WorldWideScience

Sample records for putative transcription factor

  1. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  2. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  3. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  4. SoyDB: a knowledge database of soybean transcription factors

    Directory of Open Access Journals (Sweden)

    Valliyodan Babu

    2010-01-01

    Full Text Available Abstract Background Transcription factors play the crucial rule of regulating gene expression and influence almost all biological processes. Systematically identifying and annotating transcription factors can greatly aid further understanding their functions and mechanisms. In this article, we present SoyDB, a user friendly database containing comprehensive knowledge of soybean transcription factors. Description The soybean genome was recently sequenced by the Department of Energy-Joint Genome Institute (DOE-JGI and is publicly available. Mining of this sequence identified 5,671 soybean genes as putative transcription factors. These genes were comprehensively annotated as an aid to the soybean research community. We developed SoyDB - a knowledge database for all the transcription factors in the soybean genome. The database contains protein sequences, predicted tertiary structures, putative DNA binding sites, domains, homologous templates in the Protein Data Bank (PDB, protein family classifications, multiple sequence alignments, consensus protein sequence motifs, web logo of each family, and web links to the soybean transcription factor database PlantTFDB, known EST sequences, and other general protein databases including Swiss-Prot, Gene Ontology, KEGG, EMBL, TAIR, InterPro, SMART, PROSITE, NCBI, and Pfam. The database can be accessed via an interactive and convenient web server, which supports full-text search, PSI-BLAST sequence search, database browsing by protein family, and automatic classification of a new protein sequence into one of 64 annotated transcription factor families by hidden Markov models. Conclusions A comprehensive soybean transcription factor database was constructed and made publicly accessible at http://casp.rnet.missouri.edu/soydb/.

  5. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  6. NAC Transcription Factors of Barley (Hordeum vulgare L.) and their Involvement in Leaf Senescence

    DEFF Research Database (Denmark)

    Wagner, Michael

    parts of the senescence process. The specific aims of this study were therefore (1) to establish and characterise the NAC transcription factors of the model cereal crop barley (Hordeum vulgare L.) (2) to identify and study putative barley NAC transcription factors involved in the regulation of leaf...

  7. Characterization of a putative cis-regulatory element that controls transcriptional activity of the pig uroplakin II gene promoter

    International Nuclear Information System (INIS)

    Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi; Cho, Ssang-Goo; Park, Chankyu; Oh, Jae-Wook; Song, Hyuk; Kim, Jae-Hwan; Kim, Jin-Hoi

    2011-01-01

    Highlights: → The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. → The core promoter was located in the 5F-1. → Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. → These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, but little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.

  8. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family

    NARCIS (Netherlands)

    Danisman, S.; Dijk, van A.D.J.; Bimbo, A.; Wal, van der F.; Hennig, L.; Folter, de S.; Angenent, G.C.; Immink, R.G.H.

    2013-01-01

    Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and ROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by

  9. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  10. Distinct patterns of epigenetic marks and transcription factor binding ...

    Indian Academy of Sciences (India)

    Distinct patterns of epigenetic marks and transcription factor binding sites across promoters of sense-intronic long noncoding RNAs. Sourav Ghosh, Satish Sati, Shantanu Sengupta and Vinod Scaria. J. Genet. 94, 17–25. Gencode V9 lncRNA gene : 11004. Known lncRNA : 1175. Novel lncRNA : 5898. Putative lncRNA :.

  11. Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPARγ

    Directory of Open Access Journals (Sweden)

    Kathrin Pallauf

    2017-01-01

    Full Text Available Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPARγ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays, we tested their free radical scavenging activities and used α-tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPARγ-dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPARγ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.

  12. Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPARγ.

    Science.gov (United States)

    Pallauf, Kathrin; Duckstein, Nils; Hasler, Mario; Klotz, Lars-Oliver; Rimbach, Gerald

    2017-01-01

    Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPAR γ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones) to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays), we tested their free radical scavenging activities and used α -tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPAR γ -dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPAR γ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.

  13. Purification and crystallization of a putative transcriptional regulator of the benzoate oxidation pathway in Burkholderia xenovorans LB400

    International Nuclear Information System (INIS)

    Law, Adrienne M.; Bains, Jasleen; Boulanger, Martin J.

    2009-01-01

    The X-ray diffraction and preliminary phasing of the putative transcriptional regulator Bxe-C0898 from B. xenovorans LB400 are reported. Burkholderia xenovorans LB400 harbours two paralogous copies of the recently discovered benzoate oxidation (box) pathway. While both copies are functional, the paralogues are differentially regulated and flanked by putative transcriptional regulators from distinct families. The putative LysR-type transcriptional regulator (LTTR) adjacent to the megaplasmid-encoded box enzymes, Bxe-C0898, has been produced recombinantly in Escherichia coli and purified to homogeneity. Gel-filtration studies show that Bxe-C0898 is a tetramer in solution, consistent with previously characterized LTTRs. Bxe-C0898 crystallized with four molecules in the asymmetric unit of the P4 3 2 1 2/P4 1 2 1 2 unit cell with a solvent content of 61.19%, as indicated by processing of the X-ray diffraction data. DNA-protection assays are currently under way in order to identify potential operator regions for this LTTR and to define its role in regulation of the box pathway

  14. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    Directory of Open Access Journals (Sweden)

    Jinyi Liu

    Full Text Available Growth regulating factors (GRFs are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  15. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.

    Science.gov (United States)

    Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H

    2018-09-01

    The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. G =  MAT: linking transcription factor expression and DNA binding data.

    Science.gov (United States)

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  17. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    Science.gov (United States)

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  18. G =  MAT: linking transcription factor expression and DNA binding data.

    Directory of Open Access Journals (Sweden)

    Konstantin Tretyakov

    Full Text Available Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  19. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  20. In Silico Analysis for Transcription Factors With Zn(II2C6 Binuclear Cluster DNA-Binding Domains in Candida albicans

    Directory of Open Access Journals (Sweden)

    Sergi Maicas

    2005-01-01

    presence of the CysX2CysX6CysX5-16CysX2CysX6-8Cys motif and a putative nuclear localization signal. Using this approach, 70 putative Zn(II2C6 transcription factors have been found in the genome of C. albicans.

  1. Crystal Structure of a Putative HTH-Type Transcriptional Regulator yxaF from Bacillus subtilis

    International Nuclear Information System (INIS)

    Seetharaman, J.; Kumaran, D.; Bonanno, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    The New York Structural GenomiX Research Consortium (NYSGXRC) has selected the protein coded by yxaF gene from Bacillus subtilis as a target for structure determination. The yxaF protein has 191 residues with a molecular mass of 21 kDa and had no sequence homology to any structure in the Protein Data Bank (PDB) at the time of target selection. We aimed to elucidate the three-dimensional structure for the putative protein yxaF to better understand the relationship between protein sequence, structure, and function. This protein is annotated as a putative helix-turn-helix (HTH) type transcriptional regulator. Many transcriptional regulators like TetR and QacR use a structurally well-defined DNA-binding HTH motif to recognize the target DNA sequences. DNA-HTH motif interactions have been extensively studied. As the HTH motif is structurally conserved in many regulatory proteins, these DNA-protein complexes show some similarity in DNA recognition patterns. Many such regulatory proteins have a ligand-binding domain in addition to the DNA-binding domain. Structural studies on ligand-binding regulatory proteins provide a wealth of information on ligand-, and possibly drug-, binding mechanisms. Understanding the ligand-binding mechanism may help overcome problems with drug resistance, which represent increasing challenges in medicine. The protein encoded by yxaF, hereafter called T1414, shows fold similar to QacR repressor and TetR/CamR repressor and possesses putative DNA and ligand-binding domains. Here, we report the crystal structure of T1414 and compare it with structurally similar drug and DNA-binding proteins

  2. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  3. Differential transcript abundance and genotypic variation of four putative allergen-encoding gene families in melting peach

    NARCIS (Netherlands)

    Yang, Z.; Ma, Y.; Chen, L.; Xie, R.; Zhang, X.; Zhang, B.; Lu, M.; Wu, S.; Gilissen, L.J.W.J.; Ree, van R.; Gao, Z.

    2011-01-01

    We analysed the temporal and spatial transcript expression of the panel of 18 putative isoallergens from four gene families (Pru p 1–4) in the peach fruit, anther and leaf of two melting cultivars, to gain insight into their expression profiles and to identify the key family members. Genotypic

  4. Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction.

    Science.gov (United States)

    Singh, N K; Eliash, N; Stein, I; Kamer, Y; Ilia, Z; Rafaeli, A; Soroker, V

    2016-04-01

    The ectoparasitic mite Varroa destructor is one of the major threats to apiculture. Using a behavioural choice bioassay, we determined that phoretic mites were more successful in reaching a bee than reproductive mites, suggesting an energy trade-off between reproduction and host selection. We used both chemo-ecological and molecular strategies to identify the regulation of the olfactory machinery of Varroa and its association with reproduction. We focused on transcription regulation. Using primers designed to the conserved DNA binding region of transcription factors, we identified a gene transcript in V. destructor homologous to the pheromone receptor transcription factor (PRTF) gene of Pediculus humanus corporis. Quantitative PCR (qPCR) revealed that this PRTF-like gene transcript is expressed in the forelegs at higher levels than in the body devoid of forelegs. Subsequent comparative qPCR analysis showed that transcript expression was significantly higher in the phoretic as compared to the reproductive stage. Electrophysiological and behavioural studies revealed a reduction in the sensitivity of PRTF RNA interference-silenced mites to bee headspace, consistent with a reduction in the mites' ability to reach a host. In addition, vitellogenin expression was stimulated in PRTF-silenced mites to similar levels as found in reproductive mites. These data shed light upon the regulatory mechanism of host chemosensing in V. destructor. © 2016 The Royal Entomological Society.

  5. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum.

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    Full Text Available Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  6. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    Science.gov (United States)

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  7. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Busche Tobias

    2012-09-01

    Full Text Available Abstract Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly

  8. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum.

    Science.gov (United States)

    Busche, Tobias; Silar, Radoslav; Pičmanová, Martina; Pátek, Miroslav; Kalinowski, Jörn

    2012-09-03

    The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have

  9. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  10. Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger

    DEFF Research Database (Denmark)

    Poulsen, Lars; Andersen, Mikael Rørdam; Lantz, Anna Eliasson

    2012-01-01

    exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants......, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially......Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants...

  11. Regulation of the human ADAMTS-4 promoter by transcription factors and cytokines

    International Nuclear Information System (INIS)

    Thirunavukkarasu, Kannan; Pei, Yong; Moore, Terry L.; Wang, He; Yu, Xiao-peng; Geiser, Andrew G.; Chandrasekhar, Srinivasan

    2006-01-01

    ADAMTS-4 (aggrecanase-1) is a metalloprotease that plays a role in aggrecan degradation in the cartilage extracellular matrix. In order to understand the regulation of ADAMTS-4 gene expression we have cloned and characterized a functional 4.5 kb human ADAMTS-4 promoter. Sequence analysis of the promoter revealed the presence of putative binding sites for nuclear factor of activated T cells (NFAT) and Runx family of transcription factors that are known to regulate chondrocyte maturation and differentiation. Using promoter-reporter assays and mRNA analysis we have analyzed the role of chondrocyte-expressed transcription factors NFATp and Runx2 and have shown that ADAMTS-4 is a potential downstream target of these two factors. Our results suggest that inhibition of the expression/function of NFATp and/or Runx2 may enable us to modulate aggrecan degradation in normal physiology and/or in degenerative joint diseases. The ADAMTS-4 promoter would serve as a valuable mechanistic tool to better understand the regulation of ADAMTS-4 expression by signaling pathways that modulate cartilage matrix breakdown

  12. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  13. A comprehensive analysis of microProteins reveals their potentially widespread mechanism of transcriptional regulation

    NARCIS (Netherlands)

    Magnani, Enrico; de Klein, Niek; Nam, Hye-In; Kim, Jung-Gun; Pham, Kimberly; Fiume, Elisa; Mudgett, Mary Beth; Rhee, Seung Yon

    2014-01-01

    Truncated transcription factor-like proteins called microProteins (miPs) can modulate transcription factor activities, thereby increasing transcriptional regulatory complexity. To understand their prevalence, evolution, and function, we predicted over 400 genes that encode putative miPs from

  14. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  15. Landscape of transcriptional deregulations in the preeclamptic placenta.

    Directory of Open Access Journals (Sweden)

    Daniel Vaiman

    Full Text Available Preeclampsia is a pregnancy disease affecting 5 to 8% of pregnant women and a leading cause of both maternal and fetal mortality and morbidity. Because of a default in the process of implantation, the placenta of preeclamptic women undergoes insufficient vascularization. This results in placental ischemia, inflammation and subsequent release of placental debris and vasoactive factors in the maternal circulation causing a systemic endothelial activation. Several microarray studies have analyzed the transcriptome of the preeclamptic placentas to identify genes which could be involved in placental dysfunction. In this study, we compared the data from publicly available microarray analyses to obtain a consensus list of modified genes. This allowed to identify consistently modified genes in the preeclamptic placenta. Of these, 67 were up-regulated and 31 down-regulated. Assuming that changes in the transcription level of co-expressed genes may result from the coordinated action of a limited number of transcription factors, we looked for over-represented putative transcription factor binding sites in the promoters of these genes. Indeed, we found that the promoters of up-regulated genes are enriched in putative binding sites for NFkB, CREB, ANRT, REEB1, SP1, and AP-2. In the promoters of down-regulated genes, the most prevalent putative binding sites are those of MZF-1, NFYA, E2F1 and MEF2A. These transcriptions factors are known to regulate specific biological pathways such as cell responses to inflammation, hypoxia, DNA damage and proliferation. We discuss here the molecular mechanisms of action of these transcription factors and how they can be related to the placental dysfunction in the context of preeclampsia.

  16. Tagging target genes of the mat1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A)

    NARCIS (Netherlands)

    Keszthelyi, A.; Jeney, A.; Kerenyi, Z.; Mendes, O.; Waalwijk, C.; Hornok, L.

    2007-01-01

    Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with

  17. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  18. Putative Risk Factors in Developmental Dyslexia: A Case-Control Study of Italian Children

    Science.gov (United States)

    Mascheretti, Sara; Marino, Cecilia; Simone, Daniela; Quadrelli, Ermanno; Riva, Valentina; Cellino, Maria Rosaria; Maziade, Michel; Brombin, Chiara; Battaglia, Marco

    2015-01-01

    Although dyslexia runs in families, several putative risk factors that cannot be immediately identified as genetic predict reading disability. Published studies analyzed one or a few risk factors at a time, with relatively inconsistent results. To assess the contribution of several putative risk factors to the development of dyslexia, we conducted…

  19. Evidence for a hierarchical transcriptional circuit in Drosophila male germline involving testis-specific TAF and two gene-specific transcription factors, Mod and Acj6.

    Science.gov (United States)

    Jiang, Mei; Gao, Zhengliang; Wang, Jian; Nurminsky, Dmitry I

    2018-01-01

    To analyze transcription factors involved in gene regulation by testis-specific TAF (tTAF), tTAF-dependent promoters were mapped and analyzed in silico. Core promoters show decreased AT content, paucity of classical promoter motifs, and enrichment with translation control element CAAAATTY. Scanning of putative regulatory regions for known position frequency matrices identified 19 transcription regulators possibly contributing to tTAF-driven gene expression. Decreased male fertility associated with mutation in one of the regulators, Acj6, indicates its involvement in male reproduction. Transcriptome study of testes from male mutants for tTAF, Acj6, and previously characterized tTAF-interacting factor Modulo implies the existence of a regulatory hierarchy of tTAF, Modulo and Acj6, in which Modulo and/or Acj6 regulate one-third of tTAF-dependent genes. © 2017 Federation of European Biochemical Societies.

  20. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism....... The biosynthetic machinery of GLS is governed by interplay of six MYB and three bHLH transcription factors. MYB28, MYB29 and MYB76 regulate methionine-derived GLS, and MYB51, MYB34 and MYB122 regulate tryptophan-derived GLS. The three bHLH transcription factors MYC2, MYC3 and MYC4 physically interact with all six...

  1. Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Hui-Liang Li

    2014-09-01

    Full Text Available The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

  2. Inter- and intra-combinatorial regulation by transcription factors and microRNAs

    Directory of Open Access Journals (Sweden)

    Chang Joseph T

    2007-10-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the translation of messenger RNAs (mRNAs or degrade mRNAs. miRNAs play important roles in development and differentiation, and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs from a statistical standpoint is a first step that may elucidate some of their roles in various biological processes. Results Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations ("interactions" among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an additional Bayesian measure that incorporates

  3. Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Heilbronn, T.; Jahn, G.; Buerkle, A.; Freese, U.K.; Fleckenstein, B.; Zur Hausen, H.

    1987-01-01

    The human cytomegalovirus (HCMV)-induced DNA polymerase has been well characterized biochemically and functionally, but its genomic location has not yet been assigned. To identify the coding sequence, cross-hybridization with the herpes simplex virus type 1 (HSV-1) polymerase gene was used, as suggested by the close similarity of the herpes group virus-induced DNA polymerases to the HCMV DNA polymerase. A cosmid and plasmid library of the entire HCMV genome was screened with the BamHI Q fragment of HSF-1 at different stringency conditions. One PstI-HincII restriction fragment of 850 base pairs mapping within the EcoRI M fragment of HCMV cross-hybridized at T/sub m/ - 25/degrees/C. Sequence analysis revealed one open reading frame spanning the entire sequence. The amino acid sequence showed a highly conserved domain of 133 amino acids shared with the HSV and putative Esptein-Barr virus polymerase sequences. This domain maps within the C-terminal part of the HSV polymerase gene, which has been suggested to contain part of the catalytic center of the enzyme. Transcription analysis revealed one 5.4-kilobase early transcript in the sense orientation with respect to the open reading frame identified. This transcript appears to code for the 140-kilodalton HCMV polymerase protein

  4. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors.

    Science.gov (United States)

    Motohashi, Hozumi; O'Connor, Tania; Katsuoka, Fumiki; Engel, James Douglas; Yamamoto, Masayuki

    2002-07-10

    Recent progress in the analysis of transcriptional regulation has revealed the presence of an exquisite functional network comprising the Maf and Cap 'n' collar (CNC) families of regulatory proteins, many of which have been isolated. Among Maf factors, large Maf proteins are important in the regulation of embryonic development and cell differentiation, whereas small Maf proteins serve as obligatory heterodimeric partner molecules for members of the CNC family. Both Maf homodimers and CNC-small Maf heterodimers bind to the Maf recognition element (MARE). Since the MARE contains a consensus TRE sequence recognized by AP-1, Jun and Fos family members may act to compete or interfere with the function of CNC-small Maf heterodimers. Overall then, the quantitative balance of transcription factors interacting with the MARE determines its transcriptional activity. Many putative MARE-dependent target genes such as those induced by antioxidants and oxidative stress are under concerted regulation by the CNC family member Nrf2, as clearly proven by mouse germline mutagenesis. Since these genes represent a vital aspect of the cellular defense mechanism against oxidative stress, Nrf2-null mutant mice are highly sensitive to xenobiotic and oxidative insults. Deciphering the molecular basis of the regulatory network composed of Maf and CNC families of transcription factors will undoubtedly lead to a new paradigm for the cooperative function of transcription factors.

  5. Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic gene

    Science.gov (United States)

    Xiaomei Liu; Joseph Anderson; Paula Pijut

    2010-01-01

    Members of the AGAMOUS subfamily of MADS-box transcription factors play an important role in regulating the development of reproductive organs in flowering plants. To help understand the mechanism of floral development in black cherry (Prunus serotina), PsAG (a putative flower homeotic identity gene) was isolated...

  6. Estrogen-induced transcription factor EGR1 regulates c-Kit transcription in the mouse uterus to maintain uterine receptivity for embryo implantation.

    Science.gov (United States)

    Park, Mira; Kim, Hye-Ryun; Kim, Yeon Sun; Yang, Seung Chel; Yoon, Jung Ah; Lyu, Sang Woo; Lim, Hyunjung Jade; Hong, Seok-Ho; Song, Haengseok

    2018-07-15

    Early growth response 1 (Egr1) is a key transcription factor that mediates the action of estrogen (E 2 ) to establish uterine receptivity for embryo implantation. However, few direct target genes of EGR1 have been identified in the uterus. Here, we demonstrated that E 2 induced EGR1-regulated transcription of c-Kit, which plays a crucial role in cell fate decisions. Spatiotemporal expression of c-Kit followed that of EGR1 in uteri of ovariectomized mice at various time points after E 2 treatment. E 2 activated ERK1/2 and p38 to induce EGR1, which then activated c-Kit expression in the uterus. EGR1 transfection produced rapid and transient induction of c-KIT in a time- and dose-dependent manner. Furthermore, luciferase assays to measure c-Kit promoter activity confirmed that a functional EGR1 binding site(s) (EBS) was located within -1 kb of the c-Kit promoter. Site-directed mutagenesis and chromatin immunoprecipitation-PCR for three putative EBS within -1 kb demonstrated that the EBS at -818/-805 was critical for EGR1-dependent c-Kit transcription. c-Kit expression was significantly increased in the uterus on day 4 and administration of Masitinib, a c-Kit inhibitor, effectively interfered with embryo implantation. Collectively, our results showed that estrogen induces transcription factor EGR1 to regulate c-Kit transcription for uterine receptivity for embryo implantation in the mouse uterus. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Katsuhiko; De Angelis, Jacqueline; Roeder, Robert G.; Burley, Stephen K. (Rockefeller)

    2012-12-13

    The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-{angstrom} resolution. The {alpha}/{beta} structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3{gamma} (HNF-3{gamma}), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3{gamma} and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the {beta} subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

  8. The putative bZIP transcription factor BzpN slows proliferation and functions in the regulation of cell density by autocrine signals in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Jonathan E Phillips

    Full Text Available The secreted proteins AprA and CfaD function as autocrine signals that inhibit cell proliferation in Dictyostelium discoideum, thereby regulating cell numbers by a negative feedback mechanism. We report here that the putative basic leucine zipper transcription factor BzpN plays a role in the inhibition of proliferation by AprA and CfaD. Cells lacking BzpN proliferate more rapidly than wild-type cells but do not reach a higher stationary density. Recombinant AprA inhibits wild-type cell proliferation but does not inhibit the proliferation of cells lacking BzpN. Recombinant CfaD also inhibits wild-type cell proliferation, but promotes the proliferation of cells lacking BzpN. Overexpression of BzpN results in a reduced cell density at stationary phase, and this phenotype requires AprA, CfaD, and the kinase QkgA. Conditioned media from high-density cells stops the proliferation of wild-type but not bzpN(- cells and induces a nuclear localization of a BzpN-GFP fusion protein, though this localization does not require AprA or CfaD. Together, the data suggest that BzpN is necessary for some but not all of the effects of AprA and CfaD, and that BzpN may function downstream of AprA and CfaD in a signal transduction pathway that inhibits proliferation.

