WorldWideScience

Sample records for pv system part

  1. Analysis of grid connected solar PV system in the Southeastern Part of Bangladesh

    International Nuclear Information System (INIS)

    Ariful Islam; Fatema Akther Shima; Akhera Khanam

    2013-01-01

    Bangladesh is a potential site of implementing renewable energy system to reduce the severe power crisis throughout the year. According to this, Chittagong is the southeastern part of Bangladesh is also a potential site for implementing renewable energy system such as grid-connected photovoltaic (PV) system. Financial viability and green-house gas emission reduction of solar PV as an electricity generation source are assessed for 500 kW grid connected solar PV system at University of Chittagong, Chittagong. Homer simulation soft-ware and monthly average solar radiation data from NASA is used for this task. In the proposed system monthly electricity generation varies between 82.65 MW h and 60.3 MW h throughout the year with a mean value of 68.25 MW h depending on the monthly highest and lowest solar radiation data. It is found that per unit electricity production cost is US$ 0.20 based on project lifetime 25 years. The IRR, equity payback and benefit-cost ratio shows favorable condition for development of the proposed solar PV system in this site. A minimum 664 tones of green-house gas emissions can be reduced annually utilizing the proposed system. (authors)

  2. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  3. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  4. PV ready roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The integration of PV technology into roofs of houses has become very popular in the United States, Japan, Germany and The Netherlands. There could be a considerable market in the UK for these systems, given the large number of houses that are projected to be built in the next 10 years, and taking account of increased awareness of energy issues. A significant proportion of the market share of annual installed PV is for solar PV systems installed into homes (currently 15%), this is expected to rise to 23% (900MW) by 2010. The grid connected roof and building mounted facade systems represent the fastest growing market for PV systems in Europe. In conclusion, therefore, innovative approached for fixing PV technology onto roofs have been identified for both domestic roofs and for the commercial sector. With reference to production methodologies within the roofing industry, both approaches should be capable of being designed with PV-ready connections suitable for fixing PV modules at a later date. This will help overcome the key barriers of cost of installation, skills required and the lack of retrofit potential. Based on the results of this project, Sustainable Energy together with PV Systems are keen to take forward the full research and development of PV-ready systems for both the domestic and commercial sectors.

  5. STAT FAQs Part 2: Lifetime of PV Panels | State, Local, and Tribal

    Science.gov (United States)

    Governments | NREL STAT FAQs Part 2: Lifetime of PV Panels STAT FAQs Part 2: Lifetime of PV Panels April 23, 2018 by Benjamin Mow The Solar Technical Assistance Team (STAT) receives many is the productive lifetime and degradation rate of solar PV panels. Question: What is the productive

  6. Models for a stand-alone PV system

    DEFF Research Database (Denmark)

    Hansen, A.D.; Sørensen, Poul Ejnar; Hansen, L.H.

    2001-01-01

    are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model(KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program......This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risø National Laboratory. The work has been supported by the Danish Ministry ofEnergy, as a part of the activities in the Solar...... Energy Centre Denmark. The study is carried out at Risø National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PVsystem, namely solar cells, battery, controller, inverter and load. The models for PV module and battery...

  7. Numerical study of PV/T-SAHP system

    Institute of Scientific and Technical Information of China (English)

    Gang PEI; Jie JI; Ke-liang LIU; Han-feng HE; Ai-guo JIANG

    2008-01-01

    In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PV/T-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.

  8. PV-wind hybrid system performance. A new approach and a case study

    International Nuclear Information System (INIS)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio; Mata, Montserrat; Llobet, Ermen

    2010-01-01

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  9. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  10. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  11. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switch...

  12. Optimum Design Of PV Systems For BTS In Remote And Urban Areas

    Directory of Open Access Journals (Sweden)

    Khaled Hossam

    2015-08-01

    Full Text Available knowing that Base stations represent the main contributor to the energy consumption of a mobile network the economical problem of providing electrical energy to mobile BTS stations may be solved to a great extent if renewable energy sources are used. In remote areas where electric utility is not available photovoltaic PV stand-alone system using storage batteries represent a good solution although it is costly. It is also possible to have a hybrid stand-alone system using diesel generator combined with PV to supply BTS stations in remote areas. In urban areas PV on grid system is an economical solution. In such a system during sunshine hours PV system delivers part of its generated energy to BTS station and the rest to grid utility whereas during night BTS station is supplied by grid to get back what was supplied to the grid during day. The economics of the different proposals is the criterion of optimization i.e. the cost per generated Kwh is the crucial objective function to be minimized. In this work we optimize both stand-alone PV system and PV on grid system to supply remote and urban indoor or outdoor BTS stations.

  13. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  14. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  15. Highlight of Grid-connected PV systems in administrative buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available Solar energy applications are becoming increasingly common in Egypt. The abundant sunshine in Egypt, as well as the increasing competitiveness of solar energy systems including- but not limited to photovoltaic (PV, – predicts that these technologies could be weighed to be raised in Egypt.PV systems are installed on roof tiles or other parts of building structures to supplement grid utility, reduce electric bills, and provide emergency back–up energy. Moreover, they simultaneously reduce significant amounts of CO2 emissions. It is foreseen, a number of residential and public buildings in Egypt are using solar power to cut electric utility bills significantly. The approximately payback period to recover the investment costs for PV systems is up to about 5 years.  In addition, it is more economical to use PV system than grid utility systems. The two components that determine the total initial price of a grid- connected PV system are the modules and the balance of systems (BOS. The BOS includes different components such as mounting frames, inverters and site- specific installation hardware.The Government of Egypt (GOE has endorsed the deployment of PV systems through three approaches. It started with a prime minister decree to install PV projects on one-thousand of the governmental buildings. This was followed by as an initiative called "Shamsk ya Masr", and finally the Feed-in Tariff (FiT projects.Following the prime minster decree the Egyptian Electricity Holding Company (EEHC and its affiliated companies took the lead to install PV systems at the top roof of their administrative buildings and interconnect these systems to the electricity network where the suitable locations have been selected for mounting them. About 90 PV systems have been already mounted with about a capacity of 9 MW. On the other hand, "Shamsk ya Masr" has considered energy efficiency (EE so as to complement the PV systems, which will be installed on administrative

  16. On-line monitoring system of PV array based on internet of things technology

    Science.gov (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  17. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  18. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  19. Performance of a 34 kWp grid-connected PV system in Indonesia - A comparison of tropical and European PV systems

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    We analysed a monitored grid-connected PV system of 34 kWp in Indonesia to investigate the performance of PV systems in tropical climates. The PV system has been installed in Jayapura, the capital of the Province of Papua, Indonesia, by the beginning of 2012. Due to the aged gensets and frequent

  20. Photovoltaics: PV takes off the UK

    International Nuclear Information System (INIS)

    Noble, Ray; Gregory, Jenny

    2000-01-01

    Despite historical ups and downs, there is still ambition to bring increasingly efficient photovoltaic (PV) systems to the market. PV for major remote telecommunications systems is now an established part of the market, many mobile phone systems are powered by PV and there is potential for increased use of home solar systems, especially in developing countries. Over the past few years, building-integrated PV (BIPV) has been on the increase. In 1999, global production from PV exceeded 200 MW and the UK installed capacity was greater than 1 MW. BIPV is a fast growing market and its characteristics and advantages are discussed. PV installations at Nottingham University, Greenwich Pavilion, BP Amoco Sunbury, Baglan Bay, BP filling stations, and Sainsbury's are described

  1. Performance Parameters for Grid-Connected PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  2. Interharmonics from Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large......-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation...... of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation....

  3. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  4. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  5. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  6. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  7. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  8. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  9. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  10. Experimental grid connected PV system power analysis

    Science.gov (United States)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  11. Multifunctional a-Si PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K; Lund, P; Vartiainen, E [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The optimal use of the various forms of solar energy (passive, active, daylighting, photovoltaics) in buildings calls for an optimal integration of the technologies. As energy conservation potential in space heating may soon be exhausted, electricity efficiency and on-site generation will play an increasing role in energy-conscious building design. There, dispersed PV systems integrated into buildings show a significant market potential, due to a number of benefits: no extra land area is required, PV-array may replace conventional cladding materials and become a building element. Moreover, the produced PV-electricity is more valuable for the building owner than for an electric utility

  12. LVRT Capability of Single-Phase Grid-Connected HERIC Inverter in PV Systems by a Look-up Table Based Predictive Control

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2017-01-01

    Nowadays capacity of the photovoltaic systems in the grid is remarkable and provides a major part of energy in the grid. Therefore, an abruption of these systems from the grid can create a damage to the grid. Unlike in the past that PV systems disconnected from the grid when a voltage drop occurred......, nowadays these systems should have Low Voltage Ride-Through (LVRT) capability. The PV system should stay connected to the grid at fault time and help to recover the grid voltage by injecting the reactive power like in a power plant or a custom power device. There are two important factors for single phase...... grid connected PV inverters. The first one is the structure of the inverter and the second one is the control part. In this regard, the HERIC inverter can be a good selection among the transformerless inverters for a PV system due to its high efficiency. For the control part, this paper presents a look...

  13. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.

  14. Plug and Play PV Systems for American Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, Christian [Fraunhofer USA, Inc., Boston, MA (United States)

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work during this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.

  15. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  16. Sizing energy storage systems to make PV tradable in the Iberian electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Beltram, H.; Perez, E.; Aparicio, N.; Vidal, R.; Belenguer, E. [Universitat Jaume I (UJI), Castello de la Plana (Spain). Electrical Engineering Area; Piqueres, T. [Energia Solar Aplicada (ESA), Valencia (Spain). Technical Dept.

    2012-07-01

    The work presented in this paper is intended to provide some reference values for the ratings required by an energy storage system, to be integrated in a large-scale PV power plant placed at any location of the Iberian Peninsula, to operate it according to an energy management strategy (EMS) whic allowed its participation in the Iberian electricity market while minimizing the economic penalties. The proposed EMS produces a constant-by-hours power reference to be tracked by the PV plant with storage and, in that way, mitigate the stochastic nature of the PV production. This operation mode will enable PV power plants to take part reliably in the different electricity markets, profiting the intraday market sessions to continuously refine the power production commitment. Different configurations of the EMS are analysed, introducing on each of them different meteorologically-based adjustments which allow minimizing the energy capacity required by the storage system. The proposals are analysed through one-year long simulations which use real-world data and PV power forecasting models extracted from solar databases. (orig.)

  17. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  18. Comparison and selection of off-grid PV systems

    Science.gov (United States)

    Izmailov, Andrey Yu.; Lobachevsky, Yakov P.; Shepovalova, Olga V.

    2018-05-01

    This work deals with comparison, evaluation and selection of PV systems of the same type based on their technical parameters either indicated in their technical specifications or calculated ones. Stand-alone and grid backed up photoelectric systems have been considered. General requirements for photoelectric system selection and evaluation have been presented that ensure system operability and required efficiency in operation conditions. Generic principles and definition of photoelectric systems characteristics have been considered. The described method is mainly targeted at PV engineering personnel and private customers purchasing PV systems. It can be also applied in the course of project contests, tenders, etc.

  19. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution is descr...... that the thermal storage with a BT is a better investment than a PV system without HP or no investment. Furthermore, it showed that the optimization model developed in this project is capable of finding the optimal combination of component sizes based on our data.......Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution...... is described, where the thermal energy is stored in a buffer tank (BT) capable of dispersing heat to either the heating system of a house or a hot water tank, for later use. The thermal storage solution including a BT can increase the self-consumption of residentially produced PV power and thereby shift...

  20. Commercialization and business development of grid-connected PV at SMUD

    International Nuclear Information System (INIS)

    Osborn, D.E.

    1998-01-01

    SMUD has completed its first 5 year, 6 MW PV commercialization effort based on the sustained, orderly development of the utility PV market. SMUD has begun a 5 year, 10 MW program designed to complete a process that will result in PV being at a market competitive price by 2002 and as a sustainable business opportunity for SMUD. As part of this effort, by the end of 1997, SMUD had installed over 450 PV systems totaling 6 MW. These included over 420 residential rooftop systems as well as commercial buildings, parking lots and substation systems. Under its new Business Plan, SMUD has signed contracts for an additional 10 MW of PV systems for 1998 through 2002 with cost decreasing to less than $3/W. As part of its new competitive business strategy responding to changes the utility industry is undergoing, SMUD has incorporated PV as a key business opportunity. SMUD has established partnerships with its customers through the PV Pioneer green pricing program, with DOE and UPVG through TEAM-UP and Million Solar Roofs to advance PV commercialization and to develop rooftops as PV power plant sites and with other utilities through its PV Partnership program

  1. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN, optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based model for metrological prediction uses four meteorological variables, namely, sun shine ratio, day number and location coordinates. As for PV system sizing, iterative methods are used for determining the optimal sizing of three types of PV systems, which are standalone PV system, hybrid PV/wind system and hybrid PV/diesel generator system. The loss of load probability (LLP technique is used for optimization in which the energy sources capacities are the variables to be optimized considering very low LLP. As for determining the optimal PV panels tilt angle and inverter size, the Liu and Jordan model for solar energy incident on a tilt surface is used in optimizing the monthly tilt angle, while a model for inverter efficiency curve is used in the optimization of inverter size.

  2. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  3. Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study

    International Nuclear Information System (INIS)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Heaney, Mike

    2015-01-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with sub-hourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. - Highlights: • We propose an analytical framework to estimate grid integration costs for solar PV. • Increased operating costs from variability and uncertainty in solar PV are computed. • A case study of a utility in Arizona is conducted. • Grid integration costs are found in the $1.0–4.4/MWh range for a 17% PV penetration. • Increased system flexibility is essential for minimizing grid integration costs

  4. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  5. Self-control system in storage unit of PV plants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shaban, Saad; Mohmoud, Ali [Hadhramout Univ. of Science and Technology, Faculty of Engineering, Mukalla (Yemen)

    2000-04-01

    A new system for self-controlling of storage batteries being charged by PV plants has been developed. This provides enhanced system reliability, lower system cost, and simpler operation for the user. In this system, the only requirement is to design and select PV panels so that their voltage-sensitive region (on the I-V curve) coincides with that required for a simpler remote PV plant and for long periods. (Author)

  6. Environmental aspects of PV power systems. Report on the IEA PVPS Task 1 Workshop

    International Nuclear Information System (INIS)

    Nieuwlaar, E.; Alsema, E.

    1997-12-01

    During normal operation, photovoltaic (PV) power systems do not emit substances that may threaten human health or the environment. In fact, through the savings in conventional electricity production they can lead to significant emission reductions. There are, however, several indirect environmental impacts related to PV power systems that require further consideration. The production of present generation PV power systems is relatively energy intensive, involves the use of large quantities of bulk materials and (smaller) quantities of substances that are scarce and/or toxic. During operation, damaged modules or a fire may lead to the release of hazardous substances. Finally, at the end of their useful life time PV power systems have to be decommissioned, and resulting waste flows have to be managed. An expert workshop was held as part of the International Energy Agency Photovoltaic Power Systems Implementing Agreement Programme, to address these environmental aspects of PV power systems. The objectives of the workshop were: (a) review/overview of issues and approaches regarding environmental aspects of PV power systems; (b) enhanced clarity and consensus regarding e.g. Energy Pay-Back Time; (c) identification of issues of environmental importance regarding PV power systems ('hot spots'); (d) identification of issues requiring further attention ('white spots'); and (e) establish a network of researchers working on PV environmental issues. 25 participants from Europe, the United States, Japan, and Australia attended the workshop, representing the researchers in the field of environmental aspects of PV systems, R ampersand D managers, industry and utilities. The environmental issues that are considered most relevant for PV power systems were identified in the workshop as well as the approaches that may be used to investigate them. The main environmental issues discussed at the workshop were: energy use; resource depletion (e.g. the resource availability for indium

  7. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  8. R and D into stand-alone PV systems for export

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The current status of photovoltaic (PV) technology is reviewed for systems to provide electricity where mains supplies are unavailable, known as stand-alone PV systems. Typical applications and experiences with installed stand-alone systems are described. Economic issues and barriers to the wide use of PV systems are also examined. (UK)

  9. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  10. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  11. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to 'Pv-fam-a' family and some of them are potential drug/vaccine targets but their functional role(s largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7 and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.

  12. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    Science.gov (United States)

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  13. Design procedures of hybrid PV/SMES system

    International Nuclear Information System (INIS)

    Hamad, Ismail; El-Sayas, M. A.

    2006-01-01

    This paper presents accurate procedures to determine the design parameters of an autonomous hybrid PV/SMES system. Integrating Superconductive magnetic energy storage as a recent storage technology with photovoltaic power system enhances the PV output utilization during the solar radiation fluctuations period. this is because of SMES fast response to any PV output fluctuation. The load demand is supplied either from PV plant or through SMES or from both. Imposed to the technical and economical constrains, the optimum solar cells area and the proper capacity and rating of SMES system are assessed. Regarding solar radiation profile, clear and cloudy days are accurately considered for investigation. Three indices are suggested to express the cloudy and fluctuations conditions. These indices represent the non-utilized PV energy due to clouds (x), fluctuation period (T f ) and location of fluctuations period(t s t). The incremental changes in the design parameters are computed for any variation in these indices. Differentiation between the role of BS and SMES in affecting the results is determined and quantitatively analyzed. The results of clear day condition with SMES are the bas quantities for these changes. Complete analysis of the most effective parameters is presented. Eventually, mathematical models are deduced for each parameter which assists in predicting its behavior against the independent variable.(Author)

  14. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  15. An analysis of residential PV system price differences between the United States and Germany

    International Nuclear Information System (INIS)

    Seel, Joachim; Barbose, Galen L.; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in Germany (median of $5.29/W vs. $2.59/W) in 2012. This price discrepancy stems primarily from differences in non-hardware or “soft” costs between the two countries, which can only in part be explained by differences in cumulative market size and associated learning. A survey of German PV installers was deployed to collect granular data on PV soft costs in Germany, and the results are compared to those of a similar survey of U.S. PV installers. Non-module hardware costs and all analyzed soft costs are lower in Germany, especially for customer acquisition, installation labor, and profit/overhead costs, but also for expenses related to permitting, interconnection, and inspection procedures. Additional costs occur in the United States due to state and local sales taxes, smaller average system sizes, and longer project-development times. To reduce the identified additional costs of residential PV systems, the United States could introduce policies that enable a robust and lasting market while minimizing market fragmentation. Regularly declining incentives offering a transparent and certain value proposition—combined with simple interconnection, permitting, and inspection requirements—might help accelerate PV cost reductions in the United States. - Highlights: • Residential PV system prices are twice as high in the USA than in Germany in 2012. • Different cumulative national PV market sizes explain only 35% of price gap. • Installer surveys show that price differences stem from non-module and soft costs. • Largest cost differences stem from customer acquisition and installation labor. • Incentives in the US are less effective in driving and following cost reductions

  16. Power Electronic System for Multi-MW PV sites

    DEFF Research Database (Denmark)

    Paasch, Kasper

    in Sønderborg (DK) was implemented. A total of 17 PV-inverters have been monitored during a period exceeding one year and the recorded data constitutes the basis of this investigation. A part of the 2.1 MW PV plant was reconfigured to emulate the behavior of a central-inverter and solar panels distributed over...... a distance of 160 m. In parallel a string based inverter configuration was established with solar panels at the same locations. An analysis of irradiation data recorded during the test period showed that non-uniform irradiance due to moving clouds is expected to influence the PV plants for less than 4.......4%. A portable IV-scanning instrument for the fast long term characterization of solar panels was developed as part of the project. Each second a sweep of the IV-characteristics of a solar panel is performed and the result stored for later analysis. The instrument is based on an active load, is optimized...

  17. Control Strategies for the DAB Based PV Interface System.

    Directory of Open Access Journals (Sweden)

    Hadi M El-Helw

    Full Text Available This paper presents an interface system based on the Dual Active Bridge (DAB converter for Photovoltaic (PV arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O Maximum Power Point Tracking (MPPT technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system.

  18. System performance of a three-phase PV-grid-connected system installed in Thailand. Data monitored analysis

    International Nuclear Information System (INIS)

    Boonmee, Chaiyant; Watjanatepin, Napat; Plangklang, Boonyang

    2009-01-01

    PV-grid-connected systems are worldwide installed because it allows consumer to reduce energy consumption from the electricity grid and to feed the surplus energy back into the grid. The system needs no battery so therefore the system price is very cheap comparing to other PV systems. PV-grid-connected systems are used in buildings that already hooked up to the electrical grid. Finding efficiency of the PV-grid-connected system can be done by using a standard instrument which needs to disconnect the PV arrays from the grid before measurement. The measurement is also difficult and we lose energy during the measurement. This paper will present the system performance of a PV-grid-connected system installed in Thailand by using a monitoring system. The monitored data are installed by acquisition software into a computer. Analysis of monitored data will be done to find out the system performance without disconnecting the PV arrays from the system. The monitored data include solar radiation, PV voltage, PV current, and PV power which has been recorded from a 5 kWp system installed of amorphous silicon PV at Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand. The system performance of the system by using the data monitored is compared to the standard instrument measurement. The paper will give all details about system components, monitoring system, and monitored data. The result of data analysis will be fully given. (author)

  19. PV-CAD: an integrated tool for designing PV facades; PV-CAD - Ein integriertes Werkzeug zur Auslegung von PV-Fassaden

    Energy Technology Data Exchange (ETDEWEB)

    Giese, H.; Viotto, M. [Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany); Esser, M.; Pukrop, D. [Univ. Oldenburg (Germany). Abt. Energie- und Halbleiterforschung; Stellbogen, D. [Zentrum fuer Sonnenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    1997-12-31

    PV-CAD provides PV system planners with a practice-oriented tool for an efficient design of PV facades. Being compatible with the standard programmes of the architects` and electrical engineering sectors it can be used on already existing systems and allows the user to draw on previously acquired knowedge. Its open interfaces permit the integration of further design tools. PV CAD works under Microsoft Windows for which it has the necessary graphic user interface. Its compliance to PC standards opens up a wide range of applications and permits its use also on inexpensive computers. Thanks to its promotion by the Federal Ministry for Education, Science, Research, and Technology under the research project ``Computer programmes for the design of photovoltaic facades`` PV-CAD is available at a moderate price. PV-CAD permits an efficient planning of solar facades and therefore has the potential to stimulate the use of PV on buildings. (orig.) [Deutsch] Mit PV-CAD steht dem Anlagenplaner ein anwendungsorientiertes Werkzeug zur Verfuegung, das eine rationelle Auslegung von PV-Fassaden ermoeglicht. Die Kompatibilitaet zu Standardprogrammen aus dem Architektur- und Elektrosektor erlaubt die Nutzung bereits vorhandener Systeme und damit erworbener Kenntnisse. Offene Schnittstellen gestatten die Einbindung weiterer Entwurfswerkzeuge. PV-CAD arbeitet unter Microsoft-Windows und verfuegt ueber die entsprechende grafische Benutzerschnittstelle. Die Kompatibilitaet zum PC-Standard eroeffnet eine sehr breite Anwenderbasis und ermoeglicht den Einsatz des Programms auch auf preiswerten Rechnern. Aufgrund der Foerderung durch das Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie im Rahmen des Forschungsprojekts `Rechnerprogramm zur Auslegung von Photovoltaik-Fassaden` steht PV-CAD preiswert zur Verfuegung. PV-CAD ermoeglicht eine effiziente Planung von Solarfassaden und kann daher dem PV-Einsatz in Gebaeuden weitere Impulse geben. (orig.)

  20. Analysis on the MPPT control of PV generation system using SPRW

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Won [Osaka University (Japan); Kim, Bong Tae; Lee, Jae Deuk; Yu, In Keun [Changwon National University (Korea)

    2001-07-01

    Photovoltaic (PV) system has been studied and watch with keen interest due to a clean and renewable power source. But, because the output power of PV system is not only unstable but also uncontrollable, the MPPT control of PV power system is still hard to be optimized with the tracking failure under the sudden fluctuation of irradiance. Authors proposed a novel transient phenomenon simulation method for PV power generation system under the real field weather condition(SPRW), and the research and development of PV power generation system is expected to be able to analyze easily and cheaply under various conditions with considering the sort of cell, the capacity of system and the used converter system. In this paper, a PV array was simulated to confirm the availability of SPRW. And, several real weather conditions were used with various MPPT controls. (author). 6 refs., 9 figs., 3 tabs.

  1. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  2. PV Reconfiguration Systems: a Technical and Economic Study

    Directory of Open Access Journals (Sweden)

    Caruso M.

    2017-03-01

    Full Text Available Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution.

  3. Automatic fault diagnosis in PV systems with distributed MPPT

    International Nuclear Information System (INIS)

    Solórzano, J.; Egido, M.A.

    2013-01-01

    Highlights: • An automatic failure diagnosis procedure for PV systems with DMPPT is presented. • The different failures diagnosed and their effects on the PV systems are described. • No use of irradiance and temperature sensors decreasing the cost of the system. • Voltage and current analysis to diagnose different failures. • Hot-spots, localized dirt, shading, module degradation and cable losses diagnosis. - Abstract: This work presents a novel procedure for fault diagnosis in PV systems with distributed maximum power point tracking at module level—power optimizers (DC/DC) or micro-inverters (DC/AC). Apart from the power benefits obtained when an irregular irradiance distribution is present, this type of systems permit the monitoring of the PV plant parameters at the module level: voltage and current at the working power point. With these parameters, a prototype diagnosis tool has been developed in Matlab and it has been experimentally verified in a real rooftop PV generator by applying different failures. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity. This system does not require the use of irradiance or temperature sensors, except for the generalized dirt failure, reducing the cost of installation, especially important in small PV systems

  4. How PV system ownership can impact the market value of residential homes

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jamie L. [Energy Sense Finance, LLC, Punta Gorda, FL (United States)

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  5. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  6. Economic and policy analysis for solar PV systems in Indiana

    International Nuclear Information System (INIS)

    Jung, Jinho; Tyner, Wallace E.

    2014-01-01

    In recent years, the energy market in the US and globally is expanding the production of renewable energy. Solar energy for electricity is also expanding in the US. Indiana is one of the states expanding solar energy with solar photovoltaic (PV) systems. Therefore, we conduct benefit cost analysis with several uncertain input variables to determine the economics of adopting solar PV systems in Indiana based on policy instruments that could increase adoption of solar PV systems. The specific objectives are analyses of the cost distribution of solar PV systems compared with grid electricity in homes and estimating the probability that solar can be cheaper than electricity from grids under different policy combinations. We first do the analysis under current policy and then the analysis under potential policy options for a variety of scenarios. Also, the results inform government policy makers on how effective the alternative policies for encouraging solar PV systems are. The results show that current policies are important in reducing the cost of solar PV systems. However, with current policies, there is only 50–50 chance of solar being cheaper than electricity from grids. If potential policies are implemented, solar PV systems can be more economical than grid electricity. - Highlights: • We investigate the economics of solar PV systems based on policy instruments. • We do scenario analyses under different combinations of policies. • We examine the probability of solar being cheaper than grid electricity for each scenario. • With current policies, there is 50–50 chance of solar being cheaper than the grid. • With depreciation and carbon tax, solar is much more economical than the grid

  7. Assessment of MPPT Techniques During the Faulty Conditions of PV System

    Directory of Open Access Journals (Sweden)

    Bhukya Krishna Naick

    2018-01-01

    Full Text Available The contribution of Distributed Generation (DG systems like wind energy systems and solar Photovoltaic (PV systems on the generation of electricity has increased. Out of these DG systems, the PV systems have gained wide popularity, because of the availability of solar energy throughout the day. Depending on the size of PV installations, a large number of PV modules can be interconnected in the form of series and parallel connection. Since a large number of modules are interconnected, it is possible for the faults in a PV array to occur due to the failure of protection system, which can cause damage to the PV module and also the decrease in the output power. This paper presents the tracking of a maximum power point under the faulty conditions of 12x5 PV array. The fault conditions that have been considered in the PV array are open circuit fault, line to ground, line to line and failure of bypass diodes. Perturb and observe, incremental conductance and fuzzy logic controller are the maximum power point tracking techniques that have been implemented. For each of the fault conditions, the results have been presented in terms of the maximum power tracked, tracking time and tracking efficiency.

  8. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  9. Firefighter safety for PV systems: Overview of future requirements and protection systems

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Blaabjerg, Frede

    2013-01-01

    for operators during maintenance or fire-fighting. One of the solutions is individual module shutdown by short-circuiting or disconnecting each PV module from the PV string. However, currently no standards have been adopted either for implementing or testing these methods, or doing an evaluation of the module...... shutdown procedures. This paper gives an overview on the most recent fire - and firefighter safety requirements for PV systems, with focus on system and module shutdown systems. Several solutions are presented, analyzed and compared by considering a number of essential characteristics, including......An important and highly discussed safety issue for photovoltaic systems is that, as long as they are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters, independent of the state of the inverter's dc disconnection switch, which poses a risk...

  10. Annual technical report. PV domestic field trial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report describes progress at the first five sites of the UK photovoltaic (PV) domestic field trial. All five sites are generating electricity, but one has not yet been commissioned and two sites are not yet monitoring performance. The BedZED development has roof-mounted PV modules and PV cells installed in sealed double-glazing. Solar slates/tiles have been installed at the Laing Homes development in Montagu Road, where the designer has sought to minimise the visual impact of the PV system on the roofs. At Hunters Moon, PV modules have been retrofitted and some unforeseen difficulties have arisen. PV is an integral part of the roof design at the state-of-the-art low energy development by Integer Houses at Greenfields. Corn Croft uses a British mounting system to facilitate integration of the modules flush with the roof. Installation issues and the progress of the trial are discussed.

  11. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  12. Maximum power point tracking controller for PV systems using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bahgat, A.B.G. [Cairo Univ. (Egypt). Faculty of Engineering; Helwa, N.H.; Ahmad, G.E.; El Shenawy, E.T. [National Research Center, Dokki, Cairo (Egypt). Solar Energy Dept.

    2005-07-01

    This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating conditions, then the control action gives the driving signals to the MPPT. A PC is used for data acquisition, running the control algorithm, data storage, as well as data display and analysis. The system has been implemented and tested under various operating conditions. The experimental results showed that the PV system with MPPT always tracks the peak power point of the PV module under various operating conditions. The MPPT transmits about 97% of the actual maximum power generated by the PV module. The MPPT not only increases the power from the PV module to the load, but also maintains longer operating periods for the PV system. The air velocity and the air mass flow rate of the mechanical load are increased considerably, due to the increase of the PV system power. It is also found that the increase in the output energy due to using the MPPT is about 45.2% for a clear sunny day. (Author)

  13. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  14. Fuzzy Logic Based MPPT Controller for a PV System

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2017-12-01

    Full Text Available The output power of a photovoltaic (PV module depends on the solar irradiance and the operating temperature; therefore, it is necessary to implement maximum power point tracking controllers (MPPT to obtain the maximum power of a PV system regardless of variations in climatic conditions. The traditional solution for MPPT controllers is the perturbation and observation (P&O algorithm, which presents oscillation problems around the operating point; the reason why improving the results obtained with this algorithm has become an important goal to reach for researchers. This paper presents the design and modeling of a fuzzy controller for tracking the maximum power point of a PV System. Matlab/Simulink (MathWorks, Natick, MA, USA was used for the modeling of the components of a 65 W PV system: PV module, buck converter and fuzzy controller; highlighting as main novelty the use of a mathematical model for the PV module, which, unlike diode based models, only needs to calculate the curve fitting parameter. A P&O controller to compare the results obtained with the fuzzy control was designed. The simulation results demonstrated the superiority of the fuzzy controller in terms of settling time, power loss and oscillations at the operating point.

  15. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    Science.gov (United States)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  16. Industry consultation on grid connection of small PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.; Thorneycroft, J.; Cotterell, M.; Gambro, S.

    2000-07-01

    This report presents the results of consultation within the PV industry and the electricity supply industry concerning guidelines for the connection of small PV systems to the electricity network. (author)

  17. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  18. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  19. Analysis of Long-Term Performance of PV Systems

    NARCIS (Netherlands)

    Nordmann, T.; Clavadetscher, L.; van Sark, Wilfried; Green, M.

