%, 10%. Clay used in this study was the CL- clay (kaolinite. The results show that the consistency limits and unconfined compressive strength increased as the concentration of salts increased. While the permeability tends to decrease as salt concentration increased. Also, the compression index decreases as the concentration increased from 2% to 5%. The swelling index tends to increase slightly as the concentration of MnSO4 increased, while its decrease as the concentration of FeCl3. In this paper, it is aimed to investigate the performance of compacted clay liner exposed to the certain chemicals generated by the leachate and their effects on the geotechnical properties of compacted clay liner such consistency limits, permeability coefficient, compressibility characteristics and unconfined compressive strength.

  19. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti

    2012-07-01

    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA, two illites (Illite NX and Illite SE and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K<Tonstd<242 K and best sites with averaged median freezing temperature Tmedbest=257 K, but only some featuring a special peak (i.e. KSF, K-10, K-SA and SWy-2 with freezing onsets in the range 240–248 K. The illites showed broad standard peaks with freezing onsets at 244 K Tonstd<246 K and best sites with averaged median freezing temperature Tmedbest=262 K. The large difference between freezing temperatures of standard and best sites shows that characterizing ice nucleation efficiencies of dust particles on the basis of freezing onset temperatures from bulk experiments, as has been done in some atmospheric studies, is not appropriate. Our investigations

  20. In situ neutron diffraction investigation on the phase transformation sequence of kaolinite and halloysite to mullite

    Energy Technology Data Exchange (ETDEWEB)

    Tezuka, Nobuo [Department of Applied Physics, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Low, It-Meng [Department of Applied Physics, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia)]. E-mail: J.Low@curtin.edu.au; Davies, Ian J. [Department of Mechanical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Prior, Michael [Bragg Institute, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Studer, Andrew [Bragg Institute, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2006-11-15

    'Kaolin' is a major raw material for the fabrication of conventional ceramics. In this work the authors have investigated the thermal phase transformation of mullite from two different types of kaolin (kaolinite and halloysite), with or without alumina matrix constraint, during heating up to 1500 deg. C and then cooling using in situ neutron diffraction. Mullitization was initiated upon heating to 1200 deg. C for all specimens and followed spinel formation at 1100 deg. C. Above this temperature, however, evolution of the main phases, i.e., mullite, cristobalite and corundum, was influenced by the presence of impurities, initial type of silica, and alumina constraint. The relative amount of mullite was largest for the pure kaolinite specimen, particularly during heating, and this was attributed to the presence of a glassy phase. However, kaolinite with alumina suppressed the crystallization of cristobalite from the glassy phase upon cooling due to a reaction between alumina and amorphous silica, consequently resulting in an amount of mullite as for the pure kaolinite specimen (approximately 65 wt%). Halloysite was less active in terms of mullitization due to the lower level of initial impurities and greater amount of cristobalite, particularly for the alumina-constrained specimen. However, the final amount of mullite derived from the pure halloysite specimen was similar to that as from the kaolinite specimen.

  1. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.

    Science.gov (United States)

    Cheng, Hongfei; Frost, Ray L; Yang, Jing; Liu, Qinfu; He, Junkai

    2010-12-01

    The structure and thermal stability between typical Chinese kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300-700°C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm(-1), attributed to structural water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm(-1) are observed for both kaolinite and halloysite. The 550°C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm(-1) spectral region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. These differences are attributed to the fundamental difference in the structure of the two minerals. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. In situ neutron diffraction investigation on the phase transformation sequence of kaolinite and halloysite to mullite

    International Nuclear Information System (INIS)

    Tezuka, Nobuo; Low, It-Meng; Davies, Ian J.; Prior, Michael; Studer, Andrew

    2006-01-01

    'Kaolin' is a major raw material for the fabrication of conventional ceramics. In this work the authors have investigated the thermal phase transformation of mullite from two different types of kaolin (kaolinite and halloysite), with or without alumina matrix constraint, during heating up to 1500 deg. C and then cooling using in situ neutron diffraction. Mullitization was initiated upon heating to 1200 deg. C for all specimens and followed spinel formation at 1100 deg. C. Above this temperature, however, evolution of the main phases, i.e., mullite, cristobalite and corundum, was influenced by the presence of impurities, initial type of silica, and alumina constraint. The relative amount of mullite was largest for the pure kaolinite specimen, particularly during heating, and this was attributed to the presence of a glassy phase. However, kaolinite with alumina suppressed the crystallization of cristobalite from the glassy phase upon cooling due to a reaction between alumina and amorphous silica, consequently resulting in an amount of mullite as for the pure kaolinite specimen (approximately 65 wt%). Halloysite was less active in terms of mullitization due to the lower level of initial impurities and greater amount of cristobalite, particularly for the alumina-constrained specimen. However, the final amount of mullite derived from the pure halloysite specimen was similar to that as from the kaolinite specimen

  3. Recovery of kaolinite from tailings of Zonouz kaolin-washing plant by flotation-flocculation method

    Directory of Open Access Journals (Sweden)

    Kianoush Barani

    2018-04-01

    Full Text Available The traditional processing of kaolin is achieved by dispersion of the mined ore and classification by multistage hydrocyclone plants. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back into the quarry. In this research, recovery of kaolinite from tailings of Zonouz kaolin washing plant, which is located in Iran was investigated by flotation and flotation- flocculation. Flotation experiments show that the flotation of kaolinite from the tailings is better in an acidic than in an alkaline medium containing cationic collectors. Flotation under acidic condition causes problems such as equipment corrosion at industrial scale. As a result, the cationic flotation of kaolinite is enhanced by addition of polyacrylamide as a flocculant. The results showed flocculation by polyacrylamide improved flotation of kaolinite within a range of pH. With 300 g/t dodecylamine, 500 g/t aluminum chloride, 50 g/t pine oil (frother, 15 g/t polyacrylamide, at pH = 7 and without de-slimming a product has 37.19% Al2O3, 54.19% SiO2 and 34.43% mass recovery was archived. Keywords: Kaolinite, Flotation, Flocculation, Cetylpyridinium chloride, Dodecylamine, Aluminum chloride, Polyacrylamide

  4. Evaluation of the bleaching flux in clays containing hematite and different clay minerals; Avaliacao do fundente descolorante em argilas contendo hematita e diferentes argilominerais

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos [Universidade Tecnologica Federal do Parana (DAMEC/UFTPR), Pato Branco, PR (Brazil); Morelli, M.R., E-mail: geocrisr@utfpr.edu.com, E-mail: morelli@power.ufscar.br [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil)

    2016-07-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  5. Considering clay rock heterogeneity in radionuclide retention

    International Nuclear Information System (INIS)

    Grambow, B.; Montavon, G.; Tournassat, C.; Giffaut, E.; Altmann, S.

    2010-01-01

    Document available in extended abstract form only. The Callovo-Oxfordian clay rock formation has a strong retention capacity for radionuclides, a favorable condition for the implementation of a nuclear waste repository. Principal retaining minerals are illite, and inter-stratified illite/smectite (I/S). Radionuclide retention has been studied on illite, illite/smectite and on clay rock obtained from different locations and data for retention on bentonite (80% smectite) are available. Sorption depends on the type of mineral, composition of mineralogical assemblages, individual mineral ion exchange capacities, ion distribution on exchange sites, specific surface areas, surface site types and densities for surface complexation as well as on water/rock ratios, temperature etc. As a consequence of mineralogical and textural variations, radionuclide retention properties are expected to vary with depth in the Callovo-Oxfordian formation. Using a simple additivity approach for the case of sorption of Cs and Ni it is shown that models and databases for illite and bentonite can be used to describe sorption in heterogeneous clay rock systems. A surface complexation/ion-exchange model as proposed by Bradbury and Baeyens without electrostatic contributions, was used directly as far as acid base properties are concerned but was modified with respect to sorption constants, in order to describe Na-, Ca, and Cs montmorillonite and bentonite MX-80 with a single set of surface complexation constants and also to account for carbonate and sulphate concentrations in groundwater. The model is integrated into the geochemical code PHREEQC considering dissolution/ precipitation/solubility constraints of accessory minerals (calcite, illite, celestite, quartz). Site densities for surface complexation and ion exchange are derived from the mass fractions of illite and of smectite in illite/smectite obtained from an overall fit of measured CEC data from all samples of the EST205 drill core

  6. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  7. Clay Mineralogy of Coal-Hosted Nb-Zr-REE-Ga Mineralized Beds from Late Permian Strata, Eastern Yunnan, SW China: Implications for Paleotemperature and Origin of the Micro-Quartz

    Directory of Open Access Journals (Sweden)

    Lixin Zhao

    2016-05-01

    Full Text Available The clay mineralogy of pyroclastic Nb(Ta-Zr(Hf-REE-Ga mineralization in Late Permian coal-bearing strata from eastern Yunnan Province; southwest China was investigated in this study. Samples from XW and LK drill holes in this area were analyzed using XRD (X-ray diffraction and SEM (scanning electronic microscope. Results show that clay minerals in the Nb-Zr-REE-Ga mineralized samples are composed of mixed layer illite/smectite (I/S; kaolinite and berthierine. I/S is the major component among the clay assemblages. The source volcanic ashes controlled the modes of occurrence of the clay minerals. Volcanic ash-originated kaolinite and berthierine occur as vermicular and angular particles, respectively. I/S is confined to the matrix and is derived from illitization of smectite which was derived from the original volcanic ashes. Other types of clay minerals including I/S and berthierine precipitated from hydrothermal solutions were found within plant cells; and coexisting with angular berthierine and vermicular kaolinite. Inferred from the fact that most of the I/S is R1 ordered with one case of the R3 I/S; the paleo-diagenetic temperature could be up to 180 °C but mostly 100–160 °C. The micro-crystalline quartz grains (<10 µm closely associated with I/S were observed under SEM and were most likely the product of desiliconization during illitization of smectite.

  8. Clay minerals assemblage in the Neogene fluvial succession of the Pishin Belt, Pakistan

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Friis, Henrik

    2014-01-01

    indicate derivation of material from the Pre-Miocene sedimentary and meta-sedimentary terrains of the Pishin Belt. X-ray diffraction (XRD) analyses indicate that clay minerals in various mudstones and sandstone samples are identical and detrital in nature and include smectite, chlorite, illite, serpentine...... and kaolinite. Smectite and chlorite are most probably derived from the metavolcanic and mafic volcanic rocks, respectively. Presence of serpentine in samples of the Bostan Formation indicates altered ultramafic rocks as one of the source terrains. Illite is probably recycled from the older sedimentary...

  9. Nanotubular halloysite clay as efficient water filtration system for cationic and anionic dyes removal

    OpenAIRE

    Conference, Nanostruc; Yafei Zhao, Elshad Abdullayev and Yuri Lvov

    2014-01-01

    Halloysite clay has chemical structure similar to kaolinite but it is rolled in tubes with diameter of 50 nm and length of ca. 1000 nm. Halloysite exhibits higher adsorption capacity for both cationic and anionic dyes because it has negative SiO2 outermost and positive Al2O3 inner lumen surface. An adsorption study using cationicRhodamine 6G and anionic Chrome azurol S has shown pproximately two times better dye removal for halloysite as compared to kaolin. Halloysite filters have been effect...

  10. Naturally occurring clay nanoparticles in Latosols of Brazil central region: detection and characterization

    Science.gov (United States)

    Dominika Dybowska, Agnieszka; Luciene Maltoni, Katia; Piella, Jordi; Najorka, Jens; Puntes, Victor; Valsami-Jones, Eugenia

    2015-04-01

    Stability and reactivity of minerals change as a particle size function, which makes mineral nanoparticles (defined here as sieved (53 µm) to remove the sand fraction. The clay fraction was collected by siphoning the supernatant, conditioned in 1000 ml cylinder, according to the Stock's law. This fraction was further processed by re-suspension in water, sonication and repeated centrifugation, to separate the fraction smaller than 100nm. This material, called here the soil "nanofraction", was analyzed using a range of techniques: 1) nanoparticle size/morphology and crystallinity with Transmission Electron Microscopy (TEM operateing in scanning (HAADF-STEM) and High Resolution (HRTEM) mode), 2) size distribution in water with Dynamic Light Scattering (DLS) and surface charge estimated from electrophoretic mobility measurements 3) crystal phase and crystallite size with X-ray Diffraction (XRD) 4) Chemical composition by quantitative analysis of elements (e.g., Si, Fe, Al, Ti) and their spatial distribution with HRTEM/EDS elemental mappings. The nanofraction had an average hydrodynamic particle diameter ranging from 83 to 92nm with a low polydispersity index of 0.13-0.17 and was found highly stable in aqueous suspension (no change in average particle size up to several months of storage). Particle surface charge (in water) ranged from -31mV to -34.5mV (pH = 5.7 - 6.2), this reflects the predominantly negative surface charge of kaolinites in soil environment effectively screening the positive charge of Fe oxides. Kaolinites appeared as single crystals (pseudo hexagonal platelets) while Fe oxides occurred mostly as micro-aggregates, with individual particles often not morphologically distinct with particle size <10nm. In addition, several anatase (TiO2) nanoparticles were also found. Both kaolinites and Fe oxides nanoparticles were crystalline, as evidenced from XRD measurements and HRTEM imaging. Distinction between different crystalline forms of Fe oxides (mainly

  11. Holocene debris flows on the Colorado Plateau: The influence of clay mineralogy and chemistry

    Science.gov (United States)

    Webb, R.H.; Griffiths, P.G.; Rudd, L.P.

    2008-01-01

    Holocene debris flows do not occur uniformly on the Colorado Plateau province of North America. Debris flows occur in specific areas of the plateau, resulting in general from the combination of steep topography, intense convective precipitation, abundant poorly sorted material not stabilized by vegetation, and the exposure of certain fine-grained bedrock units in cliffs or in colluvium beneath those cliffs. In Grand and Cataract Canyons, fine-grained bedrock that produces debris flows contains primarily single-layer clays - notably illite and kaolinite - and has low multilayer clay content. This clay-mineral suite also occurs in the colluvium that produces debris flows as well as in debris-flow deposits, although unconsolidated deposits have less illite than the source bedrock. We investigate the relation between the clay mineralogy and major-cation chemistry of fine-grained bedrock units and the occurrence of debris flows on the entire Colorado Plateau. We determined that 85 mapped fine-grained bedrock units potentially could produce debris flows, and we analyzed clay mineralogy and major-cation concentration of 52 of the most widely distributed units, particularly those exposed in steep topography. Fine-grained bedrock units that produce debris flows contained an average of 71% kaolinite and illite and 5% montmorillonite and have a higher concentration of potassium and magnesium than nonproducing units, which have an average of 51% montmorillonite and a higher concentration of sodium. We used multivariate statistics to discriminate fine-grained bedrock units with the potential to produce debris flows, and we used digital-elevation models and mapped distribution of debris-flow producing units to derive a map that predicts potential occurrence of Holocene debris flows on the Colorado Plateau. ?? 2008 Geological Society of America.

  12. Preparation and characterization of photoactive composite kaolinite/TiO2

    International Nuclear Information System (INIS)

    Mamulova Kutlakova, K.; Tokarsky, J.; Kovar, P.; Vojteskova, S.; Kovarova, A.; Smetana, B.; Kukutschova, J.; Capkova, P.; Matejka, V.

    2011-01-01

    Preparation of nanocomposite kaolinite/TiO 2 , using hydrolysis of titanyl sulfate in the presence of kaolin was addressed. A variable (kaolin)/(titanyl sulfate) ratio has been used in order to achieve the desired TiO 2 content in prepared nanocomposites. Calcination of the composites at 600 deg, C led to the transformation of the kaolinite to metakaolinite and to origination of metakaolinite/TiO 2 composites. The prepared samples were investigated using X-ray fluorescence spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry and diffuse reflectance spectroscopy in the UV-VIS region. Structural ordering of TiO 2 on the kaolinite particle surface was modeled using empirical force field atomistic simulations in the Material Studio modeling environment. Photodegradation activity of the composites prepared was evaluated by the discoloration of Acid Orange 7 aqueous solution.

  13. Kaolinite as an in situ dosimeter for past radionuclide migration at the Earth's surface

    International Nuclear Information System (INIS)

    Allard, T.; Muller, J.-P.

    1998-01-01

    The origin of 3 types of point defects (A-, Aminutes or feet- and B-centers) in kaolinite, due to natural irradiation and detected by electron paramagnetic resonance spectroscopy (EPR), has been demonstrated by artificial irradiation. The potential use of tracing the dynamics of the transfer of radionuclides through A-centers (i.e. the most stable centers) was qualitatively tested on different low-temperature alteration systems, some associated with U-concentrations. This paper proposes a quantitative approach to the reconstruction of the past migration of radionuclides by dosimetry of A-centers. With this aim in mind, the efficiency of α- and γ-radiations to produce A-centers was determined by experimental irradiation. Parameters extracted from A-center growth curves, together with their relationship with a parameter describing the degree of order of kaolinite, permitted (i) a definition to be made of the dose range in which a given kaolinite could be used as a dosimeter and (ii) the quantitative derivation of U-concentration from the cumulative dose (paleodose) of kaolinites. This was achieved by a formalism that accounted for the contribution of natural radiosources to the production of A-centers. The formalism was applied to the Nopal I U-deposit (Chihuhua, Mexico), considered as a natural analogue of a high level nuclear waste repository. Irrespective of the scenario considered, in terms of kaolinite age and of degree of isotopic disequilibrium in the system, A-center dosimetry permitted the determination of past occurrences of U which were several orders of magnitude higher than the present-day measured U-concentrations. Furthermore, this approach also provided evidence for several previous episodes of U-migration. EPR spectroscopy is thus a unique tool for the quantitative, indirect assessment of past radionuclide migration in the geosphere and kaolinite is a reliable in-situ dosimeter. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights

  14. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S

    2008-09-01

    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  15. Intensity and duration of chemical weathering: An example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii

    Science.gov (United States)

    Johnsson, Mark J.; Ellen, Stephen D.; McKittrick, Mary Anne

    1993-01-01

    Orographic precipitation on the southern flank of the southeastern Koolau Mountains produces a pronounced precipitation gradient. The corresponding gradient in the intensity of the chemical weathering environment provides an opportunity to address the effects of varying chemical weathering intensity on the composition of clay-size weathering products in soils developed on basalt. In addition, little-modified remnants of the constructional surface of the Koolau Volcano, isolated by stream dissection, remain as facets on the southern ends of the parallel ridges of the study area. By comparing clay mineralogy of soils developed on these older geomorphic surfaces with those developed on the younger sharp-crested ridges and steep side slopes, the effects of weathering duration on clay mineralogy can also be addressed.Soil clays in this part of the Koolau Mountains are mineralogically complex; principal phases include smectite, kaolinite, and halloysite, but pure end member phases are uncommon. Rather, most phases contain some amount of mixed layering. Smectite may contain small (Volcano are markedly more leached than those from younger landscapes in the same precipitation regime. Although smectite may be present, kaolinite is the dominant phase, and accumulations of Fe and Ti occur in the uppermost soil levels. Enrichment of Zr and Ti in these soils, as compared to concentrations in the original basaltic parent material, indicates that as much as 75% of the parent material has been lost. Thus weathering duration may affect soil clay composition in the same way as weathering intensity.Because smectite and halloysite are expandable clay minerals, their presence in soils may decrease slope stability and influence the nature of slope processes. Soil avalanches occur on steep slopes throughout the study area, whereas slow-moving landslides appear to be restricted to gentler slopes in drier parts of the study area where smectite is abundant. The clay mineralogy of soils thus

  16. Mineralogy of the clay fraction of alfisols in two slope curvatures: IV - spatial correlation with physical properties

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2013-04-01

    Full Text Available Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS and width at half height (WHH of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS and specific surface area (SSA of hematite and goethite; the goethite/(goethite+hematite and kaolinite/(kaolinite+gibbsite ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.