  9. The putative bZIP transcription factor BzpN slows proliferation and functions in the regulation of cell density by autocrine signals in Dictyostelium.

    Science.gov (United States)

    Phillips, Jonathan E; Huang, Eryong; Shaulsky, Gad; Gomer, Richard H

    2011-01-01

    The secreted proteins AprA and CfaD function as autocrine signals that inhibit cell proliferation in Dictyostelium discoideum, thereby regulating cell numbers by a negative feedback mechanism. We report here that the putative basic leucine zipper transcription factor BzpN plays a role in the inhibition of proliferation by AprA and CfaD. Cells lacking BzpN proliferate more rapidly than wild-type cells but do not reach a higher stationary density. Recombinant AprA inhibits wild-type cell proliferation but does not inhibit the proliferation of cells lacking BzpN. Recombinant CfaD also inhibits wild-type cell proliferation, but promotes the proliferation of cells lacking BzpN. Overexpression of BzpN results in a reduced cell density at stationary phase, and this phenotype requires AprA, CfaD, and the kinase QkgA. Conditioned media from high-density cells stops the proliferation of wild-type but not bzpN(-) cells and induces a nuclear localization of a BzpN-GFP fusion protein, though this localization does not require AprA or CfaD. Together, the data suggest that BzpN is necessary for some but not all of the effects of AprA and CfaD, and that BzpN may function downstream of AprA and CfaD in a signal transduction pathway that inhibits proliferation.

  10. Reconstruction of the core and extended regulons of global transcription factors.

    Directory of Open Access Journals (Sweden)

    Yann S Dufour

    2010-07-01

    Full Text Available The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across alpha-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual alpha-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 alpha-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator in the alpha-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other

  11. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Charfeddine, Mariam; Saïdi, Mohamed Najib; Charfeddine, Safa; Hammami, Asma; Gargouri Bouzid, Radhia

    2015-04-01

    The ERF transcription factors belong to the AP2/ERF superfamily, one of the largest transcription factor families in plants. They play important roles in plant development processes, as well as in the response to biotic, abiotic, and hormone signaling. In the present study, 155 putative ERF transcription factor genes were identified from the potato (Solanum tuberosum) genome database, and compared with those from Arabidopsis thaliana. The StERF proteins are divided into ten phylogenetic groups. Expression analyses of five StERFs were carried out by semi-quantitative RT-PCR and compared with published RNA-seq data. These latter analyses were used to distinguish tissue-specific, biotic, and abiotic stress genes as well as hormone-responsive StERF genes. The results are of interest to better understand the role of the AP2/ERF genes in response to diverse types of stress in potatoes. A comprehensive analysis of the physiological functions and biological roles of the ERF family genes in S. tuberosum is required to understand crop stress tolerance mechanisms.

  12. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    Science.gov (United States)

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  13. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress.

    Science.gov (United States)

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.

  14. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    Science.gov (United States)

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf; Schmeier, Sebastian; Bajic, Vladimir B.

    2010-01-01

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  16. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  17. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. The WRKY transcription factor family in Brachypodium distachyon.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Langum, Tanner J; Boken, Ashley K; Rushton, Deena L; Boomsma, Darius D; Rinerson, Charles I; Rabara, Jennifer; Reese, R Neil; Chen, Xianfeng; Rohila, Jai S; Rushton, Paul J

    2012-06-22

    A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. The description of the WRKY transcription factor

  19. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early

  20. Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Lars Poulsen

    Full Text Available Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0. Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis.

  1. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  2. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  3. In silico comparative genomic analysis of GABAA receptor transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Joyce Christopher J

    2007-06-01

    Full Text Available Abstract Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs. Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.

  4. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction.

    Science.gov (United States)

    Ashworth, Justin; Plaisier, Christopher L; Lo, Fang Yin; Reiss, David J; Baliga, Nitin S

    2014-01-01

    Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.

  5. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    International Nuclear Information System (INIS)

    Murugan, R

    2010-01-01

    In this paper, we develop a theory on the mechanism of distal action of the transcription factors, which are bound at their respective cis-regulatory enhancer modules on the promoter-RNA polymerase II (PR) complexes to initiate the transcription event in eukaryotes. We consider both the looping and tracking modes of their distal communication and calculate the mean first passage time that is required for the distal interactions of the complex of enhancer and transcription factor with the PR via both these modes. We further investigate how this mean first passage time is dependent on the length of the DNA segment (L, base-pairs) that connects the cis-regulatory binding site and the respective promoter. When the radius of curvature of this connecting segment of DNA is R that was induced upon binding of the transcription factor at the cis-acting element and RNAPII at the promoter in cis-positions, our calculations indicate that the looping mode of distal action will dominate when L is such that L > 2πR and the tracking mode of distal action will be favored when L 2 bps. It seems that the free energy associated with the binding of the transcription factor with its cis-acting element and the distance of this cis-acting element from the corresponding promoter of the gene of interest is negatively correlated. Our results suggest that the looping and tracking modes of distal action are concurrently operating on the transcription activation and the physics that determines the timescales associated with the looping/tracking in the mechanism of action of these transcription factors on the initiation of the transcription event must put a selection pressure on the distribution of the distances of cis-regulatory modules from their respective promoters of the genes. The computational analysis of the upstream sequences of promoters of various genes in the human and mouse genomes for the presence of putative cis-regulatory elements for a set of known transcription factors using

  6. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep; MacPherson, Cameron R; Schmeier, Sebastian; Narasimhan, Kothandaraman; Choolani, Mahesh; Bajic, Vladimir B.

    2011-01-01

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  7. In Silico discovery of transcription factors as potential diagnostic biomarkers of ovarian cancer

    KAUST Repository

    Kaur, Mandeep

    2011-09-19

    Background: Our study focuses on identifying potential biomarkers for diagnosis and early detection of ovarian cancer (OC) through the study of transcription regulation of genes affected by estrogen hormone.Results: The results are based on a set of 323 experimentally validated OC-associated genes compiled from several databases, and their subset controlled by estrogen. For these two gene sets we computationally determined transcription factors (TFs) that putatively regulate transcription initiation. We ranked these TFs based on the number of genes they are likely to control. In this way, we selected 17 top-ranked TFs as potential key regulators and thus possible biomarkers for a set of 323 OC-associated genes. For 77 estrogen controlled genes from this set we identified three unique TFs as potential biomarkers.Conclusions: We introduced a new methodology to identify potential diagnostic biomarkers for OC. This report is the first bioinformatics study that explores multiple transcriptional regulators of OC-associated genes as potential diagnostic biomarkers in connection with estrogen responsiveness. We show that 64% of TF biomarkers identified in our study are validated based on real-time data from microarray expression studies. As an illustration, our method could identify CP2 that in combination with CA125 has been reported to be sensitive in diagnosing ovarian tumors. 2011 Kaur et al; licensee BioMed Central Ltd.

  8. Characterization of Putative cis-Regulatory Elements in Genes Preferentially Expressed in Arabidopsis Male Meiocytes

    Directory of Open Access Journals (Sweden)

    Junhua Li

    2014-01-01

    Full Text Available Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and meiotic recombination occur. The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors (TFs with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative cis-regulatory elements (CREs associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb of the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis, our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the specific TFs that drive gene expression in meiocytes.

  9. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has......NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...

  10. Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer.

    Science.gov (United States)

    Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2017-02-28

    Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.

  11. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  12. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  13. Theory on the mechanism of distal action of transcription factors: looping of DNA versus tracking along DNA

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, R, E-mail: rmurugan@gmail.co [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-10-15

    of the upstream sequences of promoters of various genes in the human and mouse genomes for the presence of putative cis-regulatory elements for a set of known transcription factors using the position weight matrices available with the JASPAR database indicates the presence of cis-acting elements with maximum probability at a distance of {approx}10{sup 2} bps from the promoters which substantiates our theoretical predictions.

  14. Purification, crystallization and preliminary X-ray crystallographic analysis of ST1022, a putative member of the Lrp/AsnC family of transcriptional regulators isolated from Sulfolobus tokodaii strain 7

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Noboru; Kumarevel, Thirumananseri, E-mail: tskvel@spring8.or.jp; Matsunaga, Emiko; Shinkai, Akeo [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kuramitsu, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biological Sciences, Graduate School of Science, Osaka University, Tayonaka, Osaka 560-0043 (Japan); Yokoyama, Shigeyuki, E-mail: tskvel@spring8.or.jp [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Genomic Sciences Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2007-11-01

    A putative member of the Lrp/AsnC family of transcriptional regulators, ST1022 from S. tokodaii strain 7, has been purified and crystallized in the absence and presence of the effector l-glutamine. A molecular-replacement solution was found using the FL11 transcriptional regulator from Pyrococcus sp. OT3 as a model and structural refinement is under way. The Lrp/AsnC family of transcriptional regulators, also known as feast/famine transcriptional regulators, are widely distributed among bacteria and archaea. This family of proteins are likely to be involved in cellular metabolism, with exogenous amino acids functioning as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of ST1022, a member of the Lrp/AsnC family of proteins, is reported with and without exogenous glutamine as the effector molecule. The crystals of native ST1022 and of the putative complex belong to the tetragonal space group I422, with unit-cell parameters a = b = 103.771, c = 73.297 Å and a = b = 103.846, c = 73.992 Å, respectively. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of one monomer per asymmetric unit.

  15. Purification, crystallization and preliminary X-ray crystallographic analysis of ST1022, a putative member of the Lrp/AsnC family of transcriptional regulators isolated from Sulfolobus tokodaii strain 7

    International Nuclear Information System (INIS)

    Nakano, Noboru; Kumarevel, Thirumananseri; Matsunaga, Emiko; Shinkai, Akeo; Kuramitsu, Seiki; Yokoyama, Shigeyuki

    2007-01-01

    A putative member of the Lrp/AsnC family of transcriptional regulators, ST1022 from S. tokodaii strain 7, has been purified and crystallized in the absence and presence of the effector l-glutamine. A molecular-replacement solution was found using the FL11 transcriptional regulator from Pyrococcus sp. OT3 as a model and structural refinement is under way. The Lrp/AsnC family of transcriptional regulators, also known as feast/famine transcriptional regulators, are widely distributed among bacteria and archaea. This family of proteins are likely to be involved in cellular metabolism, with exogenous amino acids functioning as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of ST1022, a member of the Lrp/AsnC family of proteins, is reported with and without exogenous glutamine as the effector molecule. The crystals of native ST1022 and of the putative complex belong to the tetragonal space group I422, with unit-cell parameters a = b = 103.771, c = 73.297 Å and a = b = 103.846, c = 73.992 Å, respectively. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of one monomer per asymmetric unit

  16. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Redman Julia C

    2008-07-01

    Full Text Available Abstract Background Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs, which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. Results We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. Conclusion High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.

  17. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  18. DNA residence time is a regulatory factor of transcription repression

    Science.gov (United States)

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  19. Transcriptional Activation Domains of the Candida albicans Gcn4p and Gal4p Homologs▿ †

    OpenAIRE

    Martchenko, Mikhail; Levitin, Anastasia; Whiteway, Malcolm

    2006-01-01

    Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C6 zinc cluster (Gal4p) families; C. albi...

  20. Runx transcription factors in neuronal development

    Directory of Open Access Journals (Sweden)

    Shiga Takashi

    2008-08-01

    Full Text Available Abstract Runt-related (Runx transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.

  1. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  2. Potential Role of Activating Transcription Factor 5 during Osteogenesis.

    Science.gov (United States)

    Vicari, Luisa; Calabrese, Giovanna; Forte, Stefano; Giuffrida, Raffaella; Colarossi, Cristina; Parrinello, Nunziatina Laura; Memeo, Lorenzo

    2016-01-01

    Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  3. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  4. Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yangrae; Srivastava, Akhil; Ohm, Robin A.; Lawrence, Christopher B.; Wang, Koon-Hui; Grigoriev, Igor V.; Marahatta, Sharadchandra P.

    2012-05-01

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC) were nonpathogenic and another gene (AbVf8) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of the third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of ?amr1 and characterized their phenotypes. The ?amr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.

  5. Polyphenol Compound as a Transcription Factor Inhibitor.

    Science.gov (United States)

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  6. Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor

    Science.gov (United States)

    D'Astolfo, Diego S.; Cardoso, Fernanda C.; Rajão, Matheus A.; Mourão, Marina M.; Gava, Elisandra; Oliveira, Sérgio C.; Macedo, Andréa M.; Machado, Carlos R.; Pena, Sérgio D. J.; Kitten, Gregory T.; Franco, Glória R.

    2009-01-01

    Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis

  7. Radiation activation of transcription factors in mammalian cells

    International Nuclear Information System (INIS)

    Kraemer, M.; Stein, B.; Mai, S.; Kunz, E.; Koenig, H.; Ponta, H.; Herrlich, P.; Rahmsdorf, H.J.; Loferer, H.; Grunicke, H.H.

    1990-01-01

    In mammalian cells radiation induces the enhanced transcription of several genes. The cis acting elements in the control region of inducible genes have been delimited by site directed mutagenesis. Several different elements have been found in different genes. They do not only activate gene transcription in response to radiation but also in response to growth factors and to tumor promoter phorbol esters. The transcription factors binding to these elements are present also in non-irradiated cells, but their DNA binding activity and their transactivating capability is increased upon irradiation. The signal chain linking the primary radiation induced signal (damaged DNA) to the activation of transcription factors involves the action of (a) protein kinase(s). (orig.)

  8. Identification of Putative Ortholog Gene Blocks Involved in Gestant and Lactating Mammary Gland Development: A Rodent Cross-Species Microarray Transcriptomics Approach

    Science.gov (United States)

    Rodríguez-Cruz, Maricela; Coral-Vázquez, Ramón M.; Hernández-Stengele, Gabriel; Sánchez, Raúl; Salazar, Emmanuel; Sanchez-Muñoz, Fausto; Encarnación-Guevara, Sergio; Ramírez-Salcedo, Jorge

    2013-01-01

    The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development. PMID:24288657

  9. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Mullins, D'Anna N; Crawford, Erin L; Khuder, Sadik A; Hernandez, Dawn-Alita; Yoon, Youngsook; Willey, James C

    2005-01-01

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  10. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  11. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hokyoung Son

    2011-10-01

    Full Text Available Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs resulted in a database of over 11,000 phenotypes (phenome. This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.

  12. Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response

    International Nuclear Information System (INIS)

    Tajima, Hiromi; Iwata, Yuji; Iwano, Megumi; Takayama, Seiji; Koizumi, Nozomu

    2008-01-01

    Among 75 bZIP transcription factors identified in Arabidopsis, 3 (AtbZIP17, AtbZIP28, and AtbZIP49) possess a putative transmembrane domain (TMD) in addition to AtbZIP60, which was characterized previously. In the present study, cDNAs of AtbZIP17 and AtbZIP28 were isolated. Truncated forms of AtbZIP17 and AtbZIP28 lacking the C-terminal domain including TMD were examined as putative active forms. One of them, AtbZIP28ΔC, activated BiP1 and BiP3 promoters through the cis-elements P-UPRE and ERSE responsible for the ER stress response. Subsequently, a fusion protein of green fluorescent protein (GFP) and AtbZIP28 was expressed in Arabidopsis cultured cells. Under non-stress conditions, GFP fluorescence localization almost overlapped with an ER marker; however, tunicamycin and dithiothreitol treatment clearly increased GFP fluorescence in the nucleus suggesting that the N-terminal fragment of AtbZIP28 translocates to the nucleus in response to ER stress

  13. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  14. Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebrafish

    International Nuclear Information System (INIS)

    Urbatzka, R.; Rocha, E.; Reis, B.; Cruzeiro, C.; Monteiro, R.A.F.; Rocha, M.J.

    2012-01-01

    In natural environments fish are exposed to endocrine disrupting compounds (EDCs) present at low concentrations and with different modes of actions. Here, adult zebrafish of both sexes were exposed for 21 days to an estrogenic mixture (Mix) of eleven EDCs previously quantified in Douro River estuary (Portugal) and to 100 ng/L 17α-ethinylestradiol (EE2) as positive control. Vitellogenin mRNA and HSI in males confirmed both exposure regimes as physiologically active. Potential candidates for estrogenic disturbance of steroidogenesis were identified (StAR, 17β-HSD1, cyp19a1), but Mix only affected cyp19a1 in females. Significant differences in the response of FSHβ, cypa19a2, 20β-HSD were observed between EE2 and Mix. Mtf-1 and tfap2c transcription factor binding sites were discovered in the putative promoter regions and corresponding transcription factors were found to be differentially expressed in response to Mix and EE2. The results suggest that “non-classical effects” of estrogenic EDC in fish are mediated via transcription factors. - Highlights: ► Zebrafish were exposed to an estrogenic mixture (Mix) and to EE2 as positive control. ► Both exposure regimes were confirmed as physiologically active. ► Different disturbances on steroidogenesis were observed in males and females. ► A male gene expression pattern suggested a differential interference of Mix and EE2. ► Non-classical effects of Mix seem to be mediated via transcription factors. - An estrogenic mixture revealed different effects on specific transcription factors than EE2, probably due to multiple modes of actions of the chosen compounds.

  15. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  16. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  17. Emerging Functions of Transcription Factors in Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  18. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  19. NUR TRANSCRIPTION FACTORS IN STRESS AND ADDICTION

    Directory of Open Access Journals (Sweden)

    Danae eCampos-Melo

    2013-12-01

    Full Text Available The Nur transcription factors Nur77 (NGFI-B, NR4A1, Nurr1 (NR4A2 and Nor-1 (NR4A3 are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit, due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction.

  20. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRβ motif and NF-κB cytoplasmic sequestration

    International Nuclear Information System (INIS)

    Li, Hui; Zhan, TaiLan; Li, Chang; Liu, Mugen; Wang, Qing K.

    2009-01-01

    Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXRβ binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-α-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-κB. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-α (which can activate NF-κB directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated.

  1. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice.

    Science.gov (United States)

    Rahman, Hifzur; Ramanathan, Valarmathi; Nallathambi, Jagedeeshselvam; Duraialagaraja, Sudhakar; Muthurajan, Raveendran

    2016-05-11

    NAC proteins (NAM (No apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup-shaped cotyledon)) are plant-specific transcription factors reported to be involved in regulating growth, development and stress responses. Salinity responsive transcriptome profiling in a set of contrasting finger millet genotypes through RNA-sequencing resulted in the identification of a NAC homolog (EcNAC 67) exhibiting differential salinity responsive expression pattern. Full length cDNA of EcNAC67 was isolated, characterized and validated for its role in abiotic stress tolerance through agrobacterium mediated genetic transformation in a rice cultivar ASD16. Bioinformatics analysis of putative NAC transcription factor (TF) isolated from a salinity tolerant finger millet showed its genetic relatedness to NAC67 family TFs in related cereals. Putative transgenic lines of rice over-expressing EcNAC67 were generated through Agrobacterium mediated transformation and presence/integration of transgene was confirmed through PCR and southern hybridization analysis. Transgenic rice plants harboring EcNAC67 showed enhanced tolerance against drought and salinity under greenhouse conditions. Transgenic rice plants were found to possess higher root and shoot biomass during stress and showed better revival ability upon relief from salinity stress. Upon drought stress, transgenic lines were found to maintain higher relative water content and lesser reduction in grain yield when compared to non-transgenic ASD16 plants. Drought induced spikelet sterility was found to be much lower in the transgenic lines than the non-transgenic ASD16. Results revealed the significant role of EcNAC67 in modulating responses against dehydration stress in rice. No detectable abnormalities in the phenotypic traits were observed in the transgenic plants under normal growth conditions. Results indicate that EcNAC67 can be used as a novel source for engineering tolerance against drought and salinity

  2. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yangrae; Ohm, Robin A. [US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA; Grigoriev, Igor V. [US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA; Srivastava, Akhil [Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, St John 317, Honolulu, HI, 96822, USA

    2013-05-24

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2 gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.

  3. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.; Belostotsky, A. A.; Kasianov, Artem S.; Esipova, Natalia G.; Medvedeva, Yulia; Eliseeva, Irina A.; Makeev, Vsevolod J.

    2011-01-01

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding

  4. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.