    This report describes the activities, conclusions and continued efforts undertaken in Subtask 1 by the participating countries in IEA-PVPS Task 13. Subtask 1 examines the PV power plant as a system. It collects and studies the data supplied from installed operating PV plants from different countries

  20. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  1. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  2. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  3. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  4. Comparative Study Between Wind and Photovoltaic (PV) Systems

    Science.gov (United States)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  5. Comprehensive Benefit Evaluation of the Wind-PV-ES and Transmission Hybrid Power System Consideration of System Functionality and Proportionality

    Directory of Open Access Journals (Sweden)

    Huizheng Ji

    2017-01-01

    Full Text Available In the background of decreasing fossil fuels and increasing environmental pollution, the wind-photovoltaic energy storage and transmission hybrid power system (or called the wind-PV-ES and transmission hybrid system has become a strategic choice to achieve energy sustainability. However, the comprehensive benefit evaluation of such a combined power system is in a relatively blank state in China, which will hinder the reasonable and orderly development of this station. Four parts, the technical performance, economic benefit, ecological impact and social benefit, are considered in this paper, and a multi-angle evaluation index system of the wind-PV-ES and transmission system is designed. The projection pursuit model is used to evaluated system functionality conventionally; relative entropy theory is used to evaluate the system functionality simultaneously; and a comprehensive benefit evaluation model of the technique for order preference by similar to ideal solution (TOPSIS considering both system functionality and proportionality is constructed. Finally, the national demonstration station of the wind-PV-ES-transmission system is taken as an example to testify to the practicability and validity of the evaluation index system and model.

  6. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  7. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  8. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  9. Validation of PV-RPM Code in the System Advisor Model.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whether the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.

  10. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  11. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  12. Architecturally integrated PV system at the Ford Bridgend Engine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, K.; Phillips, R.

    2001-07-01

    The aim of the project was to design and install a solar photovoltaic (PV) plant that could be retrofitted into an existing factory and to evaluate the cost and advantages of using the most recent advances in photovoltaic technology as follows: to demonstrate the use of the latest mono crystalline silicon technology within a large scale manufacturing environment, with the long term view of designing a state of the art installation for use in an environmentally sensitive {sup F}actory of the Future{sup .} To determine the performance and operating costs of a photovoltaic plant in northern latitudes thus providing data for the potential use of similar integrated systems elsewhere in the UK and Northern Europe. To evaluate the long term behaviour of an integrated system and its component parts. To demonstrate the feasibility of retrofitting PV roof lights into a fully operational manufacturing plant. To provide natural daylight into the manufacturing facility thereby improving the working environment, enhancing productivity and reducing the electrical lighting load within the plant during daylight hours. (author)

  13. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  14. Establishment of key grid-connected performance index system for integrated PV-ES system

    Science.gov (United States)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  15. Static Equivalent of Distribution Grids With High Penetration of PV Systems

    DEFF Research Database (Denmark)

    Samadi, Afshin; Söder, Lennart; Shayesteh, Ebrahim

    2015-01-01

    High penetrations of photovoltaic (PV) systems within load pockets in distribution grids have changed pure consumers to prosumers. This can cause technical challenges in distribution and transmission grids, such as overvoltage and reverse power flow. Embedding voltage support schemes into PVs...... equivalent that can fairly capture the dominant behavior of the distribution grids. The aim of this paper is to use gray-box modeling concepts to develop a static equivalent of distribution grids comprising a large number of PV systems embedded with voltage support schemes. In the proposed model, the PV...... systems are aggregated as a separate entity, and not as a negative load, which is traditionally done. The results demonstrate the superior quality of the proposed model compared with the model with PV systems as the negative load....

  16. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2017-01-01

    In order to enable a more wide-scale utilization of PV systems, the cost of PV energy has to be comparable with other energy sources. Oversizing the PV array is one common approach to reduce the cost of PV energy, since it increases the PV energy yield during low solar irradiance conditions. However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact...

  17. National survey report on PV power applications in Switzerland 2006

    International Nuclear Information System (INIS)

    Huesser, P.; Hostettler, T.

    2007-01-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  18. National survey report on PV power applications in Switzerland 2006

    Energy Technology Data Exchange (ETDEWEB)

    Huesser, P. [Nova Energie GmbH, Aarau (Switzerland); Hostettler, T. [Ingenieurbuero Hostettler, Berne (Switzerland)

    2007-07-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  19. A novel solar multifunctional PV/T/D system for green building roofs

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Yu, Xu; Su, Yuehong

    2015-01-01

    Highlights: • A novel transparent roof combines the solar PV/T/D system with green building design. • Novel photovoltaic-thermal roofing design can achieve excellent light control at noon. • The roof has no obvious influence on indoor light intensity in morning and afternoon. • Higher efficiency of solar energy utilization could be achieved with new roofing. - Abstract: A novel transparent roof which is made of solid CPC (Compound Parabolic Concentrator) PV/T/D (Photovoltaic/Thermal/Day lighting) system is presented. It combines the solar PV/T/D system with green building design. The PV/T/D system can achieve excellent light control at noon and adjust the thermal environment in the building, such that high efficiency utilization of solar energy could be achieved in modern architecture. This kind of roof can increase the visual comfort for building occupants; it can also avoid the building interior from overheating and dazzling at noon which is caused by direct sunlight through transparent roof. Optical simulation software is used to track the light path in different incidence angles. CFD (Computational Fluid Dynamics) simulation and steady state experiment have been taken to investigate the thermal characteristic of PV/T/D device. Finally, the PV/T/D experimental system was built; and the PV efficiency, light transmittance and air heating power of the system are tested under real sky conditions

  20. Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems

    International Nuclear Information System (INIS)

    Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T.

    2016-01-01

    Highlights: • MILP optimization model for operation and investment of PV-battery systems. • Use of high resolution (10 s) electrical household load and PV generation profiles. • Analysis of influence of temporal resolution on self-consumption and optimal sizing. • Electrical load profile characteristics influence required temporal resolution. - Abstract: The interest in self-consumption of electricity generated by rooftop photovoltaic systems has grown in recent years, fueled by decreasing levelized costs of electricity and feed-in tariffs as well as increasing end customer electricity prices in the residential sector. This also fostered research on grid-connected PV-battery storage systems, which are a promising technology to increase self-consumption. In this paper a mixed-integer linear optimization model of a PV-battery system that minimizes the total discounted operating and investment costs is developed. The model is employed to study the effect of the temporal resolution of electrical load and PV generation profiles on the rate of self-consumption and the optimal sizing of PV and PV-battery systems. In contrast to previous studies high resolution (10 s) measured input data for both PV generation and electrical load profiles is used for the analysis. The data was obtained by smart meter measurements in 25 different households in Germany. It is shown that the temporal resolution of load profiles is more critical for the accuracy of the determination of self-consumption rates than the resolution of the PV generation. For PV-systems without additional storage accurate results can be obtained by using 15 min solar irradiation data. The required accuracy for the electrical load profiles depends strongly on the load profile characteristics. While good results can be obtained with 60 s for all electrical load profiles, 15 min data can still be sufficient for load profiles that do not exhibit most of their electricity consumption at power levels above 2 k

  1. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  2. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production

  3. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  4. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste

  5. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  6. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    International Nuclear Information System (INIS)

    Azoumah, Y; Yamegueu, D; Py, X

    2012-01-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy energy' concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  7. An Analysis of Open World PvP in LOTRO's PvMP as a Case Study for PvP Games

    Directory of Open Access Journals (Sweden)

    Toh Weimin

    2014-11-01

    Full Text Available This article focuses on the analysis of emergent gameplay, based on a case study of the author's subjective gameplay experience of Player versus Monster Player (PvMP in The Lord of the Rings Online (LOTRO. The argument presented here is that although there is a core system of Player versus Player (PvP which LOTRO shares with other online games, each type of online game has a specific kind of PvP system which attracts players to engage in the gameplay. For instance, the open world sandbox type of PvP attracts certain players to play in LOTRO's PvMP. One of the main aims of this study is thus to investigate some of the core systems of PvP gameplay in open world sandbox PvP. In this article, LOTRO is shown to offer unique opportunities for studying emergent gameplay in open world games, with particular relevance to PvP studies. Two of the core systems of PvP discussed include the design of the simple gameplay rules to support emergent gameplay, and the community's attitudes towards player's behaviours. The types of emergent gameplay discussed include free play versus negotiated fair play, the players' utilisation of strategies in open world PvP to support collaborative and competitive gameplay, and the changing dynamics of open ended gameplay. It is hoped that the analysis provided in this article would form the­ basis of future work on a more general framework for understanding PvP in other online games.

  8. Economic Comparison of Two Business Models for Implementation of Small Integrated PV Systems

    International Nuclear Information System (INIS)

    Matak, N.; Krajacic, G.; Jerkic, E.; Duic, N.

    2016-01-01

    We compared two different models for the implementation of small photovoltaic solar systems in the Croatia. The new prosumer model presented in the new Croatian law on the Renewable Energy Sources and Highly Efficient Cogeneration (OG 100/15) and PV ESCO model which is similar to net metering. The PV ESCO model is developed from authors to determine possibility to raise payback period of small integrated PV systems. The comparison was done on a 15-minute basis and there were compared values of Simple Payback Period (SPP) for different locations and systems size considering electricity demand and market prices. Internal Rate of Return (IRR) and Net Present Value (NPV) were compared for 4 different cases. Conducted comparison showed that PV ESCO model is always more favourable for the owner of PV system in terms of lower SPP and higher IRR and NPV. It has been noticed that for systems higher than 5 kWp use of PV ESCO model is recommended. For smaller systems it is not always clear which model should be used, since some losses are generated in the system on the side of the electricity supply company. For smaller systems from 2 to 5 kWp, PV ESCO model has SPP from 7.5 to 13 years and SPP value for the prosumer model is 8.7 to 15 years. This difference is higher when comparing PV system from 6 to 10 kWp. SPP for PV ESCO model, in that case, is from 10 to 13 years and in the prosumer model is from 17.5 to 28 years.(author).

  9. Wide-band gap devices in PV systems - opportunities and challenges

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Eni, Emanuel-Petre; Blaabjerg, Frede

    2014-01-01

    have an important role in the cost reduction. To increase the efficiency of PV systems, most of solutions for PV inverters have moved to three-level (3L) structures reaching typical efficiencies of 98% due to low switching losses of 600V Si IGBT or MOSFET and reduced core losses in the filter......The recent developments in wide band-gap devices based GaN and SiC is showing a high impact on the PV-inverter technology, which is strongly influenced by efficiency, power density and cost. Besides the high efficiency of PV inverters, also the mechanical size, the compactness and simple structure......) three-phase PV-inverter topologies in terms of efficiency, thermal loading distribution and costs. Moreover the above mentioned PV-inverters are built and tested in laboratory in order to validate the obtained results....

  10. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  11. Building opportunities in the U.S. for PV (PV:BONUS): A progress report

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1994-01-01

    Five contract teams are developing photovoltaic (PV) products that will have a significant impact on building-integrated PV systems. The product lines that these teams are pursuing include roofing materials, building facade materials, PV integrated into modular homes, ac-PV modules, and utility-dispatchable PV systems. The objective of these efforts is to develop product and market opportunities that can provide for the introduction of PV into the buildings market sector at higher allowable installed systems costs than conventional ground- or roof-mounted systems. Each of the teams has a unique approach, and synergistic opportunities among teams are beginning to emerge. This paper reviews the product and market development efforts of these teams and describes the links between the product efforts and parallel analytical work to develop PV as a demand-side management option

  12. Heritage plaza parking lots improvement project- Solar PV installation

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Indian Reservation, Palm Springs, CA (United States)

    2017-03-31

    The Agua Caliente Band of Cahuilla Indians (ACBCI or the “Tribe”) installed a 79.95 kW solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices located at the Tribe's Heritage Plaza office building, 90I Tahquitz Way, Palm Springs, CA, 92262 (the "Project"). The installation of the Solar PV system was part of the larger Heritage Plaza Parking Lot Improvements Project and mounted on the two southern carport shade structures. The solar PV system will offset 99% of the approximately 115,000 kWh in electricity delivered annually by Southern California Edison (SCE) to the Tribal Education and Family Services offices at Heritage Plaza, reducing their annual energy costs from approximately $22,000 annually to approximately $200. The total cost of the proposed solar PV system is $240,000.

  13. PV Thermal systems: PV panels supplying renewable electricity and heat

    NARCIS (Netherlands)

    Helden, van W.G.J.; Zolingen, van R.J.C.; Zondag, H.A.

    2004-01-01

    With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts

  14. Development of solar energy for efficient PV application systems

    International Nuclear Information System (INIS)

    Said, Aziz

    2006-01-01

    It is essential to increase research, development, awareness for the application of solar energy as an important source of life. The cost of PV systems has decreased due to the improvement in techniques of manufacturing and performance. In reality, photovoltaic is one technology that allows the production of electricity with only two components: technological, which is the PV module and environmental, which is the sun. The knowledge of the components market represents a critical parameters in establishing sustainable industrial applications on different activity sectors. This paper illustrates the advantages of using photovoltaic in rural area and their economic and environmental impact. In regions where petroleum or other fossil fuels are not available, and where these remote area are not connected to the electrical grid, there is a strong and increasing demand for the technologies related to photovoltaic application systems. Water extracting and pumping, telecommunication and lighting, irrigation systems, electrical driven cars and trucks represent some of these important applications. The paper also develops critical skills for the most useful PV application in Egypt and provide to the industry a development forecast for the new technology. Then an initiation contacts and cooperation on PV application between industries specially in North Africa Middle East in order to improve the reliability and to get cheaper systems.(Author)

  15. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  16. Developing solar: PV solar system markets in Africa

    International Nuclear Information System (INIS)

    Asali, Karim

    2002-01-01

    Governments, NGO's and UN organisations are increasingly convinced that renewable energies not only help to solve energy problems in Africa but are indispensable in alleviating regional disparities, social problems and bridging the digital gap. Still, many years after introducing high efficiency solar PV systems the necessary breakthrough of implementing them on a mass scale is still not a reality. The author provides perspectives on developing solar PV in Africa. (Author)

  17. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  18. Sensor System for Long-term Recording of Photovoltaic (PV) IV-curves

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    The purpose of this paper is to present a recording system for long-term investigation of PV panel dynamics under partial shading conditions. The system is intended to be a low-cost system deployable for stand-alone field use and long-term data recording at PV-plants. Passing clouds will affect...

  19. Research on comprehensive decision-making of PV power station connecting system

    Science.gov (United States)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  20. Building brighter PV business

    International Nuclear Information System (INIS)

    Hacker, R.

    2002-01-01

    The current status and future prospects of the UK market for solar photovoltaic (PV) electricity are briefly discussed. Through the Department of Trade and Industry (DTI), the UK Government has supported research and development (R and D) into PV for a number of years. This programme has now been extended to demonstrating PV systems on houses. Phase 2 - the domestic field trial programme - aims to monitor the performance of individual systems and the impact on a cluster of systems on the electricity network. New funding had allowed a trebling of the size of this programme, which involves both private developers and housing associations. The DTI is also working to promote PV on commercial buildings, eg the installation of BP Solar PV systems at BP petrol stations. The PV industry in the UK is technically strong and is working to overcome the barriers in the UK to greater uptake of the technology (including cost, conservatism, legal requirements and metering practices). Improvements are expected in a number of recent initiatives in the electricity industry to boost PV use and the PV industry is lobbying for PV to be included in the Enhanced Capital Allowances (ECA) scheme

  1. Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran

    International Nuclear Information System (INIS)

    Tahani, Mojtaba; Babayan, Narek; Pouyaei, Arman

    2015-01-01

    Highlights: • The utilization of an optimized Hybrid PV/Wind/Battery system has been studied. • The proposed system has been studied for a building in Tehran. • A novel hybrid optimization method, namely FPA/SA has been proposed. • The impact of inclined part of the roof on wind velocity is studied by CFD. • LPSP and Payback time were considered as objective functions in this study. - Abstract: Renewable energy hybrid systems are a promising technology toward sustainable and clean development. Due to stochastic behavior of renewable energy sources, optimization of their convertors has great importance for increasing system’s reliability and efficiency and also in order to decrease the costs. In this research study, it was aimed to study the utilization of an optimized hybrid PV/Wind/Battery system for a three story building, with an inclined surface on the edge of its roof, located in Tehran, capital of Iran. For this purpose, a new evolutionary based optimization technique, namely hybrid FPA/SA algorithm was developed, in order to maximize system’s reliability and minimize system’s costs. The new algorithm combines the approaches which are utilized in Flower Pollination Algorithm (FPA) and Simulated Annealing (SA) algorithm. The developed algorithm was validated using popular benchmark functions. Moreover the influence of PV panels tilt angle (which is equal to the slope of inclined part of the roof) is studied on the wind speed by using computational fluid dynamics (CFD) simulation. The outputs of CFD simulations are utilized as inputs for modeling wind turbine performance. The Loss of Power Supply Probability (LPSP) and Payback time are considered as objective functions, and PV panel tilt angle, number of PV panels and number of batteries are selected as decision variables. The results showed that if the tilt angle for PV panels is set equal to 30° and the number of PV panels is selected equal to 11 the fastest payback time which is 12 years and

  2. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... performed on a 3-kW two-stage single-phase grid-connected PV system, where the power reserve control is achieved upon demands....

  3. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  4. Optimized controllers for enhancing dynamic performance of PV interface system

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Attia

    2018-05-01

    Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence

  5. PV/T slates - Laboratory measurements; PV/T-Schiefer. Labormessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with an experimental outdoor set-up and reviews in-situ measurements made on a prototype of a ventilated PV-tile system (PV/T-Slates). The report describes the configuration and construction of the experimental PV-tiled roof and the measurement system used to measure its electrical and thermal performance. The results of the measurements made are presented in detail in graphical form. The influence of various factors such as air-slit width and mounting angle are discussed.

  6. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  7. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  8. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    Science.gov (United States)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  9. Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants

    Directory of Open Access Journals (Sweden)

    Miguel de Simón-Martín

    2017-06-01

    Full Text Available It is well known that working photovoltaic (PV plants show several maintenance needs due to wiring and module degradation, mismatches, dust, and PV cell defects and faults. There are a wide range of theoretical studies as well as some laboratory tests that show how these circumstances may affect the PV production. Thus, it is mandatory to evaluate the whole PV plant performance and, then, its payback time, profitability, and environmental impact or carbon footprint. However, very few studies include a systematic procedure to quantify and supervise the real degradation effects and fault impacts on the field. In this paper, the authors first conducted a brief review of the most frequent PV faults and the degradation that can be found under real conditions of operation of PV plants. Then, they proposed and developed an innovative Geographic Information System (GIS application to locate and supervise them. The designed tool was applied to both a large PV plant of 108 kWp and a small PV plant of 9 kWp installed on a home rooftop. For the large PV plant, 24 strings of PV modules were modelized and introduced into the GIS application and every module in the power plant was studied including voltage, current, power, series and parallel resistances, fill factor, normalized PV curve to standard test conditions (STC, thermography and visual analysis. For the small PV installation three strings of PV panels were studied identically. It must be noted that PV modules in this case included power optimizers. The precision of the study enabled the researchers to locate and supervise up to a third part of every PV cell in the system, which can be adequately georeferenced. The developed tool allows both the researchers and the investors to increase control of the PV plant performance, to lead to better planning of maintenance actuations, and to evaluate several PV module replacement strategies in a preventive maintenance program. The PV faults found include hot

  10. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  11. Performance of a directly-coupled PV water pumping system

    International Nuclear Information System (INIS)

    Mokeddem, Abdelmalek; Midoun, Abdelhamid; Kadri, D.; Hiadsi, Said; Raja, Iftikhar A.

    2011-01-01

    Highlights: → Directly coupled PV water pumping system installed and performance studied. → Configured for two static heads, operate without electronic control and auxiliary power. → The system attains steady state soon after any abrupt change. → Cost effective and useful for low head communicating wells system. - Abstract: This paper describes the experimental study carried out to investigate the performance of a simple, directly coupled dc photovoltaic (PV) powered water pumping system. The system comprises of a 1.5 kWp PV array, dc motor and a centrifugal pump. The experiment was conducted over a period of 4 months and the system performance was monitored under different climatic conditions and varying solar irradiance with two static head configurations. Although the motor-pump efficiency did not exceed 30%, which is typical for directly-coupled photovoltaic pumping systems, such a system is clearly suitable for low head irrigation in the remote areas, not connected to the national grid and where access to water comes as first priority issue than access to technology. The system operates without battery and complex electronic control, therefore not only the initial cost is low but also maintenance, repairing and replacement cost can be saved. The study showed that directly coupled system attains steady state soon after any abrupt change.

  12. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  13. A Modular PV System Using Chain-Link-Type Multilevel Converter

    Science.gov (United States)

    Hatano, Nobuhiko; Ise, Toshifumi

    This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.

  14. Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level

    International Nuclear Information System (INIS)

    Nawaz, I.; Tiwari, G.N.

    2006-01-01

    In this paper the energy payback time and CO 2 emissions of photovoltaic (PV) system have been analyzed. The embodied energy for production of PV module based on single crystal silicon, as well as for the manufacturing of other system components have been computed at macro- and micro-level assuming irradiation of 800-1200 W/m 2 in different climatic zones in India for inclined surface. The energy payback time with and without balance-of-system for open field and rooftop has been evaluated. It is found that the embodied energy at micro-level is significantly higher than embodied energy at macro-level. The effect of insolation, overall efficiency, lifetime of PV system on energy pay back time and CO 2 emissions have been studied with and without balance of system. A 1.2 kW p PV system of SIEMENS for mudhouse at IIT, Delhi based on macro- and micro-level has been evaluated. The CO 2 mitigation potential, the importance and role of PV system for sustainable development are also highlighted

  15. New topology of multiple-input single-output PV system for DC load applications

    Directory of Open Access Journals (Sweden)

    Mohsen M. ELhagry

    2016-12-01

    Full Text Available Improving PV system structure and maximizing the output power of a PV system has drawn many researchers attention nowadays. A proposed multi-input single-output PV system is proposed in this paper. The system consists of multiple PV modules; each module feeds a DC–DC converter. The outputs of the converters are tied together to form a DC voltage source. In order to minimize the output ripples of the converters, the control signal of each converter is time shifted from each other by a certain time interval depending on the number of converters used in the topology. In this study a battery is used as the main load, the load current used as the control variable. A fuzzy logic controller designed to modulate the operating point of the system to get the maximum power. The results show that the proposed system has very good response for various operating conditions of the PV system. In addition the output filter is minimized with excellent quality of the DC output voltage.

  16. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  17. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  18. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  19. Adaptive Harmonic Compensation in Residential Distribution Grid by Roof-Top PV Systems

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    grid- connected roof-top PV inverters in residential distribution grid can be an opportunity to engage these systems in the power quality issues as custom power devices. By implementing a proper control for roof-top PV inverters, these systems may in addition to inject the fundamental current......, additionally act like a virtual harmonic resistance and dedicate their additional current capacity to compensate the harmonics of residential distribution grid. In this paper, each roof-top PV system is a grid harmonic supervisor, where it continually measures the PCC voltage harmonics by Sliding Discrete...

  20. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  1. The PV market

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1990s. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market however is highly dependent on a number of market factors such as the cost of conventional energy the cost of PV systems utility acceptance of PV and regulatory controls. Government and institutional regulations, environmental issues, and OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer stand-alone and utility markets

  2. Control and management of energy in a PV system equipped with batteries storage

    Directory of Open Access Journals (Sweden)

    Kamal Hirech

    2016-06-01

    Full Text Available In this paper we present a work concerning the conception, implementation and testing of a photovoltaic system that is equipped with a new concept of control and manage the energy in a PV system with a battery storage. The objective is to exploit the maximum of power using Hill climbing improved algorithm that considers optimal electrical characteristics of PV panels regardless of the system perturbation, to manage the energy between blocs of PV system in order to control the charge/discharge process and inject the energy surplus into the grid and also to estimate the state of charge with precision. Moreover, the system guarantees the acquisition and presentation of results on computer, supervision and so on. The results obtained show the robustness of the PV system, good control and protection of batteries under the maximum of energy provided by the PV panels. The state of charge estimation is evaluated by using measured parameters in real time; it shows an improvement of around 5% compared to the conventional technique.

  3. The implantation of a grid-connected PV system at CEPEL

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio, E-mail: marcoag@cepel.br

    2003-07-01

    This technical report presents the experience undertaken by CEPEL for implantation of a grid connected PV system at its headquarters, located in Rio de Janeiro, RJ, Brazil. This technology, although considered far from Brazilian reach, is expected to grow significantly in the near future. The paper describes briefly several aspects concerning the PV system and the DAS (data acquisition system) implemented in order to allow the continuous evaluation of its performance and operational conditions. The system was installed in December, 2002, and the data are still preliminary. (author)

  4. On the field performance of PV water pumping system in Libya

    International Nuclear Information System (INIS)

    Sbeta, M.; Sasi, S.

    2012-01-01

    This paper presents the measured performance of an experimental PV water pumping system of 1200Wp installed in the north-east of Libya. Both the monthly and hourly measured data of the system performance are presented and analised, and the over-all system efficiency has been calculated as monthly and daily averages. The monthly average output of the system has been estimated and compared with measured data. The economic analysis of the system has been carried out and the specific water discharge cost (SDC) has been determined, the obtained SDC was very competitive with the published SDC of the PV water pumping projects in some countries. The obtained results have demonstrated the technical and economic feasibility of using the PV systems for water pumping especially in the remote areas of high potential of solar insolation.(author)

  5. A methodology for optimal sizing of autonomous hybrid PV/wind system

    International Nuclear Information System (INIS)

    Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A.

    2007-01-01

    The present paper presents a methodology to perform the optimal sizing of an autonomous hybrid PV/wind system. The methodology aims at finding the configuration, among a set of systems components, which meets the desired system reliability requirements, with the lowest value of levelized cost of energy. Modelling a hybrid PV/wind system is considered as the first step in the optimal sizing procedure. In this paper, more accurate mathematical models for characterizing PV module, wind generator and battery are proposed. The second step consists to optimize the sizing of a system according to the loss of power supply probability (LPSP) and the levelized cost of energy (LCE) concepts. Considering various types and capacities of system devices, the configurations, which can meet the desired system reliability, are obtained by changing the type and size of the devices systems. The configuration with the lowest LCE gives the optimal choice. Applying this method to an assumed PV/wind hybrid system to be installed at Corsica Island, the simulation results show that the optimal configuration, which meet the desired system reliability requirements (LPSP=0) with the lowest LCE, is obtained for a system comprising a 125 W photovoltaic module, one wind generator (600 W) and storage batteries (using 253 Ah). On the other hand, the device system choice plays an important role in cost reduction as well as in energy production

  6. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  7. Automatic supervision and fault detection of PV systems based on power losses analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chouder, A.; Silvestre, S. [Electronic Engineering Department, Universitat Politecnica de Catalunya, C/Jordi Girona 1-3, Campus Nord UPC, 08034 Barcelona (Spain)

    2010-10-15

    In this work, we present a new automatic supervision and fault detection procedure for PV systems, based on the power losses analysis. This automatic supervision system has been developed in Matlab and Simulink environment. It includes parameter extraction techniques to calculate main PV system parameters from monitoring data in real conditions of work, taking into account the environmental irradiance and module temperature evolution, allowing simulation of the PV system behaviour in real time. The automatic supervision method analyses the output power losses, presents in the DC side of the PV generator, capture losses. Two new power losses indicators are defined: thermal capture losses (L{sub ct}) and miscellaneous capture losses (L{sub cm}). The processing of these indicators allows the supervision system to generate a faulty signal as indicator of fault detection in the PV system operation. Two new indicators of the deviation of the DC variables respect to the simulated ones have been also defined. These indicators are the current and voltage ratios: R{sub C} and R{sub V}. Analysing both, the faulty signal and the current/voltage ratios, the type of fault can be identified. The automatic supervision system has been successfully tested experimentally. (author)

  8. Automatic supervision and fault detection of PV systems based on power losses analysis

    International Nuclear Information System (INIS)

    Chouder, A.; Silvestre, S.

    2010-01-01

    In this work, we present a new automatic supervision and fault detection procedure for PV systems, based on the power losses analysis. This automatic supervision system has been developed in Matlab and Simulink environment. It includes parameter extraction techniques to calculate main PV system parameters from monitoring data in real conditions of work, taking into account the environmental irradiance and module temperature evolution, allowing simulation of the PV system behaviour in real time. The automatic supervision method analyses the output power losses, presents in the DC side of the PV generator, capture losses. Two new power losses indicators are defined: thermal capture losses (L ct ) and miscellaneous capture losses (L cm ). The processing of these indicators allows the supervision system to generate a faulty signal as indicator of fault detection in the PV system operation. Two new indicators of the deviation of the DC variables respect to the simulated ones have been also defined. These indicators are the current and voltage ratios: R C and R V . Analysing both, the faulty signal and the current/voltage ratios, the type of fault can be identified. The automatic supervision system has been successfully tested experimentally.

  9. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  10. Simplified life-cycle analysis of PV systems in buildings: present situation and future trends

    International Nuclear Information System (INIS)

    Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D.

    1998-01-01

    The integration of photovoltaic (PV) systems in buildings shows several advantages compared to conventional PV power plants. The main objectives of the present study are the quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and the identification of best solutions to maximise their energy efficiency and CO 2 mitigation potential. In order to achieve these objectives, a simplified life-cycle analysis (LCA) has been carried out. Firstly, a number of existing applications have been studied. Secondly, a parametric analysis of possible improvements in the balance-of-system (BOS) has been developed. Finally, the two steps have been combined with the analysis of crystalline silicon technologies. Results are reported in terms of several indicators: energy pay-back time, CO 2 yield and specific CO 2 emissions. The Indicators show that the integration of PV systems in buildings clearly increases the environmental benefits of present PV technology. These benefits will further increase with future PV technologies. Future optimised PV roof-integrated systems are expected to have an energy pay-back time of around 1-5 years (1 year with heat recovery) and to save during their lifetime more than 20 times the amount of CO 2 emitted during their manufacturing (34 times with heat recovery). (Author)

  11. A comparison study of performance for three stand-alone PV systems used in rural electrification in Libya

    International Nuclear Information System (INIS)

    Ibrahim, I. M. Saleh; Kreama, N. M.; Khalat, M. A.

    2006-01-01

    Rural photovoltaic electrification in Libya is a national program to electrify isolated villages, as part of this program 250 systems with a total peak power of about 300 K Wp has been put into work starting the beginning of the year 2003, the sizes of the systems are 1.8 K Wp, 1.2 K Wp, 0.75 K Wp, and 0.15 K Wp, the systems was designed to supply different family needs. All systems are equipped by a data logger to collect the system parameters. In this paper we will compare the performance of three different PV sizes through two year of work. The results showed that the systems are performing incomparable to the deigned parameters, very little power failure was reported, and there are technical and social issues has to be addressed before the installation of the PV system.(Author)

  12. Dynamic modelling of a PV pumping system with special consideration on water demand

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Li, Hailong; Yan, Jinyue

    2013-01-01

    Highlights: ► Evaluation of water demand and solar energy is essential for PV pumping system. ► The design for a PV water pumping system has been optimized based on dynamic simulations. ► It is important to conduct dynamic simulations to check the matching between water demand and water supply. ► AC pump driven by the fixed PV array is the most cost-effective solution. - Abstract: The exploitation of solar energy in remote areas through photovoltaic (PV) systems is an attractive solution for water pumping for irrigation systems. The design of a photovoltaic water pumping system (PVWPS) strictly depends on the estimation of the crop water requirements and land use since the water demand varies during the watering season and the solar irradiation changes time by time. It is of significance to conduct dynamic simulations in order to achieve the successful and optimal design. The aim of this paper is to develop a dynamic modelling tool for the design of a of photovoltaic water pumping system by combining the models of the water demand, the solar PV power and the pumping system, which can be used to validate the design procedure in terms of matching between water demand and water supply. Both alternate current (AC) and direct current (DC) pumps and both fixed and two-axis tracking PV array were analyzed. The tool has been applied in a case study. Results show that it has the ability to do rapid design and optimization of PV water pumping system by reducing the power peak and selecting the proper devices from both technical and economic viewpoints. Among the different alternatives considered in this study, the AC fixed system represented the best cost effective solution

  13. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  14. Study on an optimum ratio of PV output energy to WG output energy in PV/WG hybrid system; Taiyoko/furyoku hybrid hatsuden system no saiteki yoryohi ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S [Kandenko Co. Ltd., Tokyo (Japan)

    1996-10-27

    A photovoltaic power (PV) and wind generated power (WG) are an unlimited clean energy source, yet their output is unstable depending on the fluctuation of weather conditions such as solar radiation and wind velocity. Consequently, a large-scale power storage equipment is necessitated leading to a high cost especially in an independent system. As a solution, a method is available in which PV and WG are combined so that the effect may be utilized for stabilizing the output of a system as a whole, at a site where a fluctuation pattern is different between photovoltaic energy and wind energy. In building a hybrid system by PV and WG, sites with such supplementary effect existing were selected from the viewpoint of stabilizing the fluctuation of the power generation in the long run; and then, an examination was made on the optimum PV capacity ratio (%Ppo) in each site. As a result, it revealed that the %Ppo had great bearing on a ratio of PV energy fluctuation to WG, which was converted to a numerical formula. A comparatively simple examination by means of meteorological data also indicated that the share ratio was possibly optimized between the quantities of PV and WG energy. 4 refs., 2 figs., 2 tabs.

