WorldWideScience

Sample records for pva hydrogel layer

  1. Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties

    International Nuclear Information System (INIS)

    Park, K.R.; Nho, Y.C.

    2003-01-01

    In these studies, two-layer hydrogels which consisted of polyurethane membrane and a mixture of polyvinyl alcohol(PVA)/poly-N-vinylpyrrolidone(PVP)/glycerin/chitosan were made for the wound dressing. Polyurethane was dissolved in solvent, the polyurethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the polyurethane membranes, they were exposed to gamma irradiation or two steps of 'freezing and thawing' and gamma irradiation doses to make the hydrogels. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. The physical properties of hydrogels such as gelation and gel strength was greatly improved when polyurethane membrane was used as a covering layer of hydrogel, and the evaporation speed of water in hydrogel was reduced

  2. Synthesis of PVA/PVP hydrogels having two layers by radiation and their physical properties

    International Nuclear Information System (INIS)

    Nho, Y.C.; Park, K.R.

    2002-01-01

    Complete text of publication follows. The radiation can induce chemical reaction to modify polymer under even the solid state or in the low temperature. The radiation crosslinking can be easily adjusted by controlling the radiation dose and is reproducible. The finished product contains no residuals of substances required to initiate the chemical crosslinking that can restrict the application possibilities. In these studies, two layer's hydrogel which consisted of urethane membrane and a mixture of polyvinyl alcohol/poly-N-vinylpyrrolidone /glycerin/chitosan was made by gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. Urethane was dissolved in solvent, the urethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the urethane membranes, they were exposed to gamma irradiation or 'freezing and thawing' and gamma irradiation doses of 25, 35, 50 and 60 kGy to evaluate the physical properties of hydrogels. The physical properties of hydrogels such as gelation and gel strength were improved, and the evaporation speed of water in hydrogel was low when urethane membrane was used

  3. PVA/atapulgite hydrogels; Hidrogeis de PVA/atapulgita

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Soares, G.A., E-mail: nunes@metalmat.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Paranhos, C.M. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil); Barreto, L.S. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil)

    2010-07-01

    PVA hydrogels can be used as wound-healing as a consequence of their biocompatibility, flexibility, etc. In order to improve mechanical resistance of wound-healing, polymeric hydrogels reinforced with clay have been studied. Among national clays, attapulgite stands out. Once it is a natural material, acid treatment can be required in order to remove impurities. In the present work, PVA hydrogels reinforced with attapulgite were produced and they were characterized by swelling behavior, XRD, DSC and traction test. Among all properties studied, hydrogels reinforced with activated attapulgite showed better mechanical resistance and Young module than the other samples. (author)

  4. PVA hydrogel properties for biomedical application.

    Science.gov (United States)

    Jiang, Shan; Liu, Sha; Feng, Wenhao

    2011-10-01

    PVA has been proposed as a promising biomaterial suitable for tissue mimicking, vascular cell culturing and vascular implanting. In this research, a kind of transparent PVA hydrogel has been investigated in order to mimic the creatural soft tissue deformation during mini-invasive surgery with needle intervention, such as brachytherapy. Three kinds of samples with the same composition of 3 g PVA, 17 g de-ionized water, 80 g dimethyl-sulfoxide but different freeze/thaw cycles have been prepared. In order to investigate the structure and properties of polyvinyl alcohol hydrogel, micro-structure, mechanical property and deformation measurement have been conducted. As the SEM image comparison results show, with the increase of freeze/thaw cycles, PVA hydrogel revealed the similar micro-structure to porcine liver tissue. With uniaxial tensile strength test, the above composition with a five freeze/thaw cycle sample resulted in Young's modulus similar to that of porcine liver's property. Through the comparison of needle insertion deformation experiment and the clinical experiment during brachytherapy, results show that the PVA hydrogel had the same deformation property as prostate tissue. These transparent hydrogel phantom materials can be suitable soft tissue substitutes in needle intervention precision or pre-operation planning studies, particularly in the cases of mimicking creatural tissue deformation and analysing video camera images. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Synthesis of PVA Hydrogel for Prosthetic Discus Nucleus Pulposus: Formation of Interpenetrating Polymer Network (IPN) PVA Hydrogel by Gamma Rays

    International Nuclear Information System (INIS)

    Darwis, Darmawan; Erizal; Lely Hardiningsih; Razzak, Mirzan T.

    2004-01-01

    Research on synthesis of IPN PVA hydrogel for using as prosthetic discus nucleus has been carried out. Base hydrogel network (network I) was made by reacting the solution of polyvinyl alcohol (PVA) 10 - 15 % w/w with formaldehyde at 80 o C for several hours. Hydrogel network II (as IPN network) was then made by immersion of base hydrogel into polymer solution (PVP or PVA) until hydrogel swell to equilibrium volume. The hydrogel then irradiated using gamma rays at various doses. The results show that IPN PVA-PVP and IPN PVA-PVP hydrogels have higher compression strength compared to base hydrogel. IPN PVA-PVA hydrogel made by irradiating base hydrogel (immersed into polymer solution) with 25, 50 and 100 kGy have compression strength at 5 mm displacement 2.72; 2.83; and 3.25 kg/cm 2 respectively, While base hydrogel has compression strength of 1.75 kg/cm 2 . IPN PVA-PVP and PVA-PVA hydrogels made by irradiating base hydrogel with 100 kGy still retain high water content i.e. 72 and 74 % respectively. Beside that they show good re-absorption property after compression treatment that is hydrogel can return to the original shape after compressed to 12 mm displacement (80% of initial height on hydrogel) at relatively short time, less than 15 minutes. (author)

  6. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    Science.gov (United States)

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-08

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering.

  7. Tribological properties of PVA/PVP blend hydrogels against articular cartilage.

    Science.gov (United States)

    Kanca, Yusuf; Milner, Piers; Dini, Daniele; Amis, Andrew A

    2018-02-01

    This research investigated in-vitro tribological performance of the articulation of cartilage-on- polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blend hydrogels using a custom-designed multi-directional wear rig. The hydrogels were prepared by repeated freezing-thawing cycles at different concentrations and PVA to PVP fractions at a given concentration. PVA/PVP blend hydrogels showed low coefficient of friction (COF) values (between 0.12 ± 0.01 and 0.14 ± 0.02) which were closer to the cartilage-on-cartilage articulation (0.03 ± 0.01) compared to the cartilage-on-stainless steel articulation (0.46 ± 0.06). The COF increased with increasing hydrogel concentration (p = 0.03) and decreasing PVP content at a given concentration (p < 0.05). The cartilage-on-hydrogel tests showed only the surface layers of the cartilage being removed (average volume loss of the condyles was 12.5 ± 4.2mm 3 ). However, the hydrogels were found to be worn/deformed. The hydrogels prepared at a higher concentration showed lower apparent volume loss. A strong correlation (R 2 = 0.94) was found between the COF and compressive moduli of the hydrogel groups, resulting from decreasing contact congruency. It was concluded that the hydrogels were promising as hemiarthroplasty materials, but that improved mechanical behaviour was required for clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Improving surface wettability and lubrication of polyetheretherketone (PEEK) by combining with polyvinyl alcohol (PVA) hydrogel.

    Science.gov (United States)

    Zhao, Xiaoduo; Xiong, Dangsheng; Liu, Yuntong

    2018-06-01

    Poor surface wettability and relative high friction coefficients of pristine polyetheretherketone (PEEK) have limited its application in orthopedic implants. In this study, inspired by the structure of natural articular cartilage, we presented a novel method to fabricate a "soft-on-hard" structure on the surface of pristine PEEK specimens, which combined a soft polyvinyl alcohol (PVA) hydrogel layer and a three-dimensional porous layer with PEEK substrates. A variety of analytical methods were used to evaluate their properties, our results demonstrated that the hydrogel layer could be seamlessly connected with substrate, and the hydrogel-covered PEEK owned a highly hydrophilic surface, a very low water contact angle of 7° could be obtained. The friction coefficients of untreated and hydrogel-covered PEEK surfaces were measured using a tribometer under water lubrication, due to the presence of the top hydrogel layer and the hard substrate could provide excellent aqueous lubrication and bearing capacity, respectively, the friction coefficient could be reduced from 0.292 to 0.021. In addition, the porous layer under PVA hydrogel layer could work as gel reservoirs, the reserved hydrogel would be released after the surface layer was sheared off, and a regenerable lubrication status was obtained. This work provides a new route for the design of improving the surface wettability and tribological properties of PEEK. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Preparation and properties of GO-PVA composite hydrogel with oriented structure

    Science.gov (United States)

    Liu, Huanqing; Zhang, Gongzheng; Li, Huanjun

    2017-03-01

    We fabricated GO-PVA composite hydrogels with oriented structure by directional freezing and repeated freeze-thawing, which owned superior mechanical property and thermostability than PVA hydrogel. Due to physical interactions such as hydrogen bonding between surface of GO and PVA chains, GO-PVA composite hydrogel possessed higher crosslinking density and smaller pore size and can resist higher temperature and stronger force from outside than PVA hydrogel. These unique properties will endow GO-PVA hydrogel with greater potential application in biomedical materials.

  10. Topographical heterogeneity in transparent PVA hydrogels studied by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Ashit Kumar; Gupta, Siddhi, E-mail: siddhigupta@nmlindia.org; Mishra, Trilochan; Sinha, Arvind

    2012-02-01

    Physically crosslinked poly (vinyl alcohol) (PVA) hydrogels have a wide range of biomedical applications. Transparent and stable PVA hydrogels synthesized by freeze-thawing method are potential candidates to be used as tissue engineering scaffolds provided they exhibit suitable topographical roughness and surface energy. The effect of processing parameters i.e., polymer concentration and number of freeze-thaw cycles on the resulting topography of the freeze-thawed transparent hydrogels has been studied and quantified using non-contact mode of an atomic force microscope (AFM) and image analysis. Simultaneously captured phase contrast images have revealed significant information about morphological changes in the topographical features and crystallinity of the hydrogels. Topographical roughness was found to decrease as a function of number of freeze-thaw cycles.

  11. Determination of mechanical and hydraulic properties of PVA hydrogels.

    Science.gov (United States)

    Kazimierska-Drobny, Katarzyna; El Fray, Miroslawa; Kaczmarek, Mariusz

    2015-03-01

    In this paper the identification of mechanical and hydraulic parameters of poly(vinyl alcohol) (PVA) hydrogels is described. The identification method follows the solution of inverse problem using experimental data from the unconfined compression test and the poroelastic creep model. The sensitivity analysis of the model shows significant dependence of the creep curves on investigated parameters. The hydrogels containing 22% PVA and 25% PVA were tested giving: the drained Youngs modulus of 0.71 and 0.9MPa; the drained Poisson's ratio of 0.18 and 0.31; and the permeability of 3.64·10(-15) and 3.29·10(15)m(4)/Ns, respectively. The values of undrained Youngs modulus were determined by measuring short period deformation of samples in the unconfined tests. A discussion on obtained results is presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Potential applications of radiation formed PVA/PVP hydrogel patches

    International Nuclear Information System (INIS)

    Zein, Z.; Hill, D.J.T.; Whittaker, A.K.

    2003-01-01

    It has been shown that radiation induced-polymerization and crosslinking is a very convenient method to produce hydrogels. The process is free of catalyst or initiator, which are mostly toxic, easy to control and allows sterilization simultaneously. In this sense, poly(vinyl alcohol) (PVA)/polyvinylpyrrolidone (PVP) hydrogel patches have been prepared by subjecting the polymer aqueous solutions to γ -irradiation. Under the action of ionizing radiation, the mechanism of hydrogel formation may be simplified into two main stages; formation of free radicals and their intermolecular combination. The five-line ESR spectra found following irradiation of PVP (powder) at 77 K and annealing up to 250 K suggests that free-radicals are mainly localized at tertiary carbon atoms. While for PVA, as the major component of the four-line ESR spectra at 77 K was a triplet and this was the only species observed at 298 K, so most radicals were formed through hydrogen abstraction from tertiary carbon atoms. If radicals localized on different molecular chains combine, new covalent bonds are formed. When a sufficiently high number of crosslinks form, an insoluble network (gel) appears. It was observed that the gel fraction for PVA/PVP hydrogels increased with increasing irradiation dose and it seems that the gel fraction never reaches 100%. This implies that upon irradiation of PVA/PVP aqueous solutions, chain scission also accompanies crosslinking. Based on a toxicity test, it was found that none of this chain scission products produce detectable toxicity. The physico-chemical and mechanical properties of the PVA/PVP hydrogel obtained by irradiation of PVA/PVP (8.0 %wt / 4.8 %wt) solution with a crosslinking dose of 25 kGy were shown to yield properties most suitable for ideal wound covering. Additionally, as the hydrogel has a high water content and a relatively moderate water diffusion coefficient, it offers potential for transdermal drug delivery systems as well as for cosmetic

  13. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  14. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    Science.gov (United States)

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  15. Preparation, optimization and property of PVA-HA/PAA composite hydrogel.

    Science.gov (United States)

    Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun

    2017-09-01

    PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A reduction of diffusion in PVA Fricke hydrogels

    International Nuclear Information System (INIS)

    Smith, S T; Masters, K S; Hosokawa, K; Blinco, J; Crowe, S B; Kairn, T; Trapp, J V

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe 3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy −1 and a diffusion rate of 0.133 mm 2 h −1 . As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels

  17. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility.

    Science.gov (United States)

    Liu, Y; Vrana, N E; Cahill, P A; McGuinness, G B

    2009-08-01

    Polyvinyl alcohol (PVA) hydrogels have been considered potentially suitable for applications as engineered blood vessels because of their structure and mechanical properties. However, PVA's hydrophilicity hinders its capacity to act as a substrate for cell attachment. As a remedy, PVA was blended with chitosan, gelatin, or starch, and hydrogels were formed by subjecting the solutions to freeze-thaw cycles followed by coagulation bath immersion. The structure-property relationships for these hydrogels were examined by measurement of their swelling, rehydration, degradation, and mechanical properties. For the case of pure PVA hydrogels, the equilibrium swelling ratio was used to predict the effect of freeze thaw cycles and coagulation bath on average molecular weights between crosslinks and on mesh size. For all hydrogels, trends for the reswelling ratio, which is indicative of the crosslinked polymer fraction, were consistent with relative tensile properties. The coagulation bath treatment increased the degradation resistance of the hydrogels significantly. The suitability of each hydrogel for cell attachment and proliferation was examined by protein adsorption and bovine vascular endothelial cell culture experiments. Protein adsorption and cell proliferation was highest on the PVA/gelatin hydrogels. This study demonstrates that the potential of PVA hydrogels for artificial blood vessel applications can be improved by the addition of natural polymers, and that freeze-thawing and coagulation bath treatment can be utilized for fine adjustment of the physical characteristics.

  18. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation.

    Science.gov (United States)

    Hou, Ruixia; Zhang, Guohua; Du, Gaolai; Zhan, Danxia; Cong, Yang; Cheng, Yajun; Fu, Jun

    2013-03-01

    This paper reports on the systematic investigation of novel magnetic nano-hydroxyapatite/PVA composite hydrogels through cyclic freeze-thawing with controllable structure, mechanical properties, and cell adhesion and proliferation properties. The content of the magnetic nano-hydroxyapatite-coated γ-Fe(2)O(3) (m-nHAP) particles exhibited remarkable influence on the porous structures and compressive strength of the nanocomposite hydrogels. The average pore diameter of the nanocomposite hydrogels exhibited a minimum of 1.6 ± 0.3 μm whereas the compressive strength reached a maximum of about 29.6 ± 6.5 MPa with the m-nHAP content of around 10 wt% in the nanocomposite hydrogels. In order to elucidate the influence of the composite m-nHAP on the cell adhesion and proliferation on the composite hydrogels, the PVA, γ-Fe(2)O(3)/PVA, nHAP/PVA and m-nHAP/PVA hydrogels were seeded and cultured with osteoblasts. The results demonstrated that the osteoblasts preferentially adhered to and proliferated on the m-nHAP/PVA hydrogels, in comparison to the PVA and nHAP/PVA hydrogels, whereas the γ-Fe(2)O(3)/PVA hydrogels appeared most favorable to the osteoblasts. Moreover, with the increasing m-nHAP content in the composite hydrogels, the adhesion density and proliferation of the osteoblasts were significantly promoted, especially at the content of around 50 wt%. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. [The appraisal of mechanical properties and friction coefficient of PVA hydro-gel].

    Science.gov (United States)

    Chen, Liqi; Zhang, Dekun; Zhang, Jinsong

    2009-10-01

    Gelatin and hydroxyapatite were introduced to polyvinyl alcohol (PVA) hydrogel with an attempt to enhance the performances of PVA hydrogel. Through a reiterative freezing-thawing methods, three kinds of PVA composite hydrogels were prepared. The mechanical performances of these composite hydrogels with the same PVA and HA content but varying gelatin content, such as tensile strength, elasticity modulus, creep curve, relaxation curve and friction coefficient were evaluated by using a computer-controlled universal electronic mechanical testing machine and a UMT-II frictional testing machine. The additional effects of hydroxylapatite and varying gelatin on the performances of composite PVA hydro-gels were analyzed. It was found that the gelatin content directly influenced the physical performances of PVA composite hydrogels; but no linear relationship was recorded. PVA composite hydrogel containing 2wt-% gelatin gave optimal results, i.e. tensile strength of 5.5MPa, compressive elastical modulus of 1.48MPa, creeping rate of 31% in 45 minutes, stress relaxing rate of 40.3%, and the starting friction coefficient of 0.332.

  20. Novel β-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair.

    Science.gov (United States)

    Yao, Hang; Kang, Junpei; Li, Weichang; Liu, Jian; Xie, Renjian; Wang, Yingjun; Liu, Sa; Wang, Dong-An; Ren, Li

    2017-12-07

    Cartilage repairing grafts have been widely studied, and osteochondral replacement hydrogels have proven to be an excellent method in research and clinical fields. However, it has been difficult to simultaneously solve three main issues in osteochondral replacement preparation: surface lubrication, overall mechanical support and good simulations of cell regeneration. A novel integrated bilayered hydrogel osteochondral replacement was constructed by blending polyvinyl alcohol (PVA) and β-tricalcium phosphate (β-TCP) in this study. Separated nano-ball milling with ultrasound dispersion prepared β-TCP demonstrated suitable properties of tiny particle size, high purity and ideal distribution, improving the mechanical properties of the novel integrated hydrogel, and providing a cartilage-like lubrication effect and high biocompatibility, including cytocompatibility and osteogenesis. The reinforcement of β-TCP and integrated molding technology enabled the hydrogel to demonstrate excellent component compatibility and good bonding between the two layers, which promoted the strengthening of the compression modulus and tensile modulus up to three times by mechanical testing. The surface lubrication properties of the novel osteochondral hydrogel were similar to the natural cartilage by friction coefficient characterization. The two layers of the novel integrated graft provided a considerable bio-function by co-culturing with chondrocytes and synovium mesenchymal stem cells: chondrocytes promoted adherence achieved by the upper density layer and better osteogenesis performance of the porous lower layer. The design of the bilayered β-TCP/PVA osteochondral hydrogel is promising for use in articular cartilage repair.

  1. Structural and permeability characterization of biosynthetic PVA hydrogels designed for cell-based therapy.

    Science.gov (United States)

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2014-01-01

    Incorporation of extracellular matrix (ECM) components to synthetic hydrogels has been shown to be the key for successful cell encapsulation devices, by providing a biofunctional microenvironment for the encapsulated cells. However, the influence of adding ECM components into synthetic hydrogels on the permeability as well as the physical and mechanical properties of the hydrogel has had little attention. Therefore, the aim of this study was to investigate the effect of incorporated ECM analogues on the permeability performance of permselective synthetic poly(vinyl alcohol) (PVA) hydrogels in addition to examining the physico-mechanical characteristics. PVA was functionalized with a systematically increased number of methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogel network. Heparin and gelatin were successfully incorporated into PVA network at low percentage (1%), and co-hydrogels were characterized for network properties and permeability to bovine serum albumin (BSA) and immunoglobulin G (IgG) proteins. Incorporation of these ECM analogues did not interfere with the base PVA network characteristics, as the controlled hydrogel mesh sizes, swelling and compressive modulii remained unchanged. While the permeation profiles of both BSA and IgG were not affected by the addition of heparin and gelatin as compared with pure PVA, increasing the FG/c from 7 to 20 significantly limited the diffusion of the larger IgG. Consequently, biosynthetic hydrogels composed of PVA with high FG/c and low percent ECM analogues show promise in their ability to be permselective for various biomedical applications.

  2. Preparation and Characterization of Starch-g-PVA/Nano-hydroxyapatite Complex Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Starch-g-PVA/hydroxyapatite complex hydrogel was prepared with two-repeated freezing/ thawing circles. SEM observation results exhibits that hydroxyapatite is dispersed in starch-g-PVA in nanoscale. Thermogravimetric analysis curves show that the remained fraction keeps the same at the temperatures higher than 490℃ . It was found the dried starch-g- PVA/ hydroxyapatite films could reswell within 12 minutes.

  3. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    Science.gov (United States)

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  4. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach.

    Science.gov (United States)

    Zuluaga, M; Gregnanin, G; Cencetti, C; Di Meo, C; Gueguen, V; Letourneur, D; Meddahi-Pellé, A; Pavon-Djavid, G; Matricardi, P

    2017-12-28

    After myocardial infarction, the heart's mechanical properties and its intrinsic capability to recover are compromised. To improve this recovery, several groups have developed cardiac patches based on different biomaterials strategies. Here, we developed polyvinylalcohol/dextran (PVA/Dex) elastic hydrogel patches, obtained through the freeze thawing (FT) process, with the aim to deliver locally a potent natural antioxidant molecule, astaxanthin, and to assist the heart's response against the generated myofibril stress. Extensive rheological and dynamo-mechanical characterization of the effect of the PVA molecular weight, number of freeze-thawing cycles and Dex addition on the mechanical properties of the resulting hydrogels, were carried out. Hydrogel systems based on PVA 145 kDa and PVA 47 kDa blended with Dex 40 kDa, were chosen as the most promising candidates for this application. In order to improve astaxanthin solubility, an inclusion system using hydroxypropyl-β-cyclodextrin was prepared. This system was posteriorly loaded within the PVA/Dex hydrogels. PVA145/Dex 1FT and PVA47/Dex 3FT showed the best rheological and mechanical properties when compared to the other studied systems; environmental scanning electron microscope and confocal imaging evidenced a porous structure of the hydrogels allowing astaxanthin release. In vitro cellular behavior was analyzed after 24 h of contact with astaxanthin-loaded hydrogels. In vivo subcutaneous biocompatibility was performed in rats using PVA145/Dex 1FT, as the best compromise between mechanical support and astaxanthin delivery. Finally, ex vivo and in vivo experiments showed good mechanical and compatibility properties of this hydrogel. The obtained results showed that the studied materials have a potential to be used as myocardial patches to assist infarcted heart mechanical function and to reduce oxidative stress by the in situ release of astaxanthin.

  5. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material.

    Science.gov (United States)

    Golafshan, Nasim; Rezahasani, R; Tarkesh Esfahani, M; Kharaziha, M; Khorasani, S N

    2017-11-15

    The aim of this study was to develop a novel nanohybrid interpenetrating network hydrogel composed of laponite:polyvinyl alcohol (PVA)-alginate (LAP:PVA-Alginate) with adjustable mechanical, physical and biological properties for wound healing application. Results demonstrated that compared to PVA-Alginate, mechanical strength of LAP:PVA-Alginate significantly enhanced (upon 2 times). Moreover, incorporation of 2wt.% laponite reduced swelling ability (3 times) and degradation ratio (1.2 times) originating from effective enhancement of crosslinking density in the nanohybrid hydrogels. Furthermore, nanohybrid hydrogels revealed admirable biocompatibility against MG63 and fibroblast cells. Noticeably, MTT assay demonstrated that fibroblast proliferation significantly enhanced on 0.5wt.% LAP:PVA-alginate compared to PVA-alginate. Moreover, hemolysis and clotting tests indicated that the nanohybrid hydrogels promoted hemostasis which could be helpful in the wound dressing. Therefore, the synergistic effects of the nanohybrid hydrogels such as superior mechanical properties, adjustable degradation rate and admirable biocompatibility and hemolysis make them a desirable candidate for wound healing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Eltjani-Eltahir Hago

    2013-01-01

    Full Text Available In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.

  7. Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks

    International Nuclear Information System (INIS)

    Luo Yanling; Wei Qingbo; Xu Feng; Chen Yashao; Fan Lihua; Zhang Changhu

    2009-01-01

    A series of poly(N,N-dimethylacrylamide)-g-poly(vinyl alcohol) (PDMAA-g-PVA) graft hydrogel networks were designed and prepared via a free radical polymerization route initiated by a PVA-(NH 4 ) 2 Ce(NO 3 ) 6 redox reaction. Silver nanoparticles with high stability and good distribution behavior have been self-assembled by using these hydrogel networks as a nanoreactor and in situ reducing system. Meanwhile the PDMAA or PVA chains can efficiently act as stabilizing agents for the Ag nanoparticles in that Ag + would form complex via oxygen atom and nitrogen atom, and form weak coordination bonds, thus astricting Ag + . The structure of the PDMAA-g-PVA/Ag was characterized by a Fourier transform infrared spectroscope (FTIR). The morphologies of pure PDMAA-g-PVA hydrogels and PDMAA-g-PVA/Ag nanocomposite ones were observed by a scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM micrographs revealed the presence of nearly spherical and well-separated Ag nanoparticles with diameters ranging from 10 to 20 nm, depending on their reduction routes. XRD results showed all relevant Bragg's reflection for crystal structure of Ag nanoparticles. UV-vis studies apparently showed the characteristic surface plasmon band at 410-440 nm for the existence of Ag nanoparticles within the hydrogel matrix. The swelling kinetics demonstrated that the transport mechanism belongs to non-Fickian mode for the PDMAA-g-PVA hydrogels and PDMAA-g-PVA/Ag nanocomposite ones. With increasing the DMAA proportion, the r 0 and S ∞ are enhanced for each system. The assembly of Ag nanoparticles and the swelling behavior may be controlled and modulated by means of the compositional ratios of PVA to DMAA and reduction systems.

  8. Hydrogels based on chemically modified poly(vinyl alcohol (PVA-GMA and PVA-GMA/chondroitin sulfate: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    E. C. Muniz

    2012-05-01

    Full Text Available This work reports the preparation of hydrogels based on PVA-GMA, PVA-GMA is poly(vinyl alcohol (PVA functionalized with vinyl groups from glycidyl methacrylate (GMA, and on PVA-GMA with different content of chondroitin sulfate (CS. The degrees of swelling of PVA-GMA and PVA-GMA/CS hydrogels were evaluated in distilled water and the swelling kinetics was performed in simulated gastric and intestinal fluids (SGF and SIF. PVA-GMA and PVAGMA/CS hydrogels demonstrated to be resistant on SGF and SIF fluids. The elastic modulus, E, of swollen-hydrogels were determined through compressive tests and, according to the obtained results, the hydrogels presented good mechanical properties. At last, the presence of CS enhances the hydrogel cell compatibility as gathered by cytotoxicity assays. It was concluded that the hydrogels prepared through this work presented characteristics that allow them to be used as biomaterial, as a carrier in drug delivery system or to act as scaffolds in tissue engineering as well.

  9. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator.

    Science.gov (United States)

    Huang, Min; Hou, Yi; Li, Yubao; Wang, Danqing; Zhang, Li

    2017-01-01

    A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels' properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields.

  10. Hydrogel fibers for ACL prosthesis: design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs.

    Science.gov (United States)

    Bach, Jason S; Detrez, Fabrice; Cherkaoui, Mohammed; Cantournet, Sabine; Ku, David N; Corté, Laurent

    2013-05-31

    Prosthetic devices for anterior cruciate ligament (ACL) reconstruction have been unsuccessful due to mechanical failure or chronic inflammation. Polymer hydrogels combine biocompatibility and unique low friction properties; however, their prior use for ligament reconstruction has been restricted to coatings due to insufficient tensile mechanics. Here, we investigate new constructs of polyvinyl alcohol (PVA) hydrogel fibers. In water, these fibers swell to an equilibrium water content of 50% by weight, retaining a tensile modulus greater than 40 MPa along the fiber axis at low strain. Rope constructs were assembled for ACL replacement and mechanical properties were compared with data from the literature. Pure PVA hydrogel constructs closely reproduce the non-linear tensile stiffness of the native ACL with an ultimate strength of about 2000 N. An additional safety factor in tensile strength was achieved with composite braids by adding ultrahigh molecular weight polyethylene (UHMWPE) fibers around a core of PVA cords. Composition and braiding angle are adjusted to produce a non-linear tensile behavior within the range of the native ligament that can be predicted by a simple rope model. This design was found to sustain over one million cycles between 50 and 450 N with limited damage and less than 20% creep. The promising mechanical performances of these systems provide justification for more extensive in vivo evaluation. Copyright © 2013. Published by Elsevier Ltd.

  11. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Preparation and properties of polyvinyl alcohol (PVA) and hydroxylapatite (HA) hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Yuan, F; Ma, M; Lu, L; Pan, Z; Zhou, W; Cai, J; Luo, S; Zeng, W; Yin, F

    2017-05-20

    A novel bioactive hydrogel for cartilage tissue based on polyvinyl alcohol (PVA) and hydroxylapatite (HA) were prepared, the effects of its component contents on the mechanical properties and microstructure of the hydrogel were investigated. The important properties of the scaffold composites, such as density, porosity, compressive modulus and microstructure were studied and analyzed through various measurements and methods. The biodegradability of hydrogel was evaluated by soaking the samples into artificial degradation solution at body temperature (36 - 37 oC) in vitro. Experimental results showed that the PVA/HA hydrogels had a density of 0.572 - 0.683 g/cm3, a porosity of 63.25 - 96.14% and a compressive modulus of 5.62 - 8.24 MP. The HA compound in the hydrogels enhanced the biodegradation significantly and linearly increased the rate of biodegradation by 2.3 - 8.5 %. The compressive modulus of PVA/HA exhibited a linear reduce to 0.86 - 1.53 MP with the time of degradation. The scaffold composites PVA/HA possess a high porosity, decent compressive modulus and good biodegradability. After further optimizing the structure and properties, this composite might be considered as novel hydrogel biomaterials to be applied in the field of cartilage tissue engineering.

  13. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release

    International Nuclear Information System (INIS)

    Mahdavinia, Gholam Reza; Etemadi, Hossein

    2014-01-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe 3 O 4 nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing–thawing technique and subsequent with K + solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions. - Highlights: • In situ synthesis of magnetic kappa-carrageenan/PVA nanocomposite hydrogel. • Low salt sensitivity of magnetic nanocomposite hydrogels was observed. • The release of diclofenac sodium from hydrogels was pH-dependent. • The release of diclofenac sodium from magnetic hydrogels was affected by external magnetic field. • The hydrogels containing carrageenan component showed high mucoadhesiveness

  14. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavinia, Gholam Reza, E-mail: grmnia@maragheh.ac.ir; Etemadi, Hossein

    2014-12-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe{sub 3}O{sub 4} nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing–thawing technique and subsequent with K{sup +} solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions. - Highlights: • In situ synthesis of magnetic kappa-carrageenan/PVA nanocomposite hydrogel. • Low salt sensitivity of magnetic nanocomposite hydrogels was observed. • The release of diclofenac sodium from hydrogels was pH-dependent. • The release of diclofenac sodium from magnetic hydrogels was affected by external magnetic field. • The hydrogels containing carrageenan component showed high

  15. Mechanical characterization of PVA hydrogel to be used as artificial joint cartilage reinforced by irradiation techniques

    International Nuclear Information System (INIS)

    Bavaresco, Vanessa Petrilli; Zavaglia, Cecilia A.C.; Reis, Marcelo de Carvalho

    2002-01-01

    Crosslinked networks of polyvinyl alcohol (PVA) produced from PVA aqueous solution and induced by radiation has been recently developed, and their mechanical properties have been studied. These materials are too fragile to be useful for artificial joint cartilage applications, unless reinforced in some way. In this work, the mechanical resistance of PVA hydrogel produced by irradiation techniques was studied. Polyvinyl alcohol films from 15 and 20% w/w aqueous solutions were acetalized by immersing it in an acetalization bath containing aqueous formaldehyde, sulfuric acid and sodium sulfate anhydrous (60:50:300 g) at 60 deg C. The acetalized samples were irradiated (Dynamitron (E = 1,5 MeV)) with 25, 50, 75, 100 kGy doses. Hydrogel samples were characterized by indentation creep test and water swelling. The results obtained in this study suggest the improving of the mechanical properties of the hydrogel by the combination of acetalization and electron beam irradiation, without decreasing in the swelling properties. (author)

  16. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 40085 (India); Lawrence, Mathias B. [Department of Physics, St. Xavier’s College, Mapusa, Goa 403507 (India); Desa, J. A. E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India)

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  17. Compressive and swelling behavior of cuttlebone derived hydroxyapatite loaded PVA hydrogel implants for articular cartilage

    Science.gov (United States)

    Kumar, B. Y. Santosh; Kumar, G. C. Mohan; Isloor, Arun M.

    2018-04-01

    Developing a novel antibacterial, nontoxic and biocompatible hydrogel with superior physio mechanical properties is still becoming a challenge. Herein, we synthesize hydroxyapatite (HA) powder from cuttlefish bone and prepare a series of stiff, tough, high strength, biocompatible hydrogel reinforced with HA by integrating glutaraldehyde into PVA/HA. Powder was characterized by SEM and XRD. Compressive strength and swelling properties are studied and compare the results with the properties of healthy natural articular cartilage.

  18. Preparation and properties of hydrogels of PVA/PVP/chitosan by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Park, K. R.

    2001-01-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. The radiation crosslinking can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking which can restrict the application possibilities. In these studies, hydrogels from a mixture of chitosan and polyvinyl alcohol(PVA)/Poly-N-vinylpyrrolidone(PVP) were made by 'freezing and thawing', or gamma-ray irradiation or two steps of 'freezing and thawing', and gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The mechanical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. The composition of PVA:PVP was 60:40, PVA/PVP: chitosan ratio was in the range of 9:1 -7:3, and the solid concentration of PVA/PVP/chitosan solution was 15wt%. Gamma irradiation doses of 25, 35, 50, 60 and 70kGy, respectively were exposed to a mixture of PVA/PVP/chitosan to evaluate the effect of irradiation dose on the mechanical properties of hydrogels. Water-soluble chitosan was used to in this experiment. The mechanical properties of hydrogels such as gelation and gel strength was higher when two steps of 'freezing and thawing' and irradiation were used than only 'freezing and thawing' was utilized. Gel content was influenced slightly by PVA/PVP:chitosan composition and irradiation dose, but swelling was done greatly by them. Swelling percent was much increased as the composition of chitosan in PVA/PVP/chitosan increased

  19. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    Science.gov (United States)

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2004-01-01

    Polyvinyl alcohol (PVA) based radiation processed hydrogel dressing (HDR) are now produced in India. Natural polysaccharides have been observed to bring desirable characteristics to the HDR. Presence of polysaccharides like Agar and Carrageenan in formulations significantly affect mechanical properties and water absorption properties of HDR. These changes have been explained due to variation in degree of crosslinking and network structure during irradiation. (author)

  1. Swelling kinetics and antimicrobial activity of radiolytically synthesized nano-Ag/PVA hydrogels

    International Nuclear Information System (INIS)

    Krstic, J.; Spasojevic, J.; Krkljes, A.; Kacarevic-Popovic, Z.

    2011-01-01

    Complete text of publication follows. Synthesis of nanocomposite materials for biomedical applications, is being systematically developed. The materials having metal nanoparticles incorporated into polymer network have been widely investigated due to their unique properties induced by the synergy of two different materials. Silver nanoparticles (nano-Ag) have been proved to be effective antimicrobial agent and their enhanced antibacterial properties have been demonstrated both in vitro and in vivo. Recent research efforts are directed towards exploiting the in situ synthesis of nano-Ag within polymeric network architectures and products of these approaches are new hybrid nanocomposite systems. Due to characteristic properties such as swellability in water, hydrophilicity, biocompatibility and lack of toxicity, hydrogels have been utilized in a wide range of biological, medical, pharmaceutical and environmental applications. Among different synthetic methods, γ-irradiation induced synthesis has been recognized as highly suitable tool for production of hydrogel nanocomposites due to formation and sterilization of material in one technological step. In this work, the swelling kinetics of PVA and nano-Ag/PVA hydrogels in distilled water and Kokubo's Simulated Body Fluid (SBF), at 25 and 37 deg C, was investigated. The obtained hydrogel nanocomposites had greater swelling capacity and diffusion coefficient compared to PVA hydrogel. Both hydrogel systems show non-Fickian diffusion and Schott second order kinetics, at early and extensive stage of swelling, respectively. Investigated nano-Ag/PVA hydrogel nanocomposites show continuous release of silver over a long period of time and, as consequence, the test of antimicrobial activity was performed. Antimicrobial efficiency was determined by agar-diffusion test and the obtained results clearly show the formation of inhibition zone towards Escherichia coli and Staphylococcus aureus in the case of higher nano

  2. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    Science.gov (United States)

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of polymerization degree on recovery behavior of PVA/PVP hydrogels as potential articular cartilage prosthesis after fatigue test

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2016-02-01

    Full Text Available Poly (vinyl alcohol/poly (vinyl pyrrolidone (PVA/PVP hydrogels with various polymerization degrees of PVA were synthesized by a repeated freezing-thawing method. The influence of polymerization degree on microstructure, water content, friction coefficient, compressive fatigue and recovery properties of PVA/PVP hydrogels were investigated. The results showed that higher polymerization degree resulted in larger compressive modulus and lower friction coefficient. The fatigue behaviors of PVA/PVP hydrogels were evaluated under sinusoidal compressive loading from 200 to 800 N at 5 Hz for up to 50 000 cycles. The unconfined uniaxial compressive tests of PVA/PVP hydrogels were performed before and after fatigue test. During the fatigue test, the height of the hydrogel rapidly decreased at first and gradually became stable with loading cycles. The compressive tangent modulus measured 0 h after fatigue was significantly larger than the values obtained before test, and then the modulus recovered to its original level for 48 h after test. However, the geometry of hydrogels could not return to the original level due to the creep effects. PVA/PVP hydrogels prepared with lower polymerization degree showed better recovery capability than that prepared with high polymerization degree.

  4. Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems.

    Science.gov (United States)

    Bhowmick, Sirsendu; Mohanty, Sujata; Koul, Veena

    2016-11-01

    Grafting of quaternary nitrogen atoms into the backbone of polymer is an efficient way of developing new generation antimicrobial polymeric wound dressing. In this study, an elastic, non-adhesive and antimicrobial transparent hydrogel based dressing has been designed, which might be helpful for routine observation of wound area without removing the dressing material along with maintaining a sterile environment for a longer period of time. Green synthesized silver nanoparticles have been loaded into the quaternized PVA hydrogel matrix to improve its antimicrobial property. Silver nanoparticles loaded quaternized PVA hydrogel showed enhanced mechanical and swelling properties compared to native quaternized PVA hydrogel. Release kinetics evaluated by atomic absorption spectroscopy revealed that the release mechanism of silver nanoparticles from the hydrogel follows Fickian diffusion. Antimicrobial efficacy of the hydrogels was evaluated by disk diffusion test on Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. After 96 h of release in phosphate buffer, the growth inhibition zone created by silver nanoparticless loaded quaternized PVA hydrogel is comparable to that created by ampicillin. These observations assert that the silver nanoparticles loaded quaternized PVA hydrogel acts as a reservoir of silver nanoparticles, which helps in maintaining a sterile environment for longer time duration by releasing Ag nanocrystallite in sustained manner.

  5. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material.

    Science.gov (United States)

    Baghaie, Shaghayegh; Khorasani, Mohammad T; Zarrabi, Ali; Moshtaghian, Jamal

    2017-12-01

    In this work, hydrogel membranes were developed based on poly vinyl alcohol (PVA), starch (St), and chitosan (Cs) hydrogels with nano Zinc oxide (nZnO). PVA/St/Cs/nZnO hydrogel membranes were prepared by freezing-thawing cycles, and the aqueous PVA/St solutions were prepared by dissolving PVA in distilled water. After the dissolution of PVA, starch was mixed, and the mixture was stirred. Then, chitosan powder was added into acetic acid, and the mixture was stirred to form a chitosan solution. Subsequently, Cs, St and PVA solutions were blended together to form a homogeneous PVA/St/Cs ternary blend solution. Measurement of Equilibrium Swelling Ratio (ESR), Water Vapor Transmission Test (WVTR), mechanical properties, scanning electron microscopy (SEM), MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay, antibacterial studies, in vivo wound healing effect and histopathology of the hydrogel membranes were then performed. The examination revealed that the hydrogel membranes were more effective as a wound dressing in the early stages of wound healing and that the gel could be used in topic applications requiring a large spectrum of antibacterial activity; namely, as a bandage for wound dressing.