    Science.gov (United States)

    Qureshi, S A; Bell, S D; Jackson, S P

    1997-05-15

    Archaea (archaebacteria) constitute a domain of life that is distinct from Bacteria (eubacteria) and Eucarya (eukaryotes). Although archaeal cells share many morphological features with eubacteria, their transcriptional apparatus is more akin to eukaryotic RNA polymerases I, II and III than it is to eubacterial transcription systems. Thus, in addition to possessing a 10 subunit RNA polymerase and a homologue of the TATA-binding protein (TBP), Archaea possess a polypeptide termed TFB that is homologous to eukaryotic TFIIB. Here, we investigate the factor requirements for transcription of several promoters of the archaeon Sulfolobus shibatae and its associated virus SSV. Through in vitro transcription and immunodepletion, we demonstrate that S. shibatae TBP, TFB and RNA polymerase are not complexed tightly with one another and that each is required for efficient transcription of all promoters tested. Furthermore, full transcription is restored by supplementing respective depleted extracts with recombinant TBP or TFB, indicating that TBP-associated factors or TFB-associated factors are not required. Indeed, gel-filtration suggests that Sulfolobus TBP and TFB are not associated stably with other proteins. Finally, all promoters analysed are transcribed accurately and efficiently in an in vitro system comprising recombinant TBP and TFB, together with essentially homogeneous preparation of RNA polymerase. Transcription in Archaea is therefore fundamentally homologous to that in eukaryotes, although factor requirements appear to be much less complex.

  5. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  6. Detecting Differential Transcription Factor Activity from ATAC-Seq Data

    Directory of Open Access Journals (Sweden)

    Ignacio J. Tripodi

    2018-05-01

    Full Text Available Transcription factors are managers of the cellular factory, and key components to many diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either by directly altering the protein or its functional activity at individual binding sites. Here we first briefly summarize high-throughput approaches to studying transcription factor activity. We then demonstrate, using published chromatin accessibility data (specifically ATAC-seq, that the genome-wide profile of TF recognition motifs relative to regions of open chromatin can determine the key transcription factor altered by a perturbation. Our method of determining which TFs are altered by a perturbation is simple, is quick to implement, and can be used when biological samples are limited. In the future, we envision that this method could be applied to determine which TFs show altered activity in response to a wide variety of drugs and diseases.

  7. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  8. Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola.

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    Full Text Available Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC were nonpathogenic and another gene (AbVf8 caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of the third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of Δamr1 and characterized their phenotypes. The Δamr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.

  9. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity

    International Nuclear Information System (INIS)

    Liu Wenjin; Sun Maoyun; Jiang Jianhai; Shen Xiaoyun; Sun Qing; Liu Weicheng; Shen Hailian; Gu Jianxin

    2004-01-01

    The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator

  10. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  11. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Smet, De I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G.

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF)

  12. A critique on nuclear factor-kappa B and signal transducer and activator of transcription 3: The key transcription factors in periodontal pathogenesis

    Directory of Open Access Journals (Sweden)

    Ranjith Ambili

    2017-01-01

    Full Text Available Periodontal disease is initiated by microorganisms in dental plaque, and host immunoinflammatory response to the microbial challenge helps in disease progression. Conventional periodontal therapy was mainly targeted on the elimination of microbial component. However, a better understanding of molecular aspects in host response will enable the clinicians to formulate effective host modulation therapy (HMT for the periodontal management. Inflammatory mediators were the main targets for HMT in the past. Transcription factors can regulate the production of multiple mediators simultaneously, and inhibition of these factors will be more beneficial than blocking individual molecule. Two important transcription factors implicated in chronic inflammatory diseases are nuclear factor kappa B (NF-κB and signal transducers and activators of transcription 3. The role of these factors in periodontal disease is a less explored area. This comprehensive review is aimed at unveiling the critical role of NF-κB and signal transducers and activators of transcription 3 in periodontal pathogenesis. An online search was performed using MEDLINE/PubMed database. All publications till 2016 related to NF-κB, signal transducer and activator of transcription 3 (STAT3, and inflammation were included in writing this review. A total of 27,390 references were published based on the search terms used. Out of these, 507 were related to the periodontal research published in English till 2016. Relevant papers were chosen after carefully reading the abstract. This review has attempted to comprehend the existing knowledge regarding the role of transcription factors NF-κB and STAT3 in periodontal disease. Moreover, it also provides a connecting molecular link for the periodontal medicine concept.

  13. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  14. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  15. Thirty-seven transcription factor genes differentially respond to a ...

    Indian Academy of Sciences (India)

    Plant transcription factors and insect defence si. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. HUNLIN. PIN. RUOXUE LIŲ, BEIBEI LÜ, XIAOMENG WANG, CHUNLING ZHANG, SHUPING ZHANG, JUN QIAN, LEI CHEN,.

  16. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Thalor

    Full Text Available Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small basic region-leucine zipper (bZIP-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT. It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  17. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Science.gov (United States)

    Thalor, Sunil Kumar; Berberich, Thomas; Lee, Sung Shin; Yang, Seung Hwan; Zhu, Xujun; Imai, Ryozo; Takahashi, Yoshihiro; Kusano, Tomonobu

    2012-01-01

    Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small) basic region-leucine zipper (bZIP)-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT). It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF) found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  18. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  19. NAC Transcription Factors in Stress Responses and Senescence

    DEFF Research Database (Denmark)

    O'Shea, Charlotte

    Plant-specific NAM/ATAF/CUC (NAC) transcription factors have recently received considerable attention due to their significant roles in plant development and stress signalling. This interest has resulted in a number of physiological, genetic and cell biological studies of their functions. Some...... of these studies have also revealed emerging gene regulatory networks and protein-protein interaction networks. However, structural studies relating structure to function are lagging behind. Structure-function analysis of the NAC transcription factors has therefore been the main focus of this PhD thesis...... not involve significant folding-upon-binding but fuzziness or an extended ANAC046 region. The ANAC046 regulatory domain functions as an entropic chain with a bait for interactions with for example RCD1. RCD1 interacts with transcription factors from several different families, and the large stress...

  20. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  1. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.

    Science.gov (United States)

    Deokar, Amit A; Kondawar, Vishwajith; Kohli, Deshika; Aslam, Mohammad; Jain, Pradeep K; Karuppayil, S Mohan; Varshney, Rajeev K; Srinivasan, Ramamurthy

    2015-01-01

    The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world's most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes.

  2. Cross-Family Transcription Factor Interactions

    NARCIS (Netherlands)

    Bemer, Marian; Dijk, van Aalt-Jan; Immink, Richard G.H.; Angenent, Gerco C.

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger

  3. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  4. Transcription factor interplay in T helper cell differentiation

    Science.gov (United States)

    Evans, Catherine M.

    2013-01-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity. PMID:23878131

  5. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  6. Convergent evolution of RFX transcription factors and ciliary genes predated the origin of metazoans

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-05-01

    Full Text Available Abstract Background Intraflagellar transport (IFT genes, which are critical for the development and function of cilia and flagella in metazoans, are tightly regulated by the Regulatory Factor X (RFX transcription factors (TFs. However, how and when their evolutionary relationship was established remains unknown. Results We have identified evidence suggesting that RFX TFs and IFT genes evolved independently and their evolution converged before the first appearance of metazoans. Both ciliary genes and RFX TFs exist in all metazoans as well as some unicellular eukaryotes. However, while RFX TFs and IFT genes are found simultaneously in all sequenced metazoan genomes, RFX TFs do not co-exist with IFT genes in most pre-metazoans and thus do not regulate them in these organisms. For example, neither the budding yeast nor the fission yeast possesses cilia although both have well-defined RFX TFs. Conversely, most unicellular eukaryotes, including the green alga Chlamydomonas reinhardtii, have typical cilia and well conserved IFT genes but lack RFX TFs. Outside of metazoans, RFX TFs and IFT genes co-exist only in choanoflagellates including M. brevicollis, and only one fungus Allomyces macrogynus of the 51 sequenced fungus genomes. M. brevicollis has two putative RFX genes and a full complement of ciliary genes. Conclusions The evolution of RFX TFs and IFT genes were independent in pre-metazoans. We propose that their convergence in evolution, or the acquired transcriptional regulation of IFT genes by RFX TFs, played a pivotal role in the establishment of metazoan.

  7. Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice

    Directory of Open Access Journals (Sweden)

    Li Xianghua

    2009-06-01

    Full Text Available Abstract Background Rice transcription regulator OsWRKY13 influences the functioning of more than 500 genes in multiple signalling pathways, with roles in disease resistance, redox homeostasis, abiotic stress responses, and development. Results To determine the putative transcriptional regulation mechanism of OsWRKY13, the putative cis-acting elements of OsWRKY13-influenced genes were analyzed using the whole genome expression profiling of OsWRKY13-activated plants generated with the Affymetrix GeneChip Rice Genome Array. At least 39 transcription factor genes were influenced by OsWRKY13, and 30 of them were downregulated. The promoters of OsWRKY13-upregulated genes were overrepresented with W-boxes for WRKY protein binding, whereas the promoters of OsWRKY13-downregulated genes were enriched with cis-elements putatively for binding of MYB and AP2/EREBP types of transcription factors. Consistent with the distinctive distribution of these cis-elements in up- and downregulated genes, nine WRKY genes were influenced by OsWRKY13 and the promoters of five of them were bound by OsWRKY13 in vitro; all seven differentially expressed AP2/EREBP genes and six of the seven differentially expressed MYB genes were suppressed by in OsWRKY13-activated plants. A subset of OsWRKY13-influenced WRKY genes were involved in host-pathogen interactions. Conclusion These results suggest that OsWRKY13-mediated signalling pathways are partitioned by different transcription factors. WRKY proteins may play important roles in the monitoring of OsWRKY13-upregulated genes and genes involved in pathogen-induced defence responses, whereas MYB and AP2/EREBP proteins may contribute most to the control of OsWRKY13-downregulated genes.

  8. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response.

    Science.gov (United States)

    Pawlus, Matthew R; Hu, Cheng-Jun

    2013-09-01

    Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  10. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  11. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.

    Science.gov (United States)

    de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M

    2013-08-30

    It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in

  12. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    Science.gov (United States)

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. TrSDB: a proteome database of transcription factors

    Science.gov (United States)

    Hermoso, Antoni; Aguilar, Daniel; Aviles, Francesc X.; Querol, Enrique

    2004-01-01

    TrSDB—TranScout Database—(http://ibb.uab.es/trsdb) is a proteome database of eukaryotic transcription factors based upon predicted motifs by TranScout and data sources such as InterPro and Gene Ontology Annotation. Nine eukaryotic proteomes are included in the current version. Extensive and diverse information for each database entry, different analyses considering TranScout classification and similarity relationships are offered for research on transcription factors or gene expression. PMID:14681387

  14. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  15. Microarray-Based Identification of Transcription Factor Target Genes

    NARCIS (Netherlands)

    Gorte, M.; Horstman, A.; Page, R.B.; Heidstra, R.; Stromberg, A.; Boutilier, K.A.

    2011-01-01

    Microarray analysis is widely used to identify transcriptional changes associated with genetic perturbation or signaling events. Here we describe its application in the identification of plant transcription factor target genes with emphasis on the design of suitable DNA constructs for controlling TF

  16. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  17. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    . serrata and P. carinatus 454-ESTs and real-time PCR analysis. Four unique putative CYP450 transcripts (Hs01891, Hs04010, Hs13557 and Hs00093 which are the most likely to be involved in the biosynthesis of lycopodium alkaloids were selected based on a phylogenetic analysis. Approximately 115 H. serrata and 98 P. carinatus unique putative transcripts associated with the biosynthesis of triterpenoids, alkaloids and flavones/flavonoids were located in the 454-EST datasets. Transcripts related to phytohormone biosynthesis and signal transduction as well as transcription factors were also obtained. In addition, we discovered 2,729 and 1,573 potential SSR-motif microsatellite loci in the H. serrata and P. carinatus 454-ESTs, respectively. Conclusions The 454-EST resource allowed for the first large-scale acquisition of ESTs from H. serrata and P. carinatus, which are representative members of the Huperziaceae family. We discovered many genes likely to be involved in the biosynthesis of bioactive compounds and transcriptional regulation as well as a large number of potential microsatellite markers. These results constitute an essential resource for understanding the molecular basis of developmental regulation and secondary metabolite biosynthesis (especially that of lycopodium alkaloids in the Huperziaceae, and they provide an overview of the genetic diversity of this family.

  18. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors.

    Science.gov (United States)

    Narasimhan, Kamesh; Micoine, Kevin; Lacôte, Emmanuel; Thorimbert, Serge; Cheung, Edwin; Hasenknopf, Bernold; Jauch, Ralf

    2014-01-01

    SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures

  19. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian; Alam, Tanvir; Essack, Magbubah; Bajic, Vladimir B.

    2016-01-01

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  20. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    KAUST Repository

    Schmeier, Sebastian

    2016-10-17

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/.

  1. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    Science.gov (United States)

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  2. Identification of EhTIF-IA: The putative E. histolytica orthologue of the ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within ..... a putative EhTIF-IA with e-value (3e−25). Comparison of .... some biogenesis is correlated with altered rates of rDNA transcription ..... ylation by CK2 facilitates rDNA transcription by promoting dissociation of ...

  3. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.

    Science.gov (United States)

    Yousaf, Nasim; Gould, David

    2017-01-01

    Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.

  4. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  5. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  6. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation

    OpenAIRE

    Alexandrov, Boian S.; Gelev, Vladimir; Yoo, Sang Wook; Alexandrov, Ludmil B.; Fukuyo, Yayoi; Bishop, Alan R.; Rasmussen, Kim ?.; Usheva, Anny

    2009-01-01

    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA co...

  7. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    International Nuclear Information System (INIS)

    Zhai, Hong; Bai, Xi; Zhu, Yanming; Li, Yong; Cai, Hua; Ji, Wei; Ji, Zuojun; Liu, Xiaofei; Liu, Xin; Li, Jing

    2010-01-01

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not altered in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven β-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.

  8. The logic of communication: roles for mobile transcription factors in plants.

    Science.gov (United States)

    Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2015-02-01

    Mobile transcription factors play many roles in plant development. Here, we compare the use of mobile transcription factors as signals with some canonical signal transduction processes in prokaryotes and eukaryotes. After an initial survey, we focus on the SHORT-ROOT pathway in Arabidopsis roots to show that, despite the simplicity of the concept of mobile transcription factor signalling, many lines of evidence reveal a surprising complexity in control mechanisms linked to this process. We argue that these controls bestow precision, robustness, and versatility on mobile transcription factor signalling. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Transcription factor NF-kB as a potential biomarker for oxidative stress

    NARCIS (Netherlands)

    Berg, R. van den; Haenen, G.R.M.M.; Berg, H. van den; Bast, A.

    2001-01-01

    There is increasing interest in the involvement of transcription factors, such as of the transcription factor NF-κB (nuclear factor-κB), in the pathogenesis of various diseases. NF-κB is involved in the control of the transcription of a variety of cellular genes that regulate the inflammatory

  10. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  11. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  12. Modulation of transcription factors by curcumin.

    Science.gov (United States)

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  13. Membrane-bound transcription factors: regulated release by RIP or RUP.

    Science.gov (United States)

    Hoppe, T; Rape, M; Jentsch, S

    2001-06-01

    Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.

  14. Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

    OpenAIRE

    Kohli, Shrey; Ahuja, Suchit; Rani, Vibha

    2011-01-01

    Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. Thi...

  15. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  16. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Rabiee, Atefeh; Nielsen, Ronni

    2014-01-01

    . Using a combination of advanced proteomics and genomics approaches, we identify ∼12,000 transcription factor hotspots (∼400 bp) in the early phase of adipogenesis, and we find evidence of both simultaneous and sequential binding of transcription factors at these regions. We demonstrate that hotspots...

  17. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  18. A Computational Re-Examination of Béla Bartók's Transcription Methods as Exemplified by his Sirató Transcriptions of 1937/1938 and their Relevance for Contemporary Methods of Computational Transcription of Qur'an Recitation

    NARCIS (Netherlands)

    Biró, D.P.; van Kranenburg, P.; Holzapfel, A.

    2014-01-01

    This is a study about furthering transcription methods via com- putational means. In particular we re-examine Bartók’s methods of transcription to see how his project of transcription might be continued incorporating 21st century technology. We then go on to apply our established analytical and

  19. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-β and tumor necrosis factor

    International Nuclear Information System (INIS)

    Kita, Atsushi; Yamasaki, Hironori; Kuwahara, Hironaga; Moriuchi, Akie; Fukushima, Keiko; Kobayashi, Masakazu; Fukushima, Tetsuya; Takahashi, Ryoko; Abiru, Norio; Uotani, Shigeo; Kawasaki, Eiji; Eguchi, Katsumi

    2005-01-01

    Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-α (TNF-α) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-α. The human adiponectin promoter (2.1 kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element binding protein (SREBP) (-431 to -423) and CCAAT/enhancer binding protein (C/EBP) (-230 to -224) showed that both elements were required for basal promoter activity. Adiponectin transcription was increased 3-fold in cells that over-expressed constitutively active C/EBP-β. Electrophoretic mobility shift assay, using nuclear extract from 3T3-L1 cells and the -258 to -199 region as a probe, demonstrated specific DNA-protein binding, which was abolished by TNF-α treatment. The present data indicate that the putative response elements for SREBP and C/EBP are required for human adiponectin promoter activity, and that suppression by TNF-α may, at least in part, be associated with inactivation of C/EBP-β

  20. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice h......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication.......Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...... demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2...

  1. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    Science.gov (United States)

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  2. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Bříza, Jindřich; Siglová, Kristýna; Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Týcová, Anna; Ono, E.; Krofta, K.

    2016-01-01

    Roč. 92, č. 3 (2016), s. 263-277 ISSN 0167-4412 R&D Projects: GA ČR GA13-03037S Institutional support: RVO:60077344 Keywords : Lupulin biosynthesis * Transcription factors * 5' RNA degradome * Plant promoter activation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  3. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  4. The evolution of WRKY transcription factors.

    Science.gov (United States)

    Rinerson, Charles I; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Rushton, Paul J

    2015-02-27

    The availability of increasing numbers of sequenced genomes has necessitated a re-evaluation of the evolution of the WRKY transcription factor family. Modern day plants descended from a charophyte green alga that colonized the land between 430 and 470 million years ago. The first charophyte genome sequence from Klebsormidium flaccidum filled a gap in the available genome sequences in the plant kingdom between unicellular green algae that typically have 1-3 WRKY genes and mosses that contain 30-40. WRKY genes have been previously found in non-plant species but their occurrence has been difficult to explain. Only two WRKY genes are present in the Klebsormidium flaccidum genome and the presence of a Group IIb gene was unexpected because it had previously been thought that Group IIb WRKY genes first appeared in mosses. We found WRKY transcription factor genes outside of the plant lineage in some diplomonads, social amoebae, fungi incertae sedis, and amoebozoa. This patchy distribution suggests that lateral gene transfer is responsible. These lateral gene transfer events appear to pre-date the formation of the WRKY groups in flowering plants. Flowering plants contain proteins with domains typical for both resistance (R) proteins and WRKY transcription factors. R protein-WRKY genes have evolved numerous times in flowering plants, each type being restricted to specific flowering plant lineages. These chimeric proteins contain not only novel combinations of protein domains but also novel combinations and numbers of WRKY domains. Once formed, R protein WRKY genes may combine different components of signalling pathways that may either create new diversity in signalling or accelerate signalling by short circuiting signalling pathways. We propose that the evolution of WRKY transcription factors includes early lateral gene transfers to non-plant organisms and the occurrence of algal WRKY genes that have no counterparts in flowering plants. We propose two alternative hypotheses

  5. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Burek, C.; Sander, E. E.; Grummt, I.

    2001-01-01

    Roč. 29, č. 2 (2001), s. 423-429 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z5052915 Keywords : rDNA transcription * PTRF * transcription reinitiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.373, year: 2001

  6. Prevalence of transcription promoters within archaeal operons and coding sequences.

    Science.gov (United States)

    Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S

    2009-01-01

    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.

  7. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  8. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    OpenAIRE

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-01-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We...

  9. Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans.

    Science.gov (United States)

    Kovács, Zsuzsanna; Szarka, Máté; Kovács, Szilvia; Boczonádi, Imre; Emri, Tamás; Abe, Keietsu; Pócsi, István; Pusztahelyi, Tünde

    2013-05-01

    The cell wall integrity (CWI) signaling pathway is responsible for cell wall remodeling and reinforcement upon cell wall stress, which is proposed to be universal in fungal cultures. In Aspergillus nidulans, both the deletion of rlmA encoding the RlmA transcription factor in CWI signaling and low concentrations of the cell wall polymer intercalating agent Congo Red caused significant physiological changes. The gene deletion mutant ΔrlmA strain showed decreased CWI and oxidative stress resistances, which indicated the connection between the CWI pathway and the oxidative stress response system. The Congo Red stress resulted in alterations in the cell wall polymer composition in submerged cultures due to the induction of the biosynthesis of the alkali soluble fraction as well as the hydrolysis of cell wall biopolymers. Both RlmA and RlmA-independent factors induced by Congo Red stress regulated the expression of glucanase (ANID_00245, engA) and chitinase (chiB, chiA) genes, which promoted the autolysis of the cultures and also modulated the pellet sizes. CWI stress and rlmA deletion affected the expression of brlA encoding the early conidiophore development regulator transcription factor BrlA and, as a consequence, the formation of conidiophores was significantly changed in submerged cultures. Interestingly, the number of conidiospores increased in surface cultures of the ΔrlmA strain. The in silico analysis of genes putatively regulated by RlmA and the CWI transcription factors AnSwi4/AnSwi6 in the SBF complex revealed only a few jointly regulated genes, including ugmA and srrA coding for UgmA UDP-galactopyranose mutase and SrrA stress response regulator, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Evidence for an Overlapping Role of CLOCK and NPAS2 Transcription Factors in Liver Circadian Oscillators▿

    Science.gov (United States)

    Bertolucci, Cristiano; Cavallari, Nicola; Colognesi, Ilaria; Aguzzi, Jacopo; Chen, Zheng; Caruso, Pierpaolo; Foá, Augusto; Tosini, Gianluca; Bernardi, Francesco; Pinotti, Mirko

    2008-01-01

    The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock−/−; Npas2−/− mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2−/− and ClockΔ19/Δ19 mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes. PMID:18316400

  11. Nuclear Wiskott–Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells

    Directory of Open Access Journals (Sweden)

    Nikolai V. Kuznetsov

    2017-10-01

    Full Text Available Abstract Background The Wiskott–Aldrich syndrome protein (WASp family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. Methods We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq in thymocytes and spleen CD4+ T cells. Results WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. Conclusions These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development.