  15. The German experience with grid-connected PV-systems

    International Nuclear Information System (INIS)

    Erge, T.; Hoffmann, V.U.; Kiefer, K.

    2001-01-01

    Grid-connected photovoltaics experienced increasing attention in Germany in recent years and are expected to face a major boost at the beginning of the new millennium. Highlights like the German 100,000-Roofs-Solar-Programme, PV programmes at schools financed by utilities and governments (e.g. 'SONNEonline' by PreussenElektra, 'Sonne in der Schule' by BMWi and 'Sonne in der Schule' by Bayernwerk) and large centralised installations of MW size ('Neue Messe Munchen' by Bayernwerk and 'Energiepark Mont-Cenis' by state Nordrhein-Westfalen, Stadtwerke Herne and European Union) count for the potential of grid-connected PV. Today in Germany a typical grid-connected PV installation of 1 kW nominal power produces average annual energy yields of 700 kWh (dependent on location and system components) and shows a high operating availability. The price per kWh from PV installations is still significantly higher than the price for conventional energy, but new funding schemes and cost models (like the large increase of feed-in tariff in Germany due to the Act on Granting Priority to Renewable Energy Sources in 2000) give optimism about the future. (Author)

  16. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    International Nuclear Information System (INIS)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P.; Van Sark, W.G.J.H.M.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  17. The microcomputer-based expert system in CAD-PV

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, S.

    1987-01-01

    As a branch of artificial intelligence, expert system has been revealed day after day in more and more engineering scopes since the successful applications of MYCIN in diagnosis and DENDRAL in the molecular structure of organic compounds etc.. But in the design scope of pressure vessel, as we know, only a few papers have so far been published with respect to the expert system. The necessity and feasibility of accompanying CAD-PV with expert system attracted more scholars to engage in. Although many countries, including China, have regularized the design standards or codes for pressure vessel, but of which no one can solve all of the problems concerning the various practical occasions and experiences. In general, the more domain knowledges a design engineer possesses of, the better decision will be made by him. By virtue of the expert system any less experienced engineer could make the optimum decision in design as well as a skilled senior engineer in addition to the application of design code. It is the due significance for developing high level expert system as an intelligence assistant in the plan option of CAD-PV. In this paper we attempt to introduce a specified software JACKPV used in the design procedure of jacketed pressure vessel as an intelligence front in CAD-PV. JACKPV consists of the function of expert system based on the personal computer IBM-PC/XT with the language PASCAL in its program. It was proved that an ordinary CAD software could be effectively improved while equipped with expert system. (orig.)

  18. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  19. Rooftop photovoltaic (PV) systems : a cost–benefit analysis study of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2013-01-01

    Rooftop photovoltaic (PV) systems can be readily deployed on industrial halls with relatively large rooftop area. Feed-in tariff above the base price of electricity is offered in many countries to subsidize the high initial investment of PV systems. In order to fully capitalize the benefit of the

  20. Analytical Investigation and Control System Set-up of Medium Scale PV Plants for Power Flow Management

    Directory of Open Access Journals (Sweden)

    Rosario Miceli

    2012-11-01

    Full Text Available In the field of photovoltaic (PV plants and energy conversion from renewable sources, a large part of the technical literature is more devoted to practical aspects (new solar cells, electrically driven PV panels, safety, reduction of parasitic currents, etc. than to theoretical investigations. Despite this tendency, this paper presents a mathematical analysis of a medium scale photovoltaic power generation system connected to the distribution network and of its control system. In such a system, the conversion stage is unique due to the absence of a boost chopper. The conducted analysis leads to the interesting conclusion that the inverter used in the plant presents two degrees of freedom, easy to exploit in a control system in which the inverter simultaneously realizes the interconnection to the grid and the MPPT control. The structure of the control system is then presented, discussed and validated by means of numerical simulations.

  1. A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations

    International Nuclear Information System (INIS)

    Kaplani, E.; Kaplanis, S.

    2012-01-01

    Highlights: ► Solar radiation data for European cities follow the Extreme Value or Weibull distribution. ► Simulation model for the sizing of SAPV systems based on energy balance and stochastic analysis. ► Simulation of PV Generator-Loads-Battery Storage System performance for all months. ► Minimum peak power and battery capacity required for reliable SAPV sizing for various European cities. ► Peak power and battery capacity reduced by more than 30% for operation 95% success rate. -- Abstract: The large fluctuations observed in the daily solar radiation profiles affect highly the reliability of the PV system sizing. Increasing the reliability of the PV system requires higher installed peak power (P m ) and larger battery storage capacity (C L ). This leads to increased costs, and makes PV technology less competitive. This research paper presents a new stochastic simulation model for stand-alone PV systems, developed to determine the minimum installed P m and C L for the PV system to be energy independent. The stochastic simulation model developed, makes use of knowledge acquired from an in-depth statistical analysis of the solar radiation data for the site, and simulates the energy delivered, the excess energy burnt, the load profiles and the state of charge of the battery system for the month the sizing is applied, and the PV system performance for the entire year. The simulation model provides the user with values for the autonomy factor d, simulating PV performance in order to determine the minimum P m and C L depending on the requirements of the application, i.e. operation with critical or non-critical loads. The model makes use of NASA’s Surface meteorology and Solar Energy database for the years 1990–2004 for various cities in Europe with a different climate. The results obtained with this new methodology indicate a substantial reduction in installed peak power and battery capacity, both for critical and non-critical operation, when compared to

  2. A case study of utility PV economics

    International Nuclear Information System (INIS)

    Wenger, H.; Hoff, T.; Osborn, D.E.

    1997-01-01

    This paper presents selected results from a detailed study of grid-connected photovoltaic (PV) applications within the service area of the Sacramento Municipal Utility District. The intent is to better understand the economics and markets for grid-connected PV systems in a utility setting. Research results include: Benefits calculations for utility-owned PV systems at transmission and distribution voltages; How the QuickScreen software package can help utilities investigate the viability of distributed PV; Energy production and capacity credit estimates for fixed and tracking PV systems; Economics and rate impacts of net metering residential PV systems; Market potential estimates for residential rooftop PV systems; and Viability and timing of grid-connected PV commercialization paths

  3. Design and Operation Studies of A Stand-Alone PV Generation System

    DEFF Research Database (Denmark)

    Hu, Yanting; Chen, Zhe; Zhang, Donglai

    2013-01-01

    This paper discusses the modeling, design and operation of a PV powered stand-alone system, which includes a PV array, a battery bank, power electronic converters and the associated control system. The design considerations are analyzed and a design platform is presented. Furthermore the operation...... modes of the system are described. A power electronic system with the associated control scheme has been proposed and simulation models have been developed. Simulation studies have been conducted on an example system; the results have demonstrated the effectiveness of the presented methods....

  4. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2010-01-01

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  5. Parameters affecting the life cycle performance of PV technologies and systems

    International Nuclear Information System (INIS)

    Pacca, Sergio; Sivaraman, Deepak; Keoleian, Gregory A.

    2007-01-01

    This paper assesses modeling parameters that affect the environmental performance of two state-of-the-art photovoltaic (PV) electricity generation technologies: the PVL136 thin film laminates and the KC120 multi-crystalline modules. We selected three metrics to assess the modules' environmental performance, which are part of an actual 33 kW installation in Ann Arbor, MI. The net energy ratio (NER), the energy pay back time (E-PBT), and the CO 2 emissions are calculated using process based LCA methods. The results reveal some of the parameters, such as the level of solar radiation, the position of the modules, the modules' manufacturing energy intensity and its corresponding fuel mix, and the solar radiation conversion efficiency of the modules, which affect the final analytical results. A sensitivity analysis shows the effect of selected parameters on the final results. For the baseline scenario, the E-PBT for the PVL136 and KC120 are 3.2 and 7.5 years, respectively. When expected future conversion efficiencies are tested, the E-PBT is 1.6 and 5.7 years for the PVL136 and the KC120, respectively. Based on the US fuel mix, the CO 2 emissions for the PVL136 and the KC120 are 34.3 and 72.4 g of CO 2 /kW h, respectively. The most effective way to improve the modules' environmental performance is to reduce the energy input in the manufacturing phase of the modules, provided that other parameters remain constant. Consequently, the use of PV as an electricity source during PV manufacturing is also assessed. The NER of the supplier PV is key for the performance of this scheme. The results show that the NER based on a PV system can be 3.7 times higher than the NER based on electricity supplied by the traditional grid mix, and the CO 2 emissions can be reduced by 80%

  6. A simplified model for the estimation of energy production of PV systems

    International Nuclear Information System (INIS)

    Aste, Niccolò; Del Pero, Claudio; Leonforte, Fabrizio; Manfren, Massimiliano

    2013-01-01

    The potential of solar energy is far higher than any other renewable source, although several limits exist. In detail the fundamental factors that must be analyzed by investors and policy makers are the cost-effectiveness and the production of PV power plants, respectively, for the decision of investment schemes and energy policy strategies. Tools suitable to be used even by non-specialists, are therefore becoming increasingly important. Many research and development effort have been devoted to this goal in recent years. In this study, a simplified model for PV annual production estimation that can provide results with a level of accuracy comparable with the more sophisticated simulation tools from which it derives is fundamental data. The main advantage of the presented model is that it can be used by virtually anyone, without requiring a specific field expertise. The inherent limits of the model are related to its empirical base, but the methodology presented can be effectively reproduced in the future with a different spectrum of data in order to assess, for example, the effect of technological evolution on the overall performance of PV power generation or establishing performance benchmarks for a much larger variety kinds of PV plants and technologies. - Highlights: • We have analyzed the main methods for estimating the electricity production of photovoltaic systems. • We simulated the same system with two different software in different European locations and estimated the electric production. • We have studied the main losses of a plant PV. • We provide a simplified model to estimate the electrical production of any PV system well designed. • We validated the data obtained by the proposed model with experimental data from three PV systems

  7. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  8. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    Science.gov (United States)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  9. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Track...

  10. A low cost wireless data acquisition system for a remote photovoltaic (PV) water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoubi, A.; Mechlouch, R. F.; Brahim, A. B. [National School of Engineering of Gabes, Gabes University, Chemical and Processes Engineering Department, Gabes (Tunisia)

    2011-07-01

    This paper presents the design and development of a 16F877 microcontroller-based wireless data acquisition system and a study of the feasibility of different existing methodologies linked to field data acquisition from remote photovoltaic (PV) water pumping systems. Various existing data transmission techniques were studied, especially satellite, radio, Global System for Mobile Communication (GSM) and General Packet Radio Service (GPRS). The system's hardware and software and an application to test its performance are described. The system will be used for reading, storing and analyzing information from several PV water pumping stations situated in remote areas in the arid region of the south of Tunisia. The remote communications are based on the GSM network and, in particular, on the Short text Message Service (SMS). With this integrated system, we can compile a complete database of the different parameters related to the PV water pumping systems of Tunisia. This data could be made available to interested parties over the Internet. (authors)

  11. A Standalone PV System with a Hybrid P&O MPPT Optimization Technique

    Directory of Open Access Journals (Sweden)

    S. Hota

    2017-12-01

    Full Text Available In this paper a maximum power point tracking (MPPT design for a photovoltaic (PV system using a hybrid optimization technique is proposed. For maximum power transfer, maximum harvestable power from a PV cell in a dynamically changing surrounding should be known. The proposed technique is compared with the conventional Perturb and Observe (P&O technique. A comparative analysis of power-voltage and current-voltage characteristics of a PV cell with and without the MPPT module when connected to the grid was performed in SIMULINK, to demonstrate the increment in the efficiency of the PV module after using the MPPT module.

  12. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    Science.gov (United States)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  13. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for

  14. Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications

    International Nuclear Information System (INIS)

    Merei, Ghada; Moshövel, Janina; Magnor, Dirk; Sauer, Dirk Uwe

    2016-01-01

    Highlights: • Optimization of self-consumption and the degree of self-sufficiency in commercial applications. • Technical and economic analyses for a PV-battery system. • Sensitivity analysis considering different sizes and prices of PV and battery systems. • Investigation of batteries to increase self-consumption today is not economic in the considered applications. - Abstract: Increasing costs of electricity supply from the local grid, the decreasing photovoltaic (PV) technology costs and the decreasing PV feed-in-tariff according to the current German Renewable Energy Sources Act (EEG) will in the future raise the monetary incentives to increase the self-consumption of PV energy. This is of great interest in commercial buildings as there mostly is sufficient place to install high capacities of photovoltaic panels on their own roofs. Furthermore, the electricity purchase price from the local grid for commercial consumers nowadays is about 20 €ct/kW h, which is higher than the cost of generation of electricity from solar panels (about 8–12 €ct/kW h). Additionally, the load profiles in commercial applications have a high correlation with the generated solar energy. Hence, there is a great opportunity for economic savings. This paper presents optimization results with respect to self-consumption and degree of self-sufficiency for a supermarket in Aachen, Germany. The optimization is achieved using real measurement data of load profile and solar radiation. Besides, techno-economic analyses and sensitivity analyses have been carried out to demonstrate the influence of different PV system sizes, PV system costs and interest rates. Moreover, to raise self-consumption different battery sizes with different battery system costs have been investigated and analysed for 2015 and 2025 scenarios as well. The results show that the installation of a PV system can reduce the electricity costs through self-consumption of self-generated PV energy. Also, applying

  15. Comparison of a three-phase single-stage PV system in PSCAD and PowerFactory

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Afshin; Eriksson, Robert; Della, Jose; Mahmood, Farhan; Ghandhari, Mehrdad; Soeder, Lennart [KTH Royal Institute of Technology, Stockholm (Sweden). Dept. of Electric Power Systems

    2012-07-01

    Accommodating more and more distributed PhotoVoltaic (PV) systems within load pockets has changed the shape of distribution grids. It is not, therefore, accurate anymore to address distribution grids just only as a lumped load. So it will be crucial in the near future to have an aggregate model of PV systems in distribution grids. By doing so, it is important to develop models for PV systems in different simulation platforms to study their behavior in order to derive an aggregate model of them. Although, there have been several detailed-switching model of a PV system in EMTDC/PSCAD simulation platform in literature, these non-proprietary switching models are slow in simulation, particularly when the number of the PV systems increases on the grounds that in PSCAD the simulation is based on time domain instantaneous values and requires more mathematical details of components. Therefore, in this paper a model of the PV system in DIgSILENT/Power Factory is developed, which is a proper environment to run rms simulation and works based on the phasors, and, moreover, from mathematical perspective is more simplified. The performance of the stemming model is compared with the switching model in PSCAD. Comparing the simulation results of the proposed model in PowerFactory with the model in PSCAD shows the credibility and accuracy of the proposed model. (orig.)

  16. Evaluation of the Photovoltaic System Installation Impact to an Electric Power Grid Part 1: Simulation of photovoltaic generation by applying a meteorological model

    Directory of Open Access Journals (Sweden)

    Juan Ernesto Wyss Porras

    2015-12-01

    Full Text Available The impact of the installation of a large-scale photovoltaic (PV system to the electric power grid management is analyzed numerically in this series of works. In this part 1, the solar irradiance at the target country, Guatemala, is evaluated with a weather forecasting model, and PV energy potential is estimated. From the computed potential distribution, the appropriate area for installation of a large-scale PV system is selected. This area is where the solar irradiance is large and the energy consumption regions are close by. The optimal tilted angle of the PV panels is proposed as well from the PV output simulation. The time series data of the PV output is also evaluated in this part, and it will be applied to the analysis of the impact of the PV installation to the electric power grid management in the following part of this series of works.

  17. Forecasting and observability: critical technologies for system operations with high PV penetration

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    – Photovoltaics (ETIP PV) reviews the different use cases for these technologies, their current status, and the need for future developments. Power system operations require a real-time view of PV production for managing power reserves and for feeding shortterm forecasts. They also require forecasts on all......Forecasting and monitoring technologies for photovoltaics are required on different spatial and temporal scales by multiple actors, from the owners of PV systems to transmission system operators. In this paper the Grid integration working group of the European Technology and Innovation Platform...... timescales from the short (for dispatching purposes), where statistical models work best, to the very long (for infrastructure planning), where physics-based models are more accurate. Power system regulations are driving the development of these techniques. This application also provides a good basis...

  18. A novel PV/T-air dual source heat pump water heater system: Dynamic simulation and performance characterization

    International Nuclear Information System (INIS)

    Cai, Jingyong; Ji, Jie; Wang, Yunyun; Zhou, Fan; Yu, Bendong

    2017-01-01

    Highlights: • The PV/T evaporator and air source evaporator connect in parallel and operate simultaneously. • A dynamic model is developed to simulate the behavior of the system. • The thermal and electrical characteristics of the PV/T evaporator are evaluated. • The contribution of the air source evaporator and PV/T evaporator has been discussed. - Abstract: To enable the heat pump water heater maintain efficient operation under diverse circumstances, a novel PV/T-air dual source heat pump water heater (PV/T-AHPWH) has been proposed in this study. In the PV/T-AHPWH system, a PV/T evaporator and an air source evaporator connect in parallel and operate simultaneously to recover energy from both solar energy and environment. A dynamic model is presented to simulate the behavior of the PV/T-AHPWH system. On this basis, the influences of solar irradiation, ambient temperature and packing factor have been discussed, and the contributions of air source evaporator and PV/T evaporator are evaluated. The results reveal that the system can obtain efficient operation with the average COP above 2.0 under the ambient temperature of 10 °C and solar irradiation of 100 W/m 2 . The PV/T evaporator can compensate for the performance degradation of the air source evaporator caused by the increasing condensing temperature. As the evaporating capacity in PV/T evaporator remains at relatively low level under low irradiation, the air source evaporator can play the main role of recovering heat. Comparing the performance of dual source heat pump system employing PV/T collector with that utilizing normal solar thermal collector, the system utilizing PV/T evaporator is more efficient in energy saving and performance improvement.

  19. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Science.gov (United States)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  20. Evaluation of irradiation measurements on tilted planes at PV systems in the Netherlands

    NARCIS (Netherlands)

    Betcke, J.W.H.; Dijk, V.A.P. van; Ramaekers, L.A.M.; Zolingen, R.J.C. van

    1998-01-01

    Monitoring data of Dutch PV systems in the field show lower values for the measured global irradiation in the array plane than expected from model calculatations. Since the locations of the PV systems contain obstacles, we expect that shielding of diffuse irradiation may cause the difference. For

  1. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  2. Pv rural electrification in Kiribati: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Hurry, Suresh [Energy and Atmosphere Programme, SEED/BPPS UNDP, New York (United States)

    1995-12-31

    In collaboration with the Japan International Cooperation Agency (JICA), United Nations Development Programme (UNDP) participated in the implementation of a photovoltaic (PV) rural electrification project in Kiribati. Under this project, assistance was provided to the Kiribati Solar Energy Company (SEC) in order to enable it to provide electricity service as a micro utility in a effective manner. The assistance provided included installation of 55 PV-based solar home systems and one community system. In addition, the assistance focussed on technical training of SEC personnel on PV systems and management training on accounting, billing, spare parts inventory, etcetera. [Espanol] En colaboracion con la Japan International Cooperation Agency (JICA), el Programa de las Naciones Unidas para el Desarrollo (PNUD) participo en la puesta en practica de un proyecto de electrificacion rural fotovoltaico en Kiribati. Dentro de este proyecto, se proporciono ayuda a la Kiribati Solar Energy Company (SEC) para ponerla en condicion de suministrar el servicio electrico, en una forma efectiva, como una micro empresa electrica. La ayuda proporcionada incluyo la instalacion de 55 sistemas domesticos solares fotovoltaicos y un sistema comunitario. Adicionalmente, la ayuda se enfoco al entrenamiento tecnico del personal de SEC en sistemas fotovoltaicos y en el entrenamiento administrativo en contabilidad, facturacion, inventariado de partes de repuesto, etc.

  3. Pv rural electrification in Kiribati: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Hurry, Suresh [Energy and Atmosphere Programme, SEED/BPPS UNDP, New York (United States)

    1996-12-31

    In collaboration with the Japan International Cooperation Agency (JICA), United Nations Development Programme (UNDP) participated in the implementation of a photovoltaic (PV) rural electrification project in Kiribati. Under this project, assistance was provided to the Kiribati Solar Energy Company (SEC) in order to enable it to provide electricity service as a micro utility in a effective manner. The assistance provided included installation of 55 PV-based solar home systems and one community system. In addition, the assistance focussed on technical training of SEC personnel on PV systems and management training on accounting, billing, spare parts inventory, etcetera. [Espanol] En colaboracion con la Japan International Cooperation Agency (JICA), el Programa de las Naciones Unidas para el Desarrollo (PNUD) participo en la puesta en practica de un proyecto de electrificacion rural fotovoltaico en Kiribati. Dentro de este proyecto, se proporciono ayuda a la Kiribati Solar Energy Company (SEC) para ponerla en condicion de suministrar el servicio electrico, en una forma efectiva, como una micro empresa electrica. La ayuda proporcionada incluyo la instalacion de 55 sistemas domesticos solares fotovoltaicos y un sistema comunitario. Adicionalmente, la ayuda se enfoco al entrenamiento tecnico del personal de SEC en sistemas fotovoltaicos y en el entrenamiento administrativo en contabilidad, facturacion, inventariado de partes de repuesto, etc.

  4. Market Assessment of Residential Grid-Tied PV Systems in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.; Coburn, T.

    2000-09-29

    This report presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries-$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeo wners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions-primarily its state government and its utility companies, and also its homebuilders-if they are ready to move forward on GPV technology.

  5. Novel concept of a PV power generation system adding the function of shunt active filter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.G.; Park, M.; Yu, I.K. [Changwon National Univ., Changwon City (Korea, Republic of). Dept. of Electrical Engineering

    2005-07-01

    A new photovoltaics (PV) power generation system that used an active filter (AF) function was proposed. The AF was installed to condition reactive power and harmonic compensation as well as flicker and voltage regulation. A maximum point power tracking (MPPT) control system was used to stabilize the voltage source inverter (VSI) output current. A general dq transformation was used to compensate the negative components and the harmonics component. The output terminal of the PV array was connected to a smoothing capacitor interfacing the PV-AF inverter. A voltage source PWM converter was controlled with feedback loops of the output current of the inverter. Optimal values of the power inverter gains and filter constants were tuned to obtain responses. The PV system was simulated using real weather conditions. Results of the study demonstrated the stability and effectiveness of the proposed system. It was concluded that the PV-AF can also be used to provide harmonic damping throughout power distribution systems. 12 refs., 3 tabs., 9 figs.

  6. Fresh ideas needed: building the PV market in Africa

    International Nuclear Information System (INIS)

    Hankins, M.

    2006-01-01

    The reasons why sales of photovoltaics in Africa are miniscule compared with those in Europe, America, Japan and China are analysed and suggestions for ways of developing the African market are put forward. Although there have been some PV off-grid installations, on-grid systems are almost non-existent. The PV market in Africa has been constrained by a lack of a sound government policy and a lack of incentives for the private sector. It is suggested that Africa should study the success of PVs in other parts of the world and that governments, utilities and large consumers should initiate new projects to develop both small off-grid and large on-grid systems. The PV potential in Africa is massive, but at present it is not being realised. (author)

  7. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    Science.gov (United States)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  8. High-Penetration PV Integration Handbook for Distribution Engineers

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, Rich [Electrical Distribution Design, Blacksburg, VA (United States); Woyak, Jeremy [Electrical Distribution Design, Blacksburg, VA (United States); Costyk, David [Electrical Distribution Design, Blacksburg, VA (United States); Hambrick, Josh [Electrical Distribution Design, Blacksburg, VA (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  9. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  10. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2012-12-01

    Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  11. Operational characteristic analysis of PV generation system for grid connection by using a senseless MPPT control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-J.; Kim, K.-H.; Park, H.-Y.; Seo, H.-R.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    In photovoltaics, the sun's light energy is captured to create electricity. One of the key issues about a photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional maximum power point tracking (MPPT) control method, both voltage and current coming out from PV array require feedback. The system may fail to track the MPP of a PV array when unexpected weather conditions happen. This paper proposed a novel PV output senseless (POS) control method to solve the problem. The proposed POS MPPT control method only had one factor to consider, the load current. To verify this theory, a POS MPPT control was applied to a manufactured PV generation system, and the results of the the simulated and experimental data under real weather conditions were compared and analyzed. Several tables and diagrams were presented, including the circuit diagram of a manufactured PV generation system connected to grid as well as the the specifications of the PV array and PCS used for the experiment. Reasonable results were obtained in this study. In addition, the scheme was found to be very useful in maximizing power from PV array to load with feedback of only the load current. 8 refs., 3 tabs., 15 figs.

  12. Use of Super-Capacitor to Enhance Charging Performance of Stand-Alone Solar PV System

    KAUST Repository

    Huang, B. J.; Hsu, P. C.; Ho, P. Y

    2011-01-01

    Introduction: The battery charging performance in a stand-alone solar PV system affects the PV system efficiency and the load operating time. The New Energy Center of National Taiwan University has been devoted to the development of a PWM charging

  13. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  14. Influence of mathematical models in design of PV-Diesel systems

    International Nuclear Information System (INIS)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.

    2008-01-01

    This paper presents a study of the influence of mathematical models in the optimal design of PV-Diesel systems. For this purpose, a design tool developed by the authors, which allows obtaining the most cost effective design of a PV-Diesel system through the genetic algorithm technique, has been used. The mathematical models of some elements of the hybrid system have been improved in comparison to those usually employed in hybrid systems design programs. Furthermore, a more complete general control strategy has been developed, one that also takes into account more characteristics than those usually considered in this kind of design. Several designs have been made, evaluating the effect on the results of the different mathematical models and the novel strategy that can be considered

  15. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review

    Directory of Open Access Journals (Sweden)

    Malik Sameeullah

    2016-08-01

    Full Text Available The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems. Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online How to Cite This Article: Sameeullah, M. and Swarup, A. (2016. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2, 79-94. http://dx.doi.org/10.14710/ijred.5.2.79-94 

  16. Monitoring of PV systems at the Centre for Renewable Energy and Eco-Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Omer, S.A.; Wilson, R.

    2001-07-01

    This report summarises the results of an examination of the design, installation and operation of two building integrated photovoltaic (PV) systems at the University of Nottingham. Details are given of the thin film, glass Tedlar PV system installed at the Centre, the average system performance, the installation of the monocrystalline roof slate PV system at the Eco-Energy House, and annualised costs for both systems. A holistic approach to building design, a solution to client and installer uncertainty, training to enhance the skills of related trades, the provision of guidance on the minimum acceptable standard of documentation, and the guaranteeing of a minimum level of performance by the system supplier are among the recommendations given.

  17. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions

    International Nuclear Information System (INIS)

    Hazami, Majdi; Riahi, Ali; Mehdaoui, Farah; Nouicer, Omeima; Farhat, Abdelhamid

    2016-01-01

    The endeavor of this paper is to study the potential offered by the expenditure of a PV/T (photovoltaic thermal) solar system in Tunisian households. This investigation is performed according to two-folded approaches. Firstly, outdoor experiments were carried out during July 2014 for both passive and active mode. An exhaustive energy and exergy analysis was then performed to evaluate the instantaneous thermal and the electrical exergy outputs of the PV/T solar system. The results showed that the maximum instantaneous thermal and electric energy efficiency in active mode are about 50 and 15%, respectively. It was found also that the maximum thermal and electric exergy efficiencies were about 50 and 14.8%, respectively. The second approach is the evaluation of the monthly/annual performances of the PV/T solar system under typical climate area of Tunisia by using TRNSYS program. The results showed that the active mode enhances the electric efficiency and the exergy of the PV/T system by 3 and 2.5% points, respectively. The results showed that the optimized PV/T solar system covert the major part of the hot water and the electric needs of Tunisian household's with an expected annual average gain of about 14.60 and 5.33%, respectively. An economic appraisal was performed. - Highlights: • The present work studies the potential of using PV/T solar collector in Tunisian. • The maximum thermal and electric efficiencies are 50 and 15%, respectively. • The maximum thermal and electric exergy efficiencies were 50 and 14.8%. • The results showed that the expected annual gain are 14.60 and 5.33%. • The PV/T is compared to a high quality commercial solar collectors and a PV panel.

  18. Building integrated multi PV/T/A solar system

    International Nuclear Information System (INIS)

    Ami Elazari

    2000-01-01

    Previous development in solar energy for residential applications proved that there is merit in further development and improvement of combined electricity and hot water and hot air collectors. The justification stems from the fact that waste heat is generated when PV cells are producing electricity but it decrease its efficiency dramatically, and any effective way to cool the cells can improve their efficiency and long while the heat that generated from this cooling process could be stored and used as standard solar hot water/air system. The core unit comprises of integrated PV cells mounted on a flat-plate collector for water and air, hot water storage tank hot air inlet pips to the house electric battery bank, inverter, connecting cables and controller. Double-glazing serving as solar trap to triple the amount of sun ray reaching the PV cells and other technical innovation make the system more cost effective and cost benefit for stand alone and grid connected domestic application. Two way interconnection with the electric grid like in all the roof top program may bring it to economic viability by selling excess electricity during the costly peak hours while buying low cost electricity during the night off-peak hours, and free electricity from the sun plus free hot water and hot air for domestic use as by-product. A basic domestic two-collector system may deliver up to 4 kWh of electricity and 12000 kcal of hot water and air daily. Some 22 systems are currently operating at various locations in Israel, some for 8 years with very good results. (Author)

  19. Terms, Trends, and Insights: PV Project Finance in the United States, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schwabe, Paul D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-23

    This brief is a compilation of data points and market insights that reflect the state of the project finance market for solar photovoltaic (PV) assets in the United States as of the third quarter of 2017. This information can generally be used as a simplified benchmark of the costs associated with securing financing for solar PV as well as the cost of the financing itself (i.e., the cost of capital). This work represents the second DOE sponsored effort to benchmark financing costs across the residential, commercial, and utility-scale PV markets, as part of its larger effort to benchmark the components of PV system costs.

  20. PV System Performance Evaluation by Clustering Production Data to Normal and Non-Normal Operation

    NARCIS (Netherlands)

    Tsafarakis, O.; Sinapis, K.; van Sark, W.G.J.H.M.

    2018-01-01

    The most common method for assessment of a photovoltaic (PV) system performance is by comparing its energy production to reference data (irradiance or neighboring PV system). Ideally, at normal operation, the compared sets of data tend to show a linear relationship. Deviations from this linearity

  1. Building Integrated PV and PV/Hybrid Products - The PV:BONUS Experience: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H.; Pierce, L. K.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Successes and lessons learned from PV:BONUS (Building Opportunities in the United States in PV). This program has funded the development of PV or PV/hybrid products for building applications.

  2. Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.

    2017-09-01

    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.

  3. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  4. MPPT Based on Fuzzy Logic Controller (FLC for Photovoltaic (PV System in Solar Car

    Directory of Open Access Journals (Sweden)

    Seno Aji

    2013-12-01

    Full Text Available This paper presents a control called Maximum Power Point Tracking (MPPT for photovoltaic (PV system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cycle value is used to adjust the angle of ignition switch (MOSFET gate on the Boost converter. The proposed method was shown through simulation performed using PSIM and MATLAB software. Simulation results show that the system is able to improve the PV power extraction efficiency significantly by approximately 98% of PV’s power.

  5. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  6. MPPT Based on Fuzzy Logic Controller (FLC) for Photovoltaic (PV) System in Solar Car

    OpenAIRE

    Aji, Seno; Ajiatmo, Dwi; Robandi, Imam; Suryoatmojo, Heri

    2013-01-01

    This paper presents a control called Maximum Power Point Tracking (MPPT) for photovoltaic (PV) system in a solar car. The main purpose of this system is to extracts PV power maximally while keeping small losses using a simple design of converter. Working principle of MPPT based fuzzy logic controller (MPPT-FLC) is to get desirable values of reference current and voltage. MPPT-FLC compares them with the values of the PV's actual current and voltage to control duty cycle value. Then the duty cy...