  17. Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene-Eocene sequence, northwestern Argentina

    Science.gov (United States)

    Do Campo, Margarita; Bauluz, Blanca; del Papa, Cecilia; White, Timothy; Yuste, Alfonso; Mayayo, Maria Jose

    2018-06-01

    The continental Paleocene-Eocene sequence investigated in this study belongs to the Salta Group, deposited in an intracontinental rift, the Salta Basin (NW Argentina), that evolved from the lower Cretaceous to the middle Paleogene, and is subdivided into the Pirgua, the Balbuena and the Santa Barbara Subgroups. The Maíz Gordo Formation (200 m thick) is the middle unit of the Santa Bárbara Subgroup, deposited during late post-rift sedimentation. We studied the mineralogy of fine-grained horizons of this formation by X-ray diffraction and Scanning Electron Microscopy (SEM) in order to examine the connection between vertical changes in clay mineralogy in alluvial sediments and paleosols, and global paleoclimatic changes registered during the Paleogene. Paleosols vary from calcic vertisols in the lowermost levels, to inseptisols and gleysols in intermediate positions, to gleyed oxisols in the upper section, indicating increased chemical weathering through time. Clay mineral relative abundances vary with a general increase in kaolinite content from bottom to top. However, at one site there are significant variations in kaolinite/muscovite (Kln/Ms) that define five cycles of kaolinite abundance and Kln/Ms. that indicate cyclic patterns of paleoprecipitation and paleotemperature. These are interpreted as several short-lived hyperthermals during the Paleocene-early Eocene in the Southern Hemisphere, which correlate with well-established episodes of warmth documented from the Northern Hemisphere.

  18. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  19. Flotation of kaolinite from tailings of kaolin-washing plants by cationic collectors

    Directory of Open Access Journals (Sweden)

    Barani Kianoush

    2016-01-01

    Full Text Available Traditional processing of kaolin is achieved by dispersion of the mined ore and classification by means of multistage hydrocyclones. The inefficiencies inherent to cyclones produce a middling product that is commonly disposed back to the quarry. In this research recovery of kaolinite from tailings of the Zonoupz kaolin washing plant, which is located in Iran, was investigated by cationic flotation. Flotation experiments showed that flotation of kaolinite from tailings was much better in an acidic than in an alkaline medium containing cationic collectors.

  20. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  1. Continental weathering as a driver of Late Cretaceous cooling: new insights from clay mineralogy of Campanian sediments from the southern Tethyan margin to the Boreal realm

    Science.gov (United States)

    Chenot, Elise; Deconinck, Jean-François; Pucéat, Emmanuelle; Pellenard, Pierre; Guiraud, Michel; Jaubert, Maxime; Jarvis, Ian; Thibault, Nicolas; Cocquerez, Théophile; Bruneau, Ludovic; Razmjooei, Mohammad J.; Boussaha, Myriam; Richard, James; Sizun, Jean-Pierre; Stemmerik, Lars

    2018-03-01

    New clay mineralogical analyses have been performed on Campanian sediments from the Tethyan and Boreal realms along a palaeolatitudinal transect from 45° to 20°N (Danish Basin, North Sea, Paris Basin, Mons Basin, Aquitaine Basin, Umbria-Marche Basin and Tunisian Atlas). Significant terrigenous inputs are evidenced by increasing proportions of detrital clay minerals such as illite, kaolinite and chlorite at various levels in the mid- to upper Campanian, while smectitic minerals predominate and represented the background of the Late Cretaceous clay sedimentation. Our new results highlight a distinct latitudinal distribution of clay minerals, with the occurrence of kaolinite in southern sections and an almost total absence of this mineral in northern areas. This latitudinal trend points to an at least partial climatic control on clay mineral sedimentation, with a humid zone developed between 20° and 35°N. The association and co-evolution of illite, chlorite and kaolinite in most sections suggest a reworking of these minerals from basement rocks weathered by hydrolysis, which we link to the formation of relief around the Tethys due to compression associated with incipient Tethyan closure. Diachronism in the occurrence of detrital minerals between sections, with detrital input starting earlier during the Santonian in the south than in the north, highlights the northward progression of the deformation related to the anticlockwise rotation of Africa. Increasing continental weathering and erosion, evidenced by our clay mineralogical data through the Campanian, may have resulted in enhanced CO2 consumption by silicate weathering, thereby contributing to Late Cretaceous climatic cooling.

  2. Kaolinite: a natural radiations dosemeter. Application to past radioelement migrations tracing in the geosphere

    International Nuclear Information System (INIS)

    Allard, Thierry

    1994-01-01

    The efficiency of the processes regulating the mobility of the radioelements in the geosphere can be assessed by the study of past migrations of uranium. For that geochemical purpose, it can be used mineral tracers like kaolinite, which records past contacts with radioelements as radiation-induced defects. Three radiation-induced centers had been identified in kaolinite by means of electron paramagnetic resonance, i.e. the A-, A'- and B-centers, and interpreted as hole centers located on oxygen atoms of the structure. The A-center is stable at the scale of geological periods. Consequently, it could be directly used to measure paleo-doses, that are related to the past occurrence of radioelements. This works states the potentialities of kaolinite as a dosimeter for the study or past migrations of uranium in the geosphere: - Experimental irradiations: we studied the effects of the main natural radiations (alpha and gamma) within a dose range consistent with that occurring in geo-systems at the Earth surface. We simulated these radiation effects by irradiating natural reference kaolinites with He + ions provided by the ARAMIS particle accelerator (Orsay) and a 60 Co source (CENG, Grenoble), respectively. We took into account the natural variability of kaolinites in terms of crystalline disorder and chemical (Fe 3+ ) or mineralogical (illite, smectite) impurities. It is confirmed that the sensitivity of the radiation-induced centers decreases in the order B>A>A'. The dosimetry curve of the A center can be described with an exponential function constrained by two parameters (the concentration at saturation and the efficiency coefficient) which are correlated. These dosimetry parameters are also correlated with the crystalline order of the kaolinites, which suggests the possibility to assess them by a measurement of crystalline disorder (with EPR). Moreover, the alpha irradiations of illite and of smectite evidenced radiation centers, which can disturb the EPR

  3. Clay and concrete brick

    CSIR Research Space (South Africa)

    Dlamini, MN

    2014-03-01

    Full Text Available Brick is one of the most used and versatile building materials in use today. Bricks can be defined as modular units connected by mortar in the formation of a building system or product. Commonly the word brick is used to refer to clay bricks, which...

  4. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  5. Ring shear characteristics of clays in fractured-zone-landslide. Hasaitai chisuberichi no nenseido no ring sendan tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yatabe, R; Yagi, N; Enoki, M [Ehime Univ., Ehime (Japan). Faculty of Engineering

    1991-09-20

    The importance of study on the residual strength, in addition to the peak strength, has been pointed out for the study of landslides. The residual strength characteristics, effects of shearing rate, and grain size of clays, as well as the residual strength characteristics of clay minerals of a fractured zone landslide were examined by ring shear tests. The residual friction angles {phi}{sub r} of the tested clays of the fractured zone landslide were from 10 to 31{degree}, and were smaller than those of shearing resistance angles {phi}{prime} obtained by triaxial tests by 5 to 15{degree}. Contrary to the pointing out made hitherto, no correlation between clay content CF and plastic index was recognized for {phi}{sub r} of clays of a fractured zone landslide. As regards CF, the relation with CF was far below the lowest limit indicated by now. Ring shear characteristics of principal structural clay minerals, vermiculite, mica, illite, chlorite, and kaolinite were investigated. {phi}{sub r} of these clay minerals were in the range from 10 to 25{degree}. 20 refs., 14 figs., 2 tabs.

  6. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  7. Modification of kaolinite surfaces through mechanochemical activation with quartz: A diffuse reflectance infrared fourier transform and chemometrics study.

    Science.gov (United States)

    Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva

    2006-12-01

    Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.

  8. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  9. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties; Arcillas caolinicas de la Patagonia argentina. Relacion entre la mineralogia y las propiedades ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Factorovich, J.C.; Badino, D. [Piedra Grande S.A., Buenos Aires (Argentina); Cravero, F.; Dominguez, E. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Geologia

    1997-12-31

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2{mu} fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author) 5 refs., 2 tabs.

  10. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  11. Effects of curing time and line addition on the microstructure and physical properties of hydrated burnt clay-lime mixes

    International Nuclear Information System (INIS)

    Hajjaji, M.; Mleza, Y.

    2012-01-01

    The change of the microstructure of hydrated burnt illitic-kaolinitic clay-lime blends as a fonction of curing time and line addition were investigated using X-ray diffraction and scanning electron microscope. The relation between physical properties - bending strenght, density and water absorption - and the operating factors were formulated using response surface methodology. It was found that floculation-agglomeration, carbonation and hydrates formation where the main happening transformations. The pozzolanic reactions essentially involved metakaolin, derived from heated kaolinite. Based on the RSM results, both factors had positive effects on the strength and their interactions were synergistic. However, they manifested opposite effects and significant antaginistic interactions on density and water absorption

  12. Chemical, mineralogical and ceramic properties of clays from Northern Santa Catarina, Brazil

    International Nuclear Information System (INIS)

    Correia, S.L.; Bloot, E.L.; Folgueras, M.V.; Hotza, D.

    2009-01-01

    Clay materials crop out in the northern Santa Catarina mining district were investigated in order to assess their potential in the ceramic industry. Four different clays (A, B, C and D) were selected. Their chemical composition was obtained by Xray fluorescence and their mineralogy by X-ray diffraction, coupled with numerical rational analysis. Their thermal behaviour was studied by differential thermal analysis. Technological testing consisted in a simulation of the industrial processing performed at a laboratory scale. The test pieces were obtained by pressing and fired in the range of 850-1200 deg C. In each case their technological properties were studied. The main mineralogical phases detected were kaolinite, quartz and mica. Hematite and feldspars may be present in the clays. The clays show two groups of particle sizes almost equally frequent in the range of 1 to 60 μm. The northern Santa Catarina clays are suitable for the production of bricks and earthenware in the 900- 1100 deg C range. (author)

  13. Mineral potential of clays that cover the gypsum deposits in Araripina-PE region

    International Nuclear Information System (INIS)

    Lira, B.B.; Anjos, I.F. dos; Rego, S.A.B.C.

    2011-01-01

    In the present work the applicability of the clays that cover the deposits of Gypsum Plaster in the region of Araripina - PE for use as the ceramic pigments and for bricks production in the red ceramic industry was analyzed. The clay minerals contained the illite, kaolinite and smectite, with high proportion of the last one. The possibility of industrial application of this mineral clay is considerable; however, the mining industries that mine and process the gypsum in the region do not take the clays into account as the potential mineral. In general, industries use the clay minerals in manufacturing processes or as key raw materials, or as the alternatives for some kinds of the chemical processing industries. This paper aims to highlight the potential of materials that cover the deposits of gypsum in reference. The material sampled from different deposit layers was characterized and the physical treatment of ore was applied. The results showed that the material analyzed can be used in various kinds of industry, such as the production of natural ceramic pigments. (author)

  14. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe.

    Science.gov (United States)

    Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H

    2002-04-15

    This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.

  15. Characterization and evaluation of ceramic properties of clay used in structural ceramics; Caracterizacao e propriedades ceramicas de argilas usadas em ceramica vermelha no estado do Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Savazzini-Reis, A., E-mail: alessandrar@ifes.edu.br [Instituto Federal do Espirito Santo (IFES), Colatina, ES (Brazil); Della-Sagrillo, V.P. [Instituto Federal do Espirito Santo (IFES), Vitoria, ES (Brazil); Valenzuela-Diaz, F.R. [Universidade de Sao Paulo (PMT/EP/USP), SP (Brazil)

    2016-07-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  16. Clay mineral facies and lateritization in basalts of the southeastern Parana Basin, Brazil

    International Nuclear Information System (INIS)

    Oliveira, M.T.G. de; Formoso, M.L.L.; Trescases, J.J.; Meunier, A.

    1998-01-01

    Seventeen samples from two lateritic profiles, each with five facies, were studied. These profiles occur on the old planation surface of the plateau basalts of the southern part of ParanáBasin, Brazil. Optical microscopy, X-ray diffraction, electron microprobe, Mössbauer spectroscopy and Fourier Transform Infrared Spectra were used to obtain information about the nature and chemical composition of each weathering facies. In addition, scanning electron microscopy and analyses of clay minerals were performed to detect microcrystalline environmental changes. Both profiles have two major parts: a loose red-clay latosol separated from an underlying mottled clay and an alterite facies; a stone line may or may not be present between the latosol and the underlying units. In both profiles the latosol consists principally of kaolinite, hematite and goethite. Two alterite facies, shaped by differential weathering, are also present in the lower profile: a halloysite–nontronite clayey matrix with a well developed fissure system occurs in the argillaceous alterite and a network of Al–goethite aggregates is typical of the highly porous cortex of the boulder alterite that is found in the stone line and below it. Gibbsite has crystallized in the large pores of porphyritic boulder alterite but is absent in the small pores of the subaphyric boulder alterite. Clay minerals observed in fissures include halloysite associated with goethite and manganese oxides. The basalt has hydrothermal green-clays (mixed layers and trioctahedral smectites) that formed between primary plagioclase, pyroxene and Ti–magnetite crystals while fresh corestones of the boulder alterite have cryptocrystalline iron-rich material. The study of these profiles shows one principal evolutionary trend for clay minerals. This trend is from smectite and mixed layers that form green clays in altered bedrock at the base of the profile to an intermediate association of nontronite and halloysite in the argillaceous

  17. Polyaniline/TiO{sub 2}/kaolinite: The composite material with high electrical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Neuwirthová, Lucie; Peikertová, Pavlína [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Kulhánková, Lenka [Faculty of Metallurgy and Materials Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Mamulová Kutláková, Kateřina; Matějka, Vlastimil [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Čapková, Pavla [Faculty of Science, J.E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic)

    2014-07-01

    Kaolinite–TiO{sub 2} nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO{sub 2} in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10{sup 3}–10{sup 4}) in comparison with pure PANI tablet (α is of the order of 10{sup 2}). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO{sub 2}/kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO{sub 2}/polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO{sub 2} helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO{sub 2} matrix improves the sensing properties.

  18. Effect of kaolinite and Ca-montmorillonite on the alleviation of soil water repellency

    Czech Academy of Sciences Publication Activity Database

    Dlapa, P.; Doerr, S. H.; Lichner, Ľ.; Šír, Miloslav; Tesař, Miroslav

    2004-01-01

    Roč. 50, č. 8 (2004), s. 358-363 ISSN 0370-663X R&D Projects: GA AV ČR IAA3042301; GA AV ČR IBS2060104 Keywords : water repellency * kaolinite * Ca-montmorillonite Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.379, year: 2004

  19. Microstructure, Interaction Mechanisms, and Stability of Binary Systems Containing Goethite and Kaolinite

    NARCIS (Netherlands)

    Wei, S.Y.; Tan, W.F.; Zhao, W.; Yu, Y.T.; Liu, F.; Koopal, L.K.

    2012-01-01

    Goethite and kaolinite are ubiquitous in natural environments. In soils they are often cemented together as a binary association, which has a significant influence on the structure and properties of soils. In this study, the mineralogy (using X-ray diffraction [XRD], thermal analyses, and infrared

  20. Polyaniline/TiO2/kaolinite: The composite material with high electrical anisotropy

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Neuwirthová, Lucie; Peikertová, Pavlína; Kulhánková, Lenka; Mamulová Kutláková, Kateřina; Matějka, Vlastimil; Čapková, Pavla

    2014-01-01

    Kaolinite–TiO 2 nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO 2 in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10 3 –10 4 ) in comparison with pure PANI tablet (α is of the order of 10 2 ). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO 2 /kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO 2 /polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO 2 helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO 2 matrix improves the sensing properties

  1. Physical Alteration of Martian Dust Grains, Its Influence on Detection of Clays and Identification of Aqueous Processes on Mars

    Science.gov (United States)

    Bishop, Janice L.; Drief, Ahmed; Dyar, Darby

    2003-01-01

    Clays, if present on Mars, have been illusive. Determining whether or not clay minerals and other aqueous alteration species are present on Mars provides key information about the extent and duration of aqueous processes on Mars. The purpose of this study is to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. Physical alteration through grinding was shown to greatly affect the structure and a number of properties of antigorite and kaolinite. This project builds on an initial study and includes a combination of SEM, HRTEM, reflectance and M ssbauer spectroscopies. Grain size was found to decrease, as expected, with grinding. In addition, nanophase carbonate, Si-OH and iron oxide species were formed.

  2. Study of smectite clays of the city Pedra Lavrada - PB for use in water-based drilling fluids

    International Nuclear Information System (INIS)

    Silva, I.A. da; Costa, J.M.R.; Cardoso, M.A.F.; Neves, G.A.; Ferreira, H.C.

    2011-01-01

    Paraiba has large reserves of bentonite clays, with the largest deposits in Boa Vista, PB. Recently new deposits were discovered in the cities of Cubati and Pedra Lavrada-PB, creating great expectations for further expansion of reserves for industrial production. The aim of this work is the study of smectite clays from the city of Pedra Lavrada, PB for use in drilling fluids water based. The characterization was made by the diffraction of laser (AG), thermogravimetric and differential thermal analysis (TGA and DTA), chemical composition by X-ray fluorescence (EDX), X-ray diffraction (XRD), exchange capacity of cations (ECC) and surface area (SA). The results obtained so far showed that the samples presented at its mineral composition smectite, kaolinite and quartz. In relation to rheological properties showed that the bentonite clay sample Dark presents promising features for use in water based drilling fluids. (author)

  3. The Effect of Land Use Change on Soil Type and Clay Mineralogy in Safashahr Area, Fars Province

    Directory of Open Access Journals (Sweden)

    R. Karimi

    2015-06-01

    Full Text Available Nowadays, changing the rangelands to agriculture and garden is common. To investigate the impact of land use change on the soils type and clay mineralogy, four land uses including rangeland with poor vegetation, agricultural land, new and old apple orchards were selected in Safashahr area, Fars province. In each land use, three soil profiles were excavated and described and one profile was considered as representative. After required physical and chemical analyses, they were classified according to Soil Taxonomy (ST and the World Reference Base for Soil Resources (WRB. Selected surface and subsurface samples were also collected for clay mineralogy studies. Results showed that changing land use did not have significant effect on soil type and clay minerals and all soils consist of mica, chlorite, smectite, kaolinite and mixed layer minerals. Results demonstrated that ST is more efficient compared to WRB to classify the studied soils.