  12. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    International Nuclear Information System (INIS)

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-01-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs

  13. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  14. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    Science.gov (United States)

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  15. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  17. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles

    Directory of Open Access Journals (Sweden)

    Katie L Lannan

    2015-02-01

    Full Text Available Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cell and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as cellular fragments is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryoctes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and nongenomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB family of proteins and peroxisome proliferator activated receptor gamma (PPARγ. In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the nongenomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and

  18. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  19. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    International Nuclear Information System (INIS)

    Lim, Kihong; Chang, Hyo-Ihl

    2009-01-01

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  20. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables....... It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms...

  1. The transcription fidelity factor GreA impedes DNA break repair.

    Science.gov (United States)

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  2. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases.

    Science.gov (United States)

    Rudnik, Radoslaw; Bulcha, Jote Tafese; Reifschneider, Elena; Ellersiek, Ulrike; Baier, Margarete

    2017-08-23

    The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. The RAP2.4 transcription factors form an environmentally and

  3. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Science.gov (United States)

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  4. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Pedro Perdigão

    Full Text Available The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  5. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10

    Directory of Open Access Journals (Sweden)

    Pavan William J

    2008-10-01

    Full Text Available Abstract Background A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. SOX10 expression is highly conserved between all vertebrates characterised. Results We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish sox10 gene. Both approaches converged on the 3' end of the conserved 1st intron as being critical for spatial patterning of sox10 in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in sox10 regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic sox10 expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results. Conclusion We have thus identified two major sites of sox10 regulation in vertebrates and provided evidence supporting a role for at least three factors in driving sox10 expression in neural crest, otic epithelium and oligodendrocyte domains.

  6. Identification of regulatory targets for the bacterial Nus factor complex.

    Science.gov (United States)

    Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T

    2017-12-11

    Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.

  7. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Science.gov (United States)

    Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute

    2013-01-01

    UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  8. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.

    Science.gov (United States)

    Qin, Yuxiang; Wang, Mengcheng; Tian, Yanchen; He, Wenxing; Han, Lu; Xia, Guangmin

    2012-06-01

    Salt and drought stresses often adversely affect plant growth and productivity, MYB transcription factors have been shown to participate in the response to these stresses. Here we identified a new R2R3-type MYB transcription factor gene TaMYB33 from wheat (Triticum aestivum). TaMYB33 was induced by NaCl, PEG and ABA treatments, and its promoter sequence contains putative ABRE, MYB and other abiotic stress related cis-elements. Ectopic over-expression of TaMYB33 in Arabidopsis thaliana remarkably enhanced its tolerance to drought and NaCl stresses, but not to LiCl and KCl treatments. The expressions of AtP5CS and AtZAT12 which mirror the activities of proline and ascorbate peroxidase synthesis respectively were induced in TaMYB33 over-expression lines, indicating TaMYB33 promotes the ability for osmotic pressure balance-reconstruction and reactive oxidative species (ROS) scavenging. The up-regulation of AtAAO3 along with down-regulation of AtABF3, AtABI1 in TaMYB33 over-expression lines indicated that ABA synthesis was elevated while its signaling was restricted. These results suggest that TaMYB33 enhances salt and drought tolerance partially through superior ability for osmotic balance reconstruction and ROS detoxification.

  9. Id-1 is induced in MDCK epithelial cells by activated Erk/MAPK pathway in response to expression of the Snail and E47 transcription factors

    International Nuclear Information System (INIS)

    Jorda, Mireia; Vinyals, Antonia; Marazuela, Anna; Cubillo, Eva; Olmeda, David; Valero, Eva; Cano, Amparo; Fabra, Angels

    2007-01-01

    Id-1, a member of the helix-loop-helix transcription factor family has been shown to be involved in cell proliferation, angiogenesis and invasion of many types of human cancers. We have previously shown that stable expression of E47 and Snail repressors of the E-cadherin promoter in MDCK epithelial cell line triggers epithelial mesenchymal transition (EMT) concomitantly with changes in gene expression. We show here that both factors activate the Id-1 gene promoter and induce Id-1 mRNA and protein. The upregulation of the Id-1 gene occurs through the transactivation of the promoter by the Erk/MAPK signaling pathway. Moreover, oncogenic Ras is also able to activate Id-1 promoter in MDCK cells in the absence of both E47 and Snail transcription factors. Several transcriptionally active regulatory elements have been identified in the proximal promoter, including AP-1, Sp1 and four putative E-boxes. By EMSA, we only detected an increased binding to Sp1 and AP-1 elements in E47- and Snail-expressing cells. Binding is affected by the treatment of cells with PD 98059 MEK inhibitor, suggesting that MAPK/Erk contributes to the recruitment or assembly of proteins to Id-1 promoter. Small interfering RNA directed against Sp1 reduced Id-1 expression and the upregulation of the promoter, indicating that Sp1 is required for Id-1 induction in E47- and Snail-expressing cells. Our results provide new insights into how some target genes are activated during and/or as a consequence of the EMT triggered by both E47 and Snail transcription factors

  10. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien

    2006-01-01

    Positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of RNA polymerase II, facilitating transcriptional elongation. In addition to its participation in general transcription, P-TEFb is recruited to specific promoters by some transcription factors such as c......-Myc or MyoD. The P-TEFb complex is composed of a cyclin-dependent kinase (cdk9) subunit and a regulatory partner (cyclin T1, cyclin T2, or cyclin K). Because cdk9 has been shown to participate in differentiation processes, such as muscle cell differentiation, we studied a possible role of cdk9...... with and phosphorylation of peroxisome proliferator-activated receptor gamma (PPARgamma), which is the master regulator of this process, on the promoter of PPARgamma target genes. PPARgamma-cdk9 interaction results in increased transcriptional activity of PPARgamma and therefore increased adipogenesis....

  11. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.

    2015-01-01

    Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence and specificity, specificity prediction frameworks are highly de...

  12. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    Full Text Available We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.

  13. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    Science.gov (United States)

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars.

  14. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance.

    Science.gov (United States)

    Wardhan, Vijay; Jahan, Kishwer; Gupta, Sonika; Chennareddy, Srinivasarao; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2012-07-01

    Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.

  15. Inhibition of factor-dependent transcription termination in ...

    Indian Academy of Sciences (India)

    Inhibition of factor-dependent transcription termination in Escherichia coli might relieve xenogene silencing by abrogating. H-NS-DNA interactions in vivo. DEEPTI CHANDRAPRAKASH and ASWIN SAI NARAIN SESHASAYEE. Chromatin immunoprecipitation. MG1655 hns::3xFLAG cells were grown in liquid LB me-.

  16. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    2011-01-01

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  17. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning.

    Science.gov (United States)

    Albert, Nick W; Lewis, David H; Zhang, Huaibi; Schwinn, Kathy E; Jameson, Paula E; Davies, Kevin M

    2011-03-01

    We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. Transcription factor FoxO1 is essential for enamel biomineralization.

    Directory of Open Access Journals (Sweden)

    Ross A Poché

    Full Text Available The Transforming growth factor β (Tgf-β pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  19. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  20. Myocardin-related transcription factors are required for cardiac development and function

    OpenAIRE

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2015-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the d...

  1. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    Directory of Open Access Journals (Sweden)

    Kamesh Narasimhan

    2014-01-01

    Conclusion: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity.

  2. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  3. Role of Transcription Factor Modifications in the Pathogenesis of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mi-Young Kim

    2012-01-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance.

  4. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    Science.gov (United States)

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  5. Emerging roles and regulation of MiT/TFE transcriptional factors.

    Science.gov (United States)

    Yang, Min; Liu, En; Tang, Li; Lei, Yuanyuan; Sun, Xuemei; Hu, Jiaxi; Dong, Hui; Yang, Shi-Ming; Gao, Mingfa; Tang, Bo

    2018-06-15

    The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.

  6. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  7. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2014-01-01

    The AthaMap database provides a map of verified and predicted transcription factor (TF) and small RNA-binding sites for the A. thaliana genome. The database can be used for bioinformatic predictions of putative regulatory sites. Several online web tools are available that address specific questions. Starting with the identification of transcription factor-binding sites (TFBS) in any gene of interest, colocalizing TFBS can be identified as well as common TFBS in a set of user-provided genes. Furthermore, genes can be identified that are potentially targeted by specific transcription factors or small inhibitory RNAs. This chapter provides detailed information on how each AthaMap web tool can be used online. Examples on how this database is used to address questions in circadian and diurnal regulation are given. Furthermore, complementary databases and databases that go beyond questions addressed with AthaMap are discussed.

  8. Regulation of Neph3 gene in podocytes - key roles of transcription factors NF-kappaB and Sp1

    LENUS (Irish Health Repository)

    Ristola, Mervi

    2009-08-24

    Abstract Background Neph3 (filtrin) is expressed in the glomerular podocytes where it localizes at the specialized cell adhesion structures of the foot processes called slit diaphragms which form the outermost layer of the glomerular filtration barrier. Neph3 protein shows homology and structural similarity to Neph1, Neph2 and nephrin, which all are crucial for maintaining the normal glomerular ultrafiltration function. The exact function of Neph3 in the kidney is not known but we have previously shown that the level of Neph3 mRNA is decreased in proteinuric diseases. This suggests that Neph3 may play a role in the pathogenesis of kidney damage, and emphasizes the need to analyze the regulatory mechanisms of Neph3 gene. In this study we investigated the transcriptional regulation of Neph3 gene by identifying transcription factors that control Neph3 expression. Results We cloned and characterized approximately 5 kb fragment upstream of the Neph3 gene. Neph3 proximal promoter near the transcription start site was found to be devoid of TATA and CAAT boxes, but to contain a highly GC-rich area. Using promoter reporter gene constructs, we localized the main activating regulatory region of Neph3 gene in its proximal promoter region from -105 to -57. Within this region, putative transcription factor binding sites for NF-κB and Sp1 were found by computational analysis. Mutational screening indicated that NF-κB and Sp1 response elements are essential for the basal transcriptional activity of the Neph3 promoter. Co-transfection studies further showed that NF-κB and Sp1 regulate Neph3 promoter activity. In addition, overexpression of NF-κB increased endogenous Neph3 gene expression. Chromatin immunoprecipitation assay using cultured human podocytes demonstrated that both NF-κB and Sp1 interact with the Neph3 promoter. Conclusion Our results show that NF-κB and Sp1 are key regulators of Neph3 expression at the basal level in podocytes, therefore providing new insight

  9. Physical interactions among plant MADS-box transcription factors and their biological relevance

    NARCIS (Netherlands)

    Nougalli Tonaco, I.A.

    2008-01-01

    The biological interpretation of the genome starts from transcription, and many different signaling pathways are integrated at this level. Transcription factors play a central role in the transcription process, because they select the down-stream genes and determine their spatial and temporal

  10. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  11. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.

    2011-08-18

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding of the transcription regulatory code. Results: We constructed binding motifs for TFs forming a complex with HIF-1α at the erythropoietin 3\\'-enhancer. Corresponding TFBSs were predicted in the segments around transcription start sites (TSSs) of all human genes. Using the genome-wide set of regulatory regions, we observed several strongly preferred distances between hypoxia-responsive element (HRE) and binding sites of a particular cofactor protein. The set of preferred distances was called as a preferred pair distance template (PPDT). PPDT dramatically depended on the TF and orientation of its binding sites relative to HRE. PPDT evaluated from the genome-wide set of regulatory sequences was used to detect significant PPDT-consistent binding site pairs in regulatory regions of hypoxia-responsive genes. We believe PPDT can help to reveal the layout of eukaryotic regulatory segments. © The Author 2011. Published by Oxford University Press. All rights reserved.

  12. Specification of jaw identity by the Hand2 transcription factor

    Science.gov (United States)

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  13. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    OpenAIRE

    Buckley, SM; Delhove, JM; Perocheau, DP; Karda, R; Rahim, AA; Howe, SJ; Ward, NJ; Birrell, MA; Belvisi, MG; Arbuthnot, P; Johnson, MR; Waddington, SN; McKay, TR

    2015-01-01

    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruse...

  14. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Akhil [Univ. of Hawaii, Manoa, HI (United States); Ohm, Robin A. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Oxiles, Lindsay [Univ. of Hawaii, Manoa, HI (United States); Brooks, Fred [Univ. of Hawaii, Manoa, HI (United States); Lawrence, Christopher B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Grigoriev, Igor V. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Cho, Yangrae [Univ. of Hawaii, Manoa, HI (United States)

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it was a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.

  15. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  16. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts.

    Directory of Open Access Journals (Sweden)

    Victoria I Verhoeve

    Full Text Available Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods.

  17. N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells.

    Directory of Open Access Journals (Sweden)

    Verónica Martínez-Cerdeño

    Full Text Available Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

  18. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    Science.gov (United States)

    Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.

  19. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

    Science.gov (United States)

    Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina

    2013-06-18

    Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.

  20. Strand transfer and elongation of HIV-1 reverse transcription is facilitated by cell factors in vitro.

    Directory of Open Access Journals (Sweden)

    David Warrilow

    Full Text Available Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis.

  1. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Colin R Lickwar

    2017-08-01

    Full Text Available The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development

  2. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    Science.gov (United States)

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  3. Characterization of senscence-associated NAC transcription factors in Barley (Hordeum Vulgare L.)

    DEFF Research Database (Denmark)

    Podzimska, Dagmara Agata

    , such as yield, biomass production and nutrient quality, and NAC (NAM, ATAF1/2 and CUC2) transcription factors are promising targets for the breeding. The aim of this thesis was thus to assess the role of NAC transcription factors in regulation of senescence in barley (Hordeum vulgare L.) and to contribute...

  4. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney

    Science.gov (United States)

    O’Brown, Zach K.; Van Nostrand, Eric L.; Higgins, John P.; Kim, Stuart K.

    2015-01-01

    Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. PMID:26678048

  5. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity

    Directory of Open Access Journals (Sweden)

    Croxatto Horacio B

    2011-01-01

    Full Text Available Abstract Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL. For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible

  6. Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR.

    Science.gov (United States)

    Alazi, Ebru; Knetsch, Tim; Di Falco, Marcos; Reid, Ian D; Arentshorst, Mark; Visser, Jaap; Tsang, Adrian; Ram, Arthur F J

    2018-03-01

    The transcription factor GaaR is needed for the expression of genes required for pectin degradation and transport and catabolism of the main degradation product, D-galacturonic acid (GA) in Aspergillus niger. In this study, we used the strong constitutive gpdA promoter of Aspergillus nidulans to overexpress gaaR in A. niger. Overexpression of gaaR resulted in an increased transcription of the genes encoding pectinases, (putative) GA transporters, and catabolic pathway enzymes even under non-inducing conditions, i.e., in the absence of GA. Exoproteome analysis of a strain overexpressing gaaR showed that this strain secretes highly elevated levels of pectinases when grown in fructose. The genes encoding exo-polygalacturonases were found to be subjected to CreA-mediated carbon catabolite repression, even in the presence of fructose. Deletion of creA in the strain overexpressing gaaR resulted in a further increase in pectinase production in fructose. We showed that GaaR localizes mainly in the nucleus regardless of the presence of an inducer, and that overexpression of gaaR leads to an increased concentration of GaaR in the nucleus.

  7. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  8. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shibo Ying

    Full Text Available UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP, and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2. Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α (one imperfect estrogen response element, ERE and/or nuclear factor Y (NF-Y binding sites (two CCAAT boxes markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  9. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    Science.gov (United States)

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril AB; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; De Val, Sarah; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-01

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics. DOI: http://dx.doi.org/10.7554/eLife.21221.001 PMID:28137359

  10. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  11. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    Science.gov (United States)

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  12. Significant associations of the mitochondrial transcription factor A promoter polymorphisms with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses

    International Nuclear Information System (INIS)

    Jiang, Zhihua; Kunej, Tanja; Michal, Jennifer J.; Gaskins, Charles T.; Reeves, Jerry J.; Busboom, Jan R.; Dovc, Peter; Wright, Raymond W.

    2005-01-01

    Mitochondrial transcription factor A (TFAM), a nucleus-encoded protein, regulates the initiation of transcription and replication of mitochondrial DNA (mtDNA). Decreased expression of nuclear-encoded mitochondrial genes has been associated with onset of obesity in mice. Therefore, we hypothesized genetic variants in TFAM gene influence mitochondrial biogenesis consequently affecting body fat deposition and energy metabolism. In the present study, both cDNA (2259 bp) and genomic DNA (16,666 bp) sequences were generated for the bovine TFAM gene using a combination of in silico cloning with targeted region PCR amplification. Alignment of both cDNA and genomic sequences led to the determination of genomic organization and characterization of the promoter region of the bovine TFAM gene. Two closely linked A/C and C/T single nucleotide polymorphisms (SNPs) were found in the bovine TFAM promoter and then genotyped on 237 Wagyu x Limousin F 2 animals with recorded phenotypes for marbling and subcutaneous fat depth (SFD). Statistical analysis demonstrated that both SNPs and their haplotypes were associated with marbling (P = 0.0153 for A/C, P = 0.0026 for C/T, and P = 0.0004 for haplotype) and SFD (P = 0.0200 for A/C, P = 0.0039 for C/T, and P = 0.0029 for haplotype), respectively. A search for transcriptional regulatory elements using MatInspector indicated that both SNPs lead to a gain/loss of six putative-binding sites for transcription factors relevant to fat deposition and energy metabolism. Our results suggest for the first time that TFAM gene plays an important role in lipid metabolism and may be a strong candidate gene for obesity in mammals

  13. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and platelet-derived growth factor receptor beta.

    Science.gov (United States)

    Hori, Yuichi; Fukumoto, Miki; Kuroda, Yoshikazu

    2008-11-01

    Success in islet transplantation-based therapies for type 1 diabetes mellitus and an extreme shortage of pancreatic islets have motivated recent efforts to develop renewable sources of islet-replacement tissue. Although pancreatic progenitor cells hold a promising potential, only a few attempts have been made at the prospective isolation of pancreatic stem/progenitor cells, because of the lack of specific markers and the development of effective cell culture methods. We found that prominin1 (also known as CD133) recognized the undifferentiated epithelial cells, whereas platelet-derived growth factor receptor beta (PDGFRbeta) was expressed on the mesenchymal cells in the mouse embryonic pancreas. We then developed an isolation method for putative stem/progenitor cells by flow cytometric cell sorting and characterized their potential for differentiation to pancreatic tissue using both in vitro and in vivo protocols. Flow cytometry and the subsequent reverse transcription-polymerase chain reaction and microarray analysis revealed pancreatic epithelial progenitor cells to be highly enriched in the prominin1(high)PDGFRbeta(-) cell population. During in vivo differentiation, these cell populations were able to differentiate into endocrine, exocrine, and ductal tissues, including the formation of an insulin-producing cell cluster. We established the prospective isolation of putative pancreatic epithelial progenitor cells by sorting for prominin1 and PDGFRbeta. Since this strategy is based on the cell surface markers common to human and rodents, these findings may lead to the development of new strategies to derive transplantable islet-replacement tissues from human pancreatic stem/progenitor cells. Disclosure of potential conflicts of interest is found at the end of this article.

  14. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-10-01

    Full Text Available Many of the biochemical details of nucleotide excision repair (NER have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER.

  15. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun; Roh, Kyung-Hee

    2008-06-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches.

  16. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  17. Interaction between FMDV Lpro and transcription factor ADNP is required for viral replication

    Science.gov (United States)

    The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an ...

  18. WRKY transcription factor superfamily: Structure, origin and functions

    African Journals Online (AJOL)

    terminal ends contain the WRKYGQR amino acid sequence and a zinc-finger motif. WRKY transcription factors can regulate the expression of target genes that contain the W-box elements (C/T)TGAC(C/T) in the promoter regions by specifically ...

  19. Posttranslational modifications of Forkhead box O transcription factors

    NARCIS (Netherlands)

    Horst, Aart Arno van der

    2006-01-01

    FOXO transcription factors play an important role in essential biological processes such as differentiation, proliferation, apoptosis, DNA repair, metabolism and stress resistance. Phosphorylation is the modification that was first found on FOXOs and much of the subsequent studies focused on this

  20. Transcriptome-Based Analysis of Dof Family Transcription Factors and Their Responses to Abiotic Stress in Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-01-01

    Full Text Available Tea plant (Camellia sinensis (L. O. Kuntze is affected by abiotic stress during its growth and development. DNA-binding with one finger (Dof transcription factors (TFs play important roles in abiotic stress tolerance of plants. In this study, a total of 29 putative Dof TFs were identified based on transcriptome of tea plant, and the conserved domains and common motifs of these CsDof TFs were predicted and analyzed. The 29 CsDof proteins were divided into 7 groups (A, B1, B2, C1, C2.1, C2.2, and D2, and the interaction networks of Dof proteins in C. sinensis were established according to the data in Arabidopsis. Gene expression was analyzed in “Yingshuang” and “Huangjinya” under four experimental stresses by qRT-PCR. CsDof genes were expressed differentially and related to different abiotic stress conditions. In total, our results might suggest that there is a potential relationship between CsDof factors and tea plant stress resistance.

  1. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  2. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    International Nuclear Information System (INIS)

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-01-01

    Highlights: ► We found the putative nuclear export signal motif within human NANOG homeodomain. ► Leucine-rich residues are important for human NANOG homeodomain nuclear export. ► CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ( 125 MQELSNILNL 134 ) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-ΔNLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  3. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, KA; van der Werff, AF; den Hengst, CD; Calles, B; Salas, M; Venema, G; Hamoen, LW; Kuipers, OP

    The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding

  4. Regulation of the number of cell division rounds by tissue-specific transcription factors and Cdk inhibitor during ascidian embryogenesis.