  7. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  8. Online model-based fault detection for grid connected PV systems monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2017-01-01

    This paper presents an efficient fault detection approach to monitor the direct current (DC) side of photovoltaic (PV) systems. The key contribution of this work is combining both single diode model (SDM) flexibility and the cumulative sum (CUSUM) chart efficiency to detect incipient faults. In fact, unknown electrical parameters of SDM are firstly identified using an efficient heuristic algorithm, named Artificial Bee Colony algorithm. Then, based on the identified parameters, a simulation model is built and validated using a co-simulation between Matlab/Simulink and PSIM. Next, the peak power (Pmpp) residuals of the entire PV array are generated based on both real measured and simulated Pmpp values. Residuals are used as the input for the CUSUM scheme to detect potential faults. We validate the effectiveness of this approach using practical data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  9. Online model-based fault detection for grid connected PV systems monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-12-14

    This paper presents an efficient fault detection approach to monitor the direct current (DC) side of photovoltaic (PV) systems. The key contribution of this work is combining both single diode model (SDM) flexibility and the cumulative sum (CUSUM) chart efficiency to detect incipient faults. In fact, unknown electrical parameters of SDM are firstly identified using an efficient heuristic algorithm, named Artificial Bee Colony algorithm. Then, based on the identified parameters, a simulation model is built and validated using a co-simulation between Matlab/Simulink and PSIM. Next, the peak power (Pmpp) residuals of the entire PV array are generated based on both real measured and simulated Pmpp values. Residuals are used as the input for the CUSUM scheme to detect potential faults. We validate the effectiveness of this approach using practical data from an actual 20 MWp grid-connected PV system located in the province of Adrar, Algeria.

  10. Distributed measurement system for long term monitoring of clouding effects on large PV plants

    DEFF Research Database (Denmark)

    Paasch, K. M.; Nymand, M.; Haase, F.

    2013-01-01

    A recording system for the generation of current-voltage characteristics of solar panels is presented. The system is intended for large area PV power plants. The recorded curves are used to optimize the energy output of PV power plants, which are likely to be influenced by passing clouds...

  11. Design, Simulation and Experimental Investigation of a Solar System Based on PV Panels and PVT Collectors

    Directory of Open Access Journals (Sweden)

    Annamaria Buonomano

    2016-06-01

    Full Text Available This paper presents numerical and experimental analyses aimed at evaluating the technical and economic feasibility of photovoltaic/thermal (PVT collectors. An experimental setup was purposely designed and constructed in order to compare the electrical performance of a PVT solar field with the one achieved by an identical solar field consisting of conventional photovoltaic (PV panels. The experimental analysis also aims at evaluating the potential advantages of PVT vs. PV in terms of enhancement of electrical efficiency and thermal energy production. The installed experimental set-up includes four flat polycrystalline silicon PV panels and four flat unglazed polycrystalline silicon PVT collectors. The total electrical power and area of the solar field are 2 kWe and 13 m2, respectively. The experimental set-up is currently installed at the company AV Project Ltd., located in Avellino (Italy. This study also analyzes the system from a numerical point of view, including a thermo-economic dynamic simulation model for the design and the assessment of energy performance and economic profitability of the solar systems consisting of glazed PVT and PV collectors. The experimental setup was modelled and partly simulated in TRNSYS environment. The simulation model was useful to analyze efficiencies and temperatures reached by such solar technologies, by taking into account the reference technology of PVTs (consisting of glazed collectors as well as to compare the numerical data obtained by dynamic simulations with the gathered experimental results for the PV technology. The numerical analysis shows that the PVT global efficiency is about 26%. Conversely, from the experimental point of view, the average thermal efficiency of PVT collectors is around 13% and the electrical efficiencies of both technologies are almost coincident and equal to 15%.

  12. Performance of a grid connected PV system used as active filter

    International Nuclear Information System (INIS)

    Calleja, Hugo; Jimenez, Humberto

    2004-01-01

    In this paper, the performance of a grid connected photovoltaic (PV) system used as an active filter is presented. Its main feature is the capability to compensate the reactive and harmonic currents drawn by nonlinear loads while simultaneously injecting into the grid the maximum power available from the cells. The system can also operate as a stand alone active filter. The system was connected to a 1 kW PV array and tested with the loads typically found in households: small motors, personal computers and electronic ballasts. The results show that the system can correct the power factor to values close to unity for all the cases tested, thereby improving the efficiency of the electric energy supply

  13. Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso

    responsible for yield-reduction of residential photovoltaic systems. Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC......The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated...... to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes. In Chapter 2 an overview...

  14. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    Science.gov (United States)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  15. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  16. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  17. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  18. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  19. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  20. Building-integrated PV -- Analysis and US market potential

    International Nuclear Information System (INIS)

    Frantzis, L.; Hill, S.; Teagan, P.; Friedman, D.

    1994-01-01

    Arthur D Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin, and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US

  1. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    Science.gov (United States)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  2. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  3. PV-HYBRID and MINI-GRID. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 3rd European Conference at the Centre de Congres in Aix en Provence (France) between 11th and 12th May, 2006, the following lessons were held: (1) Small electric networks: European drivers and projects for the integration of RES and DG into the electricity grids of the future (Manuel Sanchez-Jimenez); (2) PV hybrid system within mini grids - IEA PVPS programme (Meuch Konraf); (3) Renewables for the developing world (Alvaro Ponce Plaza); (4) Rural electicity supply using photovoltaic / - Diesel hybrid systems: Attractive for investors in the renewable energy sector? (Andreas Hahn); (5) Economic analysis of stand-alone and grid-connected photovoltaic systems under current tariff structure of Taiwan (Yaw-Juen Wang); (6) Using wind-PV-diesel hybrid system for electrification of remote village in Western Libya (N.M. Kreama); (7) Venezuela's renewable energy program for small towns and rural areas ''Sembrando Luz'' (Jorge Torres); (8) AeroSmart5, the professional, sysem-compatible small-scale wind energy converter will be tested in field tests (Fabian Jochem); (9) Lifetime, test procedures and recommendations for optimal operating strategies for lead-acid-batteries in renewable energy systems - A survey on results from European projects from the 5th framework programme (Rudi Kaiser); (10) Prototype of a reversible fuel cell system for autonomous power supplies (Tom Smolinska); (11) Interconnection management in microgrids (Michel Vandenbergh); (12) Control strategy for a small-scale stand-alone power system based on renewable energy and hydrogen (Harald Miland); (13) Standard renewable electricity supply for people in rural areas - mini-grids in western provinces of China (Michael Wollny); (14) The Brava island a ''100% renewable energy'' project (Jean-Christian Marcel); (15) Breakthrough to a new era of PV-hybrid systems with the help of standardised components communication? (Michael Mueller); (16) Standardized

  4. Development and implementation of a PV performance monitoring system based on inverter measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Gavriluta, Anamaria Florina; Maaløe, Lars

    2016-01-01

    Performance monitoring and fault detection systems have become necessary for decreasing operation and maintenance cost in large photovoltaic (PV) plants, as well for maximizing plan yield and lifetime. We expect a similar development for residential and commercial PV system applications, where...... the inverter’s own monitoring and communication capabilities. We also aim to lower the implementation cost, by using a simple, but accurate performance monitoring approach, and show the practical issues that can arise when implementing such a system....

  5. Power of design - the future of building-integrated PV

    International Nuclear Information System (INIS)

    Abbate, Cinzia

    2001-01-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported

  6. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  7. Performance monitoring of different module technologies and design configurations of PV systems in South Africa

    CSIR Research Space (South Africa)

    Serameng, T

    2016-06-01

    Full Text Available Africa. The goal of this work was to analyse and report on the performance of PV systems by evaluating the energy output of various PV system configurations and module technologies in the South African (southern hemisphere) climatic conditions. To achieve...

  8. Towards a CEmark for PV building integrated systems

    NARCIS (Netherlands)

    Jol, J.C.; Bloem, J.J.; Cross, B.M.; Sandberg, M.; Wambach, K.; Wiesner, W.; Zolingen, van R.J.Ch.; Schalkwijk, van M.

    2000-01-01

    The European projects Prescript and Precede aim to pave the way for the development of a procedure to obtain a CE mark for building integrated PV. Prescript has carried out a survey of national building standards and performaed a series of tests on BIPV systems. Prescript has resulted in a proposal

  9. PV/T slates - Pilot project in Steinhausen; PV/T-Schiefer. Pilotprojekt Steinhausen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with a ventilated PV-tile system (PV/T-Slates) mounted on a garden shed in Steinhausen, Switzerland. The installation provides power and heat to the main house. The report describes the construction and operation of this pilot project and the results of measurements made on its electrical and thermal performance. The results of measurements made are presented in detail in graphical form and compared with the results of simulation. Suggestions are made for the optimisation of the system. Figures are presented on energy production and energy flows in graphical form.

  10. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN)

    Energy Technology Data Exchange (ETDEWEB)

    Karlis, A.D. [Electrical Machines Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece); Kottas, T.L.; Boutalis, Y.S. [Automatic Control Systems Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece)

    2007-03-15

    Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. This paper presents a novel MPPT method based on fuzzy cognitive networks (FCN). The new method gives a good maximum power operation of any PV array under different conditions such as changing insolation and temperature. The numerical results show the effectiveness of the proposed algorithm. (author)

  11. Performance analysis of ‘Perturb and Observe’ and ‘Incremental Conductance’ MPPT algorithms for PV system

    Science.gov (United States)

    Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda

    2017-07-01

    Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.

  12. Design of Energy Storage Control Strategy to Improve the PV System Power Quality

    DEFF Research Database (Denmark)

    Lei, Mingyu; Yang, Zilong; Wang, Yibo

    2016-01-01

    Random fluctuation of PV power is becoming a more and more serious problem affecting the power quality and stability of grid as the PV penetration keeps increasing recent years. Aiming at this problem, this paper proposed a control strategy of energy storage system based on Model Predictive Contr...

  13. Modeling and Control of DC/DC Boost Converter using K-Factor Control for MPPT of Solar PV System

    DEFF Research Database (Denmark)

    Vangari, Adithya; Haribabu, Divyanagalakshmi; Sakamuri, Jayachandra N.

    2015-01-01

    This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach...... is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar...... PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP...

  14. Optimizing economic benefit of rooftop photovoltaic (PV) systems through lowering energy demand of industrial halls

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of photovoltaic (PV) systems on the rooftop. To promote deployment of PV systems, feed-in tariff (FIT) higher than the electricity rate is available in many countries to subsidize

  15. PV solar electricity industry: Market growth and perspective

    International Nuclear Information System (INIS)

    Hoffmann, Winfried

    2006-01-01

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  16. PV solar electricity industry: Market growth and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Winfried [RWE SCHOTT Solar GmbH, Carl-Zeiss-Str. 4, 63755 Alzenau (Germany)

    2006-11-23

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  17. Solar eclipse. The rise and 'dusk' of the Dutch PV innovation system

    Energy Technology Data Exchange (ETDEWEB)

    Negro, S.O.; Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Vasseur, V. [International Centre for Integrated Assessment and Sustainable Development, University Maastricht, P.O. Box 616, 6200 MD Maastricht (Netherlands); Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2012-07-01

    In this paper, we take the theoretical perspective of innovation system dynamics and apply this to Photovoltaic (PV) solar energy technology in the Netherlands. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build-up of innovation systems. We show that large fluctuations are present in the processes related to guidance of the search and market formation. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the implications for policy making.

  18. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  19. Design And Simulation Of A PV System With Battery Storage Using Bidirectional DC-DC Converter Using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Mirza Mursalin Iqbal

    2017-07-01

    Full Text Available PV Photovoltaic systems are one of the most renowned renewable green and clean sources of energy where power is generated from sunlight converting into electricity by the use of PV solar cells. Unlike fossil fuels solar energy has great environmental advantages as they have no harmful emissions during power generation. In this paper a PV system with battery storage using bidirectional DC-DC converter has been designed and simulated on MATLAB Simulink. The simulation outcomes verify the PV systems performance under standard testing conditions.

  20. Real-time POD-CFD Wind-Load Calculator for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Huayamave, Victor [Centecorp; Divo, Eduardo [Centecorp; Ceballos, Andres [Centecorp; Barriento, Carolina [Centecorp; Stephen, Barkaszi [FSEC; Hubert, Seigneur [FSEC

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals

  1. Development of a monitoring system for a PV solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Forero, N. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Hernandez, J. [Departamento de Ingenieria Electrica, Universidad Nacional de Colombia, Bogota (Colombia); Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2006-09-15

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well. (author)

  2. Development of a monitoring system for a PV solar plant

    International Nuclear Information System (INIS)

    Forero, N.; Hernandez, J.; Gordillo, G.

    2006-01-01

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well

  3. Integrated photovoltaic (PV) monitoring system

    Science.gov (United States)

    Mahinder Singh, Balbir Singh; Husain, NurSyahidah; Mohamed, Norani Muti

    2012-09-01

    The main aim of this research work is to design an accurate and reliable monitoring system to be integrated with solar electricity generating system. The performance monitoring system is required to ensure that the PVEGS is operating at an optimum level. The PV monitoring system is able to measure all the important parameters that determine an optimum performance. The measured values are recorded continuously, as the data acquisition system is connected to a computer, and data is stored at fixed intervals. The data can be locally used and can also be transmitted via internet. The data that appears directly on the local monitoring system is displayed via graphical user interface that was created by using Visual basic and Apache software was used for data transmission The accuracy and reliability of the developed monitoring system was tested against the data that captured simultaneously by using a standard power quality analyzer device. The high correlation which is 97% values indicates the level of accuracy of the monitoring system. The aim of leveraging on a system for continuous monitoring system is achieved, both locally, and can be viewed simultaneously at a remote system.

  4. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  5. An automated model for rooftop PV systems assessment in ArcGIS using LIDAR

    Directory of Open Access Journals (Sweden)

    Mesude Bayrakci Boz

    2015-08-01

    Full Text Available As photovoltaic (PV systems have become less expensive, building rooftops have come to be attractive for local power production. Identifying rooftops suitable for solar energy systems over large geographic areas is needed for cities to obtain more accurate assessments of production potential and likely patterns of development. This paper presents a new method for extracting roof segments and locating suitable areas for PV systems using Light Detection and Ranging (LIDAR data and building footprints. Rooftop segments are created using seven slope (tilt, ve aspect (azimuth classes and 6 different building types. Moreover, direct beam shading caused by nearby objects and the surrounding terrain is taken into account on a monthly basis. Finally, the method is implemented as an ArcGIS model in ModelBuilder and a tool is created. In order to show its validity, the method is applied to city of Philadelphia, PA, USA with the criteria of slope, aspect, shading and area used to locate suitable areas for PV system installation. The results show that 33.7% of the buildings footprints areas and 48.6% of the rooftop segments identi ed is suitable for PV systems. Overall, this study provides a replicable model using commercial software that is capable of extracting individual roof segments with more detailed criteria across an urban area.

  6. Analysis of PV system's values beyond energy - by country and stakeholder

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme and PV-Up-Scale analyses, identifies, evaluates and quantifies the major values and benefits of urban scale photovoltaics (PV) based on country and stakeholder specifics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The values evaluated and quantified in this report are categorised under the following groups: Avoiding fossil fuels, environmental benefits, benefits for electric utilities, industry development and employment benefits and the customer's individual benefits. The relevance of PV to meeting peak demand is discussed, as are the benefits for architects and building developers.

  7. Systems-based modeling of generation variability under alternate geographic configurations of photovoltaic (PV) installations in Virginia

    International Nuclear Information System (INIS)

    Collins, Ross D.; Crowther, Kenneth G.

    2011-01-01

    With increased focus on renewable energy in our modern era, it is increasingly important to understand the impact of policies on the performance and reliability of regional energy systems. This research develops a model to understand how geographic dispersion of PV installations impacts the reliability of electricity generated from the total PV network, measured by the variance of the distribution of generated electricity. Using NREL data, beta probability distributions of sunlight (kWh/m 2 /day) in various regions of Virginia are estimated using a fitting method that minimizes the Kolmogorov-Smirnov test statistic. A Monte Carlo simulation model is developed to measure PV electricity generation from multiple centralized and dispersed configurations over 100,000 days of probabilistic sunlight. There is a calculable tradeoff between average generation and generation variability, and increased geographic dispersion of PV installations can decrease this variability. Controlling variable generation through policies that promote efficient PV siting can help provide reliable power, minimizing the need for load-balancing peaking power infrastructure and costly electricity purchases from the grid. Using a tradeoff framework of generation and costs, this paper shows that geographically dispersed generation can mitigate the risk of unreliable solar generation that can significantly impact the end-user costs and make PV infrastructure unattractive. - Highlights: → We model how uncertain sunlight affects generation of different PV systems. → We show that geographically dispersed systems decrease generation variability. → Geographically dispersed PV systems are potentially more costly in the short run. → Controlling variability provides reliable power, which can decrease long-run costs. → Promoting mixes of uncertain energy sources requires assessment of these tradeoffs.

  8. Potential Effect and Analysis of High Residential Solar Photovoltaic (PV Systems Penetration to an Electric Distribution Utility (DU

    Directory of Open Access Journals (Sweden)

    Jeffrey Tamba Dellosa

    2016-11-01

    Full Text Available The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated. Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available online How to Cite

  9. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  10. Optimization of PV-based energy production by dynamic PV-panel/inverter configuration

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    This paper investigates the possible increase in annual energy production of a PV system with more than one MPPT (maximum power point tracker) input channels under Nordic illumination conditions, in case a concept of dynamic switching of the PV panels is used at the inputs of the inverters....

  11. PV monitoring at Jubilee Campus - Nottingham University

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Gan, G.

    2002-07-01

    This report summarises the results of a project monitoring the efficiency of photovoltaic (PV) modules integrated in the roofs of atria to meet the energy consumption needs of ventilation fans in the academic buildings at the Jubilee Campus of the University of Nottingham. Details are given of the instrumentation of one atrium to allow the monitoring the effectiveness of the ventilation in cooling the PV arrays integrated in the atrium roof, the economic analysis of the benefit of cooling the PV system, and the use of computational fluid dynamics (CFD) modelling to predict the performance of the atrium. The design of the PV system, the calculated system efficiency, the high cost of atrium integrated PV power supplies, the periodic failure of the inverters, and the overheating of the PV array and the atrium space in the summer are discussed.

  12. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  13. Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands

    International Nuclear Information System (INIS)

    Trapani, Kim; Millar, Dean L.

    2013-01-01

    Highlights: ► Significant cost and carbon savings for offshore PV integration. ► Maximum savings at circa 315 MW for thin film PV integration. ► Minimum generating capacity of turbines significant in cost of electricity. ► Part-load efficiencies of current system could hugely limit the integration of renewables. - Abstract: The islands of Malta are located in the Mediterranean basin enjoying 5.3 kW h/m 2 /day of solar insolation, at a latitude of 35°50N. Electricity generation for the islands is dependent upon imported fossil fuels for combustion. The available solar resource could be exploited to offset the current generation of electricity using solar photovoltaic technology (PV). Due to the limited land availability onshore, the offshore environment surrounding the Maltese islands were considered for the installation of PV floating on the sea surface. The output from such an installation would have to be integrated with the existing conventional electricity generation infrastructure, which currently relies on gas and steam turbine technology. To assess the feasibility of floating PV being integrated with the existing fossil plant, monthly trend consumption data for Malta were analysed. The change in gasoil and heavy fuel oil (HFO) consumption resulting from the part load efficiency variation and the displacement of electricity generation from the PVs were estimated. A cost analysis was prepared for the system integration analysis specifically accounting for the reduction in combustion of fossil fuels at the power station and the capital expenditures and operating costs due to the floating PV installation. Aside from the basic cost-benefit of a floating PV installation, CO 2 savings are also considered

  14. Evaluation, testing and further development of PV systems in Indonesia. Final report; Evaluation, Erprobung und Weiterentwicklung von PV-Systemen in Indonesien. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Preiser, K.; Schweizer-Ries, P.; Kuhmann, J.; Adib, R.

    2000-06-01

    The Indonesian government initiated the World's biggest decentralised rural electrification programme with PV systems, the so-called 50 MW PV programme, which is to provide 10 million households with PV systems within the next decade. The report describes the financing, distribution strategies, organisation of maintenance work, and training. The focus will be on locally produced components, with cooperation of German organisations. [German] Indonesien besteht aus mehr als 17.500 Inseln, so dass die Ausdehnung der nationalen Netze auf verschiedene Barrieren stoesst. Dort gibt es ungefaehr 23 Millionen Haushalte, die nicht an das nationale Stromnetz angeschlossen sind. Um diese zu ueberwinden, hat die indonesische Regierung das weltweit groesste dezentrale rurale Elektrifizierungsprogramm mit Photovoltaik, das sogenannte 50 MW PV-Programm, ins Leben gerufen. Im Rahmen dieses Programmes sollen in den naechsten zehn Jahren eine Million Haushalte mit Photovoltaik versorgt werden. Welchen Einfluss dabei nicht-technische Aspekte, wie Finanzierungssysteme, Verbreitungsstrategien, Organisation von Wartungsarbeiten, Ausbildung der Programmakteure auf die Zufriedenheit der Nutzer mit den gelieferten Energiedienstleistungen hat und wie diese eine dauerhaften Betrieb und eine nachhaltige Verbreitung dieser Technologie foerdern koennen, war Gegenstand detaillierter Untersuchungen. Grossen Wert legten wir auf Tests lokal produzierter Komponenten und Systeme, mit dem Ziel den beteiligten Firmen die Verbesserung der Qualitaet ihrer Produkte und Dienstleistungen zu ermoeglichen. Neben verschiedenen Projekterfolgen ist sicherlich erwaehnenswert, dass initiiert durch unsere Taetigkeiten, ein deutscher Ladereglerhersteller die Produktion seiner Regler in Zusammenarbeit mit einer indonesischen Firma ausweiten konnte. (orig.)

  15. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  16. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  17. Energy management for a PEMFC–PV hybrid system

    International Nuclear Information System (INIS)

    Karami, Nabil; Moubayed, Nazih; Outbib, Rachid

    2014-01-01

    Highlights: • The proposed hybrid structure is a grid-connected system composed of a PV panel, a FC, a battery, and a SC. • The output voltage of each component is regulated using a buck converter controlled by a type-III compensator. • All these components share one DC bus. • Loads can be the used battery, the grid, a DC load and/or an AC load. • The proposed topology offers a simple management technique using a low cost system controller. - Abstract: Most renewable energy sources depend on climatic circumstances and lack consistency even during a single day. The Hybrid System (HS) solves this drawback by relying on many types of renewable sources and managing them to get a satisfactory continuous power. In this paper, a grid connected HS composed of a Proton Exchange Membrane Fuel Cell (PEMFC), a Photovoltaic panel (PV), a battery and a Supercapacitor (SC) is proposed. Sources are pushed to deliver their maximum power thanks to a Maximum Power Point Tracker (MPPT). The output voltage of each component is regulated using a buck converter controlled by a type-III compensator. Consequently, HS components share the power on a single DC bus. The proposed topology offers a simple management technique using an affordable system controller. In order to illustrate our approach, a prototype is modeled, simulated and implemented on an emulator of a real system

  18. An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system

    International Nuclear Information System (INIS)

    Erdil, Erzat; Ilkan, Mustafa; Egelioglu, Fuat

    2008-01-01

    A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m 2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m 2 (i.e., 1.3x0.47 m 2 ) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive

  19. Effect of Neutral Grounding Protection Methods for Compensated Wind/PV Grid-Connected Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Nurettin Çetinkaya

    2017-01-01

    Full Text Available The effects of the wind/PV grid-connected system (GCS can be categorized as technical, environmental, and economic impacts. It has a vital impact for improving the voltage in the power systems; however, it has some negative effects such as interfacing and fault clearing. This paper discusses different grounding methods for fault protection of High-voltage (HV power systems. Influences of these grounding methods for various fault characteristics on wind/PV GCSs are discussed. Simulation models are implemented in the Alternative Transient Program (ATP version of the Electromagnetic Transient Program (EMTP. The models allow for different fault factors and grounding methods. Results are obtained to evaluate the impact of each grounding method on the 3-phase short-circuit fault (SCF, double-line-to-ground (DLG fault, and single-line-to-ground (SLG fault features. Solid, resistance, and Petersen coil grounding are compared for different faults on wind/PV GCSs. Transient overcurrent and overvoltage waveforms are used to describe the fault case. This paper is intended as a guide to engineers in selecting adequate grounding and ground fault protection schemes for HV, for evaluating existing wind/PV GCSs to minimize the damage of the system components from faults. This research presents the contribution of wind/PV generators and their comparison with the conventional system alone.

  20. The role of PV electricity generation in fully renewable energy supply systems

    International Nuclear Information System (INIS)

    Lehmann, H.; Peter, S.

    2004-01-01

    A sustainable energy supply will be based on renewable energies and it must use available resources efficiently. Earlier or later the energy supply will rely completely on renewable sources. A solar energy system that provides a reliable energy supply throughout the year includes the consistent use of local renewable energy sources (e.g. PV) wherever possible. Using Japan as a example it was shown that the vision of a full renewable energy supply, even with high shares of domestic sources is possible. Detailed simulations of such a system show that the PV systems play an important role delivering electricity at peak demand times. (authors)

  1. Optimal Solar PV Arrays Integration for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  2. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  3. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  4. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  5. A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm

    Directory of Open Access Journals (Sweden)

    Manel Hammami

    2017-12-01

    Full Text Available The implementation of maximum power point tracking (MPPT schemes by the ripple correlation control (RCC algorithm is presented in this paper. A reference is made to single-phase single-stage multilevel photovoltaic (PV generation systems, when the inverter input variables (PV voltage and PV current have multiple low-frequency (ripple harmonics. The harmonic analysis is carried out with reference to a multilevel configuration consisting of an H-bridge inverter and level doubling network (LDN cell, leading to the multilevel inverter having double the output voltage levels as compared to the basic H-bridge inverter topology (i.e., five levels vs. three levels. The LDN cell is basically a half-bridge fed by a floating capacitor, with self-balancing voltage capability. The multilevel configuration introduces additional PV voltage and current low-frequency harmonics, perturbing the basic implementation of the RCC scheme (based on the second harmonic component, leading to malfunctioning. The proposed RCC algorithm employs the PV current and voltage harmonics at a specific frequency for the estimation of the voltage derivative of power dP/dV (or dI/dV, driving the PV operating point toward the maximum power point (MPP in a faster and more precise manner. The steady-state and transient performances of the proposed RCC-MPPT schemes have been preliminarily tested and compared using MATLAB/Simulink. Results have been verified by experimental tests considering the whole multilevel PV generation system, including real PV modules, multilevel insulated-gate bipolar transistor (IGBT inverters, and utility grids.

  6. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    Science.gov (United States)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  7. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  8. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    Science.gov (United States)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  9. Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, J.

    2006-07-01

    During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

  10. Power Generation Potential and Cost of a Roof Top Solar PV System in Kathmandu, Nepal

    Science.gov (United States)

    Sanjel, N.; Zhand, A.

    2017-12-01

    The paper presents a comparative study of the 3 most used solar PV module technologies in Nepal, which are Si-mono-crystalline, Si-poly-crystalline and Si-amorphous. The aim of the paper is to present and discuss the recorded Global Solar Radiation, received in the Kathmandu valley by three different, Si-mono-crystalline, Si-poly-crystalline and Si-amorphous calibrated solar cell pyranometers and to propose the best-suited solar PV module technology for roof top solar PV systems inside the Kathmandu valley. Data recorded over the course of seven months, thus covering most of the seasonal meteorological conditions determining Kathmandu valley's global solar radiation reception are presented. The results indicate that the Si-amorphous pyranometer captured 1.56% more global solar radiation than the Si-mono-crystalline and 18.4% more than Si-poly-crystalline pyranometer over the course of seven months. Among the three pyranometer technologies the maximum and minimum cell temperature was measured by the Si-mono-crystalline pyranometer. Following the technical data and discussion, an economical analysis, using the versatile software tool PVSYST V5.01is used to calculate the life cycle costs of a 1kW roof top solar PV RAPS system, with battery storage, and a 1kW roof top solar PV grid connected system with no energy storage facility, through simulations, using average recorded global solar radiation data for the KTM valley and investigated market values for each solar PV module and peripheral equipment costs.

  11. What Factors Affect the Prices of Low-Priced U.S. Solar PV Systems?

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F. [Univ. of Wisconsin, Madison, WI (United States); Mercator Research Inst. on Global Commons and Climate Change, Berlin (Germany); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gillingham, Ken [Yale Univ., New Haven, CT (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-08-01

    The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than others. This study explores the factors leading some systems to be so much lower priced than others. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to estimate the importance of factors affecting the installed prices for low-priced (LP) systems (those at the 10th percentile) in comparison to median-priced systems. We find that the value of solar to consumers–a variable that accounts for subsidies, electric rates, and PV generation levels–is associated with lower prices for LP systems but higher prices for median priced systems. Conversely, systems installed in new home construction are associated with lower prices at the median but higher prices for LP. Other variables have larger cost-reducing effects on LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the system size, and installer experience. These results highlight the complex factors at play that lead to LP systems and shed light into how such LP systems can come about.

  12. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  13. A New Energy Management Technique for PV/Wind/Grid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Onur Ozdal Mengi

    2015-01-01

    Full Text Available An intelligent energy management system (IEMS for maintaining the energy sustainability in renewable energy systems (RES is introduced here. It consists of wind and photovoltaic (PV solar panels are established and used to test the proposed IEMS. Since the wind and solar sources are not reliable in terms of sustainability and power quality, a management system is required for supplying the load power demand. The power generated by RES is collected on a common DC bus as a renewable green power pool to be used for supplying power to loads. The renewable DC power bus is operated in a way that there is always a base power available for permanent loads. Then the additional power requirement is supplied from either wind or PV or both depending upon the availability of these power sources. The decision about operating these systems is given by an IEMS with fuzzy logic decision maker proposed in this study. Using the generated and required power information from the wind/PV and load sides, the fuzzy reasoning based IEMS determines the amount of power to be supplied from each or both sources. Besides, the IEMS tracks the maximum power operating point of the wind energy system.

  14. PV Life Cycle Analysis

    OpenAIRE

    Karsten Wambach

    2017-01-01

    This presentation was part of the Workshop: Recycling, reuse and resource efficiency: New solutions for a PV circular economy - Results from the projects CABRISS and ECOSOLAR. The workshop was organized within Freiberg Silicon Days 2017.

  15. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  16. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    Science.gov (United States)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run

  17. Sizing PV-wind hybrid energy system for lighting

    OpenAIRE

    Mustafa Engin; Dilşad Engin

    2012-01-01

    Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the desi...

  18. Performance and Feasibility Analysis of a Grid Interactive Large Scale Wind/PV Hybrid System based on Smart Grid Methodology Case Study South Part – Jordan

    Directory of Open Access Journals (Sweden)

    Qais H. Alsafasfeh

    2015-02-01

    Full Text Available Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.

  19. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  20. Environmental and ecological life cycle inventories of present and future PV systems in Europe for sustainability policies

    International Nuclear Information System (INIS)

    Frankl, P.; Lombardelli, S.; Corrado, A.

    2004-01-01

    The current use of Life Cycle Inventories (LCI) for the calculation of external costs and energy system modelling and planning is limited by two main factors: 1) lack of harmonization and transparency in the methodology used in LCA studies. 2) lack of transparent and updated and database on recent and emerging PV technologies (and other renewable and distributed generation technologies). These issues have been addressed and overcome by the recent EU research project ECLIPSE. With respect to photovoltaic (PV) systems, four main PV technologies (mc-Si, sc-Si, thin film a-Si, CIS) with different applications (ground-mounted power plants, retrofit and integrated building integrated systems) and derived configurations were analyzed, for a total of 47 system configurations. Each main technology is described in a report, which presents results in detailed and transparent manner, highlighting the crucial parameters which influence LCI results. The latter confirm the low life cycle emissions level and the very high value of PV systems towards sustainable energy systems for the future. (authors)

  1. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM System through Temperature Regulation and Performance Enhancement of Photovoltaics

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2014-03-01

    Full Text Available The current research seeks to maintain high photovoltaic (PV efficiency and increased operating PV life by maintaining them at a lower temperature. Solid-liquid phase change materials (PCM are integrated into PV panels to absorb excess heat by latent heat absorption mechanism and regulate PV temperature. Electrical and thermal energy efficiency analysis of PV-PCM systems is conducted to evaluate their effectiveness in two different climates. Finally costs incurred due to inclusion of PCM into PV system and the resulting benefits are discussed in this paper. The results show that such systems are financially viable in higher temperature and higher solar radiation environment.