  6. A numerical model for ultrasonic measurements of swelling and mechanical properties of a swollen PVA hydrogel.

    Science.gov (United States)

    Lohakan, M; Jamnongkan, T; Pintavirooj, C; Kaewpirom, S; Boonsang, S

    2010-08-01

    This paper presents a numerical model for the evaluation of mechanical properties of a relatively thin hydrogel. The model utilizes a system identification method to evaluate the acoustical parameters from ultrasonic measurement data. The model involves the calculation of the forward model based on an ultrasonic wave propagation incorporating diffraction effect. Ultrasonic measurements of a hydrogel are also performed in a reflection mode. A Nonlinear Least Square (NLS) algorithm is employed to minimize difference between the results from the model and the experimental data. The acoustical parameters associated with the model are effectively modified to achieve the minimum error. As a result, the parameters of PVA hydrogels namely thickness, density, an ultrasonic attenuation coefficient and dispersion velocity are effectively determined. In order to validate the model, the conventional density measurements of hydrogels were also performed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by γ-irradiation followed by freeze-thawing

    International Nuclear Information System (INIS)

    Yang Xiaomin; Zhu Zhiyong; Liu Qi; Chen Xiliang; Ma Mingwang

    2008-01-01

    Poly(vinyl alcohol) (PVA)/water soluble chitosan (ws-chitosan)/glycerol hydrogels were prepared by γ-irradiation and γ-irradiation followed by freeze-thawing, respectively. The effects of irradiation dose and the contents of PVA and agar on the swelling, rheological, and thermal properties of these hydrogels were investigated. The swelling capacity decreases while the mechanical strength increases with increasing PVA or agar content. Increasing the irradiation dose leads to an increase in chemical crosslinking density but a decrease in physical crosslinking density. Hydrogels made by irradiation followed by freeze-thawing own smaller swelling capacity but larger mechanical strength than those made by pure irradiation. The storage modulus of the former hydrogels decreases above 50 deg. C and above 70 deg. C it comes to the same value as that prepared by irradiation. The ordered association of PVA is influenced by both chemical and physical crosslinkings and by the presence of ws-chitosan and glycerol. These hydrogels are high sensitive to pH and ionic strength, indicating that they may be useful in stimuli-responsive drug release system

  8. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    Science.gov (United States)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  9. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit [ISOMED, Radiation Technology Development Section, Radio-Chemistry and Isotope Group, B.A.R.C, Mumbai 400 085 (India)]. E-mail: lalitv@barc.gov.in

    2007-02-15

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm{sup 2} to 411 g/cm{sup 2}, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  10. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2007-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2 , elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  11. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part II: Antibacterial Activity of PVA/Chitosan Hydrogel Synthesized by Gamma Irradiation

    International Nuclear Information System (INIS)

    Mahlous, M.; Tahtat, D.; Benamer, S.; Nacer Khodja, A.; Larbi Youcef, S.

    2010-01-01

    Poly(vinyl alcohol) (PVA) is a synthetic polymer used in a large range of medical, commercial, industrial and food applications, manufacture of paper products, surgical threads, wound care, and food-contact applications. It was recently used as a coating for dietary supplements and pharmaceutical capsules. Cross-linked PVA microspheres are also used for controlled release of oral drugs. Chitin, a polysaccharide from which chitosan is derived, is the second most abundant natural polysaccharide after cellulose. Chitin is obtained from the exoskeletons (crab, shrimps and squid pen) fungi, insects, and some algae. Chitosan, a non toxic and biocompatible cationic polysaccharide, is produced by partial deacetylation of chitin; these properties of chitosan provide high potential for many applications. Chitosan has been widely used in vastly diverse fields, such as in biomedical applications drug delivery in agriculture metal ion sorption. The most important characteristic of chitosan is the deacetylation degree (DD) which influences its physical and chemical behaviors. Evaluation of DD can be carried out by FT-IR spectroscopy potentiometric titration, first derivative UV spectrophotometry, 1 H-NMR and X-ray diffraction. Chitosan extracted from squid pen chitin is inherently purer than crustacean chitosans, it does not contain large amounts of calcium carbonate, and it does contain large amounts of protein. The purity of squid pen chitosan makes it particularly suitable for medical and cosmetic application. Application of radiation for the formation of hydrogels for medical use offers a unique possibility to combine the formation and sterilization of the product in a single technological step. The main aim of this study is to synthesis poly(vinyl alcohol) hydrogels containing different moieties of chitosan by gamma irradiation at a dose of 25 kGy, and investigate the antibacterial effect of chitosan contained in the hydrogel

  12. Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Javad Tavakoli

    2018-03-01

    Full Text Available Although poly vinyl alcohol-poly acrylic acid (PVA-PAA composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035 and its water vapour permeability significantly decreased (p = 0.04. Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04. The mechanical properties—including ultimate tensile strength, modulus, and elongation at break—remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016. A higher release rate for tetracycline was found at pH = 8 compared to neutral pH.

  13. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    Science.gov (United States)

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  14. Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties.

    Science.gov (United States)

    Singh, Baljit; Pal, Lok

    2012-05-01

    The present study deals with the synthesis and characterization of sterculia crosslinked PVA and PVA-AAm hydrogel wound dressings. The hydrogels have been characterized by SEMs, FTIR, TGA and swelling studies. This article also discusses comparison of swelling, drug release and biomedical properties such as blood compatibility, antimicrobial activity, mucoadhesion, tensile strength, burst strength, water vapour permeability, oxygen diffusion and microbial penetration of both hydrogel wound dressings. These polymeric films have absorbed 4.80 ± 0.15 and 6.32 ± 0.15 gram/g of gel of simulated wound fluid respectively and swelling occurred through Case II diffusion mechanism. The release of antibiotic drugs occurred through non-Fickian and Case II diffusion mechanisms, respectively. These polymeric films have been observed to be permeable for oxygen and water vapour but have shown impermeability to the micro-organism. Sterculia-PVA hydrogel wound dressing has shown more blood compatibility as compared to the other film. All these results indicate that these hydrogel films may be used as wound dressings for the slow release of antibiotic drug to the wound. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  16. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization.

    Science.gov (United States)

    Ahmed, Afnan Sh; Mandal, Uttam Kumar; Taher, Muhammad; Susanti, Deny; Jaffri, Juliana Md

    2017-04-05

    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.

  17. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    International Nuclear Information System (INIS)

    Afshari, M.J.; Sheikh, N.; Afarideh, H.

    2015-01-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice. - Highlights: • Hydrogels prepared by the combination of irradiation and freeze-thawing methods. • Hydrogels with improved mechanical strength prepared by the combinational method. • The prepared hydrogels had acceptable transparency and degree of swelling. • The water evaporation rates of these hydrogels were pretty low. • Presences of honey in the formulation of gels led to a higher tissue regeneration

  18. Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy.

    Science.gov (United States)

    Li, Pan; Jiang, Shan; Yu, Yan; Yang, Jun; Yang, Zhiyong

    2015-09-01

    It is definite that transparent material with similar structural characteristics and mechanical properties to human tissue is favorable for experimental study of prostate brachytherapy. In this paper, a kind of transparent polyvinyl alcohol (PVA) hydrogel and silicone rubber are developed as suitable substitutions for human soft tissue. Segmentation and 3D reconstruction of medical image are performed to manufacture the mould of organ groups through rapid prototyping technology. Micro-structure observation, force test and CCD deformation test have been conducted to investigate the structure and mechanical properties of PVA hydrogel used in organ group mockup. Scanning electron microscope (SEM) image comparison results show that PVA hydrogel consisting of 3 g PVA, 17 g de-ionized water, 80 g dimethyl-sulfoxide (DMSO), 4 g NaCl, 1.5 g NaOH, 3 g epichlorohydrin (ECH) and 7 freeze/thaw cycles reveals similar micro-structure to human prostate tissue. Through the insertion force comparison between organ group mockup and clinical prostate brachytherapy, PVA hydrogel and silicone rubber are found to have the same mechanical properties as prostate tissue and muscle. CCD deformation test results show that insertion force suffers a sharp decrease and a relaxation of tissue deformation appears when needle punctures the capsule of prostate model. The results exhibit that organ group mockup consisting of PVA hydrogel, silicone rubber, membrane and agarose satisfies the needs of prostate brachytherapy simulation in general and can be used to mimic the soft tissues in pelvic structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    Science.gov (United States)

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of oil palm empty fruit bunch-grafted-polyvinyl alcohol (OPEFB-g-PVA) hydrogel for removal of copper ions from aqueous solution

    Science.gov (United States)

    Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah

    2017-12-01

    Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.

  1. [On the preparation and mechanical properties of PVA hydrogel bionic cartilage/bone composite artificial articular implants].

    Science.gov (United States)

    Meng, Haoye; Zheng, Yudong; Huang, Xiaoshan; Yue, Bingqing; Xu, Hong; Wang, Yingjun; Chen, Xiaofeng

    2010-10-01

    In view of the problems that conventional artificial cartilages have no bioactivity and are prone to peel off in repeated uses as a result of insufficient strength to bond with subchondral bone, we have designed and prepared a novel kind of PVA-BG composite hydrogel as bionic artificial articular cartilage/bone composite implants. The effects of processes and conditions of preparation on the mechanical properties of implant were explored. In addition, the relationships between compression strain rate, BG content, PVA hydrogels thickness and compressive tangent modulus were also explicated. We also analyzed the effects of cancellous bone aperture, BG and PVA content on the shear strength of bonding interface of artificial articular cartilage with cancellous bone. Meanwhile, the bonding interface of artificial articular cartilage and cancellous bone was characterized by scanning electron microscopy. It was revealed that the compressive modulus of composite implants was correspondingly increased with the adding of BG content and the augments of PVA hydrogel thickness. The compressive modulus and bonding interface were both related to the apertures of cancellous bone. The compressive modulus of composite implants was 1.6-2.23 MPa and the shear strength of bonding interface was 0.63-1.21 MPa. These results demonstrated that the connection between artificial articular cartilage and cancellous bone was adequately firm.

  2. Adsorption equilibrium of uranium on iron oxyhydroxide-PVA hydrogel spheres

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Armindo; Campos, Victor B.; Ribeiro, Luciana S.; Escanio, Camila A.; Silva, Edilaine F.; Oliveira, Felipe W., E-mail: santosa@cdtn.br, E-mail: vbc@cdtn.br, E-mail: lsr@cdtn.br, E-mail: cae@cdtn.br, E-mail: efd@cdtn.br, E-mail: fwfo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Uranium and its compounds are considered strategic mineral resources due to its usage as an energy source and war material. They are harmful to human health. Thus, liquid waste containing low uranium content (≤100 mgU/L), from the mining and/or uranium reprocessing plants or even of the research center activities require the development of methods for their treatment, in a way to reduce its content to 15 μgU/L. Adsorption is one of these methods; it requires the synthesis of preferably spherical adsorbents, chemically and physically stable and with high adsorptive capacity. The sol-gel process can synthesize adsorbents having such characteristics, prioritizing the nanostructuring of iron oxyhydroxide in a hydrophilic PVA (polyvinyl alcohol) polymer network, which had an accessible pore structure (micro-, meso- and macropores + macroholes). We successfully obtained iron-PVA hydrogel spheres with (3433 ± 63 μm) and without (2833 ± 69 μm) macroholes. Both types of spheres have good mechanical strength and chemical stability in the 2-9 pH range. Adsorptive capacity: 413.22 mgU/g (with macroholes; Freundlich model) and 249.38 mgU/g (without macroholes; Langmuir and Freundlich models), at pH 5-6, 30 °C, and 6 h. With 280 mL of with-macrohole hydrogel spheres, we can treat 1 L of liquid waste (100 mgU/L) and reduce uranium content to 20 μgU/L. (author)

  3. Adsorption equilibrium of uranium on iron oxyhydroxide-PVA hydrogel spheres

    International Nuclear Information System (INIS)

    Santos, Armindo; Campos, Victor B.; Ribeiro, Luciana S.; Escanio, Camila A.; Silva, Edilaine F.; Oliveira, Felipe W.

    2015-01-01

    Uranium and its compounds are considered strategic mineral resources due to its usage as an energy source and war material. They are harmful to human health. Thus, liquid waste containing low uranium content (≤100 mgU/L), from the mining and/or uranium reprocessing plants or even of the research center activities require the development of methods for their treatment, in a way to reduce its content to 15 μgU/L. Adsorption is one of these methods; it requires the synthesis of preferably spherical adsorbents, chemically and physically stable and with high adsorptive capacity. The sol-gel process can synthesize adsorbents having such characteristics, prioritizing the nanostructuring of iron oxyhydroxide in a hydrophilic PVA (polyvinyl alcohol) polymer network, which had an accessible pore structure (micro-, meso- and macropores + macroholes). We successfully obtained iron-PVA hydrogel spheres with (3433 ± 63 μm) and without (2833 ± 69 μm) macroholes. Both types of spheres have good mechanical strength and chemical stability in the 2-9 pH range. Adsorptive capacity: 413.22 mgU/g (with macroholes; Freundlich model) and 249.38 mgU/g (without macroholes; Langmuir and Freundlich models), at pH 5-6, 30 °C, and 6 h. With 280 mL of with-macrohole hydrogel spheres, we can treat 1 L of liquid waste (100 mgU/L) and reduce uranium content to 20 μgU/L. (author)

  4. Use of Chitosan-PVA Hydrogels with Copper Nanoparticles to Improve the Growth of Grafted Watermelon.

    Science.gov (United States)

    González Gómez, Homero; Ramírez Godina, Francisca; Ortega Ortiz, Hortensia; Benavides Mendoza, Adalberto; Robledo Torres, Valentín; Cabrera De la Fuente, Marcelino

    2017-06-22

    Modern agriculture requires alternative practices that improve crop growth without negatively affecting the environment, as resources such as water and arable land grow scarcer while the human population continues to increase. Grafting is a cultivation technique that allows the plant to be more efficient in its utilization of water and nutrients, while nanoscale material engineering provides the opportunity to use much smaller quantities of consumables compared to conventional systems but with similar or superior effects. On those grounds, we evaluated the effects of chitosan-polyvinyl alcohol hydrogel with absorbed copper nanoparticles (Cs-PVA-nCu) on leaf morphology and plant growth when applied to grafted watermelon cultivar 'Jubilee' plants. Stomatal density (SD), stomatal index (SI), stoma length (SL), and width (SW) were evaluated. The primary stem and root length, the stem diameter, specific leaf area, and fresh and dry weights were also recorded. Our results demonstrate that grafting induces modifications to leaf micromorphology that favorably affect plant growth, with grafted plants showing better vegetative growth in spite of their lower SD and SI values. Application of Cs-PVA-nCu was found to increase stoma width, primary stem length, and root length by 7%, 8% and 14%, respectively. These techniques modestly improve plant development and growth.

  5. Use of Chitosan-PVA Hydrogels with Copper Nanoparticles to Improve the Growth of Grafted Watermelon

    Directory of Open Access Journals (Sweden)

    Homero González Gómez

    2017-06-01

    Full Text Available Modern agriculture requires alternative practices that improve crop growth without negatively affecting the environment, as resources such as water and arable land grow scarcer while the human population continues to increase. Grafting is a cultivation technique that allows the plant to be more efficient in its utilization of water and nutrients, while nanoscale material engineering provides the opportunity to use much smaller quantities of consumables compared to conventional systems but with similar or superior effects. On those grounds, we evaluated the effects of chitosan-polyvinyl alcohol hydrogel with absorbed copper nanoparticles (Cs-PVA-nCu on leaf morphology and plant growth when applied to grafted watermelon cultivar ‘Jubilee’ plants. Stomatal density (SD, stomatal index (SI, stoma length (SL, and width (SW were evaluated. The primary stem and root length, the stem diameter, specific leaf area, and fresh and dry weights were also recorded. Our results demonstrate that grafting induces modifications to leaf micromorphology that favorably affect plant growth, with grafted plants showing better vegetative growth in spite of their lower SD and SI values. Application of Cs-PVA-nCu was found to increase stoma width, primary stem length, and root length by 7%, 8% and 14%, respectively. These techniques modestly improve plant development and growth.

  6. Diffusion coefficient, porosity measurement, dynamic and equilibrium swelling studies of Acrylic acid/Polyvinyl alcohol (AA/PVA hydrogels

    Directory of Open Access Journals (Sweden)

    Nazar Mohammad Ranjha

    2015-06-01

    Full Text Available Objective of the present work was to synthesize hydrogels of acrylic acid/polyvinyl alcohol (AA/PVA by free radical polymerization by using glutaradehyde (GA as crosslinkers. The hydrogels were evaluated for swelling, diffusion coefficient and network parameters like the average molecular weight between crosslink’s, polymer volume fraction in swollen state, number of repeating units between crosslinks and crosslinking density by using Flory-Huggins theory. It was found that the degree of swelling of AA/PVA hydrogels increases greatly within the pH range 5-7. The gel fraction and porosity increased by increasing the concentration of AA or PVA. Increase in degree of crosslinking, decreased the porosity and inverse was observed in gel fraction. Selected samples were loaded with metoprolol tartrate. Drug release was studied in USP hydrochloric acid solution of pH 1.2 and phosphate buffer solutions of pH 5.5 and 7.5. Various kinetics models like zero order, first order, Higuchi and Peppas model were used for in vitro kinetic studies. The results showed that the drug release followed concentration dependent effect (First order kinetics with non-Fickian diffusion. FTIR and SEM used to study the structure, crystallinity, compatibility, thermal stability and morphology of prepared and drug loaded hydrogels respectively.

  7. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Bhowmick, Sirsendu; Koul, Veena

    2016-01-01

    A novel, elastic, non-adhesive and antimicrobial hydrogel PVA scaffold (loaded with AgNPs) synthesized using freeze-thaw method has been characterized in this study. The direct visualization of the as synthesized (one-pot green synthesis methodology) AgNPs using TEM shows particle size in the range of 7 ± 3 nm. The minimum inhibitory concentration (MIC) of AgNPs for Staphylococcus aureus and Escherichia coli was estimated to be 7.81 μg/mL, whereas for Pseudomonas aeruginosa (gram negative) it was around 3.90 μg/mL. The antimicrobial efficacy of AgNPs was further studied by protein leakage, ROS and LDH activity assay. The quantitative elemental analysis of silver was calculated before and after release in phosphate buffer (pH-7.4) by atomic absorption spectroscopy. The antimicrobial efficacy of the scaffold was retained even after 96 h of release of AgNPs which suggests that the scaffold can be used as a reservoir for AgNPs to maintain a moist and sterile environment for a long period of time. - Highlights: • Green synthesis of AgNPs and evaluation of its antimicrobial efficacy • Synthesis of PVA hydrogel by freeze thaw technique • Antimicrobial activity of AgNPs loaded PVA hydrogel by zone of inhibition • Release kinetics of AgNPs from hydrogel by atomic absorption spectroscopy

  8. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sirsendu; Koul, Veena, E-mail: veenak@iitd.ac.in

    2016-02-01

    A novel, elastic, non-adhesive and antimicrobial hydrogel PVA scaffold (loaded with AgNPs) synthesized using freeze-thaw method has been characterized in this study. The direct visualization of the as synthesized (one-pot green synthesis methodology) AgNPs using TEM shows particle size in the range of 7 ± 3 nm. The minimum inhibitory concentration (MIC) of AgNPs for Staphylococcus aureus and Escherichia coli was estimated to be 7.81 μg/mL, whereas for Pseudomonas aeruginosa (gram negative) it was around 3.90 μg/mL. The antimicrobial efficacy of AgNPs was further studied by protein leakage, ROS and LDH activity assay. The quantitative elemental analysis of silver was calculated before and after release in phosphate buffer (pH-7.4) by atomic absorption spectroscopy. The antimicrobial efficacy of the scaffold was retained even after 96 h of release of AgNPs which suggests that the scaffold can be used as a reservoir for AgNPs to maintain a moist and sterile environment for a long period of time. - Highlights: • Green synthesis of AgNPs and evaluation of its antimicrobial efficacy • Synthesis of PVA hydrogel by freeze thaw technique • Antimicrobial activity of AgNPs loaded PVA hydrogel by zone of inhibition • Release kinetics of AgNPs from hydrogel by atomic absorption spectroscopy.

  9. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    Science.gov (United States)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  10. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    Science.gov (United States)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  11. Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea

    International Nuclear Information System (INIS)

    Kobayashi, Hisatoshi; Kato, Masabumi; Taguchi, Tetsushi; Ikoma, Toshiyuki; Miyashita, Hideyuki; Shimmura, Shigeto; Tsubota, Kazuo; Tanaka, Junzo

    2004-01-01

    In order to achieve the firm fixation of the artificial cornea to host tissues, composites of collagen-immobilized poly(vinyl alcohol) hydrogel with hydroxyapatite were synthesized by a hydroxyapatite particles kneading method. The preparation method, characterization, and the results of corneal cell adhesion and proliferation on the composite material were studied. PVA-COL-HAp composites were successfully synthesized. A micro-porous structure of the PVA-COL-HAp could be introduced by hydrochloric acid treatment and the porosity could be controlled by the pH of the hydrochloric acid solution, the treatment time, and the crystallinity of the HAp particles. Chick embryonic keratocyto-like cells were well attached and proliferated on the PVA-COL-HAp composites. This material showed potential for keratoprosthesis application. Further study such as a long-term animal study is now required

  12. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model

    NARCIS (Netherlands)

    Morales Hurtado, Marina; de Vries, Erik G.; Zeng, Xiangqiong; van der Heide, Emile

    2016-01-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating

  13. Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation—Part I: Gel fraction, swelling, and mechanical properties

    International Nuclear Information System (INIS)

    Alcântara, M.T.S.; Brant, A.J.C.; Giannini, D.R.; Pessoa, J.O.C.P.; Andrade, A.B.; Riella, H.G.; Lugão, A.B.

    2012-01-01

    In this work several hydrogels were obtained with two different poly(vinyl alcohol)s/PVAs as the main polymer in aqueous solutions containing 10% of PVA, 0.6% of agar, and 0.6% of κ-carrageenan (KC), cross-linked by gamma-rays from a 60 Co irradiation source. The PVAs tested have different degrees of hydrolysis and viscosities at 4% with values closed to 30 mPa s. The aqueous polymeric solutions were prepared using two distinct processes: the simple process of heating–stirring and that of making use of an autoclave. The purpose of this study was to evaluate the influence of the dissolution process by means of both methods on the hydrogels’ properties obtained. These were investigated by means of degree of cross-linking/gel fraction, degree of swelling in water, and some mechanical properties. The results that are obtained for hydrogels synthesized from solutions of PVA, agar, KC, and blends thereof prepared by both dissolution processes showed higher degrees of swelling for hydrogels from the autoclaved polymer solutions than those from the solutions prepared by simple heating–stirring process. Furthermore, their hydrogels containing totally hydrolyzed PVA displayed higher tensile strength and lower elongation properties. - Highlights: ► Hydrogels from γ-irradiated PVA and PVA-polysaccharide blends were obtained. ► PVA molar mass and degree of hydrolysis play an important role in their hydrogels. ► Dissolution processes of PVAs have influenced on their hydrogel characteristics. ► Degrees of swelling of hydrogels were lower when prepared from autoclaved solutions.

  14. IPN hydrogels based on PNIPAAm and PVA-Ma networks: characterization through measure of LCST, swelling ratio and mechanical properties - doi: 10.4025/actascitechnol.v34i2.15019

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Wenceslau

    2012-03-01

    Full Text Available IPN hydrogels based on chemically modified poly(vinyl alcohol (or PVA-Ma, with different degrees of substitution (DS, and poly(N-isopropylacrylamide (or PNIPAAm were obtained and characterized through measures of LCST, swelling ratio and mechanical properties. Linear PVA-Ma with several DS were obtained through the chemical reaction of PVA with glycidyl methacrylate (GMA. The DS of various PVA-Ma were determined through 1H NMR spectroscopy. Two steps were used for preparation the PVA-Ma/PNIPAAm membrane hydrogels. In the first step the PVA-Ma hydrogels (using PVA-Ma with different DS were prepared by reaction of double bonds on PVA-Ma, using the persulfate/TEMED system. Using a photoreaction pathway in the second step, PNIPAAm network was prepared within the parent PVA-Ma network at different PVA-Ma/NIPAAm ratios. The studies show that degree of swelling ratio (SR of PVA-Ma/PNIPAAm IPN hydrogels is dependent of temperature. The LCST for each IPN-hydrogel was determined by measuring the intensity of light transmitted through the hydrogel. The LCST of the IPN hydrogels ranged from 34.6 to 38.1oC. The elastic modules of swollen IPN hydrogels increased from 25 to 35oC but decreased by further warming to 45oC. The LCST, swelling ratio and mechanical properties of PVA-Ma/PNIPAAm IPN hydrogels can be tailored by tuning the PVA-Ma/NIPAAm ratio.

  15. Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling.

    Science.gov (United States)

    Ou, Kangkang; Dong, Xia; Qin, Chengling; Ji, Xinan; He, Jinxin

    2017-08-01

    It is well known that preparation method of hydrogels has a significant effect on their properties. In this paper, freeze-thawing and anneal-swelling were applied to prepare poly(vinyl alcohol)/polyacrylamide (PVA/PAM) double-network hydrogels with covalently and physically cross-linked networks. The properties of these hydrogels were investigated and compared to control hydrogels. Results indicated that hydrogels fabricated by freeze-thawing show larger pores size and higher swelling capacity than those made by anneal-swelling and control hydrogels. Hydrogels prepared by anneal-swelling exhibit higher mechanical strength, energy dissipation, fracture energy, gel fraction and crystallinity than those made by freeze-thawing and control hydrogels. Physical cross-linking plays a key role in formation of physical-chemical double-network. The toughening mechanism of double-network hydrogel is related to their chain-fracture behavior and elasticity. The results also indicated that appropriate methods can endow hydrogels with specific microstructures and properties which would broaden current hydrogels research and applications in biomedical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. IPN hydrogels based on PNIPAAm and PVA-Ma networks: characterization through measure of LCST, swelling ratio and mechanical properties - doi: 10.4025/actascitechnol.v34i2.15019

    OpenAIRE

    Wenceslau, Adriana Cristina; Universidade Estadual de Maringá - UEM; Rubira, Adley Forti; Universidade Estadual de Maringá - UEM; Muniz, Edvani Curti; UEM, Maringá, Paraná

    2011-01-01

    IPN hydrogels based on chemically modified poly(vinyl alcohol) (or PVA-Ma), with different degrees of substitution (DS), and poly(N-isopropylacrylamide) (or PNIPAAm) were obtained and characterized through measures of LCST, swelling ratio and mechanical properties. Linear PVA-Ma with several DS were obtained through the chemical reaction of PVA with glycidyl methacrylate (GMA). The DS of various PVA-Ma were determined through 1H NMR spectroscopy. Two steps were used for preparation the PVA-Ma...

  17. Studies on the water vapor permeability and the effect on bacterial growth of pva/sf blend hydrogels prepared by gamma irradiation for wound dressing

    International Nuclear Information System (INIS)

    Pongpat, Suchada; Kewsuwan, Prartana; Jetawattana, Suwimol; Piadang, Nattayana

    2004-10-01

    The preparation of hydrogels by gamma irradiation from poly(vinyl alcohol) (PVA) and from blend solution of PVA/silk fibroin(SF) from silk waste and some properties as wound dressing were studied. The thickness of the hydrogel was controlled to be 3 mm. Some properties of hydrogel such as water vapor permeability antibacterial activity, and protection of wound from bacteria were tested. Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were used as testing cultures. The results revealed that the solution of 7% and 10% PVA and the blend solution containing 10% SF in 7% and 10% PVA (w/w) were crosslinked by γ-irradiation at the dose of 30-60 kGy. The transparent gels with good appearance were obtained. The water vapor permeability coefficients of the films were in the range of 1161.12-1527.36 g m -2 day -1 . It was found that the gels showed only an effective wound protection from the test cultures but did not show their antibacterial properties. However, remarkable reduction of bacterial growth, of about 1-2 log cycles, was also observed on the agar medium covered with the gels.p

  18. Study of the PVA hydrogel behaviour in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available The present paper aims at studying the behaviour of the poly(vinyl alcohol [PVA] cryogel in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]– aqueous solutions with various concentrations. The gravimetric method showed that the swollen PVA cryogels exhibit mechanically active behaviour. PVA cryogels showed shrinking in the presence of ionic liquid, (IL, and re-swelling in the presence of distilled water. The re-swelling is not completely reversible, due to the influence of the IL ions on the gel morphology. The Fourier transform infrared (FTIR spectra have indicated no chemical interaction between the PVA and the studied IL, but highlighted the gel crystallinity change as a function of IL concentration, as well as changes in the bound water amount. Rheological analyses showed dominating plastifying effect of the cation at a lower IL concentration and dominating kosmotropic effect of the anion at a higher IL concentration. A phenomenological kinetic equation that takes into account both fluxes of matters, in and out of the gel, is proposed, explaining the alteration of the gel properties when it comes in contact with BMIMBF4 solutions.

  19. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Tridib [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Goswami, Luna [KIIT School of Biotechnology, KIIT University Campus XI, Patia, Bhubaneswar 751024, Orissa (India); Chattopadhyay, Dipankar [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Bandyopadhyay, Abhijit, E-mail: abpoly@caluniv.ac.in [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2011-08-15

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  20. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    Science.gov (United States)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-08-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  1. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    International Nuclear Information System (INIS)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-01-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  2. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties

    International Nuclear Information System (INIS)

    Patro, T Umasankar; Wagner, H Daniel

    2011-01-01

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method—by depositing self-assembled monolayers (SMA) of a functional silane on substrates—is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  3. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties.

    Science.gov (United States)

    Patro, T Umasankar; Wagner, H Daniel

    2011-11-11

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method-by depositing self-assembled monolayers (SMA) of a functional silane on substrates-is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  4. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    Science.gov (United States)

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Adsorption Properties of PVA/PAA/clay Composite Hydrogel Synthesized by Gamma Radiation and its Application in Removal of Crystal Violet Dye from Its Aqueous Solution

    International Nuclear Information System (INIS)

    Kamal, H.; El-Sayed, A. Hegazy; Mohamed, M.M.; Sabaa, M.W.; El-Dessouky, M.M.

    2014-01-01

    Copolymer hydrogels composed of Poly vinyl alcohol (PVA) and Poly acrylic acid (PAA) were prepared by γ-irradiation in the presence of N,N’ methylene bis acrylamide (MBAM) as crosslinking agent or bentonite clay. The copolymers were characterized by FTIR and SEM. The dye adsorption experiments for Crystal Violet dye (CV) were carried out by using bath procedure. UV-visible absorption spectroscopy was used to determine the adsorption behavior. The effect of different copolymer composition, clay concentration, ph, contact time, adsorbent dose, initial dye concentration, and adsorption temperature were investigated to obtain the best experimental conditions. The adsorption equilibrium was attained after about 24h. of contact time. It was found that the adsorption process was correlated with Freundlich isotherm equation. Kinetic and thermodynamic studies of CV dye onto the prepared hydrogels were also evaluated

  6. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    Science.gov (United States)

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Impact of porous SiC-doped PVA based LDS layer on electrical parameters of Si solar cells

    Science.gov (United States)

    Kaci, S.; Rahmoune, R.; Kezzoula, F.; Boudiaf, Y.; Keffous, A.; Manseri, A.; Menari, H.; Cheraga, H.; Guerbous, L.; Belkacem, Y.; Chalal, R.; Bozetine, I.; Boukezzata, A.; Talbi, L.; Benfadel, K.; Ouadfel, M.-A.; Ouadah, Y.

    2018-06-01

    Nowadays, the advanced photon management is regarded as an area of intensive research investment. Ever since the most widely used commercial photovoltaic cells are fabricated with single gap semiconductors like silicon, photon management has offered opportunities to make better use of the photons, both inside and outside the single junction window. In this study, the impact of new down shifting layer on the photoelectrical parameters of silicon based solar cell was studied. An effort to enhance the photovoltaic performance of textured silicon solar cells through the application of porous SiC particles-doped polyvinyl alcohol (PVA) layers using the spin-coating technique, is reported. Current-voltage curves under artificial illumination were used to confirm the contribution of LDS (SiC-PVA) thin layers. Experiment results revealed that LDS based on SiC particles which were etched in HF/K2S2O8 solution at T = 80 °C under UV light of 254 nm exhibited the best solar cell photoelectrical parameters due to its strong photoluminescence.

  8. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    Science.gov (United States)

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-01-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  10. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Yang, Jhe Hao [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Tsou, Shu Chun; Ding, Chian Hua [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Hsu, Chih Chin [Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan, ROC (China); School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC (China); Yang, Kai Chiang [School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC (China); Yang, Chun Chen [Department of Chemical Engineering, Ming-Chi University of Science and Technology, New Taipei City, Taiwan, ROC (China); Chen, Ko Shao [Department of Materials Engineering, Tatung University, Taipei, Taiwan, ROC (China); Chen, Szi Wen [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Wang, Jong Shyan [Department of Physical Therapy and the Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  11. Friction Properties of Laminated Composite Materials of Alpha-Tricalcium Phosphate–Filled Poly (Vinyl Alcohol) Hydrogels

    OpenAIRE

    Yamamoto, Kanae; Iwai, Tomoaki; Shoukaku, Yutaka

    2015-01-01

    The aim of this study was to examine the mechanical characteristics of a polyvinyl alcohol hydrogel (PVA-H) as a candidate material for artificial joint cartilage. In the study, PVA-H was filled with α-tricalcium phosphate (α-TCP) in order to improve its mechanical properties. In addition, laminated composite materials with 3 layers were prepared by laminating α-TCP–filled PVA-H and unfilled PVA-H. The samples were prepared with different numbers of repeated freeze–thaw cycles and several con...

  12. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  13. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  14. In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Bachy, Manon; Proudhon, Henry; Ku, David N; Hannouche, Didier; Petite, Hervé; Corté, Laurent

    2017-08-01

    Recently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration.

  15. Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Tyrode, Eric

    2015-01-01

    Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range...... of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change...

  16. New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA).

    Science.gov (United States)

    Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando

    2009-02-15

    Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.

  17. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.

    Science.gov (United States)

    Yao, Huiqin; Hu, Naifei

    2011-05-26

    In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.

  18. Preparation and characterization of poly(vinyl alcohol) hydrogel contain metronidazole by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Jae; Park, Jong Seok; Jeong, Jin Oh; Jeong, Sung In; Gwon, Hui Jeong; Ahn, Sung Jun; Lim, Youn Mook [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    Periodontitis is disease of damaged gum tissue that is not removed the plaque onto teeth. In case that the symptoms of disease get pain worse, it will have to extract tooth because of tumefy or bleeding at gums so treatment of drug was required to periodontitis. In this study, the hydrogel was prepared by including superior viscous, excellent elastic, and biocompatibility of Poly(vinyl alcohol, PVA) and antimicrobial drug of Metronidazole (MD). The 15 wt% PVA was dissolved in deionized water and then prepared PVA solution was irradiated using gamma-ray at 25 kGy (10 kGy hr{sup -1}). In addition, PVA hydrogel was immersed in each 0.1, 0.25 and 0.5 wt% MD solution using stirrer for 24 hr. The result of the gelation, 0.5 wt% MD loaded PVA hydrogel (76%) was lower than PVA hydrogel (88.2%). The swelling ration of 0.5 wt% MD loaded PVA hydrogel (294.8%) was higher than PVA hydrogel (105.2%). The compressive strength and thermal properties of MD loaded PVA hydrogel was gradually lower. The drug release test of 0.5 wt% MD loaded PVA hydrogel (61%) was higher than 0.1 wt% MD loaded PVA hydrogel (12%). Therefore, MD loaded PVA hygrogel may be a promising tool for periodontitis medicine by gamma-ray.

  19. Preparation and characterization of poly(vinyl alcohol) hydrogel contain metronidazole by irradiation

    International Nuclear Information System (INIS)

    Baik, Jae; Park, Jong Seok; Jeong, Jin Oh; Jeong, Sung In; Gwon, Hui Jeong; Ahn, Sung Jun; Lim, Youn Mook

    2016-01-01

    Periodontitis is disease of damaged gum tissue that is not removed the plaque onto teeth. In case that the symptoms of disease get pain worse, it will have to extract tooth because of tumefy or bleeding at gums so treatment of drug was required to periodontitis. In this study, the hydrogel was prepared by including superior viscous, excellent elastic, and biocompatibility of Poly(vinyl alcohol, PVA) and antimicrobial drug of Metronidazole (MD). The 15 wt% PVA was dissolved in deionized water and then prepared PVA solution was irradiated using gamma-ray at 25 kGy (10 kGy hr"-"1). In addition, PVA hydrogel was immersed in each 0.1, 0.25 and 0.5 wt% MD solution using stirrer for 24 hr. The result of the gelation, 0.5 wt% MD loaded PVA hydrogel (76%) was lower than PVA hydrogel (88.2%). The swelling ration of 0.5 wt% MD loaded PVA hydrogel (294.8%) was higher than PVA hydrogel (105.2%). The compressive strength and thermal properties of MD loaded PVA hydrogel was gradually lower. The drug release test of 0.5 wt% MD loaded PVA hydrogel (61%) was higher than 0.1 wt% MD loaded PVA hydrogel (12%). Therefore, MD loaded PVA hygrogel may be a promising tool for periodontitis medicine by gamma-ray

  20. Studies on the properties of poly (ethylene oxide) R-150 hydrogel films formed by irradiation graft

    International Nuclear Information System (INIS)

    Yang Zhanshan; Zhu Nankang; Yang Shuqin; Qiang Yizhong

    1999-01-01

    In order to improve the mechanical properties of poly (ethylene oxide) (PEO) hydrogel film was used as wound dressing. The chemical and physical properties of the PEO R-150 graft hydrogel film formed by blends of electron beam irradiated-PEO R-150 and poly(vinyl alcohol) (PVA) were studied. The experimental results showed that the crosslinking densities of the PEO R-150 graft hydrogel increased along with the increasing of the irradiation doses and decreased with the increasing of the blend concentrations. While the PVA graft proportions did not produce obvious effects on the crosslinking density of the graft hydrogel. The crosslinking density of the graft hydrogel were obviously lower than that of the pure PVA hydrogel. The equilibrium water content of the graft hydrogel decrease as the irradiation dose and the PVA graft proportion increased; but they increased as the blend concentration increased. The equilibrium water content of the graft hydrogel was obviously higher than those of the pure PVA hydrogel. The hardness of the PVA hydrogel film increased with the irradiation dose. The hardness of the graft hydrogel decreased with the blend concentration, whereas it increased with the PVA graft proportion. The results suggest the PVA produces a main effect on the crosslinking density of the graft hydrogel, the PEO R-150 produces a main effect on the equilibrium water content of the graft hydrogel, and the both polymers have double effects on the hardness of the graft hydrogel

  1. Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications

    International Nuclear Information System (INIS)

    Santaniello, Tommaso; Milani, Paolo; Lenardi, Cristina; Martello, Federico; Tocchio, Alessandro; Gassa, Federico; Webb, Patrick

    2012-01-01

    We report a novel reliable and repeatable technologic manufacturing protocol for the realization of micro-patterned freestanding hydrogel layers based on thermo-responsive poly-(N-isopropyl)acrylamide (PNIPAAm), which have potential to be employed as temperature-triggered smart surfaces for cells-on-chip applications. PNIPAAm-based films with controlled mechanical properties and different thicknesses (100–300 µm thickness) were prepared by injection compression moulding at room temperature. A 9 × 9 array of 20 µm diameter through-holes is machined by means of the KrF excimer laser on dry PNIPAAm films which are physically attached to flat polyvinyl chloride (PVC) substrates. Machining parameters, such as fluence and number of shots, are optimized in order to achieve highly resolved features. Micro-structured freestanding films are then easily obtained after hydrogels are detached from PVC by gradually promoting the film swelling in ethanol. In the PNIPAAm water-swollen state, the machined holes’ diameter approaches a slight larger value (30 µm) according to the measured hydrogel swelling ratio. Thermo-responsive behaviour and through-hole tapering characterization are carried out by metrology measurements using an optical inverted and confocal microscope setup, respectively. After the temperature of freestanding films is raised above 32 °C, we observe that the shrinkage of the whole through-hole array occurs, thus reducing the holes’ diameter to less than a half its original size (about 15 µm) as a consequence of the film dehydration. Different holes’ diameters (10 and 30 µm) are also obtained on dry hydrogel employing suitable projection masks, showing similar shrinking behaviour when hydrated and undergone thermo-response tests. Thermo-responsive PNIPAAm-based freestanding layers could then be integrated with other suitable micro-fabricated thermoplastic components in order to preliminary test their feasibility in operating as temperature

  2. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    Science.gov (United States)

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  3. The alginate layer for improving doxorubicin release and radiolabeling stability of chitosan hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeong Il; Lee, Chang Moon; Jeong, Hwan Seok; Hwang, Hyo Sook; Lim, Seok Tae; Sohn, Myung Hee; Jeong, Hwan Jeong [Dept. of Nuclear Medicine and Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Science, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Chang Moon [Dept. of Biomedical Engineering, Chonnam National University, Yeosu (Korea, Republic of)

    2015-12-15

    Chitosan hydrogels (CSH) formed through ionic interaction with an anionic molecule are suitable as a drug carrier and a tissue engineering scaffold. However, the initial burst release of drugs from the CSH due to rapid swelling after immersing in a biofluid limits their wide application as a drug delivery carrier. In this study, alginate layering on the surface of the doxorubicin (Dox)-loaded and I-131-labeled CSH (DI-CSH) was performed. The effect of the alginate layering on drug release behavior and radiolabeling stability was investigated. Chitosan was chemically modified using a chelator for I-131 labeling. After labeling of I-131 and mixing of Dox, the chitosan solution was dropped into tripolyphosphate (TPP) solution using an electrospinning system to prepare spherical microhydrogels. The DI-CSH were immersed into alginate solution for 30 min to form the crosslinking layer on their surface. The formation of alginate layer on the DI-CSH was confirmed by Fourier transform infrared spectroscopy (FT-IR) and zeta potential analysis. In order to investigate the effect of alginate layer, studies of in vitro Dox release from the hydrogels were performed in phosphate buffered in saline (PBS, pH 7.4) at 37 °C for 12 days. The radiolabeling stability of the hydrogels was evaluated using ITLC under different experimental condition (human serum, normal saline, and PBS) at 37 °C for 12 days. Formatting the alginate-crosslinked layer on the CSH surface did not change the spherical morphology and the mean diameter (150 ± 10 μm). FT-IR spectra and zeta potential values indicate that alginate layer was formed successfully on the surface of the DI-CSH. In in vitro Dox release studies, the total percentage of the released Dox from the DI-CSH for 12 days were 60.9 ± 0.8, 67.3 ± 1.4, and 71.8 ± 2.5 % for 0.25, 0.50, and 1.00 mg Dox used to load into the hydrogels, respectively. On the other hand, after formatting alginate layer, the percentage of the

  4. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    Science.gov (United States)

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  5. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    International Nuclear Information System (INIS)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z.