    Directory of Open Access Journals (Sweden)

    Mami Kuwajima

    Full Text Available Mechanisms that regulate the number of cell division rounds during embryogenesis have remained largely elusive. To investigate this issue, we used the ascidian, which develops into a tadpole larva with a small number of cells. The embryonic cells divide 11.45 times on average from fertilization to hatching. The number of cell division rounds varies depending on embryonic lineages. Notochord and muscle consist of large postmitotic cells and stop dividing early in developing embryos. Here we show that conversion of mesenchyme to muscle cell fates by inhibition of inductive FGF signaling or mis-expression of a muscle-specific key transcription factor for muscle differentiation, Tbx6, changed the number of cell divisions in accordance with the altered fate. Tbx6 likely activates a putative mechanism to halt cell division at a specific stage. However, precocious expression of Tbx6 has no effect on progression of the developmental clock itself. Zygotic expression of a cyclin-dependent kinase inhibitor, CKI-b, is initiated in muscle and then in notochord precursors. CKI-b is possibly downstream of tissue-specific key transcription factors of notochord and muscle. In the two distinct muscle lineages, postmitotic muscle cells are generated after 9 and 8 rounds of cell division depending on lineage, but the final cell divisions occur at a similar developmental stage. CKI-b gene expression starts simultaneously in both muscle lineages at the 110-cell stage, suggesting that CKI-b protein accumulation halts cell division at a similar stage. The difference in the number of cell divisions would be due to the cumulative difference in cell cycle length. These results suggest that muscle cells do not count the number of cell division rounds, and that accumulation of CKI-b protein triggered by tissue-specific key transcription factors after cell fate determination might act as a kind of timer that measures elapsed time before cell division termination.

  5. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    OpenAIRE

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, delet...

  6. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  7. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  8. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. (research article)

    NARCIS (Netherlands)

    L. Schaeffer; R. Roy (Richard); S. Humbert; V. Moncollin; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); P. Chambon; J-M. Egly (Jean-Marc)

    1993-01-01

    textabstractThe human BTF2 basic transcription factor (also called TFIIH), which is similar to the delta factor in rat and factor b in yeast, is required for class II gene transcription. A strand displacement assay was used to show that highly purified preparation of BTF2 had an adenosine

  9. VISLISI trial, a prospective clinical study allowing identification of a new metalloprotease and putative virulence factor from Staphylococcus lugdunensis.

    Science.gov (United States)

    Argemi, X; Prévost, G; Riegel, P; Keller, D; Meyer, N; Baldeyrou, M; Douiri, N; Lefebvre, N; Meghit, K; Ronde Oustau, C; Christmann, D; Cianférani, S; Strub, J M; Hansmann, Y

    2017-05-01

    Staphylococcus lugdunensis is a coagulase-negative staphylococcus that displays an unusually high virulence rate close to that of Staphylococcus aureus. It also shares phenotypic properties with S. aureus and several studies found putative virulence factors. The objective of the study was to describe the clinical manifestations of S. lugdunensis infections and investigate putative virulence factors. We conducted a prospective study from November 2013 to March 2016 at the University Hospital of Strasbourg. Putative virulence factors were investigated by clumping factor detection, screening for proteolytic activity, and sequence analysis using tandem nano-liquid chromatography-mass spectrometry. In total, 347 positive samples for S. lugdunensis were collected, of which 129 (37.2%) were from confirmed cases of S. lugdunensis infection. Eighty-one of these 129 patients were included in the study. Bone and prosthetic joints (PJI) were the most frequent sites of infection (n=28; 34.6%) followed by skin and soft tissues (n=23; 28.4%). We identified and purified a novel protease secreted by 50 samples (61.7%), most frequently associated with samples from deep infections and PJI (pr 0.97 and pr 0.91, respectively). Protease peptide sequencing by nano-liquid chromatography-mass spectrometry revealed a novel protease bearing 62.42% identity with ShpI, a metalloprotease secreted by Staphylococcus hyicus. This study confirms the pathogenicity of S. lugdunensis, particularly in bone and PJI. We also identified a novel metalloprotease called lugdulysin that may contribute to virulence. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida

    2008-01-01

    -founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial......BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well...

  11. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.

    Science.gov (United States)

    Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L

    2018-01-15

    Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.

  12. The transcription factor KLF2 restrains CD4⁺ T follicular helper cell differentiation.

    Science.gov (United States)

    Lee, June-Yong; Skon, Cara N; Lee, You Jeong; Oh, Soohwan; Taylor, Justin J; Malhotra, Deepali; Jenkins, Marc K; Rosenfeld, M Geoffrey; Hogquist, Kristin A; Jameson, Stephen C

    2015-02-17

    T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4(+) T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4(+) T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4(+) T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. DOT/FAA Human Factors Workshop on Aviation (5th). Transcript.

    Science.gov (United States)

    1982-01-01

    This document is a verbatim transcript of the proceedings of the Fifth Human Factors Workshop held at the Mike Monroney Aeronautical Center in Oklahoma City, Oklahoma, on July 7-9, 1981. The Sixth Human Factors Workshop was held at the same facility ...

  14. Functionally significant, rare transcription factor variants in tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Ana Töpf

    Full Text Available Rare variants in certain transcription factors involved in cardiac development cause Mendelian forms of congenital heart disease. The purpose of this study was to systematically assess the frequency of rare transcription factor variants in sporadic patients with the cardiac outflow tract malformation tetralogy of Fallot (TOF.We sequenced the coding, 5'UTR, and 3'UTR regions of twelve transcription factor genes implicated in cardiac outflow tract development (NKX2.5, GATA4, ISL1, TBX20, MEF2C, BOP/SMYD1, HAND2, FOXC1, FOXC2, FOXH, FOXA2 and TBX1 in 93 non-syndromic, non-Mendelian TOF cases. We also analysed Illumina Human 660W-Quad SNP Array data for copy number variants in these genes; none were detected. Four of the rare variants detected have previously been shown to affect transactivation in in vitro reporter assays: FOXC1 p.P297S, FOXC2 p.Q444R, FOXH1 p.S113T and TBX1 p.P43_G61del PPPPRYDPCAAAAPGAPGP. Two further rare variants, HAND2 p.A25_A26insAA and FOXC1 p.G378_G380delGGG, A488_491delAAAA, affected transactivation in in vitro reporter assays. Each of these six functionally significant variants was present in a single patient in the heterozygous state; each of the four for which parental samples were available were maternally inherited. Thus in the 93 TOF cases we identified six functionally significant mutations in the secondary heart field transcriptional network.This study indicates that rare genetic variants in the secondary heart field transcriptional network with functional effects on protein function occur in 3-13% of patients with TOF. This is the first report of a functionally significant HAND2 mutation in a patient with congenital heart disease.

  15. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  16. The transcription factor ATF3 is upregulated during chondrocyte differentiation and represses cyclin D1 and A gene transcription

    Directory of Open Access Journals (Sweden)

    James Claudine G

    2006-09-01

    Full Text Available Abstract Background Coordinated chondrocyte proliferation and differentiation are required for normal endochondral bone growth. Transcription factors binding to the cyclicAMP response element (CRE are known to regulate these processes. One member of this family, Activating Tanscription Factor 3 (ATF3, is expressed during skeletogenesis and acts as a transcriptional repressor, but the function of this protein in chondrogenesis is unknown. Results Here we demonstrate that Atf3 mRNA levels increase during mouse chondrocyte differentiation in vitro and in vivo. In addition, Atf3 mRNA levels are increased in response to cytochalasin D treatment, an inducer of chondrocyte maturation. This is accompanied by increased Atf3 promoter activity in cytochalasin D-treated chondrocytes. We had shown earlier that transcription of the cell cycle genes cyclin D1 and cyclin A in chondrocytes is dependent on CREs. Here we demonstrate that overexpression of ATF3 in primary mouse chondrocytes results in reduced transcription of both genes, as well as decreased activity of a CRE reporter plasmid. Repression of cyclin A transcription by ATF3 required the CRE in the cyclin A promoter. In parallel, ATF3 overexpression reduces the activity of a SOX9-dependent promoter and increases the activity of a RUNX2-dependent promoter. Conclusion Our data suggest that transcriptional induction of the Atf3 gene in maturing chondrocytes results in down-regulation of cyclin D1 and cyclin A expression as well as activation of RUNX2-dependent transcription. Therefore, ATF3 induction appears to facilitate cell cycle exit and terminal differentiation of chondrocytes.

  17. Transcription factors as readers and effectors of DNA methylation.

    Science.gov (United States)

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2016-08-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  18. The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors.

    Science.gov (United States)

    Ikeda, Takako; Uno, Masaharu; Honjoh, Sakiko; Nishida, Eisuke

    2017-08-09

    The well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans Our results show that these beneficial effects are largely mediated through transcriptional up-regulation of the FOXO transcription factor DAF-16. MYS-1 and TRR-1 are recruited to the promoter regions of the daf-16 gene, where they play a role in histone acetylation, including H4K16 acetylation. Remarkably, we also find that the human MYST family Tip60/TRRAP complex promotes oxidative stress resistance by up-regulating the expression of FOXO transcription factors in human cells. Tip60 is recruited to the promoter regions of the foxo1 gene, where it increases H4K16 acetylation levels. Our results thus identify the evolutionarily conserved role of the MYST family acetyltransferase as a key epigenetic regulator of DAF-16/FOXO transcription factors. © 2017 The Authors.

  19. Incorporating evolution of transcription factor binding sites into ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate ... alignments with parts annotated as gap lessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair- profile related parameters are derived in a sound statistical framework. ... Much research has gone into the study of the evolution of.

  20. Identification of a novel and unique transcription factor in the intraerythrocytic stage of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available The mechanisms of stage-specific gene regulation in the malaria parasite Plasmodium falciparum are largely unclear, with only a small number of specific regulatory transcription factors (AP2 family having been identified. In particular, the transcription factors that function in the intraerythrocytic stage remain to be elucidated. Previously, as a model case for stage-specific transcription in the P. falciparum intraerythrocytic stage, we analyzed the transcriptional regulation of pf1-cys-prx, a trophozoite/schizont-specific gene, and suggested that some nuclear factors bind specifically to the cis-element of pf1-cys-prx and enhance transcription. In the present study, we purified nuclear factors from parasite nuclear extract by 5 steps of chromatography, and identified a factor termed PREBP. PREBP is not included in the AP2 family, and is a novel protein with four K-homology (KH domains. The KH domain is known to be found in RNA-binding or single-stranded DNA-binding proteins. PREBP is well conserved in Plasmodium species and partially conserved in phylum Apicomplexa. To evaluate the effects of PREBP overexpression, we used a transient overexpression and luciferase assay combined approach. Overexpression of PREBP markedly enhanced luciferase expression under the control of the pf1-cys-prx cis-element. These results provide the first evidence of a novel transcription factor that activates the gene expression in the malaria parasite intraerythrocytic stage. These findings enhance our understanding of the evolution of specific transcription machinery in Plasmodium and other eukaryotes.

  1. Biological effects of tolerable level chronic boron intake on transcription factors.

    Science.gov (United States)

    Orenay Boyacioglu, Seda; Korkmaz, Mehmet; Kahraman, Erkan; Yildirim, Hatice; Bora, Selin; Ataman, Osman Yavuz

    2017-01-01

    The mechanism of boron effect on human transcription and translation has not been fully understood. In the current study it was aimed to reveal the role of boron on the expression of certain transcription factors that play key roles in many cellular pathways on human subjects chronically exposed to low amounts of boron. The boron concentrations in drinking water samples were 1.57±0.06mg/l for boron group while the corresponding value for the control group was 0.016±0.002mg/l. RNA isolation was performed using PAX gene RNA kit on the blood samples from the subjects. The RNA was then reverse transcribed into cDNA and analyzed using the Human Transcription Factors RT 2 Profiler™ PCR Arrays. While the boron amount in urine was detected as 3.56±1.47mg/day in the boron group, it was 0.72±0.30mg/day in the control group. Daily boron intake of the boron and control groups were calculated to be 6.98±3.39 and 1.18±0.41mg/day, respectively. The expression levels of the transcription factor genes were compared between the boron and control groups and no statistically significant difference was detected (P>0.05). The data suggest that boron intake at 6.98±3.39mg/day, which is the dose at which beneficial effects might be seen, does not result in toxicity at molecular level since the expression levels of transcription factors are not changed. Although boron intake over this level will seem to increase RNA synthesis, further examination of the topic is needed using new molecular epidemiological data. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Genome-Wide Classification and Evolutionary and Expression Analyses of Citrus MYB Transcription Factor Families in Sweet Orange

    Science.gov (United States)

    Hou, Xiao-Jin; Li, Si-Bei; Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2014-01-01

    MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus. PMID:25375352

  3. Transcriptional Regulation of Hhex in Hematopoiesis and Hematopoietic Stem Cell Ontogeny

    DEFF Research Database (Denmark)

    Portero Migueles, Rosa; Shaw, Louise; Rodrigues, Neil P

    2017-01-01

    in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene...... for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate...

  4. Two showy traits, scent emission and pigmentation, are finely coregulated by the MYB transcription factor PH4 in petunia flowers.

    Science.gov (United States)

    Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander

    2015-11-01

    The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    Directory of Open Access Journals (Sweden)

    Xu Fuyu

    2012-09-01

    Full Text Available Abstract Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa formed ten clusters of orthologous groups (COG with genes from the monocot sorghum (Sorghum bicolor and dicot Arabidopsis (Arabidopsis thaliana. The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in

  6. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies

    Directory of Open Access Journals (Sweden)

    Carles eMarco Llorca

    2014-04-01

    Full Text Available bZIPs and WRKYs are two important plant transcription factor families regulating diverse developmental and stress-related processes. Since a partial overlap in these biological processes is obvious, it can be speculated that they fulfill non-redundant functions in a complex regulatory network. Here, we focus on the regulatory mechanisms that are so far described for bZIPs and WRKYs. bZIP factors need to heterodimerize for DNA-binding and regulation of transcription, and based on a bioinformatics approach, bZIPs can build up more than the double of protein interactions than WRKYs. In contrast, an enrichment of the WRKY DNA-binding motifs can be found in WRKY promoters, a phenomenon which is not observed for the bZIP family. Thus, the two transcription factor families follow two different functional strategies in which WRKYs regulate each other’s transcription in a transcriptional network whereas bZIP action relies on intensive heterodimerization.

  7. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP.

    NARCIS (Netherlands)

    P. Vichi; F. Coin (Frédéric); J-P. Renaud (Jean-Paul); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); D. Moras; J-M. Egly (Jean-Marc)

    1997-01-01

    textabstractA connection between transcription and DNA repair was demonstrated previously through the characterization of TFIIH. Using filter binding as well as in vitro transcription challenge competition assays, we now show that the promoter recognition factor TATA box-binding protein (TBP)/TFIID

  8. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo.

    Science.gov (United States)

    Luo, Wei; Wang, Junxia; Xu, Dengfeng; Bai, Huili; Zhang, Yangli; Zhang, Yuhong; Li, Xiaosong

    2018-04-01

    In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.

  9. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  10. MADS interactomics : towards understanding the molecular mechanisms of plant MADS-domain transcription factor function

    NARCIS (Netherlands)

    Smaczniak, C.D.

    2013-01-01

    Protein-protein and protein-DNA interactions are essential for the molecular action of transcription factors. By combinatorial binding to target gene promoters, transcription factors are able to up- or down-regulate the expression of these genes. MADS-domain proteins comprise a large family of

  11. Cloning and Molecular Analysis of HlbZip1 and HlbZip2 Transcription Factors Putatively Involved in the Regulation of the Lupulin Metabolome in Hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Stehlík, Jan; Füssy, Zoltán; Krofta, K.; Heyerick, A.; Roldán-Ruiz, I.; Maloukh, L.; De Keukeleire, D.

    2010-01-01

    Roč. 58, č. 2 (2010), s. 902-912 ISSN 0021-8561 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052; GA MŠk ME 940 Institutional research plan: CEZ:AV0Z50510513 Keywords : secondary metabolites transcriptional regulation * cDNA-AFLP analysis * hop cDNA library screening * Nicotiana benthamiana * Petunia hybrida Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.816, year: 2010

  12. The WRKY transcription factor family and senescence in switchgrass.

    Science.gov (United States)

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  13. Potential downstream target genes of aberrant ETS transcription factors are differentially affected in Ewing's sarcoma and prostate carcinoma.

    Directory of Open Access Journals (Sweden)

    Maria J Camões

    Full Text Available FLI1 and ERG, the major ETS transcription factors involved in rearrangements in the Ewing's sarcoma family of tumors (ESFT and in prostate carcinomas (PCa, respectively, belong to the same subfamily, having 98% sequence identity in the DNA binding domain. We therefore decided to investigate whether the aberrant transcription factors in both malignancies have some common downstream targets. We crossed a publicly available list of all putative EWSR1-FLI1 target genes in ESFT with our microarray expression data on 24 PCa and 6 non-malignant prostate tissues (NPT and choose four genes among the top-most differentially expressed between PCa with (PCa ERG+ and without (PCa ETS- ETS fusion genes (HIST1H4L, KCNN2, ECRG4 and LDOC1, as well as four well-validated direct targets of the EWSR1-FLI1 chimeric protein in ESFT (NR0B1, CAV1, IGFBP3 and TGFBR2. Using quantitative expression analysis in 16 ESFT and seven alveolar rhabdomyosarcomas (ARMS, we were able to validate the four genes previously described as direct targets of the EWSR1-FLI1 oncoprotein, showing overexpression of CAV1 and NR0B1 and underexpression of IGFBP3 and TGFBR2 in ESFT as compared to ARMS. Although none of these four genes showed significant expression differences between PCa ERG+ and PCa ETS-, CAV1, IGFBP3 and TGFBR2 were less expressed in PCa in an independent series of 56 PCa and 15 NPT, as also observed for ECRG4 and LDOC1, suggesting a role in prostate carcinogenesis in general. On the other hand, we demonstrate for the first time that both HIST1H4L and KCNN2 are significantly overexpressed in PCa ERG+ and that ERG binds to the promoter of these genes. Conversely, KCNN2 was found underexpressed in ESFT relative to ARMS, suggesting that the EWSR1-ETS oncoprotein may have the opposite effect of ERG rearrangements in PCa. We conclude that aberrant ETS transcription factors modulate target genes differently in ESFT and PCa.

  14. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    International Nuclear Information System (INIS)

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka

    2007-01-01

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells

  15. Genetic Variants in Transcription Factors Are Associated With the Pharmacokinetics and Pharmacodynamics of Metformin

    Science.gov (United States)

    Goswami, S; Yee, SW; Stocker, S; Mosley, JD; Kubo, M; Castro, R; Mefford, JA; Wen, C; Liang, X; Witte, J; Brett, C; Maeda, S; Simpson, MD; Hedderson, MM; Davis, RL; Roden, DM; Giacomini, KM; Savic, RM

    2014-01-01

    One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin transporters have been extensively studied as a likely contributor to this high failure rate. Here, we investigate, for the first time, the effect of genetic variants in transcription factors on metformin pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the expression of metformin transporters, were associated with changes in treatment HbA1c (P < 0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant, rs784888. Genetic variants in other transcription factors, peroxisome proliferator–activated receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change only. Overall, our study highlights the importance of genetic variants in transcription factors as modulators of metformin PK and response. PMID:24853734

  16. Pluripotency transcription factors and Tet1/2 maintain Brd4-independent stem cell identity.

    Science.gov (United States)

    Finley, Lydia W S; Vardhana, Santosha A; Carey, Bryce W; Alonso-Curbelo, Direna; Koche, Richard; Chen, Yanyang; Wen, Duancheng; King, Bryan; Radler, Megan R; Rafii, Shahin; Lowe, Scott W; Allis, C David; Thompson, Craig B

    2018-05-01

    A robust network of transcription factors and an open chromatin landscape are hallmarks of the naive pluripotent state. Recently, the acetyllysine reader Brd4 has been implicated in stem cell maintenance, but the relative contribution of Brd4 to pluripotency remains unclear. Here, we show that Brd4 is dispensable for self-renewal and pluripotency of embryonic stem cells (ESCs). When maintained in their ground state, ESCs retain transcription factor binding and chromatin accessibility independent of Brd4 function or expression. In metastable ESCs, Brd4 independence can be achieved by increased expression of pluripotency transcription factors, including STAT3, Nanog or Klf4, so long as the DNA methylcytosine oxidases Tet1 and Tet2 are present. These data reveal that Brd4 is not essential for ESC self-renewal. Rather, the levels of pluripotency transcription factor abundance and Tet1/2 function determine the extent to which bromodomain recognition of protein acetylation contributes to the maintenance of gene expression and cell identity.

  17. Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development

    Directory of Open Access Journals (Sweden)

    Chen Di

    2008-02-01

    Full Text Available Abstract Background pha-4 encodes a forkhead box (FOX A transcription factor serving as the C. elegans pharynx organ identity factor during embryogenesis. Using Serial Analysis of Gene Expression (SAGE, comparison of gene expression profiles between growing stages animals and long-lived, developmentally diapaused dauer larvae revealed that pha-4 transcription is increased in the dauer stage. Results Knocking down pha-4 expression by RNAi during post-embryonic development showed that PHA-4 is essential for dauer recovery, gonad and vulva development. daf-16, which encodes a FOXO transcription factor regulated by insulin/IGF-1 signaling, shows overlapping expression patterns and a loss-of-function post-embryonic phenotype similar to that of pha-4 during dauer recovery. pha-4 RNAi and daf-16 mutations have additive effects on dauer recovery, suggesting these two regulators may function in parallel pathways. Gene expression studies using RT-PCR and GFP reporters showed that pha-4 transcription is elevated under starvation, and a conserved forkhead transcription factor binding site in the second intron of pha-4 is important for the neuronal expression. The vulval transcription of lag-2, which encodes a ligand for the LIN-12/Notch lateral signaling pathway, is inhibited by pha-4 RNAi, indicating that LAG-2 functions downstream of PHA-4 in vulva development. Conclusion Analysis of PHA-4 during post-embryonic development revealed previously unsuspected functions for this important transcriptional regulator in dauer recovery, and may help explain the network of transcriptional control integrating organogenesis with the decision between growth and developmental arrest at the dauer entry and exit stages.