  2. PV investment in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hueser, Pius [Nova Energy GmbH, (Switzerland)

    2007-06-15

    This presentation is mainly about how the PV market in Europe has been growing, and which elements are going to determine if this market succeed or failed not only in Europe but also in the rest of the world. In the first part of this presentation, it is mentioned how in 2005 the development of some PV technologies triggered the PV market growth without any marketing control. Then, there are explained the aspects that changed such situation out of control, therefore, it emerged the beginning of the consolidation of this market. There are briefly explained those factors that are going to determine if this market succeed or failed in the future. Finally, there are given examples of some the PV investments. [Spanish] Esta presentacion habla principalmente de la manera en como ha crecido el Mercado de sistemas fotovoltaicos en Europa, asi tambien se mencionan los elementos fundamentales que determinaran el exito o fracaso de este mercado, no solamente en Europa sino tambien en el resto del mundo, en un futuro. En la primera parte de esta presentacion, se describe como en el 2005, debido al desarrollo de algunas tecnologias fotovoltaicas se desencadeno el crecimiento desenfrenado del mercado fotovoltaico. Despues, se explican los aspectos que hicieron que dicho crecimiento tomara su curso, teniendo como resultado el inicio de un mercado mas consolidado. Se explican brevemente los factores que determinaran si este mercado encuentra el exito o el fracaso en un futuro. Finalmente, se dan ejemplos de algunas adquisiciones fotovoltaicas.

  3. Analytical evaluation of the operation data from selected PV-demonstration systems in the MuD-programme. Final report; Analytische Auswertung der Messergebnisse von ausgewaehlten PV-Demonstrationsanlagen im MuD-Programm. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gabler, H. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Heinemann, D. [Oldenburg Univ. (Germany). Fachbereich 8 - Physik; Wiemken, E. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1996-02-01

    From several PV-demonstration programmes, real performance data and the range in utilizing the systems are obtained. Nevertheless, for a particular system, no precise assessment and interpretation of the real system behaviour can be given: The quantification and the separation of the avoidable and of the unavoidable energy losses in the system is not to perform from the monitored data alone. Aim of this project was the interpretation of real operation data of PV-systems, the calculation of all steps of energy conversion and hence the determination of the energy losses in particular PV-systems as well as the presentation of a measure for energy production and system performance. This task includes a brief survey of the optimization potential of the energetic performance. The method choosen was an energy flow analysis, carried out on selected demonstration plants of the MuD-programme. For this reason, detailed simulation models were used. The results of the simulation calculations gives the measure to interprete the monitored system performance. In the course of the project, the analytical evaluation has shown a large ability in the assessment and interpretation of real system perforamances. Since the concept of the evaluation is transferable to many PV-systems, it represents a base for further applications in this field and in the field of the online-system control of PV-plants. (orig.) [Deutsch] In verschiedenen Demonstrationsprogrammen werden aus Langzeitmessungen Groessenordnung und Spannbreite der Nutzungsgrade photovoltaischer Anlagen ermittelt. Fuer eine spezifische Anlage ist damit jedoch keine praezise Einschaetzung bzw. Interpretation des Systemverhaltens moeglich, da die Quantifizierung der unvermeidbaren und der vermeidbaren Energieverluste im System nicht aus den Messdaten allein erfolgen kann. Ziel dieses Projektes war die Interpretation des reellen Betriebs von PV-Anlagen, die Berechnung der Zusammensetzung und der Bandbreite der Energieverluste im

  4. The case for a single-axis tracking solar PV array system to mitigate against the time-of-use tariff

    CSIR Research Space (South Africa)

    Szewczuk, S

    2016-08-01

    Full Text Available peak tariff is from 6:00pm to 8:00pm. A fixed-axis PV system generates peak electricity when the sun is overhead of the PV array. A single-axis PV tracking system allows for maximum production of electricity by tracking the sun soon after it appears...

  5. Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects

    Directory of Open Access Journals (Sweden)

    Lin He

    2017-12-01

    Full Text Available In line with the constraints of environmental problems and economic development, large-scale renewable-generation projects have been planned and constructed in recent years. In order to achieve sustainable power development and improve the power supply structure, China’s government has focused on distributed photovoltaic (PV generation projects due to their advantages of clean emission and local consumption. However, their unstable output power still brings a series of problems concerning reliability, investment income, and available substitution proportion to traditional power, and so on. Therefore, it is imperative to understand the competitive development abilities of distributed PV generation projects and measure them effectively. First, through various investigation methods such as literature reviews, feasibility report analysis and expert interviews, the factors that influence the core abilities of distributed PV-generation projects were explored based on the micro-grid structure. Then, with the indexed exploration results, the factors were classified into 6 dimensions, i.e., investment and earning ability, production and operation ability, power-grid coordination ability, energy-conservation and emission-reduction ability, sustainable development ability, and society-serving ability. Meanwhile, an evaluation index system for core abilities of distributed PV-generation project was constructed using all quantitative indicators. Third, for examining the availability of the evaluation index system, combination weighting and techniques for order preference by similarity to an ideal solution (TOPSIS methods were adopted to assess the practical distributed PV-generation projects. The case study results showed that installed capacity, local economy development, and grid-connected power quantity will influence the core abilities of distributed PV-generation project, obviously. The conclusions of the evaluation analysis on core abilities can

  6. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  7. Hybrid PV/wind system with quinary asymmetric inverter without increasing DC-link number

    Directory of Open Access Journals (Sweden)

    Aida Baghbany Oskouei

    2016-06-01

    Full Text Available This paper suggests quinary asymmetric inverter with coupled inductors and transformer, and uses it in hybrid system including photovoltaic (PV and wind. This inverter produces twenty-five-level voltage in addition to merits of multilevel inverter, has only one DC source. Then, it is adequate for hybrid systems, which prevents increasing DC-link and makes control of system easy. Proposed structure also provides isolation in the system and the switch numbers are reduced in this topology compared with other multilevel structures. In this system, battery is used as backup, where PV and wind have complementary nature. The performance of proposed inverter and hybrid system is validated with simulation results using MATLAB/SIMULINK software and experimental results based PCI-1716 data acquisition system.

  8. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    Directory of Open Access Journals (Sweden)

    T. Ajith Bosco Raj

    2014-01-01

    Full Text Available The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level inverter for a grid-connected photovoltaic system. The primary goal of these systems is to increase the energy injected to the grid by keeping track of the maximum power point of the panel, by reducing the switching frequency, and by providing high reliability. The maximum power has been tracked experimentally. It is compared with parallel boost converter. Also this model is based on mathematical equations and is described through an equivalent circuit including a PV source with MPPT, a diode, a series resistor, a shunt resistor, and dual boost converter with active snubber circuit. This model can extract PV power and boost by using dual boost converter with active snubber. By using this method the overall system efficiency is improved thereby reducing the switching losses and cost.

  9. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    Science.gov (United States)

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  10. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    G. Rohini

    2016-01-01

    Full Text Available This work aims at improving the dynamic performance of the available photovoltaic (PV system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  11. Distribution System Augmented by DC Links for Increasing the Hosting Capacity of PV Generation

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Demirok, Erhan; Teodorescu, Remus

    2012-01-01

    This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further, they are cha......This paper presents a concept of enhancing the photovoltaic (PV) power generation hosting capacity of distribution networks. Distribution network serving electrical energy to farm settlements was selected as an example for their large roof area available for PV installation. Further......, they are characterized by long radial feeders. Such feeders suffer from voltage rise and transformer overloading problems as the total number and capacity of the PV installations increase. The distribution network can be augmented by dc distribution links with power electronic converter interfaces to the traditional ac...... distribution systems. It is shown here that the dc links can be used to interconnect the different radial feeders and the excess power thus could be transferred to the nearby industrial load-center....

  12. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  13. Is rooftop solar PV at socket parity without subsidies?

    International Nuclear Information System (INIS)

    Hagerman, Shelly; Jaramillo, Paulina; Morgan, M. Granger

    2016-01-01

    Installations of rooftop solar photovoltaic (PV) technology in the United States have increased dramatically in recent years, in large part because of state and federal subsidies. In the future, such subsidies may be reduced or eliminated. From the homeowner's perspective, solar PV is competitive when it can produce electricity at a cost equivalent to the retail electricity rate, a condition sometimes referred to as “socket parity”. In assessing the economic viability of residential solar PV, most existing literature considers only a few locations and fails to consider the differences in PV system cost and electricity prices that exist across the U.S. We combined insolation data from more than 1000 locations, installation costs by region, and county-level utility rates to provide a more complete economic assessment of rooftop solar PV across the U.S. We calculated the break-even electricity prices and evaluated the reductions in installed costs needed to reach socket parity. Among the scenarios considered, we estimate that only Hawaii has achieved socket parity without the use of subsidies. With subsidies, six states reach socket parity, yet widespread parity is still not achieved. We find that high installation costs and financing rates are two of the largest barriers to socket parity. - Highlights: • We evaluate the economic viability of residential rooftop solar PV across the U.S. • Widespread socket parity has not been achieved in the U.S. without subsidies. • Net metering may be critical for the economic viability of rooftop solar PV.

  14. Automatic Supervision And Fault Detection In PV System By Wireless Sensors With Interfacing By Labview Program

    Directory of Open Access Journals (Sweden)

    Yousra M Abbas

    2015-08-01

    Full Text Available In this work a wireless monitoring system are designed for automatic detection localization fault in photovoltaic system. In order to avoid the use of modeling and simulation of the PV system we detected the fault by monitoring the output of each individual photovoltaic panel connected in the system by Arduino and transmit this data wirelessly to laptop then interface it by LabVIEW program which made comparison between this data and the measured data taking from reference module at the same condition. The proposed method is very simple but effective detecting and diagnosing the main faults of a PV system and was experimentally validated and has demonstrated its effectiveness in the detection and diagnosing of main faults present in the DC side of PV system.

  15. PV in a sports arena; PV im Hexenkessel

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, B.

    2008-05-19

    The German soccer club Werder Bremen is reconstructing its stadium. Apart from higher spectator comfort and a better atmosphere, there will also be PV systems on the roof and external walls of the arena. (orig.)

  16. A high-performance stand-alone solar PV power system for LED lighting

    KAUST Repository

    Huang, B. J.; Hsu, P. C.; Wu, M. S.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system

  17. Reliability evaluation of an impedance-source PV microconverter

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Liivik, Elizaveta; Blaabjerg, Frede

    2018-01-01

    The reliability of an impedance-source PV microconverter is evaluated based on the real-field mission profile. As part of a PV microinverter, the dc-dc microconverter is firstly described. Then the electro-thermal and lifetime models are built for the most reliability-critical components, i...

  18. Sizing procedures for sun-tracking PV system with batteries

    Directory of Open Access Journals (Sweden)

    Gerek Ömer Nezih

    2017-01-01

    Full Text Available Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015–2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.

  19. Sizing procedures for sun-tracking PV system with batteries

    Science.gov (United States)

    Nezih Gerek, Ömer; Başaran Filik, Ümmühan; Filik, Tansu

    2017-11-01

    Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system) for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015-2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure) are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.

  20. Grid Connected Solar PV System with SEPIC Converter Compared with Parallel Boost Converter Based MPPT

    OpenAIRE

    Bosco Raj, T. Ajith; Ramesh, R.; Maglin, J. R.; Vaigundamoorthi, M.; William Christopher, I.; Gopinath, C.; Yaashuwanth, C.

    2014-01-01

    The main objective of this work is to study the behaviour of the solar PV systems and model the efficient Grid-connected solar power system. The DC-DC MPPT circuit using chaotic pulse width modulation has been designed to track maximum power from solar PV module. The conversion efficiency of the proposed MPPT system is increased when CPWM is used as a control scheme. This paper also proposes a simplified multilevel (seven level) inverter for a grid-connected photovoltaic system. The primary g...

  1. Efficiency improvement of the maximum power point tracking for PV systems using support vector machine technique

    International Nuclear Information System (INIS)

    Kareim, Ameer A; Mansor, Muhamad Bin

    2013-01-01

    The aim of this paper is to improve efficiency of maximum power point tracking (MPPT) for PV systems. The Support Vector Machine (SVM) was proposed to achieve the MPPT controller. The theoretical, the perturbation and observation (P and O), and incremental conductance (IC) algorithms were used to compare with proposed SVM algorithm. MATLAB models for PV module, theoretical, SVM, P and O, and IC algorithms are implemented. The improved MPPT uses the SVM method to predict the optimum voltage of the PV system in order to extract the maximum power point (MPP). The SVM technique used two inputs which are solar radiation and ambient temperature of the modeled PV module. The results show that the proposed SVM technique has less Root Mean Square Error (RMSE) and higher efficiency than P and O and IC methods.

  2. Grid integrated distributed PV (GridPV).

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  3. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  4. Photovoltaic module with integrated power conversion and interconnection system - the European project PV-MIPS

    OpenAIRE

    Henze, N.; Engler, A.; Zacharias, P.

    2006-01-01

    Within the 6th framework program funded by the European Commission the project PV-MIPS (Photovoltaic Module with Integrated Power Conversion System) was launched in November 2004. Together with eleven European partners from Germany, Austria, Greece and the Netherlands a solar module with integrated in-verter shall be developed that can feed solar electricity directly into the grid. The challenging objective of the project is to reduce the total costs of a PV system. At the same time lifetime ...

  5. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Sopian, K.; Chaichan, Miqdam T.; Kazem, Hussein A.; Hasan, Husam Abdulrasool; Al-Shamani, Ali Najah

    2017-01-01

    Highlights: • Nano-SiC-water used as a base fluid for cooling an outdoor PV/T system. • The used nanofluid improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluid was examined for an extended period and found to be stable. • The overall effectiveness found to be 88.9% compared to the separate PV system. - Abstract: The thermophysical properties of nanofluid composed of water and SiC nanoparticles without the use of a surfactant as a coolant for a PV/T system was investigated. It was observed that the addition of 3 wt% of these nanoparticles to water caused an increase in the resulting fluid density by up to 0.0082% and an increase of viscosity by up to 1.8%. Moreover, the thermal conductivity was enhanced by up to 8.2% for the tested temperature range of 25 °C–60 °C. The stability of the nanofluid was examined at intervals of three months and it was found that after six months the thermal conductivity reduced by up to 0.003 W/m K, indicating that the solution was stable and suitable for use for long periods. The use of 3 wt% SiC nanofluid increased the electrical efficiency by up to 24.1% compared to the PV system alone, while the thermal efficiency increased by up to 100.19% compared to the use of water for cooling. The final results indicated that the total effectiveness of the PV/T nanofluid system had a higher overall efficiency of about 88.9% compared to the separate PV system.

  6. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    . However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact on the overall PV energy cost, due to the increased maintenance for the PV inverters. This paper...... evaluates the lifetime of PV inverters considering the PV array sizing and installation sites, e.g., Denmark and Arizona. The results reveal that the PV array sizing has a considerable impact on the PV inverter lifetime and reliability, especially in Denmark, where the average solar irradiance level...

  7. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  8. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  9. Simulation Model developed for a Small-Scale PV-System in a Distribution Network

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Mihet-Popa, Lucian; Isleifsson, Fridrik Rafn

    2012-01-01

    This paper presents a PV panel simulation model using the single-diode four-parameter model based on data sheet values. The model was implemented first in MATLAB/Simulink, and the results have been compared with the data sheet values and characteristics of the PV panels in standard test condition...... and implemented in PowerFactory to study load flow, steady-state voltage stability and dynamic behavior of a distributed power system....

  10. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... is used for delivering desire power to the grid. For compensation aim, instantaneous active and reactive power theory (p-q) is used. Via the algorithm, the DC/AC inverter not only can be controlled to inject the power of battery and PV, but also it is used as shunt active filter for compensating unequal...... power point tracking (MPPT) of PV array. The power system is 3-phase 4-wires and the DC/AC inverter is chosen 4-leg three phase inverter which has good performance in presence of zero sequence components. Battery energy storage is connected to PV system in common DC bus and a power management strategy...

  11. Learning in PV trends and future prospects

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; De Moor, H.H.C.

    2004-06-01

    For large scale application of PV cost reduction is essential. It is shown in this study that the price evolution is on track and even accelerating the last 15 years. Using an experience curve approach a learning rate of little over 20% was found consistent with other studies. As data were collected for small rooftop grid connected systems, it could be shown that this learning rate is not only found for modules, but also for BOS (all costs apart from the modules) in Germany as well as in the Netherlands. Projections of the future price of PV systems show that a learning rate of at least 20% is needed to make introduction of PV affordable. It is very effective to invest in learning, thus increasing the learning rate, as well as developing market segments were the value of PV is higher, such as residential PV systems in southern Europe

  12. Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, Barbara C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buhrmann, Jan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-07-01

    The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

  13. A Market Assessment of Residential Grid-Tied PV Systems in Colorado: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.; Coburn, T.

    2000-09-13

    This is the Executive Summary of a report that presents research done in response to a decision by the Colorado Governor's Office of Energy Conservation and Management (OEC) and Colorado utility companies to consider making residential grid-tied photovoltaic (PV) systems available in Colorado. The idea was to locate homeowners willing to pay the costs of grid-tied PV (GPV) systems without batteries--$8,000 or $12,000 for a 2- or 3-kilowatt (kW) system, respectively, in 1996. These costs represented two-thirds of the actual installed cost of $6 per watt at that time and assumed the remainder would be subsidized. The National Renewable Energy Laboratory (NREL) and OEC partnered to conduct a market assessment for GPV technology in Colorado. The study encompassed both qualitative and quantitative phases. The market assessment concluded that a market for residential GPV systems exists in Colorado today. That market is substantial enough for companies to successfully market PV systems to Colorado homeowners. These homeowners appear ready to learn more, inform themselves, and actively purchase GPV systems. The present situation is highly advantageous to Colorado's institutions--primarily its state government and its utility companies, and also its homebuilders--if they are ready to move forward on GPV technology.

  14. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  15. Residential PV system users' perception of profitability, reliability, and failure risk: An empirical survey in a local Japanese municipality

    International Nuclear Information System (INIS)

    Mukai, Toshihiro; Kawamoto, Shishin; Ueda, Yuzuru; Saijo, Miki; Abe, Naoya

    2011-01-01

    Although previous studies have addressed the reliability of residential PV systems in order to improve the dissemination of the systems among individual users and societies, few have examined users' perception of their own PV systems, which might contain solutions to firmly establish the system into society. First, the present paper examined the extent to which residential PV system users understand specification, reliability, and failure risk of their own systems. Second, causal factors affecting users' satisfaction with PV systems were examined. By analyzing data collected in Kakegawa City, this paper revealed that users did not appropriately understand the basic specifications of their residential PV systems, and in particular, the fact that the systems sometimes failed and therefore needed proper maintenance. Furthermore, a strong causal relationship between users' expectations of financial return from the system and their level of satisfaction was confirmed empirically. These results suggested that excessive focus on profitability and relatively low interest in the systems' reliability and failure risk should be addressed more to avoid problems that could potentially hamper the establishment of this technology into society. - Highlights: → We examined PV users' perception of its specification, reliability, and failure risk. → Data for analysis were collected by questionnaire survey in a Japanese local municipality. → We revealed users did not appropriately understand the basic specifications. → A strong causal relationship between users' expectations of financial return and their level of satisfaction was confirmed empirically.

  16. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  17. Comparison of Different MPPT Algorithms with a Proposed One Using a Power Estimator for Grid Connected PV Systems

    Directory of Open Access Journals (Sweden)

    Manel Hlaili

    2016-01-01

    Full Text Available Photovoltaic (PV energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond, perturbation and observation (P&O, ripple correlation (RC algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.

  18. Evaluating 5-Years Performance Monitoring of 1 MW Building Integrated PV Project in Nieuwland, Amersfoort, the Netherlands

    OpenAIRE

    van Sark, W.G.J.H.M.; de Keizer, A.C.; ter Horst, E.; Molenbroek, E.C.

    2007-01-01

    The performance of about 400 decentralised PV systems has been evaluated for a period of five years (2001-2006). The systems are situated in the urban area Nieuwland in the town of Amersfoort in the Netherlands and are part of one of the largest decentralised PV projects in the world. The evaluated systems are situated in eight sections and are characterized by different architectural designs, tilt and azimuth angles. In six of the sections the majority of the systems perform well. Data indic...

  19. A comparative study on the effect of glazing and cooling for compound parabolic concentrator PV systems – Experimental and analytical investigations

    International Nuclear Information System (INIS)

    Bahaidarah, Haitham M.; Gandhidasan, P.; Baloch, Ahmer A.B.; Tanweer, Bilal; Mahmood, M.

    2016-01-01

    Highlights: • We model glazed and unglazed PV-CPC systems with and without active water cooling. • Model is validated with experimental results and found good agreement. • Significant increase in the maximum power output is observed with active cooling. • Unglazed PV-CPC system is recommended for greater electric power output. • Levelized cost of energy found was found lower for unglazed CPC with cooling. - Abstract: A key barrier to achieving the economic viability and widespread adoption of photovoltaic (PV) technology for the direct conversion of solar radiation to electricity is the losses related to the high operating temperatures of typical flat-type PV modules. This technical and economic study addresses the cost reduction of PV systems by proposing a methodology for the improvement of solar cell efficiency using low-concentration PV technology and compound parabolic concentrators (CPCs). A theoretical model was developed to evaluate the performance of PV-CPC systems considering their optical, thermal and electrical properties. The model was implemented to investigate glazed and unglazed PV-CPC systems with and without active cooling and it was validated against experimental data. A laboratory-scale bench-top PV string was designed and built with symmetrically truncated CPC modules in these four configurations. The constructed glazed and unglazed PV-CPC systems were used for measurements at the geographic location of Dhahran and showed a very good agreement of 3.8–6.5% between the calculated and experimental results. The effect of glazing was studied and from the electrical point of view, glazing was found to reduce the power output. From the thermal point of view, glazing increased the thermal gain of the PV-CPC system. An unglazed PV-CPC system is recommended for greater electric power output, and glazed system is recommended for higher thermal gain. For economic feasibility, levelized cost of energy (LCE) analysis was performed using annual

  20. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Science.gov (United States)

    Kaplanis, S.; Kaplani, E.

    2014-10-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m2°C/W for free standing PV arrays at strong wind speeds, vW>7m/s, up to around 0.05 m2°C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  1. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    International Nuclear Information System (INIS)

    Kaplanis, S.; Kaplani, E.

    2014-01-01

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m 2° C/W for free standing PV arrays at strong wind speeds, v W >7m/s, up to around 0.05 m 2° C/W for the case of flexible PV modules which make part of the roof in a BIPV system

  2. On the relationship factor between the PV module temperature and the solar radiation on it for various BIPV configurations

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, S., E-mail: kaplanis@teipat.gr; Kaplani, E., E-mail: kaplanis@teipat.gr [Renewable Energy Systems Lab., Mechanical Engineering Dept., Technological Educational Institute of Western Greece, Koukouli 26 334, Patra (Greece)

    2014-10-06

    Temperatures of c-Si, pc-Si and a-Si PV modules making part of a roof in a building or hanging outside windows with various inclinations were measured with respect to the Intensity of the solar radiation on them under various environmental conditions. A relationship coefficient f was provided whose values are compared to those from a PV array operating in a free standing mode on a terrace. A theoretical model to predict f was elaborated. According to the analysis, the coefficient f takes higher values for PV modules embedded on a roof compared to the free standing PV array. The wind effect is much stronger for the free standing PV than for any BIPV configuration, either the PV is part of the roof, or placed upon the roof, or is placed outside a window like a shadow hanger. The f coefficient depends on various parameters such as angle of inclination, wind speed and direction, as well as solar radiation. For very low wind speeds the effect of the angle of inclination, β, of the PV module with respect to the horizontal on PV temperature is clear. As the wind speed increases, the heat transfer from the PV module shifts from natural flow to forced flow and this effect vanishes. The coefficient f values range from almost 0.01 m{sup 2°}C/W for free standing PV arrays at strong wind speeds, v{sub W}>7m/s, up to around 0.05 m{sup 2°}C/W for the case of flexible PV modules which make part of the roof in a BIPV system.

  3. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  4. Global PV markets and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wolfsegger, Cristoph [European Photolvoltaic Industry Association (EPIA), Brussels, Belgium (Belgium)

    2007-06-15

    This presentation mainly talks about the global importance of the PV industry, not only in the environmental sphere but also in the economic sphere. It is firstly given the major information of the European Photovoltaic Industry Association (EPIA), where there can be found the lists of those full member countries that work as: components manufacturers, consulting, and associate members. Then, it is given a briefly explanation about the Alliance for Rural Electrification (ARE), and the reasons why the -PV systems- are almost the panacea to both the energy and the environmental issue. In addition, it is given the most relevant information about how to implement this system in those regions that have not yet implemented it. Besides, there are explained some of the benefits that this system has. It is shortly explained how this system is working in German and it is also shown a comparison chart about the photovoltaic feed-in tariffs. There are shown some graphics and charts having information related to the global markets and the global installations of PV systems and other issues related to them. [Spanish] Esta presentacion habla principalmente acerca de la importancia que hoy en dia tiene la industria fotovoltaica alrededor del mundo, esto no solo ocurre en el ambito ambiental sino tambien en el economico. En la primer parte se muestra la informacion mas importante acerca de la Asociacion Europea de la Industria Fotovoltaica (EPIA por sus siglas en ingles), en donde se encuentran las listas de los paises que son miembros permanentes trabajando como: fabricantes de componentes, asesores y miembros asociados. Enseguida, se da, de manera escueta, una explicacion acerca de la ARE, asi como las razones por las que los sistemas fotovoltaicos son casi la panacea tanto para los problemas ambientales como para los energeticos. Ademas, se explica la informacion mas relevante acerca de como implementar este sistema en aquellas partes del mundo que todavia no lo han realizado

  5. Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and Adaptive Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Reza Sirjani

    2018-03-01

    Full Text Available Solar energy is a source of free, clean energy which avoids the destructive effects on the environment that have long been caused by power generation. Solar energy technology rivals fossil fuels, and its development has increased recently. Photovoltaic (PV solar farms can only produce active power during the day, while at night, they are completely idle. At the same time, though, active power should be supported by reactive power. Reactive power compensation in power systems improves power quality and stability. The use during the night of a PV solar farm inverter as a static synchronous compensator (or PV-STATCOM device has recently been proposed which can improve system performance and increase the utility of a PV solar farm. In this paper, a method for optimal PV-STATCOM placement and sizing is proposed using empirical data. Considering the objectives of power loss and cost minimization as well as voltage improvement, two sub-problems of placement and sizing, respectively, are solved by a power loss index and adaptive particle swarm optimization (APSO. Test results show that APSO not only performs better in finding optimal solutions but also converges faster compared with bee colony optimization (BCO and lightening search algorithm (LSA. Installation of a PV solar farm, STATCOM, and PV-STATCOM in a system are each evaluated in terms of efficiency and cost.

  6. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  7. System modelling and energy management for grid connected PV systems associated with storage

    OpenAIRE

    Riffonneau , Yann; DELAILLE , Arnaud; Barruel , Franck; Bacha , Seddik

    2008-01-01

    International audience; This paper presents the modelling and energy management of a grid connected PV system associatedwith storage. Within the economic, energetic and environmental context, objective of the system is to ensure loadssupply at the least cost by optimising the use of solar power. Therefore, due to the complicated operating patterns, anenergy management system which decides on energy flow for any moment is necessary. First, we present the systemstudied. Based on an AC bus typol...

  8. Kauai Island Utility Co-op (KIUC) PV integration study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  9. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  10. Rooftop PV system. Final technical progress report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  11. Research and development of system to utilize photovoltaic energy. Study on large-scale PV power supply system; Taiyoko hatsuden riyo system no kenkyu kaihatsu. Taiyo energy kyokyu system no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on large-scale PV power supply systems in fiscal 1994. (1) On optimization of large-scale systems, the conceptual design of the model system was carried out which supposes a large-scale integrated PV power generation system in desert area. As a result, a pair of 250kW generation system was designed as minimum one consisting power unit. Its frame and construction method were designed considering weather conditions in the inland of China. (2) On optimization of large-scale transmission systems, as large-scale power transmission systems for PV power generation, the following were studied: AC aerial transmission, DC aerial transmission, superconducting transmission, hydrogen gas pipeline, and LH2 tanker transport. (3) On the influence of large-scale systems, it was estimated that emission control is expected by substituting PV power generation for coal fired power generation, the negative influence on natural environment cannot be supposed, and the favorable economic effect is expected as influence on social environment. 4 tabs.

  12. Performance evaluation of a 2-mode PV grid connected system in Thailand -- Case study

    Energy Technology Data Exchange (ETDEWEB)

    Jivacate, C.; Mongconvorawan, S.; Sinratanapukdee, E.; Limsawatt, W. [Electricity Generating Authority of Thailand, Nontha Buri (Thailand)

    1994-12-31

    A PV grid connected system with small battery bank has been set up in a rural district, North Thailand in order to demonstrate a 2-mode operation concept. The objective is to gain experience on the PV grid connected concept without battery storage. However, due to the evening peak demand and a rather weak distribution grid which is typical in rural areas, small battery bank is still required to enable the maximum energy transfer to grid for the time being before moving fully to the no battery mode. The analyzed data seems to indicate possible performance improvement by re-arranging the number of PV modules and battery in the string.

  13. A modified P&O MPPT algorithm for single-phase PV systems based on deadbeat control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    A modified perturb and observe (P&O) algorithm is presented to improve maximum power point tracking (MPPT) performance of photovoltaic (PV) systems. This modified algorithm is applied to a single-phase PV system based on deadbeat control in order to test the tracking accuracy and its impact...... on the reliability of the whole system. Both simulations and experimental results show that the proposed algorithm offers a fast response as well as smaller steady-state oscillations even under low irradiance condition compared with classical methods....

  14. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  15. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    OpenAIRE

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance...

  16. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  17. PV experience curves for the Netherlands

    International Nuclear Information System (INIS)

    Gerwig, R.

    2005-01-01

    Experience curves are one of several tools used by policy makers to take a look at market development. Numerous curves have been constructed for PV but none specific to the Netherlands. The objective of this report is to take a look at the price development of grid-connected PV systems in the Netherlands using the experience curve theory. After a literature and internet search and attempts to acquire information from PV companies information on 51% of the totally installed capacity was found. Curves for the period 1991-2001 were constructed based on system price, BOS (balance-of-system) price and inverter price. The progress ratio of the locally learning BOS was similar to the globally learning module market. This indicates that the pace of development of the Dutch PV market is similar to the globally followed pace. Improvement of the detail of the data might help to get a better idea of which BOS components have declined most. The similar progress ratio also shows the importance of investing both in module and system research as is the case in the Netherlands

  18. Low concentrator PV optics optimization

    Science.gov (United States)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  19. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    . The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV......The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system...... systems is controlled by an extra frequency restoring controller resided in the tertiary control level. The frequency steady-state error is eliminated through regulating and rebalancing the power flow between the hydropower and the PV system. The proposed strategy has verified through simulations...

  20. Design and Implementation of an Innovative Residential PV System

    Science.gov (United States)

    Najm, Elie Michel

    This work focuses on the design and implementation of an innovative residential PV system. In chapter one, after an introduction related to the rapid growth of solar systems' installations, the most commonly used state of the art solar power electronics' configurations are discussed, which leads to introducing the proposed DC/DC parallel configuration. The advantages and disadvantages of each of the power electronics' configurations are deliberated. The scope of work in the power electronics is defined in this chapter to be related to the panel side DC/DC converter. System integration and mechanical proposals are also within the scope of work and are discussed in later chapters. Operation principle of a novel low cost PV converter is proposed in chapter 2. The proposal is based on an innovative, simplified analog implementation of a master/slave methodology resulting in an efficient, soft-switched interleaved variable frequency flybacks, operating in the boundary conduction mode (BCM). The scheme concept and circuit configuration, operation principle and theoretical waveforms, design equations, and design considerations are presented. Furthermore, design examples are also given, illustrating the significance of the newly derived frequency equation for flybacks operating in BCM. In chapters 3, 4, and 5, the design implementation and optimization of the novel DC/DC converter illustrated in chapter 2 are discussed. In chapter 3, a detailed variable frequency BCM flyback design model leading to optimizing the component selections and transformer design, detailed in chapter 4, is presented. Furthermore, in chapter 4, the method enabling the use of lower voltage rating switching devices is also discussed. In chapter 5, circuitry related to Start-UP, drive for the main switching devices, zero-voltage-switching (ZVS) as well as turn OFF soft switching and interleaving control are fully detailed. The experimental results of the proposed DC/DC converter are presented in

  1. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  2. Design optimization of transformerless grid-connected PV inverters including reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Of the Electricity (LCOE) generated during the PV system lifetime period is minimized. The LCOE is calculated also considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating that compared...... to the non-optimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless Photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal values and types of the PV inverter components are calculated such that the PV inverter Levelized Cost...

  3. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating...... that compared to the nonoptimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated...