    2000-01-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  6. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z. [Radiation Processing Technology Division, Malaysian Institute Nuclear Technology Research Malaysia (MINT), Bangi, 43000 Kajang (Malaysia)

    2000-03-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  7. Preparation and characterization of bioglass/polyvinyl alcohol composite hydrogel

    International Nuclear Information System (INIS)

    Xu Hong; Wang Yingjun; Zheng Yudong; Chen Xiaofeng; Ren Li; Wu Gang; Huang Xiaoshan

    2007-01-01

    In order to form firm active fixation with the adjacent bone, a new kind of bioactive composite hydrogel was prepared with polyvinyl alcohol (PVA) and bioglass (BG) through ultrasonic dispersion, heat-high-pressure and freeze/thawed technique. A digital speckle correlation method (DSCM) was utilized to characterize the mechanical properties of the series of BG/PVA composites. Results showed that at different load pressures, the composite hydrogel displayed different displacement and deformation in the V field. Results also showed that an increase of PVA percentage (15-30 wt%) or of bioglass percentage (2-10 wt%) in composite hydrogel could lead to an increase in the elastic compression modulus. Scanning electron microscope results indicated that bioglass was uniformly dispersed in the BG/PVA composite hydrogel. The BG/PVA composite hydrogel shows a promising prospect as a new bionic cartilage implantation material

  8. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  9. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells.

    Science.gov (United States)

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2017-05-01

    During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co-cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self-assembled on top of CC-laden agarose gels (structured co-culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co-culture). Porcine infrapatellar fat pad-derived stem cells (FPSCs) and bone marrow-derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co-culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co-culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co-culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co-culture for both MSC sources. In conclusion, assembling MSCs onto CC-laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy.

    Science.gov (United States)

    Razmjou, Amir; Liu, Qi; Simon, George P; Wang, Huanting

    2013-11-19

    The feasibility of bilayer polymer hydrogels as draw agent in forward osmosis process has been investigated. The dual-functionality hydrogels consist of a water-absorptive layer (particles of a copolymer of sodium acrylate and N-isopropylacrylamide) to provide osmotic pressure, and a dewatering layer (particles of N-isopropylacrylamide) to allow the ready release of the water absorbed during the FO drawing process at lower critical solution temperature (32 °C). The use of solar concentrated energy as the source of heat resulted in a significant increase in the dewatering rate as the temperature of dewatering layer increased to its LSCT more rapidly. Dewatering flux rose from 10 to 25 LMH when the solar concentrator increased the input energy from 0.5 to 2 kW/m(2). Thermodynamic analysis was also performed to find out the minimum energy requirement of such a bilayer hydrogel-driven FO process. This study represents a significant step forward toward the commercial implementation of hydrogel-driven FO system for continuous production of fresh water from saline water or wastewaters.

  11. R and D on utilization of indigenous materials for hydrogel wound dressing

    International Nuclear Information System (INIS)

    Haque, Md. Embadul; Dafader, Nirmal Chandra; Khan, Ruhul Amin

    2008-01-01

    Utilization of indigenous materials for the preparation of hydrogel wound dressing is highlighted in this report. Hydrogels were prepared by two different formulations using PVP and PVA separately. Considering the price of the main two raw materials PVA was chosen for the next course of development. To reduce the cost of raw materials further flour was added to the PVA formulation. Ingredients concentrations for preparing good quality hydrogel were optimized. PVA containing both carrageenan and flour produces hydrogel with good properties. PVA containing 0.75% of both carrageenan and flour produces hydrogel of desirable properties. Seminar and demonstration about the usefulness of hydrogel for wound dressing were arranged at a city hospital. (author)

  12. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    Science.gov (United States)

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

  13. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time

    Directory of Open Access Journals (Sweden)

    Victor Selin

    2018-01-01

    Full Text Available Despite intense recent interest in weakly bound nonlinear (“exponential” multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL films composed of poly(methacrylic acid (PMAA and quaternized poly-2-(dimethylaminoethyl methacrylate (QPC on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR, and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR. The results suggest that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.

  14. PIXE investigation of in-vitro release of chloramphenicol across polyvinyl alcohol/ acrylamide hydrogel

    International Nuclear Information System (INIS)

    Rihawi, M.; Al-Zeer, A.; Allaf, A.

    2012-01-01

    Hydrogels based on polyvinyl alcohol (PVA) and different amounts of acrylamide monomer (AAm) were prepared by thermal crosslinking process in solid state. The PVA/AAm hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behaviour across the prepared hydrogels. Particle induced X-ray emission (PIXE) analytical technique was utilized to study the drug release behaviour across the hydrogels. A comparison study between PIXE and UV measurements was performed. FTIR measurements were carried out to perform the molecular characterization. The releasing behaviour of the drug across the hydrogels demonstrates a decrease and a subsequent increase in the drug release rate, as the AAm amount increases. The FTIR characterization of the prepared hydrogels has shown a competitive behaviour between the crosslinking of PVA with AAm monomer or oligomerized AAm, depending on the amount of AAm added to prepare the PVA/AAm hydrogels. (author)

  15. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drozdova, Maria G., E-mail: drozdovamg@gmail.com [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Zaytseva-Zotova, Daria S. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Akasov, Roman A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Trubetskaya str., 8/2, Moscow 119048 (Russian Federation); Golunova, Anna S.; Artyukhov, Alexander A. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Udartseva, Olga O.; Andreeva, Elena R. [Institute of Biomedical Problems of Russian Academy of Sciences, Khoroshevskoe Shosse 76a, Moscow 123007 (Russian Federation); Lisovyy, Denis E.; Shtilman, Michael I. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Markvicheva, Elena A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation)

    2017-06-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  16. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    International Nuclear Information System (INIS)

    Drozdova, Maria G.; Zaytseva-Zotova, Daria S.; Akasov, Roman A.; Golunova, Anna S.; Artyukhov, Alexander A.; Udartseva, Olga O.; Andreeva, Elena R.; Lisovyy, Denis E.; Shtilman, Michael I.; Markvicheva, Elena A.

    2017-01-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  17. How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?

    KAUST Repository

    Le, Ngoc Lieu

    2017-05-18

    We compare the efficiency of grafting polyethylene glycol (PEG) and poly(sulfobetaine) hydrogel layer on poly(ether imide) (PEI) hollow-fiber ultrafiltration membrane surfaces in terms of filtration performance, fouling minimization and stability in cleaning solutions. Two previously established different methods toward the two different chemistries (and both had already proven to be suited to reduce fouling significantly) are applied to the same PEI membranes. The hydrophilicity of PEI membranes is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from the hydrogel layers. However, these barriers increase protein rejection. In the exposure at a static condition, grafting PEG or poly(sulfobetaine) reduces protein adsorption to 23% or 11%, respectively. In the dynamic filtration, the hydrogel layers minimizes the flux reduction and increases the reversibility of fouling. Compared to the pristine PEI membrane that can recover its flux to 42% after hydraulic cleaning, the PEG and poly(sulfobetaine) grafted membranes can recover their flux up to 63% and 94%, respectively. Stability tests show that the poly(sulfobetaine) hydrogel layer is stable in acid, base and chlorine solutions, whereas the PEG hydrogel layer suffers alkaline hydrolysis in base and oxidation in chlorine conditions. With its chemical stability and pronounced capability of minimizing fouling, especially irreversible fouling, protective poly(sulfobetaine) hydrogel layers have great potential for various membrane-based applications.

  18. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    Science.gov (United States)

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films.

    Science.gov (United States)

    Ino, Julia M; Sju, Ervi; Ollivier, Véronique; Yim, Evelyn K F; Letourneur, Didier; Le Visage, Catherine

    2013-11-01

    Engineered grafts are still needed for small diameter blood vessels reconstruction. Ideal materials would prevent thrombosis and intimal hyperplasia by displaying hemocompatibility and mechanical properties close to those of native vessels. In this study, poly(vinyl alcohol) (PVA)/gelatin blends were investigated as a potential vascular support scaffold. We modified a chemically crosslinked PVA hydrogel by incorporation of gelatin to improve endothelial cell attachment with a single-step method. A series of crosslinked PVA/gelatin films with specific ratios set at 100:0, 99:1, 95:5, and 90:10 (w/w) were prepared and their mechanical properties were examined by uniaxial tensile testing. Tubes, obtained from sutured films, were found highly compliant (3.1-4.6%) and exhibited sufficient mechanical strength to sustain hemodynamic strains. PVA-based hydrogels maintained low level of platelet adhesion and low thrombogenic potential. Endothelial cell adhesion and proliferation were drastically improved on PVA/gelatin films with a feed gelatin content as low as 1% (w/w), leading to the formation of a confluent endothelium. Hydrogels with higher gelatin content did not sustain complete endothelialization because of modifications of the film surface, including phase segregation and formation of microdomains. Thus, PVA/gelatin (99:1, w/w) hydrogels appear as promising materials for the design of endothelialized vascular materials with long-term patency. Copyright © 2013 Wiley Periodicals, Inc.

  20. How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?

    KAUST Repository

    Le, Ngoc Lieu; Ulbricht, Mathias; Nunes, Suzana Pereira

    2017-01-01

    is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from

  1. Arct'Alg release from hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata H.; Rogero, Sizue O.; Shihomatsu, Helena M.; Lugao, Ademar B.

    2009-01-01

    The hydrogel properties make them attractive for a variety of biomedical and pharmaceutical applications, primarily in drug delivery system. Synthetic hydrogels have been studied to develop new devices for drugs or cosmetic active agents release. Arct'Alg R is an extract derived from red algae biomass which has antioxidant, anti-inflammatory and tissue regeneration stimulant properties. This extract was incorporated to poly(N-vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) hydrogel membranes obtained by gamma rays crosslinking technique. The ionizing radiation presents the advantage to occur polymerization and sterilization simultaneously in the same process. The aim of this work was the in vitro release kinetic study of Arct'Alg R from hydrogel membranes during 24 hours to verify the possibility of use in cosmetic and dermatological treatments. Results showed that about 50% and 30% of incorporated Arct'Alg R was released from PVP and PVA hydrogel membrane devices respectively. (author)

  2. Synthesis of Highly Effective Novel Graphene Oxide-Polyethylene Glycol-Polyvinyl Alcohol Nanocomposite Hydrogel For Copper Removal

    Directory of Open Access Journals (Sweden)

    Eman Serag

    2017-10-01

    Full Text Available A novel Graphene oxide-polyethylene glycol and polyvinyl alcohol (GO-PEG-PVA triple network hydrogel were prepared to remove Copper(II ion from its aqueous solution. The structures, morphologies, and properties of graphene oxide (GO, the composite GO-PEG-PVA and PEG-PVA were characterized using FTIR, X-ray diffraction, Scanning Electronic Microscope and Thermal Gravimetric analysis. A series of systematic batch adsorption experiments were conducted to study the adsorption property of GO, GO-PEG-PVA hydrogel and PEG-PVA hydrogel under different conditions (e.g. pH, contact time and Cu2+ ions concentration. The high adsorption capacity, easy regeneration, and effective adsorption–desorption results proved that the prepared GO-PEG-PVA composite hydrogel could be an effective adsorbent in removing Cu2+ ion from its aqueous solution. The maximum adsorption capacities were found to be 917, 900 and 423 mg g–1 for GO-PEG-PVA hydrogel, GO and PEG-PVA hydrogel, respectively at pH 5, 25 °C and Cu2+ ions’ concentration 500 mg l–1. The removal efficiency of the recycled GO-PEG-PVA hydrogel were 83, 81, 80 and 79% for the first four times, which proved efficient reusability.

  3. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model.

    Science.gov (United States)

    Willems, Nicole; Yang, Hsiao-Yin; Langelaan, Marloes L P; Tellegen, Anna R; Grinwis, Guy C M; Kranenburg, Hendrik-Jan C; Riemers, Frank M; Plomp, Saskia G M; Craenmehr, Eric G M; Dhert, Wouter J A; Papen-Botterhuis, Nicole E; Meij, Björn P; Creemers, Laura B; Tryfonidou, Marianna A

    2015-08-20

    Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose-response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant

  4. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  5. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.-A.; Niconov, A.; Chmielewska, D.; Spadaro, G.

    2012-01-01

    PANI aqueous nanocolloids in their acid-doped, inherently conductive form were synthesised by means of suitable water soluble polymers used as stabilisers. In particular, poly(vinyl alcohol) (PVA) or chitosan (CT) was used to stabilise PANI nanoparticles, thus preventing PANI precipitation during synthesis and upon storage. Subsequently, e-beam irradiation of the PANI dispersions has been performed with a 12 MeV Linac accelerator. PVA-PANI nanocolloid has been transformed into a PVA-PANI hydrogel nanocomposite by radiation induced crosslinking of PVA. CT-PANI nanoparticles dispersion, in turn, was added to PVA to obtain wall-to-wall gels, as chitosan mainly undergoes chain scission under the chosen irradiation conditions. While the obtainment of uniform PANI particle size distribution was preliminarily ascertained with laser light scattering and TEM microscopy, the typical porous structure of PVA-based freeze dried hydrogels was observed with SEM microscopy for the hydrogel nanocomposites. UV−visible absorption spectroscopy demonstrates that the characteristic, pH-dependent and reversible optical absorption properties of PANI are conferred to the otherwise optically transparent PVA hydrogels. Selected formulations have been also subjected to MTT assays to prove the absence of cytotoxicity. - Highlights: ► PANI nanocolloids were chemically synthesised in the presence of PVA and chitosan. ► PANI dispersions were transformed into hydrogel nanocomposites by e-beam irradiation. ► Characteristic optical properties of PANI were shown by the nanocomposite hydrogels. ► Absence of cytotoxicity for the nanocomposite hydrogels is demonstrated. ► Results encourage developments for application in biosensing and smart drug delivery.

  6. Lima Bean Starch-Based Hydrogels | Oladebeye | Nigerian Journal ...

    African Journals Online (AJOL)

    Hydrogels were prepared by crosslinking native lima bean starch and polyvinyl alcohol (PVA) with glutaraldehyde (GA) at varying proportions in an acidic medium. The native starch (N-LBS) and hydrogels (L-GA (low glutaraldehyde) and H-GA (high glutaraldehyde)) were examined for their water absorption capacity (WAC) ...

  7. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels

    OpenAIRE

    Yue, Youfeng; Kurokawa, Takayuki; Haque, Md Anamul; Nakajima, Tasuku; Nonoyama, Takayuki; Li, Xufeng; Kajiwara, Itsuro; Gong, Jian Ping

    2014-01-01

    Photonic crystals with tunability in the visible region are of great interest for controlling light diffraction. Mechanochromic photonic materials are periodically structured soft materials designed with a photonic stop-band that can be tuned by mechanical forces to reflect specific colours. Soft photonic materials with broad colour tunability and fast colour switching are invaluable for application. Here we report a novel mechano-actuated, soft photonic hydrogel that has an ultrafast-respons...

  8. PVA matches human liver in needle-tissue interaction.

    Science.gov (United States)

    de Jong, Tonke L; Pluymen, Loes H; van Gerwen, Dennis J; Kleinrensink, Gert-Jan; Dankelman, Jenny; van den Dobbelsteen, John J

    2017-05-01

    Medical phantoms can be used to study needle-tissue interaction and to train medical residents. The purpose of this research is to study the suitability of polyvinyl alcohol (PVA) as a liver tissue mimicking material in terms of needle-tissue interaction. Insertions into ex-vivo human livers were used for reference. Six PVA samples were created by varying the mass percentage of PVA to water (4m% and 7m%) and the number of freeze-thaw cycles (1, 2 and 3 cycles, 16hours of freezing at -19°C, 8hours of thawing). The inner needle of an 18 Gauge trocar needle with triangular tip was inserted 13 times into each of the samples, using an insertion velocity of 5 mm/s. In addition, 39 insertions were performed in two ex-vivo human livers. Axial forces on the needle were captured during insertion and retraction and characterized by friction along the needle shaft, peak forces, and number of peak forces per unit length. The concentration of PVA and the number of freeze-thaw cycles both influenced the mechanical interaction between needle and specimen. Insertions into 4m% PVA phantoms with 2 freeze-thaw cycles were comparable to human liver in terms of estimated friction along the needle shaft and the number of peak forces. Therefore, these phantoms are considered to be suitable liver mimicking materials for image-guided needle interventions. The mechanical properties of PVA hydrogels can be influenced in a controlled manner by varying the concentration of PVA and the number of freeze-thaw cycles, to mimic liver tissue characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings.

    Science.gov (United States)

    Oliveira, R N; Rouzé, R; Quilty, B; Alves, G G; Soares, G D A; Thiré, R M S M; McGuinness, G B

    2014-02-06

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions.

  10. Co-Deposition of a Hydrogel/Calcium Phosphate Hybrid Layer on 3D Printed Poly(Lactic Acid Scaffolds via Dip Coating: Towards Automated Biomaterials Fabrication

    Directory of Open Access Journals (Sweden)

    Matthias Schneider

    2018-03-01

    Full Text Available The article describes the surface modification of 3D printed poly(lactic acid (PLA scaffolds with calcium phosphate (CP/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.

  11. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels.

    Science.gov (United States)

    Yue, Youfeng; Kurokawa, Takayuki; Haque, Md Anamul; Nakajima, Tasuku; Nonoyama, Takayuki; Li, Xufeng; Kajiwara, Itsuro; Gong, Jian Ping

    2014-08-18

    Photonic crystals with tunability in the visible region are of great interest for controlling light diffraction. Mechanochromic photonic materials are periodically structured soft materials designed with a photonic stop-band that can be tuned by mechanical forces to reflect specific colours. Soft photonic materials with broad colour tunability and fast colour switching are invaluable for application. Here we report a novel mechano-actuated, soft photonic hydrogel that has an ultrafast-response time, full-colour tunable range, high spatial resolution and can be actuated by a very small compressive stress. In addition, the material has excellent mechanical stability and the colour can be reversibly switched at high frequency more than 10,000 times without degradation. This material can be used in optical devices, such as full-colour display and sensors to visualize the time evolution of complicated stress/strain fields, for example, generated during the motion of biological cells.

  12. Development of sago starch hydrogel for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin Hashim; Khairul Zaman HJ. Mohd Dahlan; Kamarudin Bahari [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  13. Development of sago starch hydrogel for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman HJ Mohd Dahlan; Kamarudin Bahari; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  14. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel

    Science.gov (United States)

    Lee, Jung Min; Sultan, Md. Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum

    2017-01-01

    Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. PMID:28777314

  15. Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement.

    Science.gov (United States)

    Wang, Xiaotong; Wei, Changzheng; Cao, Bin; Jiang, Lixia; Hou, Yongtai; Chang, Jiang

    2018-05-30

    A major challenge in three-dimensional (3D) printing of hydrogels is the fabrication of stable constructs with high precision and good mechanical properties and biocompatibility. Existing methods typically feature complicated reinforcement steps or use potentially toxic components, such as photocuring polymers and crosslinking reagents. In this study, we used a thermally sensitive hydrogel, hydroxybutyl chitosan (HBC), for 3D-printing applications. For the first time, we demonstrated that this modified polysaccharide is affected by the specific ion effect. As the salt concentration was increased and stronger kosmotropic anions were used, the lower critical solution temperature of the HBC decreased and the storage modulus was improved, indicating a more hydrophobic structure and stronger molecular chain interactions. On the basis of the thermosensitivity and the ion effects of HBC, a 25-layered hydrogel scaffold with strong mechanical properties and an elaborate structure was prepared via a 3D-printing method and one-step ionic post-treatment. In particular, the scaffold treated with 10% NaCl solution exhibited a tunable elastic modulus of 73.2 kPa to 40 MPa and excellent elastic recovery, as well as biodegradability and cytocompatibility, suggesting the potential for its applications to cartilage tissue repair. By simply controlling the temperature and salt concentrations, this novel approach provides a convenient and green route to improving the structural accuracy and regulating the properties of 3D-printed hydrogel constructs.

  16. Development and Characterization of UHMWPE Fiber-Reinforced Hydrogels For Meniscal Replacement

    Science.gov (United States)

    Holloway, Julianne Leigh

    Meniscal tears are the most common orthopedic injuries to the human body. The current treatment of choice, however, is a partial meniscectomy that leads to osteoarthritis proportional to the amount of tissue removed. As a result, there is a significant clinical need to develop materials capable of restoring the biomechanical contact stress distribution to the knee after meniscectomy and preventing the onset of osteoarthritis. In this work, a fiber-reinforced hydrogel-based synthetic meniscus was developed that allows for tailoring of the mechanical properties and molding of the implant to match the size, shape, and property distribution of the native tissue. Physically cross-linked poly(vinyl alcohol) (PVA) hydrogels were reinforced with ultrahigh molecular weight polyethylene (UHMWPE) fibers and characterized in compression (0.1-0.8 MPa) and tension (0.1-250 MPa) showing fine control over mechanical properties within the range of the human meniscus. Morphology and crystallinity analysis of PVA hydrogels showed increases in crystallinity and PVA densification, or phase separation, with freeze-thaw cycles. A comparison of freeze-thawed and aged, physically cross-linked hydrogels provided insight on both crystallinity and phase separation as mechanisms for PVA gelation. Results indicated both mechanisms independently contributed to hydrogel modulus for freeze-thawed hydrogels. In vitro swelling studies were performed using osmotic solutions to replicate the swelling pressure present in the knee. Minimal swelling was observed for hydrogels with a PVA concentration of 30-35 wt%, independently of hydrogel freeze-thaw cycles. This allows for independent tailoring of hydrogel modulus and pore structure using freeze-thaw cycles and swelling behavior using polymer concentration to match a wide range of properties needed for various soft tissue applications. The UHMWPE-PVA interface was identified as a significant weakness. To improve interfacial adhesion, a novel

  17. Optimum design for effective water transport through a double-layered porous hydrogel inspired by plant leaves

    Science.gov (United States)

    Kim, Hyejeong; Kim, Hyeonjeong; Huh, Hyungkyu; Hwang, Hyung Ju; Lee, Sang Joon

    2014-11-01

    Plant leaves are generally known to have optimized morphological structure in response to environmental changes for efficient water usage. However, the advantageous features of plant leaves are not fully utilized in engineering fields yet, since the optimum design in internal structure of plant leaves is unclear. In this study, the tissue organization of the hydraulic pathways inside plant leaves was investigated. Water transport through double-layered porous hydrogel models analogous to mesophyll cells was experimentally observed. In addition, computational experiment and theoretical analysis were applied to the model systems to find the optimal design for efficient water transport. As a result, the models with lower porosity or with pores distributed widely in the structure exhibit efficient mass transport. Our theoretical prediction supports that structural features of plant leaves guarantee sufficient water supply as survival strategy. This study may provide a new framework for investigating the biophysical principles governing the morphological optimization of plant leaves and for designing microfluidic devices to enhance mass transport ability. This study was supported by the National Research Foundation of Korea and funded by the Korean government.

  18. Gamma radiation synthesis of super absorbent hydrogels for different applications

    International Nuclear Information System (INIS)

    Marzouk, H.M.G.

    2015-01-01

    Super absorbent polymers (SAP) of carboxymethyl cellulose/acrylamide (CMC/PAM), carboxymethyl cellulose/acrylamide/Silica (CMC/AM/Si) and carboxymethyl cellulose/Polyvinyl alcohol (CMC/PVA) were synthesized by radiation-induced grafting using γ-irradiation technique. The effects of various parameters, such as irradiation dose, the content of CMC, PAM, PVA, and Silica gel on the swelling percent of produced hydrogels have been evaluated. The kinetic equilibrium swelling of the prepared copolymer hydrogels was studied, it was found that the maximum swelling percent was 5000 % for the CMC/PAM hydrogel, 12000 % for the CMC/PAM/Si composite hydrogel, and 6200 % for the CMC/PVA hydrogel. The gel fraction, equilibrium swelling and effect of ph on the swelling percent were also studied. The prepared copolymers were also characterized by FTIR spectral analysis, thermo gravimetric analysis (TGA), and scanning electron microscopy (SEM) techniques. In order to evaluate its controlled release potential, different prepared hydrogels were loaded with KNO 3 as an agrochemical model and its potential for controlled release of KNO 3 was studied and evaluated with respect to different parameters such as time of release, ph of the medium, and temperatures. The results obtained from swelling, loading of KNO 3 , and release behavior studies suggested and recommended the possible use of prepared hydrogels for enhancing the plantation of Linum Usitatissimum.

  19. A composite hydrogels-based photonic crystal multi-sensor

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-01-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye. (paper)

  20. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    International Nuclear Information System (INIS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey M.; Wenzel, Walter W.; Puschenreiter, Markus

    2017-01-01

    single hydrogel layer contains both, ion binding materials and a pH luminophore. • DGT is analyzed by laser ablation ICP-MS, PO imaging uses a ratiometric method. • Anion binding materials interfered with pH sensing, while the cation resin did not. • Single-layer imaging is easier to handle and offers reduced artifact susceptibility.

  1. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    optode (PO) imaging is combined. • A single hydrogel layer contains both, ion binding materials and a pH luminophore. • DGT is analyzed by laser ablation ICP-MS, PO imaging uses a ratiometric method. • Anion binding materials interfered with pH sensing, while the cation resin did not. • Single-layer imaging is easier to handle and offers reduced artifact susceptibility.

  2. Polyurethane/poly(vinyl alcohol hydrogel coating improves the cytocompatibility of neural electrodes

    Directory of Open Access Journals (Sweden)

    Mei Li

    2015-01-01

    Full Text Available Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS. However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU and poly(vinyl alcohol (PVA when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12 cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility.

  3. Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs

    International Nuclear Information System (INIS)

    Wang, Fan; Kim, Si-Seup; Kee, Chang-Doo; Shen, Yun-De; Oh, Il-Kwon

    2014-01-01

    A novel electroactive biopolymer actuator was developed based on a cross-linked ionic networking membrane of TEMPO-oxidized bacterial cellulose nanofibers (TOCNs) and polyvinyl alcohol (PVA). Ionic liquids were added to develop an air-working artificial muscle and to enhance the performance of the PVA-TOCN actuator. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers were deposited on the top and bottom surfaces of the PVA-TOCN membrane via a simple dipping and drying method. The electroactive PVA-TOCN actuator under both step and harmonic electrical inputs shows much larger tip displacements and faster bending deformation than the pure TOCN actuator. The cross-linking reaction between PVA and TOCN was observed in the Fourier transform–near-infrared (FT-IR) spectrum of the PVA-TOCN networking membrane. Scanning electron microscopy (SEM), x-ray diffusion (XRD), thermogravimetric analysis (TGA) and tensile and ion conductivity testing results for the PVA-TOCN membrane were compared with those of pristine TOCN. Most important, the PVA-TOCN actuator shows much larger bending deformation under even extremely low input voltages, and this could be attributed to the cross-linking mechanism and the greater flexibility resulting from the synergistic effects between PVA and TOCN. (papers)

  4. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications

    OpenAIRE

    Bourke, Sharon L.; Al-Khalili, Mohammad; Briggs, Tonye; Michniak, Bozena B.; Kohn, Joachim; Poole-Warren, Laura A.

    2003-01-01

    The objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug. TI permeability was altered by changing the solids content of the gel and by adding hydrophilic PVA fillers. As...

  5. Preparation of wound dressing of polyvinyl alcohol/silk fibroin hydrogels by gamma radiation

    International Nuclear Information System (INIS)

    Kewsuwan, Prartana; Pongpat, Suchada; Sonsuk, Manit; Pongpat, Suchada

    2004-10-01

    Poly vinylalcohol/silk fibroin (PVA/SF) hydrogels were prepared by γ-radiation. The preparation conditions such as absorbed doses and PVA/SF concentrations were investigated. When exposed to γ -radiation, PVA/SF was crosslinked to yield high water absorption materials with water content of 100 - 1000% of their dried weight depending on the preparation conditions. The crosslinked density seems to be the main factor governing the swelling of these gels. The swelling behaviors in NaCl aqueous solutions were also investigated. The swelling of PVA/SF hydrogels decreases when exposed to electrolyte solution. With an increase of absorbed dose, the gel fraction of PVA/SF increases

  6. Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane.

    Science.gov (United States)

    Bae, Sang-Ho; Son, So-Ra; Kumar Sakar, Swapan; Nguyen, Thi-Hiep; Kim, Shin-Woo; Min, Young-Ki; Lee, Byong-Taek

    2014-05-01

    A common and prevailing complication for patients with abdominal surgery is the peritoneal adhesion that follows during the post-operative recovery period. Biodegradable polymers have been suggested as a barrier to prevent the peritoneal adhesion. In this work, as a preventive method, PVA/Gelatin hydrogel-based membrane was investigated with various combinations of PVA and gelatin (50/50, 30/70/, and 10/90). Membranes were made by casting method using hot PVA-gelatin solution and the gelatin was cross-linked by exposing UV irradiation for 5 days to render stability of the produced sheathed form in the physiological environment. Physical crosslinking was chosen to avoid the problems of potential cytotoxic effect of chemical crosslinking. Their materials characterization and mechanical properties were evaluated by SEM surface characterization, hydrophilicity, biodegradation rate, and so forth. Cytocompatibility was observed by in vitro experiments with cell proliferation using confocal laser scanning microscopy and the MTT assay by L-929 mouse fibroblast cells. The fabricated PVA/Gel membranes were implanted between artificially defected cecum and peritoneal wall in rats and were sacrificed after 1 and 2 weeks post-operative to compare their tissue adhesion extents with that of control group where the defected surface was not separated by PVA/Gel membrane. The PVA/Gel membrane (10/90) significantly reduced the adhesion extent and showed to be a potential candidate for the anti-adhesion application. Copyright © 2013 Wiley Periodicals, Inc.

  7. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the

  8. In-Vitro Release of Ketoprofen Behavior Loaded in Polyvinyl Alcohol / Acrylamide Hydrogels Prepared by Gamma Irradiation

    International Nuclear Information System (INIS)

    Mahmoud, Gh.A.; Hegazy, D.E.; Kamal, H.

    2014-01-01

    Hydrogels based on various ratios of polyvinyl alcohol (PVA) and acrylamide (AAm) were prepared by gamma radiation. The formed hydrogels were characterized by spectroscopic analysis (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and swelling studied. It was found that the thermal stability of the hydrogel decreases as the AAm content increases in the hydrogel. The higher the AAm content in the hydrogel, the lower the values of Tm and ΔH m . Ketoprofen was adopted as a model drug to study the adsorption and release behavior of (PVA/AAm) hydrogel. The drug adsorption was decreased by increasing AAm ratio in the hydrogel. From the in vitro drug release study in ph progressive media, the basic medium was showed comparatively the highest release and the (PVA/AAm) hydrogel of composition (70/30) was found to be the highest release one. The mechanism of Ketoprofen release from the (PVA/AAm) matrix was found to be non-Fickian mechanism for all investigated hydrogels at ph 7.

  9. Poly (vinyl alcohol-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available PVA-sodium alginate (SA hydrogel membranes containing sodium ampicillin as a topical antibiotic were developed using the freeze–thawing method for wound dressing application. Aqueous solution of sodium alginate has been blended in a certain ratio with PVA, followed by the crosslinking method has been conducted by freeze–thawing method as physical crosslinking instead of the use of traditional chemical crosslinking to avoid riskiness of chemical reagents and crosslinkers. The physicochemical properties of PVA-SA membranes e.g. gel fraction and water uptake % have been performed. Increased SA content with PVA decreased gel fraction, elasticity, and elongation to break of PVA-SA membranes. However, it resulted in an increase in swelling degree, protein adsorption, and roughness of membrane surface. High SA content in PVA membranes had apparently an impact on surface morphology structure of hydrogel membranes. Pore size and pore area distribution have been observed with addition of high SA concentration. However, high SA content had an insignificant effect on the release of ampicillin. The hydrolytic degradation of PVA-SA membranes has prominently increased with increasing SA content. Furthermore, hemolysis (% and in vitro inhibition (% for both Gram positive and negative bacteria have been sharply affected by addition of SA into PVA, indicating the improved blood hemocompatibility. Thus, PVA-SA hydrogel membrane based wound dressing system containing ampicillin could be a good polymeric membrane candidate in wound care.

  10. Electromechanical properties of nanotube-PVA composite actuator bimorphs

    International Nuclear Information System (INIS)

    Bartholome, Christele; Derre, Alain; Roubeau, Olivier; Zakri, Cecile; Poulin, Philippe

    2008-01-01

    Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol -1 ). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles

  11. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-01-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the “bound” water in hydrogels is 50–70% and independent of gel fraction content. In addition to “bound” and “free” states, water in hydrogels is also present in the intermediate state. - Highlights: • The synthesis and the properties of poly(vinyl alcohol) hydrogels were studied. • PVA was modified by glycidyl methacrylate before gamma cross-linking. • The modification results in decreasing of PVA cross-linking dose by 3 orders lower. • The gel fraction and water content of the hydrogels were measured. • A fraction of the “bound” water in hydrogels is independent of gel fraction content

  12. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    Science.gov (United States)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  13. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants

    Directory of Open Access Journals (Sweden)

    Masanori Kobayashi

    2010-04-01

    Full Text Available Due to its excellent biocompatibility and mechanical properties, various different applications of polyvinyl alcohol-hydrogels (PVA-H has been attempted in many fields. In the field of orthopedic surgery, we have been engaged for long time in research on the clinical applications of PVA-H as a artificial cartilage, and have performed many basic experiments on the mechanical properties, synthesis of PVA-H, and developed orthopedic implants using PVA-H. From these studies, many applications of artificial articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This review will present the overview of the applications and recent advances of PVA-H cartilages, and discuss clinical potential of PVA-H for orthopedics implant.

  14. Development and Evaluation of Polyvinyl Alcohol-Hydrogels as an Artificial Atrticular Cartilage for Orthopedic Implants

    Science.gov (United States)

    Kobayashi, Masanori; Hyu, Hyon Suong

    2010-01-01

    Due to its excellent biocompatibility and mechanical properties, various different applications of polyvinyl alcohol-hydrogels (PVA-H) has been attempted in many fields. In the field of orthopedic surgery, we have been engaged for long time in research on the clinical applications of PVA-H as a artificial cartilage, and have performed many basic experiments on the mechanical properties, synthesis of PVA-H, and developed orthopedic implants using PVA-H. From these studies, many applications of artificial articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This review will present the overview of the applications and recent advances of PVA-H cartilages, and discuss clinical potential of PVA-H for orthopedics implant.

  15. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors.

    Science.gov (United States)

    Chen, Ya-Nan; Peng, Lufang; Liu, Tianqi; Wang, Yaxin; Shi, Shengjie; Wang, Huiliang

    2016-10-12

    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.

  16. A combined effect of freeze--thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels.

    Science.gov (United States)

    Gupta, Siddhi; Goswami, Sudipta; Sinha, Arvind

    2012-02-01

    Transparent poly(vinyl alcohol) (PVA) hydrogel films, derived from aqueous solutions of varying concentration, were synthesized by the cyclic freeze-thaw method (0°-37 °C). This study demonstrates a variation in the transparency, degree of crystallinity, wettability, swelling and mechanical properties of the hydrogels as a function of the solution concentration and the number of freeze-thaw cycles for a given average molecular weight (95,000 Da). The study manifests a strong control of the number of freeze-thaw cycles on the structure-property correlations of the synthesized transparent PVA hydrogels, revealing the possibility of obtaining a window of structural and process parameters for the physically cross-linked hydrogels, making them suitable for cell-gel interactions.

  17. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.S.; Shaikh, J.S.; Dalavi, D.S.; Kalagi, S.S. [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.in [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-08-15

    Highlights: {yields} Chemical synthesis of PVA/PANI films by spin and dip coating at room temperature. {yields} Thickness dependent supercapacitor behavior of PVA/PANI film. {yields} The synthesized film are highly stable up to 20,000 cycles. - Abstract: Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H{sub 2}SO{sub 4} aqueous electrolyte. The highest specific capacitance of 571 Fg{sup -1} was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.

  18. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen

    2018-06-01

    Water-swollen hydrogel membranes are good candidates for CO2 separations due to the favorable solubility of CO2 in water. However, the excessive amount of water often causes the poor mechanical property and low selectivity. Herein, we propose a bioadhesion-inspired method to construct robust and high-performance CO2 separation membranes via in situ generation of polydopamine (PDA) nanoaggregates within poly (vinyl alcohol) (PVA) matrix. PDA nanoaggregates entangled with PVA chains and formed hydrogen bonding with hydroxyl groups from PVA chains. Physical cross-linking occurred between PVA chains and PDA nanoaggregates. Compared with the PVA membrane, the PVA-PDA hybrid membrane with the dopamine content of 0.5mol% exhibited a 1.7-fold increase in tensile strength and a 2.2-fold increase in the tensile modulus. The membranes were used for CO2/CH4 separation. The physical cross-linking resulted in a PVA chain rigidification region around PDA nanoaggregates, which hindered the penetration of larger-size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher than that of the PVA membrane. The bioadhesion-inspired method opens up new opportunities to exploit the potential application of hydrogel membranes.

  20. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.

    Science.gov (United States)

    Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang

    2014-04-01

    Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis of silver nanoparticles in hydrogels crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Maria Tania S.; Oliani, Washington L.; Brant, Antonio J.C.; Oliveira, Maria Jose A. de; Riella, Humberto Gracher; Lugao, Ademar B.