  4. Study of the application of non-plastic clays from Pocos de Caldas - part 1: chemical-mineralogic characterization

    International Nuclear Information System (INIS)

    Roveri, C.D.; Mariano, N.A.; Faustino, L.M.; Aielo, G.F.; Pinto, L.P.A.; Maestrelli, S.C.

    2011-01-01

    Pocos de Caldas is an important 'hidrotermomineral' center of Brazil, where can be found non-plastic clays deposits with no significant records about its characterization; this fact difficult the studies of industrial application. These nonplastic clays, not used, have been stored in sheds or open, which creates a high cost to the industry, and become an environmental liability. In the present work, the chemical-mineralogical study of six samples of non-plastic clays was realized, to expand the horizons of researches about such materials. This preliminary study showed that, overall, the samples are composed of refractory minerals such as kaolinite and gibbsite, with less significant amounts of other phases such as quartz, illite and vermiculite. The chemical analysis permitted the grouping of raw materials into two groups according to their refractories proprieties, guiding to the subsequent characterization. (author)

  5. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  6. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  7. Characterization of clay and mass used in red ceramic industry in Cariri region - Ceara

    International Nuclear Information System (INIS)

    Neta, I.A.B.; Cartaxo, A.S.; Esmeraldo, A.D.; Gomes, F.F.; Silva, F.C.; Ribeiro, S.B.N.; Neiva, L.S.; Brasileiro, M.I.

    2016-01-01

    The study of the characteristics of raw materials used in the production of red ceramic industry articles, such as bricks and tiles, has a key role in determining the quality of the final product. This study aims to evaluate the chemical and physical properties of clays and pasta from pottery G. Matos, Crato, Ceara. Three samples were collected, processed and submitted to the characterization DRX. They were also analyzed for plasticity by the methods of Atterberg and Pfefferkorn. In the method Atterberg, samples and Fat Mass Ready clay are within the plasticity index range for red ceramics, Pferfferkorn method, pasta and ready Fat also had plasticity, but with different results of the above method. In both ostestes, the red mass showed no moldability. XRD, the samples show quartz peaks, which were in the greatest amount in the sample that did not develop plasticity, addition, montmorillonite obtained peaks kaolinite. (author)

  8. Physicochemical Characterization of Geopolymer Binders and Foams Made from Tunisian Clay

    Directory of Open Access Journals (Sweden)

    Imen Ben Messaoud

    2018-01-01

    Full Text Available Illito-kaolinitic clay rich in hematite from south Tunisia was investigated in view of producing geopolymer materials. Geopolymers with two different densities were elaborated: cement and foam. The effects of activator concentrations on compressive strength, water absorption (durability, open porosity, and bulk density of geopolymers cement were examined, in order to assure optimal geopolymerization conditions. Geopolymer cements aged 28 days with optimum performances were achieved for 13 M of alkaline solution concentration. At these conditions, the compressive strength of prepared geopolymer reaches 27.8 MPa. The addition of silica fume to reactant geopolymer mixture induces modification of geopolymer density and decrease in the compressive strength of the final product. Geopolymer materials based on calcined Tunisian clay can be suggested as sustainable and cost-effective cement that may be applied to alternate Portland cement in many construction applications.

  9. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2015-09-15

    Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  10. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  11. Use of clays as liners in solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gerardo [Facultad de Ingenieria, Universidad Anahuac Mexico Norte, Huixquilucan, Edo. de Mexico 52786 (Mexico); Almanza, Rafael [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2009-06-15

    An alternative to synthetic materials for use in solar pond liners is to select clayey soils as hydraulic barriers. This option reduces the cost of construction and the risk of contamination of subsoil and groundwater by hot brines. This paper deals with the physical, chemical and hydraulic properties of different soils tested mainly as compacted clay liners. The underdeveloped nations have the option to use this type of liner, but before doing so several tests are recommended, including those for soil and water composition, permeability, plasticity and X-ray diffraction analysis. In this investigation the following samples are analyzed: native clayey soils with illite, montmorillonite and halloysite, treated and non-treated bentonites in powder and granulated form, a mixture of zeolite and sodium bentonite, and industrial minerals composed largely of halloysite, kaolinite and attapulgite selected clays. Neutral salt aqueous solutions (NaCl and KCl) at different concentrations and under temperature gradients were used for compatibility testing conducted on these specimens. Experiment setup and particular testing procedures are also discussed. (author)

  12. Effects of leachate on geotechnical characteristics of sandy clay soil

    Science.gov (United States)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  13. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides.

    Science.gov (United States)

    Ma, Wenting; Peng, Donghai; Walker, Sharon L; Cao, Bin; Gao, Chun-Hui; Huang, Qiaoyun; Cai, Peng

    2017-01-01

    Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis . The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid-air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3-16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid-air interface. Additionally, the expressions of abrB and sinR , key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.

  14. Mineralogical and technology characterization of raw materials of clay used for ceramic blocks fabrication

    International Nuclear Information System (INIS)

    Campos, N.Q.; Tapajos, N.S.

    2012-01-01

    In the state of Para, the red ceramic industry has several segments highly generators of jobs and a strong social appeal. With so many companies focused on this productive sector emerge, but many without any administration quality. Therefore, this study focused the technological and mineralogical characterization of the raw material used in the manufacture of ceramic blocks, by Ceramica Vermelha Company, located in the district of Inhangapi-PA. The raw material was obtained by the techniques of X-ray diffraction (XRD) to determine the present crystalline phases through an accurate and efficient procedure, where it was possible to identify the peaks relating to montmorillonite, illite and kaolinite clay in the sample, and kaolinite and quartz in the sample laterite. Another important result was the absorption of water, with average satisfactory according to the standards. According to a sieve analysis, the laterite the sand fraction showed a greater extent compared to the other, while the clay silt exceeding 80% was found to be too plastic material. The resistance to compression, the results were below the required by the standard, suggesting more accurate test methods. (author)

  15. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  16. Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed

  17. Study of adsorption of Phenanthrene on Different Types of Clay Minerals; Estudio de Adsorcion de Fenentreno en Diferentes Tipos de Arcillas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M L; Escolano, O; Rodriguez, V; Diaz, F J; Perez, R; Garcia, S; Garcia Frutos, F J

    2003-07-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay mineral also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represent ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs.

  18. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    Science.gov (United States)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  19. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lepkova, Katarina; Kubal, Martin

    2006-01-01

    Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic...... remediation method which is based on applying an electric DC field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially...... polluted soil under the same operational conditions (constant current density 0.2 mA/cm2 and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown...

  20. The Ypresian clays as alternative host rock for radioactive waste disposal in Belgium. A transferability study

    International Nuclear Information System (INIS)

    Van Baelen, Herve; Wouters, Laurent; Brassinnes, Stephane; Van Geet, Maarten; Vandenberghe, Noel

    2012-01-01

    -layer phases, but less kaolinite. The smectites in the Ypresian clays partly originate from weathered volcanic ash layers, re-mobilised and deposited into the basin during the early Eocene, but there are indications as well for the direct sedimentation of ash layers within the basin, which subsequently transformed into authigenic smectite. Scanning electron microscopy images reveal that the compaction fabric of the Ypresian clays is, at least in a number of samples, less pronounced than for Boom Clay. An additional difference is possibly the presence of a bi-modal pore size distribution, the larger pore size population being absent in undisturbed Boom Clay. Nevertheless the total porosity measured in both host rocks is comparable, but decreases with depth in the case of the Ypresian clays. From a mechanical point of view, Ypresian clays seem to behave less stiff and appears to be more sensitive to failure. Concerning the thermal properties, contrasting results have been obtained. In a first research effort, the thermal conductivity was smaller than for Boom Clay; more recently, however, a higher conductivity than for Boom Clay was obtained, illustrating the sensitivity of thermal-conductivity measurements to the experimental conditions. The measured hydraulic conductivity covers a comparable range to Boom Clay, but displays larger vertical variations. The diffusion accessible porosity and apparent diffusion coefficient obtained on clay cores are in the same order, but a decrease with depth has been observed for the Ypresian clays. Analysis of the pore water chemistry indicates that it is of the NaCl-type and can be categorised as brackish to salty. Especially in the upper part of the Ypresian clays, the results show a very high vertical variation, which does probably not reflect the natural variability, but reflects the difficulties of obtaining a representative pore water by squeezing. The same safety concept as the one developed on Boom Clay can be envisaged, but some

  1. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  2. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Stockmann, Madlen [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO{sub 4} by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  3. Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures

    Czech Academy of Sciences Publication Activity Database

    Valášková, M.; Barabaszová, K.; Hundáková, M.; Ritz, M.; Plevová, Eva

    2011-01-01

    Roč. 54, č. 1 (2011), s. 70-76 ISSN 0169-1317 R&D Projects: GA ČR GA105/08/1398 Grant - others:GA ČR(CZ) GA205/09/0352 Institutional research plan: CEZ:AV0Z30860518 Keywords : kaolinite * milling * hydrochloric acid Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.474, year: 2011 http://www.sciencedirect.com/science/article/pii/S0169131711002675

  4. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    International Nuclear Information System (INIS)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna; Stockmann, Madlen

    2017-01-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO_4 by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  5. Timing and conditions of clay fault gouge formation on the Naxos detachment (Cyclades, Greece)

    Science.gov (United States)

    Mancktelow, N.; Zwingmann, H.; Mulch, A.

    2016-10-01

    Clay fault gouge from the Naxos detachment (locally up to 1.0-1.5 m thick) is reported and dated for the first time. K-Ar ages on eight clay size fractions from the detachment and a minor fault in the immediate footwall have a narrow range, from 10.3 to 9.0 Ma, with an average of 9.7 ± 0.5 Ma (±1σ). These results are in excellent accord with regional and local age constraints, independently demonstrating the reliability of the method. Hydrogen δD values fall in the range -89 to -95‰, indicating interaction with infiltrating meteoric water during gouge formation, which is consistent with deposition of freshwater sediments in the hanging wall at the same time. Clay mineralogy in the detachment gouge is predominantly mixed layer illite-smectite with subordinate 1 M illite and kaolinite but without higher-temperature 2 M1 illite/mica. Clay fault gouge predominantly formed over a limited time and temperature range, potentially acting as a weak lubricant promoting movement on the Naxos detachment, with correspondingly rapid exhumation and cooling of the underlying footwall.

  6. Clay mineral association in the salt formation of the Transylvanian Basin and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Nicoleta Bican-Bris̡an

    2006-04-01

    Full Text Available The investigated clay fraction was separated from salt samples recovered from three boreholes located in the Praid salt deposit area. For comparison, samples collected from Turda deposit (Franz Josef adit, the Rudolf and Ghizele chambers and from the salt massif from Sărăţel were also analyzed. The qualitative investigations evidenced a clay minerals association dominated by illite and chlorite accompanied by subordinate amounts of kaolinite, smectite, fibrous clays (sepiolite, palygorskite, and in minor amounts, by 14/14 chlorite/vermiculite and chlorite/smectite interstratifications. A quantitative evaluation (% including a standard graphical representation was performed only for the borehole samples (Praid, according to the vertical distribution. The genetical interpretation of the identified clay minerals association took into account the influence of the sedimentation mechanisms and the climate control on the mineral phases. The environment of formation for the salt in the Transylvanian Basin was defined by the presence of specific climatic factors, also suggested by the palynological investigations.

  7. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Creep in buffer clay

    International Nuclear Information System (INIS)

    Pusch, R.; Adey, R.

    1999-12-01

    The study involved characterization of the microstructural arrangement and molecular forcefields in the buffer clay for getting a basis for selecting suitable creep models. It is concluded that the number of particles and wide range of the particle bond spectrum require that stochastical mechanics and thermodynamics will be considered and they are basic to the creep model proposed for predicting creep settlement of the canisters. The influence of the stress level on creep strain of MX-80 clay is not well known but for the buffer creep is approximately proportional to stress. Theoretical considerations suggest a moderate impact for temperatures up to 90 deg C and this is supported by model experiments. It is believed that the assumption of strain being proportional to temperature is conservative. The general performance of the stochastic model can be illustrated in principle by use of visco-elastic rheological models implying a time-related increase in viscosity. The shear-induced creep settlement under constant volume conditions calculated by using the proposed creep model is on the order of 1 mm in ten thousand years and up to a couple of millimeters in one million years. It is much smaller than the consolidation settlement, which is believed to be on the order of 10 mm. The general conclusion is that creep settlement of the canisters is very small and of no significance to the integrity of the buffer itself or of the canisters

  9. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  10. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  11. [Effects of Long-term Implementation of the Flow-Sediment Regulation Scheme on Grain and Clay Compositions of Inshore Sediments in the Yellow River Estuary].

    Science.gov (United States)

    Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan

    2015-04-01

    Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.

  12. Chemial Bond and Stability of Adsorption of[Au(AsS3)]2- on the Surface of Kaolinite

    Institute of Scientific and Technical Information of China (English)

    MIN Xin-min; CHEN Yun; HONG Han-lie

    2004-01-01

    Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS3 ) ]2- on the surface of kaolinite. The correlation among structure, chemical bond and stability was discussed. Several models were selected with [ Au( AsS3 ) ]2- in different directions and sites. The resultsshow that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and severaloxygen atoms and form strong Au - O covalent bond, so these models are more stable than those with gold aboveor under the layer. The models with gold near to [ AlO2(OH)4 ] octahedra are more stable than those with goldnear to the vacancy without aluminium. These two stable tendencies in kaolinite- [ Au( AsS3 ) ]2- are stronger thanthat in kaolinite-Au systems. The interaction between [ Au( AsS3 ) ]2- and kaolinite is stronger than that betweengold and kaolinite, and this interaction is strong enough to form the surface complexes.

  13. Probing adsorption of polyacrylamide-based polymers on anisotropic Basal planes of kaolinite using quartz crystal microbalance.

    Science.gov (United States)

    Alagha, Lana; Wang, Shengqun; Yan, Lujie; Xu, Zhenghe; Masliyah, Jacob

    2013-03-26

    Quartz crystal microbalance with dissipation (QCM-D) was applied to investigate the adsorption characteristics of polyacrylamide-based polymers (PAMs) on anisotropic basal planes of kaolinite. Kaolinite basal planes were differentiated by depositing kaolinite nanoparticles (KNPs) on silica and alumina sensors in solutions of controlled pH values. Adsorption of an in-house synthesized organic-inorganic Al(OH)3-PAM (Al-PAM) as an example of cationic hybrid PAM and a commercially available partially hydrolyzed polyacrylamide (MF1011) as an example of anionic PAM was studied. Cationic Al-PAM was found to adsorb irreversibly and preferentially on tetrahedral silica basal planes of kaolinite. In contrast, anionic MF1011 adsorbed strongly on aluminum-hydroxy basal planes, while its adsorption on tetrahedral silica basal planes was weak and reversible. Adsorption study revealed that both electrostatic attraction and hydrogen-bonding mechanisms contribute to adsorption of PAMs on kaolinite. The adsorbed Al-PAM layer was able to release trapped water overtime and became more compact, while MF1011 film became more dissipative as backbones stretched out from kaolinite surface with minimal overlapping. Experimental results obtained from this study provide clear insights into the phenomenon that governs flocculation-based solid-liquid separation processes using multicomponent flocculants of anionic and cationic nature.

  14. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  15. Change of microstructure of clays due to the presence of heavy metal ions in pore water

    Directory of Open Access Journals (Sweden)

    Saiyouri N.

    2010-06-01

    Full Text Available The compressibility of engineered barrier clays is, to a large extent, controlled by microstructure change due to the presence of chemical ions in clay-water system. This paper aims to investigate the change of microstructure of clays due to the presence of heavy metal ions in pore water. We use two pure clays (kaolinite and bentonite in the study. One-dimensional consolidation tests were performed on reconstituted samples, which are prepared with distilled water and three types of heavy metal solutions (Pb(NO32, Cu(NO32, Zn(NO32,. In order to better understand the impact of chemical pore fluid on microstructure of the two clays, following the consolidation test, scanning electron microscope (SEM observations and mercury intrusion pore size distribution measurements (MIP were conducted. Due to the measurement range of MIP, which is only allowed to measure the minimal pore size 20 Å, BET method by gas sorption, whose measurement pore size range is from 3.5 Å to 500 Å, is used to measure the micropore size distribution. By this method, specific surface area of the soils can be also determined. It can be employed to demonstrate the difference of creep performance between the soils. Furthermore, a series of batch equilibrium tests were conducted to better understand the physical-chemical interactions between the particles of soils and the heavy metal ions. With the further consideration of the interparticle electrical attractive and repulsive force, an attempt has been made to predict the creep behaviour by using the modified Gouy-Chapman double layer theory. The results of calculation were compared with that of tests. The comparison shows that the prediction of compressibility of the clays according to the modified double diffuse layer theory can be reasonably agreement with the experimental data.

  16. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  17. Kaolinite, illite and quartz dissolution in the karstification of Paleozoic sandstones of the Furnas Formation, Paraná Basin, Southern Brazil

    Science.gov (United States)

    Melo, Mário Sérgio de; Guimarães, Gilson Burigo; Chinelatto, Adilson Luiz; Giannini, Paulo César Fonseca; Pontes, Henrique Simão; Chinelatto, Adriana Scoton Antonio; Atencio, Daniel

    2015-11-01

    Karstification processes in sandstones of the Furnas Formation, Silurian to Devonian of the Paraná Basin, have been described since the mid-twentieth century. However, some geologists still doubt the idea of true karst in sandstones. Studies carried out in the Campos Gerais region, Paraná State, Southern Brazil, aimed at investigating the nature of erosion processes in Furnas Formation and the role of the dissolution in the development of their notorious erosive features and underground cavities. These studies have led to the recognition of dissolution macro to micro features ('furnas', caves, ponds, sinks, ruiniform relief on cliffs and rocky surfaces, grain corrosion, speleothems, mineral reprecipitation and incrustation). The analysis (scanning electron microscopy, energy dispersive spectrometry and x-ray diffractometry) of sandstones and their alterites has indicated significant dissolution of clay cement along with discrete quartz grain dissolution. This mesodiagenetic cement (kaolinite and illite) is dissolved and reprecipitated as clay minerals with poorly developed crystallinity along with other minerals, such as variscite and minerals of the alunite supergroup, suggesting organic participation in the processes of dissolution and incrustation. The mineral reprecipitation usually forms centimetric speleothems, found in cavities and sheltered rocky surfaces. The cement dissolution associated with other factors (fractures, wet weather, strong hydraulic gradient, antiquity of the landforms) leads to the rock arenisation, the underground erosion and the appearance of the karst features. Carbonate rocks in the basement may locally be increasing the karst forms in the overlying Furnas Formation. The recognition of the karst character of the Furnas Formation sandstones has important implications in the management of underground water resources (increasingly exploited in the region), in the use of the unique geological heritage and in the prevention of geo

  18. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    Science.gov (United States)

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  19. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Honty, M.; De Craen, M.; Wang, L.; Madejova, J.; Czimerova, A.; Pentrak, M.; Stricek, I.; Van Geet, M.