  4. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  5. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  6. LonWorks as Fieldbus for PV-Installations; LonWorks als Feldbus fuer PV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Ch. von

    2003-07-01

    The growing market for photovoltaics increasingly requires suitable quality controls covering plant operators, planners and installers, as well as the electric utilities. Additionally, the interest of the general public in the behaviour of photovoltaic (PV) plants is growing. This includes information from everyday practice. Alongside data retrieval, other themes such as the operative management of the unit and energy management become increasingly important for grid-connected PV systems. Todays measuring systems are not compatible with each other. Data communication between different PV plants with computer-aided analysis- and visualisation programmes is very complicated. LonWorks was introduced by Motorola and Toshiba in 1991. Today it leads the world market for field bus systems. With plug and play, components by several manufacturers can easily be incorporated into a LonWorks network. Today more than 3,500 companies use LonWorks technology. The goal of this project is to introduce the very popular LonWorks technology as a new standard for PV applications. The first objective was to develop a LonWorks interface for our Convert inverters and to connect them into a small network. In a second step we installed a LonWorks system at the 260 kW{sub p} PV plant 'Felsenau' in Berne, Switzerland. All 68 inverters are controlled over power line with LonWorks. The on-site PC acts as LonWorks DataServer and making remote information monitoring and data gathering possible. As soon as a functional error occurs, an alarm will be transmitted via modem to the SMSC (Short Message Service Centre). After two years of operation we can say that all expectations were fulfilled by our new system. Knowledge gained from this project has shown that LonWorks has lived up its considerable promise and can be regarded as a high-quality piece of technology. Integration into an overall system is technically very easy. To do this, however, relatively expensive software solutions have

  7. Harmonic Injection-Based Power Fluctuation Control of Three-Phase PV Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Nian-Cheng Zhou

    2015-02-01

    Full Text Available Unbalanced voltage will inevitably cause power and DC voltage fluctuations in a three-phase PV system. The deterioration of power quality will do great harm to the PV panels and the loads, so it is necessary to suppress the power fluctuations. This paper further explores the coefficients control strategy of PV converters under unbalanced voltage conditions, aiming to suppress power fluctuations by controlling the injection of some specific orders of current harmonics into the grid. In order to achieve this, the current reference of the PV inverter has been changed by bringing in two control coefficients, and the expression of each order of the current harmonics has been deduced. Based on the standards of PV systems, the regions from which the coefficients can be selected are determined. Then, by tuning these coefficients in the feasible regions, the output parameters (power fluctuation, current THD and odd harmonics can be controlled precisely. The model of this method is built and simulated in PSCAD/EMTDC, and as a result, it is shown that the power fluctuations can be restricted according to different power quality requirements.

  8. Sub-synchronous resonance damping using high penetration PV plant

    Science.gov (United States)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  9. Evaluation of cooperation WPP and PV connected through the shared transformer to the network 22kV

    Directory of Open Access Journals (Sweden)

    Tomas Sumbera

    2012-01-01

    Full Text Available The article deals with evaluation the cooperation possibility of wind and solar power plants connected through the common transformator to the 22kV network. Cooperation evaluation is, based on measured data, for wind power plant about installed capacity 2MW and for solar power plant about installed capacity 1,1MWp. In the next part of this article there is the analysis of suitable localities for construction of „hybrid system (WPP+PV“ in the Czech Republic. The last part of the article deals with analysis of active power fluctuation of individuals electric sources compared with system WPP+PV and with evaluation the effects after system connection WPP+PV to the 22kV network.

  10. The PV market - Past, present, and future

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1900's. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market, however, is highly dependent on a number of market factors such as the cost of conventional energy, the cost of PV systems, utility acceptance of PV, and regulatory controls. Government and institutional regulations, environmental issues, OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer, stand-alone, and utility markets. PV has unique attributes which make it a desirable source of energy in specific applications. It is a renewable source of energy, non-polluting, very reliable, predictable, low maintenance, modular, and has a very low operating cost. The energy source (sunlight) is distributed around the globe. Its limitations are high initial cost, no inherent energy storage, and low energy density

  11. Potential and cost-effectiveness of off-grid PV systems in Indonesia - An evaluation on a provincial level

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study we estimate the potential of off-grid PV systems in Indonesia at a provincial level as a follow-up of a study on the potential of grid-connected PV systems in Indonesia which we executed in 2012 [1]. For this study we use an adapted methodology leading to cumulative numbers for the

  12. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  13. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  14. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  15. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Warner, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  16. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  17. Effect of wind speed and solar irradiation on the optimization of a PV-Wind-Battery system to supply a telecommunications station

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Lujano, Juan; Zubi, Ghassan [Zaragoza Univ. (Spain). Electrical Engineerign Dept.

    2010-07-01

    This paper shows the optimization of a PV-Wind hybrid system with batteries storage to supply the electrical power to a small telecommunications station. The load demanded by the station is 100 W continuously. We have considered 6 different wind speed profiles, from 2 m/s average speed (low wind speed in many places in Spain) to 8 m/s average (very high wind speed, in few places in Spain) and 3 different irradiation profiles, from the lowest average daily irradiation in Spain, about 2.5 kWh/m{sup 2}/day, to the highest one in Spain, about 5 kWh/m{sup 2}/day. Therefore we have considered 6 x 3 = 18 combinations of wind speed and irradiation profiles. For each combination of wind speed and irradiation profiles, we have optimized the PV-Wind-Battery system to supply the power demand, considering some different PV panels, wind turbines and batteries. We have also considered in the optimization non-hybrid systems (PV-Battery systems and Wind-Battery systems). The simulation of the system performance has been done hourly. The optimal system for each combination of wind speed and irradiation is the one which can supply the whole demand of the telecommunications station with the lowest Net Present Cost of the system. Simulation and optimization has been done using HOGA (Hybrid Optimization by Genetic Algorithms) software, developed by some of the authors. The results show that, with actual prices of PV panels and wind turbines, in 13 of the 18 combinations of wind speed and irradiation profiles the optimal system is a hybrid system (it includes PV panels, wind turbine and batteries). In the other 5 combinations (the ones with lowest wind speed and/or highest irradiation), the optimal system is PV-Battery, i.e., without wind turbine. We conclude that, in most of the places in Spain, the optimal system to supply the demand of a communications station (with continous demand profile) is a hybrid system (PV-Wind-Batteries) instead of a PV-Batteries system or a Wind

  18. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  19. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  20. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  1. Impact of fuel-dependent electricity retail charges on the value of net-metered PV applications in vertically integrated systems

    International Nuclear Information System (INIS)

    Nikolaidis, Alexandros I.; Milidonis, Andreas; Charalambous, Charalambos A.

    2015-01-01

    Retail electricity charges inevitably influence the financial rationale of using net-metered photovoltaic (PV) applications since their structure as well as their level may vary significantly over the life-cycle of a customer-sited PV generation system. This subsequently introduces a further uncertainty for a ratepayer considering a net-metered PV investment. To thoroughly comprehend this uncertainty, the paper employs a top-down approach – in vertically integrated environments – to model the volatility of partially hedged electricity charges and its subsequent impact on the value of bill savings from net-metered PV systems. Besides the utility's pricing strategy and rate structures, particular emphasis is given in modeling the fossil fuel mix component that introduces a significant source of uncertainty on electricity charges and thus on the value of bill savings of net-metered, customer-sited, PV applications. - Highlights: • A top-down approach of developing traditional electricity charges is provided. • The combined effect of pricing strategies, rate structures and fuels is examined. • Fossil fuel prices can substantially affect the net metering compensation. • A financial risk assessment for net-metered PV systems is performed

  2. 60 kW{sub p} PV-system school centre Spalterhals Barsinghausen. Synergies in energetical retrofit of school building; 60-kW{sub p}-PV-Anlage Schulzentrum Spalterhals Barsinghausen. Synergien bei der energetischen Sanierung eines Schulgebaeudes

    Energy Technology Data Exchange (ETDEWEB)

    Blumenscheit, R.; Hettwer, C. [Stadt Barsinghausen (Germany); Diestelmeier, C.; Wiegmann, A. [Raumplan, Hannover (Germany); Decker, B.; Hennig, C.; Mack, M. [Solar Engineering Decker and Mack GmbH, Hannover (Germany)

    2004-07-01

    The completely building-integrated PV plant with a nominal power of 60.54 kW{sub p} uses synergies with constructional and energetical retrofit of a school building. The PV plant is operated by the town of Barsinghausen (30 km southwest of Hannover). The federal state of Lower Saxony gave a grant of 36,61%, the Hannover region of 12,39% to the total investment of 824.190 Euro (incl. building construction). The PV plant is divided into five units. PV modules serve as the curtain wall of heat-insulated building core (blue PV cold facade: 12.67 kW{sub p}, grey PV breastwork: 8,38 kW{sub p}). Semitransparent PV modules substitute the insulating glass shed lights of a music room (4,28 kW{sub p}) and the glass roofing of an inner court (12,17 kW{sub p} - all modules: Solarnova) giving an optimum of sun-shading and daylighting. Thin-film PV modules on plastic foils (23,04 kW{sub p} - Alwitra EVALON Solar, Unisolar amorphous Si cells) are tested as flat roof standard retrofit. The PV system has 29 string inverters mostly of SMA Sunny Boy family mounted near to the PV modules in operational rooms or in crawling cellars. The PV operator gets a reimbursement of 0,481 Euro per kWh PV energy according to EEG. The PV system is monitored in detail within 'Solaroffensive' of Lower Saxony. Visualization tableaus inform the public about actual irradiance, actual power and annual energy. (orig.) [German] Schulgebaeude und insbesondere grosse Schulzentren aus den 70er Jahren haben geeignete Dachflaechen zur Errichtung von grossen PV-Anlagen (typisch >1.000 m{sup 2}). Zugleich sind Schulen ein idealer Ort, um vor breitem Publikum (Schueler, Lehrer, Eltern) Planung, Installation und Betrieb einer PV-Anlage zu demonstrieren. In Barsinghausen, am Fusse des Deisters etwa 30 km suedwestlich von Hannover, entstand zwischen August 2001 und Maerz 2003 eine innovative PV-Modellanlage am Schulzentrum 'Am Spalterhals', die verschiedene Arten der PV-Gebaeudeintegration erprobt

  3. Implementation of a PV lighting system based on DC-DC converter with intelligent controlled approach

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.-C.; Chuang, D.-J. [National Yunlin Univ. of Science and Technology, Douliou, Yunlin, Taiwan (China). Dept. of Electrical Engineering; Chuang, C.-W. [National Yunlin Univ. of Science and Technology, Douliou, Yunlin, Taiwan (China). Graduate School of Engineering Science and Technology

    2007-07-01

    Photovoltaic (PV) lighting systems for municipalities represent one of the largest cost effective markets for PVs. The installation cost of just one or two utility power poles can justify the initial cost of a PV lighting system. However, many previous PV lighting systems have experienced a number of component failures including premature charge controller, battery, and ballast illumination failures. This paper presented the design and implementation of a digital high performance photovoltaic lighting system based on a microcontroller. A high brightness light-emitting diode (HBLED), was used as it can work at very high efficiency with a specially designed lighting power module. The proposed system consisted of a photovoltaic module, a light emitting diode (LED) lighting module, a bi-directional buck-boost converter and a battery. The paper analysed battery charging methods and proposed a control strategy and hardware implementation. The dimming control methods for LED were also discussed and compared. The experimental results were also provided to verify the theoretical analysis and design procedure of a digital controlled photovoltaic lighting system. It was concluded that the experimental results verified the performance of the proposed photovoltaic lighting system. 8 refs., 1 tab., 18 figs.

  4. OnToPV - a virtual guidance through the PV-plant ''Solardach New Munich Trade Fair''; OnToPV - eine virtuelle Fuehrung druch die PV-Anlage ''Solardach Neue Messe Muenchen''

    Energy Technology Data Exchange (ETDEWEB)

    Stich, C.; Becker, G.; Zehner, M. [Fachhochschule Muenchen (Germany). Fachbereich Elektrotechnik; Giesler, B. [Shell Solar GmbH, Muenchen (Germany); Weber, W.; Flade, F. [Solarenergiefoerderverein Bayern e.V., Muenchen (Germany)

    2003-07-01

    OnToPV is the project of an online tour guide through the PV-plant of the new Munich trade fair. The first focs was to provide an interactive circuit of a PV-plant. Within a virtual tour different areas of the plant should be made accessible over the internet. For this purpose a three-dimensional, multimedia guidance was developed for the PV-plant of the new Munich trade fair with informative diagrams, *.pdf-files and retrievable video-files. In such a way interested internet-users could experience with minimum system requirements, local- and time-independently the PV-plant in its structure and components and could receive different background informations in addition. From the view of the plant operators such an internet project serves on the one hand as an additional source of information where questions could be referred to and on the other hand as sort of advertisement for the technology and the PV-system. In addition the attractiveness of the internet appearance of the plant operator rises and the public awareness of such projects could increase. Seen from the user perspective - such an internet project gives private or business users the possibility to inform themselves interactively, purposefully and with the possibility to move through the plant on their own. Users could utilize the guidance through the plant without overcoming far geographical distances, saving time and money. Perhaps this source of information helps awaking a larger consciousness for renewable energies. The result OnToPV showed the various possibilities offered by projects of this kind in the internet. Ideas of possible extensions as for example the integration of current PV-plant operational data or of a virtual learning platform illustrate the perspectives of the project. Virtual guidance of this kind for various types of power plants are conceivable. (orig.)

  5. Delta Power Control Strategy for Multistring Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    , is required for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control (DPC) for grid-connected PV systems is presented, where the multistring PV inverter configuration is adopted. This control strategy is a combination of maximum power point...... tracking (MPPT) and constant power generation (CPG) modes. In this control scheme, one PV string operating in the MPPT mode estimates the available power, whereas the other PV strings regulate the total PV power by the CPG control strategy in such a way that the delta power constraint for the entire PV...... system is achieved. Simulations and experiments have been performed on a 3-kW single-phase grid-connected PV system. The results have confirmed the effectiveness of the proposed DPC strategy, where the power reserve according to the delta power constraint is achieved under several operating conditions....

  6. Analysis on PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive by 2030 in Japan

    International Nuclear Information System (INIS)

    Endo, E.; Ichinohe, M.

    2004-01-01

    The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive against other energy technologies and make the target for PV capacity achievable by 2030 in Japan under expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. According to the results of analysis, under 6000 JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120 JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost need not in 2030, if we can reduce it less than 170 JPY/W. The total subsidy meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue of the assumed carbon tax can afford enough the annual total subsidy. This means if photovoltaics can attain the PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently. (authors)

  7. Performance Evaluation of Photovoltaic Solar System with Different Cooling Methods and a Bi-Reflector PV System (BRPVS: An Experimental Study and Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Khan

    2017-06-01

    Full Text Available Reducing the price of solar photovoltaic (PV systems has been a constant challenge. Despite recent advances, solar PV systems are still more costly than conventional energy resources. For the first time, this study examines the effectiveness of three different structures/materials: (i silvered glass plane mirror; (ii convex spherical mirrors; and (iii aluminum (Al foil as reflector. Comparative analysis of four different cooling techniques, i.e., water sprinkling system, passive heat sink method, active air fan method, and closed loop method, for enhancement of output power was performed. A novel Bi reflector solar PV system (BRPVS was suggested to control the working of the reflectors. The Al foil enhanced the power output compared to the others. In addition, the effect of using a reflector on the temperature of a solar PV system was studied. High operating temperatures resulted in a decrease in the maximum output power under the same solar radiation conditions. The combined enhancement of the output power by both Al foil BRPVS system and cooling system was almost 22.75–38.55%. An optimal control algorithm to use cooling and BRPVS in an efficient manner is described.

  8. Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Wang, Yuewu

    2018-01-01

    -based multiple microgrid clusters. A detailed small-signal model for PV-based microgrid clusters considering local adaptive dynamic droop control mechanism of the voltage-source PV system is developed. The complete dynamic model is then used to access and compare the dynamic characteristics of the single...... microgrid and interconnected microgrids. In order to enhance system stability of the PV microgrid clusters, a tie-line flow and stabilization strategy is proposed to suppress the introduced interarea and local oscillations. Robustly selecting of the key control parameters is transformed to a multiobjective......As the penetration of PV generation increases, there is a growing operational demand on PV systems to participate in microgrid frequency regulation. It is expected that future distribution systems will consist of multiple microgrid clusters. However, interconnecting PV microgrids may lead to system...

  9. Long-term field test of solar PV power generation using one-axis 3-position sun tracker

    KAUST Repository

    Huang, B.J.

    2011-09-01

    The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand-alone solar-powered LED lighting systems. The field test in the particular days shows that the 1A-3P tracking PV can generate 35.8% more electricity than the fixed PV in a partly-cloudy weather with daily-total solar irradiation HT=11.7MJ/m2day, or 35.6% in clear weather with HT=18.5MJ/m2day. This indicates that the present 1A-3P tracking PV can perform very close to a dual-axis continuous tracking PV (Kacira et al., 2004). The long-term outdoor test results have shown that the increase of daily power generation of 1A-3P tracking PV increases with increasing daily-total solar irradiation. The increase of monthly-total power generation for 1A-3P sun tracking PV is between 18.5-28.0%. The total power generation increase in the test period from March 1, 2010 to March 31, 2011, is 23.6% in Taipei (an area of low solar energy resource). The long-term performance of the present 1X-3P tracking PV is shown very close to the 1-axis continuous tracking PV in Taiwan (Chang, 2009). If the 1A-3P tracking PV is used in the area of high solar energy resource with yearly-average HT>17MJ/m2day, the increase of total long-term power generation with respect to fixed PV will be higher than 37.5%. This is very close to that of dual-axis continuous tracking PV. The 1A-3P tracker can be easily mounted on the wall of a building. The cost of the whole tracker is about the same as the regular mounting cost of a conventional rooftop PV system. This means that there is no extra cost for 1A-3P PV mounted on buildings. The 1A-3P PV is quite suitable for building-integrated applications. © 2011 Elsevier Ltd.

  10. A Practical Irradiance Model for Bifacial PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.

  11. Control and Modulation Techniques for a Centralized PV Generation System Grid Connected via an Interleaved Inverter

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2016-09-01

    Full Text Available In the context of grid connected photovoitaic (PV generation systems, there are two paramount aspects regarding the Maximum Power Point Tracking (MPPT of the photovoltaic units and the continuity of the service. The most diffused MPPT algorithms are based on either perturb and observe, or on an incremental conductance approach and need both PV current and voltage measurements. Several topology reconfigurable converters are also associated with the PV plants, guaranteeing fault-tolerant features. The generation continuity can also be assured by interleaved inverters, which keep the system operating at reduced maximum power in case of failure. In this paper, an evolution of a hysteresis based MPPT algorithm is presented, based on the measurement of only one voltage, together with a novel space vector modulation suitable for a two-channel three-phase grid connected interleaved inverter. The proposed MMPT algorithm and modulation technique are tested by means of several numerical analyses on a PV generation system of about 200 kW maximum power. The results testify the validity of the proposed strategies, showing good performance, even during a fault occurrence and in the presence of deep shading conditions.

  12. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    Science.gov (United States)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  13. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  14. Key technical and non-technical challenges for mass deployment of photovoltaic solar energy (PV)

    International Nuclear Information System (INIS)

    Sinke, W.C.

    2001-12-01

    Photovoltaic solar energy (PV) is used for direct conversion of sunlight into electricity. It is not to be confused with low-temperature thermal solar energy (e.g. solar domestic hot water systems) and with solar electricity production using a conventional high-temperature steam cycle (using parabolic troughs or 'power towers'). Important features of PV are: inherently renewable; sustainable if well designed, manufactured, used, and disposed; no moving parts, quiet; reliable if well designed and engineered; modular (from milliwatts to multi-megawatts); suitable for a wide variety of applications (stand-alone and grid-connected); large potential (regionally and globally); intermittent; capacity factor (ratio of average system power to installed (=peak) power) =0.08-0.24. PV is among the major renewable energy technologies in all well known energy scenarios, although a substantial role in % of the total energy production can only be achieved on the long term (typically 40-60 years years). Fortunately, long before that the PV market may be a rapidly growing, multi-billion euro business, providing enormous economic opportunities and many jobs

  15. Use of Super-Capacitor to Enhance Charging Performance of Stand-Alone Solar PV System

    KAUST Repository

    Huang, B. J.

    2011-01-01

    Introduction: The battery charging performance in a stand-alone solar PV system affects the PV system efficiency and the load operating time. The New Energy Center of National Taiwan University has been devoted to the development of a PWM charging technique to continue charging the lead-acid battery after the overcharge point to increase the battery storage capacity by more than 10%. The present study intends to use the super-capacitor to further increase the charge capacity before the overcharge point of the battery. The super-capacitor is connected in parallel to the lead-acid battery. This will reduce the overall charging impedance during the charge and increase the charging current, especially in sunny weather. A system dynamics model of the lead-acid battery and super-capacitor was derived and the control system simulation was carried out to predict the charging performance for various weathers. It shows that the overall battery impedance decreases and charging power increases with increasing solar radiation. An outdoor comparative test for two identical PV systems with and without supercapacitor was carried out. The use of super-capacitor is shown to be able to increase the lead-acid charging capacity by more than 25% at sunny weather and 10% in cloudy weather. © Springer-Verlag Berlin Heidelberg 2011.

  16. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  17. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    Directory of Open Access Journals (Sweden)

    Mya Su Kyi

    2015-08-01

    Full Text Available The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area falls 21-58-30 N Latitude and 96-5-0 E Longitude of Mandalay. The PV system sizing was made in such a way that it was capable of irrigation one acre of Asparagus plot with a daily water requirement of 25mday.

  18. Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; He, Ran; Jian, Jiamin

    2016-01-01

    Eliminating the leakage current is one of the most important issues for transformerless three phase photovoltaic (PV) systems. In this paper, the leakage current elimination of a three-phase four-leg PV inverter is investigated. With the common mode loop model established, the generation mechanism...... of the leakage current is clearly identified. Different typical carrier-based modulation methods and their corresponding common mode voltages are discussed. A new modulation strategy with Boolean logic function is proposed to achieve the constant common mode voltage for the leakage current reduction. Finally...

  19. A semi-distributed electric demand-side management system with PV generation for self-consumption enhancement

    International Nuclear Information System (INIS)

    Castillo-Cagigal, M.; Gutierrez, A.; Monasterio-Huelin, F.; Caamano-Martin, E.; Masa, D.; Jimenez-Leube, J.

    2011-01-01

    Highlights: → We have developed a DSM system with PV electricity and battery storage. → To implement the DSM system, we have developed a modular architecture. → Simulations and real experiments have been executed for different weather conditions. → The use of theses technologies increase the self-consumed energy. -- Abstract: This paper presents the operation of an Electrical Demand-Side Management (EDSM) system in a real solar house. The use of EDSM is one of the most important action lines to improve the grid electrical efficiency. The combination between the EDSM and the PV generation performs a new control level in the local electric behavior and allows new energy possibilities. The solar house used as test-bed for the EDSM system owns a PV generator, a lead-acid battery storage system and a grid connection. The electrical appliances are controllable from an embedded computer. The EDSM is implemented by a control system which schedules the tasks commanded by the user. By using the control system, we define the house energy policy and improve the energy behavior with regard to a selected energy criterion, self-consumption. The EDSM system favors self-consumption with regard to a standard user behavior and reduces the energy load from the grid.

  20. Feasibility Study of Grid Connected PV-Biomass Integrated Energy System in Egypt

    Science.gov (United States)

    Barakat, Shimaa; Samy, M. M.; Eteiba, Magdy B.; Wahba, Wael Ismael

    2016-10-01

    The aim of this paper is to present a feasibility study of a grid connected photovoltaic (PV) and biomass Integrated renewable energy (IRE) system providing electricity to rural areas in the Beni Suef governorate, Egypt. The system load of the village is analyzed through the environmental and economic aspects. The model has been designed to provide an optimal system configuration based on daily data for energy availability and demands. A case study area, Monshaet Taher village (29° 1' 17.0718"N, 30° 52' 17.04"E) is identified for economic feasibility in this paper. HOMER optimization model plan imputed from total daily load demand, 2,340 kWh/day for current energy consuming of 223 households with Annual Average Insolation Incident on a Horizontal Surface of 5.79 (kWh/m2/day) and average biomass supplying 25 tons / day. It is found that a grid connected PV-biomass IRE system is an effective way of emissions reduction and it does not increase the investment of the energy system.

  1. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun [Univ. of Texas, Austin, TX (United States)

    2016-08-15

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs. We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.

  2. Cooled solar PV panels for output energy efficiency optimisation

    International Nuclear Information System (INIS)

    Peng, Zhijun; Herfatmanesh, Mohammad R.; Liu, Yiming

    2017-01-01

    Highlights: • Effects of cooling on solar PV performance have been experimentally investigated. • As a solar panel is cooled down, the electric output can have significant increase. • A cooled solar PV system has been proposed for resident application. • Life cycle assessment suggests the cost payback time of cooled PV can be reduced. - Abstract: As working temperature plays a critical role in influencing solar PV’s electrical output and efficacy, it is necessary to examine possible way for maintaining the appropriate temperature for solar panels. This research is aiming to investigate practical effects of solar PV surface temperature on output performance, in particular efficiency. Experimental works were carried out under different radiation condition for exploring the variation of the output voltage, current, output power and efficiency. After that, the cooling test was conducted to find how much efficiency improvement can be achieved with the cooling condition. As test results show the efficiency of solar PV can have an increasing rate of 47% with the cooled condition, a cooling system is proposed for possible system setup of residential solar PV application. The system performance and life cycle assessment suggest that the annual PV electric output efficiencies can increase up to 35%, and the annual total system energy efficiency including electric output and hot water energy output can increase up to 107%. The cost payback time can be reduced to 12.1 years, compared to 15 years of the baseline of a similar system without cooling sub-system.

  3. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  4. Passive cooling of standalone flat PV module with cotton wick structures

    International Nuclear Information System (INIS)

    Chandrasekar, M.; Suresh, S.; Senthilkumar, T.; Ganesh karthikeyan, M.

    2013-01-01

    Highlights: • A simple passive cooling system is developed for standalone flat PV modules. • 30% Reduction in module temperature is observed with developed cooling system. • 15.61% Increase in output power of PV module is found with developed cooling system. • Module efficiency is increased by 1.4% with cooling arrangement. • Lower thermal degradation due to narrow range of temperature characteristics. - Abstract: In common, PV module converts only 4–17% of the incoming solar radiation into electricity. Thus more than 50% of the incident solar energy is converted as heat and the temperature of PV module is increased. The increase in module temperature in turn decreases the electrical yield and efficiency of the module with a permanent structural damage of the module due to prolonged period of thermal stress (also known as thermal degradation of the module). An effective way of improving efficiency and reducing the rate of thermal degradation of a PV module is to reduce the operating temperature of PV module. This can be achieved by cooling the PV module during operation. Hence in the present work, a simple passive cooling system with cotton wick structures is developed for standalone flat PV modules. The thermal and electrical performance of flat PV module with cooling system consisting of cotton wick structures in combination with water, Al 2 O 3 /water nanofluid and CuO/water nanofluid are investigated experimentally. The experimental results are also compared with the thermal and electrical performance of flat PV module without cooling system

  5. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  6. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  7. A Novel Generation Method for the PV Power Time Series Combining the Decomposition Technique and Markov Chain Theory

    DEFF Research Database (Denmark)

    Xu, Shenzhi; Ai, Xiaomeng; Fang, Jiakun

    2017-01-01

    Photovoltaic (PV) power generation has made considerable developments in recent years. But its intermittent and volatility of its output has seriously affected the security operation of the power system. In order to better understand the PV generation and provide sufficient data support...... for analysis the impacts, a novel generation method for PV power time series combining decomposition technique and Markov chain theory is presented in this paper. It digs important factors from historical data from existing PV plants and then reproduce new data with similar patterns. In detail, the proposed...... method first decomposes the PV power time series into ideal output curve, amplitude parameter series and random fluctuating component three parts. Then generating daily ideal output curve by the extraction of typical daily data, amplitude parameter series based on the Markov chain Monte Carlo (MCMC...

  8. Topology and Control of Transformerless High Voltage Grid-connected PV System Based on Cascade Step-up Structure

    DEFF Research Database (Denmark)

    Yang, Zilong; Wang, Zhe; Zhang, Ying

    2017-01-01

    -up structure, instead of applying line-frequency step-up transformer, is proposed to connect PV directly to the 10 kV medium voltage grid. This series-connected step-up PV system integrates with multiple functions, including separated maximum power point tracking (MPPT), centralized energy storage, power...

  9. Effect of tariffs on the performance and economic benefits of PV-coupled battery systems

    International Nuclear Information System (INIS)

    Parra, David; Patel, Martin K.

    2016-01-01

    Highlights: • Pb-acid and Li-ion batteries are compared under three different retail tariffs. • The battery ageing, i.e. capacity and discharge capability reduction is simulated. • A dynamic tariff (1-h resolution) increases the battery discharge value up to 28%. • A Li-ion cost of 375 CHF/kW h is required for Geneva for PV energy time-shift. • This requirement becomes 500 CHF/kW h if demand peak-shaving is also performed. - Abstract: The use of batteries in combination with PV systems in single homes is expected to become a widely applied energy storage solution. Since PV system cost is decreasing and the electricity market is constantly evolving there is marked interest in understanding the performance and economic benefits of adding battery systems to PV generation under different retail tariffs. The performance of lead-acid (PbA) and lithium-ion (Li-ion) battery systems in combination with PV generation for a single home in Switzerland is studied using a time-dependant analysis. Firstly, the economic benefits of the two battery types are analysed for three different types of tariffs, i.e. a dynamic tariff based on the wholesale market (one price per hour for every day of the year), a flat rate and time-of-use tariff with two periods. Secondly, the reduction of battery capacity and annual discharge throughout the battery lifetime are simulated for PbA and Li-ion batteries. It was found that despite the levelised value of battery systems reaches up to 28% higher values with the dynamic tariff compared to the flat rate tariff, the levelised cost increases by 94% for the dynamic tariff, resulting in lower profitability. The main reason for this is the reduction of equivalent full cycles performed with by battery systems with the dynamic tariff. Economic benefits also depend on the regulatory context and Li-ion battery systems were able to achieve internal rate of return (IRR) up to 0.8% and 4.3% in the region of Jura (Switzerland) and Germany due to

  10. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  11. Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-06-01

    Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

  12. Accelerating residential PV expansion: supply analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Payne, Adam; Williams, Robert H.; Duke, Richard

    2001-01-01

    Photovoltaic (PV) technology is now sufficiently advanced that market support mechanisms such as net metering plus a renewable portfolio standard (RPS) could induce rapid PV market growth in grid-connected applications. With such support mechanisms, markets would be sufficiently large that manufacturers could profitably build and operate 100 MW p /yr PV module factories, and electricity costs for residential rooftop PV systems would compare favorably with residential electricity prices in certain areas (e.g., California and the greater New York region in the US). This prospect is illustrated by economic and market analyses for one promising technology (amorphous silicon thin-film PV) from the perspectives of both module manufacturers and buyers of new homes with rooftop PV systems. With public policies that reflect the distributed and environmental benefits offered by PV-and that can sustain domestic PV market demand growth at three times the historical growth rate for a period of the order of two decades - PV could provide 3% of total US electricity supply by 2025. (Author)

  13. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  14. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  15. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  16. PV supply chain growing pains

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, A. [Matrix Energy Inc., Montreal, PQ (Canada)

    2010-11-15

    This article discussed issues involving the supply chain for photovoltaic (PV) equipment that is emerging in Ontario as a result of the Feed-in-Tariff (FIT) program that was launched in late 2009. The rapidly developing PV supply chain may not be taking a sustainable path. The domestic-content requirement is making manufacturers outlay capital to set up manufacturing in Ontario without reliable market data. Only a small number of dealer/installers have any meaningful experience designing and installing grid-tie PV. Until recently, wholesale distributors designed and supplied most grid-tie PV systems in Canada, and solar dealers/installers or electricians or electrical contractors did the installation. Instead of selling directly to dealer/installers, solar manufacturers should develop strong relationships with wholesalers, who have system design experience and product training. This would allow manufacturers to focus on their core strength, reach more customers, and keep lower inventory levels. Wholesale distributors in turn provide dealer/installers with expertise in product and system design, training from a range of manufacturers, marketing and logistics support, and immediate access to inventory. Manufacturers generally lack appropriate accounting, engineering, marketing, and logistics services to deal with a multitude of active accounts, and they are not structured to work with architects and engineers to do complete system design. Partnering with wholesale distributors allows manufacturers to take on the residential and small-scale commercial sectors by building brand awareness and increasing market share and sales across Canada. 2 figs.

  17. PV supply chain growing pains

    International Nuclear Information System (INIS)

    Wilkins, A.