    2013-01-01

    Hydrogel is defined as a polymeric material which exhibits the ability to swell and retain a significant fraction of water within its structure without dissolving the polymeric network. Silver nanoparticles (AgNPs) are used in a range of medicinal products based on hydrogels and diverse other products due to their antibacterial properties at low concentrations. The use of ionizing radiation in the production process of hydrogels of poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) in aqueous solutions enables the crosslinking of their polymer chains. If polymer solutions contain Ag + ions, these can be reduced radiolytically to nanocrystalline silver. The objective of this study was to investigate the reduction of Ag + ions by gamma-irradiation for the synthesis of AgNPs in hydrogels of PVA and PVP as main polymers and to make a comparison of the performance of the two polymeric matrices, chiefly focusing on the effect of the AgNPs' synthesis on the crosslinking of both polymers. The properties of the hydrogel matrices obtained were evaluated from tests of gel fraction, swelling in water, and stress-strain. The results of mechanical properties of PVA matrix were higher than those of PVP one whereas the latter exhibited a higher swelling degree. The reduction of silver ions was confirmed by UV-visible absorption spectrum, whose characteristics also indicated the formation of silver nanoparticles in both arrays. (author)

  2. Polyvinyl alcohol hydrogels for iontohporesis

    Science.gov (United States)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  3. Reentrant behaviour in polyvinyl alcohol-borax hydrogels

    Science.gov (United States)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2018-01-01

    Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.

  4. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    Science.gov (United States)

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    Science.gov (United States)

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  6. PVA/Polysaccharides Blended Films: Mechanical Properties

    OpenAIRE

    Silva, Fábio E. F.; Di-Medeiros, Maria Carolina B.; Batista, Karla A.; Fernandes, Kátia F.

    2013-01-01

    Blends of polyvinyl alcohol (PVA) and angico gum (AG) and/or cashew gum (CG) were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO). The films presented thickness varying from 70 to 140 μm (PVA/AG) and 140 to 200 μm (PVA/CG). Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher valu...

  7. Study on antibacterial activity of hydrogel from irradiated silk protein

    International Nuclear Information System (INIS)

    Bunnak, J.; Chaisupakitsin, M.

    2001-01-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N 2 atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  8. Study on antibacterial activity of hydrogel from irradiated silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Bunnak, J; Chaisupakitsin, M [King Mongkut' s Institute of Technology Lardkrabang, Bangkok (Thailand)

    2001-03-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N{sub 2} atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  9. Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shahzad, Sohail Anjum [Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore (Pakistan); Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); MacNeil, Sheila, E-mail: s.macneil@sheffield.ac.uk [Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2017-05-01

    Our aim was to develop a biocompatible hydrogel that could be soaked in heparin and placed on wound beds to improve the vasculature of poorly vascularized wound beds. In the current study, a methodology was developed for the synthesis of a new chitosan derivative (CSD-1). Hydrogels were synthesized by blending CSD-1 for either 4 or 24 h with polyvinyl alcohol (PVA). The physical/chemical interactions and the presence of specific functional groups were confirmed by Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance ({sup 1}H NMR). The porous nature of the hydrogels was confirmed by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) showed that these hydrogels have good thermal stability which was slightly increased as the blending time was increased. Hydrogels produced with 24 h of blending supported cell attachment more and could be loaded with heparin to induce new blood vessel formation in a chick chorionic allantoic membrane assay. - Highlights: • Chitosan based hydrogels were designed to stimulate angiogenesis. • Two new derivatives of chitosan were produced using a Mannich type reaction. • Blending a chitosan derivative with PVA gave a porous biocompatible hydrogel. • Heparin bound to the hydrogel on immersion changing its morphology. • Heparin loaded hydrogel stimulated blood vessel formation in a chick model.

  10. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2011-08-01

    Full Text Available This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 mm Complimentary Metal Oxide Semiconductor (CMOS process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C.

  11. PVA/Polysaccharides Blended Films: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Fábio E. F. Silva

    2013-01-01

    Full Text Available Blends of polyvinyl alcohol (PVA and angico gum (AG and/or cashew gum (CG were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO. The films presented thickness varying from 70 to 140 μm (PVA/AG and 140 to 200 μm (PVA/CG. Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher values of tensile strength (TS and elastic modulus (EM were observed in the film. On the other hand, PVA/CG and PVA/CG-AG presented the highest value of percentage of elongation (E%. Pearson’s Correlation Analysis revealed a positive correlation between TS and EM and a negative correlation between E% and EM. The PVA/CG film presented mechanical properties very similar to MBO, with the advantage of a higher E% (11.96 than MBO (2.94. The properties of the PVA blended films depended on the polysaccharide added in the blend, as well as the acid used as a catalyst. However, all produced films presented interesting mechanical characteristics which enables several biotechnological applications.

  12. Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer.

    Science.gov (United States)

    Su, Yuan; Liu, Jia; Yue, Qinyan; Li, Qian; Gao, Baoyu

    2014-01-01

    A new feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol (FP-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was produced through graft copolymerization with FP as a basic macromolecular skeletal material, acrylic acid as a monomer and PVA as a semi-IPNs polymer. The adsorption of ammonium and phosphate ions from aqueous solution using the new hydrogel as N and P controlled-release fertilizer with water-retention capacity was studied. The effects of pH value, concentration, contact time and ion strength on NH4+ and PO3-4 removal by FP-g-PKA/PVA semi-IPNs hydrogel were investigated using batch adsorption experiments. The results indicated that the hydrogel had high adsorption capacities and fast adsorption rates for NH4+ and PO3-4 in wide pH levels ranging from 4.0 to 9.0. Kinetic analysis presented that both NH4+ and PO3-4 removal were closely fitted with the pseudo-second-order model. Furthermore, the adsorption isotherms of hydrogel were best represented by the Freundlich model. The adsorption-desorption experimental results showed the sustainable stability of FP-g-PKA/PVA semi-IPNs hydrogel for NH4+ and PO3-4 removal. Overall, FP-g-PKA/PVA could be considered as an efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer.

  13. Near-Infrared Light-Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cell-Instructive 3D Microenvironments.

    Science.gov (United States)

    Qin, Xiao-Hua; Wang, Xiaopu; Rottmar, Markus; Nelson, Bradley J; Maniura-Weber, Katharina

    2018-03-01

    Advanced hydrogel systems that allow precise control of cells and their 3D microenvironments are needed in tissue engineering, disease modeling, and drug screening. Multiphoton lithography (MPL) allows true 3D microfabrication of complex objects, but its biological application requires a cell-compatible hydrogel resist that is sufficiently photosensitive, cell-degradable, and permissive to support 3D cell growth. Here, an extremely photosensitive cell-responsive hydrogel composed of peptide-crosslinked polyvinyl alcohol (PVA) is designed to expand the biological applications of MPL. PVA hydrogels are formed rapidly by ultraviolet light within 1 min in the presence of cells, providing fully synthetic matrices that are instructive for cell-matrix remodeling, multicellular morphogenesis, and protease-mediated cell invasion. By focusing a multiphoton laser into a cell-laden PVA hydrogel, cell-instructive extracellular cues are site-specifically attached to the PVA matrix. Cell invasion is thus precisely guided in 3D with micrometer-scale spatial resolution. This robust hydrogel enables, for the first time, ultrafast MPL of cell-responsive synthetic matrices at writing speeds up to 50 mm s -1 . This approach should enable facile photochemical construction and manipulation of 3D cellular microenvironments with unprecedented flexibility and precision. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical prediction and measurement of optoacoustic signals generated in PVA-H tissue phantoms

    Science.gov (United States)

    Melchert, Oliver; Blumenröther, Elias; Wollweber, Merve; Roth, Bernhard

    2018-01-01

    We present numerical simulations of optoacoustic (OA) signals, complementing laboratory experiments on melanin doped polyvinyl alcohol hydrogel (PVA-H) tissue phantoms. We review the computational approach to model the underlying mechanisms, i.e. optical absorption of laser energy and acoustic propagation of mechanical stress, geared toward experiments that involve absorbing media with homogeneous acoustic properties. We apply the numerical procedure to predict signals observed in the acoustic near- and farfield in both, forward and backward detection mode, in PVA-H tissue phantoms (i.e. an elastic solid). Further, we report on verification tests of our research code based on OA experiments on dye solution (i.e. a liquid) detailed in the literature and benchmark our 3D procedure via limiting cases described in terms of effectively 1D theoretical approaches.

  15. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration

    Science.gov (United States)

    Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang

    2016-12-01

    Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.

  16. Improment of process for preparing and testing hydrogels in wound/burn treatment to apply a licence

    International Nuclear Information System (INIS)

    Doan Thi The; Pham Thi Thu Hong; Doan Binh; Tran Tich Canh; Nguyen Quoc Hien

    2007-01-01

    Hydrogel based on PVA/PVP/KC/CMC for burn wound dressing has been prepared by cross linking irradiation. The characteristics of the hydrogel such as gel fraction, mechanical properties, the equilibrium swelling degree in water and in pseudo-extra cellular fluid (PECF), and the water vapor transmission rate (WVTR) were measured. The microbe penetration, burn-wound healing effects, skin irritation and sterility level of the hydrogel were tested and analyzed. In addition, a technology system for producing hydrogel in a 500 pieces/batch/4hr scale was designed. (author)

  17. Effects of Polysaccharides on the physical properties of Hydrogels prepared by the application of Gamma (-γ) rays

    International Nuclear Information System (INIS)

    Chowdhury, M. N. K.; Alam, A. K. M. M.; Bhattacharia, S. K.; Dafader, N. C.; Haque, M. E.; Akhtar, F.

    2004-06-01

    The effects of polysaccharides as additives on the physical properties of hydrogels prepared by the application of gamma (-γ) rays were investigated. The polysaccharides- sago, barley and rice powder were used as additives for the preparation of hydrogel from polyvinyl alcohol (PVA) having molecular weight 72,000 by applying various doses of gamma rays. The physical properties of the prepared hydrogel, such as gel fraction, degree of swelling, water absorption- and desorption rates were determined. It is found that the gel fraction of hydrogel with barley is higher than that of hydrogel with rice powder and sago. It is also found that the water absorption- and desorption rates of hydrogel with rice powder are higher than those of hydrogel with barley and sago

  18. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a

  19. Physically crosslinked poly(vinyl alcohol-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2014-07-01

    Full Text Available Poly(vinyl alcohol, PVA is a polymer of great importance because of its many appealing characteristics specifically for various pharmaceutical and biomedical applications. Physically crosslinked hydrogel membranes composed of different amounts of hydroxyethyl starch (HES in (PVA and ampicillin were prepared by applying freeze–thawing method. This freezing–thawing cycle was repeated for three consecutive cycles. Physicochemical properties of PVA–HES membrane gel such as gel fraction, swelling, morphology, elongation, tensile strength, and protein adsorption were investigated. Introducing HES into freeze–thawed PVA structure affected crystal size distribution of PVA; and hence physicochemical properties and morphological structure have been affected. Increased HES concentration decreased the gel fraction %, maximum strength and break elongation. Indeed it resulted into a significant incrementing of the swelling ability, amount of protein adsorption, broader pore size, and pore distribution of membrane morphological structure. Furthermore, an increase in HES concentration resulted in better and still lower thermal stability compared to virgin PVA and freeze–thawed PVA. The maximum weight loss of PVA–HES hydrogel membranes ranged between 18% and 60% according to HES content, after two days of degradation in phosphate buffer saline (PBS, which indicates they are biodegradable. Thus, PVA–HES hydrogel membranes containing ampicillin could be a novel approach for biomedical application e.g. wound dressing purposes.

  20. The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent.

    Science.gov (United States)

    El-Fawal, Gomaa F; Yassin, Abdelrahman M; El-Deeb, Nehal M

    2017-07-01

    Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\\KC\\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.

  1. Poly(vinyl alcohol)-heparin hydrogels as sensor catheter membranes

    NARCIS (Netherlands)

    Brinkman, E.; van der Does, L.; Bantjes, A.

    1991-01-01

    Poly(vinyl alcohol)-heparin hydrogels with varying water content were synthesized for use as sensor catheter membranes. Films were cast from aqueous mixtures of poly(viny) alcohol) (PVA), a photosensitive cross-linker p-diazonium diphenyl amine polymer (PA), glutaraldehyde (GA) and heparin. After

  2. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  3. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  4. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples.

    Science.gov (United States)

    Hayes, Jennifer C; Curley, Colin; Tierney, Paul; Kennedy, James E

    2016-03-01

    The primary objective of this research was the biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous polyvinyl alcohol (PVA) was treated with a sodium sulphate (Na2SO4) solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Development of a meniscal shaped mould and sample housing unit allowed the production of meniscal shaped hydrogels for direct comparison to human meniscal tissue. Results obtained show that compressive responses were slightly higher in PVA/Na2SO4 menisci, displaying maximum compressive loads of 2472N, 2482N and 2476N for samples having undergone 1, 3 and 5 freeze-thaw cycles respectively. When compared to the human meniscal tissue tested under the same conditions, an average maximum load of 2467.5N was observed. This suggests that the PVA/Na2SO4 menisci are mechanically comparable to the human meniscus. Biocompatibility analysis of PVA/Na2SO4 hydrogels revealed no acute cytotoxicity. The work described herein has innovative potential in load bearing applications, specifically as an alternative to meniscectomy as replacement of critically damaged meniscal tissue in the knee joint where repair is not viable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels.

    Science.gov (United States)

    Martínez-Gómez, Fabián; Guerrero, Juan; Matsuhiro, Betty; Pavez, Jorge

    2017-01-02

    Hydrogels, based on polysaccharides have found a number of applications as drug delivery carriers. In this work, hydrogels of full characterized sodium alginate (Mn 87,400g/mol) and commercial poly(vinyl alcohol) (PVA) sensitive to pH and temperature stimuli were obtained using a simple, controlled, green, low cost method based on freeze-thaw cycles. Stable hydrogels of sodium alginate/PVA with 0.5:1.5 and 1.0:1.0w/v concentrations showed very good swelling ratio values in distilled water (14 and 20g/g, respectively). Encapsulation and release of metformin hydrochloride in hydrogels of 1.0:1.0w/v sodium alginate/PVA was followed by UV spectroscopy. The hydrogel released a very low amount of metformin hydrochloride at pH 1.2; the highest release value (55%) was obtained after 6h at pH 8.0. Also, the release of metformin hydrochloride was studied by 1 H NMR spectroscopy, the temporal evolution of methyl group signals of metformin showed 30% of drug release after 3h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Crosslinked poly(vinyl alcohol hydrogels for wound dressing applications: A review of remarkably blended polymers

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available A series of excellent poly(vinyl alcohol (PVA/polymers blend hydrogel were reviewed using different crosslinking types to obtain proper polymeric dressing materials, which have satisfied biocompatibility and sufficient mechanical properties. The importance of biodegradable–biocompatible synthetic polymers such as PVA, natural polymers such as alginate, starch, and chitosan or their derivatives has grown significantly over the last two decades due to their renewable and desirable biological properties. The properties of these polymers for pharmaceutical and biomedical application needs have attracted much attention. Thus, a considered proportion of the population need those polymeric medical applications for drug delivery, wound dressing, artificial cartilage materials, and other medical purposes, where the pressure on alternative polymeric devices in all countries became substantial. The review explores different polymers which have been blended previously in the literature with PVA as wound dressing blended with other polymeric materials, showing the feasibility, property change, and purpose which are behind the blending process with PVA.

  7. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method.

    Science.gov (United States)

    Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin

    2017-08-01

    Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application

    Directory of Open Access Journals (Sweden)

    Jana Mohrova

    2012-01-01

    Full Text Available The thin nanofibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nanofibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA was used as a polymer because of its good water solubility. It is possible to influence the structure of nanofibrous layer during the production process thanks to this property of polyvinyl alcohol.

  9. A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure

    Science.gov (United States)

    Yang, Haowei; Pan, Lei; Han, Yingping; Ma, Lihua; Li, Yao; Xu, Hongbo; Zhao, Jiupeng

    2017-11-01

    In study, we proposed a simple yet fast optical sensing motif based on thimbleful of polyvinyl alcohol (PVA) infiltrated photonic crystal (PC), which allows for high efficiency in vapor sensing through changes in their inter-layer space. Linear response to a broad dynamic range of vapor concentration was realized. Ultrafast response time (<1 s) and excellent recyclability were also demonstrated. Selective response to a vapor was exhibited, reflecting well the characteristic sorption properties of PVA, with which colorimetric reporting was readily achieved. These substantial improvements in performance are attributed to the efficacy of signal transduction and the enhanced signal transduction because of thimbleful PVA infiltrated space between adjacent SiO2 nanospheres.

  10. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique

    International Nuclear Information System (INIS)

    Sher, Praveen; Oliveira, Sara M; Borges, João; Mano, João F

    2015-01-01

    In this work, three-dimensional (3D) self-sustaining, spiral-shaped constructs were produced through a combination of ionotropic gelation, to form cell-encapsulated alginate fibers, and a perfusion-based layer-by-layer (LbL) technique. Single fibers were assembled over cylindrical molds by reeling to form spiral shapes, both having different geometries and sizes. An uninterrupted nanometric multilayer coating produced by a perfusion-based LbL technique, using alginate and chitosan, generated stable 3D spiral-shaped macrostructures by gripping and affixing the threads together without using any crosslinking/binding agent. The chelation process altered the internal microenvironment of the 3D construct from the solid to the liquefied state while preserving the external geometry. L929 cell viability by MTS and dsDNA quantification favor liquefied 3D constructs more than non-liquefied ones. The proposed technique setup helps us to generate complex polyelectrolyte-based 3D constructs for tissue engineering applications and organ printing. (note)

  11. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  12. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds

    NARCIS (Netherlands)

    Huang, Xiaobin; Hou, Yong; Zhong, Leilei; Huang, Dechun; Qian, Hongliang; Karperien, Marcel; Chen, Wei

    2018-01-01

    We investigated the effects of different oxygen tension (21% and 2.5% O2) on the chondrogenesis of different cell systems cultured in pH-degradable PVA hydrogels, including human articular chondrocytes (hACs), human mesenchymal stem cells (hMSCs), and their cocultures with a hAC/hMSC ratio of 20/80.

  13. Microsphere erosion in outer hydrogel membranes creating macroscopic porosity to counter biofouling-induced sensor degradation.

    Science.gov (United States)

    Vaddiraju, S; Wang, Y; Qiang, L; Burgess, D J; Papadimitrakopoulos, F

    2012-10-16

    Biofouling and tissue inflammation present major challenges toward the realization of long-term implantable glucose sensors. Following sensor implantation, proteins and cells adsorb on sensor surfaces to not only inhibit glucose flux but also signal a cascade of inflammatory events that eventually lead to permeability-reducing fibrotic encapsulation. The use of drug-eluting hydrogels as outer sensor coatings has shown considerable promise to mitigate these problems via the localized delivery of tissue response modifiers to suppress inflammation and fibrosis, along with reducing protein and cell absorption. Biodegradable poly (lactic-co-glycolic) acid (PLGA) microspheres, encapsulated within a poly (vinyl alcohol) (PVA) hydrogel matrix, present a model coating where the localized delivery of the potent anti-inflammatory drug dexamethasone has been shown to suppress inflammation over a period of 1-3 months. Here, it is shown that the degradation of the PLGA microspheres provides an auxiliary venue to offset the negative effects of protein adsorption. This was realized by: (1) the creation of fresh porosity within the PVA hydrogel following microsphere degradation (which is sustained until the complete microsphere degradation) and (2) rigidification of the PVA hydrogel to prevent its complete collapse onto the newly created void space. Incubation of the coated sensors in phosphate buffered saline (PBS) led to a monotonic increase in glucose permeability (50%), with a corresponding enhancement in sensor sensitivity over a 1 month period. Incubation in serum resulted in biofouling and consequent clogging of the hydrogel microporosity. This, however, was partially offset by the generated macroscopic porosity following microsphere degradation. As a result of this, a 2-fold recovery in sensor sensitivity for devices with microsphere/hydrogel composite coatings was observed as opposed to similar devices with blank hydrogel coatings. These findings suggest that the use of

  14. Immobilization and release study of a red alga extract in hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata Hage

    2009-01-01

    In pharmaceutical technology hydrogel is the most used among the polymeric matrices due to its wide application and functionality, primarily in drug delivery system. In view of the large advance innovations in cosmetic products, both through the introduction of new active agents as the matrices used for its controlled release, the objective of this study was to evaluate the release and immobilization of a natural active agent, the Arct'Alg in hydrogel membranes to obtain a release device for cosmetics. Arct'Alg is an aqueous extract which has excellent anti-oxidant, lipolytic, anti-inflammatory and cytostimulant action. Study on mechanical and physical-chemical properties and biocompatibility in vitro of hydrogel membranes of poly(vinyl-2- pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) obtained by ionizing radiation crosslinking have been performed. The physical-chemical characterization of polymeric matrices was carried out by gel fraction and swelling tests and biocompatibility by in vitro test of cytotoxicity by using the technique of neutral red incorporation. In the gel fraction test, both the PVP and PVA hydrogel showed a high crosslinking degree. The PVP hydrogel showed a greater percentage of swelling in relation to PVA and the cytotoxicity test of the hydrogels showed non-toxicity effect. The cytostimulation property of Arct'Alg was verified by the cytostimulation test with rabbit skin cells, it was showed an increase at about 50% of the cells when in contact with 0,5% of active agent. The hydrogel membranes prepared with 3% of Arct'Alg were subjected to the release test in an incubator at 37 degree C and aliquots collected during the test were quantified by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that the PVP hydrogel membranes released about 50% of Arct'Alg incorporated and the PVA hydrogel membranes at about 30%. In the cytostimulation test of released Arct'Alg, the PVP device showed an

  15. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application

    Science.gov (United States)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2017-06-01

    Keeping in view the inherent wound healing ability of tragacanth gum (TG), mucoadhesive and gel forming nature of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), in the present work, an attempt has been made to prepare the antibiotic drug 'gentamicin' and analgesic drug 'lidocaine' loaded sterile TG-PVA-PVP hydrogel dressings for care of wound infection and wound pain together. These polymers were characterized by cryo-SEM, AFM, FTIR, XRD, 13C NMR, TGA, DSC and swelling studies. Drug release mechanism and kinetic models, network parameters and other properties like haemolysis, mucoadhesion, water vapor permeability, microbial penetration, antioxidant activities and oxygen permeability were also determined. The results showed wound fluid absorption and slow drug release ability of hydrogel films. These polymer films were found to be blood compatible, permeable to water vapor and O2, and impermeable to microorganism. Further, the synergic effects of mucoadhesive, antimicrobial and antioxidant nature of hydrogel dressings will make them suitable candidate for wound management.

  16. Preparation and Property Evaluation of Conductive Hydrogel Using Poly (Vinyl Alcohol/Polyethylene Glycol/Graphene Oxide for Human Electrocardiogram Acquisition

    Directory of Open Access Journals (Sweden)

    Xueliang Xiao

    2017-06-01

    Full Text Available Conductive hydrogel combined with Ag/AgCl electrode is widely used in the acquisition of bio-signals. However, the high adhesiveness of current commercial hydrogel causes human skin allergies and pruritus easily after wearing hydrogel for electrodes for a long time. In this paper, a novel conductive hydrogel with good mechanical and conductive performance was prepared using polyvinyl alcohol (PVA, polyethylene glycol (PEG, and graphene oxide (GO nanoparticles. A cyclic freezing–thawing method was employed under processing conditions of −40 °C (8 h and 20 °C (4 h separately for three cycles in sequence until a strong conductive hydrogel, namely, PVA/PEG/GO gel, was obtained. Characterization (Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy results indicated that the assembled hydrogel was successfully prepared with a three-dimensional network structure and, thereafter, the high strength and elasticity due to the complete polymeric net formed by dense hydrogen bonds in the freezing process. The as-made PVA/PEG/GO hydrogel was then composited with nonwoven fabric for electrocardiogram (ECG electrodes. The ECG acquisition data indicated that the prepared hydrogel has good electro-conductivity and can obtain stable ECG signals for humans in a static state and in motion (with a small amount of drift. A comparison of results indicated that the prepared PVA/PEG/GO gel obtained the same quality of ECG signals with commercial conductive gel with fewer cases of allergies and pruritus in volunteer after six hours of wear.

  17. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Anwar, Muhammad Sabieh [Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A., Lahore 54792 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2015-11-01

    This paper describes the development of a new crosslinking method for the synthesis of novel hydrogel films from chitosan and PVA for potential use in various biomedical applications. These hydrogel membranes were synthesized by blending different ratios of chitosan (CS) and poly(vinyl alcohol) (PVA) solutions and were crosslinked with 2.5% (w/v) triethyl orthoformate (TEOF) in the presence of 17% (w/v) sulfuric acid. The physical/chemical interactions and the presence of specific functional groups in the synthesized materials were evaluated by Fourier transform infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) proved that these crosslinked hydrogel films have good thermal stability which was decreased as the CS ratio was increased. Differential scanning calorimetry (DSC) exhibited that CS and PVA were present in the amorphous form. The solution absorption properties were performed in phosphate buffer saline (PBS) solution of pH 7.4. The 20% PVA–80% CS crosslinked hydrogel films showed a greater degree of solution absorption (183%) as compared to other compositions. The hydrogels with greater CS concentration (60% and 80%) demonstrated relatively more porous structure, better cell viability and proliferation and also revealed good blood clotting ability even after crosslinking. Based on the observed facts these hydrogels can be tailored for their potential utilization in wound healing and skin tissue engineering applications. - Highlights: • A new method for covalently crosslinking of chitosan and PVA. • Triethyl orthoformate (TEOF) a new polymer–polymer crosslinking agent. • Hydrogels displayed a good solution absorption capacity. • Hydrogels demonstrated good cytocompatibility. • Good blood clotting potential was shown by these scaffolds.

  18. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis

    International Nuclear Information System (INIS)

    Yar, Muhammad; Shahzad, Sohail; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Anwar, Muhammad Sabieh; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2015-01-01

    This paper describes the development of a new crosslinking method for the synthesis of novel hydrogel films from chitosan and PVA for potential use in various biomedical applications. These hydrogel membranes were synthesized by blending different ratios of chitosan (CS) and poly(vinyl alcohol) (PVA) solutions and were crosslinked with 2.5% (w/v) triethyl orthoformate (TEOF) in the presence of 17% (w/v) sulfuric acid. The physical/chemical interactions and the presence of specific functional groups in the synthesized materials were evaluated by Fourier transform infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) proved that these crosslinked hydrogel films have good thermal stability which was decreased as the CS ratio was increased. Differential scanning calorimetry (DSC) exhibited that CS and PVA were present in the amorphous form. The solution absorption properties were performed in phosphate buffer saline (PBS) solution of pH 7.4. The 20% PVA–80% CS crosslinked hydrogel films showed a greater degree of solution absorption (183%) as compared to other compositions. The hydrogels with greater CS concentration (60% and 80%) demonstrated relatively more porous structure, better cell viability and proliferation and also revealed good blood clotting ability even after crosslinking. Based on the observed facts these hydrogels can be tailored for their potential utilization in wound healing and skin tissue engineering applications. - Highlights: • A new method for covalently crosslinking of chitosan and PVA. • Triethyl orthoformate (TEOF) a new polymer–polymer crosslinking agent. • Hydrogels displayed a good solution absorption capacity. • Hydrogels demonstrated good cytocompatibility. • Good blood clotting potential was shown by these scaffolds

  19. Effect of layered silicate content on the morphology and thermal properties of Poly(vinyl alcohol) films

    International Nuclear Information System (INIS)

    Silva, Jessica R.M.B. da; Santos, Barbara F.F. dos; Leite, Itamara F.

    2015-01-01

    This study aims to evaluate the effect of layered silicate content on the morphology and thermal properties of PVA films. The PVA/layered silicate (AN) films were prepared by intercalation solution, using 1 to 2% of bentonite with respect to the PVA total weight. Then the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Results of the FTIR revealed interaction between the functional groups of the PVA and the layered silicate. The XRD analysis showed that nanocomposites with intercalated and partially exfoliated morphology were obtained. The results of TG showed that the nanocomposite PVA/2%AN showed higher thermal stability compared to PVA/1%AN. The DSC results showed that the addition of AN to the PVA did not affect crystallization rate, as well as promoted a reduction in glass transition temperature and melting of the PVA. (author)

  20. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    Science.gov (United States)

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    Science.gov (United States)

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  2. Studies on Radiation Synthesis of Poly(vinyl alcohol)- Natural Polysaccharides Hydrogel Wound Dressing

    International Nuclear Information System (INIS)

    Varshney, L.

    2006-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible and mechanically strong, biocompatible, effective and economical hydrogel dressings(HD). The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing Poly-vinylalcohol, (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5 -2 % resulted in increase of tensile strength from 45 g/cm 2 to 400 g/cm 2 , elongation from 30 % to 410 % and water uptake from 25 % to 120% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. The polysaccharides show different pre-gel viscosities behaviour indicating different individual contribution to the PVA network. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The polysaccharides also provide desirable plasticizer and humectant effect into the dressing. Formulations containing 7-9% PVA, 0.5- 1.5 % carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning Electron Micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non healing ulcers of Diabetes, Leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  3. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor

    International Nuclear Information System (INIS)

    Mohd Abdah, Muhammad Amirul Aizat; Zubair, Nur Afifah; Azman, Nur Hawa Nabilah; Sulaiman, Yusran

    2017-01-01

    Conducting nanofibers comprised of poly(vinyl alcohol) (PVA)-graphene oxide (GO) nanofiber coated with poly(3,4-ethylenedioxythiophene) (PEDOT) for supercapacitor application was prepared through integrated techniques i.e. electrospinning and electrodeposition. The formation of smooth cross-linking nanofibers without beads proved that GO has uniformly distributed into PVA with an average diameter of 117 ± 32 nm. Field emission scanning electron microscopy (FESEM) images revealed that cauliflower-like structure of PEDOT grew well on the surface of PVA-GO nanofibers with high porosity. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy proved the existence of PVA, GO, and PEDOT. PVA-GO/PEDOT nanocomposite showed the highest specific capacitance (224.27 F/g) compared to PEDOT (167.92 F/g) and PVA/PEDOT (182.73 F/g). PVA-GO/PEDOT nanocomposite exhibited 1.8 V wide operating potential windows which significantly can enhance its capacitive behaviour. PVA-GO/PEDOT nanocomposite has also demonstrated superior performance with the energy density and power density of 9.58 Wh/kg and 304.37 W/kg, respectively at 1.0 A/g current density. PVA-GO/PEDOT nanocomposite revealed the smallest resistance of charge transfer (R_c_t) and equivalent series resistance (ESR) indicating excellent charge propagation behaviour at the interfacial region. The composite exhibits a good capacity retention of 82.41% after 2000 CV cycles and further drops 11.27% after 5000 cycles caused by the swelling and shrinkage of the electrode material during the charging and discharging processes. - Highlights: • PVA-GO/PEDOT was prepared via electrospinning and electrodeposition. • PVA-GO/PEDOT displays high capacitance value with wide potential window of 1.8 V. • PVA-GO/PEDOT exhibits high energy and power density, low R_c_t and ESR.

  4. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Abdah, Muhammad Amirul Aizat; Zubair, Nur Afifah; Azman, Nur Hawa Nabilah [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia); Sulaiman, Yusran, E-mail: yusran@upm.edu.my [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia); Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor (Malaysia)

    2017-05-01

    Conducting nanofibers comprised of poly(vinyl alcohol) (PVA)-graphene oxide (GO) nanofiber coated with poly(3,4-ethylenedioxythiophene) (PEDOT) for supercapacitor application was prepared through integrated techniques i.e. electrospinning and electrodeposition. The formation of smooth cross-linking nanofibers without beads proved that GO has uniformly distributed into PVA with an average diameter of 117 ± 32 nm. Field emission scanning electron microscopy (FESEM) images revealed that cauliflower-like structure of PEDOT grew well on the surface of PVA-GO nanofibers with high porosity. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy proved the existence of PVA, GO, and PEDOT. PVA-GO/PEDOT nanocomposite showed the highest specific capacitance (224.27 F/g) compared to PEDOT (167.92 F/g) and PVA/PEDOT (182.73 F/g). PVA-GO/PEDOT nanocomposite exhibited 1.8 V wide operating potential windows which significantly can enhance its capacitive behaviour. PVA-GO/PEDOT nanocomposite has also demonstrated superior performance with the energy density and power density of 9.58 Wh/kg and 304.37 W/kg, respectively at 1.0 A/g current density. PVA-GO/PEDOT nanocomposite revealed the smallest resistance of charge transfer (R{sub ct}) and equivalent series resistance (ESR) indicating excellent charge propagation behaviour at the interfacial region. The composite exhibits a good capacity retention of 82.41% after 2000 CV cycles and further drops 11.27% after 5000 cycles caused by the swelling and shrinkage of the electrode material during the charging and discharging processes. - Highlights: • PVA-GO/PEDOT was prepared via electrospinning and electrodeposition. • PVA-GO/PEDOT displays high capacitance value with wide potential window of 1.8 V. • PVA-GO/PEDOT exhibits high energy and power density, low R{sub ct} and ESR.

  5. Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Naziha Suliman Alghunaim

    Full Text Available Nanocomposite films of polyvinyl alcohol (PVA containing constant ratio of both single and multi-wall carbon nanotubes had been obtained by dispersion techniques and were investigated by different techniques. The infrared spectrum confirmed that SWNTs and MWNTs have been covalently related OH and CC bonds within PVA. The X-ray diffraction indicated lower crystallinity after the addition of carbon nanotubes (CNTs due to interaction between CNTs and PVA. Transmission electron microscope (TEM illustrated that SWNTs and MWNTs have been dispersed into PVA polymeric matrix and it wrapped with PVA. The properties of PVA were enhanced by the presence of CNTs. TEM images show uniform distribution of CNTs within PVA and a few broken revealing that CNTs broke aside as opposed to being pulled out from fracture surface which suggests an interfacial bonding between CNTs and PVA. Maximum value of AC conductivity was recorded at higher frequencies. The behavior of both dielectric constant (ɛ′ and dielectric loss (ɛ″ were decreased when frequency increased related to dipole direction within PVA films to orient toward the applied field. At higher frequencies, the decreasing trend seems nearly stable as compared with lower frequencies related to difficulty of dipole rotation. Keywords: CNTs, XRD, TEM, AC conductivity

  6. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application

    International Nuclear Information System (INIS)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2017-01-01

    Keeping in view the inherent wound healing ability of tragacanth gum (TG), mucoadhesive and gel forming nature of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), in the present work, an attempt has been made to prepare the antibiotic drug ‘gentamicin’ and analgesic drug ‘lidocaine’ loaded sterile TG-PVA-PVP hydrogel dressings for care of wound infection and wound pain together. These polymers were characterized by cryo-SEM, AFM, FTIR, XRD, 13 C NMR, TGA, DSC and swelling studies. Drug release mechanism and kinetic models, network parameters and other properties like haemolysis, mucoadhesion, water vapor permeability, microbial penetration, antioxidant activities and oxygen permeability were also determined. The results showed wound fluid absorption and slow drug release ability of hydrogel films. These polymer films were found to be blood compatible, permeable to water vapor and O 2, and impermeable to microorganism. Further, the synergic effects of mucoadhesive, antimicrobial and antioxidant nature of hydrogel dressings will make them suitable candidate for wound management. - Highlights: • It is radiation formation of sterile Semi-IPN hydrogel wound dressings. • Release of lidocaine and gentamicin can take for care of wound infection and wound pain simultaneously. • Hydrogels were blood compatible and permeable to H 2 O vapor and O 2. • Release of drugs occurred through non-Fickian diffusion mechanism. • Hydrogels were mucoadhesive and antioxidant nature.

  7. Preparation and Characterization of Breathable Hemostatic Hydrogel Dressings and Determination of Their Effects on Full-Thickness Defects

    Directory of Open Access Journals (Sweden)

    Hong Pan

    2017-12-01

    Full Text Available Hydrogel-based wound dressings provide a cooling sensation, a moist environment, and act as a barrier to microbes for wounds. In this study, a series of soft, flexible, porous non-stick hydrogel dressings were prepared through the simple repeated freeze-thawing of a poly(vinyl alcohol, human-like collagen (or and carboxymethyl chitosan mixed solution rather than chemical cross-linking and Tween80 was added as pore-forming agent for cutaneous wound healing. Some of their physical and chemical properties were characterized. Interestingly, hydrogel PVA-HLC-T80 and PVA-HLC-CS-T80 presented excellent swelling ratios, bacterial barrier activity, moisture vapor permeability, hemostasis activity and biocompatibility. Furthermore, in vivo evaluation of the healing capacity of these two hydrogels was checked by creating a full-thickness wound defect (1.3 cm × 1.3 cm in rabbit. Macroscopic observation and subsequent hematoxylin eosin staining (H&E staining and transmission electron microscopy (TEM analysis at regular time intervals for 18 days revealed that the hydrogels significantly enhanced wound healing by reducing inflammation, promoting granulation tissue formation, collagen deposition and accelerating re-epithelialization. Taken together, the obtained data strongly encourage the use of these multifunctional hydrogels for skin wound dressings.

  8. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair.

    Science.gov (United States)

    Jin, Sung Giu; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Seo, Youn Gee; Go, Toe Gyung; Youn, Yu Seok; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2016-01-30

    To develop a novel sodium fusidate-loaded triple polymer hydrogel dressing (TPHD), numerious polyvinyl alcohol-based (PVA) hydrogel dressings were prepared with various hydrophilic polymers using the freeze-thaw method, and their hydrogel dressing properties were assessed. Among the hydrophilic polymers tested, sodium alginate (SA) improved the swelling capacity the most, and polyvinyl pyrrolidone (PVP) provided the greatest improvement in bioadhesive stength and mechanical properties. Thus, PVA based-TPHDs were prepared using different ratios of PVP:SA. The effect of selected PVP:SA ratios on the swelling capacity, bioadhesive strength, mechanical properties, and drug release, permeation and deposition characteristics of sodium fusidate-loaded PVA-based TPHDs were assessed. As the ratio of PVP:SA increased in PVA-loaded TPHD, the swelling capacity, mechanical properties, drug release, permeation and deposition were improved. The TPHD containing PVA, PVP, SA and sodium fusidate at the weight ratio of 10/6/1/1 showed excellent hydrogel dressing properties, release, permeation and deposition of drug. Within 24h, 71.8 ± 1.3% of drug was released. It permeated 625.1 ± 81.2 μg/cm(2) through the skin and deposited of 313.8 ± 24.1 μg/cm(2) within 24h. The results of in vivo pharmacodynamic studies showed that sodium fusidate-loaded TPHD was more effective in improving the repair process than was a commercial product. Thus, this sodium fusidate-loaded TPHD could be a novel tool in wound care. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  10. Effect of ethylene carbonate as a plasticizer on CuI/PVA nanocomposite: Structure, optical and electrical properties

    Directory of Open Access Journals (Sweden)

    Shaimaa A. Mohamed

    2014-01-01

    Full Text Available Layers of ethylene carbonate (EC modified CuI/PVA polymer composites were prepared by growth of CuI nano-particles in an aqueous solution of PVA followed by casting at room temperature. The structural, thermal, optical, electrical and di-electrical characterization of polymer composites was investigated using different techniques. These investigations confirm the growth of CuI nano-particles and reduction of PVA crystallinity by increasing ethylene carbonate concentration. These results show that energy band gap and bulk conductivity increase while activation energy reduces with the increase of EC concentration in the composite. Moreover, the variation of the dielectric permittivity and dielectric loss with EC content are found to obey Debye dispersion relations.

  11. FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends

    International Nuclear Information System (INIS)

    Ilcin, M.; Hola, O.; Bakajova, B.; Kucerik, J.

    2010-01-01

    Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5-10%. (author)

  12. Control of nanostructures in PVA, PVA/chitosan blends and PCL ...

    Indian Academy of Sciences (India)

    Wintec

    viz. chitosan, to PVA solution, an improvement in bio- compatibility of the blend system can be achieved. This can be attributed to the good biocompatibility, antibacte- rial properties, appropriate biodegradability, excellent physicochemical properties, and its commercial availabi- lity at relatively low cost (Huang et al 2005).