  18. Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box.

    Science.gov (United States)

    Kageyama, R; Merlino, G T; Pastan, I

    1989-09-15

    Transcription factor ETF stimulates the expression of the epidermal growth factor receptor (EGFR) gene which does not have a TATA box in the promoter region. Here, we show that ETF recognizes various GC-rich sequences including stretches of deoxycytidine or deoxyguanosine residues and GC boxes with similar affinities. ETF also binds to TATA boxes but with a lower affinity. ETF stimulated in vitro transcription from several promoters without TATA boxes but had little or no effect on TATA box-containing promoters even though they had strong ETF-binding sites. These inactive ETF-binding sites became functional when placed upstream of the EGFR promoter whose own ETF-binding sites were removed. Furthermore, when a TATA box was introduced into the EGFR promoter, the responsiveness to ETF was abolished. These results indicate that ETF is a specific transcription factor for promoters which do not contain TATA elements.

  19. RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentium▿

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J.; Frankel, Gad; Hartland, Elizabeth L.; Robins-Browne, Roy M.

    2008-01-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5α, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  20. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization.

  1. Survival-related profile, pathways, and transcription factors in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Anne P G Crijns

    2009-02-01

    Full Text Available BACKGROUND: Ovarian cancer has a poor prognosis due to advanced stage at presentation and either intrinsic or acquired resistance to classic cytotoxic drugs such as platinum and taxoids. Recent large clinical trials with different combinations and sequences of classic cytotoxic drugs indicate that further significant improvement in prognosis by this type of drugs is not to be expected. Currently a large number of drugs, targeting dysregulated molecular pathways in cancer cells have been developed and are introduced in the clinic. A major challenge is to identify those patients who will benefit from drugs targeting these specific dysregulated pathways.The aims of our study were (1 to develop a gene expression profile associated with overall survival in advanced stage serous ovarian cancer, (2 to assess the association of pathways and transcription factors with overall survival, and (3 to validate our identified profile and pathways/transcription factors in an independent set of ovarian cancers. METHODS AND FINDINGS: According to a randomized design, profiling of 157 advanced stage serous ovarian cancers was performed in duplicate using approximately 35,000 70-mer oligonucleotide microarrays. A continuous predictor of overall survival was built taking into account well-known issues in microarray analysis, such as multiple testing and overfitting. A functional class scoring analysis was utilized to assess pathways/transcription factors for their association with overall survival. The prognostic value of genes that constitute our overall survival profile was validated on a fully independent, publicly available dataset of 118 well-defined primary serous ovarian cancers. Furthermore, functional class scoring analysis was also performed on this independent dataset to assess the similarities with results from our own dataset. An 86-gene overall survival profile discriminated between patients with unfavorable and favorable prognosis (median survival, 19

  2. Molecular architecture of transcription factor hotspots in early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh

    2014-01-01

    motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate...

  3. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  4. A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors

    NARCIS (Netherlands)

    Joosten, Paul H. L. J.; Toepoel, Mascha; van Oosterhout, Dirk; Afink, Gijs B.; van Zoelen, Everardus J. J.

    2002-01-01

    We have previously shown that deregulated expression of the platelet-derived growth factor alpha-receptor (PDGFRA) can be associated with neural tube defects (NTDs) in both men and mice. In the present study, we have investigated the transcription factors that control the up-regulation of PDGFRA

  5. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  6. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  7. Molecular Evolution of the non-coding Eosinophil Granule Ontogeny Transcript EGOT

    Directory of Open Access Journals (Sweden)

    Dominic eRose

    2011-10-01

    Full Text Available Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs. The evolutionary history of mlncRNAs is still largely uncharted territory.In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT, an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs. EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyse patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrat here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved and thermodynamic stable secondary structures.Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element.

  8. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.

    Science.gov (United States)

    Soler, Marçal; Camargo, Eduardo Leal Oliveira; Carocha, Victor; Cassan-Wang, Hua; San Clemente, Hélène; Savelli, Bruno; Hefer, Charles A; Paiva, Jorge A Pinto; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  9. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth

    DEFF Research Database (Denmark)

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten

    2003-01-01

    -specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases....... Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation....

  10. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  11. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer.

    Science.gov (United States)

    Zhao, Yingke; Liu, Yue

    2018-04-01

    The abnormalities of transcription factors, such as NF-κB, STAT, estrogen receptor, play a critical role in the initiation and progression of breast cancer. Due to the limitation of current treatment, transcription factors could be promising therapeutic targets, which have received close attention. In this review, we introduced herbal medicines, as well as botanical compounds that had been verified with anti-tumor properties via regulating transcription factors. Herbs, compounds, as well as formulae reported with various transcriptional targets, were summarized thoroughly, to provide implication for the future research on basic experiment and clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Nuclear exclusion of transcription factors associated with apoptosis in developing nervous tissue

    Directory of Open Access Journals (Sweden)

    R. Linden

    1999-07-01

    Full Text Available Programmed cell death in the form of apoptosis involves a network of metabolic events and may be triggered by a variety of stimuli in distinct cells. The nervous system contains several neuron and glial cell types, and developmental events are strongly dependent on selective cell interactions. Retinal explants have been used as a model to investigate apoptosis in nervous tissue. This preparation maintains the structural complexity and cell interactions similar to the retina in situ, and contains cells in all stages of development. We review the finding of nuclear exclusion of several transcription factors during apoptosis in retinal cells. The data reviewed in this paper suggest a link between apoptosis and a failure in the nucleo-cytoplasmic partition of transcription factors. It is argued that the nuclear exclusion of transcription factors may be an integral component of apoptosis both in the nervous system and in other types of cells and tissues.

  14. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. NF-κB Transcription Factor Role in Consolidation and Reconsolidation of Persistent Memories

    Directory of Open Access Journals (Sweden)

    Verónica ede la Fuente

    2015-09-01

    Full Text Available Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the NF-κB family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.

  16. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  17. Evidence for changes in the transcription levels of two putative P-glycoprotein genes in sea lice (Lepeophtheirus salmonis) in response to emamectin benzoate exposure.

    Science.gov (United States)

    Tribble, Nicholas D; Burka, John F; Kibenge, Frederick S B

    2007-05-01

    Overexpression of P-glycoproteins (Pgps) is assumed to be a principal mechanism of resistance of nematodes and arthropods to macrocyclic lactones. Quantitative RT-PCR (Q-RT-PCR) was used to demonstrate changes in transcription levels of two putative P-glycoprotein genes, designated here as SL0525 and SL-Pgp1, in sea lice (Lepeophtheirus salmonis) following exposure to emamectin benzoate (EMB). Pre-adult L. salmonis were challenged in an EMB bioassay for 24h and gene expression was studied from lice surviving EMB concentrations of 0, 10, and 30ppb. Gene expression was measured using Q-RT-PCR with elongation factor 1 (eEF1alpha) as an internal reference gene. The results show that both target genes, SL0525 and SL-Pgp1, had significantly increased levels of expression with exposure to 10ppb EMB (p=0.11 and p=0.17, respectively) whereas the group exposed to 30ppb was on the verge of being significant (p=0.053) only in the expression of SL-Pgp1. Gene expression for SL0525 and SL-Pgp1 were increased over five-fold at 10ppb EMB. Therefore, the upregulation of these target genes may offer protection by increasing Pgp expression when lice are exposed to EMB. Our optimized Q-RT-PCR can be used to determine if over-expression of these genes could be the basis for development of resistance in sea lice and thus allow suitable alternative chemotherapeutic options to be assessed.

  18. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    Science.gov (United States)

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  19. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes that encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.

  20. Evidence for site-specific occupancy of the mitochondrial genome by nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Georgi K Marinov

    Full Text Available Mitochondria contain their own circular genome, with mitochondria-specific transcription and replication systems and corresponding regulatory proteins. All of these proteins are encoded in the nuclear genome and are post-translationally imported into mitochondria. In addition, several nuclear transcription factors have been reported to act in mitochondria, but there has been no comprehensive mapping of their occupancy patterns and it is not clear how many other factors may also be found in mitochondria. Here we address these questions by using ChIP-seq data from the ENCODE, mouseENCODE and modENCODE consortia for 151 human, 31 mouse and 35 C. elegans factors. We identified 8 human and 3 mouse transcription factors with strong localized enrichment over the mitochondrial genome that was usually associated with the corresponding recognition sequence motif. Notably, these sites of occupancy are often the sites with highest ChIP-seq signal intensity within both the nuclear and mitochondrial genomes and are thus best explained as true binding events to mitochondrial DNA, which exist in high copy number in each cell. We corroborated these findings by immunocytochemical staining evidence for mitochondrial localization. However, we were unable to find clear evidence for mitochondrial binding in ENCODE and other publicly available ChIP-seq data for most factors previously reported to localize there. As the first global analysis of nuclear transcription factors binding in mitochondria, this work opens the door to future studies that probe the functional significance of the phenomenon.

  1. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  2. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  3. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-01-01

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  4. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704

    Directory of Open Access Journals (Sweden)

    Trina Ekawati Tallei

    2015-10-01

    Full Text Available Mitochondria of Paramecium caudatum stock GT704 has a set of four kinds of linear plasmids with sizes of 8.2, 4.1, 2.8 and 1.4 kb. The plasmids of 8.2 and 2.8 kb exist as dimers consisting of 4.1- and 1.4-kb monomers, respectively. The plasmid 2.8 kb, designated as pGT704-2.8, contains an open reading frame encodes for putative DNA-dependent RNA polymerase (RNAP. This study reveals that this RNAP belongs to superfamily of DNA/RNA polymerase and family of T7/T3 single chain RNA polymerase and those of mitochondrial plasmid of fungi belonging to Basidiomycota and Ascomycota. It is suggested that RNAP of pGT704-2.8 can perform transcription without transcription factor as promoter recognition. Given that only two motifs were found, it could not be ascertained whether this RNAP has a full function independently or integrated with mtDNA in carrying out its function.

  5. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast.

    Directory of Open Access Journals (Sweden)

    Chun Ye

    2009-03-01

    Full Text Available Understanding the relationship between genetic variation and gene expression is a central question in genetics. With the availability of data from high-throughput technologies such as ChIP-Chip, expression, and genotyping arrays, we can begin to not only identify associations but to understand how genetic variations perturb the underlying transcription regulatory networks to induce differential gene expression. In this study, we describe a simple model of transcription regulation where the expression of a gene is completely characterized by two properties: the concentrations and promoter affinities of active transcription factors. We devise a method that extends Network Component Analysis (NCA to determine how genetic variations in the form of single nucleotide polymorphisms (SNPs perturb these two properties. Applying our method to a segregating population of Saccharomyces cerevisiae, we found statistically significant examples of trans-acting SNPs located in regulatory hotspots that perturb transcription factor concentrations and affinities for target promoters to cause global differential expression and cis-acting genetic variations that perturb the promoter affinities of transcription factors on a single gene to cause local differential expression. Although many genetic variations linked to gene expressions have been identified, it is not clear how they perturb the underlying regulatory networks that govern gene expression. Our work begins to fill this void by showing that many genetic variations affect the concentrations of active transcription factors in a cell and their affinities for target promoters. Understanding the effects of these perturbations can help us to paint a more complete picture of the complex landscape of transcription regulation. The software package implementing the algorithms discussed in this work is available as a MATLAB package upon request.

  6. Protein intrinsic disorder in Arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Jensen, Mikael Kryger; Stender, Emil G.P.

    2015-01-01

    of differences in binding mechanisms. Although substitution of both hydrophobic and acidic residues of the ANAC046 MoRF region abolished binding, substitution of other residues, even with α-helix-breaking proline, was less disruptive. Together, the biophysical analyses suggest that RCD1-ANAC046 complex formation......Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis...

  7. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).

    Science.gov (United States)

    Djemal, Rania; Khoudi, Habib

    2015-11-01

    Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.

  8. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    Science.gov (United States)

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  9. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  10. Transcriptional factor influence on OTA production and the quelling ...

    African Journals Online (AJOL)

    This study determined the influence of some transcriptional factors on ochratoxin A production as well as investigates the quelling attributes of some designed siRNA on the OTA producing Aspergillus section Nigri using standard recommended techniques. Results obtained following comparison of the pks gene promoter ...

  11. Occupancy classification of position weight matrix-inferred transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Hollis Wright

    Full Text Available BACKGROUND: Computational prediction of Transcription Factor Binding Sites (TFBS from sequence data alone is difficult and error-prone. Machine learning techniques utilizing additional environmental information about a predicted binding site (such as distances from the site to particular chromatin features to determine its occupancy/functionality class show promise as methods to achieve more accurate prediction of true TFBS in silico. We evaluate the Bayesian Network (BN and Support Vector Machine (SVM machine learning techniques on four distinct TFBS data sets and analyze their performance. We describe the features that are most useful for classification and contrast and compare these feature sets between the factors. RESULTS: Our results demonstrate good performance of classifiers both on TFBS for transcription factors used for initial training and for TFBS for other factors in cross-classification experiments. We find that distances to chromatin modifications (specifically, histone modification islands as well as distances between such modifications to be effective predictors of TFBS occupancy, though the impact of individual predictors is largely TF specific. In our experiments, Bayesian network classifiers outperform SVM classifiers. CONCLUSIONS: Our results demonstrate good performance of machine learning techniques on the problem of occupancy classification, and demonstrate that effective classification can be achieved using distances to chromatin features. We additionally demonstrate that cross-classification of TFBS is possible, suggesting the possibility of constructing a generalizable occupancy classifier capable of handling TFBS for many different transcription factors.

  12. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.

    Science.gov (United States)

    Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel

    2006-04-28

    Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.

  13. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  14. Temporally Regulated Neural Crest Transcription Factors Distinguish Neuroectodermal Tumors of Varying Malignancy and Differentiation

    Directory of Open Access Journals (Sweden)

    Timothy R. Gershon

    2005-06-01

    Full Text Available Neuroectodermal tumor cells, like neural crest (NC cells, are pluripotent, proliferative, and migratory. We tested the hypothesis that genetic programs essential to NC development are activated in neuroectodermal tumors. We examined the expression of transcription factors PAX3, PAX7, AP-2α, and SOX10 in human embryos and neuroectodermal tumors: neurofibroma, schwannoma, neuroblastoma, malignant nerve sheath tumor, melanoma, medulloblastoma, supratentorial primitive neuroectodermal tumor, and Ewing's sarcoma. We also examined the expression of P0, ERBB3, and STX, targets of SOX10, AP-2α, and PAX3, respectively. PAX3, AP-2α, and SOX10 were expressed sequentially in human NC development, whereas PAX7 was restricted to mesoderm. Tumors expressed PAX3, AP-2α, SOX10, and PAX7 in specific combinations. SOX10 and AP-2α were expressed in relatively differentiated neoplasms. The early NC marker, PAX3, and its homologue, PAX7, were detected in poorly differentiated tumors and tumors with malignant potential. Expression of NC transcription factors and target genes correlated. Transcription factors essential to NC development are thus present in neuroectodermal tumors. Correlation of specific NC transcription factors with phenotype, and with expression of specific downstream genes, provides evidence that these transcription factors actively influence gene expression and tumor behavior. These findings suggest that PAX3, PAX7, AP-2α, and SOX10 are potential markers of prognosis and targets for therapeutic intervention.

  15. Regulation of basophil and mast cell development by transcription factors

    Directory of Open Access Journals (Sweden)

    Haruka Sasaki

    2016-04-01

    Full Text Available Basophils and mast cells play important roles in host defense against parasitic infections and allergic responses. Several progenitor populations, either shared or specific, for basophils and/or mast cells have been identified, thus elucidating the developmental pathways of these cells. Multiple transcription factors essential for their development and the relationships between them have been also revealed. For example, IRF8 induces GATA2 expression to promote the generation of both basophils and mast cells. The STAT5-GATA2 axis induces C/EBPα and MITF expression, facilitating the differentiation into basophils and mast cells, respectively. In addition, C/EBPα and MITF mutually suppress each other's expression. This review provides an overview of recent advances in our understanding of how transcription factors regulate the development of basophils and mast cells.

  16. In vitro fluorescence studies of transcription factor IIB-DNA interaction.

    Science.gov (United States)

    Górecki, Andrzej; Figiel, Małgorzata; Dziedzicka-Wasylewska, Marta

    2015-01-01

    General transcription factor TFIIB is one of the basal constituents of the preinitiation complex of eukaryotic RNA polymerase II, acting as a bridge between the preinitiation complex and the polymerase, and binding promoter DNA in an asymmetric manner, thereby defining the direction of the transcription. Methods of fluorescence spectroscopy together with circular dichroism spectroscopy were used to observe conformational changes in the structure of recombinant human TFIIB after binding to specific DNA sequence. To facilitate the exploration of the structural changes, several site-directed mutations have been introduced altering the fluorescence properties of the protein. Our observations showed that binding of specific DNA sequences changed the protein structure and dynamics, and TFIIB may exist in two conformational states, which can be described by a different microenvironment of W52. Fluorescence studies using both intrinsic and exogenous fluorophores showed that these changes significantly depended on the recognition sequence and concerned various regions of the protein, including those interacting with other transcription factors and RNA polymerase II. DNA binding can cause rearrangements in regions of proteins interacting with the polymerase in a manner dependent on the recognized sequences, and therefore, influence the gene expression.

  17. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus.

    Science.gov (United States)

    Li, Fengmei; Liu, Wuyi

    2017-06-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.

  18. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    2010-03-01

    Full Text Available The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates.We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data.Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct-interaction detection and TFBS-discovery accuracy. We estimated the accuracy

  19. A human transcription factor in search mode.

    Science.gov (United States)

    Hauser, Kevin; Essuman, Bernard; He, Yiqing; Coutsias, Evangelos; Garcia-Diaz, Miguel; Simmerling, Carlos

    2016-01-08

    Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways.

    Science.gov (United States)

    Ung, Timothy H; Madsen, Helen J; Hellwinkel, Justin E; Lencioni, Alex M; Graner, Michael W

    2014-11-01

    Exosomes are virus-sized, membrane-enclosed vesicles with origins in the cellular endosomal system, but are released extracellularly. As a population, these tiny vesicles carry relatively enormous amounts of information in their protein, lipid and nucleic acid content, and the vesicles can have profound impacts on recipient cells. This review employs publically-available data combined with gene ontology applications to propose a novel concept, that exosomes transport transcriptional and translational machinery that may have direct impacts on gene expression in recipient cells. Here, we examine the previously published proteomic contents of medulloblastoma-derived exosomes, focusing on transcriptional regulators; we found that there are numerous proteins that may have potential roles in transcriptional and translational regulation with putative influence on downstream, cancer-related pathways. We expanded this search to all of the proteins in the Vesiclepedia database; using gene ontology approaches, we see that these regulatory factors are implicated in many of the processes involved in cancer initiation and progression. This information suggests that some of the effects of exosomes on recipient cells may be due to the delivery of protein factors that can directly and fundamentally change the transcriptional landscape of the cells. Within a tumor environment, this has potential to tilt the advantage towards the cancer. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  1. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Iñigo Landa

    2009-09-01

    Full Text Available In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30-1.70; P = 5.9x10(-9. Functional assays of rs1867277 (NM_004473.3:c.-283G>A within the FOXE1 5' UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/alphaCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.

  2. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    Science.gov (United States)

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  3. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  4. Overexpression of transcription factor AP-2 stimulates the PA promoter of the human uracil-DNA glycosylase (UNG) gene through a mechanism involving derepression

    DEFF Research Database (Denmark)

    Aas, Per Arne; Pena Diaz, Javier; Liabakk, Nina Beate

    2009-01-01

    within the region of DNA marked by PA. Footprinting analysis and electrophoretic mobility shift assays of PA and putative AP-2 binding regions with HeLa cell nuclear extract and recombinant AP-2alpha protein indicate that AP-2 transcription factors are central in the regulated expression of UNG2 m......The PA promoter in the human uracil-DNA glycosylase gene (UNG) directs expression of the nuclear form (UNG2) of UNG proteins. Using a combination of promoter deletion and mutation analyses, and transient transfection of HeLa cells, we show that repressor and derepressor activities are contained......alpha, lacking the activation domain but retaining the DNA binding and dimerization domains, stimulated PA to a level approaching that of full-length AP-2, suggesting that AP-2 overexpression stimulates PA activity by a mechanism involving derepression rather than activation, possibly by neutralizing...

  5. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  6. Melanogenesis-Inducing Effect of Cirsimaritin through Increases in Microphthalmia-Associated Transcription Factor and Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hyo Jung Kim

    2015-04-01

    Full Text Available The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP response element-binding protein (CREB in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  7. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    Science.gov (United States)

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  8. Step out of the groove : epigenetic gene control systems and engineered transcription factors

    NARCIS (Netherlands)

    Verschure, P.J.; Visser, A.E.; Rots, M.G.

    2006-01-01

    At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not

  9. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  10. Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    2014-07-01

    Full Text Available Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.

  11. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation.

    Directory of Open Access Journals (Sweden)

    Joseph M Gonzales

    2008-09-01

    Full Text Available The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.

  12. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  13. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  14. Evaluation of aldehyde dehydrogenase 1 and transcription factors in both primary breast cancer and axillary lymph node metastases as a prognostic factor.