    2010-01-01

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH) 2 , young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  20. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  1. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  2. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  3. Study of new occurrences of plastic (ball) clays from northeastern Brazil for use in refractory ceramics; Estudo de novas ocorrencias de argilas plasticas (ball clays) do nordeste do Brasil para uso em ceramicas refratarias

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Bastos, P. de M.; Santana, L.N.L.; Menezes, R.R.; Neves, G.A.; Ferreira, H.C., E-mail: julianamelo25@gmail.com, E-mail: paulos@cstr.ufcg.edu.br, E-mail: lisiane.navarro@ufcg.edu.br, E-mail: romualdo.menezes@ufcg.edu.br, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-10-15

    The northeast of Brazil has large deposits of ball clays generally situated in Barreiras Formation and are used in white ceramic and refractory materials. These clays are composed of secondary kaolinite and organic matter, being very plastic and when subjected to elevated temperatures burn with white colors and present phase transformations showing mainly crystals formation of mullite and cristobalite. This work aims to study new deposits of ball clays in order to use them to refractory materials production. The clays were characterized by laser diffraction, X-ray diffraction (XRD), X-ray fluorescence, refractoriness, thermal analysis, and scanning electron microscopy (SEM). The samples were pressed and sintered at 1000, 1150, 1250, 1280 and 1400 °C. The characterization after firing was carried out by XRD and SEM. Then, the physical and mechanical properties - absorption, porosity and flexural strength, were determined. The results showed that the clays presented formation of mullite crystals with physical, chemical and mineralogical properties suitable for use in refractory ceramics. (author)

  4. Interfacial reactions between humic-like substances and lateritic clay: application to the preparation of "geomimetic" materials.

    Science.gov (United States)

    Goure-Doubi, Herve; Martias, Céline; Lecomte-Nana, Gisèle Laure; Nait-Ali, Benoît; Smith, Agnès; Thune, Elsa; Villandier, Nicolas; Gloaguen, Vincent; Soubrand, Marilyne; Konan, Léon koffi

    2014-11-15

    The aim of this study was to understand the mechanisms responsible for the strengthening of "geomimetic" materials, especially the chemical bonding between clay and humic substances. The mineral matter is lateritic clay which mainly consists in kaolinite, goethite, hematite and quartz. The other starting products are fulvic acid (FA) and lime. The preparation of these geomimetic materials is inspired from the natural stabilization of soils by humic substances occurring over thousands of years. The present process involves acidic and alkaline reactions followed by a curing period of 18days at 60°C under a water saturated atmosphere. The acceleration of the strengthening process usually observed in soils makes this an original process for treatment of soils. The consolidation of the "geomimetic" materials could result from two major phenomena: (i) chemical bonding at the interface between the clay particles and iron compounds and the functional groups of the fulvic acid, (ii) a partial dissolution of the clay grains followed by the precipitation of the cementitious phases, namely calcium silicate hydrates, calcium aluminate hydrates and mixed calcium silicum and aluminum hydrates. Indeed, the decrease of the BET specific area of the lateritic clay after 24 h of reaction with FA added to the structural reorganization observed between 900 and 1000°C in the "geomimetic" material, and to the results of adsorption measurements, confirm the formation of organo-ferric complexes. The presence of iron oxides in clay, in the form of goethite, appears to be another parameter in favor of a ligand exchange process and the creation of binding bridges between FA and the mineral matter. Indeed all faces of goethite are likely to be involved in complexation reactions whereas in lateritic clay only lateral faces could be involved. The results of the adsorption experiments realized at a local scale will improve our understandings about the process of adsorption of FA on lateritic

  5. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  6. Study of strontium sorption in Brazilian clays for their use as a barrier in repository of radioactive wastes

    International Nuclear Information System (INIS)

    Freire, Carolina Braccini; Tello, Cledola Cassia Oliveira de

    2008-01-01

    Wastes in general should be properly treated and stored. The the radioactive wastes also require suitable and safe management beginning in their generation until the storage in repository. The objective of this research was to characterize some Brazilian clays in order to evaluate the viability of their use in the backfill layer, one of the radioactive waste repository barriers. The main function of this barrier is to contribute in the delay of the radionuclides movement, and to prevent their release into the environment. Four clays provided by national suppliers were selected for the research: Ca-Bentonite (Dol 01), Na-Bentonite (Dol 02), Kaolinite (Ind 01) and Vermiculite (Ubm 04.) Their physical, chemical and mineralogical characteristics were determined, and also their sorption potential of Strontium cation. It was confirmed through theses results a direct relationship among their specific surface (SS), the capacity of cationic exchange (CCE) and pH. The CCE results followed this increasing order: Ind 01, Dol 01, and Dol 02. In accordance with the models of Freundlich (K f ) and Langmuir (M), the clays Dol 01 and Dol 02 were the best sorbers of Sr 2+ . The Gibbs free energy change (ΔG deg) was calculated for the sorption reactions between the clays and the cations, and it was negative for all clays, confirming the sorption reaction spontaneity. (author)

  7. Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis

    Directory of Open Access Journals (Sweden)

    P.E. Ohale

    2017-12-01

    Full Text Available Artificial neural network (ANN and Response Surface Methodology based on a 25−1 fractional factorial design were used as tools for simulation and optimisation of the dissolution process for Azaraegbelu clay. A feedforward neural network model with Levenberg–Marquard back propagating training algorithm was adapted to predict the response (alumina yield. The studied input variables were temperature, stirring speed, clay to acid dosage, leaching time and leachant concentration. The raw clay was characterized for structure elucidation via FTIR, SEM and X-ray diffraction spectroscopic techniques and the result indicates that the clay is predominantly kaolinite. Leachant concentration and dosage ratio were found to be the most significant process parameter with p-value of 0.0001. The performance of the ANN and RSM model showed adequate prediction of the response, with AAD of 11.6% and 3.6%, and R2 of 0.9733 and 0.9568, respectively. A non-dominated optimal response of 81.45% yield of alumina at 4.6 M sulphuric acid concentration, 214 min leaching time, 0.085 g/ml dosage and 214 rpm stirring speed was established as a viable route for reduced material and operating cost via RSM. Keywords: Alumina dissolution, ANN modelling, Azaraegbelu, Clay, RSM

  8. The reactivity of clay materials in a context of metallic corrosion: application to disposal of radioactive wastes in deep argillaceous formations

    International Nuclear Information System (INIS)

    Perronnet, M.

    2004-10-01

    In order to confine radioactive wastes in deep settings, it is envisaged to use some natural clay materials and bentonites. Their stability when in contact with metallic iron, main component of the canisters, is studied. These studies show that the reactivity of such materials is mainly controlled by those of their di-octahedral smectites and kaolinites. On the contrary, the presence of sulfides stops the Fe(0)-clays reaction. The kind of reaction products depends on the quantity of available metallic iron. When pH is over 7, the Fe(0) is oxidized consecutive to a physical contact with the oxidant agents of the smectite (H + , OH - et Fe 3+ ). This reaction is favored by the heterogeneities of the lateral surfaces of the smectite, which then describes a micro-environments in which some serpentines grow up if the iron supply is sufficient. Such new-crystallization imply a decrease of the confinement properties of the clay barrier. (author)

  9. Clay mineralogical and Sr, Nd isotopic investigations in two deep-sea sediment cores from Northeast Indian Ocean

    International Nuclear Information System (INIS)

    Anil Babu, G.; Masood Ahmad, S.; Padmakumari, V.M.; Dayal, A.M.

    2004-01-01

    Sr and Nd isotopic studies in terrigenous component of the ocean sediments provide useful information about weathering patterns near source rock and climatic conditions existed on the continents. Variations in 87 Sr/ 86 Sr and 143 Nd/ 144 Nd isotopic ratios in clastic sediments depend on the source from the continents, volcanic input and circulation changes. The composition of clay minerals mainly depends on climate, geology and topography of the surrounding region. Chlorite and Illite are formed under physical weathering in arid cold climate and kaolinite and smectite are the characteristic products of chemical weathering in humid wet climatic conditions. Therefore, the variations in clay mineral composition in deep-sea sediments can be interpreted in terms of changes in the climatic conditions prevailed in the continental source areas

  10. Influence of clay particles on Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles transport and retention through limestone porous media: measurements and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Ali Esfandyari, E-mail: ali.esfandiari.bayat@gmail.com; Junin, Radzuan [Universiti Teknologi Malaysia, Department of Petroleum Engineering, Faculty of Petroleum and Renewable Energy Engineering (Malaysia); Mohsin, Rahmat [Universiti Teknologi Malaysia, UTM-MPRC Institute for Oil and Gas, N29A, Lengkuk Suria (Malaysia); Hokmabadi, Mehrdad [Universiti Teknologi Malaysia, Department of Petroleum Engineering, Faculty of Petroleum and Renewable Energy Engineering (Malaysia); Shamshirband, Shahaboddin [University of Malaya, Department of Computer System and Information Technology, Faculty of Computer System and Information Technology (Malaysia)

    2015-05-15

    Utilization of nanoparticles (NPs) for a broad range of applications has caused considerable quantities of these materials to be released into the environment. Issues of how and where the NPs are distributed into the subsurface aquatic environments are questions for those in environmental engineering. This study investigated the influence of three abundant clay minerals namely kaolinite, montmorillonite, and illite in the subsurface natural aquatic systems on the transport and retention of aluminum oxide (Al{sub 2}O{sub 3}, 40 nm) and titanium dioxide (TiO{sub 2}, 10–30 nm) NPs through saturated limestone porous media. The clay concentrations in porous media were set at 2 and 4 vol% of the holder capacity. Breakthrough curves in the columns outlets were measured using a UV–Vis spectrophotometer. It was found that the maximum NPs recoveries were obtained when there was no clay particle in the porous medium. On the other hand, increase in concentration of clay particles has resulted in the NPs recoveries being significantly declined. Due to fibrous structure of illite, it was found to be more effective for NPs retention in comparison to montmorillonite and kaolinite. Overall, the position of clay particles in the porous media pores and their morphologies were found to be two main reasons for increase of NPs retention in porous media.

  11. Thermodynamic and Kinetic Aspects of the Dissolution of Quartz-Kaolinite Mixtures by Alkalis Aspects thermodynamiques et cinétiques de la dissolution des mélanges quartz-kaolinite par les alcalis

    Directory of Open Access Journals (Sweden)

    Labrid J.

    2006-11-01

    Full Text Available Mineral-alkali interactions have received considerable attention in the recent literature dealing with enhanced oil recovery techniques and clay stabilization treatments. One of the critical factors to be considered is alkali consumption. Alkalinity decrease occurs through several mechanisms, which are ion exchange, precipitation, reaction with crude oil components, and dissolution of minerals. This paper describes the dissolution process. An original kinetic model is proposed to describe the alkaline dissolution of a clayey sandstone. This model is based first on results concerning quartz dissolution/condensation processes. It is also based on new experimental data, which demonstrate the inhibiting effect of aluminum and, as the reaction proceeds, the precipitation of an aluminosilicate whose the chemical composition has been determined. From these data, a kinetic scheme has been conceived in which adsorption of different chemical species is assumed to occur onto solid surfaces. These species play a more or less important role according to the extent of the reaction. In the mechanisms considered, the argillaceous fraction of the rock provides silicon and aluminum which inhibit the dissolution of the matrix while silicon coming from quartz interferes with clay attack. The kinetic model depicts the coupling of elementary dissolution processes and calculates dissolved silicon and aluminum. It has been tested for various operating conditions, providing initial reaction rates for quartz and clay. Results emphasize the definitive advantage of carbonate compared to other alkaline chemicals owing to the relative low pH of solutions, which is particularly favorable for promoting inhibition by aluminum and, as a general rule, for reducing mineral dissolution. Ce résumé contient des formules (*** qui ne peuvent s'afficher à l'écran L'emploi des agents alcalins pour améliorer la récupération du pétrole a été préconisé à l'origine dans le but

  12. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  13. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  14. Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ˜1.3 Ma, Shaanxi, northwestern China

    Science.gov (United States)

    Won, Changdok; Hong, Hanlie; Cheng, Feng; Fang, Qian; Wang, Chaowen; Zhao, Lulu; Churchman, Gordon Jock

    2018-03-01

    To understand climate changes recorded in the Luochuan loess-palaeosols, Shaanxi province, northwestern China, clay mineralogy was studied using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) methods. XRD results show that clay mineral compositions in the Luochuan loess-palaeosols are dominantly illite, with minor chlorite, kaolinite, smectite, and illite-smectite mixed-layer clays (I/S). Illite is the most abundant species in the sediments, with a content of 61%-83%. The content of chlorite ranges from 5%-22%, and the content of kaolinite ranges from 5%-19%. Smectite (or I/S) occurs discontinuously along the loess profile, with a content of 0-8%. The Kübler index of illite (IC) ranges from 0.255°-0.491°, and the illite chemical index (ICI) ranges from 0.294-0.394. The CIA values of the loesspalaeosols are 61.9-69.02, and the R3+/(R3+ + R2+ + M+) values are 0.508-0.589. HRTEM observations show that transformation of illite to illite-smectite has occurred in both the loess and palaeosol, suggesting that the Luochuan loess-palaeosols have experienced a certain degree of chemical weathering. The Luochuan loess-palaeosols have the same clay mineral assemblage along the profile. However, the relative contents of clay mineral species, CIA, ICI, and IC values fluctuate frequently along the profile, and all these parameters display a similar trend. Moreover, climate changes suggested by the clay index are consistent with variations in the deep-sea δ18O records and the magnetic susceptibility value, and thus, climate changes in the Luochuan region have been controlled by global climate change.

  15. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  16. Interactions of radionuclides and CO2 with clays: elucidating mechanisms at nano-scale level

    International Nuclear Information System (INIS)

    Yang, Wei

    2014-01-01

    In order to predict and regulate the environmental impact of human activities such as uranium mining and radioactive waste disposal, it is necessary to understand the behavior of actinides in the environment because their interaction with clay mineral is an important factor to control the migration of radionuclide in the environment. The behavior of actinides in the soil is mainly the surface adsorption interactions, which change the forms of radioactive elements and reduces the mobility of actinides in the natural systems. Therefore, it is important to search how the actinides interact with clay mineral such as the fundamental process of surface precipitation. Uranium is the predominant heavy metal content of the final waste in the nuclear fuel cycle (≥95% UO 2 ). In addition, uranium is a major contaminant in the soil, subsurface and groundwater as a result of human activity. Under standard environmental conditions, the most stable chemical form of U(VI) is the uranyl ion UO 2 2+ , which is potentially very mobile and readily complexes with organic and inorganic matter. On the other hand, carbon dioxide is an important greenhouse gas, warming the earth's surface to a higher temperature by reducing outward radiation. However, problems may occur when the atmospheric concentration of greenhouse gases increases. Amounts of carbon dioxide were produced since the industrial revolution, which is behind the significant global warming and rising sea level. Clay minerals are of great practical importance here, in storage of carbon dioxide due to its hydraulic permeability and ability to retain mobile species. We have chosen kaolinite and montmorillonite as prototypes of clay minerals of 1:1 and 2:1. Classical Monte Carlo (MC) and molecular dynamics (MD) methods have been used in this work in order to understand the adsorption behaviour of radionuclide and carbon dioxide in clays surface. In this thesis, we will investigate first the adsorption of uranyl on kaolinite

  17. Uranium(VI) retention on quartz and kaolinite. Experiments and modelling

    International Nuclear Information System (INIS)

    Mignot, G.

    2001-01-01

    The behaviour of uranium in the geosphere is an important issue for safety performance assessment of nuclear waste repositories, or in the context of contaminated sites due to mining activity related to nuclear field. Under aerobic conditions, the fate of uranium is mainly governed by the ability of minerals to sorb U(VI) aqueous species. Hence, a thorough understanding of U(VI) sorption processes on minerals is required to provide a valuable prediction of U(VI) migration in the environment. In this study, we performed sorption/desorption experiments of U(VI) on quartz and kaolinite, for systems favouring the formation in solution (i) of UO 2 2+ and monomeric hydrolysis products or (ii) of di-/tri-meric uranyl aqueous species, and / or U(VI)-colloids or UO 2 (OH) 2 precipitates, or (iii) of uranyl-carbonate complexes. Particular attention was paid to determine the surface characteristics of the solids and their modification due to dissolution/precipitation processes during experiments. A double layer surface complexation model was applied to our experimental data in order to derive surface complexation equilibria and intrinsic constants which allow a valuable description of U(VI) retention over a wide range of pH, ionic strength, initial concentration of uranium [0.1-10μM] and solid - solution equilibration time. U(VI) sorption on quartz was successfully modeled by using two sets of adsorption equilibria, assuming (i) the formation of the surface complexes SiOUO 2 + , SiOUO 2 OH and SiO(UO 2 ) 3 (OH) 5 , or (ii) the formation of the mono-dentate complex SiO(UO 2 ) 3 (OH) 5 and of the bidentate complex (SiO) 2 UO 2 . Assumptions on the density of each type of surface sites of kaolinite and on their acid-base properties were made from potentiometric titrations of kaolinite suspensions. We proposed on such a basis a set of surface complexation equilibria which accounts for U(VI) uptake on kaolinite over a wide range of chemical conditions, with aluminol edge sites as

  18. Clay mineralogy of soils located on islands in the upper Paraná River, PR/MS

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Marques de Castro

    2014-10-01

    Full Text Available The Mutum and Porto Rico islands are part of the archipelago Mutum-Porto Rico, located in the upper Paraná River between the cities Porto Rico, PR and Taquaruçu, MS. The soils are formed by constituents inherited from parent materials, organic compounds, and various minerals with varying degrees of complexity and stages of weathering. Among the constituents inherited of the parent materials, the most active are called clay minerals, derived from the weathering or transformation of primary minerals. The clay minerals has a key role in behavior morphological, chemical, physical and hydraulic of soil. They comprise a large family of minerals that can be classified into several groups according to their crystalline structure, like the kaolinites, smectite and ilitas. The aim of this study was to conduct mineralogical analyzes by X-ray in eight soils from the Mutum and Porto Rico islands. The mineralogical data were generated from the Panalytical X-ray diffractometer and X’pert Highscore Plus software. The results show that all soils showed a pattern of peaks comprising illite, kaolinite and gibbsite. Some soils also had characteristic peaks of iron oxyhydroxide.