  13. Preparation and characterization of acrylic acid-grafted poly (vinyl alcohol) hydrogel actuators using γ-ray irradiation

    International Nuclear Information System (INIS)

    An, Sung Jun; Lim, Youn Mook; Gwon, Hui Jeong; Kim, Yun Hye; Youn, Min Ho; Nho, Young Chang; Han, Dong Hyun; Kim, Chong Yeal

    2008-01-01

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and artificial muscles. In this study, poly (vinyl alcohol)(PVA) grafted acrylic acid monomer (PVA-g-AAc) hydrogels were prepared by 60 Co γ-ray irradiation and their properties such as degree of grafting and weight swelling in electrostimulation as an artificial muscle and actuator were investigated

  14. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il

    2013-01-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  15. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.

    Science.gov (United States)

    Curley, Colin; Hayes, Jennifer C; Rowan, Neil J; Kennedy, James E

    2014-12-01

    The treatment of irreparable knee meniscus tears remains a major challenge for the orthopaedic community. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous poly vinyl alcohol was treated with a sodium sulphate solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Physical crosslinks in the form of crystalline regions were induced within the hydrogel structure which resulted in a large increase in mechanical resistance. Results showed that the optimal sodium sulphate addition of 6.6% (w/v) Na2SO4 in 8.33% (w/v) PVA causes the PVA to precipitate out of its solution. The effect of multiple freeze thaw cycles was also investigated. Investigation comprised of a variety of well-established characterisation techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), mechanical analysis, rheometry and swelling studies. DSC analysis showed that samples cross-linked using the freeze thaw process display a thermal shift due to increased crosslink density. FTIR analysis confirmed crystallisation is present at 1142cm(-1) and also showed that no chemical alteration occurs when PVA is treated with sodium sulphate. Swelling studies indicated that that PVA/sodium sulphate hydrogels absorb less water than untreated hydrogels due to increased amounts of PVA present. Compressive strength analysis of PVA/sodium sulphate hydrogels prepared at -80°C displayed average maximum loads of 2472N, 2482.4N and 2476N of over 1, 3 and 5 freeze thaw cycles respectively. Mechanical analysis of the hydrogel indicated that the material is thermally stable and resistant to breakdown by compressive force. These properties are crucial for

  16. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.

    Science.gov (United States)

    Li, Huijun; Tan, Yu Jun; Liu, Sijun; Li, Lin

    2018-04-04

    A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca-GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.

  17. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  18. Graphite coated PVA fibers as the reinforcement for cementitious composites

    Science.gov (United States)

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  19. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies.

    Science.gov (United States)

    Tavakoli, Javad; Tang, Youhong

    2017-08-01

    Hydrogel/honey hybrids manifest an attractive design with an exclusive therapeutic property that promotes wound healing process. The greater the concentration of honey within the formulation, the better the biomedical properties that will be achieved. However, an increase in the percentage of honey can negatively affect the physico-chemical and mechanical properties of hybrid hydrogels. The need exists, therefore, to prepare wound dressings that contain high honey density with optimal biomedical, mechanical and physicochemical properties. In this study, a simple method for the preparation of a highly concentrated honey/PVA hybrid hydrogel with borax as the crosslinking agent is reported. Comprehensive evaluations of the morphology, swelling kinetics, permeability, bio-adhesion, mechanical characteristics, cytotoxicity, antibacterial property, cell proliferation ability and their controlling release properties were conducted as a function of crosslinking density. All the borax-induced hydrogels showed acceptable biocompatibility, and the incorporation of 1% borax in the hydrogel formulation produced optimal behaviours for wound addressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Antifouling properties of hydrogels

    International Nuclear Information System (INIS)

    Murosaki, Takayuki; Gong, Jian Ping; Ahmed, Nafees

    2011-01-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris. (topical review)

  1. Antifouling properties of hydrogels

    Directory of Open Access Journals (Sweden)

    Takayuki Murosaki, Nafees Ahmed and Jian Ping Gong

    2011-01-01

    Full Text Available Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  2. Comparative analysis for evaluating the traceability of interventional devices using blood vessel phantom models made of PVA-H or silicone.

    Science.gov (United States)

    Yu, Chang-Ho; Kwon, Tae-Kyu; Park, Chan Hee; Ohta, Makoto; Kim, Sung Hoon

    2015-01-01

    In this paper, we investigated the parameters with effective traceability to assess the mechanical properties of interventional devices. In our evaluation system, a box-shaped poly (vinyl alcohol) hydrogel (PVA-H) and silicone were prepared with realistic geometry, and the measurement and evaluation of traceability were carried out on devices using load hand force. The phantom models had a total of five curve pathways to reach the aneurysm sac. Traceability depends on the performance of the interventional devices in order to pass through the curved part of the model simulation track. The traceability of the guide wire was found to be much better than that of the balloon and stent loading catheter, as it reached the aneurysm sac in both phantom models. Observation using the video record is another advantage of our system, because the high transparency of the materials with silicone and PVA-H can allow visualization of the inside of an artery.

  3. A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors

    Science.gov (United States)

    Batisse, N.; Raymundo-Piñero, E.

    2017-04-01

    The development of safe flexible supercapacitors implies the use of new non-liquid electrolytes for avoiding device leakage which combine mechanical properties and electrochemical performance. In this sense, hydrogel electrolytes composed of a solid non-conductive matrix holding an aqueous electrolytic phase are a reliable solution. In this work, we propose a green physical route for producing self-standing hydrogel films from a PVA polymer based on the freezing/thawing method without using chemical cross-linking agents. Moreover, a neutral electrolytic phase as Na2SO4 is used for reaching higher cell voltages than in an acidic or basic electrolyte. Such new PVA-Na2SO4 hydrogel electrolyte, which also acts as separator, allows reaching voltages windows as high as 1.8 V in a symmetric carbon/carbon supercapacitor with optimal capacitance retention through thousands of cycles. Additionally, in reason of the fast mobility of the ions inside of the polymeric matrix, the hydrogel electrolyte based supercapacitor keeps the power density of the liquid electrolyte device.

  4. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Lenin, Nayagam; Sankarganesh, Murugesan; Dhaveethu Raja, Jeyaraj; Rajesh, Jegathalaprathaban

    2018-02-01

    Facile one-pot synthesis has been demonstrated for new biocompatible and dual responsive magnetic iron oxide nanoparticles cross-linked poly(vinyl alcohol) (PVA) blended natural polymer chitosan (CS) based hydrogel beads (mCS-PVA) as a controlled natural anticancer alkaloid Luotonin A (LuA) delivery system. The prepared magnetic hydrogel beads were characterized using powder X-ray diffraction measurement, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. The magnetic hydrogel beads are exhibited significant water retention and follow the second order kinetic model in swelling study. The swelling ratio of the magnetic gel beads increased by the addition of PVA and showed a maximum swelling ratio of 40.83 ± 1.01 g/g and follows non-Fickian water transport mechanism. Stimuli responsive mCS and mCS-PVA hydrogel beads functionalized with LuA is demonstrated for controlled release at physiological pH and under magnetic field. The magnetic hydrogel beads show highest LuA releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 73.33 ± 1.44%. This efficacy may also be tuned by altering the external magnetic field as well as the weight percentage (wt %) of polyethylene glycol. It is clearly that the newly produced magnetic hydrogel beads can be served as an effective intestinal LuA delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 543-551, 2018. © 2017 Wiley Periodicals, Inc.

  5. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    from -64 to -12 mV at pH's of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from -25 to -5 mV. The shapes of the pH-dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple-layer model is used to fit the non-silanized glass surface and the silane film. The value of the surface-site density for Γ(Xglass) and Γ(Xsilane), in which X denotes the Al-O-Si group, differs by a factor of 10(-4), which suggests an effective coupling of the silane film. A soft-layer model is used to fit the silane-PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10% of the total length (27 nm), 2) the layer of the first PVA shell contributes 30% to the total length (81 nm), 3) the layer of the PVAc core contributes 30% to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30% of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low-order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane-PVA/PVAc complex film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation and Characterization of Formalated Polyvinyl Alcohol Hydrogel Film

    International Nuclear Information System (INIS)

    Than Than Aye; Nyunt Win; San Myint

    2011-12-01

    A feasible hydrogen film was prepared from polyvinyl alcohol (PVA) sample. The effect of chemical grafting on polyvinyl alcohol film was studied. Polyvinyl alcohol sample was mixed with distilled water and autoclaved at 121C for 60 minutes. An aqueous solution of polyvinyl alcohol was casted into a steel plate and dried for a certain time at room temperature. The obtained PVA film was immersed in formalation bath containing aqueous formaldehyde, sulphuric acid, anhydrous sodium sulphate with a weight ratio of (64:95:300) and 1 liter of distilled water at 60C for various hours. Effect of formalation time was studied varying 6, 12, 24, 36 and 48 hours. Degree of formalation was also evaluated. Physical properties of the hydrogel film such as gel fraction, degree of swelling and mechanical properties such as tensile strength, elongation and hardness were determined before and after formalation of the PVA film. Fourier Transform Infrared Spectroscopic (FTIR) analysis, Thermogravimetric / Differential thermal analysis (DTA / TG) were also studied for characterization. It was found that the appropriate condition for formalation was occured at 24 hours formalation time of with the calculated degree of formalation 65.35% with the determined values (9.04 Mpa) for tensile strength, (241.92%) for elongation, (45.30 Shore D) for hardness, (280.36%) for degree of swelling and (68.32%) for gel fraction.

  7. Effect of layered silicate content on the morphology and thermal properties of Poly(vinyl alcohol) films; Efeito do teor de silicato em camadas na morfologia e propriedades termicas de filmes de poli(alcool vinilico)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jessica R.M.B. da; Santos, Barbara F.F. dos; Leite, Itamara F., E-mail: jraquell@homail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Tecnologia. Departamento de Engenharia de Materiais

    2015-07-01

    This study aims to evaluate the effect of layered silicate content on the morphology and thermal properties of PVA films. The PVA/layered silicate (AN) films were prepared by intercalation solution, using 1 to 2% of bentonite with respect to the PVA total weight. Then the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Results of the FTIR revealed interaction between the functional groups of the PVA and the layered silicate. The XRD analysis showed that nanocomposites with intercalated and partially exfoliated morphology were obtained. The results of TG showed that the nanocomposite PVA/2%AN showed higher thermal stability compared to PVA/1%AN. The DSC results showed that the addition of AN to the PVA did not affect crystallization rate, as well as promoted a reduction in glass transition temperature and melting of the PVA. (author)

  8. Surface Friction of Polyacrylamide Hydrogel Particles

    Science.gov (United States)

    Cuccia, Nicholas; Burton, Justin

    Polyacrylamide hydrogel particles have recently become a popular system for modeling low-friction, granular materials near the jamming transition. Because a gel consists of a polymer network filled with solvent, its frictional behavior is often explained using a combination of hydrodynamic lubrication and polymer-surface interactions. As a result, the frictional coefficient can vary between 0.001 and 0.03 depending on several factors such as contact area, sliding velocity, normal force, and the gel surface chemistry. Most tribological measurements of hydrogels utilize two flat surfaces, where the contact area is not well-defined. We have built a custom, low-force tribometer to measure the single-contact frictional properties of spherical hydrogel particles on flat hydrogel surfaces under a variety of measurement conditions. At high velocities (> 1 cm/s), the friction coefficient depends linearly on velocity, but does not tend to zero at zero velocity. We also compare our measurements to solid particles (steel, glass, etc.) on hydrogel surfaces, which exhibit larger frictional forces, and show less dependence on velocity. A physical model for the friction which includes the lubrication layer between the deformed surfaces will be discussed. National Science Foundation Grant No. 1506446.

  9. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels.

    Science.gov (United States)

    Garnica-Palafox, I M; Sánchez-Arévalo, F M

    2016-10-20

    The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transparent and Printable Regenerated Kenaf Cellulose/PVA Film

    Directory of Open Access Journals (Sweden)

    Hatika Kaco

    2014-02-01

    Full Text Available Cellulose was extracted from kenaf core powder by a series of bleaching processes and subsequently dissolved using an alkaline LiOH/urea solvent at low temperatures. The produced cellulose solution was mixed with polyvinyl alcohol (PVA with different ratios of cellulose/PVA and coagulated to produce regenerated transparent films. The films were then air dried to produce transparent film. The effects of PVA content on tensile index, transparency, pore size, and printability of the films were studied. A slight reduction of 7% on the tensile index of the film was observed when the content of PVA increased to 10%. Nevertheless, the addition of 10% of PVA increased the porosity of the regenerated cellulose/PVA film, while the transparency of the film increased by 10%. The films were color-printed using a laser printer and can be recycled, in which the printed ink can be removed easily from the films with higher amount of PVA content. In addition, the films can be reprinted repeatedly several times.

  11. Improved Skin Penetration Using In Situ Nanoparticulate Diclofenac Diethylamine in Hydrogel Systems: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Sengupta, Soma; Banerjee, Sarita; Sinha, Biswadip; Mukherjee, Biswajit

    2016-04-01

    Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163-165 cps for hydrogel containing microsize drug particles and 171-173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.

  12. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  13. Removal of some basic dyes by poly (Vinyl Alcohol/ acrylic acid)Hydrogel

    International Nuclear Information System (INIS)

    Hegazy, S.A.; Abdel-AAl, S.E.; Abdel-Rehim, H.A.; Khalifa, N.A.; El-Hosseiny, E.M.

    2000-01-01

    A study has made on the preparation and properties of poly (vinyl alcohol/ acrylic acid) hydrogel for the purpose of removal of cationic dyes from aqueous solutions. The effect of dose and monomer concentration on the uptake property of the hydrogel toward dye was studied. The uptake of basic methylene blue-9 dye with PVA/AAc was studied by the batch adsorption technique. The effect of pH on the dye uptake was demonstrated to find out that the suitable pH for maximum uptake occurred at pH 5. It was observed that as the concentration of dye is increased the dye uptake decreased. Furthermore, the uptake of dye by hydrogels increased as the temperature was elevated. The recovery of dye adsorbed is possible by treating the hydrogel with 5% HCl. The results obtained suggested this hydrogel possessed good removal properties towards basic methylene blue-9 dye, and this suggests that such hydrogels could be acceptable for practical uses

  14. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  15. Synthesis and optical properties of CdS/PVA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, P K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Gokhale, R R [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Subbarao, V V.V.S. [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Singh, Narendra [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India); Jun, K -W [Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Das, B K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchawati, Off Pashan Road, Pune 411008 (India)

    2005-12-15

    Yellow and orange light emission from nanoparticles of cadmium sulphide embedded in polyvinyl alcohol (PVA) has been observed as thin films. The synthesis of CdS embedded in PVA has been performed via two different routes at room temperature and the composite films have been prepared by vacuum evaporation of solvent on a glass surface. The absorption spectra show a blue shift of more than 80 nm as compared to bulk CdS band-gap. The photoluminescence studies indicate the air stable light emission from the films. Bright light emission at 515 nm (2.41 eV) has been observed without using PVA.

  16. Cu nanoparticles induced structural, optical and electrical modification in PVA

    DEFF Research Database (Denmark)

    Rozra, J.; Saini, I.; Sharma, A.

    2012-01-01

    Cu nanoparticles were synthesized in PVA matrix by chemical reduction of cupric nitrate with hydrazine hydrate. Structural characterization of synthesized Cu-PVA nanocomposite was carried out using UV-Visible Spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission...... are in agreement with the size obtained using X-ray diffraction. Morphology of Cu-PVA nanocomposite was further confirmed using SEM. Analysis of UV-Visible absorption and reflection data indicates towards the reduction in optical band gap and increase in refractive index of the resulting nanocomposite...

  17. Enhanced hydrolysis of cellulose hydrogels by morphological modification.

    Science.gov (United States)

    Alfassi, Gilad; Rein, Dmitry M; Cohen, Yachin

    2017-11-01

    Cellulose is one of the most abundant bio-renewable materials on earth, yet the potential of cellulosic bio-fuels is not fully exploited, primarily due to the high costs of conversion. Hydrogel particles of regenerated cellulose constitute a useful substrate for enzymatic hydrolysis, due to their porous and amorphous structure. This article describes the influence of several structural aspects of the cellulose hydrogel on its hydrolysis. The hydrogel density was shown to be directly proportional to the cellulose concentration in the initial solution, thus affecting its hydrolysis rate. Using high-resolution scanning electron microscopy, we show that the hydrogel particles in aqueous suspension exhibit a dense external surface layer and a more porous internal network. Elimination of the external surface layer accelerated the hydrolysis rate by up to sixfold and rendered the process nearly independent of cellulose concentration. These findings may be of practical relevance to saccharification processing costs, by reducing required solvent quantities and enzyme load.

  18. Construction of CaF2-appended PVA nanofibre scaffold

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... 1College of Medicine and Dentistry, James Cook University, Cairns 4878, Australia ... loaded into this core–shell nanofibres to test the attachment .... indeed took place between the hydroxyl in PVA and formalde- hyde [12,13].

  19. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    International Nuclear Information System (INIS)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu; Flaud, Patrice

    2014-01-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305–11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications. (paper)

  20. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    Science.gov (United States)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-11-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.

  1. Dielectric, thermal and mechanical properties of ADP doped PVA composites

    Science.gov (United States)

    Naik, Jagadish; Bhajantri, R. F.; Ravindrachary, V.; Rathod, Sunil G.; Sheela, T.; Naik, Ishwar

    2015-06-01

    Polymer composites of poly(vinyl alcohol) (PVA), doped with different concentrations of ammonium dihydrogen phosphate (ADP) has been prepared by solution casting. The formation of complexation between ADP and PVA was confirmed with the help of Fourier transforms infrared (FTIR) spectroscopy. Thermogravimetric analysis (TGA) shows thermal stability of the prepared composites. Impedance analyzer study revealed the increase in dielectric constant and loss with increase the ADP concentration and the strain rate of the prepared composites decreases with ADP concentration.

  2. Synthesis and characterization of CdS/PVA nanocomposite films

    Science.gov (United States)

    Wang, Hongmei; Fang, Pengfei; Chen, Zhe; Wang, Shaojie

    2007-08-01

    A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd 2+-dispersed poly vinyl-alcohol (PVA) with H 2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of Cd sbnd S bond at 405 cm -1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.

  3. Synthesis and characterization of CdS/PVA nanocomposite films

    International Nuclear Information System (INIS)

    Wang Hongmei; Fang Pengfei; Chen Zhe; Wang Shaojie

    2007-01-01

    A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd 2+ -dispersed poly vinyl-alcohol (PVA) with H 2 S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of Cd-S bond at 405 cm -1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect

  4. Radiation Synthesis and Characterization of Polyvinyl alcohol/Acrylic acid Hydrogel and its Amoxicillin drug Delivery application

    International Nuclear Information System (INIS)

    El kelesh, N.A.; Ismail, S.A.; Abd El Wahab, S.Y.

    2012-01-01

    Polyvinyl alcohol /Acrylic acid based hydrogels can be synthesized by Gamma radiation technique using 60 Co irradiation cell at irradiation dose rate 1.8 Gray/second. The optimum conditions of hydrogel preparation takes place at different factors such as composition ratios of PVA/AAc, different comonomer concentration and different irradiation doses resulting in hydrogel with maximum gel percent as it obtained 98%. The structures of hydrogels were characterized by FTIR analysis. The results can be confirmed the expected structures as well as free radical copolymerization. According to the swelling studies, hydrogels with high content of AAc gave relatively high swelling percent. The hydrogel showed a super adsorbent with swelling capacity 10320 %. Water diffusion into such prepared hydrogel showed a non-Fickian type where a Fickian number was 0.77. This hydrogel was used for the adsorption of amoxicillin drug from their aqueous solutions. The factors affected on the uptake conditions such as ph, time and initial feed concentration on the amoxicillin adsorption capacity of hydrogel was studied depending on Freundlish model of adsorption isotherm.. It was observed that the interaction between drug and ionic comonomers was enhanced in alkaline medium and high initial feed concentration of the drug. The ability of the hydrogel and the affinity of the drug to be adsorbed can be cleared by determining the empirical constants n and k respectively from the logarithmic form of Freundlish equation. The recovery of drug was also investigated in different ph values to study the suitable condition of drug release as drug delivery system.

  5. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.

    Science.gov (United States)

    Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2017-11-01

    Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Core drilling of drillholes ONK-PVA9 and ONK-PVA10 in ONKALO at Olkiluoto 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2011-10-15

    Suomen Malmi Oy (Smoy) core drilled two drillholes for groundwater monitoring stations in ONKALO at Eurajoki, Olkiluoto in 2011. The groundwater monitoring stations are used for monitoring changes in groundwater conditions. The drillhole ONK-PVA9 was drilled in March 2011 and the drillhole ONK-PVA10 in June 2011. The lengths of the drillholes are 15.95 and 20.10 m respectively. The drillholes are 75.7 mm by diameter. The drillhole ONK-PVA9 was drilled in a niche of the access tunnel at chainage 4366 and the ONK-PVA10 in the access tunnel wall at chainage 3851. The hydraulic DE 130 drilling rig was used. The drilling water was taken from the ONKALO drilling water pipeline and premixed sodium fluorescein was used as a label agent in the drilling water. The drillholes were measured with EMS deviation survey tool. In addition to drilling the drillcores were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. The main rock types in the drillholes are veined gneiss and pegmatitic granite. The average fracture frequencies in drill cores are 2.9 pcs/m (ONK-PVA9) and 2.3 pcs/m (ONK-PVA10) and the average RQD values 81.6 % and 96.2 % respectively. (orig.)

  7. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  8. Computational molecular modeling and structural rationalization for the design of a drug-loaded PLLA/PVA biopolymeric membrane

    International Nuclear Information System (INIS)

    Sibeko, B; Pillay, V; Choonara, Y E; Khan, R A; Danckwerts, M P; Modi, G; Iyuke, S E; Naidoo, D

    2009-01-01

    The purpose of this study was to design, characterize and assess the influence of triethanolamine (TEA) on the physicomechanical properties and release of methotrexate (MTX) from a composite biopolymeric membrane. Conjugated poly(L-lactic acid) (PLLA) and poly(vinyl alcohol) (PVA) membranes were prepared by immersion precipitation with and without the addition of TEA. Drug entrapment efficiency (DEE) and release studies were performed in phosphate buffered saline (pH 7.4, 37 deg. C). Scanning electron microscopy elucidated the membrane surface morphology. Computational and structural molecular modeling rationalized the potential mechanisms of membrane formation and MTX release. Bi-axial force-distance (F-D) extensibility profiles were generated to determine the membrane toughness, elasticity and fracturability. Membranes were significantly toughened by the addition of TEA as a discrete rubbery phase within the co-polymer matrix. MTX-TEA-PLLA-PVA membranes were tougher (F = 89 N) and more extensible (D = 8.79 mm) compared to MTX-PLLA-PVA (F = 35 N, D = 3.7 mm) membranes as a greater force of extension and fracture distance were required (N = 10). DEE values were relatively high (>80%, N = 5) for both formulations. Photomicrographs revealed distinct crystalline layered morphologies with macro-pores. MTX was released by tri-phasic kinetics with a lower fractional release of MTX from MTX-TEA-PLLA-PVA membranes compared to MTX-PLLA-PVA. TEA provided a synergistic approach to improving the membrane physicomechanical properties and modulation of MTX release. The composite biopolymeric membrane may therefore be suitable for the novel delivery of MTX in the treatment of chronic primary central nervous system lymphoma.

  9. Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction.

    Science.gov (United States)

    Osaheni, Allen O; Finkelstein, Eric B; Mather, Patrick T; Blum, Michelle M

    2016-12-01

    Hydrogels display a great deal of potential for a wide variety of biomedical applications. Often times the performance of these biomimetic materials is limited due to inferior friction and wear properties. This manuscript presents a method inspired by the tribological phenomena observed in nature for enhancing the lubricious properties of poly(vinyl alcohol) (PVA) hydrogels. This was achieved by blending PVA with various amounts of zwitterionic polymer, poly([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide) (pMEDSAH). Our results indicate that pMEDSAH acts as an effective boundary lubricant, allowing for reduction in coefficient of friction by more than 80%. This reduction in friction coefficient was achieved while maintaining comparable mechanical and physical properties to that of the neat material. Also, these zwitterionic blends were found to be cytocompatible. Analysis of the structure to property relationships within this system indicate that the zwitterionic polymer served as a boundary lubricant and promoted a reduction in friction through hydration lubrication. This novel approach provides a promising platform for further investigations enhancing the tribological properties of hydrogels for biomedical applications. The novelty of this work stems from showing that zwitterionic polymers can be used as an extremely effective hydrogel boundary lubricant. This work will have significant scientific impact because to date, design of hydrogels has emphasized replication of mechanical properties, but in order for these types of materials to be fully utilized as biomaterials it is imperative that they possess improved tribological and lubrication properties, because ignoring the surface and boundary lubrication mechanism, make these potential load-bearing substitutes incompatible with other natural articulating surfaces, leading the constructs to wear, fail, and damage healthy tissue. Our work also provides unique insight to the structure

  10. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    Science.gov (United States)

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  11. Different Structures of PVA Nano fibrous Membrane for Sound Absorption Application

    International Nuclear Information System (INIS)

    Mohrova, J.; Kalinova, K.

    2012-01-01

    The thin nano fibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nano fibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA) was used as a polymer because of its good water solubility. It is possible to influence the structure of nano fibrous layer during the production process thanks to this property of polyvinyl alcohol.

  12. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    Science.gov (United States)

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2008-06-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.

  13. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    Science.gov (United States)

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages

    Science.gov (United States)

    Kumar, G. C. Mohan

    2018-04-01

    Research progress in materials science for bio-based materials for cartilage repair or supportive to host tissue has become a fashionable, worldwide. Few efforts in biomedical engineering has attempted in the development of newer biomaterials successfully. Bio ceramics, a class of materials been used in particulate form as a reinforcement with polymers those ensure its biocompatibility. Every artificial biomedical system has to meet the minimum in Vitro requirements for successful application. Equally the biological behavior of normal and diseased tissues is also essential to understand the artificial systems to human body.

  15. Double network bacterial cellulose hydrogel to build a biology-device interface

    Science.gov (United States)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  16. The Influence of Uranium Content and PVA/U Ratio on Physical Propertiesof PVA-U Gel and Its Oxide

    International Nuclear Information System (INIS)

    Damunir; W, Bangun; Indra-Suryawan; Endang-Nawangsih

    2000-01-01

    The influence of uranium content and PVA/U ratio on physical propertiesof PVA-U gel and its oxide has been investigated. Fifty milliliters of uranylnitrate solution containing 100 g U/l was neutralized using 1M NH 4 0H. Thesolution was converted into PVA-U sol by adding 9.18 % PVA while mixed andheated at 80 o C for 20 minutes. In order to find spherical gel, the solsolution was dropped into a 5 M NH 4 0H solution at room temperature. Theshape formed of the gels small spherical, shape of the formed gels werefiltered, washed and heated at 120 o C. After that the gels were calcined at800 o C for 4 hours. The formed U 3 O 8 particles. Under a similar method, theinfluence of uranium content from 150-400 g/l and the influence of PVA/Uratio of 6.5-12.5 % in 100 g U/l were studied. Characterization of the resultwas obtained from physical properties of the gel and its oxide in the form ofdensity using pycnometer, surface area using surface areameter with N 2 asabsorbent and particle size/ shape using a loop and optical microscope. Theexperimental results showed that both uranium content and PVA/U ratioaffected the physical properties of the kernel properties. The best resultoccurred at uranium content of 100 g/l and PVA/U 9.18 %. The resulted gelwith solid content of 89.17 %, density of 3.36 g/l and size of 124 μm. Theresulted oxide U 3 0 8 had density of 7.98 g U/l, surface area of specific of0.449 m 2 /g and grain size of 810 μm. (author)

  17. Preparation and thermomechanical properties of Ag-PVA nanocomposite films

    International Nuclear Information System (INIS)

    Gautam, Anurag; Ram, S.

    2010-01-01

    Metal-polymer hybrid nanocomposites have been prepared from an aqueous solution of polyvinyl alcohol (PVA) and silver nitrate (AgNO 3 ). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with PVA molecule at 60-70 deg. C over magnetic stirrer. UV-vis analysis, X-ray diffraction studies, transmission electron microscopy, scanning electron microscopy and current-voltage analysis were used to characterize the nanocomposite films prepared. The X-ray diffraction analysis reveals that silver metal is present in face centered cubic (fcc) crystal structure. Average crystallite size of silver nanocrystal is 19 nm, which increases to 22 nm on annealing the film at 150 deg. C in air. This result is in good agreement with the result obtained from TEM. The UV-vis spectrum shows a single peak at 433 nm, arising from the surface plasmon absorption of silver nanocolloids. This result clearly indicates that silver nanoparticles are embedded in PVA. An improvement of mechanical properties (storage modulus) was also noticed due to a modification of PVA up to 0.5 wt% of silver content. The current-voltage (I-V) characteristic of nanocomposite films shows increase in current drawn with increasing Ag-content in the films.

  18. Structure and sorption properties of CNC reinforced PVA films.

    Science.gov (United States)

    Popescu, Maria-Cristina

    2017-08-01

    Bio-nanocomposite films based on cellulose nanocrystals reinforced poly(vinyl alcohol) were obtained by solvent casting method. To assess the structural features of the films, different spectral techniques (FTIR, 2D COS and XRD) have been used. Infrared and 2D correlation spectroscopy evidenced the presence of H-bond interactions between the PVA and CNC, and the variation in the conformational rearrangements, while XRD showed that the crystallite size and the crystallinity degree were affected by the incorporation of CNC. At low content of CNC in the PVA matrix, the crystallinity degree decreased to 29.9%, while at higher CNC content increased to 80.6%, comparing to PVA (35.4%). To evaluate the interaction with water, contact angle measurement, water sorption and NIR spectroscopy were used, respectively. The increase of the CNC content induced a reduction in water sorption ability from 93% for PVA to 75% for PVA/CNC films, indicating the involvement of the hydroxyl groups in new hydrogen bonded interactions. By analyzing the variation of the NIR bands from 1930, 1902 and 1985nm, was observed that the water molecules interact with the polymer matrix through moderate hydrogen bond before diffusing into the free volume of the matrix and form stronger hydrogen bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optical studies of CdSe/PVA nanocomposite films

    Science.gov (United States)

    Kushwaha, Kamal Kumar; Ramrakhaini, Meera

    2018-05-01

    The nanocomposite films of CdSe nanocrystals in polyvinyl alcohol (PVA) matrix were synthesized by environmental friendly chemical method. These composites were characterized by X-ray diffraction which indicates the hexagonal crystalline structure of CdSe with crystal size up to a few nm. The crystal size is found to decrease by increasing PVA Concentration. The photoluminescence (PL) characteristics of these composite films with varying concentration of PVA as well as Cd2+ content have been investigated. The PL peak of CdSe was observed at 510 nm and higher intensity is observed by increasing PVA concentration without any change in position of PL peak. Due to proper passivation of surface states non-radiative transition are reduced which enhance the PL intensity. By increasing concentration of Cd2+ content in the CdSe/PVA nanocomposite films, smaller CdSe nanocrystals were obtained giving higher intensity and blue shift in the PL peak due to enhanced oscillator strength and quantum confinement effect. The PL peak in green and blue region makes these composite films promising materials for optical display devices. The Refractive index of these composites was also measured at sodium line with the help of Abee's refractometer and was found in the range of 2.20-2.45. It is seen that refractive index varies with polymer concentration. This may be useful for their potential application in anti-reflection coating, display devices and optical sensors.

  20. Design and synthesis of an amphiphilic graft hydrogel having a hydrophobic domain formed by multiple interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Kyohei [Department of Life and Functional Material Science, Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501 (Japan); Japan Society for the Promotion of Science (DC1), Ichibancho, Chiyoda, Tokyo 102-8471 (Japan); Kimoto, Atsushi [Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501 (Japan); Watanabe, Junji, E-mail: junjiknd@konan-u.ac.jp [Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501 (Japan)

    2016-11-01

    A novel hydrogel having hydrophobic oligo segments and hydrophilic poly(acrylamidoglycolic acid) (PAGA) as pH responsive polymer segments was designed and synthesized to be used as a soft biomaterial. Poly(trimethylene carbonate) (PTMC) as the side chain, for which the degrees of polymerization were 9, 19, and 49, and the composition ratios were 1, 5, and 10 mol%, was used as the oligo segment in the hydrogel. The swelling ratio of the hydrogel was investigated under various changes in conditions such as pH, temperature, and hydrogen bonding upon urea addition. Under pH 2–11 conditions, the graft gel reversibly swelled and shrank due to the effect of PAGA main chain. The interior morphology and skin layer of the hydrogel was observed by a scanning electron microscope. The hydrogel composed of PAGA as the hydrophilic polymer backbone had a sponge-like structure, with a pore size of approximately 100 μm. On the other hand, upon increasing the ratio of trimethylene carbonate (TMC) units in the hydrogel, the pores became smaller or disappeared. Moreover, thickness of the skin layer significantly increased with the swelling ratio depended on the incorporation ratios of the PTMC macromonomer. Molecular incorporation in the hydrogel was evaluated using a dye as a model drug molecule. These features would play an important role in drug loading. Increasing the ratio of TMC units favored the adsorption of the dye and activation of the incorporation behavior. - Highlights: • Hydrogen bonding and hydrophobic interaction are dominant factor for forming hydrogels. • Hydrogel properties were tuned by changing in graft length and macromonomer content in feed. • The resulting graft gel could encapsulate and retain organic dye in the hydrogel. • Poly(trimethylene carbonate) segment in the hydrogel was dominant unit for hydrogel.

  1. Design and synthesis of an amphiphilic graft hydrogel having a hydrophobic domain formed by multiple interactions

    International Nuclear Information System (INIS)

    Nitta, Kyohei; Kimoto, Atsushi; Watanabe, Junji

    2016-01-01

    A novel hydrogel having hydrophobic oligo segments and hydrophilic poly(acrylamidoglycolic acid) (PAGA) as pH responsive polymer segments was designed and synthesized to be used as a soft biomaterial. Poly(trimethylene carbonate) (PTMC) as the side chain, for which the degrees of polymerization were 9, 19, and 49, and the composition ratios were 1, 5, and 10 mol%, was used as the oligo segment in the hydrogel. The swelling ratio of the hydrogel was investigated under various changes in conditions such as pH, temperature, and hydrogen bonding upon urea addition. Under pH 2–11 conditions, the graft gel reversibly swelled and shrank due to the effect of PAGA main chain. The interior morphology and skin layer of the hydrogel was observed by a scanning electron microscope. The hydrogel composed of PAGA as the hydrophilic polymer backbone had a sponge-like structure, with a pore size of approximately 100 μm. On the other hand, upon increasing the ratio of trimethylene carbonate (TMC) units in the hydrogel, the pores became smaller or disappeared. Moreover, thickness of the skin layer significantly increased with the swelling ratio depended on the incorporation ratios of the PTMC macromonomer. Molecular incorporation in the hydrogel was evaluated using a dye as a model drug molecule. These features would play an important role in drug loading. Increasing the ratio of TMC units favored the adsorption of the dye and activation of the incorporation behavior. - Highlights: • Hydrogen bonding and hydrophobic interaction are dominant factor for forming hydrogels. • Hydrogel properties were tuned by changing in graft length and macromonomer content in feed. • The resulting graft gel could encapsulate and retain organic dye in the hydrogel. • Poly(trimethylene carbonate) segment in the hydrogel was dominant unit for hydrogel.

  2. Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta; Tripathi, S.K. [Panjab University, Centre of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2013-11-15

    This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al{sub 2}O{sub 3}/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N{sub ss}) and series resistance (R{sub s}) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias I-V, C-V, and G/w-V characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al{sub 2}O{sub 3} layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R{sub s}) and barrier height ({phi} {sub b}) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias I-V data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height ({phi} {sub e}) for MS and MIS diode. The N{sub ss} values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode. (orig.)

  3. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.A.; Niconov, A.; Chmieliewska, D.; Spadaro, G.

    2011-01-01

    Complete text of publication follows. Objective of this research is to develop a functional soft nanocomposites platform that combines the electro-optic properties of conjugated polymer nanoparticles with process flexibility, highly hydrophilic character, 3D structure and biocompatibility of hydrogels, to yield novel soft materials with multi-application potential in diagnostic, therapeutic and regenerative medicine. PANI aqueous nanocolloids in their acid doped, inherently conductive form, are synthesised by means of suitable polymeric stabilisers, i.e. water soluble polymers, that may prevent irreversible PANI particles coalescence and precipitation during synthesis and upon storage. Depending on the nature nad concentration of the polymeric stabiliser, e.g. polyvinyl pyrrolidone (PVP), polyvinylalcohol (PVA) or chitosan (CT), PANI has been synthesised in form of nanoscalar rods, spherical particles or rice grains, respectively. In the present work, e-beam irradiation with a 12 MeV Linac accelerator has been tested, in alternative to gamma-rays, as a viable industrial methodology to generate hydrogel nanocomposites via in-situ crosslinking of the polymers already used to stabilise polyaniline nanocolloids, at low temperature, with no recourse to further addition of molecular weight chemicals and in a few minutes. In these conditions nanoparticles morphology of PANI should be preserved and interesting electro-optical properties can be imparted. The swelling properties of the different hydrogel nanocomposites have been investigated at the variance of the chemical structure of the matrix material and of the pH of the swelling medium. UV-visible absorption and fluorescence spectroscopies demonstrate the retained optical activity of the dispersed PANI nanoparticles when incorporated in the hydrogels. Selected formulations have been also subjected to MTT assays and absence of cytotoxicity has been ascertained as the first necessary step to assess their biocompatibility.

  4. Obtaining membranes for alternative treatment hydrogels of cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    Oliveira, Maria Jose Alves de

    2013-01-01

    Polymeric Hydrogels formed by crosslinked polymeric chains were obtained by ionizing radiation process according to Rosiak technique. In the last 40 years the use of hydrogels has been investigated for various applications as curatives. In this work hydrogel membranes were synthesized with poly (N-2-pyrrolidone) (PVP), poly (vinyl alcohol) (PVA), chitosan and laponita clay for use as a vehicle for controlled glucantime release on the surface of skin tissues injured by leishmaniasis. Leishmaniasis is a disease caused by a protozoan parasite of the genus Leishmania transmitted by the bite of phlebotomies sandfly. The traditional treatment of patients infected by these parasites is done with pentavalent antimony in injectable form. However, these antimonates are highly toxic and cause side effects in these patients. In addition, patients with heart and kidney disease can not use this treatment. In treatment with drug delivery hydrogel membrane applied on the surface of leishmaniasis injured tissues the drug is released directly to the wound in a controlled manner, reducing the side effects. Membranes prepared in this study were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), swelling, gel fraction, infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The characterizations of cytotoxicity and drug release were made 'in vitro' and 'in vivo' with functional test according to ethical protocol of the Division of Infectious and Parasitic Diseases at the Hospital of Clinics, Sao Paulo University-School of Medicine, University. The 'in vivo' test of these membranes proved to be effective in controlled release of drugs directly into leishmaniasis damaged tissues. Results of 'in vivo' tests using PVP/PVAl / clay 1,5% and glucantime membrane showed remarkable contribution to wound reduction and cure in clinical therapy. (author)

  5. Seguimiento de trayectorias tridimensionales de un quadrotor mediante control PVA

    Directory of Open Access Journals (Sweden)

    Silvia Estellés Martínez

    2014-01-01

    Full Text Available Resumen: Este trabajo presenta el modelado de un quadrotor como un sistema multicuerpo llevado a cabo mediante el software Vehicle- Sim, en el que los diferentes componentes del sistema son descritos mediante una estructura paterno-filial señalando las restricciones físicas entre ellos. Los modelos estructural y aerodinámico han sido desarrollados mediante este software, ampliamente utilizado en la simulación del comportamiento dinámico de vehículos.Sobre el modelo resultante se he desarrollado un algoritmo de control basado en la metodologia PVA con la finalidad de obtener un seguimiento de trayectoria mediante acciones de control suaves. Empleando la metodología convencional de control PVA no es posible estabilizar el vehículo en todos los rangos de posicionamiento lateral (y y longitudinal (x. En este artículo los autores muestran como esta limitación en el diseño de una estrategia de control PVA convencional es solventada con una modificación consistente en sustituir los parámetros constantes del PVA clásico por funciones dependientes del desplazamiento.El sistema de control es implementado para adecuarse a los requerimientos de las actuaciones y se diseña sobre la plataforma de simulación multidominio Simulink. Con la finalidad de obtener una importante mejora en la respuesta de posicionamiento, se im- plementa un generador de trayectorias continuas.Una vez que el modelo es desarrollado y el sistema de control implementado, los autores presentan el modelo matemático y los resultados de las simulaciones realizadas. Éstas validan el empleo tanto de la metodología de control PVA aplicada, como de la alimentación de trayectorias predefinidas, no sólo para la posición, sino también para la velocidad y aceleración. Abstract: In this work the authors present the modelling of a quadrotor as a multibody system carried out with the software VehicleSim, in which the different

  6. A compare study on dielectric behaviors of Au/(Zn-doped PVA)/n-4H ...

    Indian Academy of Sciences (India)

    55

    thickness effect of Zn-doped PVA on the dielectric constant (ε′), dielectric .... In order to formation MPS structures, the prepared PVA (Zn-nanoparticle doped) ..... MacCallumand J R and Vincent C A 1989 Polymer Electrolyte Reviews (London:.