    Science.gov (United States)

    Ito, Maiko; Shien, Tadahiko; Omori, Masako; Mizoo, Taeko; Iwamoto, Takayuki; Nogami, Tomohiro; Motoki, Takayuki; Taira, Naruto; Doihara, Hiroyoshi; Miyoshi, Shinichiro

    2016-05-01

    Aldehyde dehydrogenase 1 (ALDH1) is a marker of breast cancer stem cells, and the expression of ALDH1 may be a prognostic factor of poor clinical outcome. The epithelial-mesenchymal transition may produce cells with stem-cell-like properties promoted by transcription factors. We investigated the expression of ALDH1 and transcription factors in both primary and metastatic lesions, and prognostic value of them in breast cancer patients with axillary lymph node metastasis (ALNM). Forty-seven breast cancer patients with ALNM who underwent surgery at Okayama University Hospital from 2002 to 2008 were enrolled. We retrospectively evaluated the levels of ALDH1 and transcription factors, such as Snail, Slug and Twist, in both primary and metastatic lesions by immunohistochemistry. In primary lesions, the positive rate of ALDH1, Snail, Slug and Twist was 19, 49, 40 and 26%, respectively. In lymph nodes, that of ALDH1, Snail, Slug and Twist was 21, 32, 13 and 23%, respectively. The expression of ALDH1 or transcription factors alone was not significantly associated with a poor prognosis. However, co-expression of ALDH1 and Slug in primary lesions was associated with a shorter DFS (P = 0.009). The evaluation of the co-expression of ALDH1 and transcription factors in primary lesions may be useful in prognosis of node-positive breast cancers.

  15. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  16. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children.

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D; Chen, Jingyang; Morrison, Robert; Castle, John C; Biery, Matthew C; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K; Duffy, Patrick E

    2011-03-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases.

  17. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases. PMID:21317536

  18. Transcriptional landscapes of Axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Caballero-Pérez, Juan; Espinal-Centeno, Annie; Falcon, Francisco; García-Ortega, Luis F; Curiel-Quesada, Everardo; Cruz-Hernández, Andrés; Bako, Laszlo; Chen, Xuemei; Martínez, Octavio; Alberto Arteaga-Vázquez, Mario; Herrera-Estrella, Luis; Cruz-Ramírez, Alfredo

    2018-01-15

    The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  20. Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts.

    Science.gov (United States)

    Babbitt, G A

    2010-10-15

    The spurious (or nonfunctional) binding of transcription factors (TF) to the wrong locations on DNA presents a formidable challenge to genomes given the relatively low ceiling for sequence complexity within the short lengths of most binding motifs. The high potential for the occurrence of random motifs and subsequent nonfunctional binding of many transcription factors should theoretically lead to natural selection against the occurrence of spurious motif throughout the genome. However, because of the active role that chromatin can influence over eukaryotic gene regulation, it may also be expected that many supposed spurious binding sites could escape purifying selection if (A) they simply occur in regions of high nucleosome occupancy or (B) their surrounding chromatin was dynamically involved in their identity and function. We compared nucleosome occupancy and the presence/absence of functionally conserved chromatin context to the strength of selection against spurious binding of various TF binding motifs in Saccharomyces yeast. While we find no direct relationship with nucleosome occupancy, we find strong evidence that transcription factors spatially associated with evolutionarily conserved chromatin states are under relaxed selection against accidental binding. Transcription factors (with/without) a conserved chromatin context were found to occur on average, (87.7%/49.3%) of their expected frequencies. Functional binding motifs with conserved chromatin contexts were also significantly shorter in length and more often clustered. These results indicate a role of chromatin context dependency in relaxing selection against spurious binding in nearly half of all TF binding motifs throughout the yeast genome. 2010 Elsevier B.V. All rights reserved.

  1. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    Science.gov (United States)

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  2. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells.

    Science.gov (United States)

    Shekhawat, Upendra K Singh; Ganapathi, Thumballi R; Srinivas, Lingam

    2011-08-01

    WRKY transcription factor proteins play significant roles in plant stress responses. Here, we report the cloning and characterization of a novel WRKY gene, MusaWRKY71 isolated from an edible banana cultivar Musa spp. Karibale Monthan (ABB group). MusaWRKY71, initially identified using in silico approaches from an abiotic stress-related EST library, was later extended towards the 3' end using rapid amplification of cDNA ends technique. The 1299-bp long cDNA of MusaWRKY71 encodes a protein with 280 amino acids and contains a characteristic WRKY domain in the C-terminal half. Although MusaWRKY71 shares good similarity with other monocot WRKY proteins the substantial size difference makes it a unique member of the WRKY family in higher plants. The 918-bp long 5' proximal region determined using thermal asymmetric interlaced-polymerase chain reaction has many putative cis-acting elements and transcription factor binding motifs. Subcellular localization assay of MusaWRKY71 performed using a GFP-fusion platform confirmed its nuclear targeting in transformed banana suspension cells. Importantly, MusaWRKY71 expression in banana plantlets was up-regulated manifold by cold, dehydration, salt, ABA, H2O2, ethylene, salicylic acid and methyl jasmonate treatment indicating its involvement in response to a variety of stress conditions in banana. Further, transient overexpression of MusaWRKY71 in transformed banana cells led to the induction of several genes, homologues of which have been proven to be involved in diverse stress responses in other important plants. The present study is the first report on characterization of a banana stress-related transcription factor using transformed banana cells.

  3. Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Guangzhong Xu

    2016-01-01

    Full Text Available Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls, a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.

  4. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    International Nuclear Information System (INIS)

    Xiao, Xiao; Gang, Yi; Wang, Honghong; Wang, Jiayin; Zhao, Lina; Xu, Li; Liu, Zhiguo

    2015-01-01

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity

  5. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiao [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Gang, Yi [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province (China); Wang, Honghong [No. 518 Hospital of Chinese People’s Liberation Army, Xi’an 710043, Shaanxi Province (China); Wang, Jiayin [The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 (United States); Zhao, Lina [Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Xu, Li, E-mail: lxuhelen@163.com [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China); Liu, Zhiguo, E-mail: liuzhiguo@fmmu.edu.cn [State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province (China)

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself. The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.

  6. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    Science.gov (United States)

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  7. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery.

    Science.gov (United States)

    Mandin, Pierre; Chareyre, Sylvia; Barras, Frédéric

    2016-09-20

    Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. Regulatory small RNAs (sRNAs) have emerged as major actors in the control of gene expression in the last few decades. Relatively little is known about how these regulators interact with classical transcription factors to coordinate genetic responses. We show here how an sRNA, RyhB, and a transcription factor, IscR, regulate expression of an essential gene, erpA, in the bacterium E

  8. Transcriptional regulation of human RANK ligand gene expression by E2F1

    International Nuclear Information System (INIS)

    Hu Yan; Sun Meng; Nadiminty, Nagalakshmi; Lou Wei; Pinder, Elaine; Gao, Allen C.

    2008-01-01

    Receptor activator of nuclear factor kappa B ligand (RANKL) is a critical osteoclastogenic factor involved in the regulation of bone resorption, immune function, the development of mammary gland and cardiovascular system. To understand the transcriptional regulation of RANKL, we amplified and characterized a 1890 bp 5'-flanking sequence of human RANKL gene (-1782 bp to +108 bp relative to the transcription start site). Using a series of deletion mutations of the 1890 bp RANKL promoter, we identified a 72 bp region (-172 to -100 bp) mediating RANKL basal transcriptional activity. Sequence analysis revealed a putative E2F binding site within this 72 bp region in the human RANKL promoter. Overexpression of E2F1 increased RANKL promoter activity, while down-regulation of E2F1 expression by small interfering RNA decreased RANKL promoter activity. RT-PCR and enzyme linked immunosorbent assays (ELISA) further demonstrated that E2F1 induced the expression of RANKL. Electrophoretic gel mobility shift assays (EMSA) and antibody competition assays confirmed that E2F1 proteins bind to the consensus E2F binding site in the RANKL promoter. Mutation of the E2F consensus binding site in the RANKL promoter profoundly reduced the basal promoter activity and abolished the transcriptional modulation of RANKL by E2F1. These results suggest that E2F1 plays an important role in regulating RANKL transcription through binding to the E2F consensus binding site

  9. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  10. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  11. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  12. CMYB1 Encoding a MYB Transcriptional Activator Is Involved in Abiotic Stress and Circadian Rhythm in Rice

    Directory of Open Access Journals (Sweden)

    Min Duan

    2014-01-01

    Full Text Available Through analysis of cold-induced transcriptome, a novel gene encoding a putative MYB transcription factor was isolated and designated Cold induced MYB 1 (CMYB1. Tissue-specific gene expression analysis revealed that CMYB1 was highly expressed in rice stems and nodes. qRT-PCR assay indicated that CMYB1 was dramatically induced by cold stress (>100-folds and induced by exogenous ABA and osmotic stress. Interestingly, CMYB1 showed rhythmic expression profile in rice leaves at different developmental stages. Subcellular localization assay suggested that CMYB1-GFP (green fluorescent protein fusion protein was localized in the nuclei. Moreover, CMYB1 exhibited the transcriptional activation activity when transiently expressed in rice protoplast cells. Taken together, CMYB1 probably functions as a transcriptional activator in mediating stress and rhythm responsive gene expression in rice.

  13. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    Science.gov (United States)

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  14. Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense.

    Science.gov (United States)

    Tan, Yung-Chie; Yeoh, Keat-Ai; Wong, Mui-Yun; Ho, Chai-Ling

    2013-11-01

    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression

    Science.gov (United States)

    Kang, Byung Young; Lee, Ki-Hwan; Lee, Yong Sung; Hong, Il; Lee, Mi-Ock; Min, Daejin; Chang, Ihseop; Hwang, Jae Sung; Park, Jun Seong; Kim, Duck Hee

    2008-01-01

    Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-κB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions. PMID:18446059

  16. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    Science.gov (United States)

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  17. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    Directory of Open Access Journals (Sweden)

    Ying eZhao

    2015-06-01

    Full Text Available Metasequoiaglyptostroboidies is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as5-to-7years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  18. Identification of transcription factors linked to cell cycle regulation in Arabidopsis

    OpenAIRE

    Dehghan Nayeri, Fatemeh

    2014-01-01

    Cell cycle is an essential process in growth and development of living organisms consists of the replication and mitotic phases separated by 2 gap phases; G1 and G2. It is tightly controlled at the molecular level and especially at the level of transcription. Precise regulation of the cell cycle is of central significance for plant growth and development and transcription factors are global regulators of gene expression playing essential roles in cell cycle regulation. This study has uncovere...

  19. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Bargavi Thyagarajan

    2010-09-01

    Full Text Available Aging is a complex phenotype responsive to a plethora of environmental inputs; yet only a limited number of transcriptional regulators are known to influence life span. How the downstream expression programs mediated by these factors (or others are coordinated into common or distinct set of aging effectors is an addressable question in model organisms, such as C. elegans. Here, we establish the transcription factor ETS-4, an ortholog of vertebrate SPDEF, as a longevity determinant. Adult worms with ets-4 mutations had a significant extension of mean life span. Restoring ETS-4 activity in the intestine, but not neurons, of ets-4 mutant worms rescued life span to wild-type levels. Using RNAi, we demonstrated that ets-4 is required post-developmentally to regulate adult life span; thus uncoupling the role of ETS-4 in aging from potential functions in worm intestinal development. Seventy ETS-4-regulated genes, identified by gene expression profiling of two distinct ets-4 alleles and analyzed by bioinformatics, were enriched for known longevity effectors that function in lipid transport, lipid metabolism, and innate immunity. Putative target genes were enriched for ones that change expression during normal aging, the majority of which are controlled by the GATA factors. Also, some ETS-4-regulated genes function downstream of the FOXO factor, DAF-16 and the insulin/IGF-1 signaling pathway. However, epistasis and phenotypic analyses indicate that ets-4 functioned in parallel to the insulin/IGF-1 receptor, daf-2 and akt-1/2 kinases. Furthermore, ets-4 required daf-16 to modulate aging, suggesting overlap in function at the level of common targets that affect life span. In conclusion, ETS-4 is a new transcriptional regulator of aging, which shares transcriptional targets with GATA and FOXO factors, suggesting that overlapping pathways direct common sets of lifespan-related genes.

  20. DOT/FAA Human Factors Workshop on Aviation (6th). Transcript.

    Science.gov (United States)

    1982-05-01

    This document is a verbatim transcript of the proceedings of the DOT/FAA Sixth Human Factors Workshop on Aviation held at the Mike Monroney Aeronautical Center, Oklahoma City, Oklahoma on July 7-8, 1981. The subject of the workshop was aviation maint...

  1. Regulation of archicortical arealization by the transcription factor Zbtb20

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga; Tonchev, Anton B; Stoykova, Anastassia

    2012-01-01

    The molecular mechanisms of regionalization of the medial pallium (MP), the anlage of the hippocampus, and transitional (cingulate and retrosplenial) cortices are largely unknown. Previous analyses have outlined an important role of the transcription factor (TF) Zbtb20 for hippocampal CA1 field...

  2. A role for the transcription factor HEY1 in glioblastoma

    DEFF Research Database (Denmark)

    Hulleman, Esther; Quarto, Micaela; Vernell, Richard

    2009-01-01

    Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes......, such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically upregulated in glioma...... and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally...

  3. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  4. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  5. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  6. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid.

    Science.gov (United States)

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-11-19

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5'-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5'-TGTAAGCCCTAACA-3') upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network.

  7. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DEFF Research Database (Denmark)

    Dossani, Zain Y.; Apel, Amanda Reider; Szmidt-Middleton, Heather

    2018-01-01

    regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein....... Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes...... levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain....

  8. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  9. Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization

    International Nuclear Information System (INIS)

    Mehmood, Rashid; Yasuhara, Noriko; Oe, Souichi; Nagai, Masahiro; Yoneda, Yoshihiro

    2009-01-01

    The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand the nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.

  10. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    Science.gov (United States)

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  11. Distinct mechanisms of nuclear accumulation regulate the functional consequence of E2F transcription factors

    NARCIS (Netherlands)

    Allen, K.E.; Luna, S. de la; Kerkhoven, R.M.; Bernards, R.A.; Thangue, N.B. La

    1997-01-01

    Transcription factor E2F plays an important role in coordinating and integrating early cell cycle progression with the transcription apparatus. It is known that physiological E2F arises when a member of two families of proteins, E2F and DP, interact as E2F/DP heterodimers and that transcriptional

  12. Cdk phosphorylation of the Ste11 transcription factor constrains differentiation-specific transcription to G1

    DEFF Research Database (Denmark)

    Kjaerulff, Søren; Andersen, Nicoline Resen; Borup, Mia Trolle

    2007-01-01

    Eukaryotic cells normally differentiate from G(1); here we investigate the mechanism preventing expression of differentiation-specific genes outside G(1). In fission yeast, induction of the transcription factor Ste11 triggers sexual differentiation. We find that Ste11 is only active in G(1) when...... Cdk activity is low. In the remaining part of the cell cycle, Ste11 becomes Cdk-phosphorylated at Thr 82 (T82), which inhibits its DNA-binding activity. Since the ste11 gene is autoregulated and the Ste11 protein is highly unstable, this Cdk switch rapidly extinguishes Ste11 activity when cells enter...... S phase. When we mutated T82 to aspartic acid, mimicking constant phosphorylation, cells no longer underwent differentiation. Conversely, changing T82 to alanine rendered Ste11-controlled transcription constitutive through the cell cycle, and allowed mating from S phase with increased frequency...

  13. A Role for the NF-kb/Rel Transcription Factors in Human Breast Cancer

    National Research Council Canada - National Science Library

    Baldwin, Albert

    1998-01-01

    Human breast cancer is characterized by the inappropriate expression of growth factors, kinases and possibly certain transcription factors Our project has focused on the regulation of the NF-kB family...

  14. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  15. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor.

    Science.gov (United States)

    Florez, Sergio L; Erwin, Rachel L; Maximova, Siela N; Guiltinan, Mark J; Curtis, Wayne R

    2015-05-16

    Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which

  16. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    Science.gov (United States)

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American

  17. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  18. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  19. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  20. Genome-wide profiling of H3K56 acetylation and transcription factor binding sites in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Kinyui Alice Lo

    Full Text Available The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte

  1. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  2. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  3. The transcription factor c-Maf controls touch receptor development and function.

    Science.gov (United States)

    Wende, Hagen; Lechner, Stefan G; Cheret, Cyril; Bourane, Steeve; Kolanczyk, Maria E; Pattyn, Alexandre; Reuter, Katja; Munier, Francis L; Carroll, Patrick; Lewin, Gary R; Birchmeier, Carmen

    2012-03-16

    The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.

  4. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  5. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network.

    Science.gov (United States)

    Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena

    2014-12-01

    Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.

  7. Transcription factors: normal and malignant development of blood cells

    National Research Council Canada - National Science Library

    Ravid, Katya; Licht, Jonathan

    2001-01-01

    ... and the Development of the Erythroid Lineage James J. Bieker 71 II TRANSCRIPTION FACTORS AND THE MYELOID LINEAGE 85 6 RUNX1(AML1) and CBFB: Genes Required for the Development of All Definitive Hematopoietic Lineages 87 Nancy A. Speck and Elaine Dzierzak 7 PU.1 and the Development of the Myeloid Lineage Daniel G. Tenen 103 vvi CONTENTS 8 CCAAT/Enhancer-...

  8. The forkhead transcription factor FoxY regulates Nanos.

    Science.gov (United States)

    Song, Jia L; Wessel, Gary M

    2012-10-01

    FoxY is a member of the forkhead transcription factor family that appeared enriched in the presumptive germ line of sea urchins (Ransick et al. Dev Biol 2002;246:132). Here, we test the hypothesis that FoxY is involved in germ line determination in this animal. We found two splice forms of FoxY that share the same DNA-binding domain, but vary in the carboxy-terminal trans-activation/repression domain. Both forms of the FoxY protein are present in the egg and in the early embryo, and their mRNAs accumulate to their highest levels in the small micromeres and adjacent non-skeletogenic mesoderm. Knockdown of FoxY resulted in a dramatic decrease in Nanos mRNA and protein levels as well as a loss of coelomic pouches in 2-week-old larvae. Our results indicate that FoxY positively regulates Nanos at the transcriptional level and is essential for reproductive potential in this organism. Copyright © 2012 Wiley Periodicals, Inc.

  9. Assessing quality and completeness of human transcriptional regulatory pathways on a genome-wide scale

    Directory of Open Access Journals (Sweden)

    Aifantis Iannis

    2011-02-01

    Full Text Available Abstract Background Pathway databases are becoming increasingly important and almost omnipresent in most types of biological and translational research. However, little is known about the quality and completeness of pathways stored in these databases. The present study conducts a comprehensive assessment of transcriptional regulatory pathways in humans for seven well-studied transcription factors: MYC, NOTCH1, BCL6, TP53, AR, STAT1, and RELA. The employed benchmarking methodology first involves integrating genome-wide binding with functional gene expression data to derive direct targets of transcription factors. Then the lists of experimentally obtained direct targets are compared with relevant lists of transcriptional targets from 10 commonly used pathway databases. Results The results of this study show that for the majority of pathway databases, the overlap between experimentally obtained target genes and targets reported in transcriptional regulatory pathway databases is surprisingly small and often is not statistically significant. The only exception is MetaCore pathway database which yields statistically significant intersection with experimental results in 84% cases. Additionally, we suggest that the lists of experimentally derived direct targets obtained in this study can be used to reveal new biological insight in transcriptional regulation and suggest novel putative therapeutic targets in cancer. Conclusions Our study opens a debate on validity of using many popular pathway databases to obtain transcriptional regulatory targets. We conclude that the choice of pathway databases should be informed by solid scientific evidence and rigorous empirical evaluation. Reviewers This article was reviewed by Prof. Wing Hung Wong, Dr. Thiago Motta Venancio (nominated by Dr. L Aravind, and Prof. Geoff J McLachlan.

  10. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2.

    Science.gov (United States)

    Weng, Lin; Bai, Xiaodong; Zhao, Fangfang; Li, Rong; Xiao, Han

    2016-12-01

    Flowering of higher plants is orchestrated by complex regulatory networks through integration of various environmental signals such as photoperiod, temperature, light quality and developmental cues. In Arabidopsis, transcription of the flowering integrator gene FLOWERING LOCUS T (FT) that several flowering pathways converge to is directly regulated by more than ten transcription factors. However, very little is known about the transcriptional regulation of the FT homolog SINGLE FLOWER TRUESS (SFT) in the day-neutral plant tomato (Solanum lycopersicum). Previously, we showed that the zinc finger transcription factor SlZFP2 plays important roles in regulation of seed germination and fruit ripening in tomato and also found that overexpression of SlZFP2 impacted flowering and branching. Here, we characterized in detail the early flowering and high branching phenotypes by overexpression of this transcription factor. Our data showed that overexpression of SlZFP2 accelerated flowering in an SFT-dependent manner as demonstrated by elevated SFT expression in the leaves and the transcription factor's binding ability to SFT promoter in vitro and in vivo. Furthermore, overexpression of the SlZFP2 gene in the sft plants failed to rescue the mutant's late flowering. Through analysis of grafting phenotype, growth response of branches to auxin application and transcriptome profiling by RNA sequencing, we also showed that overexpression of SlZFP2 affected shoot apical dominance through multiple regulatory pathways. Our results suggest that the transcription factor SlZFP2 has potential applications in genetic modification of plant architecture and flowering time for tomato production and other crops as well. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hua eCassan-Wang

    2013-06-01

    Full Text Available The presence of lignin in secondary cell walls (SCW is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (i the fiber cell wall-deficient wat1 Arabidopsis mutant, (ii Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (iii the repressor EgMYB1 and finally (iv Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated transcription factors. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them (blh6 and a zinc finger transcription factor presented hypolignified SCW. Three others (myb52, myb-like TF, hb5 showed hyperlignified SCW whereas the last one (hb15 showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel

  12. Identifying functional transcription factor binding sites in yeast by considering their positional preference in the promoters.