  19. Transport of vanadium (V in saturated porous media: effects of pH, ionic-strength and clay mineral

    Directory of Open Access Journals (Sweden)

    Yulu Wang

    2016-10-01

    Full Text Available Vanadium, a hazardous pollutant, has been frequently detected in soil and groundwater, however, its transport behavior in porous media were not clearly understood. In this study, the effects of solution pH, ionic strength (IS and the effect of clay mineral on the transport of vanadium in saturated porous media were investigated. Laboratory experiments using a series of columns packed with quartz sand were carried out to explore the retention and transport of vanadium with a range of ionic-strength (0.001–0.1 M and pH (4–8 and two different types of clay minerals montmorillonite and kaolinite. Results of the breakthrough experiments showed that vanadium was highly mobile in the saturated porous media. The increase in pH rendered a higher transport of vanadium in saturated porous media. The study also indicated an easier transfer of vanadium with an increase in IS. Montmorillonite enhanced the mobility of vanadium in the column when compared to kaolinite. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions was used to describe the retention and transport of vanadium in the columns very well.

  20. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  1. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  2. Chemistry of the Marlboro Clay in Virginia and Implications for the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Zimmer, M.; Cai, Y.; Corley, A.; Liang, J. A.; Powars, D.; Goldstein, S. L.; Kent, D. V.; Broecker, W. S.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a global hyperthermal ( 5ºC warming) event marked by a rapid carbon isotope excursion (CIE) of >1‰ in the marine carbonate record (e.g. Zeebe et al. Nature Geoscience 2009). Possible explanations for the CIE include intrusion of a sill complex into organic carbonate (Aarnes et al. J. Geol. Soc. 2015), dissolution of methane hydrates (Thomas et al. Geology 2002), and a comet impact event (Schaller et al. Science 2016). Here we present new data across the PETM from the VirginiaDEQ-USGS Surprise Hill (SH) core, Northumberland Co., VA. We analyzed the Marlboro Clay, a thick, kaolinite-rich clay unit that marks the initiation of the PETM in the mid-Atlantic Coastal Plain of North America, as well as units above and below it. Bulk sediment records a δ13C excursion of approximately -5‰ across the CIE, while benthic foraminifera (Cibicidoides spp.) record a synchronous excursion of approximately -4.5‰. These results are consistent with other records from the New Jersey Coastal Plain (Makarova et al. Paleoceanography 2017). The excursion coincides with an increase in magnetic susceptibility, a decrease in bulk CaCO3 content, and an 2.5‰ decrease of δ18O in both the bulk sediment and benthic foraminifera of the SH core. Pb isotope analyses of the fraction sediments indicate a unique provenance make-up for the Marlboro Clay. The results of the study thus indicate that PETM Marlboro Clay was not generated simply by intensified weathering of the same source area as the underlying Aquia Formation and overlying Nanjemoy Formation. Any hypothesis that aims to explain the mechanism that triggered the PETM must also account for the observed distinct provenance make-up of the Marlboro Clay.

  3. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado

    Science.gov (United States)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.

    2015-12-01

    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  4. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  5. Studying the degradation of polyhydroxybutyrate-co-valerate during processing with clay-based nanofillers

    DEFF Research Database (Denmark)

    Cabedo, Luis; Plackett, David; Gimenez, Enrique

    2009-01-01

    Polyhydroxybutyrate-co-valerate (PHBV) is attracting interest as a new material for packaging applications and nanoparticulate layered silicates are being increasingly explored as a way to improve PHBV film properties. In this context, it is essential to understand how different types of nanofill......Polyhydroxybutyrate-co-valerate (PHBV) is attracting interest as a new material for packaging applications and nanoparticulate layered silicates are being increasingly explored as a way to improve PHBV film properties. In this context, it is essential to understand how different types...... of nanofillers could influence polymer properties. PHBV was processed with three-layered clay types using different mixing methods, and we examined the effect of processing time, clay type, and clay content on polymer molecular weight and composite morphology. PHBV molecular weight (Mw) decreased by 38% after......-ray diffraction studies indicated an intercalated morphology in the presence of modified montmorillonite but good dispersion was also achieved when unmodified kaolinite was blended with PHBV. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009...

  6. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  7. Surface characteristics of kaolinite and other selected 2-layer silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Nalaskowski, J.; Abdul, B.; Du, H. [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering

    2007-10-15

    The wetting of mineral phases by bitumens plays an important role in efficient bitumen recovery. In this study, molecular dynamics simulations were used to investigate the electrokinetic behaviour and interfacial water features of 2-layer silicate minerals. The study compared the planar structures of antigorite and kaolinite with equivalent tubular structures of halloysite and chrysolite. Equivalency of pH dependency of zeta potential was determined using electrophoretic mobility measurements. The atomic mismatch between tetrahydral and octahydral sheets in a bilayer was examined in order to determine electrokinetic behaviour. Results of the study indicated that the silica tetrahydral surface was not wetted by water, but by structural imperfections. Polarity reversal within a tetrahedral octahedral layer and an out-of-order layer within the stack were then considered to explain both the wetting characteristics and electrokinetic behaviour. It was concluded that further research is needed to explain why the hexagonal rings structure for the silica tetrahydral face of kaolinite is wetted by water. 55 refs., 2 tabs., 12 figs.

  8. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

    International Nuclear Information System (INIS)

    Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

    1994-01-01

    Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes of sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado

  9. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    Directory of Open Access Journals (Sweden)

    Yinghong Wu

    2014-01-01

    Full Text Available Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%, organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP, and humic acid (HA on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents.

  10. Effect of polyvinylpyrrolidone and sodium lauroyl isethionate on kaolinite suspension in an aqueous phase.

    Science.gov (United States)

    Kwan, Chang-Chin; Chu, Wen-Hweu; Shimabayashi, Saburo

    2006-08-01

    Suspension of concentrated kaolinite (20 g/30 ml-medium) in the presence of polyvinylpyrrolidone (PVP) and sodium lauroyl isethionate (SLI) was allowed to evaluate its degree of dispersion based on their rheological studies. Flow curves at low shear rate, measured by means of cone-plate method, showed a non-Newtonian flow. Plastic viscosity and Bingham yield value were derived from the flow curves. Relative viscosity, effective volume fraction and void fraction of secondary particle were also obtained. Results of dispersity and fluidity of the suspension were explained. PVP acted as a flocculant at a concentration lower than 0.1% but as a dispersant at a higher concentration. The presence of SLI could decrease both the Bingham yield value and suspension viscosity. Cooperative and competitive effects of PVP and SLI were found. Results indicated that SLI enhanced the degree of dispersion of kaolinite when PVP was less than 0.1%. The suspension, however, showed a maximum flocculation (i.e., aggregation) at 4 mM SLI when the concentration of PVP was higher than 0.1%.

  11. Sample size clay kaolin of primary in pegmatites regions Junco Serido - PB and Equador - RN

    International Nuclear Information System (INIS)

    Meyer, M.F.; Sousa, J.B.M.; Sales, L.R.; Silva, P.A.S.; Lima, A.D.D.

    2016-01-01

    Kaolin is a clay formed mainly of kaolinite resulting from feldspar weathering or hydrothermal. This study aims to investigate the way of occurrence, kaolin particle size of the pegmatites of the Borborema Province Pegmatitic in the regions of Junco do Serido-PB and Ecuador-RN. These variables were analyzed considering granulometric intervals obtained from wet sieving of samples of pegmatite mines in the region. Kaolin was received using sieves of 200, 325, 400 and 500 mesh and the sieve fractions retained by generating statistical parameters histograms. kaolin particles are extremely fine and pass in its entirety through 500 mesh sieve. The characterization of minerals in fine fractions by diffraction of X-rays showed that the relative amount of sericite in fractions retained in sieves 400 and 500 mesh impairing the whiteness and mineralogical texture kaolin production. (author)

  12. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates.

    Science.gov (United States)

    Pant, Atul; Parsons, Matthew T; Bertram, Allan K

    2006-07-20

    Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is

  13. Dating Amazonian laterites through the novel geochronometers kaolinite and iron oxides

    Science.gov (United States)

    Allard, Thierry; Bressan Riffel, Silvana; Gautheron, Cécile; Fernandes Soares, Bruna; Pinna-Jamme, Rosella; Morin, Guillaume

    2016-04-01

    Soils on Earth's surface are in constant interaction with climate. As a matter of fact, soils cannot only produce greenhouse effect gases, such as NO2 and CH4, but also behave as sinks for CO2, especially by silicate weathering. Major processes of silicate weathering are known and exhibit climatic zonation at the global scale. Laterites are particularly relevant because they are ancient and deeply weathered soils of major significance. They occupy 30 % of the continental surface and can keep records of past climates and landscape modifications (paleosurface) through specific mineral markers. These formations reach several tens of meters and are mainly composed of kaolinite, iron and aluminium oxides as well as relicts of parent minerals such as quartz and ancillary minerals. Once the major processes of laterite formation are known, their age will allow a growth of researches, owing to the implementation of various chronometers. Moreover, it is fundamental to date laterites in order to improve our understanding of soil formation related to paleoclimates, and to build predictive models of their evolution. In this study, we focus on comparing kaolinite ages with the still unknown ages of lateritic duricrusts from the central Amazon region (Brazil), where strong weathering processes were developed from the early Tertiary, after the Andean uplift. The central Amazon region displays flat areas and dissected plateaus (100-180 m a.s.l.) sustained by weathered clastic sedimentary rocks and latosols. The region contains horizons of duricrusts, relatively continuous layers of Fe-cuirasses, stratified lateritic profiles, and kaolin deposits. Here we employed two methods to date ubiquitous secondary minerals of laterite, which are consistent with geological time-scale. The corresponding geochronometers are the following: (i) radiation-induced defects in kaolinite (trapped in duricrusts) analysed by electron paramagnetic resonance spectroscopy (EPR) (Balan et al., 2005), and (ii

  14. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    Highlights: > Equilibrium models of water-rock reactions in clay rocks are reviewed. > Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. > Results of modelling with various mineral controls are compared with the analyses. > Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. > This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  15. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    Science.gov (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  16. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    Science.gov (United States)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2

  17. Thermal Behaviour of clay formations

    International Nuclear Information System (INIS)

    Tassoni, E.

    1985-01-01

    The programme carried out by ENEA to model the thermal-hydraulic-mechanical behaviour of the clay formations and to measure, in situ and in laboratory, the thermal properties of these rocks, is presented. An in situ heating experiment has been carried out in an open clay quarry in the area of Monterotondo, near Rome. The main goal of the experiment was to know the temperature field and the thermal effects caused by the high level radioactive waste disposed of in a clayey geological formation. The conclusions are as follows: - the thermal conduction codes are sufficiently accurate to forecast the temperature increases caused in the clay by the dissipation of the heat generated by high level radioactive waste; - the thermal conductivity deduced by means of the ''curve fitting'' method ranges from 0.015 to 0.017 W.cm -1 . 0 C -1 - the temperature variation associated with the transport of clay interstitial water caused by temperature gradient is negligible. A laboratory automated method has been designed to measure the thermal conductivity and diffusivity in clay samples. A review of experimental data concerning thermomechanical effects in rocks as well as results of thermal experiments performed at ISMES on clays are presented. Negative thermal dilation has been found both in the elastic and plastic range under constant stress. Thermoplastic deformation appears ten times greater than the thermoelastic one. A mathematical model is proposed in order to simulate the above and other effects that encompass thermal-elastic-plastic-pore water pressure response of clays at high temperature and effective pressure with undrained and transient drainage conditions. Implementation of the two versions into a finite element computer code is described

  18. Migration of uranium in the presence of clay colloids in a sandy aquifer

    International Nuclear Information System (INIS)

    Le Cointe, P.; Grambow, B.; Piscitelli, A.; Montavon, G.; Van der Lee, J.; Giffaut, E.; Schneider, V.

    2010-01-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO 2 being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  19. Migration of uranium in the presence of clay colloids in a sandy aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Le Cointe, P. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Centre de Geosciences, Ecole des Mines de Paris, 35 rue St-Honore, 77305 Fontainebleau Cedex (France); ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France); Grambow, B.; Piscitelli, A.; Montavon, G. [Laboratoire SUBATECH, UMR 6457 Ecole des Mines/CNRS/Universite, 4 rue A. Kastler, BP 20722, 44307 Nantes Cedex 03 (France); Van der Lee, J. [EDF R ete D, Site des Renardieres, Route de Sens - Ecuelles, 77250 Moret sur Loing (France); Giffaut, E.; Schneider, V. [ANDRA 1/7 rue Jean Monnet - 92298 Chatenay Malabry Cedex (France)

    2010-07-01

    Document available in extended abstract form only. In France, low and medium level radioactive waste of short period (nuclides with a half-life less than 31 years and an activity ranging from 100 to 1,000,000 Bq/g) is stored in concrete constructions on a surface site in Soulaines-Dhuys (Aube). The site was chosen for its simple geology: it entirely lays on an aquifer formation, the Upper Aptian sands, above a Lower Aptian impermeable clay formation. The site is surrounded by the Noues d'Amance stream, which serves as the single outlet of the groundwater on the site. The objective of this study is to improve knowledge of radionuclides migration in the aquifer formation to improve safety, using U(VI) as an example and focusing on colloids, capable of transporting U(VI) on long distances. The sediment is composed of two main phases: quartz and clay minerals (glauconite, with a small fraction of kaolinite and smectite), with relative amounts of 91 and 6% in weight, respectively. The aquifer water contains clay colloids, invisible to the eye though observed with SEM and TEM in a non disturbed sample. No signal was measured with usual light diffusion techniques and Asymmetric Flow Field-Flow Fractionation (AF4). Only the Laser Induced Breakdown Detection (LIBD) technique could characterize the size (between 30 and 70 nm) and the concentration (around 10 ppb) of the clay colloids. Batch experiments were carried out to define U(VI)-Quartz and U(VI)-Clay interactions, with U(VI) concentration, pH and pCO{sub 2} being the studied variables. The data were modelled with the Chess geochemistry code developed at the Paris School of Mines and compared to literature. Davis applied model for U(VI)-Quartz interaction and Bradbury and Baeyens applied model for U(VI)-Illite interaction adequately describe the experimental data. To know if clay colloids can move freely in the groundwater, pore size was measured using X-ray microtomography. Nanoparticles tracing was done with

  20. Adsorption of polynuclear aromatic hydrocarbons from aqueous solution: Agrowaste-modified kaolinite vs surfactant modified bentonite

    Directory of Open Access Journals (Sweden)

    E. I. Unuabonah

    2017-01-01

    Full Text Available The adsorption efficiency of a new hybrid clay adsorbent for polynuclear aromatic hydrocarbons (PAHs is compared with known modified clay adsorbents. The new hybrid clay adsorbent (HYCA showed far higher adsorption capacities for the adsorption of various PAH molecules compared with sodium dodecyl sulfate modified and humic acid modified Bentonite clay adsorbents. With the new hybrid clay adsorbent (HYCA, the adsorption of some of the larger PAH molecules was complete in the first 1 h as compared with ≈ 62% and ≈ 76% observed for both humic acid modified and sodium dodecyl sulfate modified Bentonite clay adsorbents respectively. In 24 h adsorption of the PAHs was complete for all adsorbents with HYCA adsorbent showing better efficiency in the removal of the PAH molecules from aqueous solutions. No significant change was observed with increase in time up to 48 h. The adsorption was observed to be more spontaneous with HYCA adsorbent than with either modified Bentonite adsorbents. The enthalpy of adsorption did not follow any specific order and were not consistent for all PAH molecules considered.

  1. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Koretsky, Carla [Western Michigan University

    2013-11-29

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatly impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of

  2. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  3. Study of selection and purification of Brazilian bentonite clay by elutriation: a XRF, SEM and Rietveld analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, J.L.; Zanini, A.E.; Souza, M.E. de; Nascimento, M.L.F., E-mail: jeff_eq@yahoo.com.br, E-mail: mlfn@ufba.br [Universidade Federal da Bahia (UFBA/PROTEC/PEI), Salvador, BA (Brazil). Departamento de Engenharia Quimica

    2016-01-15

    Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitoria da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8) μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale. (author)

  4. Study of selection and purification of Brazilian bentonite clay by elutriation: a XRF, SEM and Rietveld analysis

    Directory of Open Access Journals (Sweden)

    J. L. Alves

    2016-03-01

    Full Text Available Abstract Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitória da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8 μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale.

  5. Complexity of clay mineral formation during 120,000 years of soil development along the Franz Josef chronosequence, New Zealand

    International Nuclear Information System (INIS)

    Dietel, J.; Dohrmann, R.; Guggenberger, G.; Meyer-Stueve, S.; Turner, S.; Schippers, A.; Kaufhold, S.; Butz-Braun, R.; Condron, L.M.; Mikutta, R.

    2017-01-01

    Weathering of primary silicates to secondary clay minerals over time affects multiple soil functions such as the accumulation of organic matter and nutrient cations. However, the extent of clay mineral (trans)formation as a function of soil development is poorly understood. In this study, the degree of weathering of sediments along a 120 kyr soil formation gradient was investigated using X-ray diffraction, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy. Irrespective of site age, mica and chlorite were the dominant clay minerals. During weathering, a remarkable suite of transitional phases such as vermiculite and several interstratifications with vermiculitic, smectitic, chloritic and micaceous layers developed. The degree of weathering was correlated with soil pH and depletion of K, Ca, Na, Fe and Al, regarding both soil depth and site age. Kaolinite occurred especially at the 120 kyr site, indicating slow formation via transitional phases. The findings of this study revealed that long-term soil development caused complex clay mineral assemblages, both temporally and spatially, and linking this variability to soil functioning warrants further research. (author).

  6. Study of selection and purification of Brazilian bentonite clay by elutriation: a XRF, SEM and Rietveld analysis

    International Nuclear Information System (INIS)

    Alves, J.L.; Zanini, A.E.; Souza, M.E. de; Nascimento, M.L.F.

    2016-01-01

    Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitoria da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8) μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale. (author)

  7. The immersion freezing behavior of size-segregated soot and kaolinite particles

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  8. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    International Nuclear Information System (INIS)

    Gonzalez Sanchez, F.