  7. Biomedical hydrogels biochemistry, manufacture and medical applications

    CERN Document Server

    Rimmer, Steve

    2011-01-01

    Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses. Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imag...

  8. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  9. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  10. Research on the printability of hydrogels in 3D bioprinting

    Science.gov (United States)

    He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong

    2016-07-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  11. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    Science.gov (United States)

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  12. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing

    Science.gov (United States)

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.

    2018-01-01

    Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369

  13. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.

    Science.gov (United States)

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R

    2018-04-01

    The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.

  14. Poly(vinyl alcohol/gelatin Hydrogels Cultured with HepG2 Cells as a 3D Model of Hepatocellular Carcinoma: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Stefania Moscato

    2015-01-01

    Full Text Available It has been demonstrated that three-dimensional (3D cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol (PVA and gelatin (G to model a hepatocellular carcinoma (HCC in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena.

  15. Rational Design, Synthesis and Evaluation of γ-CD-Containing Cross-Linked Polyvinyl Alcohol Hydrogel as a Prednisone Delivery Platform

    Directory of Open Access Journals (Sweden)

    Adolfo Marican

    2018-03-01

    Full Text Available This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs as platforms for the sustained release of prednisone (PDN. Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%. These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.

  16. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  17. DSC and conductivity studies on PVA based proton conducting gel ...

    Indian Academy of Sciences (India)

    Unknown

    not change (curve c). In addition to these two transitions, a broad melting isotherm (around 417 K) corresponding to ammonium thiocyanate (curve a) was noticed. The absence of any other isotherm suggests the existence of two-phase material (PVA and NH4SCN electrolyte) with no interaction within components.

  18. Beaded Fiber Mats of PVA Containing Unsaturated Heteropoly Salt

    Institute of Scientific and Technical Information of China (English)

    Guo Cheng YANG; Yan PAN; Jian GONG; Chang Lu SHAO; Shang Bin WEN; Chen SHAO; Lun Yu QU

    2004-01-01

    Poly(vinyl alcohol) (PVA) fiber mats containing unsaturated heteropoly salt was prepared for the first time. IR, X-ray diffraction and SEM photographs characterized the beaded fiber mats.The viscoelasticity and the conductivity of the solution were the key factors that influence the formation of the beaded fiber mats.

  19. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi, E-mail: gargi@umich.edu

    2014-11-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds.

  20. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    International Nuclear Information System (INIS)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi

    2014-01-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds

  1. Nano-ZnO Doping Induced Changes in Structure, Mechanical and Optical Properties of PVA Films

    International Nuclear Information System (INIS)

    Abdel-Galil, A.; BalboulM, R.; Ali, H.E.

    2015-01-01

    Zinc oxide ( ZnO ) nanoparticles ( NPs) were synthesized using t he co-precipitation method. Transmission electron microscope (TEM) was used to confirm the nanoparticle size of the ZnO powder sample. ZnO NPs (with different ratios) were dispersed into polyvinyl alcohol (PVA) matrix to get ZnO/PVA nano composites using the blending method. The structure of Pva polymer and ZnO/PVA nano composites was identified by X - ray diffraction (XRD). Thermogravimetric analysis (TGA) of PVA and ZnO/PVA nano composites has been carried out before and after γ- irradiation with different doses . The TGA , DTG thermo grams and the degradation activation energy have been studied. The results indicated the enhancement in thermal stability of PVA polymer as an effect of ZnO NPs. Irradiation doses lead to a change in the degradation activation energy as a result of the degradation and cross- linking processes of the PVA polymer. Moreover, the mechanical performance of PVA polymer has been improved by adding ZnO NPs and by γ- irradiation. The optical band gap of the PVA film was investigated with different ratios of ZnO NPs. The band gap de creased with increasing the ZnO NPs ratio. The effect of γ-irradiation, with different doses on the optical band gap of ZnO/PVA nano composites also has been studied

  2. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    Science.gov (United States)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  3. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  4. Synthesis and application of intelligent hydrogels

    International Nuclear Information System (INIS)

    Kaetsu, I.; Uchida, K.; Sutani, K.; Nakayama, H.; Tamori, A.

    2000-01-01

    The authors have studied synthesis and application of stimule-sensitive and responsive hydrogels. In this report, two kinds of investigations were carried out on the intelligent hydrogels and the applications with radiation techniques. 1. Synthesis of temperature responsive sol-gel transition polymer and the application to drug delivery systems. Polysopropyl acrylamide is a typical temperature responsive polymers and the copolymers show broad variation of LCST (sol-gel transition temperature). The various copolymers of isopropyl acrylamide were synthesized by UV or radiation. 2. Surface curing of pH and electric field responsive hydrogel and the application to drug delivery systems. Electrolyte monomers such as acrylic acid was coated on the surface of polymer membrane (porous or non-porous) including drugs, and cured by UV or radiation various enzymes were immobilized in the coating layer in many cases. The product showed pH, electro-field and substrate responsive releases of model drug under on-off switching of environmental conditions. (J.P.N.)

  5. Synthesis and application of intelligent hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kaetsu, I.; Uchida, K.; Sutani, K.; Nakayama, H.; Tamori, A. [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    2000-03-01

    The authors have studied synthesis and application of stimule-sensitive and responsive hydrogels. In this report, two kinds of investigations were carried out on the intelligent hydrogels and the applications with radiation techniques. 1. Synthesis of temperature responsive sol-gel transition polymer and the application to drug delivery systems. Polysopropyl acrylamide is a typical temperature responsive polymers and the copolymers show broad variation of LCST (sol-gel transition temperature). The various copolymers of isopropyl acrylamide were synthesized by UV or radiation. 2. Surface curing of pH and electric field responsive hydrogel and the application to drug delivery systems. Electrolyte monomers such as acrylic acid was coated on the surface of polymer membrane (porous or non-porous) including drugs, and cured by UV or radiation various enzymes were immobilized in the coating layer in many cases. The product showed pH, electro-field and substrate responsive releases of model drug under on-off switching of environmental conditions. (J.P.N.)

  6. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiao [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Branford-White, Christopher [Institute for Health Research and Policy, London Metropolitan University, London N78 DB (United Kingdom); Tao, Lei [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Li, Shubai [Changzhou Institute of Engineering Technology, Changzhou 213164 (China); Quan, Jing [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Nie, Huali, E-mail: niehuali@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Zhu, Limin, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2016-01-01

    Dipeptides and their derivatives have attracted tremendous attention owning to their excellent abilities of self-assemble assembling into various structures which have great potentials for applications in biology and/or nanotechnology. In the present study, we dedicate to fabricate a rigid and structure controllable Fmoc-FF/SA composite hydrogel. We found that the modified dipeptide, fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Phe-Phe) can self-assemble into rigid hydrogels with structures of nanowires, layered thin films or honeycombs as the change of sodium alginate (SA) concentration. Meanwhile, CD-spectroscopy demonstrated that SA appeared to control the process, but it did not change the arrangement of the Fmoc-FF peptide. Our results demonstrated that the formed hydrogel showed physical and chemical stability as well as possessing good biocompatibility. Rheological measurements showed that the addition of SA could improve the stability of the hydrogel. Cell viability assay revealed that the Fmoc-FF and Fmoc-FF/SA hydrogels are both beneficial for cell proliferation in-vitro. Our results indicated that the fabricated Fmoc-FF/SA composite hydrogels could be used in tissue engineering and drug delivery in the future. - Highlights: • A facile, time-saving approach to assemble Fomc-FF composite hydrogels was designed. • Hydrogel structures including nanowires, layered films and honeycombs can be controlled. • The role of SA in the Fmoc-FF/SA composite hydrogel was further clarified.

  7. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres

    International Nuclear Information System (INIS)

    Bergamasco, Juliana; Araujo, Marcelo V. de; Vasconcellos, Adriano de; Luizon Filho, Roberto A.; Hatanaka, Rafael R.; Giotto, Marcus V.; Aranda, Donato A.G.; Nery, José G.

    2013-01-01

    Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg −1 ), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg −1 ). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23 Na- and 13 C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. Highlights: • Rhizomucor miehei lipase was immobilized on PVA microspheres (PVA4, PVA12, PVA25). • Polymer-enzyme complex was characterized by XDR, SEM, ATR-FTIR, 13 C-CPMAS-NMR, 23 Na-MAS-NMR. • Polymer-enzymes (PVA12 and PVA25) enzymes yielded considerable amount of ethyl esters. • Synergistic effect was observed for the polymer-enzyme complexes

  8. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    Science.gov (United States)

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  9. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  10. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  11. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    Science.gov (United States)

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells. © 2015 Wiley Periodicals, Inc.

  12. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method.

    Science.gov (United States)

    Santos, Carla; Silva, Carla J; Büttel, Zsófia; Guimarães, Rodrigo; Pereira, Sara B; Tamagnini, Paula; Zille, Andrea

    2014-01-01

    A series of polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/cyanobacterial extracellular polymeric substances (EPS) blended nanofibrous membranes were produced by electrospinning using a microfiltration poly(vinylidene fluoride) (PVDF) basal membrane, for potential applications in water filtration. Nanofibres were obtained from solutions of 20% (w/w) PVA with 1% (w/w) CS or EPS, using a weight ratio of 60/40. Blended nanofibres have shown a smooth morphology, no beads formation and diameters between 50 and 130 nm. Thermo-mechanical analysis demonstrated that there were inter and/or intramolecular hydrogen bonds between the molecules of PVA/CS and PVA/EPS in the blends. The electrospun blended PVA/EPS membrane showed better tensile mechanical properties when compared with PVA and PVA/CS, and resisted more against disintegration in the temperature range between 10 and 50 °C. Finally, the blended membranes have shown an increase in chromium binding capacity of 5%. This is the first successful report of a blended membrane of electrospinned cyanobacterial polysaccharide with PVA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. DNA hydrogel-based supercapacitors operating in physiological fluids

    OpenAIRE

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact ...

  14. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  15. Hydrogels for efficient light delivery in optogenetic applications

    Science.gov (United States)

    Johannsmeier, S.; Torres, M. L.; Ripken, T.; Heinemann, D.; Heisterkamp, A.

    2018-02-01

    Light-based therapies have been established for various indications, such as skin conditions, cancer or neonatal jaundice. Advances in the field of optogenetics open up new horizons for light-tissue interactions with an organism-wide impact. Excitable tissues, such as nerve and muscle tissues, can be controlled by light after the introduction of light-sensitive ion channels. Since these organs are generally not easily accessible to illumination in vivo, there is an increasing need for effective biocompatible waveguides for light delivery. These devices not only have to guide and distribute the light as desired with minimal losses, they should also mimic the mechanical properties of the surrounding tissue to ensure compatibility. In this project, we are tuning the properties of hydrogels from poly(ethylene glycol) derivatives to achieve compatibility with muscle tissue as well as optimal light guiding and distribution for optogenetic applications at the heart. The excitation light is coupled into the hydrogel with a biocompatible fiber. Properties of the hydrogel are mainly tuned by monomer length and concentration. Total reflection can be achieved by embedding a fiber-like hydrogel with a high refractive index into a second, low refractive index gel. Different geometries and scattering microparticles are used for light distribution in a flat gel patch. Targeted cell attachment can be achieved by introducing a protein layer to the otherwise bioinert gel. After optimization, the hydrogel may be used to deliver light for the excitation of genetically altered cardiomyocytes for controlled contraction.

  16. The Formation Mechanism of Hydrogels.

    Science.gov (United States)

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  18. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    Science.gov (United States)

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect.

    Science.gov (United States)

    Li, Xiang; Li, Yubao; Zuo, Yi; Qu, Dan; Liu, Yiming; Chen, Tao; Jiang, Nan; Li, Hui; Li, Jihua

    2015-10-01

    A novel bi-layered osteochondral scaffold, including of PVA/Gel/V layer for the cartilage and n-HA/PA6 layer for the subchondral bone, has been proposed to evaluate the potential of the engineered of osteochondral grafts in repairing articular osteochondral defects in rabbits. The two different layers of the scaffolds were seeded with allogenic bone marrow-derived stem cells (BMSCs), which were chondrogenically and osteogenically induced respectively. The critical-size osteochondral defects were created in the knees of adult rabbits. The defects were treated with cell-bi-layered constructs (Group A), bi-layered constructs (Group B) and untreated group C as control group. The adhesion, proliferation and differentiation of BMSCs were demonstrated by immunohistochemical staining and scanning electron microscopy (SEM) in vitro. Cell survival was tracked via fluorescent labeling in vivo. Overall, the porous PVA/Gel/V-n-HA/PA6 scaffold was compatible and had no negative effects on the BMSCs in vitro culture. The cell-bi-layered scaffolds showed superior repair results as compared to the control group using gross examination and histological assessment. With BMSCs implantation, the two different layers of the composite biomimetic scaffolds provided a suitable environment for cells to form respective tissue. Simultaneously, the RT-PCR results confirmed the expression of specific extracellular matrix (ECM) markers for cartilaginous or osteoid tissue. This investigation showed that the porous PVA/Gel/V-n-HA/PA6 scaffold is a potential matrix for treatment of osteochondral defects, and the method of using chondrogenically and osteogenically differentiated BMSCs as seed cells on each layer might be a promising strategy in repair of articular osteochondral defect due to enhanced chondrogenesis and osteogenesis. © 2015 Wiley Periodicals, Inc.

  20. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  1. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  2. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    Science.gov (United States)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  3. Porous Aluminum Oxide and Magnesium Oxide Films Using Organic Hydrogels as Structure Matrices

    Directory of Open Access Journals (Sweden)

    Zimei Chen

    2018-03-01

    Full Text Available We describe the synthesis of mesoporous Al2O3 and MgO layers on silicon wafer substrates by using poly(dimethylacrylamide hydrogels as porogenic matrices. Hydrogel films are prepared by spreading the polymer through spin-coating, followed by photo-cross-linking and anchoring to the substrate surface. The metal oxides are obtained by swelling the hydrogels in the respective metal nitrate solutions and subsequent thermal conversion. Combustion of the hydrogel results in mesoporous metal oxide layers with thicknesses in the μm range and high specific surface areas up to 558 m2∙g−1. Materials are characterized by SEM, FIB ablation, EDX, and Kr physisorption porosimetry.

  4. Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres

    International Nuclear Information System (INIS)

    Naebe, Minoo; Lin Tong; Tian, Wendy; Dai Liming; Wang Xungai

    2007-01-01

    In this study, we have electrospun poly(vinyl alcohol)(PVA) nanofibres and PVA composite nanofibres containing multi-wall carbon nanotubes (MWNTs) (4.5 wt%), and examined the effect of the carbon nanotubes and the PVA morphology change induced by post-spinning treatments on the tensile properties, surface hydrophilicity and thermal stability of the nanofibres. Through differential scanning calorimetry (DSC) and wide-angle x-ray diffraction (WAXD) characterizations, we have observed that the presence of the carbon nanotubes nucleated crystallization of PVA in the MWNTs/PVA composite nanofibres, and hence considerably improved the fibre tensile strength. Also, the presence of carbon nanotubes in PVA reduced the fibre diameter and the surface hydrophilicity of the nanofibre mat. The MWNTs/PVA composite nanofibres and the neat PVA nanofibres responded differently to post-spinning treatments, such as soaking in methanol and crosslinking with glutaric dialdehyde, with the purpose of increasing PVA crystallinity and establishing a crosslinked PVA network, respectively. The presence of carbon nanotubes reduced the PVA crystallization rate during the methanol treatment, but prevented the decrease of crystallinity induced by the crosslinking reaction. In comparison with the crosslinking reaction, the methanol treatment resulted in better improvement in the fibre tensile strength and less reduction in the tensile strain. In addition, the presence of carbon nanotubes reduced the onset decomposition temperature of the composite nanofibres, but stabilized the thermal degradation for the post-spinning treated nanofibres. The MWNTs/PVA composite nanofibres treated by both methanol and crosslinking reaction gave the largest improvement in the fibre tensile strength, water contact angle and thermal stability

  5. Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material

    OpenAIRE

    Malek Ali

    2016-01-01

    Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation proper...

  6. Dual functions of polyvinyl alcohol (PVA): fabricating particles and electrospinning nanofibers applied in controlled drug release

    Science.gov (United States)

    Qin, Xiao-Hong; Wu, De-Qun; Chu, Chih-Chang

    2013-01-01

    The fabrication of submicron size microsphere from 8-Phe-4 poly(ester amide) (PEA) using polyvinyl alcohol (PVA) as the emulsion was reported. The biodegradable microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique, and PVA was used as the emulsion. Furthermore, the emulsion PVA was electrospun into nanofibrous mats, and 8-Phe-4 PEA microspheres were entrapped in the resultant mats. The dual functions of PVA to fabricate ideal nanofibrous mats which can entrap microspheres in them and to obtain 8-Phe-4 microspheres as emulsion in their potential application were demonstrated. The anti-cancer drug doxorubicin (DOX) was encapsulated in the 8-Phe-4 amino acid-based PEA microspheres and the entrapment efficiency is almost 100 %. At the same time, the DOX can be controlled released in PBS solution and in α-chymotrypsin solution. The cytotoxicity of PVA, PVA mats-entrapped 8-Phe-4 microspheres and PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres, was investigated. Hela cells were used to test the cytotoxicity of the DOX that released from the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres for 2 days, and the cell viability is below 30 % when the 8-Phe-4 microspheres concentration is 1 mg/mL. It demonstrated that the PVA mats-entrapped DOX-loaded 8-Phe-4 microspheres have a potential biomedical application.

  7. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  8. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  9. Silica in situ enhanced PVA/chitosan biodegradable films for food packages.

    Science.gov (United States)

    Yu, Zhen; Li, Baoqiang; Chu, Jiayu; Zhang, Peifeng

    2018-03-15

    Non-degradable plastic food packages threaten the security of environment. The cost-effective and biodegradable polymer films with good mechanical properties and low permeability are very important for food packages. Among of biodegradable polymers, PVA/chitosan (CS) biodegradable films have attracted considerable attention because of feasible film forming ability. However, PVA/CS biodegradable films suffered from poor mechanical properties. To improve mechanical properties of PVA/CS biodegradable films, we developed SiO 2 in situ to enhance PVA/CS biodegradable films via hydrolysis of sodium metasilicate in presence of PVA and chitosan solution. The tensile strength of PVA/CS biodegradable films was improved 45% when 0.6 wt.% SiO 2 was incorporated into the films. Weight loss of PVA/CS biodegradable films was 60% after 30 days in the soil. The permeability of oxygen and moisture of PVA/CS biodegradable films was reduced by 25.6% and 10.2%, respectively. SiO 2 in situ enhanced PVA/CS biodegradable films possessed not only excellent mechanical properties, but also barrier of oxygen and water for food packages to extend the perseveration time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  11. Mechanical and electromagnetic interference shielding Properties of poly(vinyl alcohol)/graphene and poly(vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating.

    Science.gov (United States)

    Fujimori, Kazushige; Gopiraman, Mayakrishnan; Kim, Han-Ki; Kim, Byoung-Suhk; Kim, Ick-Soo

    2013-03-01

    We report the mechanical property and electromagnetic interference shielding effectiveness (EMI SE) of poly(vinyl alcohol) (PVA)/graphene and PVA/multi-walled carbon nanotube (MWCNT) composite nanofibers prepared by electrospinning. The metal (Cu) was deposited on the resultant PVA composite nanofibers using metal deposition technique in order to improve the mechanical properties and EMI shielding properties. The resulting PVA composite nanofibers and Cu-deposited corresponding nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD). Tensile tests were performed on the PVA/graphene and PVA/MWCNT composite nanofibers. The tensile strength of the PVA/graphene and PVA/MWCNT composite nanofibers was found to be 19.2 +/- 0.3 MPa at graphene content - 6.0 wt% and 12.2 +/- 0.2 MPa at MWCNT content - 3.0 wt%, respectively. The EMI SE of the Cu-deposited PVA/graphene composite nanofibers was significantly improved compared to pure PVA/graphene composite nanofibers, and also depended on the thickness of Cu metal layer deposited on the PVA composite nanofibers.

  12. Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode

    Science.gov (United States)

    Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.

    2018-05-01

    The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.

  13. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  14. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-01-01

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424

  15. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Ahasan Habib

    2018-03-01

    Full Text Available Three-dimensional (3D bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  16. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel.

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-03-20

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  17. HYDROGELS AND THEIR APLICATION AREAS

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Hydrogels, being polymeric material,are named “Hydrophilic Polymer” because of their capable of holding large amounts of water in their three-dimensional networks. Hydrogels is not solved in water; however they have been swollen to their balace volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape. Their cross linked bound structures are able to covalent or ionic and also one polymer which can for use of hydrogel polymer, must have hydrophilic groups such as carboxyl, carbonyl, amine and amide in main chains or side chains, and because of these groups water bound the polymer and polymer start to swell with rising volume and mass. Swell behavior of hydrogel is interested in quantity of hydrophilic groups. Hydrogels can use in different industrial and environmental areas with this high amount water holding capacity. They are used in food industry, biomedical, bioengineering, biotechnology, veterinary, pharmacist, agriculture, telecommunication, etc. Especially in current life, baby nappy has been including inside hydrogel beads. Also they used in contact lens, artificial cornea, synthetic cartilage and gullet, controlled medicine release, surgery yarns. This article general inform about usage area of hydrogels.

  18. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-01-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds

  19. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  20. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

    Directory of Open Access Journals (Sweden)

    Xingkai Zhang

    2017-06-01

    Full Text Available A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 °C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

  1. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    Science.gov (United States)

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  2. Thermal conduction in polymeric nanofluids under mean field approximation: role of interfacial adsorption layers

    International Nuclear Information System (INIS)

    Nisha, M R; Philip, J

    2013-01-01

    Polymeric nanofluids of TiO 2 /PVA (polyvinyl alcohol) and Cu/PVA have been prepared by dispersing nanoparticles of TiO 2 or metallic copper in PVA. The thermal diffusivities and thermal conductivities of these nanofluids have been measured as a function of particle loading following a thermal wave interference technique in a thermal wave resonant cavity. It is found that in both cases thermal conductivity increases with particle concentration, with Cu/PVA nanofluids showing a much larger increase. The results have been compared with the corresponding values calculated following different theoretical models. Comparison of the results with model-based calculations shows that the thermal conductivity variations in these nanofluids are within the framework of the classical mean field theory including the formation of thin interfacial adsorption layers around nanoparticles. Although the molecular weight of PVA is very high, it is found that the adsorption layer thickness is limited by the hydrodynamic radius of the nanoparticles. It is found that particle clustering followed by interfacial layering accounts for the larger increase in thermal conductivity found for Cu/PVA compared to TiO 2 /PVA. (paper)

  3. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress

    Directory of Open Access Journals (Sweden)

    Hipólito Hernández-Hernández

    2018-01-01

    Full Text Available Chitosan is a natural polymer, which has been used in agriculture to stimulate crop growth. Furthermore, it has been used for the encapsulation of nanoparticles in order to obtain controlled release. In this work, the effect of chitosan–PVA and Cu nanoparticles (Cu NPs absorbed on chitosan–PVA on growth, antioxidant capacity, mineral content, and saline stress in tomato plants was evaluated. The results show that treatments with chitosan–PVA increased tomato growth. Furthermore, chitosan–PVA increased the content of chlorophylls a and b, total chlorophylls, carotenoids, and superoxide dismutase. When chitosan–PVA was mixed with Cu NPs, the mechanism of enzymatic defense of tomato plants was activated. The chitosan–PVA and chitosan–PVA + Cu NPs increased the content of vitamin C and lycopene, respectively. The application of chitosan–PVA and Cu NPs might induce mechanisms of tolerance to salinity.

  4. Membranes of polyindene sulfonated and PVA for use as polymer electrolyte; Membranas mistas de poli(indeno) sulfonado e PVA para uso como eletrolito polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Loser, N.; Silva, B.B.R. da; Brum, F.J.B.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul - Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    This study is focused on developing polymer poly electrolytes for fuel cell PEM and aims to evaluate the efficiency of sulfonated polyindene as A polymer electrolyte in blends with poly (vinyl alcohol) (PVA). For this, polyindene synthesized in the lab was functionalized with sulfonic groups (-SO{sub 3}H), using as sulfonation agent acetyl sulfate in 1,2-dichloroethane. The membranes of sulfonated polyindene (SPInd) and PVA were prepared in aqueous medium, using glutaraldehyde as a PVA cross linker. The membranes SPInd/PVA were evaluated on the content of sulfonic groups, ion exchange capacity (IEC), degree of swelling in water and thermal stability (TGA). Electrochemical impedance analysis was used for ionic conductivity evaluation and DMA for the mechanical strength of the membranes. Preliminary results show that the membranes showed ion exchange capacity about 3.2 m equiv/g and degree of swelling in water of 550%. (author)

  5. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 3. The Role of Tackiness and the Tack Stokes Number

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    In the first and second parts of this study [Hede, P. D.; Bach, P.; Jensen, A. D. Ind. Eng. Chem. Res. 2009, 48, 1893 and 1905], agglomeration tendencies were studied for two types of coatings: sodium sulfate and PVA-TiO2. Results showed that the agglomeration tendency is always lower for the salt...... of agglomeration, similar to the salt coating process. With the PVA-TiO2, coating liquid layer thicknesses encountered during these fluid-bed coating processes, agglomeration seems to be governed primarily by liquid surface phenomena. A modification to the original viscous Stokes number is suggested in the present...... paper, which defines the Stokes number in terms of the work needed to reach maximum tack instead of the viscous dissipation energy. The new tack Stokes number correlates well with the observed levels of agglomeration and, as a promising feature, proportionality is observed between the agglomeration...

  6. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications.

    Science.gov (United States)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2016-07-01

    Present article discusses synthesis and characterization of the sterile and pure hydrogel wound dressings which were prepared through radiation method by using polyvinyl alcohol (PVA), tragacanth gum (TG) and sodium alginate (SA). The polymer films were characterized by SEM, Cryo-SEM, FTIR, solid state C(13) NMR and XRD, TGA, and DSC. Some important biological properties such as O2 permeability, water vapor transmission rate, microbial permeability, haemolysis, thrombogenic behavior, antioxidant activity, bio-adhesion and mechanical properties were also studied. The hydrogel film showed thrombogenicity (82.43±1.54%), haemolysis (0.83±0.09%), oxygen permeability (6.433±0.058mg/L) and water vapor permeability (197.39±25.34g/m(2)/day). Hydrogel films were found biocompatible and impermeable to microbes. The release of antibiotic drug moxifloxacin occurred through non-Fickian mechanism and release profile was best fitted in Hixson-Crowell model for drug release. Overall, these results indicate the suitability of these hydrogels in wound dressing applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    Science.gov (United States)

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device

    International Nuclear Information System (INIS)

    Song, Wei; Shi, Tong; Ren, Weiping; Yu, Xiaowei; Markel, David C

    2013-01-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL Col /PVA HA ). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL Col /PVA HA NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL Col /PVA HA NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL Col /PVA HA NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL Col /PVA HA NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL Col /PVA HA NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection. (paper)

  9. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device.

    Science.gov (United States)

    Song, Wei; Yu, Xiaowei; Markel, David C; Shi, Tong; Ren, Weiping

    2013-09-01

    The failure of prosthesis after total joint replacement is mainly due to dysfunctional osseointegration and implant infection. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. The aim of this study was to fabricate a novel coaxial electrospun polycaprolactone (PCL)/polyvinyl alcohol (PVA) core-sheath nanofiber (NF) blended with both hydroxyapatite nanorods (HA) and type I collagen (Col) (PCL(Col)/PVA(HA)). Doxycycline (Doxy) and dexamethasone (Dex) were successfully incorporated into the PCL(Col)/PVA(HA) NFs for controlled release. The morphology, surface hydrophilicity and mechanical properties of the PCL/PVA NF mats were analyzed by scanning electron microscopy, water contact angle and atomic force microscopy. The PCL(Col)/PVA(HA) NFs are biocompatible and enhance the adhesion and proliferation of murine pre-osteoblastic MC3T3 cells. The release of Doxy and Dex from coaxial PCL(Col)/PVA(HA) NFs showed more controlled release compared with the blended NFs. Using an ex vivo porcine bone implantation model we found that the PCL(Col)/PVA(HA) NFs bind firmly on the titanium rod surface and the NFs coating remained intact on the surface of titanium rods after pullout. No disruption or delamination was observed after the pullout test. These findings indicate that PCL(Col)/PVA(HA) NFs encapsulating drugs have great potential in enhancing implant osseointegration and preventing implant infection.

  10. (Zn-doped PVA)/n-4H-SiC (MPS)

    Indian Academy of Sciences (India)

    2018-05-23

    May 23, 2018 ... A comparative study on dielectric behaviours of Au/(Zn-doped. PVA)/n-4H-SiC .... To form MPS structures, the prepared PVA (Zn nanoparticle- doped) ..... 95 2885. [26] MacCallum J R and Vincent C A 1989 Polymer electrolyte.

  11. Novel PVA-DNA nanoparticles prepared by ultra high pressure technology for gene delivery

    International Nuclear Information System (INIS)

    Kimura, Tsuyoshi; Okuno, Akira; Miyazaki, Kozo; Furuzono, Tsutomu; Ohya, Yuichi; Ouchi, Tatsuro; Mutsuo, Shingo; Yoshizawa, Hidekazu; Kitamura, Yoshiro; Fujisato, Toshiyta; Kishida, Akio

    2004-01-01

    Polyvinyl alcohol (PVA)-DNA nanoparticles have been developed by ultra high pressure (UHP) technology. Mixture solutions of DNA and PVA having various molecular weights (Mw) and degree of saponifications (DS) were treated under 10,000 atmospheres (981 MPa) condition at 40 deg. C for 10 min. Agarose gel electrophoresis and scanning electron microscope observation revealed that the PVA-DNA nanoparticles with average diameter of about 200 nm were formed. Using PVA of higher Mw and degree of saponifications, the amount of nanoparticles formed increased. The driving force of nanoparticle formation was the hydrogen bonding between DNA and PVA. In order to apply the PVA-DNA nanoparticles for gene delivery, the cytotoxicity and the cellular uptake of them were investigated using Raw264 cell lines. The cell viability was not influenced whether the presence of the PVA-DNA nanoparticles. Further, the nanoparticles internalized into cells were observed by fluorescent microscope. These results indicates that the PVA-DNA nanoparticles prepared by UHP technology showed be useful as drug carrier, especially for gene delivery

  12. Physical Evaluation of PVA/Chitosan Film Blends with Glycerine and Calcium Chloride

    Science.gov (United States)

    Nugraheni, A. D.; Purnawati, D.; Kusumaatmaja, A.

    2018-04-01

    PVA/chitosan film has been fabricated by using drop casting method. PVA/chitosan film is produced by dissolving 2% (w/v) PVA solution and 2% (w/v) chitosan solution. PVA/chitosan film is produced with weight ratio variation (w/w) 100/0, 75/25, 50/50 and 0/100. The film is fabricated using drop casting method in Petry dish with diameter 11 cm at room temperature and RH 50%–60% during seven days. The mechanical properties were characterized by using Universal Technical Machine (UTM) and UV-Vis to understand the physical properties of weight ratio (w/w) of PVA/Chitosan film by addition of plasticizer and calcium chloride. The film thickness tends to decrease with PVA content. The addition of chitosan will increase film thickness, and it will decrease swelling index, elongation (%), and transmittance of UV rays. The additions of plasticizer to PVA/Chitosan film will increase film thickness and elongation (%), and it will decrease swelling index, tensile strength and transmittance of UV rays. The crosslink of PVA/Chitosan film with calcium chloride will decrease film thickness, swelling index, elongation (%) and transmittance of UV rays, and increase tensile strength.

  13. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    Directory of Open Access Journals (Sweden)

    Marioli-Riga Z.

    2010-06-01

    Full Text Available Polyvinyl alcohol - carbon nanotube (PVA-CNT fibers had been embedded to glass fiber reinforced polymers (GFRP for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  14. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    Science.gov (United States)

    Manna, Uttam; Patil, Satish

    2009-07-09

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  15. Cytocompatible cellulose hydrogels containing trace lignin

    International Nuclear Information System (INIS)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-01-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm"2 and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  16. Cytocompatible cellulose hydrogels containing trace lignin

    Energy Technology Data Exchange (ETDEWEB)

    Nakasone, Kazuki; Kobayashi, Takaomi, E-mail: takaomi@nagaoakut.ac.jp

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12 h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43 N/mm{sup 2} and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. - Highlights: • Cellulose hydrogel films with trace lignin were obtained from sugarcane bagasse. • Lignin content was found to be in the range of 1.62 − 0.68% by UV–Vis spectroscopy. • Higher lignin content strengthened mechanical properties of the hydrogel films. • Trace lignin affected the hydrogel morphology such as roughness and porosity. • High cell proliferation was observed in the hydrogel containing 1.68% lignin.

  17. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  18. Uniquely different PVA-xanthan gum irradiated membranes as transdermal diltiazem delivery device.

    Science.gov (United States)

    Bhunia, Tridib; Giri, Arindam; Nasim, Tanbir; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2013-06-05

    This paper reports interesting differences between physical and mechanical properties of various membranes prepared from high and low molecular weight poly (vinyl alcohol) (PVA) and xanthan gum (XG) blends irradiated under low dose electron beam. The membranes were designed for sustained delivery of diltiazem hydrochloride through skin. Electron beam irradiation produced crosslinks and turned PVA into crystalline phase from its amorphous organization in the unirradiated state. PVA crystals were fibrillar at low XG content (1 wt.%) when the molecular weight was high while similar orientation at higher XG content (5 wt.%) when the molecular weight was low. Low molecular weight PVA-XG membranes showed equivalent physical properties under dry condition but wet-mechanical properties were superior for high molecular weight PVA-XG hybrids. Both of them showed slow and sustained diltiazem release but the later induced slightly slower release despite low drug encapsulation efficiency due to its better wet mechanical strength. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold.

    Science.gov (United States)

    Wu, Zhengjie; Kong, Bin; Liu, Rui; Sun, Wei; Mi, Shengli

    2018-02-24

    Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.

  20. Bioinspired design and assembly of layered double hydroxide/poly(vinyl alcohol) film with high mechanical performance.

    Science.gov (United States)

    Shu, Yingqi; Yin, Penggang; Liang, Benliang; Wang, Hao; Guo, Lin

    2014-09-10

    Inspired by the hierarchical structure and excellent mechanical performance of nacre, LDH nanosheets with an appropriate aspect ratio to withstand significant loads and at the same time allow for rupture under the pull-out mode were synthesized as artificial building blocks for the fabrication of nacre-like films. Multilayered PVA/LDH films with a high tensile strength and ductility were prepared for the first time by bottom-up layer-by-layer assembly of pretreated LDH nanosheets and spin-coating of PVA. The weight fraction of inorganic LDH platelets in the hybrid PVA/LDH films (wp) was controlled by changing the concentration of PVA solution applied in the spin-coating process. The resulting films revealed that the PVA/LDH hybrid films were piled close together to form a well-defined stratified structure resembling the brick-and-mortar structure of natural nacre. In the hybrid films, the content of inorganic LDH platelets was comparable to the value in nacre, up to 96.9 wt %. It could be clearly seen that the mechanical performance of the as-prepared PVA/LDH films was greatly improved by increasing the rigid building-block LDHs. The tensile strength of the 2 wt % PVA/LDH hybrid film reached a value of 169.36 MPa, thus exceeding the strength of natural nacre and reaching 4 times that of a pure PVA film. Meanwhile, its elastic modulus was comparable to that of lamellar bone.

  1. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Science.gov (United States)

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  2. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. © 2013.

  3. Hydrogels in Miniemulsions

    Science.gov (United States)

    Landfester, Katharina; Musyanovych, Anna

    In the last decade, the synthesis of polymeric materials that respond to specific environment stimuli by changing their size has attracted widespread interest in both fundamental and applied areas of research. Hydrogels in dispersions are composed of randomly oriented, physically or chemically crosslinked hydrophilic or amphiphilic polymer chains. The synthesis of these gels at the nanoscale (nanogels or microgels) is especially of great importance for their application in drug delivery and controlled release systems, and in biomimetics, biosensing, tissue regeneration, heterogeneous catalysis, etc. The focus of this review is to present the versatility of the miniemulsion process for the formation of monodisperse nanogels from synthetic and natural polymers. Several applications of the obtained microgels are briefly described.

  4. Wet spinning of PVA composite fibers with a large fraction of multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Dengpan Lai

    2015-10-01

    Full Text Available PVA composites fibers with a large fraction of multi-walled carbon nanotubes modified by both covalent and non-covalent functionalization were produced by a wet-spinning process. Model XQ-1 tensile tester, thermogravimetric analysis, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction were used to characterize the properties of PVA/MWNT composite fibers. The TGA results suggested that MWNTs content in composite fibers were ranged from 5.3 wt% to 27.6 wt%. The mechanical properties of PVA/MWNT composite fibers were obviously superior to pure PVA fiber. The Young׳s modulus of composite fibers enhanced with increasing the content of MWNTs, and it rised gradually from 6.7 GPa for the pure PVA fiber to 12.8 GPa for the composite fibers with 27.6 wt% MWNTs. Meanwhile, the tensile strength increased gradually from 0.39 GPa for the pure PVA fiber to 0.74 GPa for the composite fibers with 14.4 wt% MWNTs. Nevertheless, the tensile strength of the composite fibers decreased as the MWNTs content up to 27.6 wt%. SEM results indicated that the MWNTs homogeneously dispersed in the composite fibers, however some agglomerates also existed when the content of MWNTs reached 27.6 wt%. DSC results proved strong interfacial interaction between MWNTs and PVA chain, which benefited composite fibers in the efficient stress-transfer. WXAD characterization showed that the orientation of PVA molecules declined from 94.1% to 90.9% with the increasing of MWNTs content. The good dispersibility of MWNTs throughout PVA matrix and efficient stress-transfer between MWNTs and PVA matrix may contributed to significant enhancement in the mechanical properties.

  5. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    Science.gov (United States)

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in

  6. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  7. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Science.gov (United States)

    Wang, Yongliang; Li, Baoqiang; Zhou, Yu; Jia, Dechang

    2009-09-01

    Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS-Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4 and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3 and hydroxyapatite.

  8. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Wang Yongliang

    2009-01-01

    Full Text Available Abstract Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS–Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3and hydroxyapatite.

  9. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  10. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.

    NARCIS (Netherlands)

    Holland, T.A.; Bodde, E.W.H.; Baggett, L.S.; Tabata, Y.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    In this study, hydrogel scaffolds, based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF), were implanted into osteochondral defects in the rabbit model. Scaffolds consisted of two layers-a bottom, bone forming layer and a top, cartilage forming layer. Three scaffold formulations were

  11. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.

    Science.gov (United States)

    Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan

    2018-02-01

    A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Three-Dimensional Calcium Alginate Hydrogel Assembly via TiOPc-Based Light-Induced Controllable Electrodeposition

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-06-01

    Full Text Available Artificial reconstruction of three-dimensional (3D hydrogel microstructures would greatly contribute to tissue assembly in vitro, and has been widely applied in tissue engineering and drug screening. Recent technological advances in the assembly of functional hydrogel microstructures such as microfluidic, 3D bioprinting, and micromold-based 3D hydrogel fabrication methods have enabled the formation of 3D tissue constructs. However, they still lack flexibility and high efficiency, which restrict their application in 3D tissue constructs. Alternatively, we report a feasible method for the fabrication and reconstruction of customized 3D hydrogel blocks. Arbitrary hydrogel microstructures were fabricated in situ via flexible and rapid light-addressable electrodeposition. To demonstrate the versatility of this method, the higher-order assembly of 3D hydrogel blocks was investigated using a constant direct current (DC voltage (6 V applied between two electrodes for 20–120 s. In addition to the plane-based two-dimensional (2D assembly, hierarchical structures—including multi-layer 3D hydrogel structures and vessel-shaped structures—could be assembled using the proposed method. Overall, we developed a platform that enables researchers to construct complex 3D hydrogel microstructures efficiently and simply, which has the potential to facilitate research on drug screening and 3D tissue constructs.