    Directory of Open Access Journals (Sweden)

    Fu-Jou Lai

    Full Text Available Transcription factor binding site (TFBS identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC, to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS. This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.

  13. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.

    Science.gov (United States)

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia

    2011-12-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.

  14. Ten Putative Contributors to the Obesity Epidemic

    Science.gov (United States)

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  15. Control of cellulose biosynthesis by overexpression of a transcription factor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyung-Hwan; Ko, Jae-Heung; Kim, Won-Chan; Kim; , Joo-Yeol

    2017-05-16

    The invention relates to the over-expression of a transcription factor selected from the group consisting of MYB46, HAM1, HAM2, MYB112, WRKY11, ERF6, and any combination thereof in a plant, which can modulate and thereby modulating the cellulose content of the plant.

  16. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Sollome, James; Martin, Elizabeth [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Sethupathy, Praveen [Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC (United States)

    2016-12-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.

  17. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  18. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    Science.gov (United States)

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  19. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.).

    Science.gov (United States)

    Misra, Vikram A; Wang, Yu; Timko, Michael P

    2017-11-22

    Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. The availability of detailed

  20. Targeting HOX and PBX transcription factors in ovarian cancer

    International Nuclear Information System (INIS)

    Morgan, Richard; Plowright, Lynn; Harrington, Kevin J; Michael, Agnieszka; Pandha, Hardev S

    2010-01-01

    Ovarian cancer still has a relatively poor prognosis due to the frequent occurrence of drug resistance, making the identification of new therapeutic targets an important goal. We have studied the role of HOX genes in the survival and proliferation of ovarian cancer cells. These are a family of homeodomain-containing transcription factors that determine cell and tissue identity in the early embryo, and have an anti-apoptotic role in a number of malignancies including lung and renal cancer. We used QPCR to determine HOX gene expression in normal ovary and in the ovarian cancer cell lines SK-OV3 and OV-90. We used a short peptide, HXR9, to disrupt the formation of HOX/PBX dimers and alter transcriptional regulation by HOX proteins. In this study we show that the ovarian cancer derived line SK-OV3, but not OV-90, exhibits highly dysregulated expression of members of the HOX gene family. Disrupting the interaction between HOX proteins and their co-factor PBX induces apoptosis in SK-OV3 cells and retards tumour growth in vivo. HOX/PBX binding is a potential target in ovarian cancer

  1. DAF-16/FOXO Transcription Factor in Aging and Longevity.

    Science.gov (United States)

    Sun, Xiaojuan; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aging is associated with age-related diseases and an increase susceptibility of cancer. Dissecting the molecular mechanisms that underlie aging and longevity would contribute to implications for preventing and treating the age-dependent diseases or cancers. Multiple signaling pathways such as the insulin/IGF-1 signaling pathway, TOR signaling, AMPK pathway, JNK pathway and germline signaling have been found to be involved in aging and longevity. And DAF-16/FOXO, as a key transcription factor, could integrate different signals from these pathways to modulate aging, and longevity via shuttling from cytoplasm to nucleus. Hence, understanding how DAF-16/FOXO functions will be pivotal to illustrate the processes of aging and longevity. Here, we summarized how DAF-16/FOXO receives signals from these pathways to affect aging and longevity. We also briefly discussed the transcriptional regulation and posttranslational modifications of DAF-16/FOXO, its co-factors as well as its potential downstream targets participating in lifespan according to the published data in C. elegans and in mammals, and in most cases, we may focus on the studies in C. elegans which has been considered to be a very good animal model for longevity research.

  2. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  3. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  4. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  5. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    Science.gov (United States)

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  6. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  7. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Science.gov (United States)

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  8. Functional analysis of jasmonate-responsive transcription factors in Arabidopsis thaliana

    NARCIS (Netherlands)

    Zarei, Adel

    2007-01-01

    The aim of the studies described in this thesis was the functional analysis of JA-responsive transcription factors in Arabidopsis with an emphasis on the interaction with the promoters of their target genes. In short, the following new results were obtained. The promoter of the PDF1.2 gene contains

  9. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  10. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Matthewman, Colette; Podzimska-Sroka, Dagmara

    2016-01-01

    -expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling......The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005...... pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein-DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence...

  11. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    Science.gov (United States)

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.

  12. The WRKY Transcription Factor Genes in Lotus japonicus

    OpenAIRE

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (...

  13. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant

    OpenAIRE

    Zhao, Fengli; Li, Gang; Hu, Panpan; Zhao, Xia; Li, Liangjie; Wei, Wei; Feng, Jiayue; Zhou, Houcheng

    2018-01-01

    As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics...

  14. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    Science.gov (United States)

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  15. Microphthalmia-associated transcription factor (MITF – from Waardenburg syndrome genetics to melanoma therapy

    Directory of Open Access Journals (Sweden)

    Ivan Šamija

    2010-11-01

    Full Text Available Microphthalmia-associated transcription factor (MITF was first discovered as protein coded by gene whose mutations are associated with Waardenburg syndrome. Later, MITF was shown to be key transcription factor regulating melanogenesis. Further studies have shown that in addition to regulating melanogenesis MITF also plays central role in regulation of melanocyte development and survival. MITF gene is amplified in a proportion of melanomas and ectopic MITF expression can transform melanocytes so MITF can function as melanoma “lineage survival” oncogene. Different studies have further revealed MITF’s important but complex role in tumorigenesis and progression of melanoma. As expected from its important role in melanocytes and melanoma MITF is intricately regulated on all the levels from transcription to post-translational modifications. Although complex mechanisms of MITF functioning are still being revealed, MITF already has a valuable role in managing melanoma patients. Immunohistochemical analysis of MITF has shown both diagnostic and prognostic value in patients with melanoma. MITF is also a valuable specific marker for detection of circulating melanoma cells by reverse-transcription – polymerase chain reaction. MITF has recently been investigated as a potential target for melanoma therapy.

  16. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  17. Intrinsic terminators in Mycoplasma hyopneumoniae transcription.

    Science.gov (United States)

    Fritsch, Tiago Ebert; Siqueira, Franciele Maboni; Schrank, Irene Silveira

    2015-04-08

    Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.

  18. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean.

    Directory of Open Access Journals (Sweden)

    Yuguang Song

    Full Text Available Epigenetic modification contributes to the regulation of gene expression and plant development under salinity stress. Here we describe the identification of 49 soybean transcription factors by microarray analysis as being inducible by salinity stress. A semi-quantitative RT-PCR-based expression assay confirmed the salinity stress inducibility of 45 of these 49 transcription factors, and showed that ten of them were up-regulated when seedlings were exposed to the demethylation agent 5-aza-2-deoxycytidine. Salinity stress was shown to affect the methylation status of four of these ten transcription factors (one MYB, one b-ZIP and two AP2/DREB family members using a combination of bisulfite sequencing and DNA methylation-sensitive DNA gel blot analysis. ChIP analysis indicated that the activation of three of the four DNA methylated transcription factors was correlated with an increased level of histone H3K4 trimethylation and H3K9 acetylation, and/or a reduced level of H3K9 demethylation in various parts of the promoter or coding regions. Our results suggest a critical role for some transcription factors' activation/repression by DNA methylation and/or histone modifications in soybean tolerance to salinity stress.

  19. Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development

    Directory of Open Access Journals (Sweden)

    Turenne Nicolas

    2012-08-01

    approach based on literature-mining and score arrangement of data from model organisms. This approach was applied to identify novel transcription factors during bovine blastocyst elongation, a process that is not observed in rodents and primates. As a result, searching through human and mouse corpuses, we identified numerous bovine homologs, among which 11 to 14% of transcription factors including the gold standard TF as well as novel TF potentially important to gene regulation in ruminant embryo development. The scripts of the workflow are written in Perl and available on demand. They require data input coming from all various databases for any kind of biological issue once the data has been prepared according to keywords for the studied topic and species; we can provide data sample to illustrate the use and functionality of the workflow. Results To do so, we created a workflow that allowed the pipeline processing of literature data and biological data, extracted from Web of Science (WoS or PubMed but also from Gene Expression Omnibus (GEO, Gene Ontology (GO, Uniprot, HomoloGene, TcoF-DB and TFe (TF encyclopedia. First, the human and mouse homologs of the bovine proteins were selected, filtered by text corpora and arranged by score functions. The score functions were based on the gene name frequencies in corpora. Then, transcription factors were identified using TcoF-DB and double-checked using TFe to characterise TF groups and families. Thus, among a search space of 18,670 bovine homologs, 489 were identified as transcription factors. Among them, 243 were absent from the high-throughput data available at the time of the study. They thus stand so far for putative TF acting during bovine embryo elongation, but might be retrieved from a recent RNA sequencing dataset (Mamo et al. , 2012. Beyond the 246 TF that appeared expressed in bovine elongating tissues, we restricted our interpretation to those occurring within a list of 50 top-ranked genes. Among the transcription

  20. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    Science.gov (United States)

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  1. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.

    Science.gov (United States)

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J

    2015-06-09

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  3. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.

    Science.gov (United States)

    Azmi, Peter; Seth, Arun

    2005-11-01

    Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta

  4. Simplified Method for Predicting a Functional Class of Proteins in Transcription Factor Complexes

    KAUST Repository

    Piatek, Marek J.

    2013-07-12

    Background:Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.Results:Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.Conclusion:As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners

  5. Capsella rubella TGA4, a bZIP transcription factor, causes delayed flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Li Maofu

    2016-01-01

    Full Text Available Flowering time is usually regulated by many environmental factors and endogenous signals. TGA family members are bZIP transcription factors that bind to the octopine synthase element, which has been closely linked to defense/stress responses. Most TGA factors interact with non-expressor of PR1 (NPR1 and plant defense responses are strengthened by this interaction. TGA1and TGA4factors bind to NPR1 only in salicylic acid (SA-induced leaves, suggesting that TGA4 has another function during plant development. Here, we isolated a bZIP transcription factor gene, TGA4, from Capsella rubella. TGA4transcripts were detected in most tissues, with high expression in leaves, low expression in stems and flowering buds, and undetectable in siliques. CruTGA4was over expressed in Arabidopsis thaliana wild typeCol-0 plants. Flowering time and total leaf number in the transgenic plants showed that overexpression of CruTGA4could delay flowering in A. thaliana. Our findings suggest that TGA4 may act as flowering regulator that controls plant flowering.

  6. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach

    Science.gov (United States)

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978

  7. In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics

    Directory of Open Access Journals (Sweden)

    Mao Peng

    2018-05-01

    Full Text Available Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.

  8. Factor C*, the specific initiation component of the mouse RNA polymerase I holoenzyme, is inactivated early in the transcription process.

    OpenAIRE

    Brun, R P; Ryan, K; Sollner-Webb, B

    1994-01-01

    Factor C* is the component of the RNA polymerase I holoenzyme (factor C) that allows specific transcriptional initiation on a factor D (SL1)- and UBF-activated rRNA gene promoter. The in vitro transcriptional capacity of a preincubated rDNA promoter complex becomes exhausted very rapidly upon initiation of transcription. This is due to the rapid depletion of C* activity. In contrast, C* activity is not unstable in the absence of transcription, even in the presence of nucleoside triphosphates ...

  9. Molecular Cloning and Characterization of PnbHLH1 Transcription Factor in Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-07-01

    Full Text Available Panax notoginseng has been extensively used as a traditional Chinese medicine. In the current study, molecular cloning and characterization of PnbHLH1 transcription factor were explored in Panax notoginseng. The full length of the PnbHLH1 gene obtained by splicing was 1430 bp, encoding 321 amino acids. Prokaryotic expression vector pET-28a-PnbHLH1 was constructed and transferred into the BL21 prokaryotic expression strain. An electrophoretic mobility shift assay of PnbHLH1 protein binding to E-box cis-acting elements verified that PnbHLH1 belonged to the bHLH class transcription factor which could interact with the promoter region of the E-box core sequence. The expression levels of key genes involved in the biosynthesis of triterpenoid saponins in PnbHLH1 transgenic cells were higher than those in the wild cells. Similarly, the total saponin contents were increased in the PnbHLH1 transgenic cell lines compared with the wild cell lines. Such results suggest that the PnbHLH1 transcription factor is a positive regulator in the biosynthesis of triterpenoid saponins in Panax notoginseng.

  10. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

    KAUST Repository

    Thirumalaikumar, Venkatesh P.

    2017-06-22

    Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species, and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels, and a decrease of the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2, and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. This article is protected by copyright. All rights reserved.

  11. WRKY Transcription Factors: Key Components in Abscisic Acid Signaling

    Science.gov (United States)

    2011-01-01

    networks that take inputs from numerous stimuli and that they are involved in mediating responses to numerous phytohormones including salicylic acid ... jasmonic acid , ABA and GA. These roles in multiple signalling pathways may in turn partly explain the pleiotropic effects commonly seen when TF genes are...Review article WRKY transcription factors: key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1

  12. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    Science.gov (United States)

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  13. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviours

    Directory of Open Access Journals (Sweden)

    Daria eMolodtsova

    2014-12-01

    Full Text Available It is increasingly apparent that genes and networks that influence complex behaviour are evolutionary conserved, which is paradoxical considering that behaviour is labile over evolutionary timescales. How does adaptive change in behaviour arise if behaviour is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behaviour, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behaviour of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

  14. Transcription factor levels enable metabolic diversification of single cells of environmental bacteria.

    Science.gov (United States)

    Guantes, Raúl; Benedetti, Ilaria; Silva-Rocha, Rafael; de Lorenzo, Víctor

    2016-05-01

    Transcriptional noise is a necessary consequence of the molecular events that drive gene expression in prokaryotes. However, some environmental microorganisms that inhabit polluted sites, for example, the m-xylene degrading soil bacterium Pseudomonas putida mt-2 seem to have co-opted evolutionarily such a noise for deploying a metabolic diversification strategy that allows a cautious exploration of new chemical landscapes. We have examined this phenomenon under the light of deterministic and stochastic models for activation of the main promoter of the master m-xylene responsive promoter of the system (Pu) by its cognate transcriptional factor (XylR). These analyses consider the role of co-factors for Pu activation and determinants of xylR mRNA translation. The model traces the onset and eventual disappearance of the bimodal distribution of Pu activity along time to the growth-phase dependent abundance of XylR itself, that is, very low in exponentially growing cells and high in stationary. This tenet was validated by examining the behaviour of a Pu-GFP fusion in a P. putida strain in which xylR expression was engineered under the control of an IPTG-inducible system. This work shows how a relatively simple regulatory scenario (for example, growth-phase dependent expression of a limiting transcription factor) originates a regime of phenotypic diversity likely to be advantageous in competitive environmental settings.

  15. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    Science.gov (United States)

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  16. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, R

    2011-06-28

    Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells.\\r\

  17. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  18. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool.

    Science.gov (United States)

    Auerbach, Raymond K; Chen, Bin; Butte, Atul J

    2013-08-01

    Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.

  19. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.

    Science.gov (United States)

    Nezich, Catherine L; Wang, Chunxin; Fogel, Adam I; Youle, Richard J

    2015-08-03

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.

  20. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata S; Khandelwal, Rohit; Jaishankar, Jananee; Shweta, Shweta; Nawaz, Kashif; Prasad, Manoj

    2015-01-01

    Transcription factors (TFs) are major players in stress signaling and constitute an integral part of signaling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analyzed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II, and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY), followed by group III (39 SiWRKY and 11 SvWRKY) and group I (10 SiWRKY and 6 SvWRKY). Group II proteins were further classified into 5 subgroups (IIa to IIe) based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity) and hormone treatments (abscisic acid, salicylic acid, and methyl jasmonate) suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signaling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signaling.

  1. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  2. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango.

    Science.gov (United States)

    Rípodas, Carolina; Clúa, Joaquín; Battaglia, Marina; Baudin, Maël; Niebel, Andreas; Zanetti, María Eugenia; Blanco, Flavio

    2014-01-01

    Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the infection process. Several transcription factors that play critical roles in these processes have been reported in the past decade, including proteins of the GRAS and NF-Y families. Recently, we reported the characterization of a new GRAS domain containing-protein that interacts with a member of the C subunit of the NF-Y family, which plays an important role in nodule development and the progression of bacterial infection during the symbiotic interaction. The connection between transcription factors of these families highlights the significance of multimeric complexes in the fabulous capacity of plants to integrate and respond to multiple environmental stimuli.

  3. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei

    Science.gov (United States)

    Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P

    2012-01-01

    Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051

  4. A new FACS approach isolates hESC derived endoderm using transcription factors.

    Directory of Open Access Journals (Sweden)

    Yuqiong Pan

    2011-03-01

    Full Text Available We show that high quality microarray gene expression profiles can be obtained following FACS sorting of cells using combinations of transcription factors. We use this transcription factor FACS (tfFACS methodology to perform a genomic analysis of hESC-derived endodermal lineages marked by combinations of SOX17, GATA4, and CXCR4, and find that triple positive cells have a much stronger definitive endoderm signature than other combinations of these markers. Additionally, SOX17(+ GATA4(+ cells can be obtained at a much earlier stage of differentiation, prior to expression of CXCR4(+ cells, providing an important new tool to isolate this earlier definitive endoderm subtype. Overall, tfFACS represents an advancement in FACS technology which broadly crosses multiple disciplines, most notably in regenerative medicine to redefine cellular populations.

  5. Expression of the Transcription Factor E4BP4 in Human Basophils

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Gohr, Maria; Poulsen, Lars Kærgaard

    2014-01-01

    Rationale The cytokine IL-3 plays an important role for human basophil development, function and survival. IL-3 is also reported to induce the expression of the transcription factor E4BP4, but it is not known whether E4BP4 is expressed in basophils and influences basophil responsiveness. The aim...... by Alcian blue. RNA was extracted (0.005-0.02 µg RNA from 0.5 - 1 x 106 cells), and the corresponding cDNA analyzed by real-time PCR where E4BP4 expression was calculated as 2-(CT(E4BP4) - CT(β-actin)). E4BP4 protein expression was visualized in basophil lysates (107 cells/ml) by Western blot followed...... the transcription factor E4BP4 which might have an impact on basophil histamine release....

  6. Low nucleosome occupancy is encoded around functional human transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Daenen Floris

    2008-07-01

    Full Text Available Abstract Background Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors. Results Significant improvement can be expected through the development of a new framework for the modeling and prediction of TFBSs that considers explicitly these higher order sequence properties. It would be particularly interesting to include in the new modeling framework the information present in the nucleosome positioning sequences (NPSs surrounding TFBSs, as it can be hypothesized that genomes use this information to encode the formation of stable nucleosomes over non-functional sites, while functional sites have a more open chromatin configuration. In this report we evaluate the usefulness of the latter feature by comparing the nucleosome occupancy probabilities around experimentally verified human TFBSs with the nucleosome occupancy probabilities around false positive TFBSs and in random sequences. Conclusion We present evidence that nucleosome occupancy is remarkably lower around true functional human TFBSs as compared to non-functional human TFBSs, which supports the use of this feature to improve current TFBS prediction approaches in higher eukaryotes.

  7. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    Science.gov (United States)

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  8. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    Science.gov (United States)

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  9. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    International Nuclear Information System (INIS)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli; Zhang, Xiaodong; Ye, Lihong

    2013-01-01

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells

  10. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong, E-mail: yelihong@nankai.edu.cn [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  11. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    International Nuclear Information System (INIS)

    Garfinkel, S.; Thompson, J.A.; Cohen, R.B.; Brendler, T.; Safer, B.

    1987-01-01

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific 32 P-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect

  12. Phytohormone and Putative Defense Gene Expression Differentiates the Response of ‘Hayward’ Kiwifruit to Psa and Pfm Infections

    Directory of Open Access Journals (Sweden)

    Kirstin V. Wurms

    2017-08-01

    Full Text Available Pseudomonas syringae pv. actinidiae (Psa and Pseudomonas syringae pv. actinidifoliorum (Pfm are closely related pathovars infecting kiwifruit, but Psa is considered one of the most important global pathogens, whereas Pfm is not. In this study of Actinidia deliciosa ‘Hayward’ responses to the two pathovars, the objective was to test whether differences in plant defense responses mounted against the two pathovars correlated with the contrasting severity of the symptoms caused by them. Results showed that Psa infections were always more severe than Pfm infections, and were associated with highly localized, differential expression of phytohormones and putative defense gene transcripts in stem tissue closest to the inoculation site. Phytohormone concentrations of jasmonic acid (JA, jasmonate isoleucine (JA-Ile, salicylic acid (SA and abscisic acid were always greater in stem tissue than in leaves, and leaf phytohormones were not affected by pathogen inoculation. Pfm inoculation induced a threefold increase in SA in stems relative to Psa inoculation, and a smaller 1.6-fold induction of JA. Transcript expression showed no effect of inoculation in leaves, but Pfm inoculation resulted in the greatest elevation of the SA marker genes, PR1 and glucan endo-1,3-beta-glucosidase (β-1,3-glucosidase (32- and 25-fold increases, respectively in stem tissue surrounding the inoculation site. Pfm inoculation also produced a stronger response than Psa inoculation in localized stem tissue for the SA marker gene PR6, jasmonoyl-isoleucine-12-hydrolase (JIH1, which acts as a negative marker of the JA pathway, and APETALA2/Ethylene response factor 2 transcription factor (AP2 ERF2, which is involved in JA/SA crosstalk. WRKY40 transcription factor (a SA marker was induced equally in stems by wounding (mock inoculation and pathovar inoculation. Taken together, these results suggest that the host appears to mount a stronger, localized, SA-based defense response to Pfm

  13. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor.

    Directory of Open Access Journals (Sweden)

    Izumi Kaneko

    2015-05-01

    Full Text Available Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors.

  14. The cellular transcription factor CREB corresponds to activating transcription factor 47 (ATF-47) and forms complexes with a group of polypeptides related to ATF-43.

    Science.gov (United States)

    Hurst, H C; Masson, N; Jones, N C; Lee, K A

    1990-12-01

    Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.