    2010-01-01

    This article discussed issues involving the supply chain for photovoltaic (PV) equipment that is emerging in Ontario as a result of the Feed-in-Tariff (FIT) program that was launched in late 2009. The rapidly developing PV supply chain may not be taking a sustainable path. The domestic-content requirement is making manufacturers outlay capital to set up manufacturing in Ontario without reliable market data. Only a small number of dealer/installers have any meaningful experience designing and installing grid-tie PV. Until recently, wholesale distributors designed and supplied most grid-tie PV systems in Canada, and solar dealers/installers or electricians or electrical contractors did the installation. Instead of selling directly to dealer/installers, solar manufacturers should develop strong relationships with wholesalers, who have system design experience and product training. This would allow manufacturers to focus on their core strength, reach more customers, and keep lower inventory levels. Wholesale distributors in turn provide dealer/installers with expertise in product and system design, training from a range of manufacturers, marketing and logistics support, and immediate access to inventory. Manufacturers generally lack appropriate accounting, engineering, marketing, and logistics services to deal with a multitude of active accounts, and they are not structured to work with architects and engineers to do complete system design. Partnering with wholesale distributors allows manufacturers to take on the residential and small-scale commercial sectors by building brand awareness and increasing market share and sales across Canada. 2 figs.

  18. Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Xiaodan Guo

    2016-05-01

    Full Text Available Recently, China has brought out several air-pollution control policies, which indicate the prominent position that PV power hold in improving atmosphere environment. Under this policy environment, the development of China’s PV power will be greatly affected. Firstly, after analyzing the influencing path of air-pollution control policies on PV power, this paper built a system dynamics model, which can be used as a platform for predicting China’s PV power development in every policy scenario during 2015–2025. Secondly, different model parameters are put into the SD model to simulate three scenarios of air-pollution control policies. Comparisons between the simulated results of different policy scenarios measure the air-pollution control policy’s impact on China’s PV power in the aspect of generation, installed capacity, power curtailment and so on. This paper points out the long-term development pattern of China’s PV power under latest incentive policies, and provides reference for the policymakers to increase the effect and efficiency of air-pollution control policies.

  19. Estimation of PV energy production based on satellite data

    Science.gov (United States)

    Mazurek, G.

    2015-09-01

    Photovoltaic (PV) technology is an attractive source of power for systems without connection to power grid. Because of seasonal variations of solar radiation, design of such a power system requires careful analysis in order to provide required reliability. In this paper we present results of three-year measurements of experimental PV system located in Poland and based on polycrystalline silicon module. Irradiation values calculated from results of ground measurements have been compared with data from solar radiation databases employ calculations from of satellite observations. Good convergence level of both data sources has been shown, especially during summer. When satellite data from the same time period is available, yearly and monthly production of PV energy can be calculated with 2% and 5% accuracy, respectively. However, monthly production during winter seems to be overestimated, especially in January. Results of this work may be helpful in forecasting performance of similar PV systems in Central Europe and allow to make more precise forecasts of PV system performance than based only on tables with long time averaged values.

  20. Interrogating protective space : shielding, nurturing and empowering Dutch solar PV

    NARCIS (Netherlands)

    Verhees, B.; Raven, R.P.J.M.; Veraart, F.C.A.; Smith, A.G.; Kern, F.

    2012-01-01

    This paper reviews the developments of solar photovoltaic technology in the Netherlands. Despite the recent boom in PV industries and deployment around the globe, the Dutch have until now not experienced major growth in the diffusion of PV electricity generation. But this is only part of the story.

  1. Delta Power Control Strategy for Multi-String Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increasing penetration level of grid-connected PV systems, more advanced active power control functionalities have been introduced in certain grid regulations. A delta power constraint, where a portion of the active power from the PV panels is reserved during operation, is required...... for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control for grid-connected PV systems is presented, where the residential/commercial multi-string PV inverter configuration is adopted. This control strategy is a combination of Maximum...... for the entire PV system is achieved. Simulations and experiments have been performed on a 3-kW single-phase grid-connected PV system. The results have confirmed the effectiveness of the delta power control strategy, where the power reserve according to the delta power constraint is achieved under several...

  2. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  3. Examination of optimal data acquisition for evaluation of PV systems; Taiyoko hatsuden system hyoka no tame no saiteki keisoku shuho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, H; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Otani, K; Tsuda, I [Electrotechnical Laboratory, Tsukuba (Japan)

    1996-10-27

    A 70 kW-class photovoltaic (PV) power generation system of the Tsukuba Research Cooperation Center, Agency of Industrial Science and Technology was evaluated using hourly measurement data. Hourly solar irradiation, mean PV module temperature, hourly array generated power, hourly PV system generated power were selected as the measurement items, to examine the validity of measurement method. Furthermore, based on these measurement data, the loss factors were estimated, which reduce the system efficiency. They included the losses due to the shadow effect, the deterioration of module efficiency with the raise of temperature, the mismatch of tracking control of the maximum power point, and the reduction of inverter efficiency with the input power phenomena. To estimate these loss factors from hourly measurement data, the system was evaluated by defining characteristic parameters. As a result, it was found that the main factors were the shadow effect and the mismatch loss, which reduce the mean annual output factor of the system to 65%. 3 refs., 6 figs., 1 tab.

  4. Projecting of PV facades in consideration of PV-specific operating conditions; Besonderheiten bei der Projektierung von Photovoltaik-Fassadenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Decker, B.; Grimmig, B.; Mencke, D. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany). Gruppe Photovoltaik-Systeme; Stellbogen, D. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Fachgebiet Photovoltaische Anlagentechnik

    1998-02-01

    PV facades can provide several additional functions such as weather protection, thermal insulation, daylighting or sun protection. On the other hand, specific operating conditions for PV facades must be taken into account when selecting components and designing the system. Depending on ventilation conditions, there is a large range of maximum module temperatures. South-oriented PV facades receive about 30% less yearly irradiation than an optimally inclined PV generator, hence reflection losses are approximately 4% higher. The maximum of yearly irradiation lies only in the 400-600 W/m{sup 2} range. Surrounding buildings and/or vegetation can impair performance of the PV-facades. For a south-oriented PV facade an annual yield in the range of 470-560 kwh/kW{sub p}.a has been prodicted which was verified by operating results of eight PV facades. (orig.) [Deutsch] Photovoltaik (PV) Fassaden ermoeglichen neben der Stromerzeugung zusaetzliche Funktionen wie Wetterschutz bzw. Waermedaemmung des Gebaeudes oder Tageslichtnutzung bzw. Sonnenschutz der Innenraeume. Allerdings muessen fassadenspezifische Betriebsbedingungen, bei der Komponentenauswahl und Systemauslegung beruecksichtigt werden. Unterschiedliche Hinterlueftungsbedingungen fuehren zu einer grossen Bandbreite der maximalen Modultemperatur. PV-Suedfassaden empfangen etwa 30% weniger Jahreseinstrahlung als ein optimal geneigter PV-Generator. Die Haelfte der jaehrlichen Einstrahlung trifft mit Einfallswinkeln groesser 50 auf die vertikal angeordneten Module wodurch die Reflexionsverluste um ca. 4% hoeher sind. Das Maximum der Jahreseinstrahlung liegt nur um 400-600 W/m{sup 2} und erreicht selten Werte ueber 800 W/m{sup 2}. Umliegende Gebaeude oder Vegetation koennen zu Teilabschattungen des Generators fuehren. Fuer eine vertikale PV-Suedfassade wird ein Jahresenergieertrag in Hoehe von 470-560 kWh/kW{sub p}.a prognostiziert, der anhand der Betriebsergebnisse von acht PV-Fassadenanlagen verifiziert werden konnte

  5. The Development of Monitoring and Control System of the Low PV/T Solar System

    OpenAIRE

    Okhorzina Alena; Bikbulatov Alexander; Yurchenko Alexey; Bernhard Norbert; Aldoshina Oksana

    2016-01-01

    The article presents an autonomous PV/T solar installation. Installing converts solar energy into electricity and heat. The description of its components and elements that enhance its effectiveness shows. The description of the control program and control of the installation is given. The control system provides for tracking the sun and cooling the photovoltaic module.

  6. Brushless DC motor drives supplied by PV power system based on Z-source inverter and FL-IC MPPT controller

    International Nuclear Information System (INIS)

    Mozaffari Niapour, S.A.KH.; Danyali, S.; Sharifian, M.B.B.; Feyzi, M.R.

    2011-01-01

    Highlights: → Employing the BLDC motor in water pumping systems. → Utilizing the ZSI as a single-stage power converter in the PV water pumping systems based on BLDC motor. → Improvement of the conventional IC MPPT method with the fuzzy logic control scheme to save more energy from the PV array. → Taking the advantages of the DTC drive of the BLDC motor. → Optimizing the water pumping system speed response characteristic by PSO. - Abstract: This paper discusses operation performance of a water pumping system consist of a brushless dc (BLDC) motor coupled a centrifugal pump and accompanying a Z-source inverter (ZSI) fed by a photovoltaic (PV) array, to be improved. Despite conventional double-stage power converters, this paper proposes utilizing a single-stage ZSI to extract the maximum power of the PV array and supply the BLDC motor simultaneously. Utilizing the ZSI provides some inherent advantages such as high efficiency and low cost, which is very promising for PV systems due to its novel voltage buck/boost capability. In addition, in order to precisely perform the maximum power point tracking (MPPT) of the PV array the fuzzy logic-incremental conductance (FL-IC) MPPT scheme is proposed. The proposed FL-IC MPPT scheme provides enough modification to the conventional IC method to enjoy an appropriate variable step size MPPT control signal for the ZSI. Moreover, direct torque control (DTC) is found more effective in comparison with hysteresis current control with current shaping to drive the BLDC motor, because it benefits from faster torque response, reduced torque ripple, less sensitivity to parameters variations, and simple implementation. In the mean time, due to the frequently variations of the PV power generation; delivered mechanical power to the centrifugal pump is variable. Thus, the BLDC motor should be driven with variable reference speed. In order to improve the speed transient response of the BLDC motor and enhance the energy saving aspect of

  7. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    International Nuclear Information System (INIS)

    Minyard, G.

    1998-01-01

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redisgn of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products

  8. A Framework for Evaluating Economic Impacts of Rooftop PV Systems with or without Energy Storage on Thai Distribution Utilities and Ratepayers

    Science.gov (United States)

    Chaianong, A.; Bangviwat, A.; Menke, C.

    2017-07-01

    Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.

  9. Grid Integrated Distributed PV (GridPV) Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  10. Conception and realization of a PV system provided with a sun tracker operating at dual axis

    Directory of Open Access Journals (Sweden)

    Khalil Kassmi

    2016-06-01

    Full Text Available In this paper, we present the conception, the realization and the experimentation of  a photovoltaic (PV system provided with a sun tracker reliable and low cost operating at dual axis. The tracker's role is to orient the PV generator, whose weight may reach 9 Kg, perpendicular to the sun with very good accuracy. This tracking  based on the use of four LDR sensors, which detect the intensity of light scattered by the sun a processing unit, from  command and control (UTCC, which manages all of the sun tracking tasks (the end detection of parcours, regulation of the power supplied by the PV panels (Command MPPT, ... . The results obtained show a significant improvement of the energy produced, compared to conventional PV installations where generators are fixed and oriented south at a  tilt 45°. During a day of operation, improvement could reach 41% and consumption of the tracking does not exceed 0.55% of the energy production produced by the PV generator (an improvement of 5 % compared to existing trackers.

  11. Concise Approach for Determining the Optimal Annual Capacity Shortage Percentage using Techno-Economic Feasibility Parameters of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Sopian, K.

    2017-11-01

    PV power systems have been commercially available and widely used for decades. The performance of a reliable PV system that fulfils the expectations requires correct input data and careful design. Inaccurate input data of the techno-economic feasibility would affect the size, cost aspects, stability and performance of PV power system on the long run. The annual capacity shortage is one of the main input data that should be selected with careful attention. The aim of this study is to reveal the effect of different annual capacity shortages on the techno-economic feasibility parameters and determining the optimal value for Baghdad city location using HOMER simulation tool. Six values of annual capacity shortage percentages (0%, 1%, 2%, 3%, 4%, and 5%), and wide daily load profile range (10 kWh - 100 kWh) are implemented. The optimal annual capacity shortage is the value that always "wins" when each techno-economic feasibility parameter is at its optimal/ reasonable criteria. The results showed that the optimal annual capacity shortage that reduces significantly the cost of PV power system while keeping the PV system with reasonable technical feasibility is 3%. This capacity shortage value can be carried as a reference value in future works for Baghdad city location. Using this approach of analysis at other locations, annual capacity shortage can be always offered as a reference value for those locations.

  12. Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India

    Directory of Open Access Journals (Sweden)

    Renu Sharma

    2017-11-01

    Full Text Available Barren land and roof tops of buildings are being increasingly used worldwide to install solar panels for generating electricity. One such step has been taken by Siksha ‘O’Anusandhan University, Bhubaneswar (Latitude 20.24° N and Longitude 80.85° E by installing a 11.2 kWp grid connected solar power system during February, 2014. This PV system is tilted at an angle of 21° on the top floor of a 25 metre height building. This system was installed This paper presents the results of this grid connected photovoltaic system which was monitored between September 2014 to August 2015. The entire electricity generated by the system was fed into the state grid. The different parameters of the system studied include PV module efficiency, array yield, final yield, inverter efficiency and performance ratio of the system. The total energy generated during this period was found to be 14.960 MWh and the PV module efficiency, inverter efficiency and performance ratio were found to be 13.42%, 89.83% and 0.78 respectively.

  13. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. Summary of models for the implementation of solar home systems in developing countries - Part 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    This first part of a two-part report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This summary outlines various models for the implementation of small domestic photovoltaic (PV) systems (Solar Home Systems, SHS) in developing countries. Part 1 of this two-part document discusses three generic models. The second, separate part of the document provides a number of examples demonstrating the models described. This report focuses on the implementation of SHS. However, a considerable amount of the PV market in developing countries is stated as consisting of large systems providing electricity for social services, such as light for schools, mosques, churches, communal centres, refrigeration for health centres and drinking water for communities. It is noted that there are considerable differences between the 'social market' and the 'private market' for SHS. The 'social market' generally consists of large systems but fewer in number. The guide does not cover the detailed technical aspects of a Solar Home System or the issue of recycling old batteries.

  15. Respiratory system model for quasistatic pulmonary pressure-volume (P-V) curve: inflation-deflation loop analyses.

    Science.gov (United States)

    Amini, R; Narusawa, U

    2008-06-01

    A respiratory system model (RSM) is developed for the deflation process of a quasistatic pressure-volume (P-V) curve, following the model for the inflation process reported earlier. In the RSM of both the inflation and the deflation limb, a respiratory system consists of a large population of basic alveolar elements, each consisting of a piston-spring-cylinder subsystem. A normal distribution of the basic elements is derived from Boltzmann statistical model with the alveolar closing (opening) pressure as the distribution parameter for the deflation (inflation) process. An error minimization by the method of least squares applied to existing P-V loop data from two different data sources confirms that a simultaneous inflation-deflation analysis is required for an accurate determination of RSM parameters. Commonly used terms such as lower inflection point, upper inflection point, and compliance are examined based on the P-V equations, on the distribution function, as well as on the geometric and physical properties of the basic alveolar element.

  16. The impact of high PV penetration levels on electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Beddoes, A; Thornycroft, J [Halcrow (United Kingdom); Strbac, G; Jenkins, N [UMIST, Manchester (United Kingdom); Verhoeven, B [KEMA (Netherlands)

    2002-07-01

    This report describes the results of a collaborative study by EA Technology, UMIST and Halcrow into the effects of large-scale connection of dispersed photovoltaic (PV) power systems on the national electricity supply network. The report is intended to help manufacturers and installers of PV systems and electricity companies to understand the issues associated with grid connection of PV power systems. The increased use of PV systems is expected to have a significant impact on the design, operation and management of electricity supply networks. The study examined three main areas: probability and risk analysis of islanding; PV and network voltage control (including analysis of voltage control in a commercial, domestic retrofit and domestic new build scenarios); and future low voltage network design and operational policies.

  17. Prioritized rule based load management technique for residential building powered by PV/battery system

    Directory of Open Access Journals (Sweden)

    T.R. Ayodele

    2017-06-01

    Full Text Available In recent years, Solar Photovoltaic (PV system has presented itself as one of the main solutions to the electricity poverty plaguing the majority of buildings in rural communities with solar energy potential. However, the stochasticity associated with solar PV power output owing to vagaries in weather conditions is a major challenge in the deployment of the systems. This study investigates approach for maximizing the benefits of a Stand-Alone Photovoltaic-Battery (SAPVB system via techniques that provide for optimum energy gleaning and management. A rule-based load management scheme is developed and tested for a residential building. The approach allows load prioritizing and shifting based on certain rules. To achieve this, the residential loads are classified into Critical Loads (CLs and Uncritical Loads (ULs. The CLs are given higher priority and therefore are allowed to operate at their scheduled time while the ULs are of less priority, hence can be shifted to a time where there is enough electric power generation from the PV arrays rather than the loads being operated at the time period set by the user. Four scenarios were created to give insight into the applicability of the proposed rule based load management scheme. The result revealed that when the load management technique is not utilized as in the case of scenario 1 (Base case, the percentage satisfaction of the critical and uncritical loads by the PV system are 49.8% and 23.7%. However with the implementation of the load management scheme in scenarios 2, 3 and 4, the percentage satisfaction of the loads (CLs, ULs are (93.8%, 74.2%, (90.9%, 70.1% and (87.2%, 65.4% for scenarios 2, 3 and 4, respectively.

  18. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.

  19. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  20. Development of outdoor luminescence imaging for drone-based PV array inspection

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Thorsteinsson, Sune

    2017-01-01

    This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants.......This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants....

  1. Size optimization of stand-alone photovoltaic (PV) room air conditioners

    International Nuclear Information System (INIS)

    Chen, Chien-Wei; Zahedi, A.

    2006-01-01

    Sizing of a stand-alone PV system determines the main cost of the system. PV electricity cost is determined by the amount of solar energy received, hence the actual climate and weather conditions such as solar irradiance and ambient temperature affect the size required and cost of the system. Air conditioning demand also depends on the weather conditions. Therefore, sizing a PV powered air conditioner must consider the characteristics of local climate and temperature. In this paper, sizing procedures and special considerations for air conditioning under Melbourne's climatic conditions is presented. The reliability of various PV-battery size combinations is simulated by MATLAB. As a result, excellent system performance can be predicated.(Author)

  2. PV led engine characterization lab for standalone light to light systems

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Lindén, Johannes

    2014-01-01

    PV-powered lighting systems, light-to-light systems (L2L), offer outdoor lighting where it is else where cumbersome to enable lighting. Application of these systems at high latitudes, where the difference in day length between summer and winter is large and the solar energy is low requires smart...... dimming functions for reliable lighting. In this work we have built a laboratory to characterize these systems up to 200 Wp from “nose to tail” in great details to support improvement of the systems and to make accurate field performance predictions....

  3. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  4. A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects, and the implications for public policies: the French case in 2030

    International Nuclear Information System (INIS)

    Yu, Hyun Jin Julie

    2017-01-01

    Over the last decade, the price of PV modules has fallen largely due to the globalization of the PV sector. If residential PV systems coupled with batteries become economically competitive in the near future, end-users will be willing to switch to the self-consumption of PV electricity instead of using power from the network. If the transition of PV self-consumption in the residential sector occurs massively or suddenly, the national energy system would be faced with a radical change. This article analyses the economic feasibility of French residential PV systems combined with Li-ion batteries in 2030 to anticipate the possible change in future energy systems. It also includes a stakeholder analysis with respect to the PV self-consumption model to analyse the systemic effects of PV integration into the electricity system. Our study provides a theoretical explanation of the impact on the current electricity market and quantifies the expected impact on the most influential stakeholder group. The ultimate objective is to help policy-makers forecast possible scenarios for PV self-consumption so they can prepare for the future transition with strategic actions. By way of conclusion, we discuss the policy implications and elaborate policy recommendations based on the results of this study. (author)

  5. Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations

    International Nuclear Information System (INIS)

    Herrando, María; Markides, Christos N.

    2016-01-01

    Highlights: • Renewable heat and power generation in UK homes with PVT systems studied. • PVT/w generation: 2.3 MW_e h/yr (51% of demand) and 1.0 MW_t_h h/yr (36% hot water). • Optimised PVT/w system has 9–11 year payback periods (PV-only: 6.8 years). • Same system allows 16.0-t CO_2 reduction and 14-t primary fossil-fuel saving. • With a ∼2:1 support (£/W_e h:£/W_t_h h), PVT and PV have similar payback periods. - Abstract: A techno-economic analysis is undertaken to assess hybrid PV/solar-thermal (PVT) systems for distributed electricity and hot-water provision in a typical house in London, UK. In earlier work (Herrando et al., 2014), a system model based on a PVT collector with water as the cooling medium (PVT/w) was used to estimate average year-long system performance. The results showed that for low solar irradiance levels and low ambient temperatures, such as those associated with the UK climate, a higher coverage of total household energy demands and higher CO_2 emission savings can be achieved by the complete coverage of the solar collector with PV and a relatively low collector cooling flow-rate. Such a PVT/w system demonstrated an annual electricity generation of 2.3 MW h, or a 51% coverage of the household’s electrical demand (compared to an equivalent PV-only value of 49%), plus a significant annual water heating potential of to 1.0 MW h, or a 36% coverage of the hot-water demand. In addition, this system allowed for a reduction in CO_2 emissions amounting to 16.0 tonnes over a life-time of 20 years due to the reduction in electrical power drawn from the grid and gas taken from the mains for water heating, and a 14-tonne corresponding displacement of primary fossil-fuel consumption. Both the emissions and fossil-fuel consumption reductions are significantly larger (by 36% and 18%, respectively) than those achieved by an equivalent PV-only system with the same peak rating/installed capacity. The present paper proceeds further, by

  6. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  7. Simulation of stand alone PV system; Dokuritsugata taiyoko hatsuden system no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, H; Ogawa, H; Sekii, Y [Chiba Institute of Technology, Chiba (Japan); Tsuda, I; Nozaki, K [Electrotechnical Laboratory, Tsukuba (Japan); Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    In order to evaluate the simulation results of a photovoltaic power generation system, an operation simulation was carried out using the actual measured data of a stand alone PV system in Miyakojima, Okinawa Prefecture, so as to make a comparison with the actual operation data. The electric power was supplied to 250 houses and primary/junior high schools in the surrounding villages, which had an average demand load of approximately 90kw and the maximum of approximately 200kw. The power was supplied through the PV power generation in the duration of the sunshine, with an excess power charged in storage batteries and then supplied from the batteries at night. The array capacity was made 750kWp, the output current and storage batteries being characteristic type with an actual efficiency curve used for the inverter. The weather data used were the actual inclined insolation quantity and the outside air temperature data for a period of one month of November. The power charged in excess of 100% in the batteries was termed as an overflow power. With the charging condition 30% or less, a diesel generator was run for a rated operation for one hour, the power of which was termed as a backup power. As a result, the simulation was found nearly in agreement with the actual measurements. 5 refs., 7 figs., 2 tabs.

  8. Voltage stability issues in a distribution grid with large scale PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Alvaro Ruiz; Marinopoulos, Antonios; Reza, Muhamad; Srivastava, Kailash [ABB AB, Vaesteraas (Sweden). Corporate Research Center; Hertem, Dirk van [Katholieke Univ. Leuven, Heverlee (Belgium). ESAT-ELECTA

    2011-07-01

    Solar photovoltaics (PV) has become a competitive renewable energy source. The production of solar PV cells and panels has increased significantly, while the cost is reduced due to economics of scale and technological achievements in the field. At the same time, the increase in efficiency of PV power systems and high energy prices are expected to lead PV systems to grid parity in the coming decade. This is expected to boost even more the large scale implementation of PV power plants (utility scale PV) and therefore the impact of such large scale PV plants to power system needs to be studies. This paper investigates the voltage stability issues arising from the connection of a large PV power plant to the power grid. For this purpose, a 15 MW PV power plant was implemented into a distribution grid, modeled and simulated using DIgSILENT Power Factory. Two scenarios were developed: in the first scenario, active power injected into the grid by the PV power plants was varied and the resulted U-Q curve was analyzed. In the second scenario, the impact of connecting PV power plants to different points in the grid - resulting in different strength of the connection - was investigated. (orig.)

  9. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  10. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    Science.gov (United States)

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Feasibility Study of Standalone PV-Wind-Diesel Energy Systems for Coastal Residential Application in Pekan, Pahang

    Directory of Open Access Journals (Sweden)

    Zailan Roziah

    2017-01-01

    Full Text Available Techno economic study is feasible to optimize the usage of renewable energy components that targeting low cost of electricity generation system. The selected case study area is coastal area in Pekan, Pahang, Malaysia. The autonomous system designed in this study is hybrid standalone PV-wind-diesel energy system to fulfil a basic power demand of 20.1 kWh/day. Such power system was designed and optimized further to meet the power demand at a minimum cost of energy using energy optimization software, Hybrid Optimization Model for Electric Renewables (HOMER. The analysis focused on the operational characteristics and economics. The standalone PV-wind-diesel energy system has total net present cost about $61, 911 with cost of energy $0.66/kWh. Apparently, the generation of electricity from both wind turbine and PV can be inflated with the diesel generator. In comparison, return of investment (ROI value turned out lower for Feed in Tariff (FIT as compared to self-sustained house. Payback period also longer for FIT program that makes the selling back of electricity generated to Tenaga National Berhad (TNB is considered not favourable.

  12. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System

    Directory of Open Access Journals (Sweden)

    Shivashankar Sukumar

    2017-10-01

    Full Text Available Solar power generation is intermittent in nature. It is nearly impossible for a photovoltaic (PV system to supply power continuously and consistently to a varying load. Operating a controllable source like a fuel cell in parallel with PV can be a solution to supply power to variable loads. In order to coordinate the power supply from fuel cells and PVs, a power management system needs to be designed for the microgrid system. This paper presents a power management system for a grid-connected PV and solid oxide fuel cell (SOFC, considering variation in the load and solar radiation. The objective of the proposed system is to minimize the power drawn from the grid and operate the SOFC within a specific power range. Since the PV is operated at the maximum power point, the power management involves the control of SOFC active power where a proportional and integral (PI controller is used. The control parameters of the PI controller Kp (proportional constant and Ti (integral time constant are determined by the genetic algorithm (GA and simplex method. In addition, a fuzzy logic controller is also developed to generate appropriate control parameters for the PI controller. The performance of the controllers is evaluated by minimizing the integral of time multiplied by absolute error (ITAE criterion. Simulation results showed that the fuzzy-based PI controller outperforms the PI controller tuned by the GA and simplex method in managing the power from the hybrid source effectively under variations of load and solar radiation.

  13. Effect of Different Solar Radiation Data Sources on the Variation of Techno-Economic Feasibility of PV Power System

    Science.gov (United States)

    Alghoul, M. A.; Ali, Amer; Kannanaikal, F. V.; Amin, N.; Aljaafar, A. A.; Kadhim, Mohammed; Sopian, K.

    2017-11-01

    The aim of this study is to evaluate the variation in techno-economic feasibility of PV power system under different data sources of solar radiation. HOMER simulation tool is used to predict the techno-economic feasibility parameters of PV power system in Baghdad city, Iraq located at (33.3128° N, 44.3615° E) as a case study. Four data sources of solar radiation, different annual capacity shortages percentage (0, 2.5, 5, and 7.5), and wide range of daily load profile (10-100 kWh/day) are implemented. The analyzed parameters of the techno-economic feasibility are COE (/kWh), PV array power capacity (kW), PV electrical production (kWh/year), No. of batteries and battery lifetime (year). The main results of the study revealed the followings: (1) solar radiation from different data sources caused observed to significant variation in the values of the techno-economic feasibility parameters; therefore, careful attention must be paid to ensure the use of an accurate solar input data; (2) Average solar radiation from different data sources can be recommended as a reasonable input data; (3) it is observed that as the size and of PV power system increases, the effect of different data sources of solar radiation increases and causes significant variation in the values of the techno-economic feasibility parameters.

  14. Issues and prospects vis a vis Indian PV commercialization programme

    International Nuclear Information System (INIS)

    Deambi, Suneel

    1994-01-01

    Following a large scale demonstration of photovoltaic systems attending to the important requirements of lighting, water pumping, television and battery charging etc. in the remote surroundings of India, serious efforts are being made to promote the commercial use of these systems. A recently launched World Bank-supported project on PV market development has provided the much needed boost to the Indian PV programme. This paper tries to analyse the issues and prospects with respect to the National PV Commercialization Programme in view of the changing PV scenario in the country. (author)

  15. Coordination of International Standards with Implementation of the IECRE Conformity Assessment System to Provide Multiple Certification Offerings for PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, George; Haring, Adrian; Spooner, Ted; Ball, Greg; Kurtz, Sarah; Heinze, Matthias; Yamamichi, Masaaki; Eguchi, Yoshihito; Ramu, Govind

    2016-11-21

    To help address the industry's needs for assuring the value and reducing the risk of investments in PV power plants; the International Electrotechnical Commission (IEC) has established a new conformity assessment system for renewable energy (IECRE). There are presently important efforts underway to define the requirements for various types of PV system certificates, and publication of the international standards upon which these certifications will be based. This paper presents a detailed analysis of the interrelationship of these activities and the timing for initiation of IECRE PV system certifications.

  16. Generation of large-scale PV scenarios using aggregated power curves

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2017-01-01

    The contribution of solar photovoltaic (PV) power to the generation is becoming more relevant in modern power system. Therefore, there is a need to model the variability large-scale PV generation accurately. This paper presents a novel methodology to generate regional PV scenarios based...... on aggregated power curves rather than traditional physical PV conversion models. Our approach is based on hourly mesoscale reanalysis irradiation data and power measurements and do not require additional variables such as ambient temperature or wind speed. It was used to simulate the PV generation...... on the German system between 2012 and 2015 showing high levels of correlation with actual measurements (93.02–97.60%) and small deviations from the expected capacity factors (0.02–1.80%). Therefore, we are confident about the ability of the proposed model to accurately generate realistic large-scale PV...

  17. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Chaichan, Miqdam T.; Kazem, Hussein A.; Sopian, K.

    2017-01-01

    Highlights: • Three types of nanoparticles (Al 2 O 3 , CuO and SiC) were added to water which was used as a base fluid. • The resulted nanofluid was used for cooling an indoor PV/T system. • The used nanofluids improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluids was examined for an extended period and found to be stable. • SiC nanofluid showed better thermal conductivity and stability compared with Al 2 O 3 and CuO nanofluids. - Abstract: The reduction in efficiency of photovoltaic (PV) units due to increases in cell temperature occurs when a small part of the absorbed solar radiation is converted into electricity and the remaining part is lost as heat. Recently, the addition of a range of nanomaterials with high thermal conductivity to the cooling fluid in PV/T systems has been the subject of much research. In this study, three nanomaterials were added to water as a base fluid with several volume fractions to determine the best concentration and nanoparticle for this application. The PV/T system was setup in an indoor laboratory. Knowing which material has a better effect on the PV unit in particular, and the PV/T unit in general, is important for deciding which nanomaterial is more suitable for the system. The results reveal that nanofluid gives higher thermal conductivity with very little increase in the fluid density and viscosity compared with the base fluid. The studied volume fractions were 0.5, 1, 2, 3, and 4% and the selected nanoparticles were Al 2 O 3 , CuO, and SiC. It was found that silicon carbide nanoparticles have the best stability and the highest thermal conductivity compared to the other two nano-substances. Copper oxide nanofluid has higher thermal conductivity than aluminium oxide but lower stability, although it was found here that this material reliably stable compared to in other studies. The nanofluid reduced the indoor PV/T system temperature and enhanced its generated power.

  18. Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system

    International Nuclear Information System (INIS)

    Qiu, Zhongzhu; Ma, Xiaoli; Zhao, Xudong; Li, Peng; Ali, Samira

    2016-01-01

    Highlights: • An experimental investigation to a novel MPCM slurry based PV/T system was conducted. • The system had the reduced solar efficiency at a higher solar radiation. • The system had the increased solar efficiency at a higher slurry Reynolds number. • The most favourite MPCM concentration was around 10%. • The experimental results approved the accuracy of the established computer model. - Abstract: As a follow-on work of the authors’ theoretical study, the paper presented an experimental investigation into the energy performance of a novel PV/T thermal and power system employing the Micro-encapsulated Phase Change Material (MPCM) slurry as the working fluid. A prototype PV/T module of 800 mm × 1600 mm × 50 mm was designed and constructed based on the previous modelling recommendation. The performance of the PV/T module and associated thermal and power system were tested under various solar radiations, slurry Reynolds numbers and MPCM concentrations. It was found that (1) increasing solar radiation led to the increased PV/T module temperature, decreased solar thermal and electrical efficiencies and reduced slurry pressure drop; (2) increasing the slurry Reynolds number led to the increased solar thermal and electrical efficiencies, decreased module temperature, and increased pressure drop; and (3) increasing the MPCM concentration led to the reduced module temperature and increased pressure drop. The experimental results were used to examine the accuracy of the established computer model, giving a derivation scale ranging from 1.1% to 6.1% which is an acceptable error level for general engineering simulation. The recommended operational conditions of the PV/T system were (1) MPCM slurry weight concentration of 10%, (2) slurry Reynolds number of 3000, and (3) solar radiation of 500–700 W/m"2; at which the system could achieve the net overall solar efficiencies of 80.8–83.9%. To summarise, the MPCM slurry based PV/T thermal and power system

  19. Performance evaluation of the 1 MW building integrated PV project in Nieuwland, Amersfoort, the Netherlands, January 2001 – February 2006

    OpenAIRE

    de Keizer, A.C.; ter Horst, E.; van Sark, W.G.J.H.M.