  13. Novel Hydrogels from Renewable Resources

    Science.gov (United States)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  14. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    Science.gov (United States)

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  16. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications.

    Science.gov (United States)

    Liu, Yaowen; Wang, Shuyao; Lan, Wenting

    2018-02-01

    In this study, blended films from poly(vinyl alcohol) (PVA) containing chitosan (CS) were prepared via a simple solution casting and electrospraying method. The structures of the PVA-CS films were characterized by Fourier-transform infrared spectroscopy. The morphologies of the films were observed by scanning electron microscopy. The thermal properties of the PVA-CS films were examined by thermogravimetry. The effects of CS contents on the mechanical properties, oxygen permeability values, water vapor permeation levels, and antibacterial behaviors against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains were investigated. Compared to the pure PVA film, the PVA-CS films showed greater elongation at break, lower oxygen permeability, higher water barrier properties, and greater antibacterial activity, especially for the PVA:CS weight ratio of 75:25. The obtained results indicate the PVA-CS film may be a promising material for food packaging applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Repeatability and reproducibility of Population Viability Analysis (PVA and the implications for threatened species management

    Directory of Open Access Journals (Sweden)

    Clare Morrison

    2016-08-01

    Full Text Available Conservation triage focuses on prioritizing species, populations or habitats based on urgency, biodiversity benefits, recovery potential as well as cost. Population Viability Analysis (PVA is frequently used in population focused conservation prioritizations. The critical nature of many of these management decisions requires that PVA models are repeatable and reproducible to reliably rank species and/or populations quantitatively. This paper assessed the repeatability and reproducibility of a subset of previously published PVA models. We attempted to rerun baseline models from 90 publicly available PVA studies published between 2000-2012 using the two most common PVA modelling software programs, VORTEX and RAMAS-GIS. Forty percent (n = 36 failed, 50% (45 were both repeatable and reproducible, and 10% (9 had missing baseline models. Repeatability was not linked to taxa, IUCN category, PVA program version used, year published or the quality of publication outlet, suggesting that the problem is systemic within the discipline. Complete and systematic presentation of PVA parameters and results are needed to ensure that the scientific input into conservation planning is both robust and reliable, thereby increasing the chances of making decisions that are both beneficial and defensible. The implications for conservation triage may be far reaching if population viability models cannot be reproduced with confidence, thus undermining their intended value.

  18. ZnS/PVA nanocomposites for nonlinear optical applications

    Science.gov (United States)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  19. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    -caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  20. Anisotropic dehydration of hydrogel surfaces.

    Science.gov (United States)

    Kaklamani, Georgia; Cheneler, David; Grover, Liam M; Adams, Michael J; Anastasiadis, Spiros H; Bowen, James

    2017-12-01

    Efforts to develop tissue-engineered skin for regenerative medicine have explored natural, synthetic, and hybrid hydrogels. The creation of a bilayer material, with the stratification exhibited by native skin, is a complex problem. The mechanically robust, waterproof epidermis presents the stratum corneum at the tissue/air interface, which confers many of these protective properties. In this work, we explore the effect of high temperatures on alginate hydrogels, which are widely employed for tissue engineering due to their excellent mechanical properties and cellular compatibility. In particular, we investigate the rapid dehydration of the hydrogel surface which occurs following local exposure to heated surfaces with temperatures in the range 100-200 °C. We report the creation of a mechanically strengthened hydrogel surface, with improved puncture resistance and increased coefficient of friction, compared to an unheated surface. The use of a mechanical restraint during heating promoted differences in the rate of mass loss; the rate of temperature increase within the hydrogel, in the presence and absence of restraint, is simulated and discussed. It is hoped that the results will be of use in the development of processes suitable for preparing skin-like analogues; application areas could include wound healing and skin restoration.

  1. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Science.gov (United States)

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  2. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  3. PVA gel as a potential adhesion barrier: a safety study in a large animal model of intestinal surgery.

    Science.gov (United States)

    Renz, Bernhard W; Leitner, Kurt; Odermatt, Erich; Worthley, Daniel L; Angele, Martin K; Jauch, Karl-Walter; Lang, Reinhold A

    2014-03-01

    Intra-abdominal adhesions following surgery are a major source of morbidity and mortality including abdominal pain and small bowel obstruction. This study evaluated the safety of PVA gel (polyvinyl alcohol and carboxymethylated cellulose gel) on intestinal anastomoses and its potential effectiveness in preventing adhesions in a clinically relevant large animal model. Experiments were performed in a pig model with median laparotomy and intestinal anastomosis following small bowel resection. The primary endpoint was the safety of PVA on small intestinal anastomoses. We also measured the incidence of postoperative adhesions in PVA vs. control groups: group A (eight pigs): stapled anastomosis with PVA gel compared to group B (eight pigs), which had no PVA gel; group C (eight pigs): hand-sewn anastomosis with PVA gel compared to group B (eight pigs), which had no anti-adhesive barrier. Animals were sacrificed 14 days after surgery and analyzed. All anastomoses had a patent lumen without any stenosis. No anastomoses leaked at an intraluminal pressure of 40 cmH2O. Thus, anastomoses healed very well in both groups, regardless of whether PVA was administered. PVA-treated animals, however, had significantly fewer adhesions in the area of stapled anastomoses. The hand-sewn PVA group also had weaker adhesions and trended towards fewer adhesions to adjacent organs. These results suggest that PVA gel does not jeopardize the integrity of intestinal anastomoses. However, larger trials are needed to investigate the potential of PVA gel to prevent adhesions in gastrointestinal surgery.

  4. Dielectric and electrical study of PPy doped PVA-PVP films

    Science.gov (United States)

    Jha, Sushma; Tripathi, Deepti

    2018-05-01

    Dielectric parameters of free standing films of pure PVA (PolyvinylAlcohol) and PVA with varying concentrations of PVP(Polyvinylpyrrolidone) and Polypyrrole were prepared and studied in low frequency range (100Hz - 2MHz). The results show that dielectric constant, loss tangent and conductivity increase sharply on increasing the concentration of PVP above 50wt% in polymer matrix. PVA-PVP film with low concentration of PPy showed improvement in the values of complex permittivity, loss tangent and ac conductivity within the experimental frequency range. This eco - friendly polymeric material will be studied for its probable application for RFI/EMI shielding, biosensors, capacitors & insulation purposes.

  5. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration.

    Science.gov (United States)

    Mahnama, Hossein; Dadbin, Susan; Frounchi, Masoud; Rajabi, Sareh

    2017-08-01

    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the cells.

  6. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  7. [Thromboresistance of glucose-containing hydrogels].

    Science.gov (United States)

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  8. Hydrogels and their medical applications

    Science.gov (United States)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-05-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  9. Hydrogels and their medical applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-01-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  10. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    International Nuclear Information System (INIS)

    Xu Zhiping; Gu Zi; Cheng Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu Gaoqing Max

    2011-01-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6–0.8 mg of MgAl-LDH and 0.08–0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40–200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10 −12 m 2 /s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  11. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    International Nuclear Information System (INIS)

    Killion, John A.; Kehoe, Sharon; Geever, Luke M.; Devine, Declan M.; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L.

    2013-01-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. Highlights: • Young's modulus increases with the addition of bioactive glasses. • Hydrogel based composites formed an apatite layer in simulated body fluid. • Storage modulus increases with addition of bioactive glasses. • Compressive strength is dependent on molecular weight and bioactive glass loading

  12. A new water absorbable mechanical epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Zeng, Xiangqiong; Gonzalez Rodriguez, P.; ten Elshof, Johan E.; van der Heide, Emile

    2015-01-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these

  13. Hybrid membranes PVA/silicon for use in fuel cells; Membranas hibridas de PVA/silica para aplicacao em celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Liz C.V. de; Almeida, Raquel D. de; Gomes, Ailton de S. [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas Professora Eloisa Mano - IMA, RJ (Brazil)], e-mail: lizcontino@ima.ufrj.br; Ramos Filho, Florencio G. de [Centro Universitario Estadual da Zona Oeste - UEZO, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Hybrids organic-inorganic membranes PVA-silica have been prepared using sol-gel process in situ with the objective of study the influence of inorganic particles incorporation on the water uptake, pervaporation and proton conductivity of PVA membranes. The silica was constituted of mercaptopropyltrimethoxysilane (MPTMS) with or without the mixture with the tetra ethoxysilane (TEOS). The hybrids membranes were oxidated to convert the -SH groups in -SO{sub 3}H groups, becoming them proton conducting. The hybrids membranes not oxidated showed lesser water uptake and pervaporated material, probably, due to the formation of crosslink that restricted the swell of the PVA membrane. The protonic conductivity of the hybrid membranes after the oxidation was up to 26 times bigger than of the membrane not oxidated. (author)

  14. Biodegradable and bioactive CGP/PVA film for fungal growth inhibition.

    Science.gov (United States)

    Silva, Bárbara Dumas S; Ulhoa, Cirano J; Batista, Karla A; Di Medeiros, Maria Carolina; Da Silva Filho, Rômulo Roosevelt; Yamashita, Fabio; Fernandes, Kátia F

    2012-07-01

    In this study, chitinolytic enzymes produced by Trichoderma asperellum were immobilized on a biodegradable film manufactured with a blend of cashew gum polysaccharide (CGP) and polyvinyl alcohol (PVA), and tested as a fungal growth inhibitor. The film was produced by casting a blend of CGP and PVA solution on glass molds. The CGP/PVA film showed 68% water solubility, tensile strength of 23.7 MPa, 187.2% elongation and 52% of mass loss after 90 days in soil. The presence of T-CWD enzymes immobilized by adsorption or covalent attachment resulted in effective inhibition of fungal growth. Sclerotinia sclerotiorum was the most sensitive organism, followed by Aspergillus niger and Penicillium sp. SEM micrograph showed that the presence of immobilized T-CWD enzymes on CGP/PVA film produced morphological modifications on vegetative and germinative structures of the microorganisms, particularly hyphae disruption and changes of spores shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I.

    Science.gov (United States)

    Fortunati, E; Puglia, D; Luzi, F; Santulli, C; Kenny, J M; Torre, L

    2013-09-12

    PVA bio-nanocomposites reinforced with cellulose nanocrystals (CNC) extracted from commercial microcrystalline cellulose (MCC) and from two types of natural fibres, Phormium tenax and Flax of the Belinka variety, were produced by solvent casting in water. Morphological, thermal, mechanical and transparency properties were studied while the respective efficiency of the extraction process of CNC from the three sources was evaluated. The effect of CNC types and content on PVA properties and water absorption capacity were also evaluated. Natural fibres offered higher levels of extraction efficiency when compared with MCC hydrolysis yield. Thermal analysis proved that CNC promotes the crystallization of the PVA matrix, while improving its plastic response. It was also clarified that all PVA/CNC systems remain transparent due to CNC dispersion at the nanoscale, while being all saturated after the first 18-24h of water absorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Micro structural studies of PVA doped with metal oxide nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. B. Rithin [Dept. of Physics, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Crasta, Vincent, E-mail: vcrasta@yahoo.com; Viju, F. [Dept. of Physics, St. Joseph Engineering College, Vamanjoor, Mangalore-575028, Karnataka (India); Praveen, B. M. [Dept. of Chemistry, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Shreeprakash, B. [Dept. of Mechanical Engineering, Srinivas School of Engineering, Mangalore-575025, Karnataka (India)

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  17. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    International Nuclear Information System (INIS)

    Fu Qiang; Song Xuefeng; Gao Jingyun; Han Xiaobing; Zhao Qing; Yu Dapeng; Jin Yu; Jiang Xingyu

    2010-01-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  18. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning

    OpenAIRE

    Xu, Xuezhu; Uddin, Ahmed Jalal; Aoki, Kenta; Gotoh, Yasuo; Saito, Takeshi; Yumura, Motoo

    2010-01-01

    High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile st...

  19. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment.

    Science.gov (United States)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-05

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  20. Preparation and characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend film

    Science.gov (United States)

    Sarifuddin, N.; Shahrim, N. A.; Rani, N. N. S. A.; Zaki, H. H. M.; Azhar, A. Z. A.

    2018-01-01

    From the environmental point of view, biodegradable materials have been rapidly developed in the past years. PVA is one of the biodegradable synthetic polymers commonly used, but its degradation rate is slow. As an alternative to reduce plastic waste and accelerate the degradation process, PVA frequently blended with other natural polymers to improve its biodegradability. The natural polymer such as starch has high potential in enhancing PVA biodegradability by blending both components. The usage of starch extracted from agriculture wastes such as jackfruit seed is quite promising. In this study, jackfruit seed starch (JFSS)/poly (vinyl alcohol) (PVA) blend films were prepared using the solution casting method. The effect of starch content on the mechanical (tensile strength and elongation to break %) and physical properties of the tested films were investigated. The optimum tensile strength was obtained at 10.45 MPa when 4 wt. % of starch added to the blend. But, decreasing trend of tensile strength was found upon increasing the amount of starch beyond 4 wt. % in starch/PVA blend films. Nevertheless, elongation at break decreases with the increase in starch content. The mechanical properties of the blend films are supported by the Field Emission Scanning Electron Microscopy (FESEM), in which the native JFSS granules are wetted by PVA continuous phase with good dispersion and less agglomeration. The incorporation of JFSS in PVA has also resulted in the appearance of hydrogen bond peak, which evidenced by Fourier Transform Infrared (FTIR). Additionally, the biodegradation rate of JFSS/PVA was evaluated through soil burial test.

  1. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  2. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiankang, E-mail: jiankanghe@mail.xjtu.edu.cn; Chen, Ruomeng; Lu, Yongjie; Zhan, Li; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2016-02-01

    It is a huge challenge to engineer vascular networks in vital organ tissue engineering. Although the incorporation of artificial microfluidic network into thick tissue-engineered constructs has shown great promise, most of the existing microfluidic strategies are limited to generate rectangle cross-sectional channels rather than circular vessels in soft hydrogels. Here we present a facile approach to fabricate branched microfluidic network with circular cross-sections in gelatin hydrogels by combining micromolding and enzymatically-crosslinking mechanism. Partially crosslinked hydrogel slides with predefined semi-circular channels were molded, assembled and in situ fully crosslinked to form a seamless and circular microfluidic network. The bonding strength of the resultant gelatin hydrogels was investigated. The morphology and the dimension of the resultant circular channels were characterized using scanning electron microscopy (SEM) and micro-computerized tomography (μCT). Computational fluid dynamic simulation shows that the fabrication error had little effect on the distribution of flow field but affected the maximum velocity in comparison with designed models. The microfluidic gelatin hydrogel facilitates the attachment and spreading of human umbilical endothelial cells (HUVECs) to form a uniform endothelialized layer around the circular channel surface, which successfully exhibited barrier functions. The presented method might provide a simple way to fabricate circular microfluidic networks in biologically-relevant hydrogels to advance various applications of in vitro tissue models, organ-on-a-chip systems and tissue engineering. - Highlights: • A facile method was proposed to build a circular fluidic network in gelatin hydrogel. • The fluidic network is mechanically robust and supports physiological flow. • HUVECs formed endothelialized layer around the channel to express barrier function.

  3. Biomimetic poly(amidoamine hydrogels as synthetic materials for cell culture

    Directory of Open Access Journals (Sweden)

    Lenardi Cristina

    2008-11-01

    Full Text Available Abstract Background Poly(amidoamines (PAAs are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine hydrogel film incorporating 4-aminobutylguanidine (agmatine moieties to create RGD-mimicking repeating units for promoting cell adhesion. Results A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. Conclusion The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.

  4. Study of Biodegradability and Mechanical Properties of Polyvinyl Alcohol (PVA Reinforced Celloluse Nanofiber (CNF

    Directory of Open Access Journals (Sweden)

    shobo salehpour

    2018-02-01

    Full Text Available The aim of this study was to improve the properties of polyvinyl alcohol (PVA by using cellulose nanofibers (CNF as a reinforcement. In order to improve the compatibility and miscibility with PVA matrix, freeze drying method was applied. The nanocomposites based on PVA with values 5, 10, 20 and 30wt% of CNF were prepared by freeze-drying and the effect of CNF addition on the mechanical and dynamical mechanical properties, moisture sorption, barrier and biodegradability of the nanocomposites was studied. The tensile strength and elastic modulus of PVA films were improved by the addition of CNF. The nanocomposite with 10wt% nano-fibers had the highest tensile strength and lowest modulus of elasticity and the elongation at break. The results indicated that the storage modulus (E′ of PVA was considerably improved with the introduction of CNF into - polymer matrix. The water vapor permeability decreased from 7.31 to 2.1×10-7 g/m. h. Pa as the CNF percentage increased from 0 to 30%. Also the presence of cellulose nanofibers improved moisture sorption of polyvinyl alcohol. The weight loss of PVA films increased 60% with addition of 30wt% CNF after 90 days of exposure in soil

  5. Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film

    Science.gov (United States)

    Ismail, Zulhelmi; Abdullah, Abu Hannifa; Zainal Abidin, Anis Sakinah; Yusoh, Kamal

    2017-08-01

    Mechanical properties of polyvinyl alcohol (PVA) can be reinforced from the addition of graphene into its matrix. However, pristine graphene lacks solubility in water and thus makes dispersion a challenging task. Notably, functionalisation of graphene is required to accommodate graphene presence in the water. In this work, we have used a kitchen mixer to produce gum Arabic-graphene (GGA) for the first time as filler for mechanical reinforcement of PVA. For the characterisation of exfoliated graphene, mean lateral size of GGA was measured from the imaging by transmission electron microscopy while the mean thickness of graphene was predicted from the obtained spectra by Raman spectroscopy. During the preparation of PVA/graphene film by solution casting, GGA was varied between 0, 0.05, 0.075, 0.10 and 0.15 wt% in concentration. We found that the presence of GGA in PVA improves the tensile stress and elastic modulus about 72-200 and 19-187% from the original values. The data from Halpin-Tsai meanwhile suggested that the mechanical reinforcement of PVA/graphene film is due to the random distribution network of GGA in PVA.

  6. Incorporation of Rutin in Electrospun Pullulan/PVA Nanofibers for Novel UV-Resistant Properties.

    Science.gov (United States)

    Qian, Yongfang; Qi, Mengjie; Zheng, Laijiu; King, Martin W; Lv, Lihua; Ye, Fang

    2016-06-23

    This study aimed to investigate the incorporation of rutin into electrospun pullulan and poly(vinyl alcohol) (PVA) nanofibers to obtain ultraviolet (UV)-resistant properties. The effect of weight ratios between pullulan and PVA, and the addition of rutin on the nanofibers' morphology and diameters were studied and characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) analysis was utilized to investigate the interaction between pullulan and PVA, as well as with rutin. The results showed that the inclusion of PVA results in the increase in the fiber's diameter. The addition of rutin had no obvious effect on the fibers' average diameters when the content of rutin was less than 7.41%. FTIR results indicated that a hydrogen bond formed between pullulan and PVA, also between these polymers and rutin. Moreover, the addition of rutin could enhance the mechanical properties due to its stiff structure and could decrease the transmittance of UVA and UVB to be fewer than 5%; meanwhile, the value of ultraviolet protection factor (UPF) reached more than 40 and 50 when the content of rutin was 4.46% and 5.67%, respectively. Therefore, the electrospun pullulan/PVA/rutin nanofibrous mats showed excellent UV resistance and have potential applications in anti-ultraviolet packaging and dressing materials.

  7. In vitro hemocompatibility of PVA-alginate ester as a candidate for hemodialysis membrane.

    Science.gov (United States)

    Amri, Choirul; Mudasir, Mudasir; Siswanta, Dwi; Roto, Roto

    2016-01-01

    Alginate based biopolymer with improved physical and chemical properties after esterification using polyvinyl alcohol (PVA) has been studied for possible application as a hemodialysis membrane. The alginic acid to vinyl alcohol molar ratio was predetermined at 0, 0.1, 0.5 and 1. Mechanical strength, hydrophilicity and Ca(2+) adsorption of the membrane before and after modification were evaluated. The obtained PVA-alginate (PVA-Alg) ester membrane was also confirmed using FTIR and SEM. It shows that the PVA-Alg membrane tensile strength is higher than that of native alginate. The water contact angle of the membrane was found to be around 33-50°. The Ca(2+) adsorption capacity tends to decrease with the increase in molar ratio. Furthermore, the modified PVA-Alg ester membrane achieves better protein adsorption and platelet adhesion than the unmodified one. It also exhibits a dialysis performance of 47.1-50.0% for clearance of urea and 42.2-44.6% for clearance of creatinine, respectively. It is expected that this PVA-Alg ester may challenge cellulose acetate for potential application as hemodialysis membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA matrix

    International Nuclear Information System (INIS)

    Eisa, Wael H.; Abdel-Moneam, Yasser K.; Shaaban, Yasser; Abdel-Fattah, Atef A.; Abou Zeid, Amira M.

    2011-01-01

    Highlights: → Nucleation and growth must be two completely separated steps. → The amount of zerovalent nuclei can be controlled by varying the irradiation dose. → PVA act as physical barrier to inhibit aggregation or the growth of Ag nanoparticles. - Abstract: Polyvinyl alcohol (PVA)/Ag hybrid nanocomposites have been prepared from polymeric film of PVA and silver nitrate (AgNO 3 ). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with gamma-irradiation. UV-visible spectra showed a single peak at 422 nm, arising from the surface plasmon absorption of silver nanoparticles. The shifting of surface plasmon resonance peak after irradiation reveals that the gamma irradiation can be used as a size controlling agent for the preparation of silver nanoparticles embedded in PVA film. This result was in good agreement with the result obtained from TEM images. The TEM images showed the narrow size distribution of the obtained Ag nanoparticles with average particle size of 30 nm, which decreased to 17 nm with increasing irradiation dose. The X-ray diffraction analysis revealed that silver metal was present in face centered cubic (fcc) crystal structure. These results clearly indicate that monodispersed silver nanoparticles are embedded homogenously in PVA matrix.

  9. Effects of PVA-coated nanoparticles on human T helper cell activity.

    Science.gov (United States)

    Strehl, Cindy; Schellmann, Saskia; Maurizi, Lionel; Hofmann-Amtenbrink, Margarethe; Häupl, Thomas; Hofmann, Heinrich; Buttgereit, Frank; Gaber, Timo

    2016-03-14

    Superparamagnetic iron oxide nanoparticles (SPION) are used as high-sensitive enhancer for magnetic resonance imaging, where they represent a promising tool for early diagnosis of destructive diseases such as rheumatoid arthritis (RA). Since we could demonstrate that professional phagocytes are activated by amino-polyvinyl-alcohol-coated-SPION (a-PVA-SPION), the study here focuses on the influence of a-PVA-SPION on human T cells activity. Therefore, primary human CD4+ T cells from RA patients and healthy subjects were treated with varying doses of a-PVA-SPION for 20h or 72h. T cells were then analyzed for apoptosis, cellular energy, expression of the activation marker CD25 and cell proliferation. Although, we observed that T cells from RA patients are more susceptible to low-dose a-PVA-SPION-induced apoptosis than T cells from healthy subjects, in both groups a-PVA-SPION do not activate CD4+ T cells per se and do not influence mitogen-mediated T cells activation with regard to CD25 expression and cell proliferation. Nevertheless, our results demonstrate that CD4+ T cells from RA patients and healthy subjects differ in their response to mitogen stimulation and oxygen availability. We conclude from our data, that a-PVA-SPION do neither activate nor significantly influence mitogen-stimulated CD4+ T cells activation and have negligible influence on T cells apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  11. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Beckwith, Kai M; Sikorski, Pawel

    2013-01-01

    Live cell arrays are an emerging tool that expand traditional 2D in vitro cell culture, increasing experimental precision and throughput. A patterned cell system was developed by combining the cell-repellent properties of polyvinyl alcohol hydrogels with the cell adhesive properties of self-assembled films of dopamine (polydopamine). It was shown that polydopamine could be patterned onto spin-cast polyvinyl alcohol hydrogels by microcontact printing, which in turn effectively patterned the growth of several cell types (HeLa, human embryonic kidney, human umbilical vein endothelial cells (HUVEC) and prostate cancer). The cells could be patterned in geometries down to single-cell confinement, and it was demonstrated that cell patterns could be maintained for at least 3 weeks. Furthermore, polydopamine could be used to modify poly(vinyl alcohol) in situ using a cell-compatible deposition buffer (1 mg mL −1 dopamine in 25 mM tris with a physiological salt balance). The treatment switched the PVA hydrogel from cell repellent to cell adhesive. Finally, by combining microcontact printing and in situ deposition of polydopamine, patterned co-cultures of the same cell type (HeLa/HeLa) and dissimilar cell types (HeLa/HUVEC) were realized through simple chemistry and could be studied over time. The combination of polyvinyl alcohol and polydopamine was shown to be an attractive route to versatile, patterned cell culture experiments with minimal infrastructure requirements and low complexity. (paper)

  12. Dehydrochlorinated poly vinyl alcohol (PVA) films for food irradiation dosimeters

    International Nuclear Information System (INIS)

    Susilawati; Saion, E.B.; Doyan, A.; Lepit, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation sensitive dosimeters based on dyed poly vinyl alcohol (PVA) films containing chloral hydrate CCl 3 CH(OH) 2 and acid-sensitive cresol-red dye have been developed for use in food irradiation dosimetry. These polymer dosimeters undergo colour change from yellow (colour of basic form) to red (colour of acid form) upon exposure to gamma radiation. The radiation-induced change in colour was analysed using UV-Vis spectrometer. The absorption spectra produced two absorption modes, peaking at 438 nm for low doses and 529 nm for high doses. The dose-response was obtained by the changes in absorbance as a function of the absorbed dose. Results of the dose-response curves show the absorption decreases and increases experientially at modes 438 nm and 529 nm respectively with absorbed dose. The change in colour of the irradiated films was analysed using Raman spectrometer, which provides the spectra of molecular stretching modes of vibration of some chemical bonds in the films. The relative intensity at C-Cl stretching peaks of chloral hydrate decreases with absorbed dose and makes the films more acidic. Consequently the relative intensity at S-H and C=C stretching peaks of the dye increases with absorbed dose as the acid reacts with the dye and changes the structure and colour of the dye. (Author)

  13. Study on Chitosan-Polyvinyl Alcohol Inter polymeric ph-Responsive Hydrogels for Controlled Drug Delivery

    International Nuclear Information System (INIS)

    Abdel-Bary, E.M.; El-Sherbiny, I.M.; Abdelaal, M.Y.; Abdel-Razik, E.A.

    2005-01-01

    Two series of ph-responsive biodegradable interpenetrating polymeric (IPN) hydrogels composed of chitosan and poly(vinyl alcohol) (PVA) were prepared for controlled drug release investigations. The first series was chemically crosslinked with different concentrations of glutaraldehyde as a crosslinked and the second series was crosslinked by gamma-radiation. Degree of crosslinking has been controlled by the concentration of crosslinked as well as by gamma irradiation dose. The equilibrium swelling -reflecting the degree of crosslinks - were carried out for the gels at 37 degree C in buffer solutions of ph 2.1 and 7.4 (simulated gastric and intestinal fluids respectively). 5-fluorouracil (5- FU) was entrapped, as a model therapeutic agent, in the hydrogels and equilibrium-swelling studies were carried out for the drug-entrapped gels at 37 degree C. The in-vitro release profiles of the drug were established at 37 degree C in ph 2.1 and 7.4. FT-IR was employed to investigate the structural changes of the gels with different degrees of crosslinking

  14. Radiologic Findings in Hydrated Hydrogel Buckles

    International Nuclear Information System (INIS)

    Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo

    2008-01-01

    Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts

  15. Radiologic Findings in Hydrated Hydrogel Buckles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Bok; Lee, Nam Ho; Jo, Young Joon; Kim, Jung Yeul; Lee, Yeon Hee; Kim, Song Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-11-15

    Hydrogel buckles, which are used in scleral buckling surgery for retinal detachment, have been associated with late complications after successful retinal reattachment surgery, including strabismus, extraocular motility restriction, extrusion through the eyelid or conjunctiva, intraocular erosion, and scleral erosion. Hydrogel buckles sometimes appear as well-marginated, circumferential, lobulating, contoured cystic masses mimicking orbital cysts on orbital CT or MRI. We report the radiologic findings in 5 patients whose hydrogel buckles needed to be differentiated from orbital cysts.

  16. Polysaccharides as Hydrogel and Bioplastics. Chapter 4

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Sarada Idris; Norzita Yacob; Maznah Mahmud

    2017-01-01

    The use of radiation technology in producing hydrogel is increasingly popular nowadays. The hydrogel which produce through the radiation method has it own advantages. For example, easy to operate, reduce the cost production and also decrease the harmful chemical usage such as monomer. The cross-linking bonds which has been produced this hydrogel during the irradiation process can be controlled by the radiation dosage even though using the same material and composition.

  17. Natural melanin composites by layer-by-layer assembly

    Science.gov (United States)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  18. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors.

    Science.gov (United States)

    Chen, Ji; Sheng, Kaixuan; Luo, Peihui; Li, Chun; Shi, Gaoquan

    2012-08-28

    Graphene hydrogel/nickel foam composite electrodes for high-rate electrochemical capacitors are produced by reduction of an aqueous dispersion of graphene oxide in a nickel foam (upper half of figure). The micropores of the hydrogel are exposed to the electrolyte so that ions can enter and form electrochemical double-layers. The nickel framework shortens the distances of charge transfer. Therefore, the electrochemical capacitor exhibits highrate performance (see plots). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In vitro-ex vivo correlations between a cell-laden hydrogel and mucosal tissue for screening composite delivery systems.

    Science.gov (United States)

    Blakney, Anna K; Little, Adam B; Jiang, Yonghou; Woodrow, Kim A

    2016-11-01

    Composite delivery systems where drugs are electrospun in different layers and vary the drug stacking-order are posited to affect bioavailability. We evaluated how the formulation characteristics of both burst- and sustained-release electrospun fibers containing three physicochemically diverse drugs: dapivirine (DPV), maraviroc (MVC) and tenofovir (TFV) affect in vitro and ex vivo release. We developed a poly(hydroxyethyl methacrylate) (pHEMA) hydrogel release platform for the rapid, inexpensive in vitro evaluation of burst- and sustained-release topical or dermal drug delivery systems with varying microarchitecture. We investigated properties of the hydrogel that could recapitulate ex vivo release into nonhuman primate vaginal tissue. Using a dimethyl sulfoxide extraction protocol and high-performance liquid chromatography analysis, we achieved >93% recovery from the hydrogels and >88% recovery from tissue explants for all three drugs. We found that DPV loading, but not stacking order (layers of fiber containing a single drug) or microarchitecture (layers with isolated drug compared to all drugs in the same layer) impacted the burst release in vitro and ex vivo. Our burst-release formulations showed a correlation for DPV accumulation between the hydrogel and tissue (R 2 =   0.80), but the correlation was not significant for MVC or TFV. For the sustained-release formulations, the PLGA/PCL content did not affect TFV release in vitro or ex vivo. Incorporation of cells into the hydrogel matrix improved the correlation between hydrogel and tissue explant release for TFV. We expect that this hydrogel-tissue mimic may be a promising preclinical model to evaluate topical or transdermal drug delivery systems with complex microarchitectures.

  20. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.

    Science.gov (United States)

    Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C

    2014-01-13

    Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.

  1. Investigations of Al:CdS/PVA nanocomposites: A joint theoretical and experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Vaneeta, E-mail: b.vnita@gmail.com; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Tripathi, S.K., E-mail: surya@pu.ac.in; Kumar, Ranjan, E-mail: ranjan@pu.ac.in

    2014-08-01

    In the present work we investigate the aluminium doped cadmium sulphide (Al:CdS) nanoparticles embedded in polyvinyl alcohol (PVA) matrix by chemical route and density functional theory (DFT) based simulations. Supertetrahedron (T{sub n}) cluster models are considered for the simulation of CdS nanoparticles. Using DFT simulations on T{sub n} clusters, we observe that band gap of ligated clusters is slightly more as compare to bare clusters. This indicates the ability of organic ligands (PVA) to open the band gap of inorganic CdS nanoclusters. Negative value of binding energy indicates the stability of the inorganic–organic hybrid system. Frontier molecular orbitals (FMOs) indicate the charge transfer between organic and inorganic moieties which provides stability and longevity to nanoparticles, a prime function of ligands in nanocomposites. Absorption spectra of pure and doped clusters are calculated using time dependent density functional theory (TDDFT). CdS/PVA and Al:CdS/PVA samples are synthesized at room temperature by chemical method. Their structure, size and band gap is characterized by XRD, TEM, FTIR and UV spectroscopy. Optical band gap values as observed experimentally are in agreement with simulated TDDFT results. - Highlights: • Highly c-axis oriented Al doped CdS/PVA nanocomposites were deposited on glass slide using aqueous solutions. • Optical band gap reduced on Al doping. • DFT is used to simulate atomistic models of inorganic–organic hybrid nanocomposites. • FMOs used to study charge transfer behaviour between inorganic and organic moieties.

  2. Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry.

    Science.gov (United States)

    Niu, Yan; Zhang, Xiaofang; He, Xu; Zhao, Jiangqi; Zhang, Wei; Lu, Canhui

    2015-01-01

    A mechanochemical approach to improve the dispersion and the degree of crosslinking between cellulose fiber and polymer matrix is presented herein to create high performance poly(vinyl alcohol) (PVA)/cellulose biocomposites in a solvent-free and catalyst-free system. During a pan-milling process, the hydrogen bonds in both cellulose and PVA were effectively broken up, and the released hydroxyl groups could react with succinic anhydride (SA) to form covalent bonds between the two components. This stress-induced chemical reaction was verified by fourier transform infrared spectroscopy. The reaction kinetics was discussed according to the conversion rate of SA during the pan-milling process. Soxhlet extraction with hot water showed that the crosslinked PVA/cellulose retained more PVA in the composites due to the homogeneous and heterogeneous crosslinking. Scanning electron microscope images indicated the dispersion and interfacial interactions between PVA and cellulose were largely improved. The resulting composites exhibited remarkably enhanced mechanical properties. The tensile strength increased from 8.8 MPa (without mechanochemical treatment) to 18.2 MPa, and elongation at break increased from 76.8 to 361.7% after the treatment. Their thermal stability was also significantly improved. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Mechanical Properties and Biodegradability of the Kenaf/Soy Protein Isolate-PVA Biocomposites

    Directory of Open Access Journals (Sweden)

    Jong Sung Won

    2015-01-01

    Full Text Available The effective utilization of original natural fibers as indispensable components in natural resins for developing novel, low-cost, eco-friendly biocomposites is one of the most rapidly emerging fields of research in fiber-reinforced composite. The objective of this study is to investigate the interfacial adhesion properties, water absorption, biodegradation properties, and mechanical properties of the kenaf/soy protein isolate- (SPI- PVA composite. Experimental results showed that 20 wt% poly (vinyl alcohol (PVA and 8 wt% glutaraldehyde (GA created optimum conditions for the consolidation of the composite. The increase of interfacial shear strength enhanced the composites flexural and tensile strength of the kenaf/SPI-PVA composite. The kenaf/SPI-PVA mechanical properties of the composite also increased with the content of cross-linking agent. Results of the biodegradation test indicated that the degradation time of the composite could be controlled by the cross-linking agent. The degradation rate of the kenaf/SPI-PVA composite with the cross-linking agent was lower than that of the composite without the cross-linking agent.

  4. Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition

    International Nuclear Information System (INIS)

    Shaikh, Rubina P; Kumar, Pradeep; Choonara, Yahya E; Du Toit, Lisa C; Pillay, Viness

    2012-01-01

    The effects of modifying electrospun poly(vinyl alcohol) (PVA) nanofibers through crosslinking using glutaraldehyde (GA) are explored in this paper. Various concentrations of PVA solutions containing model drugs rifampicin (RIF) and isoniazid (INH) were electrospun and thereafter crosslinked using GA vapors. PVA nanofibers demonstrated high drug entrapment efficiency of 98.77% ± 1.384% and 95.07% ± 1.988% for the INH- and RIF-loaded PVA nanofibers, respectively. The surface morphology, molecular vibrational transitions, tensile attributes and in vitro drug release were characterized and supported by in silico molecular mechanics simulations. Results indicated that crosslinking caused a significant reduction in the rate of drug release where 81.11% ± 2.35% of INH and 59.31% ± 2.57% of RIF were released after 12 h. Tensile properties such as the ultimate strength and Young's modulus increased after crosslinking, caused by crosslinks forming between PVA nanofibers as was revealed through scanning electron microscopy analysis. Fourier Transform infrared analysis was conducted to further support the mode of crosslinking. Additionally, image processing analysis was carried out to quantify the effect of formulation variables on the morphology of nanofibers. Furthermore, the effect of GA-induced crosslinking and addition of drugs on the performance of electrospun fibers was further elucidated and conceptualized using a molecular mechanics assisted model building and energy refinement approach via molecular mechanics energy relationships by exploring the spatial disposition of energy-minimized molecular structures of the polymer, crosslinker and the drugs. (paper)

  5. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A novel fabrication of PVA/Alginate-Bioglass electrospun for biomedical engineering application

    Directory of Open Access Journals (Sweden)

    Mohammad Rafienia

    2017-07-01

    Full Text Available Objecttive (s: Polyvinylalcohol (PVA is among the most natural polymers which have interesting properties such as nontoxic nature, biodegradability and high resistance to bacterial attacks making it applicable for tissue scaffolds, protective clothing, and wound healing.Materials and Methods: In the current work, PVA and Na-Alginate nanocomposite scaffolds were prepared using the electrospinning (ELS technique in an aqueous solution. Also, (5% and 10% addition of bioglass (BG ceramic to the nanocomposite scaffold were investigated. The blended nanofibres are characterized by scanning electron microscopy (SEM, Fourier-transform infrared (FTIR, also the bioactivity evaluation of nanocomposite scaffold performed in simulated body fluid (SBF solutions.Results: The FTIR analysis indicated that PVA and Alginate may have H+ bonding interactions. The results revealed that with a higher amount of BG, a superior degradation as well as a higher chemical and biological stability could be obtained in the nanobiocomposite blend fibres. Furthermore, the blend nanofibre samples of 10% BG powders exhibit a significant improvement during bioactivity and mechanical testing.Conclusion: The increasing water-contact angle on the polymer surface with decreasing PVA and Alginate content indicated that the scaffold were more hydrophobic than were PVA molecules. Also, In addition, the average diameter of fibers in the sample with 10% BG have the highest porosity compared to the other scaffold samples.

  7. Structural Properties of Nanoparticles TiO2/PVA Polymeric Films

    Directory of Open Access Journals (Sweden)

    Samara A. Madhloom

    2018-04-01

    Full Text Available In this research, X-ray diffraction of the powder (PVA polymer, titanium dioxide with two parti-cle sizes and (TiO2 (15.7 nm/PVA and TiO2 (45.7 nm/PVA films have been studied,the amount of polymer is (0.5 g and (0.01g from each particle sizes of nanoparticles will be used. Casting method is used to prepare homogeneous films on glass petri dishes. All parameters ac-counted for the X-ray diffraction; full width half maximum (FWHM, Miller indices (hkl, size of crystalline (D, Specific Surface Area (S and Dislocation Density (δ. The nature of the structural of materials and films will be investigated. The XRD pattern of PVA polymer has semi-crystalline nature and the titanium dioxide with two particle sizes have crystalline structure; ana-tase type. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVA polymer

  8. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    Science.gov (United States)

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  9. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Husain, M.; Zulfequar, M., E-mail: mzulfe@rediffmail.com [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India); Khan, Shamshad A. [Department of Physics St. Andrews College, Gorakhpur-273001,U.P,-India (India)

    2016-05-23

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  10. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes.