    2007-11-01

    Clay minerals are aluminium phyllosilicates, mostly products of the chemical alteration and mechanical breakdown of igneous and metamorphic rocks. Their physical and chemical properties can be directly related to their layered, fine-grained (large surface area) structure. These properties such as large water retention, low hydraulic conductivity, heat resistance and ionic exchange capacities, make clays ideal for many different applications, e.g. as sealing material for the underground disposal of radioactive waste. The long-term disposal of radioactive waste in an underground geological repository is based on a multibarrier concept. In the barrier of highly compacted clay, water is intercalated and confined between the clay layers. The narrow pores are responsible that under natural hydraulic gradients, molecular diffusion through water is the dominant transport mechanism for released radionuclides. The properties of water at the water-clay interface differ from that of bulk water. Therefore, a good and deep understanding of the water structure and dynamics in compacted clay systems is fundamental. This knowledge is the base for the progressing research about transport of pollutants through the compacted clays and argillaceous rock of radioactive waste barriers. This study focusses on four different types of pure clays, two of them charged, namely montmorillonite and illite (both in a Na and Ca form), and two uncharged, namely kaolinite and pyrophyllite. Their structural differences result in a significantly different behaviour in contact with water. In case of montmorillonite, water is located in between particles and in the interlayer space. In illite, water is found only in between particles, because the interlayer surfaces are tightly linked by potassium cations. The layers of kaolinite and pyrophyllite are uncharged and, consequently, water is located only in between particles. The clay powders were compacted to reach a high bulk dry density of about 1.9 g

  9. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Sanchez, F

    2007-11-15

    Clay minerals are aluminium phyllosilicates, mostly products of the chemical alteration and mechanical breakdown of igneous and metamorphic rocks. Their physical and chemical properties can be directly related to their layered, fine-grained (large surface area) structure. These properties such as large water retention, low hydraulic conductivity, heat resistance and ionic exchange capacities, make clays ideal for many different applications, e.g. as sealing material for the underground disposal of radioactive waste. The long-term disposal of radioactive waste in an underground geological repository is based on a multibarrier concept. In the barrier of highly compacted clay, water is intercalated and confined between the clay layers. The narrow pores are responsible that under natural hydraulic gradients, molecular diffusion through water is the dominant transport mechanism for released radionuclides. The properties of water at the water-clay interface differ from that of bulk water. Therefore, a good and deep understanding of the water structure and dynamics in compacted clay systems is fundamental. This knowledge is the base for the progressing research about transport of pollutants through the compacted clays and argillaceous rock of radioactive waste barriers. This study focusses on four different types of pure clays, two of them charged, namely montmorillonite and illite (both in a Na and Ca form), and two uncharged, namely kaolinite and pyrophyllite. Their structural differences result in a significantly different behaviour in contact with water. In case of montmorillonite, water is located in between particles and in the interlayer space. In illite, water is found only in between particles, because the interlayer surfaces are tightly linked by potassium cations. The layers of kaolinite and pyrophyllite are uncharged and, consequently, water is located only in between particles. The clay powders were compacted to reach a high bulk dry density of about 1.9 g

  10. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...... capacity was found to be 18.3 meq/100 g at pH 6 and 8.6 meq/100 g at pH 7. A competitive Langmuir sorption isotherm where sorption is dependant on both pH and fluoride concentration is employed to characterise the experimental sorption and desorption data. The sorption and desorption isotherms revealed...

  11. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  12. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    Science.gov (United States)

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.

  13. U(VI) sorption on kaolinite. Effects of pH, U(VI) concentration and oxyanions

    International Nuclear Information System (INIS)

    Liang Gao; Ziqian Yang; Keliang Shi; Xuefeng Wang; Zhijun Guo; Wangsuo Wu

    2010-01-01

    U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pH PZNPC ) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite. (author)

  14. Structure of kaolinite and influence of stacking faults: reconciling theory and experiment using inelastic neutron scattering analysis.

    Science.gov (United States)

    White, Claire E; Kearley, Gordon J; Provis, John L; Riley, Daniel P

    2013-05-21

    The structure of kaolinite at the atomic level, including the effect of stacking faults, is investigated using inelastic neutron scattering (INS) spectroscopy and density functional theory (DFT) calculations. The vibrational dynamics of the standard crystal structure of kaolinite, calculated using DFT (VASP) with normal mode analysis, gives good agreement with the experimental INS data except for distinct discrepancies, especially for the low frequency modes (200-400 cm(-1)). By generating several types of stacking faults (shifts in the a,b plane for one kaolinite layer relative to the adjacent layer), it is seen that these low frequency modes are affected, specifically through the emergence of longer hydrogen bonds (O-H⋯O) in one of the models corresponding to a stacking fault of -0.3151a - 0.3151b. The small residual disagreement between observed and calculated INS is assigned to quantum effects (which are not taken into account in the DFT calculations), in the form of translational tunneling of the proton in the hydrogen bonds, which lead to a softening of the low frequency modes. DFT-based molecular dynamics simulations show that anharmonicity does not play an important role in the structural dynamics of kaolinite.

  15. Physical attributes of kaolinitic and oxidic oxisols resulting from different usage systems

    Directory of Open Access Journals (Sweden)

    José Frederico Centurion

    2004-09-01

    Full Text Available The objective of this study was to assess the physical attributes of a kaolinitic oxisol, medium texture (Haplustox and an oxidic oxisol, clayey (Eutrustox under different usage systems, localized in the region of Jaboticabal, SP, Brazil. The usage systems were sugarcane, cotton and forest. Parameters such as soil bulk density, total porosity, macro and microporosity at the depths of 0.0-0.1; 0.1-0.2; 0.2-0.3, and 0.3-0.4 m were evaluated. Haplustox showed greater bulk density and smaller total porosity, macro and microporosity. The usage increased the bulk density in 0.0-0.3 m depth, with greater effects on the kaolinitic oxisol, mainly in 0.1-0.2 m depth in the areas cultivated with sugarcane.A mineralogia da fração argila e os sistemas de uso exercem fundamental importância na estrutura do solo. Assim, objetivou-se avaliar atributos físicos de um Latossolo Vermelho Distrófico, caulinítico (LVd, e, de um Latossolo Vermelho Eutroférrico, oxídico (LVef, sob diferentes sistemas de uso, localizados no município de Jaboticabal (SP, Brasil. Os sistemas de uso foram: cana-de-açúcar; algodão e mata. Foram avaliadas a densidade do solo, porosidade total, macro e microporosidade, nas profundidades de 0,0-0,1, 0,1-0,2, 0,2-0,3, 0,3-0,4 m. O Latossolo caulinítico (LVd apresentou maior densidade do solo e menor porosidade total, macro e microporosidade. O uso aumentou a densidade do solo na profundidade de 0,0-0,3 m, com efeitos maiores no Latossolo caulinítico, principalmente na profundidade de 0,1-0,2 m na área cultivada com cana-de-açúcar.

  16. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  17. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  18. Iron-clay interactions under a thermal gradient

    International Nuclear Information System (INIS)

    Jodin-Caumon, Marie-Camille; Mosser-Ruck, Regine; Randi, Aurelien; Cathelineau, Michel; Michau, Nicolas

    2010-01-01

    . temperature 80 deg. C or 150 deg. C). At the end of experiments, the tubes were quenched and cut into 5 sections. The particles collected in each of the five sections of the gold tube and in the two platinum capsules were characterized by SEM, TEM-EDS and XRD. The argillite is mainly composed of clay minerals (illite, inter-stratified illite/smectite, and a few amount of chlorite and kaolinite) with calcite, dolomite, quartz, pyrite, muscovite and feldspars. After reaction, the clay particles are Fe-enriched and some of the accessory minerals are dissolved (or oxidized) depending on experimental conditions. Iron is oxidized into magnetite and sometimes siderite. Among the accessory minerals, quartz, dolomite, pyrite and feldspars are the most reactive. Oxidized pyrite is observed on SEM micro-photographies. Dolomite, feldspars and quartz are probably dissolved. The dissolution of quartz indicates that the medium becomes alkaline. Calcite is less affected, probably because it is more stable under alkaline conditions. The morphology of the clay reaction products depends on the Fe content. The initial illite morphology (voile) evolves toward flakes, platelets and hairy aggregates with increasing Fe content. At 300 deg. C, Fe-rich clay minerals are Fe/Mg-chlorite with platelet morphology. At 150 deg. C, Fe-rich clay particles are Fe-serpentine products with hairy aggregate morphology. Flakes have a lowest Fe-content and are less crystallized. It could be an intermediate reaction product. In newly formed clay minerals, Fe replaces Al in octahedral sheets, and is also present in tetrahedral sheets in place of Si and Al in the most transformed products. Al from octahedral sheets replaces Si in tetrahedral sheets. The becoming of Si and Al escaped from tetrahedral sheets is not solved. Mg escapes from octahedral sheets toward the hot point when iron was initially placed at the cold point. It enriches the octahedral sheets of the newly formed clay minerals above 200 deg. C. Finally

  19. Removal and Adsorption of Vanadium and Boron by Some Egyptian Clay Sediments

    International Nuclear Information System (INIS)

    Mahdy, R.M.

    2016-01-01

    Due to the increase concerns of the environmental pollution problems, to have safer environment, it seems so important to propose an effective exploration of geological barriers, which are suitable for waste materials disposal. In fact, clay sediments play an essential role as natural adsorbents to immobilize nuclear elements contaminates such as uranium, vanadium and boron. In this study, the clay sediments was collected from either clay exploitation localities or from nearby radioactive mineralization provinces in Egypt. The obtained data clarifies that the adsorption of vanadium and boron by clay sediments were increased by increasing the initial concentration of vanadium and boron The adsorption maxima (B) for vanadium in kaolin samples namely Mossaba Salama, El Teah and EL Eessala reached 71.4, 66.7 and 47.6). On the other hand, the adsorption maxima (B) in bentonite samples namely North Coast – H ( El Sahel el shamaly) (high viscosity) followed by North Coast (El Sahel el shamaly) then North Coast (El Sahel el shamaly) (low viscosity) and finally Kasr El Sagha reached 135.1, 79.4, 61.5 and 47.6 respectively.The adsorption maxima for boron in kaolinite samples namely Mossaba Salama, El Teah and EL Eessala reached 47.5, 30.6 and 27.0 while in the bentonite samples it was arranged from Kaser El Sagha (35.7), North Coast (H) El Sahel el shamaly ( H) (32.3), North Coast (L) (27.9) ( El Sahel el shamaly L) to North Coast (El Sahel el shamaly) (3.5)

  20. Influence of the mineral composition of clay rocks on the stability of oil wells

    International Nuclear Information System (INIS)

    Amorocho, P. R; Badillo, Juan

    2012-01-01

    In the oil companies, the operation of drilling well bore could be more expensive if the composition of the rocks is clay, the cost could increase between 10 and 15% from the starting budget. In order to decrease this problem, the oil industry has spent too much money for developing mechanisms that can provide better control and stability in clay formations during the drilling. The Society Petroleum Engineers (SPE) in some researches have published that the main chemical effects that are involved in the interaction of perforation fluids and the clay formation are: 1) chemical osmosis; and 2) hydration stresses, although, there are others like: Capillary effects, dehydration, differences in pressure and cationic exchange. These factors are not present generally in independent form. At Piedemonte Llanero the problem of the well bore stability represents a high spending of money for oil companies, caused in this region by chemical factors between fluid/rock and mechanical factors as resulted of the stresses in the area. Metil Blue Testing (MBT) and X-ray Diffraction (DR-X) were made in samples of clay; these were taken from cuts extracted of boreholes drilled in some places of the Colombian Llanos. It was found that these samples had a moderate content of reactive and low content of swell minerals.The samples main component was kaolinite, this mineral does not let the rock get swell, but it produces caving in the hole. However, it is necessary to do other tests to quantify the damages and evaluate the influence of there gime of the stress during the perforation of well bore.

  1. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  2. Interestratificado caulinita-esmectita em um argissolo desenvolvido a partir de rocha sedimentar do Sul do Brasil Interlayered kaolinite-smectite minerals in an acrisol developed from sandstone parent material in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2007-12-01

    , indicando que ela é proveniente de herança do material de origem. A mineralogia deste solo indica estádio intermediário entre argilominerais de estrutura do tipo 2:1 e 1:1 no processo de intemperismo.Kaolinite is commonly found in fine fractions of tropical and subtropical Brazilian soils. Kaolinite can be verified by an X-ray diffractogram, made of a series of 00l peaks, at the distance of 0.715 nm. However, in some soils, major peaks can be found at about d = 0.720 nm, indicating halloysite or kaolinite-smectite (K-S interstratified minerals. The objectives of this study were to verify this hypothesis and subsequently discuss soil genesis. Parent material and soil samples from the horizons A1, A2, E and Bt were collected in a Red Yellow Acrisol, covered by native vegetation, on the Campus of the Universidade Federal de Santa Maria, RS, Brazil. The clay fraction was separated by sedimentation, Ca2+ saturated and X-ray diffracted after the following treatments: control, air drying, (N; ethylene-glycol saturation (EG; heating to 300 and 550 °C; and, after formamide saturation. The raw X-ray diffractograms (XRD were modeled between 11 and 15 degrees 2 theta (using DecompRX. Two peaks were found in the XRD around this region. The first peak was sharp and intense at d = 0.717 nm, corresponding to kaolinite; the second, broader and less intense, was observed at d = 0.720 nm. The peak at d = 0.720 nm was sensitive to EG treatment; it varied from d = 0.720 nm to d = 0.730 nm and returned to about d = 0.720 nm after heating to 300 °C. This behaviour is typical of expansive layers. The presence of interstratified K-S minerals was inferred since halloysite clay was not identified by the formamide test. The XRD were analyzed and indicated interstratified K-S mineral at a proportion of 0.8_0.9 kaolinite layers and 0.1-0.2 smectite layers. Furthermore, the K-S covered about 90 % and kaolinite alone 10 % of the modelled peak, at d = 0.720 nm. K-S was also found in the bedrock

  3. Stools - pale or clay-colored

    Science.gov (United States)

    ... gov/ency/article/003129.htm Stools - pale or clay-colored To use the sharing features on this page, please enable JavaScript. Stools that are pale, clay, or putty-colored may be due to problems ...

  4. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  5. Additive to clay drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Voytenko, V.S.; Nekrasova, V.B.; Nikitinskiy, E.L.; Ponomarev, V.N.

    1984-01-01

    The purpose of the invention is to improve the lubricating and strengthening properties of clay drilling muds. This goal is achieved because the lubricating and strengthening additive used is waste from the pulp and paper industry at the stage of reprocessing crude sulfate soap into phytosterol.

  6. Picasso Masks: Cubism in Clay

    Science.gov (United States)

    Daddino, Michelle

    2010-01-01

    This article describes an art project developed by the author which provides a way to further the children's understanding of Picasso's Cubism style in 3-D. Through this project, upper-elementary students learn a bit about the life and art of Picasso as they gain a firm understanding of the style of art known as Cubism, and apply clay techniques…

  7. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  8. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    cept, though not new, has received enormous attention in recent times. The desire to make ... which they are divided into four main groups such as, illite, smectite .... acid or driving out NH3 by heating the NH4 + ion treated clay. It is clear from ...

  9. Pb-Zn mineralization of Ali ou Daoud area (Central High Atlas, Morocco: characterisation of deposit and relationship with the clay assemblages

    Directory of Open Access Journals (Sweden)

    Daoudi, L.

    2008-12-01

    Full Text Available Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., synsedimentary faults played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralisations would result from the same hydrothermal fluid.[Français] Dans les séries sédimentaires carbonatées d’Ali ou Daoud (Haut Atlas Central, les minéralisations à Zn, Pb et Fe en amas stratiformes forment les faciès de remplissage des karsts d’une plateforme carbonatée bajocienne. Le contrôle structural joue un rôle capital dans la localisation du gîte en bordure de plateforme sur des failles synsédimentaires. Dans les niveaux dolomitiques encaissants des minéralisations, les assemblages argileux sont caractérisés par la présence de kaolinite dont la teneur varie parallèlement avec celle du minerai. Ceci suggère que la mise en place de la kaolinite et des minéralisations résulterait du même fluide hydrothermal. [Español] En las series sedimentarias carbonatadas de Ali ou Daoud (Alto Atlas Central, las mineralizaciones de Zn, Pb y Fe aparecen en niveles estratiformes como facies de reemplazamiento de los karsts de una plataforma carbonatada Bajociense. El control estructural desempeña un papel crucial en la localización del yacimiento a lo largo de la plataforma sobre fallas sinsedimentarias. En los niveles dolomíticos que incluyen las mineralizaciones, las asociaciones arcillosas se caracterizan por la presencia de caolinita, cuyo contenido varía paralelamente al de la mineralización. Esto sugiere que la creación de caolinita y de la

  10. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  11. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  12. Clay Cuffman: A Cool, Calm, Relaxed Guy

    Science.gov (United States)

    Booth, Gina

    2010-01-01

    This article describes Clay Cuffman, a simple clay-sculpture project that requires two or three sessions, and works for students from the upper-elementary level through high school. It takes about 1.5 pounds of clay per student--about the size of a small grapefruit. The Cuffman project is a great way for upper-elementary through high-school…

  13. Chemical, mineralogical and ceramic properties of clays from Northern Santa Catarina, Brazil; Caracterizaco fisico-quimica de argilas da regiao norte de Santa Catarina

    Energy Technology Data Exchange (ETDEWEB)

    Correia, S L; Bloot, E L; Folgueras, M.V., E-mail: sivaldo@joinville.udesc.b [Universidade do Estado de Santa Catarina (UDESC/CCT), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas; Hotza, D [Universidade Federal de Santa Catarina (UFSC/EQA), Florianopolis, SC (Brazil). Dept. de Engenharia Quimica

    2009-07-01

    Clay materials crop out in the northern Santa Catarina mining district were investigated in order to assess their potential in the ceramic industry. Four different clays (A, B, C and D) were selected. Their chemical composition was obtained by Xray fluorescence and their mineralogy by X-ray diffraction, coupled with numerical rational analysis. Their thermal behaviour was studied by differential thermal analysis. Technological testing consisted in a simulation of the industrial processing performed at a laboratory scale. The test pieces were obtained by pressing and fired in the range of 850-1200 deg C. In each case their technological properties were studied. The main mineralogical phases detected were kaolinite, quartz and mica. Hematite and feldspars may be present in the clays. The clays show two groups of particle sizes almost equally frequent in the range of 1 to 60 {mu}m. The northern Santa Catarina clays are suitable for the production of bricks and earthenware in the 900- 1100 deg C range. (author)

  14. Clay minerals in sediments of Portuguese reservoirs and their significance as weathering products from over-eroded soils: a comparative study of the Maranhão, Monte Novo and Divor Reservoirs (South Portugal)

    Science.gov (United States)

    Fonseca, Rita M. F.; Barriga, Fernando J. A. S.; Conceição, Patrícia I. S. T.

    2010-12-01

    The Southern region of Portugal is subjected to several forms of over-erosion. Most leached products, mainly composed of fine particles containing nutrients, metals or pesticides, are easily transported by river flows. When these are hindered by a physical barrier such as a dam, the particulate load accumulates on the bottom of the reservoirs, often leading to a pronounced decrease of water quality. Bottom sediments from three reservoirs were subjected to grain-size analysis and a study of clay minerals by X-ray diffraction. Most sediments contain a diverse set of clay minerals, mostly illites, smectites, chlorites and kaolinites. The nature of the clay minerals reflects the nature of the parent rocks. During the cycles of transport and temporary deposition, they may undergo significant chemical and physical transformations, which lead to an increase of expandable properties and therefore, to a higher cationic exchange capacity, determining its important role as vehicles of environmental pollutants.