    2008-01-01

    The performance of 463 decentralised PV systems with a total installed peak power of 1.2 MWp, has been evaluated for a period of five years (2001-2006). The systems are situated in the urban area Nieuwland in the town of Amersfoort in the Netherlands and are part of one of the largest decentralised PV projects in the world. The evaluated systems are situated in eight sections and are characterized by different architectural designs, tilt and azimuth angles. In six of the sections the majority...

  20. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John R. [High Performance PV, Phoenix, AZ (United States); Keating, T. J. [SunSpec Alliance, San Jose, CA (United States)

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  1. Progress in markets for grid-connected PV systems in the built environment

    International Nuclear Information System (INIS)

    Haas, R.

    2004-01-01

    In the last decade of the twentieth century a wide variety of promotion strategies increased the market penetration of small grid-connected PV systems world-wide. The objective of this paper is to assess the impact of these promotion strategies on the market for and on the economic performance of small grid-connected PV systems. The most important conclusions of this analysis are: Pure cost-effectiveness is not crucial for private customers. Affordability is rather what counts. Non-monetary issues play an important role for a substantial increase in market deployment. Comprehensive accompanied information and education activities are also important along with financial incentives. There are still considerable barriers in the market: on the one hand transparent and competitive markets exist in only a few countries; on the other hand non-monetary transaction costs still represent a major barrier. Progress with respect to cost reduction has been achieved, but mainly for non-module components. (author)

  2. Methods for the Optimal Design of Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    and the efficient processing of this power by the DC/AC inverter. In this paper two new methods are presented for the optimal design of a PV inverter power section, output filter and MPPT control strategy. The influences of the electric grid regulations and standards as well as the PV array operational......The DC/AC inverters are used in grid-connected PV energy production systems as the power processing interface between the PV energy source and the electric grid. The energy injected into the electric grid by the PV installation depends on the amount of power extracted from the PV power source...

  3. Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand

    DEFF Research Database (Denmark)

    Kohsri, Sompol; Meechai, Apichart; Prapainainar, Chaiwat

    2018-01-01

    , in this study a customized hybrid power system integrating solar, biomass (syngas) power and battery storage system is evaluated a pilot scale for micro off-grid application. This paper shows that for a reliability of a hybrid syngas/solar PV system along with rechargeable batteries, the syngas generator can......Due to the irregular nature of solar resource, solar photovoltaic (PV) system alone cannot satisfy load on a 24/7 demand basis, especially with increasing regional population in developing countries such as Thailand. A hybrid solar PV/biomass based along with battery storage system has been drawing....... Furthermore, the generator has to be always synchronized during the commissioning time. Battery state of charge (SOC) in percent (%) connecting with syngas is greater than solar PV and the charging time appears significantly shorter than that one. All possible combinations between an innovation and existing...

  4. Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection

    Energy Technology Data Exchange (ETDEWEB)

    Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.

  5. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. Summary of models for the implementation of solar home systems in developing countries - Part 2: Practical experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    This second part of a report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home Systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This summary outlines various models for the implementation of small domestic photovoltaic (PV) systems (Solar Home Systems, SHS) in developing countries. The first part of this two-part document discussed three generic models. Part 2 of the document is based on work prepared for the Renewable Energy Supply Models (RESUM) project. Examples are quoted which describe the operations of a number of companies supplying solar home systems in developing countries. These examples of practical experience provide a description of businesses, highlighting the success and failure factors of the organisations. They are only a sample of the many PV companies operating internationally and are not to be considered as a critical evaluation of the implementation models; they attempt to give the reader an idea of the realities of using the models in practice.

  6. Review of PV Inverter Technology Cost and Performance Projections

    Energy Technology Data Exchange (ETDEWEB)

    Navigant Consulting Inc.

    2006-01-01

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  7. PV Power-Generation System with a Phase-Shift PWM Technique for High Step-Up Voltage Applications

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-01-01

    Full Text Available A PV power-generation system with a phase-shift pulse-width modulation (PWM technique for high step-up voltage applications is proposed. The proposed power-generation system consists of two stages. In the input stage, all power switches of the full-bridge converter with phase-shift technique can be operated with zero-current switching (ZCS at turn-on or turn-off transition. Hence, the switching losses of the power switches can be reduced. Then, in the DC output stage, a voltage-doubler circuit is used to boost a high dc-link bus voltage. To supply a utility power, a dc/ac inverter is connected to induce a sinusoidal source. In order to draw a maximum power from PV arrays source, a microcontroller is incorporated with the perturbation and observation method to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In this study, a full load power of 300 W prototype has been built. Experimental results are presented to verify the performance and feasibility of the proposed PV power-generation system.

  8. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  9. Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany

    International Nuclear Information System (INIS)

    Chowdhury, Sanjeeda; Sumita, Ushio; Islam, Ashraful; Bedja, Idriss

    2014-01-01

    Photovoltaic (PV) has the highest cost reduction potential among all renewable energy sources (RES). To overcome institutional barriers, developing the technology, and creating an initial market, policies are needed. Comparative case studies of Japan and German PV sector from 1990 to 2011 were developed. Japan dominated the PV industry during 1994–2004, PV market increased to 290 MW in 2005. After 2005 Japan's PV market decreased. German PV market increased from 44 MW in 2000 to 7.5 GW in 2011. The reason behind Japanese PV market decline was the unaligned energy policy and termination of incentives. This paper discusses about successful policy implementation and the impact of policy for the diffusion of PV technology. The analysis section of this paper shows how much the PV technology has been diffused during the period of 1990–2011 and finally what will make the transformation process successful. - Highlights: • We studied PV diffusion of Japan and German considering public energy policy, environmental policy and cost reduction. • This study determined that policy and incentives are responsible for cost reduction. • Japans concentration on nuclear energy more than renewables, made the PV diffusion slow. • Successful implementation of FIT helped Germany reduce PV electricity price more than grid electricity

  10. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  11. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  12. Household photovoltaic market in Xining, Qingha province, China: the role of local PV business

    International Nuclear Information System (INIS)

    Ling, S.; Boardman, B.

    2002-01-01

    This paper assesses the present and future market for household photovoltaic (PV) systems in rural Northwest China, especially from the PV commerce at Xining, Qinghai Province. This unsubsidised free market is now met by the emerging PV industry in China, which includes cell and module manufacturers, and PV system distributors and assemblers. For widespread deployment of such a renewable energy technology, the development of a local free market seems more successful than donor- or 'government subsidy'-driven programmes. Presently, there is a thriving infant PV industry in Northwest China, mostly centred in Xining. Xining-based PV sales companies have extensive networks for selling, marketing and servicing household PV systems for rural farmers and nomads. Small systems are now ordinary items on sale in local shops. Based on interviews and fieldwork observations with seven major PV sales companies in Xining, the household PV market is assessed from the present business operations of these companies. Detail of primary sources is given with the aim of archiving seminal progress in the history of photovoltaic power. The results suggest that although the household PV market will continue to grow, current government and international sponsored PV programmes can create both opportunities and barriers for the infant PV market an industry in China. (author)

  13. Single stage three level grid interactive MPPT inverter for PV systems

    International Nuclear Information System (INIS)

    Ozdemir, Saban; Altin, Necmi; Sefa, Ibrahim

    2014-01-01

    Highlights: • A three phase three-level NPC inverter for grid interactive PV systems is proposed. • A novel MPPT algorithm is introduced for single stage systems. • The proposed algorithm is robust with respect to parameter variations of PV system. • THD level is measured as 3.45% and it meets the international standards (<5%). • Total system efficiency is measured as 93.08%. - Abstract: In this study, three-phase, single stage neutral point clamped grid interactive inverter is designed and implemented. The reference current of the voltage source inverter is determined by maximum power point tracking sub-program in order to obtain maximum power from photovoltaic modules instantaneously. Proposed control is realized via TMS320F28335 32-bit floating point processor. The modified incremental conductance method is applied for maximum power point tracking; the PI regulator is used to control the inverter output current shape and level. Galvanic isolation is provided by a line frequency transformer that matches inverter output voltage to the grid voltage level and prevents DC current injection into the grid. Experimental results show that the designed inverter imports energy to the grid with unity power factor, total harmonic distortion level is 3.45% and this value is in the limits of the international standards. In addition, the total efficiency of the system is measured as 93.08%. The proposed system gets the maximum power from photovoltaic module and dispatches into the grid without using additional DC/DC converter

  14. Voltage rise mitigation for solar PV integration at LV grids

    DEFF Research Database (Denmark)

    Yang, Guangya; Marra, Francesco; Juamperez Goñi, Miguel Angel

    2015-01-01

    Solar energy from photovoltaic (PV) is among the fastest developing renewable energy systems worldwide. Driven by governmental subsidies and technological development, Europe has seen a fast expansion of solar PV in the last few years. Among the installed PV plants, most of them are situated...

  15. Supervision and control of grid connected PV-Storage systems with the five level diode clamped inverter

    International Nuclear Information System (INIS)

    Himour, Kamal; Ghedamsi, Kaci; Berkouk, El Madjid

    2014-01-01

    Highlights: • Use of battery bank in grid connection photovoltaic system to ensure the energetic autonomy of the system. • Improve the quality of energy by the use of five-level inverter in a grid connection PV generation system. • Control of inverter by fast and simplified space vector pulse width modulation. • Control and supervision of active and reactive power in the grid. - Abstract: This paper aimed to evaluate the use of photovoltaic-battery storage systems to supply electric power in the distribution grid through a multilevel inverter. The proposed system is composed by four PV generators with MPPT (P and O) control, four battery storage systems connected to each capacitor of the DC link and a five level diode clamped inverter connected to the grid by a traditional three phase transformer. The proposed control has a hierarchical structure with both a grid side control level to regulate the power and the current injected to the grid and four input side regulation units. The system operator controls the power production of the four PV generators by sending out reference power signals to each input side regulation unit, the input side regulation units regulate the voltage of each capacitor of the DC link, regulate the voltage and the state of charge of each battery storage system

  16. A Survey of State and Local PV Program Response to Financial Innovation and Disparate Federal Tax Treatment in the Residential PV Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holt, Edward [Ed Holt & Associates, Inc., Harpswell, ME (United States)

    2015-06-01

    High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part by an initial wave of financial innovation that led to the rise of third-party ownership.

  17. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  18. Forecasting the Cell Temperature of PV Modules with an Adaptive System

    Directory of Open Access Journals (Sweden)

    Giuseppina Ciulla

    2013-01-01

    Full Text Available The need to reduce energy consumptions and to optimize the processes of energy production has pushed the technology towards the implementation of hybrid systems for combined production of electric and thermal energies. In particular, recent researches look with interest at the installation of hybrid system PV/T. To improve the energy performance of these systems, it is necessary to know the operating temperature of the photovoltaic modules. The determination of the operating temperature is a key parameter for the assessment of the actual performance of photovoltaic panels. In the literature, it is possible to find different correlations that evaluate the referring to standard test conditions and/or applying some theoretical simplifications/assumptions. Nevertheless, the application of these different correlations, for the same conditions, does not lead to unequivocal results. In this work an alternative method, based on the employment of artificial neural networks (ANNs, was proposed to predict the operating temperature of a PV module. This methodology does not require any simplification or physical assumptions. In the paper is described the ANN that obtained the best performance: a multilayer perception network. The results have been compared with experimental monitored data and with some of the most cited empirical correlations proposed by different authors.

  19. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...

  20. Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems

    Science.gov (United States)

    Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.

    2017-09-01

    In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.

  1. On the Impact of Partial Shading on PV Output Power

    DEFF Research Database (Denmark)

    Sera, Dezso; Baghzouz, Yahia

    2008-01-01

    clarifies the mechanism of partial PV shading on a number of PV cells connected in series and/or parallel with and without bypass diodes. The analysis is presented in simple terms and can be useful to someone who wishes to determine the impact of some shading geometry on a PV system. The analysis...... is illustrated by measurements on a commercial 70 W panel, and a 14.4 kW PV array....

  2. Multi-objective design of PV-wind-diesel-hydrogen-battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L. [Department of Electrical Engineering, University of Zaragoza, Calle Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-12-15

    This paper presents, for the first time, a triple multi-objective design of isolated hybrid systems minimizing, simultaneously, the total cost throughout the useful life of the installation, pollutant emissions (CO{sub 2}) and unmet load. For this task, a multi-objective evolutionary algorithm (MOEA) and a genetic algorithm (GA) have been used in order to find the best combination of components of the hybrid system and control strategies. As an example of application, a complex PV-wind-diesel-hydrogen-battery system has been designed, obtaining a set of possible solutions (Pareto Set). The results achieved demonstrate the practical utility of the developed design method. (author)

  3. Latin America as new PV market opportunity

    International Nuclear Information System (INIS)

    Weiss, Ingrid

    2015-01-01

    It is important to recognize solar energy as an international and strategic opportunity for the European market to expand. The objective of this paper is to apply the methodology created during the PV Parity project for analyzing PV Competitiveness in the emerging residential PV market in Brazil, using information from the State of Rio de Janeiro. The dynamic competitiveness analysis was performed considering the price with and without taxes in order to assess the year when PV will reach grid parity in Rio de Janeiro and how the taxes impact on the results. Results are divided into 3 scenarios: Optimistic, Conservative, and Conservative Moderate. The LCOE of residential systems will likely become competitive with the residential electricity tariffs between 2020 and 2030, assuming the residential tariffs in Rio de Janeiro. This is an indicator that PV energy business opportunities are increasing in Brazil and, with the adequate policy support, its market competitiveness could be improved. We are also looking in other markets of Latin America. (full text)

  4. Analysis of the influences of grid-connected PV power system on distribution grids

    Directory of Open Access Journals (Sweden)

    Dumitru Popandron

    2013-12-01

    Full Text Available This paper presents the analysis of producing an electric power of 2.8 MW using a solar photovoltaic plant. The PV will be grid connected to the distribution network. The study is focused on the influences of connecting to the grid of a photovoltaic system, using modern software for analysis, modeling and simulation in power systems.

  5. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  6. Methods and Strategies for Overvoltage Prevention in Low Voltage Distribution Systems with PV

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob

    2016-01-01

    to handle a high share of PV power. This paper provides an in-depth review of methods and strategies proposed to prevent overvoltage in LV grids with PV, and discusses the effectiveness, advantages, and disadvantages of them in detail. Based on the mathematical framework presented in the paper......, the overvoltage caused by high PV penetration is described, solutions to facilitate higher PV penetration are classified, and their effectiveness, advantages, and disadvantages are illustrated. The investigated solutions include the grid reinforcement, electrical energy storage application, reactive power...... absorption by PV inverters, application of active medium voltage to low voltage (MV/LV) transformers, active power curtailment, and demand response (DR). Coordination between voltage control units by localized, distributed, and centralized voltage control methods is compared using the voltage sensitivity...

  7. Solar charge regulator and operation management for PV island systems with modern memory-programmable control (SPS); Solarladeregler und Betriebsmanagement fuer PV-Inselsysteme mit moderner Speicherprogrammierbarer Steuerung (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Dohlen, K. v.; Nussberger, B. [ENNOS Gesellschaft fuer Innovative Energiesysteme mbH, Freiburg (Germany)

    1998-12-01

    Modern memory programmable controls (SPS) are good value for money, powerful and have such a low power consumption that they are suitable for control and regulation purposes in PV island systems. The development of the solar charge regulators and operation management on the basis of an SPS shown in the article was carried out with the super-imposed target of increasing the use of proven standard industrial products in their construction and simplifying their operation and raising their reliability. [Deutsch] Moderne Speicherprogrammierbare Steuerungen (SPS) sind preiswert, leistungsfaehig und besitzen inzwischen eine so niedrige Leistungsaufnahme, dass sie zu Steuer- und Regelzwecken in PV-Inselsystemen geeignet sind. Die Entwicklung des im Beitrag vorgestellten Solarladereglers und Betriebsmanagement auf der Basis einer SPS stand unter der uebergeordneten Zielsetzung, PV-Anlagen durch den Einsatz von bewaehrten Standard-Industrieprodukten in ihrem Aufbau und der Bedienung zu vereinfachen und in ihrer Zuverlaessigkeit zu steigern. (orig.)

  8. Enhancement of real-time EPICS IOC PV management for the data archiving system

    Science.gov (United States)

    Kim, Jae-Ha

    2015-10-01

    The operation of a 100-MeV linear proton accelerator, the major driving values and experimental data need to be archived. According to the experimental conditions, different data are required. Functions that can add new data and delete data in real time need to be implemented. In an experimental physics and industrial control system (EPICS) input output controller (IOC), the value of process variables (PVs) are matched with the driving values and data. The PV values are archived in text file format by using the channel archiver. There is no need to create a database (DB) server, just a need for large hard disk. Through the web, the archived data can be loaded, and new PV values can be archived without stopping the archive engine. The details of the implementation of a data archiving system with channel archiver are presented, and some preliminary results are reported.

  9. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  10. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  11. Assessing the need for better forecasting and observability of pv

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2017-01-01

    In its review of the challenges and opportunities associated with massive deployment of solar PV generation, the Grid integration working group of the ETIP PV identified forecasting and observability as critical technologies for the planning and operation of the power system with large PV...... penetration. In this white paper ETIP PV set out to spell out in more details what features are needed from these technologies and what is the state of the art....

  12. Solar PV O&M Standards and Best Practices – Existing Gaps and Improvement Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John R. [High Performance PV, Phoenix, AZ (United States); Keating, T. J. [SunSpec Alliance, San Jose, CA (United States)

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  13. System engineering and design of LSC-PV for outdoor lighting applications

    NARCIS (Netherlands)

    Viswanathan, B.; Reinders, A.H.M.E.; De Boer, D.K.G.; Ras, A.; Zahn, H.; Desmet, L.

    2012-01-01

    Solar photovoltaic outdoor lighting applications usually comprise flat plate PV modules mounted on top of a light pole. In our paper instead, it is thought of to design the light pole as a luminescent solar concentrator photovoltaic (LSC-PV) module with solar cell strips and hence reduce costs of

  14. Three-Phase PV CHB Inverter for a Distributed Power Generation System

    Directory of Open Access Journals (Sweden)

    Pierluigi Guerriero

    2016-10-01

    Full Text Available This work deals with the design of a three-phase grid-tied photovoltaic (PV cascade H-bridge inverter for distributed power conversion. The power balancing among the phases must be properly addressed. In fact, an intra-phase power imbalance—arising from uneven irradiance and temperature conditions—generates a per-phase power imbalance. This latter can be compensated by the injection of a proper zero-sequence voltage, while the intra-phase balance is ensured by means of a hybrid modulation method which is able to guarantee the handling of unequal DC (Direct Current sources, stable circuit operation, and maximization of PV power production. The digital controller is developed and tested in Matlab/Simulink environment integrated with XSG (Xilinx System Generator, thus allowing an easy transfer on a field-programmable gate array (FPGA platform and accurately describing the behavior of a real hardware implementation. Thus, numerical results have been considered to prove the effectiveness of the proposed approach.

  15. City and County Solar PV Training Program, Module 2: Screening and Identifying PV Projects

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-09

    When screening and identifying PV projects, cities and counties should understand the different factors that impact the technical and economic potential of a PV project, the steps of the PV screening process, and how to use REopt Lite to screen a site for PV and storage project potential.

  16. A Low-Voltage Ride-Through Control Strategy for Three-Phase Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Farhangi, Babak; Yang, Yongheng

    2017-01-01

    similar variations in the dc-link voltage of conventional two-stage PV inverters. In such systems with an electrolytic capacitor in the dc-link, the oscillations of the dc-link voltage with DGF can deteriorate the capacitor lifetime, and thus the entire system. The proposed Low-Voltage Ride-Through (LVRT...

  17. On the Impacts of PV Array Sizing on the Inverter Reliability and Lifetime

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede; Zhou, Dao

    2018-01-01

    To enable a more wide scale utilization of PV systems, the cost of PV energy should be comparable to or even lower than other energy sources. Due to the relatively low cost of PV modules, oversizing PV arrays becomes a common approach to reduce the cost of PV energy in practice. By doing so, the total energy yield can be increased under weak solar irradiance conditions. However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inv...

  18. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-17

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  19. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  20. Significant cost reductions at minimal losses of yield. East/west oriented PV arrays with only one MPP tracker; Deutliche Kostenreduzierung bei minimalen Ertragsverlusten. Ost/West ausgerichtete PV-Anlagen mit nur einem MPP-Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Staudacher, Dietmar [Fronius International GmbH, Wels (Austria)

    2012-05-15

    In the past, the disposition to install east/west oriented PV systems was rather subdued. Meanwhile, a growing interest in the installation of PV arrays on east/west roof is observed. Although PV systems with south orientations are better east/west-oriented PV arrays also with considerable yields can be achieved.

  1. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    Science.gov (United States)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  2. Effect of Thermoelectric Cooling (TEC module and the water flow heatsink on Photovoltaic (PV panel performance

    Directory of Open Access Journals (Sweden)

    Amelia A.R.

    2017-01-01

    Full Text Available Photovoltaic (PV panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  3. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    Science.gov (United States)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  4. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  5. Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jose Luis Torres-Moreno

    2018-02-01

    Full Text Available This paper analyzes the impact of photovoltaic (PV systems on storage and electric vehicles in micro-grids. As these kinds of systems are becoming increasingly popular in the residential sector, the development of a new generation of equipment, such as more efficient batteries or solar panels, makes further study necessary. These systems are especially interesting in commercial or office buildings, since they have a more repetitive daily pattern of electricity consumption, which usually occurs within the maximum solar radiation hours. Based on this need, a novel control strategy aimed at efficiently managing this kind of micro-grid is proposed. The core of this strategy is a rule-based controller managing the power flows between the grid and the batteries of both the PV system and the electric vehicle. Through experimental data and simulations, this strategy was tested under different scenarios. The selected testbed consisted of the laboratory of a research center, which could be easily scalable to the entire building. Results showed the benefits of using an electric vehicle as an active agent in energy balance, leading to a reduction of the energetic costs of a micro-grid.

  6. Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption

    International Nuclear Information System (INIS)

    Lazaroiu, George Cristian; Longo, Michela; Roscia, Mariacristina; Pagano, Mario

    2015-01-01

    Highlights: • Photovoltaic system prototype with sun tracking. • Energy analysis of fixed and sun tracking built prototypes. • Experimental tests in different environmental conditions. • Theoretical and experimental validation of the prototype. - Abstract: Photovoltaic technology allows to directly convert solar energy into electrical energy with clear advantages: no environmental impact during operation, reliability and durability of the systems, reduced operating costs and maintenance, ability to both supply remote customers and simply connect to the electrical network. This paper evaluates the performance of two photovoltaic systems: one fixed and one equipped with a sun tracker. The objective of this research is to analyze the increase of daily produced energy by using the sun tracking system. The analysis accounts also the energy consumption of the sun tracker. An analytical approach is proposed. To validate the results through experimental tests, two alternative low power PV systems were built. Each system consists of a PV source, a MPPT (Maximum Power Point Tracker) power converter and a 12 V–40 A h electrochemical battery, which is used as electric load. The sun tracker system evidenced an important growth of power production during morning and evening

  7. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  8. Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology

    Directory of Open Access Journals (Sweden)

    Akash Kumar Shukla

    2016-11-01

    Full Text Available System simulation is necessary to investigate the feasibility of Solar PV system at a given location. This study is done to evaluate the feasibility of grid connected rooftop solar photovoltaic system for a residential Hostel building at MANIT, Bhopal, India (Latitude: 23° 16′ N, Longitude: 77° 36′ E. The study focuses on the use of Solargis PV Planner software as a tool to analyze the performance a 110 kWp solar photovoltaic rooftop plant and also compares the performances of different PV technologies based on simulated energy yield and performance ratio. Solargis proves to easy, fast, accurate and reliable software tool for the simulation of solar PV system.

  9. Techno-economic analysis of stand alone solar pv systems for remote base stations in Ghana. (a case study at Abofrem vodafone cell site)

    International Nuclear Information System (INIS)

    Denkyira, Samuel

    2015-06-01

    Information and Communications Technologies (ICT) have become an important part of today’s global economy. ICT infrastructural development is developing at a very fast pace in Ghana. Growth is above the 1.1% average for Sub-Saharan Africa. The growth in the sector has meant a massive investment in telecommunication infrastructure such as base stations from telecom companies such as Vodafone, Millicom, Glo, Espresso, MTN etc. Hundreds of base stations have been installed all over the country. Currently base stations depend mainly on the national grid, with diesel generators as backups, for its power requirement. In some remote or hilly areas where there are no grid supplied electricity, base stations are usually powered with diesel fuelled generators since lengthy grid extensions may not be cost effective. In addition to high fuel delivery and consumption costs, maintenance of the generators can also be expensive in terms of parts and labour time working on the unit. There are also concerns about environmental pollution using diesel generators. Photovoltaic technology has the ability to convert solar energy into electricity consuming no fossil fuels, using no moving parts, creating no pollution and noise, and lasting for years with little maintenance. The environmental, noise, reliability and power availability benefits of the PV system make it an attractive option. Ghana, being a few degrees north of the equator, is endowed with enormous solar energy resource spread across the entire country. Daily solar radiation level ranges from 4 kWh/m 2 to 6 kWh/m 2 . The annual sunshine duration ranges between 1800 to 3000 hours offering very high potential for grid connected and off grid applications. In this thesis work, the use of solar PV technology as a cost effective source of power for cellular base stations in remote or hilly areas, far off the national grid, is reviewed. RETScreen software is used to determine the technical and financial viability of the PV system

  10. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ryberg, David Severin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  11. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  12. Measures for diffusion of solar PV in selected African countries

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon A.

    2017-01-01

    that governments’ strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include......This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called ‘technology action plans (TAPs)’, which were main outputs of the Technology Needs Assessment project implemented in 10 African countries...... from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donorled market for institutional systems). The paper finds...

  13. Distributed control of PV strings with module integrated converters in presence of a central MPPT

    DEFF Research Database (Denmark)

    Sera, Dezso; Mathe, Laszlo; Blaabjerg, Frede

    2014-01-01

    In some cases it is unavoidable that part of the rooftop PV array is periodically shadowed by an adjacent object, greatly reducing yield. Usually, the time and amount of shadowing is known, and is considered as extra loss due to the location. Module Integrated Converter (MIC) systems are known...

  14. Evaluation of a proper controller performance for maximum-power point tracking of a stand-alone PV system

    Energy Technology Data Exchange (ETDEWEB)

    Nafeh, A.E.-S.A.; Fahmy, F.H. [Electronics Research Institute, Cairo (Egypt); El-Zahab, E.M.A. [Cairo University, Giza (Egypt). Faculty of Engineering

    2003-02-01

    In this paper the implementation of a suggested stand-alone PV system, for maximum-power point tracking (MPPT), is carried out. Also, this paper presents a comparative study, through experimental work, between the conventional PI controller and the fuzzy logic controller (FLC) under different atmospheric conditions. The implemented system with both the PI controller and the FLC gives a good maximum-power operation of the PV array, but the tracking capability for different optimum operating points is better and faster for the case of using the FLC compared to the case of using the PI controller. (author)

  15. The effects on grid matching and ramping requirements, of single and distributed PV systems employing various fixed and sun-tracking technologies

    International Nuclear Information System (INIS)

    Solomon, A.A.; Faiman, D.; Meron, G.

    2010-01-01

    In this second paper, which studies the hourly generation data from the Israel Electric Corporation for the year 2006, with a view to adding very large-scale photovoltaic power (VLS-PV) plants, three major extensions are made to the results reported in our first paper. In the first extension, PV system simulations are extended to include the cases of 1- and 2-axis sun-tracking, and 2-axis concentrator photovoltaic (CPV) technologies. Secondly, the effect of distributing VLS-PV plants among 8 Negev locations, for which hourly metrological data exist, is studied. Thirdly, in addition to studying the effect of VLS-PV on grid penetration, the present paper studies its effect on grid ramping requirements. The principal results are as follows: (i) sun-tracking improves grid matching at high but not low levels of grid flexibility; (ii) geographical distribution has little effect on grid penetration; (iii) VLS-PV significantly increases grid ramping requirements, particularly for CPV systems, but not beyond existing ramping capabilities; (iv) geographical distribution considerably ameliorates this effect.

  16. ASSERT-PV simulations of two-phase flow in horizontal and vertical subchannels

    International Nuclear Information System (INIS)

    Park, J.-W.; Chae, K.M.; Choi, H.

    1999-01-01

    This is a part of the effort to assess the ASSERT-PV code which is supposedly capable of quantifying the effect of small flow boundary changes in the fuel channel of CANDU reactors. Two independently performed subchannel experiments are simulated by the ASSERT-PV code. The result includes the pressure and the void fraction distributions in each subchannel. It is found that the ASSERT-PV predicts both experimental data quite well by selecting the void diffusion constant properly for the adiabatic two-phase flows. (author)

  17. Spatio-temporal analysis of regional PV generation

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2016-01-01

    Photovoltaic (PV) power is growing in importance worldwide and hence needs to be represented in operation and planning of power system. As opposed to traditional generation technologies, it is characterized by exhibiting both a high variability and a significant spatial dependence. This paper...... presents a fundamental analysis of regional solar generation time series, aiming to potentially facilitate large-scale solar integration. It will focus on characterizing the underlying dependence structure at the system level as well as describing both statistical and temporal properties of regional PV...

  18. Training and certification of PV installers in Europe

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Tournaki, Stavroula; Gkouskos, Zacharias; Masson, Gaetan; Holden, John; Huidobro, Ana; Stoykova, Evelina; Rata, Camelia; Bacan, Andro; Maxoulis, Christos; Charalambous, Anthi

    2013-01-01

    The European strategy for the coming decades sets specific targets for a sustainable growth, including reaching a 20% share of renewables in final energy consumption till 2020. To achieve this target, a number of initiatives and measures have been in force. Europe, is currently the largest market for PV systems with more than 75% of the annual worldwide installations in 2011. The favourable European policies as well as the Member States’ supporting legislations have resulted in high market growth for photovoltaics. Applying PV technologies however, requires high qualified technicians to install, repair and maintain them. Until today, national markets have been growing faster than the skilled PV installers force can satisfy. The PVTRIN, an Intelligent Energy Europe action, addresses these issues by developing a training and certification scheme for technicians active in the installation and maintenance of small scale PV systems. During the implementation of the action, a market research was conducted in the six participating countries in order to record the stakeholders’ attitudes, perceptions and considerations and to adapt the training methods, tools and materials to the national PV industry requirements and markets’ needs. Indicative results of this analysis as well as the current situation regarding relevant training and certification schemes are presented in this paper. - Highlights: ► Market research in six EU countries on PV professional Training and Certification needs. ► PVTRIN scheme integrates the national legislations and the market's needs. ► The different aspects (technical, institutional, financial) are presented

  19. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  20. Use of appliances in stand-alone PV power supply systems: problems and solutions. Task 3 use of photovoltaic power systems in stand-alone and island applications

    Energy Technology Data Exchange (ETDEWEB)

    Vallve, X.; Gafas, G. [IEA PVPS, Task 3 (Spain); Villoz, M. [IEA PVPS, Task 3 (Switzerland); Wilshaw, A. [IEA PVPS, Task 3 (United Kingdom); Jacquin, P. [IEA PVPS, Task 3 (France)

    2002-09-15

    In Stand-Alone Photovoltaic Systems (SAPV systems), special attention must be paid to the used appliances and loads. Inappropriate loads are very often the origin of PV system malfunction or failure. Start-up power peaks, or reactive power and harmonic distortion can cause system signal instability and protective devices will close the system down. A well-matched load together with a carefully selected choice of appliances can lead to significant savings in terms of reduced need for PV and electricity storage capacity. Conversely, inefficient appliances and processes, standby loads and inappropriate loads will increase the requirement for expensive PV and storage capacity. This paper presents a survey of real cases with load related problems in worldwide applications, their effect on quality and cost of the service and the solutions that were adopted and suggested alternative solutions. One of the main conclusions of the work is the importance to integrate the choice of the appliance while designing the SAPV system. (author)