    Science.gov (United States)

    Zarekhalili, Zahra; Bahrami, S Hajir; Ranjbar-Mohammadi, M; Milan, Peiman Brouki

    2017-01-01

    In this work three dimensional biodegradable nanofiberous scaffolds containing poly(ε-caprolactone) (PCL), poly(vinyl alcohol) (PVA) and gum tragacanth (GT) were successfully fabricated through two nozzles electrospinning process. For this purpose, PVA/GT blend (Blend: B) solution (60:40wt%) was injected from one syringe and poly(ε-caprolactone) solution from the other one. Presence of PVA and PCL in the formulation improved the electrospinning process of GT solution and mechanical properties of the fabricated nanofibers. Scanning electron microscopy (SEM) results showed uniform PVA/GT-PCL blend-hybrid (Blend-Hybrid: B-H) nanofibers with the diameter ranging about 132±27nm. Hybrid nanofibers were evaluated by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) tests. The antibacterial activities of the PVA/GT-PCL (B-H) nanofibers were conducted against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and results indicated that the hybrid nanofibers were 95.19% antibacterial against S. aureus bacterium. NIH 3T3 fibroblast cells growth and MTT assay were carried out on the scaffolds. Hydrophilicity nature, favorable mechanical properties of the fabricated hybrid nanofibers, along with their structure in biological media, biocompatibility, as well as antibacterial property indicate scaffolds prepared are suitable for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  12. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    Energy Technology Data Exchange (ETDEWEB)

    Lahariya, Vikas [Amity School of Applied Science, Amity University Haryana Panchgaon, Manesar, Haryana 122413 (India)

    2016-05-06

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blend crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.

  13. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  14. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties.

    Science.gov (United States)

    Montazer, M; Keshvari, A; Kahali, P

    2016-12-10

    This paper is mainly focused on introducing cotton fabric with hydrogel and antimicrobial properties using Tragacanth gum as a natural polymer with hydrogel properties, silver nitrate as silver precursor, citric acid as a cross-linking agent and sodium hypophosphite as catalyst. The water absorption behavior of the treated fabrics was investigated with moisture regain, water retention, drying time of wetted fabric at room condition and vertical wicking tests. Antibacterial properties of the samples were evaluated against Escherichia coli and Staphylococcous aureus. The SEM pictures confirmed formation of nano silver and hydrogel layer on the fabric surface and XRD performed the crystal and particle size of the nano silver. The chemical structure of the fabric samples was identified with FTIR spectra. The central composite design (CCD) was used for statistical modelling, evaluated effective parameters and created optimum conditions. The treated cotton fabrics showed good water absorption properties along with reasonable antibacterial effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Skin-Inspired Hydrogel-Elastomer Composite with Application in a Moisture Permeable Prosthetic Limb Liner

    Science.gov (United States)

    Ruiz, Esteban

    Recent advances in fields such as 3D printing, and biomaterials, have enabled the development of a moisture permeable prosthetic liner. This project demonstrates the feasibility of the invention by addressing the three primary areas of risk including the mechanical strength, the permeability, and the ability to manufacture. The key enabling technology which allows the liner to operate is the skin inspired hydrogel elastomer composite. The skin inspiration is reflected in the molecular arrangement of the double network of polymers which mimics collagen-elastin toughening in the natural epidermis. A custom formulation for a novel tough double network nanocomposite reinforced hydrogel was developed to improve manufacturability of the liner. The liner features this double network nanocomposite reinforced hydrogel as a permeable membrane which is reinforced on either side by perforated silicone layers manufactured by 3d printing assisted casting. Uniaxial compression tests were conducted on the individual hydrogels, as well as a representative sample of off the shelf prosthetic liners for comparison. Permeability testing was also done on the same set of materials and compared to literature values for traditional hydrogels. This work led to the manufacture of three generations of liner prototypes, with the second and third liner prototype being tested with human participants.

  16. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  17. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  18. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers.

    Science.gov (United States)

    Guo, Jingjing; Liu, Xinyue; Jiang, Nan; Yetisen, Ali K; Yuk, Hyunwoo; Yang, Changxi; Khademhosseini, Ali; Zhao, Xuanhe; Yun, Seok-Hyun

    2016-12-01

    A core-clad fiber made of elastic, tough hydrogels is highly stretchable while guiding light. Fluorescent dyes are easily doped into the hydrogel fiber by diffusion. When stretched, the transmission spectrum of the fiber is altered, enabling the strain to be measured and also its location. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biomolecule-Responsive Hydrogels in Medicine.

    Science.gov (United States)

    Sharifzadeh, Ghorbanali; Hosseinkhani, Hossein

    2017-12-01

    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and characterization of superabsorbent hydrogel based ...

    African Journals Online (AJOL)

    The hydrogels structure was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effect of grafting variables, that is, AA/AN weight ratio and concentration of MBA and APS, was systematically optimized to achieve a hydrogel with ...

  1. Obtaining membranes for alternative treatment hydrogels of cutaneous leishmaniasis; Obtencao de membranas de hidrogeis para tratamento alternativo da leishmaniose tegumentar

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Jose Alves de

    2013-07-01

    Polymeric Hydrogels formed by crosslinked polymeric chains were obtained by ionizing radiation process according to Rosiak technique. In the last 40 years the use of hydrogels has been investigated for various applications as curatives. In this work hydrogel membranes were synthesized with poly (N-2-pyrrolidone) (PVP), poly (vinyl alcohol) (PVA), chitosan and laponita clay for use as a vehicle for controlled glucantime release on the surface of skin tissues injured by leishmaniasis. Leishmaniasis is a disease caused by a protozoan parasite of the genus Leishmania transmitted by the bite of phlebotomies sandfly. The traditional treatment of patients infected by these parasites is done with pentavalent antimony in injectable form. However, these antimonates are highly toxic and cause side effects in these patients. In addition, patients with heart and kidney disease can not use this treatment. In treatment with drug delivery hydrogel membrane applied on the surface of leishmaniasis injured tissues the drug is released directly to the wound in a controlled manner, reducing the side effects. Membranes prepared in this study were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), swelling, gel fraction, infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The characterizations of cytotoxicity and drug release were made 'in vitro' and 'in vivo' with functional test according to ethical protocol of the Division of Infectious and Parasitic Diseases at the Hospital of Clinics, Sao Paulo University-School of Medicine, University. The 'in vivo' test of these membranes proved to be effective in controlled release of drugs directly into leishmaniasis damaged tissues. Results of 'in vivo' tests using PVP/PVAl / clay 1,5% and glucantime membrane showed remarkable contribution to wound reduction and cure in clinical therapy. (author)

  2. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Rabinarayan parhi

    2017-12-01

    Full Text Available Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed.

  3. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  4. Finite element beam flexural properties of cement composites of fiber reinforced PVA

    Science.gov (United States)

    Yang, Chengzhi; Pei, Changchun

    2018-05-01

    In this paper, the initial cracking state and the mid span bending moment and deflection of ECC beam under different PVA fiber and fly ash mixing rate are studied by finite element simulation analysis. The results show that the bending moment of the ECC beam increases with the increase of the PVA fiber content, and the deflection decreases. When the ratio of PVA fiber is 1.5%, the middle bending moment is the largest and the deflection is the least. With the increase of fly ash content, the mid span bending moment of ECC beam increases first and then decreases. When the fly ash ratio is 60%, the middle bending moment is the largest and the deflection is the least. Through the study, the formula for calculating the flexural capacity of the cross section suitable for ECC beams is derived.

  5. PVA-Glutaraldehyde as support for lectin immobilization and affinity chromatography

    Directory of Open Access Journals (Sweden)

    Moacyr Jesus Barreto de Melo Rêgo

    2016-12-01

    Full Text Available Immobilized lectins are a powerful biotechnological tool for separation and isolation of glycoconjugates. In the present study, polyvinyl alcohol (PVA and glutaraldehyde (GA were used as a support for Concanavalin A (Con A covalent immobilization and for entrapment of Parkia pendula seed gum (PpeG. Con A immobilization yielded approximately 30% and 0.6 M glucose solution was the minimum concentration able to elute fetuin from column. PVA-GA-PpeG column was efficiently recognized by pure P. pendula lectin (PpeL. These findings indicate that PVA-GA interpenetrated network showed to be an efficient support for lectin covalent immobilization and as affinity chromatography matrix after trapping of PpeG.

  6. Preparation and study on the structure of keratin/PVA membrane containing wool fibers

    Science.gov (United States)

    Wu, Min; Shen, Shuming; Yang, Xuhong; Tang, Rencheng

    2017-10-01

    The urea / sodium sulfide / sodium dodecyl sulfate (SDS) method was used to dissolve the wool in this study. Then the Wool fiber/keratin/PVA composites with different proportions were prepared, and the surface morphology, molecular structure, mechanical property of the composite films and the influence of the proportions on their structure and properties were studied. The results showed that, there are α-helix structure, β-sheet and random coil conformations in the pure keratin film, as well as in the wool fiber. Compared with wool fiber, the crystallinity of keratin decreased. PVA can obviously improve the mechanical property of the blended film. When the blended ratio of keratin/PVA is 20/80, the mechanical property of the blended film is greatly improved. The composite films with 8%-16% of wool fibers have better flexibility than those without wool fibers.

  7. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes.

    Science.gov (United States)

    Niazi, Muhammad Bilal Khan; Jahan, Zaib; Berg, Sigrun Sofie; Gregersen, Øyvind Weiby

    2017-12-01

    Cellulose nanofibrils (CNF) have strong reinforcing properties when incorporated in a compatible polymer matrix. This work reports the effect of the addition of phosphorylated nanocellulose (PCNF) on the mechanical, thermal and swelling properties of poly(vinyl alcohol) (PVA) nanocomposite membranes. The incorporation of nanocellulose in PVA reduced the crystallinity at 0%RH. However, when the films were exposed to higher humidities the crystallinity increased. No apparent trend is observed for mechanical properties for dry membranes (0% RH). However, at 93% RH the elastic modulus increased strongly from 0.12MPa to 0.82MPa when adding 6% PCNF. At higher humidities, the moisture uptake has large influence on storage modulus, tan δ and tensile properties. Membranes containing 1% PCNF absorbed most moisture. Swelling, thermal and mechanical properties indicate a good potential for applying of PVA/phosphorylated nanocellulose composite membranes for CO 2 separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    Science.gov (United States)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  9. A phytomodulatory hydrogel with enhanced healing effects.

    Science.gov (United States)

    Vasconcelos, Mirele S; Souza, Tamiris F G; Figueiredo, Ingrid S; Sousa, Emília T; Sousa, Felipe D; Moreira, Renato A; Alencar, Nylane M N; Lima-Filho, José V; Ramos, Márcio V

    2018-04-01

    The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1β, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Hybrid hydrogels produced by ionizing radiation technique

    Science.gov (United States)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  11. The influence of ionizing radiation on the properties of starch-PVA films

    Directory of Open Access Journals (Sweden)

    Abramowska Anna

    2015-09-01

    Full Text Available The cornstarch: poly(vinyl alcohol (PVA films characterized by the alternating ratio of starch:PVA (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 and containing 30% of glycerol were prepared by solution casting. The films were irradiated with an absorbed dose of 25 kGy with gamma rays in a vacuum and with fast electrons in the air. The films characterized by a high content of starch appeared stiff, while the films characterized by a high content of PVA were highly flexible. The tensile strength and flexibility, as well as swelling and hydrophilicity, increased with the increase in the PVA content in the films. However, the tensile strength and wetting angle values achieved a minimum at an intermediate composition. It was found that irradiation enables to reduce hydrophilicity of the films accompanied by a decrease in their flexibility. No general conclusion concerning the effect of irradiation on tensile strength and swelling behavior can be derived. An increase in the homogeneity of the films and an increase in the compatibility of their components was found by scanning electron microscopy (SEM. Strong interactions of the starch and the PVA components were discovered by diffuse reflectance spectroscopy. Degradation was found to be the prevailing process occurring in the films under the influence of irradiation. The possible accompanying crosslinking is discussed in terms of the gel content in the samples. Creation of various oxidation products in the films characterized by the modified composition was observed under the influence of irradiation carried out in the air. Basing on the obtained results it can be supposed that the selected starch-PVA compositions might appear useful as packagings of the products predicted for radiation decontamination.

  12. An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite

    Science.gov (United States)

    Unal, Betul; Yalcinkaya, Esra Evrim; Demirkol, Dilek Odaci; Timur, Suna

    2018-06-01

    Diagnostic techniques based on biomolecules have huge a potential to be applied in the application in various areas such as food/beverage industries, diseases diagnostics, monitoring of bio-processes and environmental pollutants. Immobilization of biomolecules on a transducer is the key parameter to being able to prepare a highly stable diagnostic tests. Electrospun nanofibers are a good alternative to immobilize biomolecules. Here, electrospun nanofibers based on an organoclay were used to design the first generation amperometric enzyme biosensor. PAMAM G2 dendrimers were used to intercalate montmorillonite clay (Mt) and then the modification of Mt by PAMAM was characterized using FTIR, XRD, TGA and zeta potential measurements. After that nanofibers were prepared by electrospinning Mt and PAMAM-Mt using poly(vinyl) alcohol (PVA) as an auxiliary polymer and the formed PVA/PAMAM-Mt electrospun nanofibers were proved by SEM, TEM and AFM techniques. Finally, pyranose oxidases (PyOx) were immobilized on a glassy carbon electrode surface, which was modified using the PVA/PAMAM-Mt electrospun nanofibers. Amperometric measurements were carried out using buffer solution at -0.7 V under stirring conditions. The linear response for glucose was from 0.005 mM to 0.25 mM using PVA/Mt/PyOx and PVA/PAMAM-Mt/PyOx biosensors. The limit of detection was 0.7 μM glucose with PVA/PAMAM-Mt/PyOx biosensor. To detect glucose in real sample, measurements were carried out using soft drink cola as a substrate instead of glucose.

  13. A novel approach for fabricating highly tunable and fluffy bioinspired 3D poly(vinyl alcohol) (PVA) fiber scaffolds.

    Science.gov (United States)

    Roy, Sunanda; Kuddannaya, Shreyas; Das, Tanya; Lee, Heng Yeong; Lim, Jacob; Hu, Xiao 'Matthew'; Chee Yoon, Yue; Kim, Jaehwan

    2017-06-01

    The excellent biocompatibility, biodegradability and chemo-thermal stability of poly(vinyl alcohol) (PVA) have been harnessed in diverse practical applications. These properties have motivated the fabrication of high performance PVA based nanofibers with adequate control over the micro and nano-architectures and surface chemical interactions. However, the high water solubility and hydrophilicity of the PVA polymer limits the application of the electrospun PVA nanofibers in aqueous environments owing to instantaneous dissolution. In this work, we report a novel yet facile concept for fabricating extremely light, fluffy, insoluble and stable three dimensional (3D) PVA fibrous scaffolds with/without coating for multifunctional purposes. While the solubility, morphology, fiber density and mechanical properties of nanofibers could be tuned by optimizing the cross-linking conditions, the surface chemical reactivity could be readily enhanced by coating with a polydopamine (pDA) bioinspired polymer without compromising the stability and innate properties of the native PVA fiber. The 3D pDA-PVA scaffolds exhibited super dye adsorption and constructive synergistic cell-material interactions by promoting healthy adhesion and viability of the human mesenchymal stem cells (hMSCs) within 3D micro-niches. We foresee the application of tunable PVA 3D as a highly adsorbent material and a scaffold material for tissue regeneration and drug delivery with close consideration of realistic in vivo parameters.

  14. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films.

    Science.gov (United States)

    Yang, Manli; Shi, Jinsheng; Xia, Yanzhi

    2018-02-01

    Sodium alginate (SA)/polyvinyl alcohol (PVA)/SiO 2 nanocomposite films were prepared by in situ polymerization through solution casting and solvent evaporation. The effect of different SA/PVA ratios, SiO 2 , and glycerol content on the mechanical properties, water content, water solubility, and water vapor permeability were studied. The nanocomposite films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal stability (thermogravimetric analysis/differential thermogravimetry) analyses. The nanocomposites showed the highest values of mechanical properties, such as SA/PVA ratio, SiO 2 , and glycerol content was 7:3, 6wt.%, and 0.25g/g SA, respectively. The tensile strength and elongation at break (E%) of the nanocomposites increased by 525.7% and 90.7%, respectively, compared with those of the pure alginate film. The Fourier transform infrared spectra showed a new SiOC band formed in the SA/PVA/SiO 2 nanocomposite film. The scanning electron microscopy image revealed good adhesion between SiO 2 and SA/PVA matrix. After the incorporation of PVA and SiO 2 , the water resistance of the SA/PVA/SiO 2 nanocomposite film was markedly improved. Transparency decreased with increasing PVA content but was enhanced by adding SiO 2 . Copyright © 2017. Published by Elsevier B.V.

  15. Illumination and Voltage Dependence of Electrical Characteristics of Au/0.03 Graphene-Doped PVA/n-Si Structures via Capacitance/Conductance-Voltage Measurements

    International Nuclear Information System (INIS)

    Sahar, Alialy; Şlemsettin, Altındal; Ahmet, Kaya; İ, Uslu

    2015-01-01

    Au/n-Si (MS) structures with a high dielectric interlayer (0.03 graphene-doped PVA) are fabricated to investigate the illumination and voltage effects on electrical and dielectric properties by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and at 1 MHz. Some of the main electrical parameters such as concentration of doping atoms (N D ), barrier height (ϕ B (C - V)), depletion layer width (W D ) and series resistance (R s ) show fairly large illumination dispersion. The voltage-dependent profile of surface states (N ss ) and resistance of the structure (R i ) are also obtained by using the dark-illumination capacitance (C dark -C ill ) and Nicollian-Brews methods, respectively. For a clear observation of changes in electrical parameters with illumination, the values of N D , W D , ϕ B (C - V) and R s are drawn as a function of illumination intensity. The values of N D and W D change almost linearly with illumination intensity. On the other hand, R s decreases almost exponentially with increasing illumination intensity whereas ϕ B (C - V) increases. The experimental results suggest that the use of a high dielectric interlayer (0.03 graphene-doped PVA) considerably passivates or reduces the magnitude of the surface states. The large change or dispersion in main electrical parameters can be attributed to generation of electron-hole pairs in the junction under illumination and to a good light absorption. All of these experimental results confirm that the fabricated Au/0.03 graphene-doped PVA/n-Si structure can be used as a photodiode or a capacitor in optoelectronic applications. (paper)

  16. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    International Nuclear Information System (INIS)

    Sharma, Mamta; Tripathi, S. K.

    2015-01-01

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n 2 ) and nonlinear susceptibility (χ 3 ) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n 2 and β and is found to be of the order of 10 −7 – 10 −8 m 2 /V 2 . The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect

  17. Influence of Al doping on optical properties of CdS/PVA nanocomposites: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Vaneeta, E-mail: vaneetabala@yahoo.com; Tripathi, S. K., E-mail: vaneetabala@yahoo.com; Kumar, Ranjan, E-mail: vaneetabala@yahoo.com [Department of Physics, Panjab University, Chandigarh (India)

    2014-04-24

    In the present work theoretical and experimental studies of aluminium doped cadmium sulphide polyvinyl alcohol (Al:CdS/PVA) nanocomposites have been carried out. Tetrahedral cluster AlCd{sub 9}S{sub 2}(SH){sub 18}]{sup 1−} has been encapsulated by small segments of polyvinyl alcohol (PVA) chains in order to simulate experimental environment of nanocomposites. Density functional theory (DFT) using local density approximation (LDA) functionals is employed to study the broadening of band gap upon ligation of nanoclusters. We have used in situ chemical route to synthesize nanocomposites. Optical band gap has been calculated from both experimental and theoretical approach.

  18. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    Science.gov (United States)

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of hardness of abrasive grains on surface roughness of work piece in PVA bonded grinding wheel

    International Nuclear Information System (INIS)

    Nitta, S.; Takata, A.; Ishizaki, K.

    2000-01-01

    The purpose of this study is to clarify relation between hardness of abrasive grains and surface roughness of work piece in the case of PVA (Polyvinyl alcohol) bonded grinding wheels. Two PVA bonded grinding wheels; with diamond or silicon carbide as abrasive grains and grinding of glass and aluminum alloy was performed. The PVA bonded grinding wheels The PVA bonded grinding wheel with silicon carbide could not grind the glass. Because insufficiency in hardness, the PVA bonded grinding wheel with the diamond abrasive grains caused deep scratch on the aluminum alloy. It was found that the final surface roughness of the work piece was not proportional to the hardness of abrasive grains. The suitable hardness of abrasive grains will be obtained by the hardness of work piece. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  20. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    Science.gov (United States)

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable

  1. Theory of compression and expansion of hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, M. [Suzuka National College of Tech., Mie (Japan). Dept. of Industrial Chemistry; Koda, S.; Nomura, H. [Nagoya University, Nagoya (Japan). Dept. of Molecular Design and Engineering

    1999-10-01

    Compression and expansion processes of cross-linked sodium polyacrylate hydrogels under mechanical pressure were investigated. A packed spherical gel bed shows irreversible deformation when the applied pressure is decreased; the expansion behavior depends on the maximum pressure applied to the gel bed. The time required to attain a certain degree of deformation is directly proportional to the square of the total solid volume of the gel bed; this relation is very similar to that observed in expression or expansion processes of ordinary solid-liquid mixtures. The driving force of the deformation is an effective osmotic pressure gradient in the gel bed, where the effective osmotic pressure of the gel is the difference between the swelling pressure of the gel and the pressure applied to the gel. The flow rate of liquid through any gel layer can be expressed by Darcy's equation. The deformation ceases when the swelling pressure of each gel particle is equal to the applied pressure. Thus, the deformation of a packed gel bed can be recognized as a process of equalizing the swelling pressure distribution in the bed. (author)

  2. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO).

    Science.gov (United States)

    Gutha, Yuvaraja; Pathak, Janak L; Zhang, Weijiang; Zhang, Yaping; Jiao, Xu

    2017-10-01

    Treatment against bacterial infection is crucial for wound healing. Development of cost-effective antibacterial agent with wound healing properties is still in high demand. In this study we aimed to design chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO) beads as novel antibacterial agent with wound healing properties. CS/PVA/ZnO beads were synthesized, and characterized by using XRD, FTIR, SEM, and TEM analysis. Pure chitosan exhibits two peaks at 2θ=10 and 20 and the CS/PVA polymer matrix exhibit the peaks at 2θ=19.7° and another of low intensity at 2θ=11.5°. Pure ZnO shows the characteristic peaks at (100), (002), (101), (102), (110), (103), (200), and (112) that were in good agreement with wurtzite ore having hexagonal lattice structure. The antibacterial activity of CS/PVA/ZnO against Escherichia coli, and Staphylococcus aureus were evaluated with the zone of inhibition method. Antibacterial activity of CS/PVA/ZnO was higher than that of chitosan (CS) and poly(vinyl alcohol (PVA). Hemocompatibility and biocompatibility of CS/PVA/ZnO were tested in in vitro. Wound healing properties of CS/PVA/ZnO were tested in mice skin wound. CS/PVA/ZnO showed strong antimicrobial, wound healing effect, hemocompatibility and biocompatibility. Hence the results strongly support the possibility of using this novel CS/PVA/ZnO material for the anti bacterial and wound healing application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin.

    Science.gov (United States)

    Kulkarni, Raghavendra V; Sreedhar, V; Mutalik, Srinivas; Setty, C Mallikarjun; Sa, Biswanath

    2010-11-01

    Interpenetrating network (IPN) hydrogel membranes of sodium alginate (SA) and poly(vinyl alcohol) (PVA) were prepared by solvent casting method for transdermal delivery of an anti-hypertensive drug, prazosin hydrochloride. The prepared membranes were thin, flexible and smooth. The X-ray diffraction studies indicated the amorphous dispersion of drug in the membranes. Differential scanning calorimetric analysis confirmed the IPN formation and suggests that the membrane stiffness increases with increased concentration of glutaraldehyde (GA) in the membranes. All the membranes were permeable to water vapors depending upon the extent of cross-linking. The in vitro drug release study was performed through excised rat abdominal skin; drug release depends on the concentrations of GA in membranes. The IPN membranes extended drug release up to 24 h, while SA and PVA membranes discharged the drug quickly. The primary skin irritation and skin histopathology study indicated that the prepared IPN membranes were less irritant and safe for skin application. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Poly(N-isopropylacrylamide) hydrogel-based shape-adjustable polyimide films triggered by near-human-body temperature.

    Science.gov (United States)

    Huanqing Cui; Xuemin Du; Juan Wang; Tianhong Tang; Tianzhun Wu

    2016-08-01

    Hydrogel-based shape-adjustable films were successfully fabricated via grafting poly(N-isopropylacrylamide) (PNIPAM) onto one side of polyimide (PI) films. The prepared PI-g-PNIPAM films exhibited rapid, reversible, and repeatable bending/unbending property by heating to near-human-body temperature (37 °C) or cooling to 25 °C. The excellent property of PI-g-PNIPAM films resulted from a lower critical solution temperature (LCST) of PNIPAM at about 32 °C. Varying the thickness of PNIPAM hydrogel layer regulated the thermo-responsive shape bending degree and response speed of PI-g-PNIPAM films. The thermo-induced shrinkage of hydrogel layers can tune the curvature of PI films, which have potential applications in the field of wearable and implantable devices.

  5. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hybrid hydrogels produced by ionizing radiation technique

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Amato, V.S.; Lugão, A.B.; Parra, D.F.

    2012-01-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling. - Highlights: ► Chemical interaction is observed when nanoclay is irradiated in PVAl hybrid hydrogels. ► Osmotic pressure within network promotes the rehydration capacity of the membranes. ► This effect is an important characteristic for hydrogels drug delivery systems.

  8. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  9. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel

    Directory of Open Access Journals (Sweden)

    Farzaneh Amiri

    2016-11-01

    Full Text Available In recent years, the main objective of developing new hydrogel systems has been to convert biomass into environmentally-friendly hydrogels. Hybrid hydrogels are usually prepared by graft copolymerization of acrylic monomers onto natural polymers or biomass. In this study, sugarcane bagasse was used to prepare semi-synthetic hybrid hydrogels without delignification, which is a costly and timeconsuming process. Sugarcane bagasse as a source of polysaccharide was modified using polymer microgels based on acrylic monomers such as acrylic acid, acrylamide and 2-acrylamido-2-methyl propane sulfonic acid which were prepared through inverse emulsion polymerization. By this process, biomass as a low-value by-product was converted into a valuable semi-synthetic hydrogel. In the following, the effect of latex type¸ the aqueous-to-organic phase ratio in the polymer latex, time and temperature of modification reaction on the swelling capacity of the hybrid hydrogel were evaluated. The chemical reaction between sugarcane bagasse and acrylic latex was carried out during heating of the modified bagasse which led to obtain a semisynthetic hydrogel with 60% natural components and 40% synthetic components. Among the latexes with different structures, poly(AA-NaAA-AM-AMPS was the most suitable polymer latex for the conversion of biomass into hydrogel. The bagasse modified with this latex had a water absorption capacity up to 112 g/g, while the water absorption capacity of primary sugarcane bagasse was only equal to 3.6 g/g. The prepared polymer hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR, dynamic-mechanical thermal analysis (DMTA, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and determination of the amount of swelling capacity.

  10. Dual Salt- and Thermo-Responsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures.

    Science.gov (United States)

    Xiao, Shengwei; Zhang, Mingzhen; He, Xiaomin; Huang, Lei; Zhang, Yanxian; Ren, Baiping; Zhong, Mingqiang; Chang, Yung; Yang, Jintao; Zheng, Jie

    2018-06-07

    Development of smart soft actuators is highly important for fundamental research and industrial applications, but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermos-responsive poly(N-isopropyl acrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonat) (polyVBIPS) layer. Both polyNIPAM and polyVBIPs layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative, swelling-shrinking properties from both layers. Based on their fast, reversible, bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two or multi-step methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow to program different stimulus for soft and intelligent materials applications.

  11. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application.

    Science.gov (United States)

    Shagholani, Hamidreza; Ghoreishi, Sayed Mehdi; Mousazadeh, Mohammad

    2015-01-01

    Magnetite nanoparticles were synthesized by coprecipitation under ultrasonication followed by coating with chitosan. Polyvinyl alcohol (PVA) is then combined with the chitosan that coated the magnetite nanoparticles. The combination occurs by hydrogen binding and ionic cross-linking of the amino and hydroxyl groups of chitosan and PVA respectively. The magnetite nanoparticles have an average size of 10.62 nm that was confirmed by TEM. The VSM measurements showed that nanoparticles were superparamagnetic. The coatings on the core nanoparticles were estimated by AAS and the attachments of coating to the nanoparticles were confirmed by FT-IR analysis. Physicochemical properties of nanoparticles were measured by DLS and zeta potential. Naked magnetite, chitosan and PVA coating have zeta potential of +36.4, +48.1 and -12.5 mV respectively. The unspecific adsorption and interaction between nanoparticles and bovine serum albumin (BSA) were investigated systematically by UV-vis spectroscopy method. The nanoparticles that were modified by PVA present low protein adsorption, which makes them a practical choice for preventing opsonization in clinical application and drug delivery. Copyright © 2015. Published by Elsevier B.V.

  12. Creating a stage-based deterministic PVA model - the western prairie fringed orchid [Exercise 12

    Science.gov (United States)

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    Contemporary efforts to conserve populations and species often employ population viability analysis (PVA), a specific application of population modeling that estimates the effects of environmental and demographic processes on population growth rates. These models can also be used to estimate probabilities that a population will fall below a certain level. This...

  13. The Application of PVA Fiber to Improve the Mechanical Properties of Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Manfaluthy Muhammad Lutfi

    2017-01-01

    Full Text Available This paper presents an experimental investigation on the improvement of geopolymer concrete properties through the use of polyvinyl alcohol (PVA fibers mixed in the fresh concrete. For the purpose of obtaining the optimum mechanical properties, the volume fraction of PVA fibers was varied at 0%; 0.3%; 0.5%; ad 0.8%. All mixtures were cast by mixing fly ash, alkali activator, and aggregates. The activator used in this study was a combination of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. The mechanical properties of geopolymer concrete were obtained from the results of compressive strength, splitting strength, uniaxial tensile strength, elastic modulus, and flexural strength. It is found that the variation of 0.8% PVA fibers resulted in the highest strength for overall test. The utilization of 0.8% PVA fibers also contributed to increasing the direct tensile up to 50%. However, it is noticed that the elastic modulus was more prone to decrease as the fiber content in the mixture increased.

  14. Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application.

    Science.gov (United States)

    Vashisth, Priya; Pruthi, Vikas

    2016-10-01

    Electrospun nanofibers based on gellan are considered as promising biomaterial for tissue engineering and wound healing applications. However, major hurdles in usage of these nanofibers are their poor stability and deprived structural consistency in aqueous medium which is a prerequisite for their application in the biomedical sector. In this investigation, three dimensional nanofibers, consisting of gellan and PVA have been fabricated and then stabilized under various crosslinking conditions in order to improve their physiochemical stability. The impacts of different crosslinking procedures on the gellan/PVA nanofibers were examined in terms of changes in morphological, mechanical, swelling and biological properties. Superior tensile strength and strain was recorded in case of crosslinked nanofibers as compared to non-crosslinked nanofibers. Contact angles and swelling properties of fabricated gellan/PVA nanofibers were found to vary with the crosslinking method. All crosslinking conditions were evaluated with regard to their response towards human dermal fibroblast (3T3L1) cells. Biocompatibility studies suggested that the fabricated crosslinked gellan/PVA nanofibers hold a great prospective in the biomedical engineering arena. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mechanical, Thermal and Surface Investigations of Chitosan/Agar/PVA Ternary Blended Films

    Directory of Open Access Journals (Sweden)

    Esam A. El-Hefian

    2011-01-01

    Full Text Available The mechanical and thermal properties of chitosan/agar/poly vinyl alcohol (CS/AG/PVA ternary blended films having various proportions considering chitosan as the main component were investigated. The various variables static water contact angle such as contact angle, drop base area, drop volume and drop height was also studied in correlation with the variation of time. Results obtained from mechanical measurements showed a noticeable increase in the tensile strength (TS coincided with a sharp decrease in elongation percent at break (E% of blended films with increasing agar and PVA contents. The DSC results prevailed the development of an interaction between chitosan individual components: agar and PVA. Moreover, an enhancement of the wettability of the blends was obtained with increasing agar and PVA contents. It was also found that the pure CS film and the blended films with 90/05/05 and 80/10/10 compositions were more affected by time than blended films with other compositions when the contact angle, the drop height and the drop length were studied as a function of time. In addition, when the drop is initially placed on the substrate, the drop area and the drop volume of all films remained almost constant up to a certain time after which they showed a slight difference with the elapse of time.

  16. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Lidan Fan

    2018-04-01

    Full Text Available Natural bamboo charcoal (BC powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA-based alkaline solid polymer electrolyte (ASPE by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC impedance method, and the highest conductivity value of 6.63 × 10−2 S·cm−1 was obtained with 16 wt % of BC content and mKOH:mPVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g−1.

  17. Investigation and analysis of ferrous sulfate polyvinyl alcohol (PVA) gel dosimeter

    International Nuclear Information System (INIS)

    Hill, Brendan; Baeck, Sven A J; Lepage, Martin; Simpson, John; Healy, Brendan; Baldock, Clive

    2002-01-01

    Ferrous sulfate (Fe(SO 4 ) 2 ) PVA gels were investigated for a range of absorbed doses up to 20 Gy using both magnetic resonance imaging (MRI) and spectrophotometry to determine R 1 and optical density (OD) dose responses and G values. It was found that R 1 - and OD-dose sensitivities increased with O 2 saturation or by the introduction of a freeze-thaw cycle during preparation of the PVA gel. The storage temperature of the Fe(SO 4 ) 2 PVA gel at -18 deg. C increased R 1 -dose sensitivity above that of gels stored at 5 deg C. The addition of sucrose to the formulation was found to result in the largest increase in both R 1 - and OD-dose sensitivities. Fe(SO 4 ) 2 PVA gel with and without the addition of xylenol orange was demonstrated to have a G value of ∼20 ions/100 eV and with sucrose ∼24 ions/100 eV

  18. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils

    Science.gov (United States)

    Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R.

    2018-03-01

    Electrospinning is a well known method for the manufacturing of nanoscale fibers. Electrospun nanofibers have higher surface area to volume ratio and can be used for the incorporation of different materials. Essential oils are well known for their antimicrobial and healing properties since ancient times. The main objective of this study was to develop antibacterial nanofibers by the incorporation of essential oils in sodium alginate/PVA solution. Sodium alginate and PVA have excellent biocompatible properties which are the base of their use in wound care applications. Three different essential oils (cinnamon, clove, and lavender) at three different concentrations (0.5, 1 and 1.5%) were used to optimize the fiber forming conditions during electrospinning and then the desired antibacterial properties were evaluated. Addition of oils in PVA/SA solutions increased the viscosity but reduced the surface tension and conductivity as compared to pure PVA/sodium alginate solution. FTIR Spectra of composite fibers verified the successful incorporation of essential oils in nanofibers through electrospinning. All oil containing samples showed good antibacterial properties against staphylococcus aureus which make them a good replacement of antibiotics. Cinnamon oil loaded nanofibers showed the best results among selected oils regarding the antibacterial properties. Nanofibers with 1.5% cinnamon oil exhibited highest zone of inhabitation of 2.7 cm. Nanofibrous coated cotton gauze showed higher liquid absorptions as compared to simple cotton gauze and potential to be used as wound dressings for its improved liquid absorption and antibacterial activity.

  19. Evaluation of the solubility of the HPMC: PVA blends in biological fluids in vitro

    Directory of Open Access Journals (Sweden)

    Sara Elis Bianchi

    2011-01-01

    Full Text Available Polymers are often used to coat tablets for controlled drug release. The purpose of this study is to evaluate the solubility of the HPMC and PVA blend compared to isolated polymers in solutions with a pH of biological fluids (6 and 1.2 and the dissolution of capsules obtained using theophylline granules produced with the HPMC/PVA 25/75 blend as a matrix and as coating. HPMC is completely solubilized in the medium that simulates the pH of the stomach and intestine, and PVA is the polymer that allows controlling the solubility of the blend in the medium, with a differents pH. The dissolution time was monitored by UV absorbance with maximum theophylline at 269 nm. The theophylline was released immediately in the granules, and in the capsules 78.4% after 30 minutes and 97.4%, after 120 minutes. Thus, PVA can potentially control the drug solubilization, contributing to obtaining modified release systems.

  20. Effect of zno nanoparticles on diameter of bubbfil PVA/ZnO nanofibers

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2015-01-01

    Full Text Available The PVA/ZnO nanofibers are obtained by the bubbfil spinning. Distribution of fiber size is tenable by nano-ZnO concentration. Experiment reveals fiber size distribution changes from Gaussian distribution to Poisson distribution when ZnO concentration varies gradually from 2 wt.% to 15 wt.%.

  1. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal.

    Science.gov (United States)

    Fan, Lidan; Wang, Mengyue; Zhang, Zhen; Qin, Gang; Hu, Xiaoyi; Chen, Qiang

    2018-04-26

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC) impedance method, and the highest conductivity value of 6.63 × 10 −2 S·cm −1 was obtained with 16 wt % of BC content and m KOH : m PVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g −1 .

  2. Factors affecting microstructure, physicochemical and textural properties of a novel Gum tragacanth-PVA blend cryogel.

    Science.gov (United States)

    Niknia, Nushin; Kadkhodaee, Rassoul

    2017-01-02

    Gum tragacanth (GT) gels are usually formed by using chemical crosslinkers which cause safety concerns owing to their toxicity. This study introduces a novel and safe method for gelation of GT in the presence of small amounts of polyvinyl alcohol (PVA) followed by successive freeze-thaw (F-T) cycles. Gel formation was performed at two GT: PVA mixing ratios (1:1 and 3:1), four F-T consecutive cycles and two different thawing temperatures (25 and 5°C). Gel fraction, syneresis as well as mechanical properties and microstructural characteristics of the resultant gels were then studied. Gel fraction and mechanical properties improved by increasing F-T cycles and decreasing thawing temperature. Gel fraction increased by increasing the number of F-T cycles and decreasing the thawing temperature. Syneresis increased by increasing F-T cycles at GT: PVA mixing ratio of 1:1; whilst it was diminished at GT: PVA mixing ratio of 3:1. Microstructural observations by SEM confirmed mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Preparation and Characterization of Antimicrobial PVA/ZnO Nanocomposite for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Ali Kareem

    2018-01-01

    Full Text Available Control of microbial infections is a highly important issue in hospitals. Antimicrobial polymers are new kinds of antiseptics, which can be used as alternatives to disinfectants in sometimes. Zinc oxide nanoparticles (90 nm with polyvinyl-alcohol (PVA generated by melting route. ZnO NPs was modified by dimethyl sulfoxide (DMSO to get on uniform distribution within the matrix and then reduce agglomeration. The purpose of this study is to determine the antimicrobial activity of PVA ̸ ZnO nanoparticles against Gram-negative bacteria (Pseudomonas aeruginosa; Escherichia coli and Gram-positive bacteria (Staphylococcus aureus; Staphylococcus epidermidis and fungi (Candida albicans,. The effects of concentration and particle size on the antibacterial activity of ZnO nanoparticles was studied using minimum inhibitory concentration (MIC test and the antimicrobial activity of PVA/ZnO nanocomposite was studied using agar well diffusion method. Results showed that the antimicrobial activity of ZnO nanoparticles with PVA increased with decreasing particle size and increasing concentration of ZnO NPs. Results showed that all microbes were fully inhibited at 3.7 μg / ml concentration for ZnO NPs, but activity against bacteria was not observed at 1.8 μm / ml.

  4. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Manigandan, Amrutha; Chinnaswamy, Prabu; Subramanian, Anuradha; Sethuraman, Swaminathan

    2018-04-01

    Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  6. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  7. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)

    International Nuclear Information System (INIS)

    Wu, P K; Ringeisen, B R

    2010-01-01

    Angiogenesis is one of the prerequisite steps for viable tissue formation. The ability to influence the direction and structure in the formation of a vascular system is crucial in engineering tissue. Using biological laser printing (BioLP), we fabricated branch/stem structures of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC). The structure is simple as to mimic vascular networks in natural tissue but also allow cells to develop new, finer structures away from the stem and branches. Additionally, we printed co-culture structures by first depositing only HUVECs, followed by 24 h incubation to allow for adequate cell-cell communication and differentiation into lumina; these cell printed scaffold layers were then removed from incubation and inserted into the BioLP apparatus so that HUVSMCs could be directly deposited on top and around the previously printed HUVEC structures. The growth and differentiation of these co-culture structures was then compared to the growth of printed samples with either HUVECs or HUVSMCs alone. Lumen formation was found to closely mimic the original branch and stem structure. The beginning of a network structure is observed. HUVSMCs acted to limit HUVEC over-growth and migration when compare