  15. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    maintain a nominal swelling pressure of 0.1 MPa. Canadian tunnel backfill contains much less clay (6 % by dry mass) than the SKB variety, but a much higher density of 2.1 Mg/m 3 . SKB considers that if groundwater inflow in fractures in deposition holes exceeds that which can be absorbed by bentonite swelling, there will be a water pressure in the fracture acting on the buffer which may lead to piping. Piping is the erosion of the clay along a linear feature. SKB believe that piping will only occur before full saturation of the buffer and is of concern during the operational phase of the repository. Piping is a complex process which increases with water pressure and groundwater salinity. SKB continue to research this problem through laboratory and in situ tests. The problem of piping is also germane to repository backfilling. SKB consider that it may be difficult to derive a solution to water inflow during backfill installation. Consequently, the backfill needs to have enough swelling ability so that piping channels can be healed once a tunnel has been sealed by plugging. All this must be placed in context of the rate of backfilling which SKB hopes to be in the order of 6 m per day. Research conducted by SKB and elsewhere suggests that the long-term effects of montmorillonite degradation due to the presence of saline groundwater will consist mainly of formation of beidellite or kaolinite

  17. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    backfilling in Canada suggests that an initial density of at least 0.9 Mg/m{sup 3} is required to maintain a nominal swelling pressure of 0.1 MPa. Canadian tunnel backfill contains much less clay (6 % by dry mass) than the SKB variety, but a much higher density of 2.1 Mg/m{sup 3}. SKB considers that if groundwater inflow in fractures in deposition holes exceeds that which can be absorbed by bentonite swelling, there will be a water pressure in the fracture acting on the buffer which may lead to piping. Piping is the erosion of the clay along a linear feature. SKB believe that piping will only occur before full saturation of the buffer and is of concern during the operational phase of the repository. Piping is a complex process which increases with water pressure and groundwater salinity. SKB continue to research this problem through laboratory and in situ tests. The problem of piping is also germane to repository backfilling. SKB consider that it may be difficult to derive a solution to water inflow during backfill installation. Consequently, the backfill needs to have enough swelling ability so that piping channels can be healed once a tunnel has been sealed by plugging. All this must be placed in context of the rate of backfilling which SKB hopes to be in the order of 6 m per day. Research conducted by SKB and elsewhere suggests that the long-term effects of montmorillonite degradation due to the presence of saline groundwater will consist mainly of formation of beidellite or kaolinite.

  18. Mean residence time of kaolinite and smectite-bound organic matter in mozambiquan soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.; Buurman, P.

    2004-01-01

    To gain understanding about the process of global warming, it is essential to study the global C cycle. In the global C cycle, soil organic matter (SOM) is a major source and sink of atmospheric C. Turnover times of C in these soil organic compounds vary from hours to thousands of years. Clay

  19. Physicochemical effects on uncontaminated kaolinite due to electrokinetic treatment using inert electrodes.

    Science.gov (United States)

    Liaki, Christina; Rogers, Christopher D F; Boardman, David I

    2008-07-01

    To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.

  20. Technetium migration in natural clays

    International Nuclear Information System (INIS)

    Luebke, Maria

    2015-01-01

    The present work was performed within the joint research project ''Retention of repository relevant radionuclides in argillaceous rocks and saline systems'' (contract no.: 02E10981), funded by the Federal Ministry for Economic Affairs and Energy (BMWi). The aim was to obtain first insights into the interaction of the long-lived fission product technetium and natural clay with regard to a repository for high-level nuclear waste. For this purpose Opalinus Clay from Mont Terri (northern Switzerland) was used as a reference material. The nuclide technetium-99 will contribute to the radiotoxicity of spent nuclear fuel for more than thousand years due to its long half-live. In case of a leakage of the storage vessels, the geochemistry of technetium is determined by its oxidation state, at which only the oxidation states +IV and +VII are relevant. Because of the high solubility and low affinity to sorption on surfaces of minerals, Tc(VII) is considered to be very mobile and thus the most hazardous species. The focuses of this study therefore are diffusion experiments with this mobile species and investigations of the effect of ferrous iron on the mobility and speciation of technetium.rnThe interaction of technetium and Opalinus Clay was studied in sorption and diffusion experiments varying several parameters (pH value, addition of reducing agents, effect of oxygen, diffusion pathways). In the course of this study spatially resolved investigations of the speciation have been performed on Opalinus Clay thin sections and bore cores for the first time. In addition to the speciation, further information regarding elemental distributions and crystalline phases near technetium enrichments were obtained. Supplementary investigations of powder samples allowed determining the molecular structure of technetium on the clay surface.rnBoth the combination of sorption experiments with spectroscopic investigations and the diffusion experiment exhibit a reduction of Tc

  1. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  2. Preparation and characterization of bentonite organo clay

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Almeida Neto, A.F.; Silva, M.G.C.

    2009-01-01

    Bentonite clays organically modified have great potential use for environmental remediation, especially in the separation of organic compounds from the water. The aim of this work was the preparation of organophilic clays from 'Verde-Lodo' bentonite clay with the quaternary ammonium salts cetyl-pyridinium chloride and benzalkonium chloride. The materials obtained were characterized by XRD, thermogravimetric analyses, Helium picnometry, SEM and energy dispersive X-ray techniques. The results show consistently successful synthesis of the organoclay through the increase in the basal spacing, as well as salt elimination picks and presence of carbon and chlorine in the modified clays; they are inexistent elements in the natural clay. (author)

  3. Frictional Properties of Opalinus Clay: Implications for Nuclear Waste Storage

    Science.gov (United States)

    Orellana, L. F.; Scuderi, M. M.; Collettini, C.; Violay, M.

    2018-01-01

    The kaolinite-bearing Opalinus Clay (OPA) is the host rock proposed in Switzerland for disposal of radioactive waste. However, the presence of tectonic faults intersecting the OPA formation put the long-term safety performance of the underground repository into question due to the possibility of earthquakes triggered by fault instability. In this paper, we study the frictional properties of the OPA shale. To do that, we have carried out biaxial direct shear experiments under conditions typical of nuclear waste storage. We have performed velocity steps (1-300 μm/s) and slide-hold-slide tests (1-3,000 s) on simulated fault gouge at different normal stresses (4-30 MPa). To establish the deformation mechanisms, we have analyzed the microstructures of the sheared samples through scanning electron microscopy. Our results show that peak (μpeak) and steady state friction (μss) range from 0.21 to 0.52 and 0.14 to 0.39, respectively, thus suggesting that OPA fault gouges are weak. The velocity dependence of friction indicates a velocity strengthening regime, with the friction rate parameter (a - b) that decreases with normal stress. Finally, the zero healing values imply a lack of restrengthening during interseismic periods. Taken together, if OPA fault reactivates, our experimental evidence favors an aseismic slip behavior, making the nucleation of earthquakes difficult, and long-term weakness, resulting in stable fault creeping over geological times. Based on the results, our study confirms the seismic safety of the OPA formation for a nuclear waste repository.

  4. Characterization of Rare Earth Elements in in Clay Deposits Associated with Central Appalachian Coal Seams

    Science.gov (United States)

    Scott, M.; Verba, C.; Falcon, A.; Poston, J.; McKoy, M.

    2017-12-01

    Because of their multiple uses in clean energy technologies, rare earth elements (REE) are critical for national economic and energy security. With no current domestic source, supply remains a major concern for domestic security. Underclay - specifically the layer of stratum beneath a coal bed - is a potentially rich source of REE. This study focuses on the characterization and ion exchange recovery of REE from underclay samples from the Lower Freeport, Middle Kittanning, and Pittsburgh coal seams in West Virginia. Multimodal techniques provided quantitative assessments of REE-bearing mineral phases in select underclays and the influence of organic acid rock treatment on the recovery of REE from both exchangeable and crystalline mineral phases present. All samples are from extensively weathered horizons that contain abundant kaolinite and illite. Total REE concentrations range from 250-450 ppm and all samples have a HREE/LEEE ratio >20%. Rare earth element bearing minerals identified in the clay are monazite, xenotime, florencite, and crandallite. Our selective recovery approach is designed to isolate and recover REE through partial dissolution of the clay matrix and ion exchange rather than dissolution/recovery of phosphate or aluminosilicate bound REE. These results provide a better understanding of coal seam underclay, the affinity of REEs for specific ligands and colloids, and how the rock and ligands respond to different chemical treatments. These processes are important to the development and commercialization of efficient and cost effective methods to extract REE from domestic geologic deposits and recover into salable forms.

  5. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  6. Thermomechanical behaviour of boom clay

    International Nuclear Information System (INIS)

    Sultan, N.; Delage, P.; Cui, Y.J.

    2000-01-01

    Special attention has been recently paid on temperature effects on the behaviour of deep saturated clays, in relation with nuclear deep waste storage. However, few experimental data are presently available, and existing constitutive models need to be completed. This note is aimed at completing, both experimentally and theoretically, the understanding of the effects of the over-consolidation ration on the thermal volume changes of Boom clay (Belgium). The experimental data obtained here are in a good agreement with existing data. As a complement to existing data, they are used to develop a new elastoplastic model. The adoption of a second coupled plastic mechanism provides good simulations on a complex thermo-mechanical path. (authors)

  7. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method

    International Nuclear Information System (INIS)

    Prandel, L.V.; Saab, S.C.; Brinatti, A.M.; Giarola, N.F.B.; Leite, W.C.; Cassaro, F.A.M.

    2014-01-01

    Diffraction and spectroscopic techniques have been shown to be suitable for obtaining physical and mineralogical properties in polycrystalline soil samples, and also in their precursor compounds. For instance, the X-ray fluorescence (XRF) spectroscopy allows obtaining the elemental composition of an investigated sample, while the X-ray diffraction (XRD) technique permits obtaining qualitative and quantitative composition of the soil minerals through the Rietveld method (RM). In this study Yellow Latosol (Oxisol), Yellow Argisol (Ultisol) and Gray Argisol (Ultisol) soil samples, classified as “hardsetting soils”, extracted from areas located at Northeast and Southeast of Brazilian coast were investigated. The soils and their fractions were analyzed in an EDX-700 and an XRD-6000 (Cu K α radiation). XRF results indicate high percentages of Si and Al, and small percentage of Fe and Ti in the investigated samples. The DRX data and RM indicate that there was a predominance of kaolinite and halloysite minerals (kaolin group minerals) in the clay fractions, which are presumably responsible for the formation of kaolinitic plasma in these soils. Also, the obtained results showed that the XRF, XRD techniques and RM were very helpful for investigating the mineralogical composition of a hardsetting soil. - Highlights: ► Elemental composition of soil samples through X-Ray fluorescence. ► Mineralogical quantification through X-ray diffraction and Rietveld method. ► Oxisol and Ultisol, Brazil ‘Barreiras’ formation. ► High amounts of Si and Al oxides and low amounts of Fe and Ti oxides. ► Predominance of kaolinite in the clay fraction

  8. Characterization of clays found in soils of the indian territories in Rio Grande do Sul State by using the 57 Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Perez, C.A.S.; Gobbi, D.; Marcos, J.L.N.

    2004-01-01

    Clay samples collected from soils of indian territories of the middle plateau in Rio Grande do Sul were analyzed with the aim to obtain characterization data and technical parameters for their potential use as raw material for ceramic products. The mineralogical study in samples by using the X-ray diffraction technique demonstrated that the predominant clay mineral is kaolinite. Others minerals as quartz and rutile also are present in small amounts. Chemical analysis shows low percentages for oxides of Mg, Mn, K, Na, Ca, Cu and Zn (overall percentages smaller than 0.97%). The samples also were analyzed with the 57 Fe Moessbauer spectroscopy. The Moessbauer spectra at room temperature confirm the presence of the mineral kaolinite. At 77 K they reveal the existence of the minerals goethite and hematite as ultrafine magnetic particles in a superparamagnetic state. The physical tests performed in the samples show that these soils are very fine material and present appropriate granulometric characteristics and plasticity, which can be taken in advantage for the production of materials for construction or production of ornamental artifacts. (author)

  9. Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material

    International Nuclear Information System (INIS)

    Clauer, N.

    1979-01-01

    The 87 Sr/ 86 Sr ratios of recent montmorillonites and kaolinites newly formed in weathering profiles of western and central Africa and of Nosy Be and La Reunion islands near Madagascar are directly related to the composition and age of the parent rocks or minerals. They may, therefore, be used as a genetic tracer. The 87 Sr/ 86 Sr ratios are about 0.704 when these clays crystallise from recent basalts and they are higher than 0.715 when the parent rocks are of sialic composition and old in age. Kaolinites newly formed in situ from feldspars contain small amounts of Sr with abnormally high 87 Sr/ 86 Sr ratios: in this study they are higher than 1.094. When these minerals crystallize from biotites, their 87 Sr/ 86 Sr ratios are much lower and can be close to the value of the primary Sr trapped in the biotites during their crystallization. On the other hand, the 87 Sr/ 86 Sr of continental montmorillonites are less scattered: they range, in this study, between 0.704 and 0.722. These low values, as well as the high adsorption capacities of these minerals in the sedimentary environment, allow the assumption that they frequently have 87 Sr/ 86 Sr ratios close to that of marine Sr during sedimentation. Therefore, montmorillonites are able to form homogeneous authigenic minerals by synsedimentary alterations. (Auth.)

  10. Study of Cesium and Strontium sorption in Brazilian clays for their use as a barrier in repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Freire, Carolina Braccini

    2007-01-01

    Wastes in general should be properly treated and stored. Then the radioactive wastes also require suitable and safe management beginning in their generation until the storage in repository. The main purpose of the radioactive waste management is to preserve the human beings and the environment. The objective of this research was to characterize some Brazilian clays in order to evaluate the viability of their use in the backfill layer, one of the radioactive waste repository barriers. The main function of this barrier is to contribute in the delay of the radionuclides movement, and to prevent their release into the environment. Four clays provided by national suppliers were selected for the research: Ca-Montmorillonite (Dol 01), Na-Montmorillonite (Dol 02), Kaolinite (Ind 01) and Vermiculite (Ubm 04). Their physical, chemical and mineralogical characteristics were determined, and also their sorption potential of Cesium and Strontium cations. It was confirmed through these results a direct relationship among their specific surface (SS), the capacity of cationic exchange (CCE) and pH. The CCE results followed this increasing order: Ind 01, Dol 01, and Dol 02. In accordance with the models of Freundlich (KJ) and Langmuir (M), the clays Dol 01 and Dol 02 were the best sorbers of Sr 2+ . The Ind 01 and Ubm 04 were the best ones in the case of Cs + . The Gibbs free energy change (ΔG deg) was calculated for the sorption reactions between the clays and the cations, and it was negative for all clays, confirming the sorption reaction spontaneity. (author)

  11. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Physico-chemistry and geochemistry of Balengou clay deposit (West Cameroon) with inference to an argillic hydrothermal alteration

    Science.gov (United States)

    Tassongwa, Bernard; Eba, François; Njoya, Dayirou; Tchakounté, Jacqueline Numbem; Jeudong, Narcisse; Nkoumbou, Charles; Njopwouo, Daniel

    2017-09-01

    Field description and sampling along two pits, granulometry, Atterberg limits, mineralogical (XRD, FTIR, DSC & TGA) and geochemical analyses of the Balengou clays help to determine their characteristics and the genesis of the deposit. The mineralogical composition is comprised of halloysite-kaolinite, quartz, montmorillonite, hematite, anatase, feldspar, zircon, chromite, and apatite. Gibbsite and illite occur at the shallow and deep depth, respectively. Dikes of sand-poor clays contain also cristobalite and tridymite. Pairs of elements Rb-Ba, Rb-Sr, Nb-Ta, Ta-Zr, TiO2-Zr display good positive correlations (R2 > 0.85). REE patterns are highly fractionated (LaN up to 3312, LaN/YbN: 19-10) and are marked by deep Ce and Eu negative anomalies. Immobile element canonical ratios indicate that the protoliths were commendite/pantelerite, rhyolite and dacite, or their plutonic equivalents. Mineralogical and geochemical features lead to the suggestion that the clays derived from an advanced argillic hydrothermal alteration.

  13. Characterization of non-calcareous 'thin' red clay from south-eastern Brazil: applicability in wall tile manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, S. J.G.; Holanda, J. N.F., [Grupo de Materiais Ceramicos - LAMAV-CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ (Brazil)

    2012-04-15

    In this work the use of 'thin' red clay from south-eastern Brazil (Campos dos Goytacazes, RJ) as raw material for the manufacture of wall tile was investigated. A wide range of characterization techniques was employed, including X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), grain-size analysis, and thermogravimetric analysis. The wall tile body was prepared by the dry process. The tile pieces were uniaxially pressed and fired between 1080 - 1180 deg C using a fast-firing cycle. The following technological properties were determined: linear shrinkage, water absorption, apparent density, and flexural strength. The development of the microstructure was followed by SEM and XRD analyses. It was found that the 'thin' red clay is kaolinitic type containing a substantial amount of quartz. The results also showed that the 'thin' red clay could be used in the manufacture of wall tiles, as they present properties compatible with those specified for class BIII of ISO 13006 standard. (author)

  14. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials

    International Nuclear Information System (INIS)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.

    2012-01-01

    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is 2 +, Cr 3 +. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca 2 +, Mg 2 +, Na + , K + ), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr x .Fe 1 -x) (OH) 3 which favor Cr sorption. (Author) 26 refs.

  15. Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels

    DEFF Research Database (Denmark)

    Zaharia, Anamaria; Sarbu, Andrei; Radu, Anita-Laura

    2015-01-01

    Novel nanocomposite hydrogel structures based on cross-linked poly(acrylic acid) (PAA) and kaolinite (Kaol), modified with different loadings of polyacrylamide (PAAm), were prepared by inverse dispersion polymerization. Ceric ammonium nitrate as an initiator in the presence of nitric acid was used...... of Kaol particles in the polyacrylic acid matrix, thereby leading to enhanced interactions and furthermore to improved mechanical properties of the final hydrogels....

  16. Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite.

    Science.gov (United States)

    Oudou, H Chaaieri; Hansen, H C Bruun

    2002-12-01

    Sorption to mineral surfaces may be important for retention and degradation of hydrophobic pesticides in subsoils and aquifers poor in organic matter. In this work the title pyrethroids have been used to investigate selective interactions with the surfaces of four minerals. Sorption of the four pyrethroids was quantified in batch experiments with initial pyrethroid concentrations of 1-100 microg/l. Sorption to centrifuge tubes used in the batch experiments accounted for 25-60% of total sorption. Net sorption was obtained from total sorption after subtracting the amounts of pyrethroids sorbed to centrifuge tubes used. All isotherms could be fitted by the Freundlich equation with n ranging between 0.9 and 1.1. Bonding affinities per unit surface area decreased in the order: corundum > quartz > montmorillonite approximately equal kaolinite. A similar sequence as found for the total surface tension of the minerals. All minerals showed the same selectivity order with respect to sorption affinity of the four pyrethroids: lambda-cyhalothrin > deltamethrin > cypermethrin > fenvalerate, which shows that the most hydrophobic compound is sorbed most strongly. Stereochemical properties of the four pyrethroid formulations may also contribute to the selectivity pattern.

  17. Adsorption of Sr on kaolinite, illite and montmorillonite at high ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.J.; Langmuir, D. (Colorado School of Mines, Golden (USA). Dept. of Chemistry and Geochemistry)

    1991-01-01

    Experimental measurements of Sr adsorption onto kaolinite, illite and montmorillonite in up to 4.0 mol/kg NaCl solutions, were modelled with the surface ionization and complexation triple-layer (SIC) model (Davis et al.) to determine if model adjustments were required for high ionic strengths. Improved model fits to the adsorption data were obtained at high ionic strengths, reflecting a lowered sensitivity of the model. A general reduction in Sr adsorption with increasing ionic strength was caused by an increase in the outer layer surface charge, rather than by a drop in the number of available adsorption sites. Sensitivity analysis showed that the range of values of model constants yielding acceptable fits was as large as variations reported in the literature for these constants. The study demonstrates that adsorption will not retard Sr migration in brines, and that it is unnecessary to introduce a Pitzer ion interaction subroutine in the SIC model when considering adsorption at high ionic strengths. (orig.).

  18. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Science.gov (United States)

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  19. Behaviour of the surface hydroxide groups of exfoliated kaolinite in the gas phase and during water adsorption.

    Science.gov (United States)

    Táborosi, Attila; Szilágyi, Róbert K

    2016-02-14

    The chemical and physical properties, and thus the reactivity of phylloaluminosilicates can be tailored by intercalation, delamination, and exfoliation processes. In going from the periodic crystalline to the molecular exfoliated phase, surface defects and modifications gain importance as each face of the phylloaluminosilicate comes in direct contact with the external chemical environment. In this work, we extend our earlier studies on the molecular cluster modelling of exfoliated kaolinite sheets by evaluating the positions and orientations of surface hydroxide groups and bridging oxide anions, as the sites of reactivity. The previous focus on the inner chemical environment of a single kaolinite layer is shifted to the surface exposed octahedral aluminium-hydroxide and tetrahedral silicon-oxide sheets. The combination of semi-empirical, ab initio wave function, and density functional calculations unanimously support the amphoteric nature of the surface hydroxide groups with respect to H-bonding donor/acceptor capabilities. To a lesser extent, we observe the same for the bridging oxide anions. This is in contrast to the crystalline phase, which manifests only donor orientation for maintaining an inter-layer H-bond network. These results suggest that both electrophilic and nucleophilic characteristics of the octahedral and tetrahedral sheets need to be considered during intercalation and concomitant exfoliation of the kaolinite sheets.

  20. Influence of the barite tenors of the Jaicos, Piaui, Brazil, clays on the ceramic properties of electric insulator porcelains; Influencia dos teores de barita das argilas de Jaicos, Piaui, Brasil nas propriedades ceramicas de porcelana de isoladores eletricos

    Energy Technology Data Exchange (ETDEWEB)

    Correa, W.L.P. [Escola SENAI Mario Amato, Sao Bernardo do Campo, SP (Brazil); Lima, M.B. [Faculdade Sao Bernardo, SP (Brazil); Carvalho, F.M.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias

    2009-07-01

    The clays of the Municipality of Jaicos, Piaui, has been used as raw materials for the manufacture of insulators for company located in the municipality of Pedreira - Sao Paulo. It can be noticed in the clay blocks and consolidated, 'lenses' of barite. The mineralogical composition of clay and the nature of these 'lenses' were studied by chemical analysis, X-ray diffraction for mineralogical characterization. The clays are composed primarily by kaolinite, quartz, and some amount of illite and orthoclase. The presence of orthoclase does believe in a recent deposition of these clays. The 'lenses' were characterized as barite, BaSO{sub 4}. To check the influence of barite in the composition of bodies of porcelain to insulators made up six compositions with different levels of barite, obtained their own clay. It applies, then the tests of ceramic fracture to bending, water absorption, apparent porosity to determine the effect of the introduction of barite in the compositions. (author)

  1. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    Science.gov (United States)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  2. Disinfection of water with new chitosan-modified hybrid clay composite adsorbent

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Unuabonah

    2017-08-01

    Full Text Available Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA1:5 (Chitosan: nHYCA = 1:5. This composite adsorbent had a maximum adsorption removal value of 4.07 × 106 cfu/mL for V. cholerae after 120 min, 1.95 × 106 cfu/mL for E. coli after ∼180 min and 3.25 × 106 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity (qmax of Ch-nHYCA1:5 composite adsorbent for the removal of E. coli with a qmax of 103.07 mg/g (7.93 × 107 cfu/mL and V. cholerae with a qmax of 154.18 mg/g (1.19 × 108 cfu/mL while the Sips model best described S. typhi adsorption by Ch-nHYCA1:5 composite with an estimated qmax of 83.65 mg/g (6.43 × 107 cfu/mL. These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA1:5 for water treatment.

  3. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  4. Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215

    Energy Technology Data Exchange (ETDEWEB)

    Post, Ekkehard [NETZSCH Geraetebau GmbH, Wittelsbacherstrasse 42, 95100 Selb (Germany); Henderson, Jack B. [NETZSCH Instruments North America, LLC, 129 Middlesex Turnpike, Burlington, MA 01803 (United States)

    2012-07-01

    An illitic clay containing higher amounts of organic materials was investigated by dilatometry, thermogravimetry and differential scanning calorimetric. The evolved gases were studied during simultaneous TG-DSC (STA) and dilatometer measurements with simultaneous mass spectrometry in inert gas and oxidizing atmosphere. The dilatometer results were compared with the STA-MS results which confirmed and explained the reactions found during heating of the clay, like dehydration, dehydroxylation, shrinkage, sintering, quartz phase transition, combustion or pyrolysis of organics and the solid state reactions forming meta-kaolinite and mullite. The high amount of organic material effects in inert gas atmosphere most probably a reduction of the oxides which leads to a higher mass loss than in oxidizing atmosphere. Due to this reduction an additional CO{sub 2} emission at around 1000 deg. C was detected which did not occur in oxidizing atmosphere. Furthermore TG-MS results of a clay containing alkali nitrates show that during heating, in addition to water and CO{sub 2}, NO and NO{sub 2} are also evolved, leading to additional mass loss steps. These types of clays showed water loss starting around 100 deg. C or even earlier. This relative small mass loss affects only less shrinkage during the expansion of the sample. The dehydroxylation and the high crystalline quartz content result in considerable shrinkage and expansion of the clay. During the usual solid state reaction where the clay structure collapses, the remaining material finally shrinks down to a so-called clinker. With the help of MS the TG steps can be better interpreted as the evolved gases are identified. With the help of the MS it is possible to distinguish between CO{sub 2} and water (carbonate decomposition, oxidation of organics or dehydration/dehydroxylation). The MS also clearly shows that mass number 44 is found during the TG step of the illitic clay at about 900 deg. C in inert gas, which was interpreted

  5. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  6. Organophilization and characterization of commercial bentonite clays

    International Nuclear Information System (INIS)

    Cunha, B.B. da; Lima, J.C.C.; Alves, A.M.; Araujo, E.M.; Melo, T.J.A. de

    2012-01-01

    Bentonite clay is a plastic changes resulting from volcanic ash, consisting mostly of montmorillonite. The state of Paraiba is a major source of bentonite clay from Brazil, where the main oil fields are located in Boa Vista and represents the largest national production of raw and beneficiated bentonite. Aimed at the commercial value of this type of clay and its high applicability in the polls, this article aims to make a comparison between two kinds of clay, a national (Brasgel) and other imported (Cloisite) from organophilization of two commercial bentonite, ionic surfactant with Praepagem WB, and characterize them by XRD, FTIR and TG / DTG. We observe that despite getting inferior properties, the clay presents national values very similar to those presented by imported clay. (author)

  7. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  8. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  9. Multifaceted role of clay minerals in pharmaceuticals

    OpenAIRE

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelli...

  10. Analysis of a intra-Carixian clay horizon into carbonate platform of the Ouarsenis (Algeria): composition, dynamic and paleo-climatic implication

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, M.; Salhi, A. [Oran Univ., Faculte des Sciences de la Terre et de l' Amenagement du Territoire, Dpt. de Geologie (Algeria)

    2005-07-01

    During the Late Sinemurian a carbonate platform has developed on the Ouarsenis area (external Tell o f the Algerian Alpine belt) with setting deposits of the Kef Sidi Amar Carbonate Formation. A first maximum flooding materialized by a brachiopods (Zeilleriids) layer, is occurring during the Late Carixian. The Late Carixian deepening has been followed by a sea-level fall documented by several meters incisions filled by transgressive breccia and conglomerates. After this episode, this material was sealed by a pedogenic bed (0,05 to 0,20 m) which corresponds to a yellow clay deposit containing well rounded particles interpreted as pedo-genetic globules. These corpuscles are composed of reddish and hardened clay, corroded quartz grains, rhombic and zoned dolomite crystals and ankerite, monocrystalline and xeno-morphous detrital quartz grains (1-2 mm). The observed characteristics allow to recognize a typical calcrete. They are the result of pedo-genetic diagenesis developed inside the phreatic water-table near the surface: this is an alteration profile. The mineralogic fraction has been analyzed by X-Ray which show results of association clay mineral as a predominance of illite (85%) and mixed-layer illite-montmorillonite (I-M, 10%) associated with a low ration of chlorite (5%) and kaolinite trace (1%). This mineralogic clay association indicates a shallow water (hydro-morphic zone). Among these clay minerals, the illite reveals the precious indications in a source area. In this case, it comes from the decomposition of the schist paleo-relief located in the internal domain. This rock was transformed by acid leaching (action of the sour humus) into kaolinite with the presence of the quartzification. The origin of the mixed-layer clay I-M (10%) is the result of the active pedogenesis. The simultaneous presence of the illite, chlorite, kaolinite and the mixed-layer clay I-M seems to be result from the erosion exercised on the alteration product or arenitisation of the

  11. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  12. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Organic waste treatment with organically modified clays

    International Nuclear Information System (INIS)

    Evans, J.C.; Pancoski, S.E.; Alther, G.

    1989-01-01

    The use of organically modified clays in hazardous waste management applications offers a significant new and untapped potential. These clays may be used in the stabilization of organic wastes and organically contaminated soils, for waste water treatment, for oil spill control, for liner systems beneath fuel oil storage tanks, and as a component within liner systems of hazardous waste storage treatment and disposal facilities. Organically modified clays (organophilic clays) may be employed in each of these systems to adsorb organic waste constituents, enhancing the performance of the applications

  14. Clay minerals trap hydrogen in the Earth's crust: Evidence from the Cigar Lake uranium deposit, Athabasca

    Science.gov (United States)

    Truche, Laurent; Joubert, Gilles; Dargent, Maxime; Martz, Pierre; Cathelineau, Michel; Rigaudier, Thomas; Quirt, David

    2018-07-01

    Hydrogen (H2)-rich fluids are observed in a wide variety of geologic settings including gas seeps in serpentinized ultramafic rocks, sub-seafloor hydrothermal vents, fracture networks in crystalline rocks from continental and oceanic crust, and volcanic gases. Natural hydrogen sources can sustain deep microbial ecosystems, induce abiotic hydrocarbons synthesis and trigger the formation of prebiotic organic compounds. However, due to its extreme mobility and small size, hydrogen is not easily trapped in the crust. If not rapidly consumed by redox reactions mediated by bacteria or suitable mineral catalysts it diffuses through the rocks and migrates toward the surface. Therefore, H2 is not supposed to accumulate in the crust. We challenge this view by demonstrating that significant amount of H2 may be adsorbed by clay minerals and remain trapped beneath the surface. Here, we report for the first time H2 content in clay-rich rocks, mainly composed of illite, chlorite, and kaolinite from the Cigar Lake uranium ore deposit (northern Saskatchewan, Canada). Thermal desorption measurements reveal that H2 is enriched up to 500 ppm (i.e. 0.25 mol kg-1 of rock) in these water-saturated rocks having a very low total organic content (reported elsewhere for pure clay minerals or shales. Sudoite (Al-Mg di-trioctahedral chlorite) is probably the main mineral responsible for H2 adsorption in the present case. The presence of multiple binding sites in interlinked nanopores between crystal layers of illite-chlorite particles offers the ideal conditions for hydrogen sorption. We demonstrate that 4 to 17% of H2 produced by water radiolysis over the 1.4-Ga-lifetime of the Cigar Lake uranium ore deposit has been trapped in the surrounding clay alteration haloes. As a result, sorption processes on layered silicates must not be overlooked as they may exert an important control on the fate and mobility of H2 in the crust. Furthermore, the high capacity of clay minerals to sorb molecular

  15. Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene on Clay Minerals: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-10-01

    Full Text Available Adsorption of hydrocarbons may significantly affect hydrocarbon migration in unconventional reservoirs. Clay minerals form the primary adsorbent surfaces for hydrocarbons adsorbed in mudstone/shale. To study the adsorption properties of hydrocarbons (n-decane (C10H22, methyl cyclohexane (C7H14 and toluene (C7H8 on clay minerals (i.e., cookeite, ripidolite, kaolinite, illite, illite/smectite mixed-layer, Na-montmorillonite and Ca-montmorillonite, hydrocarbon vapor adsorption (HVA tests were conducted at 298.15 K. The results showed that (i the adsorption amounts of C10H22, C7H14 and C7H8 ranged from 0.45–1.03 mg/m2, 0.28–0.90 mg/m2 and 0.16–0.53 mg/m2, respectively; (ii for cookeite, ripidolite and kaolinite, the adsorption capacity of C10H22 was less than C7H14, which was less than C7H8; (iii for illite, Na-montmorillonite and Ca-montmorillonite, the adsorption capacity of C10H22 was greater than that of C7H8, and the adsorption capacity of C7H14 was the lowest; (iv for an illite/smectite mixed-layer, C7H14 had the highest adsorption capacity, followed by C10H22, and C7H8 had the lowest capacity. Adsorption properties were correlated with the microscopic parameters of pores in clay minerals and with experimental pressure. Finally, the weighted average method was applied to evaluate the adsorption properties of C10H22, C7H14 and C7H8 on clay minerals in oil-bearing shale from the Shahejie Formation of Dongying Sag in the Bohai Bay Basin, China. For these samples, the adsorbed amounts of C7H14 ranged from 18.03–28.02 mg/g (mean 23.33 mg/g, which is larger than that of C10H22, which ranges from 15.40–21.72 mg/g (mean 18.82 mg/g. The adsorption capacity of C7H8 was slightly low, ranging from 10.51–14.60 mg/g (mean 12.78 mg/g.

  16. Concrete-Opalinus clay interaction

    International Nuclear Information System (INIS)

    Jenni, A.; Maeder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B.

    2012-01-01

    Document available in extended abstract form only. Designs for deep geologic disposal of radioactive waste foresee cementitious materials as structural elements, backfill or waste matrix. Therefore, studies of interactions between cement and all other materials involved are important. Interactions are mostly driven by chemical gradients in pore water and might lead to mineralogical alterations in the barrier system, which in turn influence properties like swelling pressure, permeability, or specific retention in case of clay materials. Existing laboratory and in-situ studies using clay-stone revealed significant alteration in both cement and clay-stone. Phase dissolution, precipitation, and carbonation, were found to cause an overall porosity increase in the cement with a possible decrease close to the interface, and clogging in the clay-stone [2]. Most of the work was done on cement pastes rather than concretes to avoid analytical complications caused by aggregates, and the scale of investigation was chosen in the range of centimetres rather than micrometers. The Cement-Clay Interaction (CI) experiment at the Mont Terri Underground Laboratory (St. Ursanne, Switzerland) aims at replicating some of the processes at interfaces to be expected.For this purpose, two vertical cylindrical boreholes (384 mm diameter, up to 10 m length) in Opalinus Clay (OPA) were filled with layers of three different concretes and bentonite. The concrete formulations are based on common aggregate content and grain size distributions, combined with three different cements: Portland cement (OPC), ESDRED cement especially designed for repository applications (40% of cement substituted with silica fume), and low alkali cement (LAC, containing slag and nano-silica).In this study, we present a characterisation of the three concrete-OPA interfaces after two years of alteration and deduce possible mechanisms. Backscattered electron (BE) imaging and energy dispersive spectrum (EDX) element mapping

  17. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  18. Sectioning Clay Models Makes Anatomy & Development Tangible

    Science.gov (United States)

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  19. Clay as Thermoluminescence Dosemeter in diagnostic Radiology ...

    African Journals Online (AJOL)

    This paper reports the investigation of the basic thermoluminescence properties of clay at x-rays in the diagnostic radiology range, including dose monitoring in abdominal radiography. Clay sourced from Calabar, Nigeria, was tested for thermoluminescence response after irradiation at diagnostic radiology doses, including ...

  20. Climatic control on clay mineral formation

    Indian Academy of Sciences (India)

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro ...

  1. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  2. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  3. Investigations of salt mortar containing saliferous clay

    International Nuclear Information System (INIS)

    Walter, F.

    1992-01-01

    Saliferous clay mortar might be considered for combining individual salt bricks into a dense and tight long-term seal. A specific laboratory program was started to test mortars consisting of halite powder and grey saliferous clay of the Stassfurt from the Bleicherode salt mine. Clay fractions between 0 and 45% were used. The interest focused upon obtaining good workabilities of the mixtures as well as upon the permeability and compression strength of the dried mortar samples. Test results: 1) Without loss of quality the mortar can be mixed using fresh water. Apprx. 18 to 20 weight-% of the solids must be added as mixing water. 2) The porosity and the permeability of the mortar samples increases distinctly when equally coarse-grained salt power is used for mixing. 3) The mean grain size and the grain size distribution of the saliferous clay and the salt powder should be very similar to form a useful mortar. 4) The permeability of the mortar samples decreases with increasing clay fraction from 2 10 -12 m 2 to 2 10 -14 m 2 . The investigated samples, however, were large and dried at 100degC. 5) The uniaxial compressive strength of the clay mortar equals, at an average, only 4 MPa and decreases clearly with increasing clay fraction. Moist mortar samples did not show any measurable compressive strength. 6) Moistened saliferous clay mortar may show little temporary swelling. (orig./HP)

  4. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  5. Hygrothermal behavior for a clay brick wall

    Science.gov (United States)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  6. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  7. Quick clay and landslides of clayey soils

    NARCIS (Netherlands)

    Khaldoun, A.; Moller, P.; Fall, A.; Wegdam, G.; de Leeuw, B.; Méheust, Y.; Fossum, J.O.; Bonn, D.

    2009-01-01

    We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay

  8. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  9. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods